1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains SQLite's grammar for SQL. Process this file 13 ** using the lemon parser generator to generate C code that runs 14 ** the parser. Lemon will also generate a header file containing 15 ** numeric codes for all of the tokens. 16 */ 17 18 // All token codes are small integers with #defines that begin with "TK_" 19 %token_prefix TK_ 20 21 // The type of the data attached to each token is Token. This is also the 22 // default type for non-terminals. 23 // 24 %token_type {Token} 25 %default_type {Token} 26 27 // The generated parser function takes a 4th argument as follows: 28 %extra_argument {Parse *pParse} 29 30 // This code runs whenever there is a syntax error 31 // 32 %syntax_error { 33 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 34 assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */ 35 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 36 } 37 %stack_overflow { 38 UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */ 39 sqlite3ErrorMsg(pParse, "parser stack overflow"); 40 } 41 42 // The name of the generated procedure that implements the parser 43 // is as follows: 44 %name sqlite3Parser 45 46 // The following text is included near the beginning of the C source 47 // code file that implements the parser. 48 // 49 %include { 50 #include "sqliteInt.h" 51 52 /* 53 ** Disable all error recovery processing in the parser push-down 54 ** automaton. 55 */ 56 #define YYNOERRORRECOVERY 1 57 58 /* 59 ** Make yytestcase() the same as testcase() 60 */ 61 #define yytestcase(X) testcase(X) 62 63 /* 64 ** An instance of this structure holds information about the 65 ** LIMIT clause of a SELECT statement. 66 */ 67 struct LimitVal { 68 Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */ 69 Expr *pOffset; /* The OFFSET expression. NULL if there is none */ 70 }; 71 72 /* 73 ** An instance of this structure is used to store the LIKE, 74 ** GLOB, NOT LIKE, and NOT GLOB operators. 75 */ 76 struct LikeOp { 77 Token eOperator; /* "like" or "glob" or "regexp" */ 78 int not; /* True if the NOT keyword is present */ 79 }; 80 81 /* 82 ** An instance of the following structure describes the event of a 83 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 84 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 85 ** 86 ** UPDATE ON (a,b,c) 87 ** 88 ** Then the "b" IdList records the list "a,b,c". 89 */ 90 struct TrigEvent { int a; IdList * b; }; 91 92 /* 93 ** An instance of this structure holds the ATTACH key and the key type. 94 */ 95 struct AttachKey { int type; Token key; }; 96 97 } // end %include 98 99 // Input is a single SQL command 100 input ::= cmdlist. 101 cmdlist ::= cmdlist ecmd. 102 cmdlist ::= ecmd. 103 ecmd ::= SEMI. 104 ecmd ::= explain cmdx SEMI. 105 explain ::= . { sqlite3BeginParse(pParse, 0); } 106 %ifndef SQLITE_OMIT_EXPLAIN 107 explain ::= EXPLAIN. { sqlite3BeginParse(pParse, 1); } 108 explain ::= EXPLAIN QUERY PLAN. { sqlite3BeginParse(pParse, 2); } 109 %endif SQLITE_OMIT_EXPLAIN 110 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 111 112 ///////////////////// Begin and end transactions. //////////////////////////// 113 // 114 115 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 116 trans_opt ::= . 117 trans_opt ::= TRANSACTION. 118 trans_opt ::= TRANSACTION nm. 119 %type transtype {int} 120 transtype(A) ::= . {A = TK_DEFERRED;} 121 transtype(A) ::= DEFERRED(X). {A = @X;} 122 transtype(A) ::= IMMEDIATE(X). {A = @X;} 123 transtype(A) ::= EXCLUSIVE(X). {A = @X;} 124 cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);} 125 cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);} 126 cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);} 127 128 savepoint_opt ::= SAVEPOINT. 129 savepoint_opt ::= . 130 cmd ::= SAVEPOINT nm(X). { 131 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 132 } 133 cmd ::= RELEASE savepoint_opt nm(X). { 134 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 135 } 136 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 137 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 138 } 139 140 ///////////////////// The CREATE TABLE statement //////////////////////////// 141 // 142 cmd ::= create_table create_table_args. 143 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 144 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 145 } 146 createkw(A) ::= CREATE(X). { 147 pParse->db->lookaside.bEnabled = 0; 148 A = X; 149 } 150 %type ifnotexists {int} 151 ifnotexists(A) ::= . {A = 0;} 152 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 153 %type temp {int} 154 %ifndef SQLITE_OMIT_TEMPDB 155 temp(A) ::= TEMP. {A = 1;} 156 %endif SQLITE_OMIT_TEMPDB 157 temp(A) ::= . {A = 0;} 158 create_table_args ::= LP columnlist conslist_opt(X) RP(Y). { 159 sqlite3EndTable(pParse,&X,&Y,0); 160 } 161 create_table_args ::= AS select(S). { 162 sqlite3EndTable(pParse,0,0,S); 163 sqlite3SelectDelete(pParse->db, S); 164 } 165 columnlist ::= columnlist COMMA column. 166 columnlist ::= column. 167 168 // A "column" is a complete description of a single column in a 169 // CREATE TABLE statement. This includes the column name, its 170 // datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES, 171 // NOT NULL and so forth. 172 // 173 column(A) ::= columnid(X) type carglist. { 174 A.z = X.z; 175 A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n; 176 } 177 columnid(A) ::= nm(X). { 178 sqlite3AddColumn(pParse,&X); 179 A = X; 180 } 181 182 183 // An IDENTIFIER can be a generic identifier, or one of several 184 // keywords. Any non-standard keyword can also be an identifier. 185 // 186 %type id {Token} 187 id(A) ::= ID(X). {A = X;} 188 id(A) ::= INDEXED(X). {A = X;} 189 190 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 191 // fallback to ID if they will not parse as their original value. 192 // This obviates the need for the "id" nonterminal. 193 // 194 %fallback ID 195 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 196 CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR 197 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 198 QUERY KEY OF OFFSET PRAGMA RAISE RELEASE REPLACE RESTRICT ROW ROLLBACK 199 SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL 200 %ifdef SQLITE_OMIT_COMPOUND_SELECT 201 EXCEPT INTERSECT UNION 202 %endif SQLITE_OMIT_COMPOUND_SELECT 203 REINDEX RENAME CTIME_KW IF 204 . 205 %wildcard ANY. 206 207 // Define operator precedence early so that this is the first occurance 208 // of the operator tokens in the grammer. Keeping the operators together 209 // causes them to be assigned integer values that are close together, 210 // which keeps parser tables smaller. 211 // 212 // The token values assigned to these symbols is determined by the order 213 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 214 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 215 // the sqlite3ExprIfFalse() routine for additional information on this 216 // constraint. 217 // 218 %left OR. 219 %left AND. 220 %right NOT. 221 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 222 %left GT LE LT GE. 223 %right ESCAPE. 224 %left BITAND BITOR LSHIFT RSHIFT. 225 %left PLUS MINUS. 226 %left STAR SLASH REM. 227 %left CONCAT. 228 %left COLLATE. 229 %right BITNOT. 230 231 // And "ids" is an identifer-or-string. 232 // 233 %type ids {Token} 234 ids(A) ::= ID|STRING(X). {A = X;} 235 236 // The name of a column or table can be any of the following: 237 // 238 %type nm {Token} 239 nm(A) ::= id(X). {A = X;} 240 nm(A) ::= STRING(X). {A = X;} 241 nm(A) ::= JOIN_KW(X). {A = X;} 242 243 // A typetoken is really one or more tokens that form a type name such 244 // as can be found after the column name in a CREATE TABLE statement. 245 // Multiple tokens are concatenated to form the value of the typetoken. 246 // 247 %type typetoken {Token} 248 type ::= . 249 type ::= typetoken(X). {sqlite3AddColumnType(pParse,&X);} 250 typetoken(A) ::= typename(X). {A = X;} 251 typetoken(A) ::= typename(X) LP signed RP(Y). { 252 A.z = X.z; 253 A.n = (int)(&Y.z[Y.n] - X.z); 254 } 255 typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). { 256 A.z = X.z; 257 A.n = (int)(&Y.z[Y.n] - X.z); 258 } 259 %type typename {Token} 260 typename(A) ::= ids(X). {A = X;} 261 typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);} 262 signed ::= plus_num. 263 signed ::= minus_num. 264 265 // "carglist" is a list of additional constraints that come after the 266 // column name and column type in a CREATE TABLE statement. 267 // 268 carglist ::= carglist carg. 269 carglist ::= . 270 carg ::= CONSTRAINT nm ccons. 271 carg ::= ccons. 272 ccons ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,&X);} 273 ccons ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,&X);} 274 ccons ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,&X);} 275 ccons ::= DEFAULT MINUS(A) term(X). { 276 ExprSpan v; 277 v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0); 278 v.zStart = A.z; 279 v.zEnd = X.zEnd; 280 sqlite3AddDefaultValue(pParse,&v); 281 } 282 ccons ::= DEFAULT id(X). { 283 ExprSpan v; 284 spanExpr(&v, pParse, TK_STRING, &X); 285 sqlite3AddDefaultValue(pParse,&v); 286 } 287 288 // In addition to the type name, we also care about the primary key and 289 // UNIQUE constraints. 290 // 291 ccons ::= NULL onconf. 292 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 293 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 294 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 295 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);} 296 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X.pExpr);} 297 ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R). 298 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 299 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 300 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 301 302 // The optional AUTOINCREMENT keyword 303 %type autoinc {int} 304 autoinc(X) ::= . {X = 0;} 305 autoinc(X) ::= AUTOINCR. {X = 1;} 306 307 // The next group of rules parses the arguments to a REFERENCES clause 308 // that determine if the referential integrity checking is deferred or 309 // or immediate and which determine what action to take if a ref-integ 310 // check fails. 311 // 312 %type refargs {int} 313 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} 314 refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; } 315 %type refarg {struct {int value; int mask;}} 316 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 317 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } 318 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 319 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 320 %type refact {int} 321 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} 322 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} 323 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} 324 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} 325 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} 326 %type defer_subclause {int} 327 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 328 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 329 %type init_deferred_pred_opt {int} 330 init_deferred_pred_opt(A) ::= . {A = 0;} 331 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 332 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 333 334 // For the time being, the only constraint we care about is the primary 335 // key and UNIQUE. Both create indices. 336 // 337 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 338 conslist_opt(A) ::= COMMA(X) conslist. {A = X;} 339 conslist ::= conslist COMMA tcons. 340 conslist ::= conslist tcons. 341 conslist ::= tcons. 342 tcons ::= CONSTRAINT nm. 343 tcons ::= PRIMARY KEY LP idxlist(X) autoinc(I) RP onconf(R). 344 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 345 tcons ::= UNIQUE LP idxlist(X) RP onconf(R). 346 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);} 347 tcons ::= CHECK LP expr(E) RP onconf. 348 {sqlite3AddCheckConstraint(pParse,E.pExpr);} 349 tcons ::= FOREIGN KEY LP idxlist(FA) RP 350 REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). { 351 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 352 sqlite3DeferForeignKey(pParse, D); 353 } 354 %type defer_subclause_opt {int} 355 defer_subclause_opt(A) ::= . {A = 0;} 356 defer_subclause_opt(A) ::= defer_subclause(X). {A = X;} 357 358 // The following is a non-standard extension that allows us to declare the 359 // default behavior when there is a constraint conflict. 360 // 361 %type onconf {int} 362 %type orconf {u8} 363 %type resolvetype {int} 364 onconf(A) ::= . {A = OE_Default;} 365 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 366 orconf(A) ::= . {A = OE_Default;} 367 orconf(A) ::= OR resolvetype(X). {A = (u8)X;} 368 resolvetype(A) ::= raisetype(X). {A = X;} 369 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 370 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 371 372 ////////////////////////// The DROP TABLE ///////////////////////////////////// 373 // 374 cmd ::= DROP TABLE ifexists(E) fullname(X). { 375 sqlite3DropTable(pParse, X, 0, E); 376 } 377 %type ifexists {int} 378 ifexists(A) ::= IF EXISTS. {A = 1;} 379 ifexists(A) ::= . {A = 0;} 380 381 ///////////////////// The CREATE VIEW statement ///////////////////////////// 382 // 383 %ifndef SQLITE_OMIT_VIEW 384 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) AS select(S). { 385 sqlite3CreateView(pParse, &X, &Y, &Z, S, T, E); 386 } 387 cmd ::= DROP VIEW ifexists(E) fullname(X). { 388 sqlite3DropTable(pParse, X, 1, E); 389 } 390 %endif SQLITE_OMIT_VIEW 391 392 //////////////////////// The SELECT statement ///////////////////////////////// 393 // 394 cmd ::= select(X). { 395 SelectDest dest = {SRT_Output, 0, 0, 0, 0}; 396 sqlite3Select(pParse, X, &dest); 397 sqlite3ExplainBegin(pParse->pVdbe); 398 sqlite3ExplainSelect(pParse->pVdbe, X); 399 sqlite3ExplainFinish(pParse->pVdbe); 400 sqlite3SelectDelete(pParse->db, X); 401 } 402 403 %type select {Select*} 404 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 405 %type oneselect {Select*} 406 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 407 408 select(A) ::= oneselect(X). {A = X;} 409 %ifndef SQLITE_OMIT_COMPOUND_SELECT 410 select(A) ::= select(X) multiselect_op(Y) oneselect(Z). { 411 if( Z ){ 412 Z->op = (u8)Y; 413 Z->pPrior = X; 414 }else{ 415 sqlite3SelectDelete(pParse->db, X); 416 } 417 A = Z; 418 } 419 %type multiselect_op {int} 420 multiselect_op(A) ::= UNION(OP). {A = @OP;} 421 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 422 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP;} 423 %endif SQLITE_OMIT_COMPOUND_SELECT 424 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 425 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). { 426 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset); 427 } 428 429 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 430 // present and false (0) if it is not. 431 // 432 %type distinct {int} 433 distinct(A) ::= DISTINCT. {A = 1;} 434 distinct(A) ::= ALL. {A = 0;} 435 distinct(A) ::= . {A = 0;} 436 437 // selcollist is a list of expressions that are to become the return 438 // values of the SELECT statement. The "*" in statements like 439 // "SELECT * FROM ..." is encoded as a special expression with an 440 // opcode of TK_ALL. 441 // 442 %type selcollist {ExprList*} 443 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 444 %type sclp {ExprList*} 445 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 446 sclp(A) ::= selcollist(X) COMMA. {A = X;} 447 sclp(A) ::= . {A = 0;} 448 selcollist(A) ::= sclp(P) expr(X) as(Y). { 449 A = sqlite3ExprListAppend(pParse, P, X.pExpr); 450 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 451 sqlite3ExprListSetSpan(pParse,A,&X); 452 } 453 selcollist(A) ::= sclp(P) STAR. { 454 Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0); 455 A = sqlite3ExprListAppend(pParse, P, p); 456 } 457 selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). { 458 Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &Y); 459 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 460 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 461 A = sqlite3ExprListAppend(pParse,P, pDot); 462 } 463 464 // An option "AS <id>" phrase that can follow one of the expressions that 465 // define the result set, or one of the tables in the FROM clause. 466 // 467 %type as {Token} 468 as(X) ::= AS nm(Y). {X = Y;} 469 as(X) ::= ids(Y). {X = Y;} 470 as(X) ::= . {X.n = 0;} 471 472 473 %type seltablist {SrcList*} 474 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 475 %type stl_prefix {SrcList*} 476 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 477 %type from {SrcList*} 478 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 479 480 // A complete FROM clause. 481 // 482 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} 483 from(A) ::= FROM seltablist(X). { 484 A = X; 485 sqlite3SrcListShiftJoinType(A); 486 } 487 488 // "seltablist" is a "Select Table List" - the content of the FROM clause 489 // in a SELECT statement. "stl_prefix" is a prefix of this list. 490 // 491 stl_prefix(A) ::= seltablist(X) joinop(Y). { 492 A = X; 493 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].jointype = (u8)Y; 494 } 495 stl_prefix(A) ::= . {A = 0;} 496 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I) on_opt(N) using_opt(U). { 497 A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U); 498 sqlite3SrcListIndexedBy(pParse, A, &I); 499 } 500 %ifndef SQLITE_OMIT_SUBQUERY 501 seltablist(A) ::= stl_prefix(X) LP select(S) RP 502 as(Z) on_opt(N) using_opt(U). { 503 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U); 504 } 505 seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP 506 as(Z) on_opt(N) using_opt(U). { 507 if( X==0 && Z.n==0 && N==0 && U==0 ){ 508 A = F; 509 }else{ 510 Select *pSubquery; 511 sqlite3SrcListShiftJoinType(F); 512 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0); 513 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U); 514 } 515 } 516 517 // A seltablist_paren nonterminal represents anything in a FROM that 518 // is contained inside parentheses. This can be either a subquery or 519 // a grouping of table and subqueries. 520 // 521 // %type seltablist_paren {Select*} 522 // %destructor seltablist_paren {sqlite3SelectDelete(pParse->db, $$);} 523 // seltablist_paren(A) ::= select(S). {A = S;} 524 // seltablist_paren(A) ::= seltablist(F). { 525 // sqlite3SrcListShiftJoinType(F); 526 // A = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0); 527 // } 528 %endif SQLITE_OMIT_SUBQUERY 529 530 %type dbnm {Token} 531 dbnm(A) ::= . {A.z=0; A.n=0;} 532 dbnm(A) ::= DOT nm(X). {A = X;} 533 534 %type fullname {SrcList*} 535 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 536 fullname(A) ::= nm(X) dbnm(Y). {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);} 537 538 %type joinop {int} 539 %type joinop2 {int} 540 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 541 joinop(X) ::= JOIN_KW(A) JOIN. { X = sqlite3JoinType(pParse,&A,0,0); } 542 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. { X = sqlite3JoinType(pParse,&A,&B,0); } 543 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 544 { X = sqlite3JoinType(pParse,&A,&B,&C); } 545 546 %type on_opt {Expr*} 547 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} 548 on_opt(N) ::= ON expr(E). {N = E.pExpr;} 549 on_opt(N) ::= . {N = 0;} 550 551 // Note that this block abuses the Token type just a little. If there is 552 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 553 // there is an INDEXED BY clause, then the token is populated as per normal, 554 // with z pointing to the token data and n containing the number of bytes 555 // in the token. 556 // 557 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 558 // normally illegal. The sqlite3SrcListIndexedBy() function 559 // recognizes and interprets this as a special case. 560 // 561 %type indexed_opt {Token} 562 indexed_opt(A) ::= . {A.z=0; A.n=0;} 563 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} 564 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 565 566 %type using_opt {IdList*} 567 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} 568 using_opt(U) ::= USING LP inscollist(L) RP. {U = L;} 569 using_opt(U) ::= . {U = 0;} 570 571 572 %type orderby_opt {ExprList*} 573 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 574 %type sortlist {ExprList*} 575 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 576 %type sortitem {Expr*} 577 %destructor sortitem {sqlite3ExprDelete(pParse->db, $$);} 578 579 orderby_opt(A) ::= . {A = 0;} 580 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 581 sortlist(A) ::= sortlist(X) COMMA sortitem(Y) sortorder(Z). { 582 A = sqlite3ExprListAppend(pParse,X,Y); 583 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 584 } 585 sortlist(A) ::= sortitem(Y) sortorder(Z). { 586 A = sqlite3ExprListAppend(pParse,0,Y); 587 if( A && ALWAYS(A->a) ) A->a[0].sortOrder = (u8)Z; 588 } 589 sortitem(A) ::= expr(X). {A = X.pExpr;} 590 591 %type sortorder {int} 592 593 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 594 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 595 sortorder(A) ::= . {A = SQLITE_SO_ASC;} 596 597 %type groupby_opt {ExprList*} 598 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 599 groupby_opt(A) ::= . {A = 0;} 600 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 601 602 %type having_opt {Expr*} 603 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 604 having_opt(A) ::= . {A = 0;} 605 having_opt(A) ::= HAVING expr(X). {A = X.pExpr;} 606 607 %type limit_opt {struct LimitVal} 608 609 // The destructor for limit_opt will never fire in the current grammar. 610 // The limit_opt non-terminal only occurs at the end of a single production 611 // rule for SELECT statements. As soon as the rule that create the 612 // limit_opt non-terminal reduces, the SELECT statement rule will also 613 // reduce. So there is never a limit_opt non-terminal on the stack 614 // except as a transient. So there is never anything to destroy. 615 // 616 //%destructor limit_opt { 617 // sqlite3ExprDelete(pParse->db, $$.pLimit); 618 // sqlite3ExprDelete(pParse->db, $$.pOffset); 619 //} 620 limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;} 621 limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X.pExpr; A.pOffset = 0;} 622 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 623 {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;} 624 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 625 {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;} 626 627 /////////////////////////// The DELETE statement ///////////////////////////// 628 // 629 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 630 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W) 631 orderby_opt(O) limit_opt(L). { 632 sqlite3SrcListIndexedBy(pParse, X, &I); 633 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE"); 634 sqlite3DeleteFrom(pParse,X,W); 635 } 636 %endif 637 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 638 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W). { 639 sqlite3SrcListIndexedBy(pParse, X, &I); 640 sqlite3DeleteFrom(pParse,X,W); 641 } 642 %endif 643 644 %type where_opt {Expr*} 645 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 646 647 where_opt(A) ::= . {A = 0;} 648 where_opt(A) ::= WHERE expr(X). {A = X.pExpr;} 649 650 ////////////////////////// The UPDATE command //////////////////////////////// 651 // 652 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 653 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W) orderby_opt(O) limit_opt(L). { 654 sqlite3SrcListIndexedBy(pParse, X, &I); 655 sqlite3ExprListCheckLength(pParse,Y,"set list"); 656 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE"); 657 sqlite3Update(pParse,X,Y,W,R); 658 } 659 %endif 660 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 661 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W). { 662 sqlite3SrcListIndexedBy(pParse, X, &I); 663 sqlite3ExprListCheckLength(pParse,Y,"set list"); 664 sqlite3Update(pParse,X,Y,W,R); 665 } 666 %endif 667 668 %type setlist {ExprList*} 669 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 670 671 setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). { 672 A = sqlite3ExprListAppend(pParse, Z, Y.pExpr); 673 sqlite3ExprListSetName(pParse, A, &X, 1); 674 } 675 setlist(A) ::= nm(X) EQ expr(Y). { 676 A = sqlite3ExprListAppend(pParse, 0, Y.pExpr); 677 sqlite3ExprListSetName(pParse, A, &X, 1); 678 } 679 680 ////////////////////////// The INSERT command ///////////////////////////////// 681 // 682 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) 683 VALUES LP itemlist(Y) RP. 684 {sqlite3Insert(pParse, X, Y, 0, F, R);} 685 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) select(S). 686 {sqlite3Insert(pParse, X, 0, S, F, R);} 687 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) DEFAULT VALUES. 688 {sqlite3Insert(pParse, X, 0, 0, F, R);} 689 690 %type insert_cmd {u8} 691 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 692 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 693 694 695 %type itemlist {ExprList*} 696 %destructor itemlist {sqlite3ExprListDelete(pParse->db, $$);} 697 698 itemlist(A) ::= itemlist(X) COMMA expr(Y). 699 {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);} 700 itemlist(A) ::= expr(X). 701 {A = sqlite3ExprListAppend(pParse,0,X.pExpr);} 702 703 %type inscollist_opt {IdList*} 704 %destructor inscollist_opt {sqlite3IdListDelete(pParse->db, $$);} 705 %type inscollist {IdList*} 706 %destructor inscollist {sqlite3IdListDelete(pParse->db, $$);} 707 708 inscollist_opt(A) ::= . {A = 0;} 709 inscollist_opt(A) ::= LP inscollist(X) RP. {A = X;} 710 inscollist(A) ::= inscollist(X) COMMA nm(Y). 711 {A = sqlite3IdListAppend(pParse->db,X,&Y);} 712 inscollist(A) ::= nm(Y). 713 {A = sqlite3IdListAppend(pParse->db,0,&Y);} 714 715 /////////////////////////// Expression Processing ///////////////////////////// 716 // 717 718 %type expr {ExprSpan} 719 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);} 720 %type term {ExprSpan} 721 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);} 722 723 %include { 724 /* This is a utility routine used to set the ExprSpan.zStart and 725 ** ExprSpan.zEnd values of pOut so that the span covers the complete 726 ** range of text beginning with pStart and going to the end of pEnd. 727 */ 728 static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){ 729 pOut->zStart = pStart->z; 730 pOut->zEnd = &pEnd->z[pEnd->n]; 731 } 732 733 /* Construct a new Expr object from a single identifier. Use the 734 ** new Expr to populate pOut. Set the span of pOut to be the identifier 735 ** that created the expression. 736 */ 737 static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){ 738 pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue); 739 pOut->zStart = pValue->z; 740 pOut->zEnd = &pValue->z[pValue->n]; 741 } 742 } 743 744 expr(A) ::= term(X). {A = X;} 745 expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);} 746 term(A) ::= NULL(X). {spanExpr(&A, pParse, @X, &X);} 747 expr(A) ::= id(X). {spanExpr(&A, pParse, TK_ID, &X);} 748 expr(A) ::= JOIN_KW(X). {spanExpr(&A, pParse, TK_ID, &X);} 749 expr(A) ::= nm(X) DOT nm(Y). { 750 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 751 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 752 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0); 753 spanSet(&A,&X,&Y); 754 } 755 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 756 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 757 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 758 Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z); 759 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0); 760 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0); 761 spanSet(&A,&X,&Z); 762 } 763 term(A) ::= INTEGER|FLOAT|BLOB(X). {spanExpr(&A, pParse, @X, &X);} 764 term(A) ::= STRING(X). {spanExpr(&A, pParse, @X, &X);} 765 expr(A) ::= REGISTER(X). { 766 /* When doing a nested parse, one can include terms in an expression 767 ** that look like this: #1 #2 ... These terms refer to registers 768 ** in the virtual machine. #N is the N-th register. */ 769 if( pParse->nested==0 ){ 770 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X); 771 A.pExpr = 0; 772 }else{ 773 A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X); 774 if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable); 775 } 776 spanSet(&A, &X, &X); 777 } 778 expr(A) ::= VARIABLE(X). { 779 spanExpr(&A, pParse, TK_VARIABLE, &X); 780 sqlite3ExprAssignVarNumber(pParse, A.pExpr); 781 spanSet(&A, &X, &X); 782 } 783 expr(A) ::= expr(E) COLLATE ids(C). { 784 A.pExpr = sqlite3ExprSetCollByToken(pParse, E.pExpr, &C); 785 A.zStart = E.zStart; 786 A.zEnd = &C.z[C.n]; 787 } 788 %ifndef SQLITE_OMIT_CAST 789 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). { 790 A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T); 791 spanSet(&A,&X,&Y); 792 } 793 %endif SQLITE_OMIT_CAST 794 expr(A) ::= ID(X) LP distinct(D) exprlist(Y) RP(E). { 795 if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 796 sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X); 797 } 798 A.pExpr = sqlite3ExprFunction(pParse, Y, &X); 799 spanSet(&A,&X,&E); 800 if( D && A.pExpr ){ 801 A.pExpr->flags |= EP_Distinct; 802 } 803 } 804 expr(A) ::= ID(X) LP STAR RP(E). { 805 A.pExpr = sqlite3ExprFunction(pParse, 0, &X); 806 spanSet(&A,&X,&E); 807 } 808 term(A) ::= CTIME_KW(OP). { 809 /* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are 810 ** treated as functions that return constants */ 811 A.pExpr = sqlite3ExprFunction(pParse, 0,&OP); 812 if( A.pExpr ){ 813 A.pExpr->op = TK_CONST_FUNC; 814 } 815 spanSet(&A, &OP, &OP); 816 } 817 818 %include { 819 /* This routine constructs a binary expression node out of two ExprSpan 820 ** objects and uses the result to populate a new ExprSpan object. 821 */ 822 static void spanBinaryExpr( 823 ExprSpan *pOut, /* Write the result here */ 824 Parse *pParse, /* The parsing context. Errors accumulate here */ 825 int op, /* The binary operation */ 826 ExprSpan *pLeft, /* The left operand */ 827 ExprSpan *pRight /* The right operand */ 828 ){ 829 pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0); 830 pOut->zStart = pLeft->zStart; 831 pOut->zEnd = pRight->zEnd; 832 } 833 } 834 835 expr(A) ::= expr(X) AND(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 836 expr(A) ::= expr(X) OR(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 837 expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y). 838 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 839 expr(A) ::= expr(X) EQ|NE(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 840 expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 841 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 842 expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y). 843 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 844 expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y). 845 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 846 expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 847 %type likeop {struct LikeOp} 848 likeop(A) ::= LIKE_KW(X). {A.eOperator = X; A.not = 0;} 849 likeop(A) ::= NOT LIKE_KW(X). {A.eOperator = X; A.not = 1;} 850 likeop(A) ::= MATCH(X). {A.eOperator = X; A.not = 0;} 851 likeop(A) ::= NOT MATCH(X). {A.eOperator = X; A.not = 1;} 852 expr(A) ::= expr(X) likeop(OP) expr(Y). [LIKE_KW] { 853 ExprList *pList; 854 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); 855 pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); 856 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); 857 if( OP.not ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 858 A.zStart = X.zStart; 859 A.zEnd = Y.zEnd; 860 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; 861 } 862 expr(A) ::= expr(X) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { 863 ExprList *pList; 864 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); 865 pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); 866 pList = sqlite3ExprListAppend(pParse,pList, E.pExpr); 867 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); 868 if( OP.not ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 869 A.zStart = X.zStart; 870 A.zEnd = E.zEnd; 871 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; 872 } 873 874 %include { 875 /* Construct an expression node for a unary postfix operator 876 */ 877 static void spanUnaryPostfix( 878 ExprSpan *pOut, /* Write the new expression node here */ 879 Parse *pParse, /* Parsing context to record errors */ 880 int op, /* The operator */ 881 ExprSpan *pOperand, /* The operand */ 882 Token *pPostOp /* The operand token for setting the span */ 883 ){ 884 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 885 pOut->zStart = pOperand->zStart; 886 pOut->zEnd = &pPostOp->z[pPostOp->n]; 887 } 888 } 889 890 expr(A) ::= expr(X) ISNULL|NOTNULL(E). {spanUnaryPostfix(&A,pParse,@E,&X,&E);} 891 expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);} 892 893 %include { 894 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a 895 ** unary TK_ISNULL or TK_NOTNULL expression. */ 896 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ 897 sqlite3 *db = pParse->db; 898 if( db->mallocFailed==0 && pY->op==TK_NULL ){ 899 pA->op = (u8)op; 900 sqlite3ExprDelete(db, pA->pRight); 901 pA->pRight = 0; 902 } 903 } 904 } 905 906 // expr1 IS expr2 907 // expr1 IS NOT expr2 908 // 909 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 910 // is any other expression, code as TK_IS or TK_ISNOT. 911 // 912 expr(A) ::= expr(X) IS expr(Y). { 913 spanBinaryExpr(&A,pParse,TK_IS,&X,&Y); 914 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL); 915 } 916 expr(A) ::= expr(X) IS NOT expr(Y). { 917 spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y); 918 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL); 919 } 920 921 %include { 922 /* Construct an expression node for a unary prefix operator 923 */ 924 static void spanUnaryPrefix( 925 ExprSpan *pOut, /* Write the new expression node here */ 926 Parse *pParse, /* Parsing context to record errors */ 927 int op, /* The operator */ 928 ExprSpan *pOperand, /* The operand */ 929 Token *pPreOp /* The operand token for setting the span */ 930 ){ 931 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 932 pOut->zStart = pPreOp->z; 933 pOut->zEnd = pOperand->zEnd; 934 } 935 } 936 937 938 939 expr(A) ::= NOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} 940 expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} 941 expr(A) ::= MINUS(B) expr(X). [BITNOT] 942 {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);} 943 expr(A) ::= PLUS(B) expr(X). [BITNOT] 944 {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);} 945 946 %type between_op {int} 947 between_op(A) ::= BETWEEN. {A = 0;} 948 between_op(A) ::= NOT BETWEEN. {A = 1;} 949 expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 950 ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr); 951 pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr); 952 A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0); 953 if( A.pExpr ){ 954 A.pExpr->x.pList = pList; 955 }else{ 956 sqlite3ExprListDelete(pParse->db, pList); 957 } 958 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 959 A.zStart = W.zStart; 960 A.zEnd = Y.zEnd; 961 } 962 %ifndef SQLITE_OMIT_SUBQUERY 963 %type in_op {int} 964 in_op(A) ::= IN. {A = 0;} 965 in_op(A) ::= NOT IN. {A = 1;} 966 expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] { 967 if( Y==0 ){ 968 /* Expressions of the form 969 ** 970 ** expr1 IN () 971 ** expr1 NOT IN () 972 ** 973 ** simplify to constants 0 (false) and 1 (true), respectively, 974 ** regardless of the value of expr1. 975 */ 976 A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]); 977 sqlite3ExprDelete(pParse->db, X.pExpr); 978 }else{ 979 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 980 if( A.pExpr ){ 981 A.pExpr->x.pList = Y; 982 sqlite3ExprSetHeight(pParse, A.pExpr); 983 }else{ 984 sqlite3ExprListDelete(pParse->db, Y); 985 } 986 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 987 } 988 A.zStart = X.zStart; 989 A.zEnd = &E.z[E.n]; 990 } 991 expr(A) ::= LP(B) select(X) RP(E). { 992 A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0); 993 if( A.pExpr ){ 994 A.pExpr->x.pSelect = X; 995 ExprSetProperty(A.pExpr, EP_xIsSelect); 996 sqlite3ExprSetHeight(pParse, A.pExpr); 997 }else{ 998 sqlite3SelectDelete(pParse->db, X); 999 } 1000 A.zStart = B.z; 1001 A.zEnd = &E.z[E.n]; 1002 } 1003 expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E). [IN] { 1004 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 1005 if( A.pExpr ){ 1006 A.pExpr->x.pSelect = Y; 1007 ExprSetProperty(A.pExpr, EP_xIsSelect); 1008 sqlite3ExprSetHeight(pParse, A.pExpr); 1009 }else{ 1010 sqlite3SelectDelete(pParse->db, Y); 1011 } 1012 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 1013 A.zStart = X.zStart; 1014 A.zEnd = &E.z[E.n]; 1015 } 1016 expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] { 1017 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); 1018 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 1019 if( A.pExpr ){ 1020 A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0); 1021 ExprSetProperty(A.pExpr, EP_xIsSelect); 1022 sqlite3ExprSetHeight(pParse, A.pExpr); 1023 }else{ 1024 sqlite3SrcListDelete(pParse->db, pSrc); 1025 } 1026 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 1027 A.zStart = X.zStart; 1028 A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n]; 1029 } 1030 expr(A) ::= EXISTS(B) LP select(Y) RP(E). { 1031 Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0); 1032 if( p ){ 1033 p->x.pSelect = Y; 1034 ExprSetProperty(p, EP_xIsSelect); 1035 sqlite3ExprSetHeight(pParse, p); 1036 }else{ 1037 sqlite3SelectDelete(pParse->db, Y); 1038 } 1039 A.zStart = B.z; 1040 A.zEnd = &E.z[E.n]; 1041 } 1042 %endif SQLITE_OMIT_SUBQUERY 1043 1044 /* CASE expressions */ 1045 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). { 1046 A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, Z, 0); 1047 if( A.pExpr ){ 1048 A.pExpr->x.pList = Y; 1049 sqlite3ExprSetHeight(pParse, A.pExpr); 1050 }else{ 1051 sqlite3ExprListDelete(pParse->db, Y); 1052 } 1053 A.zStart = C.z; 1054 A.zEnd = &E.z[E.n]; 1055 } 1056 %type case_exprlist {ExprList*} 1057 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1058 case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). { 1059 A = sqlite3ExprListAppend(pParse,X, Y.pExpr); 1060 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1061 } 1062 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1063 A = sqlite3ExprListAppend(pParse,0, Y.pExpr); 1064 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1065 } 1066 %type case_else {Expr*} 1067 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1068 case_else(A) ::= ELSE expr(X). {A = X.pExpr;} 1069 case_else(A) ::= . {A = 0;} 1070 %type case_operand {Expr*} 1071 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1072 case_operand(A) ::= expr(X). {A = X.pExpr;} 1073 case_operand(A) ::= . {A = 0;} 1074 1075 %type exprlist {ExprList*} 1076 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1077 %type nexprlist {ExprList*} 1078 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1079 1080 exprlist(A) ::= nexprlist(X). {A = X;} 1081 exprlist(A) ::= . {A = 0;} 1082 nexprlist(A) ::= nexprlist(X) COMMA expr(Y). 1083 {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);} 1084 nexprlist(A) ::= expr(Y). 1085 {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);} 1086 1087 1088 ///////////////////////////// The CREATE INDEX command /////////////////////// 1089 // 1090 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1091 ON nm(Y) LP idxlist(Z) RP(E). { 1092 sqlite3CreateIndex(pParse, &X, &D, 1093 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, 1094 &S, &E, SQLITE_SO_ASC, NE); 1095 } 1096 1097 %type uniqueflag {int} 1098 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1099 uniqueflag(A) ::= . {A = OE_None;} 1100 1101 %type idxlist {ExprList*} 1102 %destructor idxlist {sqlite3ExprListDelete(pParse->db, $$);} 1103 %type idxlist_opt {ExprList*} 1104 %destructor idxlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1105 1106 idxlist_opt(A) ::= . {A = 0;} 1107 idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;} 1108 idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z). { 1109 Expr *p = 0; 1110 if( C.n>0 ){ 1111 p = sqlite3Expr(pParse->db, TK_COLUMN, 0); 1112 sqlite3ExprSetCollByToken(pParse, p, &C); 1113 } 1114 A = sqlite3ExprListAppend(pParse,X, p); 1115 sqlite3ExprListSetName(pParse,A,&Y,1); 1116 sqlite3ExprListCheckLength(pParse, A, "index"); 1117 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 1118 } 1119 idxlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1120 Expr *p = 0; 1121 if( C.n>0 ){ 1122 p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0); 1123 sqlite3ExprSetCollByToken(pParse, p, &C); 1124 } 1125 A = sqlite3ExprListAppend(pParse,0, p); 1126 sqlite3ExprListSetName(pParse, A, &Y, 1); 1127 sqlite3ExprListCheckLength(pParse, A, "index"); 1128 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 1129 } 1130 1131 %type collate {Token} 1132 collate(C) ::= . {C.z = 0; C.n = 0;} 1133 collate(C) ::= COLLATE ids(X). {C = X;} 1134 1135 1136 ///////////////////////////// The DROP INDEX command ///////////////////////// 1137 // 1138 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1139 1140 ///////////////////////////// The VACUUM command ///////////////////////////// 1141 // 1142 %ifndef SQLITE_OMIT_VACUUM 1143 %ifndef SQLITE_OMIT_ATTACH 1144 cmd ::= VACUUM. {sqlite3Vacuum(pParse);} 1145 cmd ::= VACUUM nm. {sqlite3Vacuum(pParse);} 1146 %endif SQLITE_OMIT_ATTACH 1147 %endif SQLITE_OMIT_VACUUM 1148 1149 ///////////////////////////// The PRAGMA command ///////////////////////////// 1150 // 1151 %ifndef SQLITE_OMIT_PRAGMA 1152 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1153 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1154 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1155 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1156 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1157 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1158 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1159 1160 nmnum(A) ::= plus_num(X). {A = X;} 1161 nmnum(A) ::= nm(X). {A = X;} 1162 nmnum(A) ::= ON(X). {A = X;} 1163 nmnum(A) ::= DELETE(X). {A = X;} 1164 nmnum(A) ::= DEFAULT(X). {A = X;} 1165 %endif SQLITE_OMIT_PRAGMA 1166 plus_num(A) ::= plus_opt number(X). {A = X;} 1167 minus_num(A) ::= MINUS number(X). {A = X;} 1168 number(A) ::= INTEGER|FLOAT(X). {A = X;} 1169 plus_opt ::= PLUS. 1170 plus_opt ::= . 1171 1172 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1173 1174 %ifndef SQLITE_OMIT_TRIGGER 1175 1176 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1177 Token all; 1178 all.z = A.z; 1179 all.n = (int)(Z.z - A.z) + Z.n; 1180 sqlite3FinishTrigger(pParse, S, &all); 1181 } 1182 1183 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1184 trigger_time(C) trigger_event(D) 1185 ON fullname(E) foreach_clause when_clause(G). { 1186 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1187 A = (Z.n==0?B:Z); 1188 } 1189 1190 %type trigger_time {int} 1191 trigger_time(A) ::= BEFORE. { A = TK_BEFORE; } 1192 trigger_time(A) ::= AFTER. { A = TK_AFTER; } 1193 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1194 trigger_time(A) ::= . { A = TK_BEFORE; } 1195 1196 %type trigger_event {struct TrigEvent} 1197 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1198 trigger_event(A) ::= DELETE|INSERT(OP). {A.a = @OP; A.b = 0;} 1199 trigger_event(A) ::= UPDATE(OP). {A.a = @OP; A.b = 0;} 1200 trigger_event(A) ::= UPDATE OF inscollist(X). {A.a = TK_UPDATE; A.b = X;} 1201 1202 foreach_clause ::= . 1203 foreach_clause ::= FOR EACH ROW. 1204 1205 %type when_clause {Expr*} 1206 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1207 when_clause(A) ::= . { A = 0; } 1208 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; } 1209 1210 %type trigger_cmd_list {TriggerStep*} 1211 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1212 trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. { 1213 assert( Y!=0 ); 1214 Y->pLast->pNext = X; 1215 Y->pLast = X; 1216 A = Y; 1217 } 1218 trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. { 1219 assert( X!=0 ); 1220 X->pLast = X; 1221 A = X; 1222 } 1223 1224 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1225 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1226 // the same database as the table that the trigger fires on. 1227 // 1228 %type trnm {Token} 1229 trnm(A) ::= nm(X). {A = X;} 1230 trnm(A) ::= nm DOT nm(X). { 1231 A = X; 1232 sqlite3ErrorMsg(pParse, 1233 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1234 "statements within triggers"); 1235 } 1236 1237 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1238 // statements within triggers. We make a specific error message for this 1239 // since it is an exception to the default grammar rules. 1240 // 1241 tridxby ::= . 1242 tridxby ::= INDEXED BY nm. { 1243 sqlite3ErrorMsg(pParse, 1244 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1245 "within triggers"); 1246 } 1247 tridxby ::= NOT INDEXED. { 1248 sqlite3ErrorMsg(pParse, 1249 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1250 "within triggers"); 1251 } 1252 1253 1254 1255 %type trigger_cmd {TriggerStep*} 1256 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1257 // UPDATE 1258 trigger_cmd(A) ::= 1259 UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z). 1260 { A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); } 1261 1262 // INSERT 1263 trigger_cmd(A) ::= 1264 insert_cmd(R) INTO trnm(X) inscollist_opt(F) VALUES LP itemlist(Y) RP. 1265 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, Y, 0, R);} 1266 1267 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) inscollist_opt(F) select(S). 1268 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, 0, S, R);} 1269 1270 // DELETE 1271 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y). 1272 {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);} 1273 1274 // SELECT 1275 trigger_cmd(A) ::= select(X). {A = sqlite3TriggerSelectStep(pParse->db, X); } 1276 1277 // The special RAISE expression that may occur in trigger programs 1278 expr(A) ::= RAISE(X) LP IGNORE RP(Y). { 1279 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0); 1280 if( A.pExpr ){ 1281 A.pExpr->affinity = OE_Ignore; 1282 } 1283 A.zStart = X.z; 1284 A.zEnd = &Y.z[Y.n]; 1285 } 1286 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). { 1287 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z); 1288 if( A.pExpr ) { 1289 A.pExpr->affinity = (char)T; 1290 } 1291 A.zStart = X.z; 1292 A.zEnd = &Y.z[Y.n]; 1293 } 1294 %endif !SQLITE_OMIT_TRIGGER 1295 1296 %type raisetype {int} 1297 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1298 raisetype(A) ::= ABORT. {A = OE_Abort;} 1299 raisetype(A) ::= FAIL. {A = OE_Fail;} 1300 1301 1302 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1303 %ifndef SQLITE_OMIT_TRIGGER 1304 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1305 sqlite3DropTrigger(pParse,X,NOERR); 1306 } 1307 %endif !SQLITE_OMIT_TRIGGER 1308 1309 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1310 %ifndef SQLITE_OMIT_ATTACH 1311 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1312 sqlite3Attach(pParse, F.pExpr, D.pExpr, K); 1313 } 1314 cmd ::= DETACH database_kw_opt expr(D). { 1315 sqlite3Detach(pParse, D.pExpr); 1316 } 1317 1318 %type key_opt {Expr*} 1319 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1320 key_opt(A) ::= . { A = 0; } 1321 key_opt(A) ::= KEY expr(X). { A = X.pExpr; } 1322 1323 database_kw_opt ::= DATABASE. 1324 database_kw_opt ::= . 1325 %endif SQLITE_OMIT_ATTACH 1326 1327 ////////////////////////// REINDEX collation ////////////////////////////////// 1328 %ifndef SQLITE_OMIT_REINDEX 1329 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1330 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1331 %endif SQLITE_OMIT_REINDEX 1332 1333 /////////////////////////////////// ANALYZE /////////////////////////////////// 1334 %ifndef SQLITE_OMIT_ANALYZE 1335 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1336 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1337 %endif 1338 1339 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1340 %ifndef SQLITE_OMIT_ALTERTABLE 1341 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1342 sqlite3AlterRenameTable(pParse,X,&Z); 1343 } 1344 cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). { 1345 sqlite3AlterFinishAddColumn(pParse, &Y); 1346 } 1347 add_column_fullname ::= fullname(X). { 1348 pParse->db->lookaside.bEnabled = 0; 1349 sqlite3AlterBeginAddColumn(pParse, X); 1350 } 1351 kwcolumn_opt ::= . 1352 kwcolumn_opt ::= COLUMNKW. 1353 %endif SQLITE_OMIT_ALTERTABLE 1354 1355 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1356 %ifndef SQLITE_OMIT_VIRTUALTABLE 1357 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1358 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1359 create_vtab ::= createkw VIRTUAL TABLE nm(X) dbnm(Y) USING nm(Z). { 1360 sqlite3VtabBeginParse(pParse, &X, &Y, &Z); 1361 } 1362 vtabarglist ::= vtabarg. 1363 vtabarglist ::= vtabarglist COMMA vtabarg. 1364 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1365 vtabarg ::= vtabarg vtabargtoken. 1366 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1367 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1368 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1369 anylist ::= . 1370 anylist ::= anylist LP anylist RP. 1371 anylist ::= anylist ANY. 1372 %endif SQLITE_OMIT_VIRTUALTABLE 1373