1 %include { 2 /* 3 ** 2001-09-15 4 ** 5 ** The author disclaims copyright to this source code. In place of 6 ** a legal notice, here is a blessing: 7 ** 8 ** May you do good and not evil. 9 ** May you find forgiveness for yourself and forgive others. 10 ** May you share freely, never taking more than you give. 11 ** 12 ************************************************************************* 13 ** This file contains SQLite's SQL parser. 14 ** 15 ** The canonical source code to this file ("parse.y") is a Lemon grammar 16 ** file that specifies the input grammar and actions to take while parsing. 17 ** That input file is processed by Lemon to generate a C-language 18 ** implementation of a parser for the given grammer. You might be reading 19 ** this comment as part of the translated C-code. Edits should be made 20 ** to the original parse.y sources. 21 */ 22 } 23 24 // All token codes are small integers with #defines that begin with "TK_" 25 %token_prefix TK_ 26 27 // The type of the data attached to each token is Token. This is also the 28 // default type for non-terminals. 29 // 30 %token_type {Token} 31 %default_type {Token} 32 33 // An extra argument to the constructor for the parser, which is available 34 // to all actions. 35 %extra_context {Parse *pParse} 36 37 // This code runs whenever there is a syntax error 38 // 39 %syntax_error { 40 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 41 if( TOKEN.z[0] ){ 42 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 43 }else{ 44 sqlite3ErrorMsg(pParse, "incomplete input"); 45 } 46 } 47 %stack_overflow { 48 sqlite3ErrorMsg(pParse, "parser stack overflow"); 49 } 50 51 // The name of the generated procedure that implements the parser 52 // is as follows: 53 %name sqlite3Parser 54 55 // The following text is included near the beginning of the C source 56 // code file that implements the parser. 57 // 58 %include { 59 #include "sqliteInt.h" 60 61 /* 62 ** Disable all error recovery processing in the parser push-down 63 ** automaton. 64 */ 65 #define YYNOERRORRECOVERY 1 66 67 /* 68 ** Make yytestcase() the same as testcase() 69 */ 70 #define yytestcase(X) testcase(X) 71 72 /* 73 ** Indicate that sqlite3ParserFree() will never be called with a null 74 ** pointer. 75 */ 76 #define YYPARSEFREENEVERNULL 1 77 78 /* 79 ** In the amalgamation, the parse.c file generated by lemon and the 80 ** tokenize.c file are concatenated. In that case, sqlite3RunParser() 81 ** has access to the the size of the yyParser object and so the parser 82 ** engine can be allocated from stack. In that case, only the 83 ** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked 84 ** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be 85 ** omitted. 86 */ 87 #ifdef SQLITE_AMALGAMATION 88 # define sqlite3Parser_ENGINEALWAYSONSTACK 1 89 #endif 90 91 /* 92 ** Alternative datatype for the argument to the malloc() routine passed 93 ** into sqlite3ParserAlloc(). The default is size_t. 94 */ 95 #define YYMALLOCARGTYPE u64 96 97 /* 98 ** An instance of the following structure describes the event of a 99 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 100 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 101 ** 102 ** UPDATE ON (a,b,c) 103 ** 104 ** Then the "b" IdList records the list "a,b,c". 105 */ 106 struct TrigEvent { int a; IdList * b; }; 107 108 struct FrameBound { int eType; Expr *pExpr; }; 109 110 /* 111 ** Disable lookaside memory allocation for objects that might be 112 ** shared across database connections. 113 */ 114 static void disableLookaside(Parse *pParse){ 115 sqlite3 *db = pParse->db; 116 pParse->disableLookaside++; 117 DisableLookaside; 118 } 119 120 #if !defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) \ 121 && defined(SQLITE_UDL_CAPABLE_PARSER) 122 /* 123 ** Issue an error message if an ORDER BY or LIMIT clause occurs on an 124 ** UPDATE or DELETE statement. 125 */ 126 static void updateDeleteLimitError( 127 Parse *pParse, 128 ExprList *pOrderBy, 129 Expr *pLimit 130 ){ 131 if( pOrderBy ){ 132 sqlite3ErrorMsg(pParse, "syntax error near \"ORDER BY\""); 133 }else{ 134 sqlite3ErrorMsg(pParse, "syntax error near \"LIMIT\""); 135 } 136 sqlite3ExprListDelete(pParse->db, pOrderBy); 137 sqlite3ExprDelete(pParse->db, pLimit); 138 } 139 #endif /* SQLITE_ENABLE_UPDATE_DELETE_LIMIT */ 140 141 } // end %include 142 143 // Input is a single SQL command 144 input ::= cmdlist. 145 cmdlist ::= cmdlist ecmd. 146 cmdlist ::= ecmd. 147 ecmd ::= SEMI. 148 ecmd ::= cmdx SEMI. 149 %ifndef SQLITE_OMIT_EXPLAIN 150 ecmd ::= explain cmdx SEMI. {NEVER-REDUCE} 151 explain ::= EXPLAIN. { pParse->explain = 1; } 152 explain ::= EXPLAIN QUERY PLAN. { pParse->explain = 2; } 153 %endif SQLITE_OMIT_EXPLAIN 154 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 155 156 ///////////////////// Begin and end transactions. //////////////////////////// 157 // 158 159 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 160 trans_opt ::= . 161 trans_opt ::= TRANSACTION. 162 trans_opt ::= TRANSACTION nm. 163 %type transtype {int} 164 transtype(A) ::= . {A = TK_DEFERRED;} 165 transtype(A) ::= DEFERRED(X). {A = @X; /*A-overwrites-X*/} 166 transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/} 167 transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/} 168 cmd ::= COMMIT|END(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 169 cmd ::= ROLLBACK(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 170 171 savepoint_opt ::= SAVEPOINT. 172 savepoint_opt ::= . 173 cmd ::= SAVEPOINT nm(X). { 174 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 175 } 176 cmd ::= RELEASE savepoint_opt nm(X). { 177 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 178 } 179 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 180 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 181 } 182 183 ///////////////////// The CREATE TABLE statement //////////////////////////// 184 // 185 cmd ::= create_table create_table_args. 186 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 187 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 188 } 189 createkw(A) ::= CREATE(A). {disableLookaside(pParse);} 190 191 %type ifnotexists {int} 192 ifnotexists(A) ::= . {A = 0;} 193 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 194 %type temp {int} 195 %ifndef SQLITE_OMIT_TEMPDB 196 temp(A) ::= TEMP. {A = pParse->db->init.busy==0;} 197 %endif SQLITE_OMIT_TEMPDB 198 temp(A) ::= . {A = 0;} 199 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_option_set(F). { 200 sqlite3EndTable(pParse,&X,&E,F,0); 201 } 202 create_table_args ::= AS select(S). { 203 sqlite3EndTable(pParse,0,0,0,S); 204 sqlite3SelectDelete(pParse->db, S); 205 } 206 %type table_option_set {u32} 207 %type table_option {u32} 208 table_option_set(A) ::= . {A = 0;} 209 table_option_set(A) ::= table_option(A). 210 table_option_set(A) ::= table_option_set(X) COMMA table_option(Y). {A = X|Y;} 211 table_option(A) ::= WITHOUT nm(X). { 212 if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){ 213 A = TF_WithoutRowid | TF_NoVisibleRowid; 214 }else{ 215 A = 0; 216 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); 217 } 218 } 219 table_option(A) ::= nm(X). { 220 if( X.n==6 && sqlite3_strnicmp(X.z,"strict",6)==0 ){ 221 A = TF_Strict; 222 }else{ 223 A = 0; 224 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); 225 } 226 } 227 columnlist ::= columnlist COMMA columnname carglist. 228 columnlist ::= columnname carglist. 229 columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,A,Y);} 230 231 // Declare some tokens early in order to influence their values, to 232 // improve performance and reduce the executable size. The goal here is 233 // to get the "jump" operations in ISNULL through ESCAPE to have numeric 234 // values that are early enough so that all jump operations are clustered 235 // at the beginning. 236 // 237 %token ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST. 238 %token CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL. 239 %token OR AND NOT MATCH LIKE_KW BETWEEN IS IN ISNULL NOTNULL NE EQ. 240 %token GT LE LT GE ESCAPE. 241 242 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 243 // fallback to ID if they will not parse as their original value. 244 // This obviates the need for the "id" nonterminal. 245 // 246 %fallback ID 247 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 248 CONFLICT DATABASE DEFERRED DESC DETACH DO 249 EACH END EXCLUSIVE EXPLAIN FAIL FOR 250 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 251 QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW ROWS 252 ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT 253 NULLS FIRST LAST 254 %ifdef SQLITE_OMIT_COMPOUND_SELECT 255 EXCEPT INTERSECT UNION 256 %endif SQLITE_OMIT_COMPOUND_SELECT 257 %ifndef SQLITE_OMIT_WINDOWFUNC 258 CURRENT FOLLOWING PARTITION PRECEDING RANGE UNBOUNDED 259 EXCLUDE GROUPS OTHERS TIES 260 %endif SQLITE_OMIT_WINDOWFUNC 261 %ifndef SQLITE_OMIT_GENERATED_COLUMNS 262 GENERATED ALWAYS 263 %endif 264 MATERIALIZED 265 REINDEX RENAME CTIME_KW IF 266 . 267 %wildcard ANY. 268 269 // Define operator precedence early so that this is the first occurrence 270 // of the operator tokens in the grammer. Keeping the operators together 271 // causes them to be assigned integer values that are close together, 272 // which keeps parser tables smaller. 273 // 274 // The token values assigned to these symbols is determined by the order 275 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 276 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 277 // the sqlite3ExprIfFalse() routine for additional information on this 278 // constraint. 279 // 280 %left OR. 281 %left AND. 282 %right NOT. 283 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 284 %left GT LE LT GE. 285 %right ESCAPE. 286 %left BITAND BITOR LSHIFT RSHIFT. 287 %left PLUS MINUS. 288 %left STAR SLASH REM. 289 %left CONCAT. 290 %left COLLATE. 291 %right BITNOT. 292 %nonassoc ON. 293 294 // An IDENTIFIER can be a generic identifier, or one of several 295 // keywords. Any non-standard keyword can also be an identifier. 296 // 297 %token_class id ID|INDEXED. 298 299 300 // And "ids" is an identifer-or-string. 301 // 302 %token_class ids ID|STRING. 303 304 // The name of a column or table can be any of the following: 305 // 306 %type nm {Token} 307 nm(A) ::= id(A). 308 nm(A) ::= STRING(A). 309 nm(A) ::= JOIN_KW(A). 310 311 // A typetoken is really zero or more tokens that form a type name such 312 // as can be found after the column name in a CREATE TABLE statement. 313 // Multiple tokens are concatenated to form the value of the typetoken. 314 // 315 %type typetoken {Token} 316 typetoken(A) ::= . {A.n = 0; A.z = 0;} 317 typetoken(A) ::= typename(A). 318 typetoken(A) ::= typename(A) LP signed RP(Y). { 319 A.n = (int)(&Y.z[Y.n] - A.z); 320 } 321 typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). { 322 A.n = (int)(&Y.z[Y.n] - A.z); 323 } 324 %type typename {Token} 325 typename(A) ::= ids(A). 326 typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);} 327 signed ::= plus_num. 328 signed ::= minus_num. 329 330 // The scanpt non-terminal takes a value which is a pointer to the 331 // input text just past the last token that has been shifted into 332 // the parser. By surrounding some phrase in the grammar with two 333 // scanpt non-terminals, we can capture the input text for that phrase. 334 // For example: 335 // 336 // something ::= .... scanpt(A) phrase scanpt(Z). 337 // 338 // The text that is parsed as "phrase" is a string starting at A 339 // and containing (int)(Z-A) characters. There might be some extra 340 // whitespace on either end of the text, but that can be removed in 341 // post-processing, if needed. 342 // 343 %type scanpt {const char*} 344 scanpt(A) ::= . { 345 assert( yyLookahead!=YYNOCODE ); 346 A = yyLookaheadToken.z; 347 } 348 scantok(A) ::= . { 349 assert( yyLookahead!=YYNOCODE ); 350 A = yyLookaheadToken; 351 } 352 353 // "carglist" is a list of additional constraints that come after the 354 // column name and column type in a CREATE TABLE statement. 355 // 356 carglist ::= carglist ccons. 357 carglist ::= . 358 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 359 ccons ::= DEFAULT scantok(A) term(X). 360 {sqlite3AddDefaultValue(pParse,X,A.z,&A.z[A.n]);} 361 ccons ::= DEFAULT LP(A) expr(X) RP(Z). 362 {sqlite3AddDefaultValue(pParse,X,A.z+1,Z.z);} 363 ccons ::= DEFAULT PLUS(A) scantok(Z) term(X). 364 {sqlite3AddDefaultValue(pParse,X,A.z,&Z.z[Z.n]);} 365 ccons ::= DEFAULT MINUS(A) scantok(Z) term(X). { 366 Expr *p = sqlite3PExpr(pParse, TK_UMINUS, X, 0); 367 sqlite3AddDefaultValue(pParse,p,A.z,&Z.z[Z.n]); 368 } 369 ccons ::= DEFAULT scantok id(X). { 370 Expr *p = tokenExpr(pParse, TK_STRING, X); 371 if( p ){ 372 sqlite3ExprIdToTrueFalse(p); 373 testcase( p->op==TK_TRUEFALSE && sqlite3ExprTruthValue(p) ); 374 } 375 sqlite3AddDefaultValue(pParse,p,X.z,X.z+X.n); 376 } 377 378 // In addition to the type name, we also care about the primary key and 379 // UNIQUE constraints. 380 // 381 ccons ::= NULL onconf. 382 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 383 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 384 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 385 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0, 386 SQLITE_IDXTYPE_UNIQUE);} 387 ccons ::= CHECK LP(A) expr(X) RP(B). {sqlite3AddCheckConstraint(pParse,X,A.z,B.z);} 388 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R). 389 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 390 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 391 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 392 ccons ::= GENERATED ALWAYS AS generated. 393 ccons ::= AS generated. 394 generated ::= LP expr(E) RP. {sqlite3AddGenerated(pParse,E,0);} 395 generated ::= LP expr(E) RP ID(TYPE). {sqlite3AddGenerated(pParse,E,&TYPE);} 396 397 // The optional AUTOINCREMENT keyword 398 %type autoinc {int} 399 autoinc(X) ::= . {X = 0;} 400 autoinc(X) ::= AUTOINCR. {X = 1;} 401 402 // The next group of rules parses the arguments to a REFERENCES clause 403 // that determine if the referential integrity checking is deferred or 404 // or immediate and which determine what action to take if a ref-integ 405 // check fails. 406 // 407 %type refargs {int} 408 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} 409 refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; } 410 %type refarg {struct {int value; int mask;}} 411 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 412 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } 413 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 414 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 415 %type refact {int} 416 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} 417 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} 418 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} 419 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} 420 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} 421 %type defer_subclause {int} 422 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 423 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 424 %type init_deferred_pred_opt {int} 425 init_deferred_pred_opt(A) ::= . {A = 0;} 426 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 427 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 428 429 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 430 conslist_opt(A) ::= COMMA(A) conslist. 431 conslist ::= conslist tconscomma tcons. 432 conslist ::= tcons. 433 tconscomma ::= COMMA. {pParse->constraintName.n = 0;} 434 tconscomma ::= . 435 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 436 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R). 437 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 438 tcons ::= UNIQUE LP sortlist(X) RP onconf(R). 439 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0, 440 SQLITE_IDXTYPE_UNIQUE);} 441 tcons ::= CHECK LP(A) expr(E) RP(B) onconf. 442 {sqlite3AddCheckConstraint(pParse,E,A.z,B.z);} 443 tcons ::= FOREIGN KEY LP eidlist(FA) RP 444 REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). { 445 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 446 sqlite3DeferForeignKey(pParse, D); 447 } 448 %type defer_subclause_opt {int} 449 defer_subclause_opt(A) ::= . {A = 0;} 450 defer_subclause_opt(A) ::= defer_subclause(A). 451 452 // The following is a non-standard extension that allows us to declare the 453 // default behavior when there is a constraint conflict. 454 // 455 %type onconf {int} 456 %type orconf {int} 457 %type resolvetype {int} 458 onconf(A) ::= . {A = OE_Default;} 459 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 460 orconf(A) ::= . {A = OE_Default;} 461 orconf(A) ::= OR resolvetype(X). {A = X;} 462 resolvetype(A) ::= raisetype(A). 463 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 464 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 465 466 ////////////////////////// The DROP TABLE ///////////////////////////////////// 467 // 468 cmd ::= DROP TABLE ifexists(E) fullname(X). { 469 sqlite3DropTable(pParse, X, 0, E); 470 } 471 %type ifexists {int} 472 ifexists(A) ::= IF EXISTS. {A = 1;} 473 ifexists(A) ::= . {A = 0;} 474 475 ///////////////////// The CREATE VIEW statement ///////////////////////////// 476 // 477 %ifndef SQLITE_OMIT_VIEW 478 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C) 479 AS select(S). { 480 sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E); 481 } 482 cmd ::= DROP VIEW ifexists(E) fullname(X). { 483 sqlite3DropTable(pParse, X, 1, E); 484 } 485 %endif SQLITE_OMIT_VIEW 486 487 //////////////////////// The SELECT statement ///////////////////////////////// 488 // 489 cmd ::= select(X). { 490 SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0, 0}; 491 sqlite3Select(pParse, X, &dest); 492 sqlite3SelectDelete(pParse->db, X); 493 } 494 495 %type select {Select*} 496 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 497 %type selectnowith {Select*} 498 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);} 499 %type oneselect {Select*} 500 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 501 502 %include { 503 /* 504 ** For a compound SELECT statement, make sure p->pPrior->pNext==p for 505 ** all elements in the list. And make sure list length does not exceed 506 ** SQLITE_LIMIT_COMPOUND_SELECT. 507 */ 508 static void parserDoubleLinkSelect(Parse *pParse, Select *p){ 509 assert( p!=0 ); 510 if( p->pPrior ){ 511 Select *pNext = 0, *pLoop = p; 512 int mxSelect, cnt = 1; 513 while(1){ 514 pLoop->pNext = pNext; 515 pLoop->selFlags |= SF_Compound; 516 pNext = pLoop; 517 pLoop = pLoop->pPrior; 518 if( pLoop==0 ) break; 519 cnt++; 520 if( pLoop->pOrderBy || pLoop->pLimit ){ 521 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 522 pLoop->pOrderBy!=0 ? "ORDER BY" : "LIMIT", 523 sqlite3SelectOpName(pNext->op)); 524 break; 525 } 526 } 527 if( (p->selFlags & SF_MultiValue)==0 && 528 (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 && 529 cnt>mxSelect 530 ){ 531 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 532 } 533 } 534 } 535 536 /* Attach a With object describing the WITH clause to a Select 537 ** object describing the query for which the WITH clause is a prefix. 538 */ 539 static Select *attachWithToSelect(Parse *pParse, Select *pSelect, With *pWith){ 540 if( pSelect ){ 541 pSelect->pWith = pWith; 542 parserDoubleLinkSelect(pParse, pSelect); 543 }else{ 544 sqlite3WithDelete(pParse->db, pWith); 545 } 546 return pSelect; 547 } 548 } 549 550 %ifndef SQLITE_OMIT_CTE 551 select(A) ::= WITH wqlist(W) selectnowith(X). {A = attachWithToSelect(pParse,X,W);} 552 select(A) ::= WITH RECURSIVE wqlist(W) selectnowith(X). 553 {A = attachWithToSelect(pParse,X,W);} 554 %endif /* SQLITE_OMIT_CTE */ 555 select(A) ::= selectnowith(X). { 556 Select *p = X; 557 if( p ){ 558 parserDoubleLinkSelect(pParse, p); 559 } 560 A = p; /*A-overwrites-X*/ 561 } 562 563 selectnowith(A) ::= oneselect(A). 564 %ifndef SQLITE_OMIT_COMPOUND_SELECT 565 selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z). { 566 Select *pRhs = Z; 567 Select *pLhs = A; 568 if( pRhs && pRhs->pPrior ){ 569 SrcList *pFrom; 570 Token x; 571 x.n = 0; 572 parserDoubleLinkSelect(pParse, pRhs); 573 pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0); 574 pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0); 575 } 576 if( pRhs ){ 577 pRhs->op = (u8)Y; 578 pRhs->pPrior = pLhs; 579 if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue; 580 pRhs->selFlags &= ~SF_MultiValue; 581 if( Y!=TK_ALL ) pParse->hasCompound = 1; 582 }else{ 583 sqlite3SelectDelete(pParse->db, pLhs); 584 } 585 A = pRhs; 586 } 587 %type multiselect_op {int} 588 multiselect_op(A) ::= UNION(OP). {A = @OP; /*A-overwrites-OP*/} 589 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 590 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP; /*A-overwrites-OP*/} 591 %endif SQLITE_OMIT_COMPOUND_SELECT 592 593 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 594 groupby_opt(P) having_opt(Q) 595 orderby_opt(Z) limit_opt(L). { 596 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L); 597 } 598 %ifndef SQLITE_OMIT_WINDOWFUNC 599 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 600 groupby_opt(P) having_opt(Q) window_clause(R) 601 orderby_opt(Z) limit_opt(L). { 602 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L); 603 if( A ){ 604 A->pWinDefn = R; 605 }else{ 606 sqlite3WindowListDelete(pParse->db, R); 607 } 608 } 609 %endif 610 611 612 oneselect(A) ::= values(A). 613 614 %type values {Select*} 615 %destructor values {sqlite3SelectDelete(pParse->db, $$);} 616 values(A) ::= VALUES LP nexprlist(X) RP. { 617 A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0); 618 } 619 values(A) ::= values(A) COMMA LP nexprlist(Y) RP. { 620 Select *pRight, *pLeft = A; 621 pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0); 622 if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue; 623 if( pRight ){ 624 pRight->op = TK_ALL; 625 pRight->pPrior = pLeft; 626 A = pRight; 627 }else{ 628 A = pLeft; 629 } 630 } 631 632 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 633 // present and false (0) if it is not. 634 // 635 %type distinct {int} 636 distinct(A) ::= DISTINCT. {A = SF_Distinct;} 637 distinct(A) ::= ALL. {A = SF_All;} 638 distinct(A) ::= . {A = 0;} 639 640 // selcollist is a list of expressions that are to become the return 641 // values of the SELECT statement. The "*" in statements like 642 // "SELECT * FROM ..." is encoded as a special expression with an 643 // opcode of TK_ASTERISK. 644 // 645 %type selcollist {ExprList*} 646 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 647 %type sclp {ExprList*} 648 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 649 sclp(A) ::= selcollist(A) COMMA. 650 sclp(A) ::= . {A = 0;} 651 selcollist(A) ::= sclp(A) scanpt(B) expr(X) scanpt(Z) as(Y). { 652 A = sqlite3ExprListAppend(pParse, A, X); 653 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 654 sqlite3ExprListSetSpan(pParse,A,B,Z); 655 } 656 selcollist(A) ::= sclp(A) scanpt STAR. { 657 Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0); 658 A = sqlite3ExprListAppend(pParse, A, p); 659 } 660 selcollist(A) ::= sclp(A) scanpt nm(X) DOT STAR. { 661 Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0); 662 Expr *pLeft = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 663 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 664 A = sqlite3ExprListAppend(pParse,A, pDot); 665 } 666 667 // An option "AS <id>" phrase that can follow one of the expressions that 668 // define the result set, or one of the tables in the FROM clause. 669 // 670 %type as {Token} 671 as(X) ::= AS nm(Y). {X = Y;} 672 as(X) ::= ids(X). 673 as(X) ::= . {X.n = 0; X.z = 0;} 674 675 676 %type seltablist {SrcList*} 677 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 678 %type stl_prefix {SrcList*} 679 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 680 %type from {SrcList*} 681 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 682 683 // A complete FROM clause. 684 // 685 from(A) ::= . {A = 0;} 686 from(A) ::= FROM seltablist(X). { 687 A = X; 688 sqlite3SrcListShiftJoinType(A); 689 } 690 691 // "seltablist" is a "Select Table List" - the content of the FROM clause 692 // in a SELECT statement. "stl_prefix" is a prefix of this list. 693 // 694 stl_prefix(A) ::= seltablist(A) joinop(Y). { 695 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y; 696 } 697 stl_prefix(A) ::= . {A = 0;} 698 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_opt(I) 699 on_opt(N) using_opt(U). { 700 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 701 sqlite3SrcListIndexedBy(pParse, A, &I); 702 } 703 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z) 704 on_opt(N) using_opt(U). { 705 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 706 sqlite3SrcListFuncArgs(pParse, A, E); 707 } 708 %ifndef SQLITE_OMIT_SUBQUERY 709 seltablist(A) ::= stl_prefix(A) LP select(S) RP 710 as(Z) on_opt(N) using_opt(U). { 711 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,N,U); 712 } 713 seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP 714 as(Z) on_opt(N) using_opt(U). { 715 if( A==0 && Z.n==0 && N==0 && U==0 ){ 716 A = F; 717 }else if( F->nSrc==1 ){ 718 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,N,U); 719 if( A ){ 720 SrcItem *pNew = &A->a[A->nSrc-1]; 721 SrcItem *pOld = F->a; 722 pNew->zName = pOld->zName; 723 pNew->zDatabase = pOld->zDatabase; 724 pNew->pSelect = pOld->pSelect; 725 if( pOld->fg.isTabFunc ){ 726 pNew->u1.pFuncArg = pOld->u1.pFuncArg; 727 pOld->u1.pFuncArg = 0; 728 pOld->fg.isTabFunc = 0; 729 pNew->fg.isTabFunc = 1; 730 } 731 pOld->zName = pOld->zDatabase = 0; 732 pOld->pSelect = 0; 733 } 734 sqlite3SrcListDelete(pParse->db, F); 735 }else{ 736 Select *pSubquery; 737 sqlite3SrcListShiftJoinType(F); 738 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0); 739 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,N,U); 740 } 741 } 742 %endif SQLITE_OMIT_SUBQUERY 743 744 %type dbnm {Token} 745 dbnm(A) ::= . {A.z=0; A.n=0;} 746 dbnm(A) ::= DOT nm(X). {A = X;} 747 748 %type fullname {SrcList*} 749 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 750 fullname(A) ::= nm(X). { 751 A = sqlite3SrcListAppend(pParse,0,&X,0); 752 if( IN_RENAME_OBJECT && A ) sqlite3RenameTokenMap(pParse, A->a[0].zName, &X); 753 } 754 fullname(A) ::= nm(X) DOT nm(Y). { 755 A = sqlite3SrcListAppend(pParse,0,&X,&Y); 756 if( IN_RENAME_OBJECT && A ) sqlite3RenameTokenMap(pParse, A->a[0].zName, &Y); 757 } 758 759 %type xfullname {SrcList*} 760 %destructor xfullname {sqlite3SrcListDelete(pParse->db, $$);} 761 xfullname(A) ::= nm(X). 762 {A = sqlite3SrcListAppend(pParse,0,&X,0); /*A-overwrites-X*/} 763 xfullname(A) ::= nm(X) DOT nm(Y). 764 {A = sqlite3SrcListAppend(pParse,0,&X,&Y); /*A-overwrites-X*/} 765 xfullname(A) ::= nm(X) DOT nm(Y) AS nm(Z). { 766 A = sqlite3SrcListAppend(pParse,0,&X,&Y); /*A-overwrites-X*/ 767 if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); 768 } 769 xfullname(A) ::= nm(X) AS nm(Z). { 770 A = sqlite3SrcListAppend(pParse,0,&X,0); /*A-overwrites-X*/ 771 if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); 772 } 773 774 %type joinop {int} 775 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 776 joinop(X) ::= JOIN_KW(A) JOIN. 777 {X = sqlite3JoinType(pParse,&A,0,0); /*X-overwrites-A*/} 778 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. 779 {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/} 780 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 781 {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/} 782 783 // There is a parsing abiguity in an upsert statement that uses a 784 // SELECT on the RHS of a the INSERT: 785 // 786 // INSERT INTO tab SELECT * FROM aaa JOIN bbb ON CONFLICT ... 787 // here ----^^ 788 // 789 // When the ON token is encountered, the parser does not know if it is 790 // the beginning of an ON CONFLICT clause, or the beginning of an ON 791 // clause associated with the JOIN. The conflict is resolved in favor 792 // of the JOIN. If an ON CONFLICT clause is intended, insert a dummy 793 // WHERE clause in between, like this: 794 // 795 // INSERT INTO tab SELECT * FROM aaa JOIN bbb WHERE true ON CONFLICT ... 796 // 797 // The [AND] and [OR] precedence marks in the rules for on_opt cause the 798 // ON in this context to always be interpreted as belonging to the JOIN. 799 // 800 %type on_opt {Expr*} 801 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} 802 on_opt(N) ::= ON expr(E). {N = E;} 803 on_opt(N) ::= . [OR] {N = 0;} 804 805 // Note that this block abuses the Token type just a little. If there is 806 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 807 // there is an INDEXED BY clause, then the token is populated as per normal, 808 // with z pointing to the token data and n containing the number of bytes 809 // in the token. 810 // 811 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 812 // normally illegal. The sqlite3SrcListIndexedBy() function 813 // recognizes and interprets this as a special case. 814 // 815 %type indexed_opt {Token} 816 indexed_opt(A) ::= . {A.z=0; A.n=0;} 817 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} 818 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 819 820 %type using_opt {IdList*} 821 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} 822 using_opt(U) ::= USING LP idlist(L) RP. {U = L;} 823 using_opt(U) ::= . {U = 0;} 824 825 826 %type orderby_opt {ExprList*} 827 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 828 829 // the sortlist non-terminal stores a list of expression where each 830 // expression is optionally followed by ASC or DESC to indicate the 831 // sort order. 832 // 833 %type sortlist {ExprList*} 834 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 835 836 orderby_opt(A) ::= . {A = 0;} 837 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 838 sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z) nulls(X). { 839 A = sqlite3ExprListAppend(pParse,A,Y); 840 sqlite3ExprListSetSortOrder(A,Z,X); 841 } 842 sortlist(A) ::= expr(Y) sortorder(Z) nulls(X). { 843 A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/ 844 sqlite3ExprListSetSortOrder(A,Z,X); 845 } 846 847 %type sortorder {int} 848 849 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 850 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 851 sortorder(A) ::= . {A = SQLITE_SO_UNDEFINED;} 852 853 %type nulls {int} 854 nulls(A) ::= NULLS FIRST. {A = SQLITE_SO_ASC;} 855 nulls(A) ::= NULLS LAST. {A = SQLITE_SO_DESC;} 856 nulls(A) ::= . {A = SQLITE_SO_UNDEFINED;} 857 858 %type groupby_opt {ExprList*} 859 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 860 groupby_opt(A) ::= . {A = 0;} 861 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 862 863 %type having_opt {Expr*} 864 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 865 having_opt(A) ::= . {A = 0;} 866 having_opt(A) ::= HAVING expr(X). {A = X;} 867 868 %type limit_opt {Expr*} 869 870 // The destructor for limit_opt will never fire in the current grammar. 871 // The limit_opt non-terminal only occurs at the end of a single production 872 // rule for SELECT statements. As soon as the rule that create the 873 // limit_opt non-terminal reduces, the SELECT statement rule will also 874 // reduce. So there is never a limit_opt non-terminal on the stack 875 // except as a transient. So there is never anything to destroy. 876 // 877 //%destructor limit_opt {sqlite3ExprDelete(pParse->db, $$);} 878 limit_opt(A) ::= . {A = 0;} 879 limit_opt(A) ::= LIMIT expr(X). 880 {A = sqlite3PExpr(pParse,TK_LIMIT,X,0);} 881 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 882 {A = sqlite3PExpr(pParse,TK_LIMIT,X,Y);} 883 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 884 {A = sqlite3PExpr(pParse,TK_LIMIT,Y,X);} 885 886 /////////////////////////// The DELETE statement ///////////////////////////// 887 // 888 %if SQLITE_ENABLE_UPDATE_DELETE_LIMIT || SQLITE_UDL_CAPABLE_PARSER 889 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt_ret(W) 890 orderby_opt(O) limit_opt(L). { 891 sqlite3SrcListIndexedBy(pParse, X, &I); 892 #ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 893 if( O || L ){ 894 updateDeleteLimitError(pParse,O,L); 895 O = 0; 896 L = 0; 897 } 898 #endif 899 sqlite3DeleteFrom(pParse,X,W,O,L); 900 } 901 %else 902 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt_ret(W). { 903 sqlite3SrcListIndexedBy(pParse, X, &I); 904 sqlite3DeleteFrom(pParse,X,W,0,0); 905 } 906 %endif 907 908 %type where_opt {Expr*} 909 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 910 %type where_opt_ret {Expr*} 911 %destructor where_opt_ret {sqlite3ExprDelete(pParse->db, $$);} 912 913 where_opt(A) ::= . {A = 0;} 914 where_opt(A) ::= WHERE expr(X). {A = X;} 915 where_opt_ret(A) ::= . {A = 0;} 916 where_opt_ret(A) ::= WHERE expr(X). {A = X;} 917 where_opt_ret(A) ::= RETURNING selcollist(X). 918 {sqlite3AddReturning(pParse,X); A = 0;} 919 where_opt_ret(A) ::= WHERE expr(X) RETURNING selcollist(Y). 920 {sqlite3AddReturning(pParse,Y); A = X;} 921 922 ////////////////////////// The UPDATE command //////////////////////////////// 923 // 924 %if SQLITE_ENABLE_UPDATE_DELETE_LIMIT || SQLITE_UDL_CAPABLE_PARSER 925 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) from(F) 926 where_opt_ret(W) orderby_opt(O) limit_opt(L). { 927 sqlite3SrcListIndexedBy(pParse, X, &I); 928 X = sqlite3SrcListAppendList(pParse, X, F); 929 sqlite3ExprListCheckLength(pParse,Y,"set list"); 930 #ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 931 if( O || L ){ 932 updateDeleteLimitError(pParse,O,L); 933 O = 0; 934 L = 0; 935 } 936 #endif 937 sqlite3Update(pParse,X,Y,W,R,O,L,0); 938 } 939 %else 940 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) from(F) 941 where_opt_ret(W). { 942 sqlite3SrcListIndexedBy(pParse, X, &I); 943 sqlite3ExprListCheckLength(pParse,Y,"set list"); 944 X = sqlite3SrcListAppendList(pParse, X, F); 945 sqlite3Update(pParse,X,Y,W,R,0,0,0); 946 } 947 %endif 948 949 950 951 %type setlist {ExprList*} 952 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 953 954 setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). { 955 A = sqlite3ExprListAppend(pParse, A, Y); 956 sqlite3ExprListSetName(pParse, A, &X, 1); 957 } 958 setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). { 959 A = sqlite3ExprListAppendVector(pParse, A, X, Y); 960 } 961 setlist(A) ::= nm(X) EQ expr(Y). { 962 A = sqlite3ExprListAppend(pParse, 0, Y); 963 sqlite3ExprListSetName(pParse, A, &X, 1); 964 } 965 setlist(A) ::= LP idlist(X) RP EQ expr(Y). { 966 A = sqlite3ExprListAppendVector(pParse, 0, X, Y); 967 } 968 969 ////////////////////////// The INSERT command ///////////////////////////////// 970 // 971 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) select(S) 972 upsert(U). { 973 sqlite3Insert(pParse, X, S, F, R, U); 974 } 975 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) DEFAULT VALUES returning. 976 { 977 sqlite3Insert(pParse, X, 0, F, R, 0); 978 } 979 980 %type upsert {Upsert*} 981 982 // Because upsert only occurs at the tip end of the INSERT rule for cmd, 983 // there is never a case where the value of the upsert pointer will not 984 // be destroyed by the cmd action. So comment-out the destructor to 985 // avoid unreachable code. 986 //%destructor upsert {sqlite3UpsertDelete(pParse->db,$$);} 987 upsert(A) ::= . { A = 0; } 988 upsert(A) ::= RETURNING selcollist(X). { A = 0; sqlite3AddReturning(pParse,X); } 989 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) 990 DO UPDATE SET setlist(Z) where_opt(W) upsert(N). 991 { A = sqlite3UpsertNew(pParse->db,T,TW,Z,W,N);} 992 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) DO NOTHING upsert(N). 993 { A = sqlite3UpsertNew(pParse->db,T,TW,0,0,N); } 994 upsert(A) ::= ON CONFLICT DO NOTHING returning. 995 { A = sqlite3UpsertNew(pParse->db,0,0,0,0,0); } 996 upsert(A) ::= ON CONFLICT DO UPDATE SET setlist(Z) where_opt(W) returning. 997 { A = sqlite3UpsertNew(pParse->db,0,0,Z,W,0);} 998 999 returning ::= RETURNING selcollist(X). {sqlite3AddReturning(pParse,X);} 1000 returning ::= . 1001 1002 %type insert_cmd {int} 1003 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 1004 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 1005 1006 %type idlist_opt {IdList*} 1007 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);} 1008 %type idlist {IdList*} 1009 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);} 1010 1011 idlist_opt(A) ::= . {A = 0;} 1012 idlist_opt(A) ::= LP idlist(X) RP. {A = X;} 1013 idlist(A) ::= idlist(A) COMMA nm(Y). 1014 {A = sqlite3IdListAppend(pParse,A,&Y);} 1015 idlist(A) ::= nm(Y). 1016 {A = sqlite3IdListAppend(pParse,0,&Y); /*A-overwrites-Y*/} 1017 1018 /////////////////////////// Expression Processing ///////////////////////////// 1019 // 1020 1021 %type expr {Expr*} 1022 %destructor expr {sqlite3ExprDelete(pParse->db, $$);} 1023 %type term {Expr*} 1024 %destructor term {sqlite3ExprDelete(pParse->db, $$);} 1025 1026 %include { 1027 1028 /* Construct a new Expr object from a single identifier. Use the 1029 ** new Expr to populate pOut. Set the span of pOut to be the identifier 1030 ** that created the expression. 1031 */ 1032 static Expr *tokenExpr(Parse *pParse, int op, Token t){ 1033 Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1); 1034 if( p ){ 1035 /* memset(p, 0, sizeof(Expr)); */ 1036 p->op = (u8)op; 1037 p->affExpr = 0; 1038 p->flags = EP_Leaf; 1039 ExprClearVVAProperties(p); 1040 p->iAgg = -1; 1041 p->pLeft = p->pRight = 0; 1042 p->pAggInfo = 0; 1043 memset(&p->x, 0, sizeof(p->x)); 1044 memset(&p->y, 0, sizeof(p->y)); 1045 p->op2 = 0; 1046 p->iTable = 0; 1047 p->iColumn = 0; 1048 p->u.zToken = (char*)&p[1]; 1049 memcpy(p->u.zToken, t.z, t.n); 1050 p->u.zToken[t.n] = 0; 1051 if( sqlite3Isquote(p->u.zToken[0]) ){ 1052 sqlite3DequoteExpr(p); 1053 } 1054 #if SQLITE_MAX_EXPR_DEPTH>0 1055 p->nHeight = 1; 1056 #endif 1057 if( IN_RENAME_OBJECT ){ 1058 return (Expr*)sqlite3RenameTokenMap(pParse, (void*)p, &t); 1059 } 1060 } 1061 return p; 1062 } 1063 1064 } 1065 1066 expr(A) ::= term(A). 1067 expr(A) ::= LP expr(X) RP. {A = X;} 1068 expr(A) ::= id(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 1069 expr(A) ::= JOIN_KW(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 1070 expr(A) ::= nm(X) DOT nm(Y). { 1071 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 1072 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); 1073 if( IN_RENAME_OBJECT ){ 1074 sqlite3RenameTokenMap(pParse, (void*)temp2, &Y); 1075 sqlite3RenameTokenMap(pParse, (void*)temp1, &X); 1076 } 1077 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp2); 1078 } 1079 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 1080 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 1081 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); 1082 Expr *temp3 = sqlite3ExprAlloc(pParse->db, TK_ID, &Z, 1); 1083 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3); 1084 if( IN_RENAME_OBJECT ){ 1085 sqlite3RenameTokenMap(pParse, (void*)temp3, &Z); 1086 sqlite3RenameTokenMap(pParse, (void*)temp2, &Y); 1087 } 1088 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp4); 1089 } 1090 term(A) ::= NULL|FLOAT|BLOB(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 1091 term(A) ::= STRING(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 1092 term(A) ::= INTEGER(X). { 1093 A = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1); 1094 } 1095 expr(A) ::= VARIABLE(X). { 1096 if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){ 1097 u32 n = X.n; 1098 A = tokenExpr(pParse, TK_VARIABLE, X); 1099 sqlite3ExprAssignVarNumber(pParse, A, n); 1100 }else{ 1101 /* When doing a nested parse, one can include terms in an expression 1102 ** that look like this: #1 #2 ... These terms refer to registers 1103 ** in the virtual machine. #N is the N-th register. */ 1104 Token t = X; /*A-overwrites-X*/ 1105 assert( t.n>=2 ); 1106 if( pParse->nested==0 ){ 1107 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t); 1108 A = 0; 1109 }else{ 1110 A = sqlite3PExpr(pParse, TK_REGISTER, 0, 0); 1111 if( A ) sqlite3GetInt32(&t.z[1], &A->iTable); 1112 } 1113 } 1114 } 1115 expr(A) ::= expr(A) COLLATE ids(C). { 1116 A = sqlite3ExprAddCollateToken(pParse, A, &C, 1); 1117 } 1118 %ifndef SQLITE_OMIT_CAST 1119 expr(A) ::= CAST LP expr(E) AS typetoken(T) RP. { 1120 A = sqlite3ExprAlloc(pParse->db, TK_CAST, &T, 1); 1121 sqlite3ExprAttachSubtrees(pParse->db, A, E, 0); 1122 } 1123 %endif SQLITE_OMIT_CAST 1124 1125 1126 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP. { 1127 A = sqlite3ExprFunction(pParse, Y, &X, D); 1128 } 1129 expr(A) ::= id(X) LP STAR RP. { 1130 A = sqlite3ExprFunction(pParse, 0, &X, 0); 1131 } 1132 1133 %ifndef SQLITE_OMIT_WINDOWFUNC 1134 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP filter_over(Z). { 1135 A = sqlite3ExprFunction(pParse, Y, &X, D); 1136 sqlite3WindowAttach(pParse, A, Z); 1137 } 1138 expr(A) ::= id(X) LP STAR RP filter_over(Z). { 1139 A = sqlite3ExprFunction(pParse, 0, &X, 0); 1140 sqlite3WindowAttach(pParse, A, Z); 1141 } 1142 %endif 1143 1144 term(A) ::= CTIME_KW(OP). { 1145 A = sqlite3ExprFunction(pParse, 0, &OP, 0); 1146 } 1147 1148 expr(A) ::= LP nexprlist(X) COMMA expr(Y) RP. { 1149 ExprList *pList = sqlite3ExprListAppend(pParse, X, Y); 1150 A = sqlite3PExpr(pParse, TK_VECTOR, 0, 0); 1151 if( A ){ 1152 A->x.pList = pList; 1153 if( ALWAYS(pList->nExpr) ){ 1154 A->flags |= pList->a[0].pExpr->flags & EP_Propagate; 1155 } 1156 }else{ 1157 sqlite3ExprListDelete(pParse->db, pList); 1158 } 1159 } 1160 1161 expr(A) ::= expr(A) AND expr(Y). {A=sqlite3ExprAnd(pParse,A,Y);} 1162 expr(A) ::= expr(A) OR(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1163 expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y). 1164 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1165 expr(A) ::= expr(A) EQ|NE(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1166 expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 1167 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1168 expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y). 1169 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1170 expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y). 1171 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1172 expr(A) ::= expr(A) CONCAT(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1173 %type likeop {Token} 1174 likeop(A) ::= LIKE_KW|MATCH(A). 1175 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A=X; A.n|=0x80000000; /*A-overwrite-X*/} 1176 expr(A) ::= expr(A) likeop(OP) expr(Y). [LIKE_KW] { 1177 ExprList *pList; 1178 int bNot = OP.n & 0x80000000; 1179 OP.n &= 0x7fffffff; 1180 pList = sqlite3ExprListAppend(pParse,0, Y); 1181 pList = sqlite3ExprListAppend(pParse,pList, A); 1182 A = sqlite3ExprFunction(pParse, pList, &OP, 0); 1183 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1184 if( A ) A->flags |= EP_InfixFunc; 1185 } 1186 expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { 1187 ExprList *pList; 1188 int bNot = OP.n & 0x80000000; 1189 OP.n &= 0x7fffffff; 1190 pList = sqlite3ExprListAppend(pParse,0, Y); 1191 pList = sqlite3ExprListAppend(pParse,pList, A); 1192 pList = sqlite3ExprListAppend(pParse,pList, E); 1193 A = sqlite3ExprFunction(pParse, pList, &OP, 0); 1194 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1195 if( A ) A->flags |= EP_InfixFunc; 1196 } 1197 1198 expr(A) ::= expr(A) ISNULL|NOTNULL(E). {A = sqlite3PExpr(pParse,@E,A,0);} 1199 expr(A) ::= expr(A) NOT NULL. {A = sqlite3PExpr(pParse,TK_NOTNULL,A,0);} 1200 1201 %include { 1202 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a 1203 ** unary TK_ISNULL or TK_NOTNULL expression. */ 1204 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ 1205 sqlite3 *db = pParse->db; 1206 if( pA && pY && pY->op==TK_NULL && !IN_RENAME_OBJECT ){ 1207 pA->op = (u8)op; 1208 sqlite3ExprDelete(db, pA->pRight); 1209 pA->pRight = 0; 1210 } 1211 } 1212 } 1213 1214 // expr1 IS expr2 1215 // expr1 IS NOT expr2 1216 // 1217 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 1218 // is any other expression, code as TK_IS or TK_ISNOT. 1219 // 1220 expr(A) ::= expr(A) IS expr(Y). { 1221 A = sqlite3PExpr(pParse,TK_IS,A,Y); 1222 binaryToUnaryIfNull(pParse, Y, A, TK_ISNULL); 1223 } 1224 expr(A) ::= expr(A) IS NOT expr(Y). { 1225 A = sqlite3PExpr(pParse,TK_ISNOT,A,Y); 1226 binaryToUnaryIfNull(pParse, Y, A, TK_NOTNULL); 1227 } 1228 1229 expr(A) ::= NOT(B) expr(X). 1230 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1231 expr(A) ::= BITNOT(B) expr(X). 1232 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1233 expr(A) ::= PLUS|MINUS(B) expr(X). [BITNOT] { 1234 A = sqlite3PExpr(pParse, @B==TK_PLUS ? TK_UPLUS : TK_UMINUS, X, 0); 1235 /*A-overwrites-B*/ 1236 } 1237 1238 %type between_op {int} 1239 between_op(A) ::= BETWEEN. {A = 0;} 1240 between_op(A) ::= NOT BETWEEN. {A = 1;} 1241 expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 1242 ExprList *pList = sqlite3ExprListAppend(pParse,0, X); 1243 pList = sqlite3ExprListAppend(pParse,pList, Y); 1244 A = sqlite3PExpr(pParse, TK_BETWEEN, A, 0); 1245 if( A ){ 1246 A->x.pList = pList; 1247 }else{ 1248 sqlite3ExprListDelete(pParse->db, pList); 1249 } 1250 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1251 } 1252 %ifndef SQLITE_OMIT_SUBQUERY 1253 %type in_op {int} 1254 in_op(A) ::= IN. {A = 0;} 1255 in_op(A) ::= NOT IN. {A = 1;} 1256 expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP. [IN] { 1257 if( Y==0 ){ 1258 /* Expressions of the form 1259 ** 1260 ** expr1 IN () 1261 ** expr1 NOT IN () 1262 ** 1263 ** simplify to constants 0 (false) and 1 (true), respectively, 1264 ** regardless of the value of expr1. 1265 */ 1266 sqlite3ExprUnmapAndDelete(pParse, A); 1267 A = sqlite3Expr(pParse->db, TK_INTEGER, N ? "1" : "0"); 1268 }else{ 1269 Expr *pRHS = Y->a[0].pExpr; 1270 if( Y->nExpr==1 && sqlite3ExprIsConstant(pRHS) && A->op!=TK_VECTOR ){ 1271 Y->a[0].pExpr = 0; 1272 sqlite3ExprListDelete(pParse->db, Y); 1273 pRHS = sqlite3PExpr(pParse, TK_UPLUS, pRHS, 0); 1274 A = sqlite3PExpr(pParse, TK_EQ, A, pRHS); 1275 }else{ 1276 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1277 if( A==0 ){ 1278 sqlite3ExprListDelete(pParse->db, Y); 1279 }else if( A->pLeft->op==TK_VECTOR ){ 1280 int nExpr = A->pLeft->x.pList->nExpr; 1281 Select *pSelectRHS = sqlite3ExprListToValues(pParse, nExpr, Y); 1282 if( pSelectRHS ){ 1283 parserDoubleLinkSelect(pParse, pSelectRHS); 1284 sqlite3PExprAddSelect(pParse, A, pSelectRHS); 1285 } 1286 }else{ 1287 A->x.pList = Y; 1288 sqlite3ExprSetHeightAndFlags(pParse, A); 1289 } 1290 } 1291 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1292 } 1293 } 1294 expr(A) ::= LP select(X) RP. { 1295 A = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 1296 sqlite3PExprAddSelect(pParse, A, X); 1297 } 1298 expr(A) ::= expr(A) in_op(N) LP select(Y) RP. [IN] { 1299 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1300 sqlite3PExprAddSelect(pParse, A, Y); 1301 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1302 } 1303 expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z) paren_exprlist(E). [IN] { 1304 SrcList *pSrc = sqlite3SrcListAppend(pParse, 0,&Y,&Z); 1305 Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0); 1306 if( E ) sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, E); 1307 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1308 sqlite3PExprAddSelect(pParse, A, pSelect); 1309 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1310 } 1311 expr(A) ::= EXISTS LP select(Y) RP. { 1312 Expr *p; 1313 p = A = sqlite3PExpr(pParse, TK_EXISTS, 0, 0); 1314 sqlite3PExprAddSelect(pParse, p, Y); 1315 } 1316 %endif SQLITE_OMIT_SUBQUERY 1317 1318 /* CASE expressions */ 1319 expr(A) ::= CASE case_operand(X) case_exprlist(Y) case_else(Z) END. { 1320 A = sqlite3PExpr(pParse, TK_CASE, X, 0); 1321 if( A ){ 1322 A->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y; 1323 sqlite3ExprSetHeightAndFlags(pParse, A); 1324 }else{ 1325 sqlite3ExprListDelete(pParse->db, Y); 1326 sqlite3ExprDelete(pParse->db, Z); 1327 } 1328 } 1329 %type case_exprlist {ExprList*} 1330 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1331 case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). { 1332 A = sqlite3ExprListAppend(pParse,A, Y); 1333 A = sqlite3ExprListAppend(pParse,A, Z); 1334 } 1335 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1336 A = sqlite3ExprListAppend(pParse,0, Y); 1337 A = sqlite3ExprListAppend(pParse,A, Z); 1338 } 1339 %type case_else {Expr*} 1340 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1341 case_else(A) ::= ELSE expr(X). {A = X;} 1342 case_else(A) ::= . {A = 0;} 1343 %type case_operand {Expr*} 1344 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1345 case_operand(A) ::= expr(X). {A = X; /*A-overwrites-X*/} 1346 case_operand(A) ::= . {A = 0;} 1347 1348 %type exprlist {ExprList*} 1349 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1350 %type nexprlist {ExprList*} 1351 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1352 1353 exprlist(A) ::= nexprlist(A). 1354 exprlist(A) ::= . {A = 0;} 1355 nexprlist(A) ::= nexprlist(A) COMMA expr(Y). 1356 {A = sqlite3ExprListAppend(pParse,A,Y);} 1357 nexprlist(A) ::= expr(Y). 1358 {A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/} 1359 1360 %ifndef SQLITE_OMIT_SUBQUERY 1361 /* A paren_exprlist is an optional expression list contained inside 1362 ** of parenthesis */ 1363 %type paren_exprlist {ExprList*} 1364 %destructor paren_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1365 paren_exprlist(A) ::= . {A = 0;} 1366 paren_exprlist(A) ::= LP exprlist(X) RP. {A = X;} 1367 %endif SQLITE_OMIT_SUBQUERY 1368 1369 1370 ///////////////////////////// The CREATE INDEX command /////////////////////// 1371 // 1372 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1373 ON nm(Y) LP sortlist(Z) RP where_opt(W). { 1374 sqlite3CreateIndex(pParse, &X, &D, 1375 sqlite3SrcListAppend(pParse,0,&Y,0), Z, U, 1376 &S, W, SQLITE_SO_ASC, NE, SQLITE_IDXTYPE_APPDEF); 1377 if( IN_RENAME_OBJECT && pParse->pNewIndex ){ 1378 sqlite3RenameTokenMap(pParse, pParse->pNewIndex->zName, &Y); 1379 } 1380 } 1381 1382 %type uniqueflag {int} 1383 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1384 uniqueflag(A) ::= . {A = OE_None;} 1385 1386 1387 // The eidlist non-terminal (Expression Id List) generates an ExprList 1388 // from a list of identifiers. The identifier names are in ExprList.a[].zName. 1389 // This list is stored in an ExprList rather than an IdList so that it 1390 // can be easily sent to sqlite3ColumnsExprList(). 1391 // 1392 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal 1393 // used for the arguments to an index. That is just an historical accident. 1394 // 1395 // IMPORTANT COMPATIBILITY NOTE: Some prior versions of SQLite accepted 1396 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate 1397 // places - places that might have been stored in the sqlite_schema table. 1398 // Those extra features were ignored. But because they might be in some 1399 // (busted) old databases, we need to continue parsing them when loading 1400 // historical schemas. 1401 // 1402 %type eidlist {ExprList*} 1403 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);} 1404 %type eidlist_opt {ExprList*} 1405 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1406 1407 %include { 1408 /* Add a single new term to an ExprList that is used to store a 1409 ** list of identifiers. Report an error if the ID list contains 1410 ** a COLLATE clause or an ASC or DESC keyword, except ignore the 1411 ** error while parsing a legacy schema. 1412 */ 1413 static ExprList *parserAddExprIdListTerm( 1414 Parse *pParse, 1415 ExprList *pPrior, 1416 Token *pIdToken, 1417 int hasCollate, 1418 int sortOrder 1419 ){ 1420 ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0); 1421 if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED) 1422 && pParse->db->init.busy==0 1423 ){ 1424 sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"", 1425 pIdToken->n, pIdToken->z); 1426 } 1427 sqlite3ExprListSetName(pParse, p, pIdToken, 1); 1428 return p; 1429 } 1430 } // end %include 1431 1432 eidlist_opt(A) ::= . {A = 0;} 1433 eidlist_opt(A) ::= LP eidlist(X) RP. {A = X;} 1434 eidlist(A) ::= eidlist(A) COMMA nm(Y) collate(C) sortorder(Z). { 1435 A = parserAddExprIdListTerm(pParse, A, &Y, C, Z); 1436 } 1437 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1438 A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); /*A-overwrites-Y*/ 1439 } 1440 1441 %type collate {int} 1442 collate(C) ::= . {C = 0;} 1443 collate(C) ::= COLLATE ids. {C = 1;} 1444 1445 1446 ///////////////////////////// The DROP INDEX command ///////////////////////// 1447 // 1448 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1449 1450 ///////////////////////////// The VACUUM command ///////////////////////////// 1451 // 1452 %if !SQLITE_OMIT_VACUUM && !SQLITE_OMIT_ATTACH 1453 %type vinto {Expr*} 1454 %destructor vinto {sqlite3ExprDelete(pParse->db, $$);} 1455 cmd ::= VACUUM vinto(Y). {sqlite3Vacuum(pParse,0,Y);} 1456 cmd ::= VACUUM nm(X) vinto(Y). {sqlite3Vacuum(pParse,&X,Y);} 1457 vinto(A) ::= INTO expr(X). {A = X;} 1458 vinto(A) ::= . {A = 0;} 1459 %endif 1460 1461 ///////////////////////////// The PRAGMA command ///////////////////////////// 1462 // 1463 %ifndef SQLITE_OMIT_PRAGMA 1464 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1465 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1466 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1467 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1468 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1469 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1470 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1471 1472 nmnum(A) ::= plus_num(A). 1473 nmnum(A) ::= nm(A). 1474 nmnum(A) ::= ON(A). 1475 nmnum(A) ::= DELETE(A). 1476 nmnum(A) ::= DEFAULT(A). 1477 %endif SQLITE_OMIT_PRAGMA 1478 %token_class number INTEGER|FLOAT. 1479 plus_num(A) ::= PLUS number(X). {A = X;} 1480 plus_num(A) ::= number(A). 1481 minus_num(A) ::= MINUS number(X). {A = X;} 1482 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1483 1484 %ifndef SQLITE_OMIT_TRIGGER 1485 1486 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1487 Token all; 1488 all.z = A.z; 1489 all.n = (int)(Z.z - A.z) + Z.n; 1490 sqlite3FinishTrigger(pParse, S, &all); 1491 } 1492 1493 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1494 trigger_time(C) trigger_event(D) 1495 ON fullname(E) foreach_clause when_clause(G). { 1496 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1497 A = (Z.n==0?B:Z); /*A-overwrites-T*/ 1498 } 1499 1500 %type trigger_time {int} 1501 trigger_time(A) ::= BEFORE|AFTER(X). { A = @X; /*A-overwrites-X*/ } 1502 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1503 trigger_time(A) ::= . { A = TK_BEFORE; } 1504 1505 %type trigger_event {struct TrigEvent} 1506 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1507 trigger_event(A) ::= DELETE|INSERT(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1508 trigger_event(A) ::= UPDATE(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1509 trigger_event(A) ::= UPDATE OF idlist(X).{A.a = TK_UPDATE; A.b = X;} 1510 1511 foreach_clause ::= . 1512 foreach_clause ::= FOR EACH ROW. 1513 1514 %type when_clause {Expr*} 1515 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1516 when_clause(A) ::= . { A = 0; } 1517 when_clause(A) ::= WHEN expr(X). { A = X; } 1518 1519 %type trigger_cmd_list {TriggerStep*} 1520 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1521 trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. { 1522 assert( A!=0 ); 1523 A->pLast->pNext = X; 1524 A->pLast = X; 1525 } 1526 trigger_cmd_list(A) ::= trigger_cmd(A) SEMI. { 1527 assert( A!=0 ); 1528 A->pLast = A; 1529 } 1530 1531 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1532 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1533 // the same database as the table that the trigger fires on. 1534 // 1535 %type trnm {Token} 1536 trnm(A) ::= nm(A). 1537 trnm(A) ::= nm DOT nm(X). { 1538 A = X; 1539 sqlite3ErrorMsg(pParse, 1540 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1541 "statements within triggers"); 1542 } 1543 1544 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1545 // statements within triggers. We make a specific error message for this 1546 // since it is an exception to the default grammar rules. 1547 // 1548 tridxby ::= . 1549 tridxby ::= INDEXED BY nm. { 1550 sqlite3ErrorMsg(pParse, 1551 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1552 "within triggers"); 1553 } 1554 tridxby ::= NOT INDEXED. { 1555 sqlite3ErrorMsg(pParse, 1556 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1557 "within triggers"); 1558 } 1559 1560 1561 1562 %type trigger_cmd {TriggerStep*} 1563 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1564 // UPDATE 1565 trigger_cmd(A) ::= 1566 UPDATE(B) orconf(R) trnm(X) tridxby SET setlist(Y) from(F) where_opt(Z) scanpt(E). 1567 {A = sqlite3TriggerUpdateStep(pParse, &X, F, Y, Z, R, B.z, E);} 1568 1569 // INSERT 1570 trigger_cmd(A) ::= scanpt(B) insert_cmd(R) INTO 1571 trnm(X) idlist_opt(F) select(S) upsert(U) scanpt(Z). { 1572 A = sqlite3TriggerInsertStep(pParse,&X,F,S,R,U,B,Z);/*A-overwrites-R*/ 1573 } 1574 // DELETE 1575 trigger_cmd(A) ::= DELETE(B) FROM trnm(X) tridxby where_opt(Y) scanpt(E). 1576 {A = sqlite3TriggerDeleteStep(pParse, &X, Y, B.z, E);} 1577 1578 // SELECT 1579 trigger_cmd(A) ::= scanpt(B) select(X) scanpt(E). 1580 {A = sqlite3TriggerSelectStep(pParse->db, X, B, E); /*A-overwrites-X*/} 1581 1582 // The special RAISE expression that may occur in trigger programs 1583 expr(A) ::= RAISE LP IGNORE RP. { 1584 A = sqlite3PExpr(pParse, TK_RAISE, 0, 0); 1585 if( A ){ 1586 A->affExpr = OE_Ignore; 1587 } 1588 } 1589 expr(A) ::= RAISE LP raisetype(T) COMMA nm(Z) RP. { 1590 A = sqlite3ExprAlloc(pParse->db, TK_RAISE, &Z, 1); 1591 if( A ) { 1592 A->affExpr = (char)T; 1593 } 1594 } 1595 %endif !SQLITE_OMIT_TRIGGER 1596 1597 %type raisetype {int} 1598 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1599 raisetype(A) ::= ABORT. {A = OE_Abort;} 1600 raisetype(A) ::= FAIL. {A = OE_Fail;} 1601 1602 1603 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1604 %ifndef SQLITE_OMIT_TRIGGER 1605 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1606 sqlite3DropTrigger(pParse,X,NOERR); 1607 } 1608 %endif !SQLITE_OMIT_TRIGGER 1609 1610 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1611 %ifndef SQLITE_OMIT_ATTACH 1612 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1613 sqlite3Attach(pParse, F, D, K); 1614 } 1615 cmd ::= DETACH database_kw_opt expr(D). { 1616 sqlite3Detach(pParse, D); 1617 } 1618 1619 %type key_opt {Expr*} 1620 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1621 key_opt(A) ::= . { A = 0; } 1622 key_opt(A) ::= KEY expr(X). { A = X; } 1623 1624 database_kw_opt ::= DATABASE. 1625 database_kw_opt ::= . 1626 %endif SQLITE_OMIT_ATTACH 1627 1628 ////////////////////////// REINDEX collation ////////////////////////////////// 1629 %ifndef SQLITE_OMIT_REINDEX 1630 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1631 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1632 %endif SQLITE_OMIT_REINDEX 1633 1634 /////////////////////////////////// ANALYZE /////////////////////////////////// 1635 %ifndef SQLITE_OMIT_ANALYZE 1636 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1637 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1638 %endif 1639 1640 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1641 %ifndef SQLITE_OMIT_ALTERTABLE 1642 %ifndef SQLITE_OMIT_VIRTUALTABLE 1643 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1644 sqlite3AlterRenameTable(pParse,X,&Z); 1645 } 1646 cmd ::= ALTER TABLE add_column_fullname 1647 ADD kwcolumn_opt columnname(Y) carglist. { 1648 Y.n = (int)(pParse->sLastToken.z-Y.z) + pParse->sLastToken.n; 1649 sqlite3AlterFinishAddColumn(pParse, &Y); 1650 } 1651 cmd ::= ALTER TABLE fullname(X) DROP kwcolumn_opt nm(Y). { 1652 sqlite3AlterDropColumn(pParse, X, &Y); 1653 } 1654 1655 add_column_fullname ::= fullname(X). { 1656 disableLookaside(pParse); 1657 sqlite3AlterBeginAddColumn(pParse, X); 1658 } 1659 cmd ::= ALTER TABLE fullname(X) RENAME kwcolumn_opt nm(Y) TO nm(Z). { 1660 sqlite3AlterRenameColumn(pParse, X, &Y, &Z); 1661 } 1662 1663 kwcolumn_opt ::= . 1664 kwcolumn_opt ::= COLUMNKW. 1665 1666 %endif SQLITE_OMIT_VIRTUALTABLE 1667 %endif SQLITE_OMIT_ALTERTABLE 1668 1669 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1670 %ifndef SQLITE_OMIT_VIRTUALTABLE 1671 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1672 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1673 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E) 1674 nm(X) dbnm(Y) USING nm(Z). { 1675 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E); 1676 } 1677 vtabarglist ::= vtabarg. 1678 vtabarglist ::= vtabarglist COMMA vtabarg. 1679 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1680 vtabarg ::= vtabarg vtabargtoken. 1681 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1682 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1683 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1684 anylist ::= . 1685 anylist ::= anylist LP anylist RP. 1686 anylist ::= anylist ANY. 1687 %endif SQLITE_OMIT_VIRTUALTABLE 1688 1689 1690 //////////////////////// COMMON TABLE EXPRESSIONS //////////////////////////// 1691 %type wqlist {With*} 1692 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);} 1693 %type wqitem {Cte*} 1694 // %destructor wqitem {sqlite3CteDelete(pParse->db, $$);} // not reachable 1695 1696 with ::= . 1697 %ifndef SQLITE_OMIT_CTE 1698 with ::= WITH wqlist(W). { sqlite3WithPush(pParse, W, 1); } 1699 with ::= WITH RECURSIVE wqlist(W). { sqlite3WithPush(pParse, W, 1); } 1700 1701 %type wqas {u8} 1702 wqas(A) ::= AS. {A = M10d_Any;} 1703 wqas(A) ::= AS MATERIALIZED. {A = M10d_Yes;} 1704 wqas(A) ::= AS NOT MATERIALIZED. {A = M10d_No;} 1705 wqitem(A) ::= nm(X) eidlist_opt(Y) wqas(M) LP select(Z) RP. { 1706 A = sqlite3CteNew(pParse, &X, Y, Z, M); /*A-overwrites-X*/ 1707 } 1708 wqlist(A) ::= wqitem(X). { 1709 A = sqlite3WithAdd(pParse, 0, X); /*A-overwrites-X*/ 1710 } 1711 wqlist(A) ::= wqlist(A) COMMA wqitem(X). { 1712 A = sqlite3WithAdd(pParse, A, X); 1713 } 1714 %endif SQLITE_OMIT_CTE 1715 1716 //////////////////////// WINDOW FUNCTION EXPRESSIONS ///////////////////////// 1717 // These must be at the end of this file. Specifically, the rules that 1718 // introduce tokens WINDOW, OVER and FILTER must appear last. This causes 1719 // the integer values assigned to these tokens to be larger than all other 1720 // tokens that may be output by the tokenizer except TK_SPACE and TK_ILLEGAL. 1721 // 1722 %ifndef SQLITE_OMIT_WINDOWFUNC 1723 %type windowdefn_list {Window*} 1724 %destructor windowdefn_list {sqlite3WindowListDelete(pParse->db, $$);} 1725 windowdefn_list(A) ::= windowdefn(Z). { A = Z; } 1726 windowdefn_list(A) ::= windowdefn_list(Y) COMMA windowdefn(Z). { 1727 assert( Z!=0 ); 1728 sqlite3WindowChain(pParse, Z, Y); 1729 Z->pNextWin = Y; 1730 A = Z; 1731 } 1732 1733 %type windowdefn {Window*} 1734 %destructor windowdefn {sqlite3WindowDelete(pParse->db, $$);} 1735 windowdefn(A) ::= nm(X) AS LP window(Y) RP. { 1736 if( ALWAYS(Y) ){ 1737 Y->zName = sqlite3DbStrNDup(pParse->db, X.z, X.n); 1738 } 1739 A = Y; 1740 } 1741 1742 %type window {Window*} 1743 %destructor window {sqlite3WindowDelete(pParse->db, $$);} 1744 1745 %type frame_opt {Window*} 1746 %destructor frame_opt {sqlite3WindowDelete(pParse->db, $$);} 1747 1748 %type part_opt {ExprList*} 1749 %destructor part_opt {sqlite3ExprListDelete(pParse->db, $$);} 1750 1751 %type filter_clause {Expr*} 1752 %destructor filter_clause {sqlite3ExprDelete(pParse->db, $$);} 1753 1754 %type over_clause {Window*} 1755 %destructor over_clause {sqlite3WindowDelete(pParse->db, $$);} 1756 1757 %type filter_over {Window*} 1758 %destructor filter_over {sqlite3WindowDelete(pParse->db, $$);} 1759 1760 %type range_or_rows {int} 1761 1762 %type frame_bound {struct FrameBound} 1763 %destructor frame_bound {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1764 %type frame_bound_s {struct FrameBound} 1765 %destructor frame_bound_s {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1766 %type frame_bound_e {struct FrameBound} 1767 %destructor frame_bound_e {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1768 1769 window(A) ::= PARTITION BY nexprlist(X) orderby_opt(Y) frame_opt(Z). { 1770 A = sqlite3WindowAssemble(pParse, Z, X, Y, 0); 1771 } 1772 window(A) ::= nm(W) PARTITION BY nexprlist(X) orderby_opt(Y) frame_opt(Z). { 1773 A = sqlite3WindowAssemble(pParse, Z, X, Y, &W); 1774 } 1775 window(A) ::= ORDER BY sortlist(Y) frame_opt(Z). { 1776 A = sqlite3WindowAssemble(pParse, Z, 0, Y, 0); 1777 } 1778 window(A) ::= nm(W) ORDER BY sortlist(Y) frame_opt(Z). { 1779 A = sqlite3WindowAssemble(pParse, Z, 0, Y, &W); 1780 } 1781 window(A) ::= frame_opt(Z). { 1782 A = Z; 1783 } 1784 window(A) ::= nm(W) frame_opt(Z). { 1785 A = sqlite3WindowAssemble(pParse, Z, 0, 0, &W); 1786 } 1787 1788 frame_opt(A) ::= . { 1789 A = sqlite3WindowAlloc(pParse, 0, TK_UNBOUNDED, 0, TK_CURRENT, 0, 0); 1790 } 1791 frame_opt(A) ::= range_or_rows(X) frame_bound_s(Y) frame_exclude_opt(Z). { 1792 A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, TK_CURRENT, 0, Z); 1793 } 1794 frame_opt(A) ::= range_or_rows(X) BETWEEN frame_bound_s(Y) AND 1795 frame_bound_e(Z) frame_exclude_opt(W). { 1796 A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, Z.eType, Z.pExpr, W); 1797 } 1798 1799 range_or_rows(A) ::= RANGE|ROWS|GROUPS(X). {A = @X; /*A-overwrites-X*/} 1800 1801 frame_bound_s(A) ::= frame_bound(X). {A = X;} 1802 frame_bound_s(A) ::= UNBOUNDED(X) PRECEDING. {A.eType = @X; A.pExpr = 0;} 1803 frame_bound_e(A) ::= frame_bound(X). {A = X;} 1804 frame_bound_e(A) ::= UNBOUNDED(X) FOLLOWING. {A.eType = @X; A.pExpr = 0;} 1805 1806 frame_bound(A) ::= expr(X) PRECEDING|FOLLOWING(Y). 1807 {A.eType = @Y; A.pExpr = X;} 1808 frame_bound(A) ::= CURRENT(X) ROW. {A.eType = @X; A.pExpr = 0;} 1809 1810 %type frame_exclude_opt {u8} 1811 frame_exclude_opt(A) ::= . {A = 0;} 1812 frame_exclude_opt(A) ::= EXCLUDE frame_exclude(X). {A = X;} 1813 1814 %type frame_exclude {u8} 1815 frame_exclude(A) ::= NO(X) OTHERS. {A = @X; /*A-overwrites-X*/} 1816 frame_exclude(A) ::= CURRENT(X) ROW. {A = @X; /*A-overwrites-X*/} 1817 frame_exclude(A) ::= GROUP|TIES(X). {A = @X; /*A-overwrites-X*/} 1818 1819 1820 %type window_clause {Window*} 1821 %destructor window_clause {sqlite3WindowListDelete(pParse->db, $$);} 1822 window_clause(A) ::= WINDOW windowdefn_list(B). { A = B; } 1823 1824 filter_over(A) ::= filter_clause(F) over_clause(O). { 1825 if( O ){ 1826 O->pFilter = F; 1827 }else{ 1828 sqlite3ExprDelete(pParse->db, F); 1829 } 1830 A = O; 1831 } 1832 filter_over(A) ::= over_clause(O). { 1833 A = O; 1834 } 1835 filter_over(A) ::= filter_clause(F). { 1836 A = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1837 if( A ){ 1838 A->eFrmType = TK_FILTER; 1839 A->pFilter = F; 1840 }else{ 1841 sqlite3ExprDelete(pParse->db, F); 1842 } 1843 } 1844 1845 over_clause(A) ::= OVER LP window(Z) RP. { 1846 A = Z; 1847 assert( A!=0 ); 1848 } 1849 over_clause(A) ::= OVER nm(Z). { 1850 A = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1851 if( A ){ 1852 A->zName = sqlite3DbStrNDup(pParse->db, Z.z, Z.n); 1853 } 1854 } 1855 1856 filter_clause(A) ::= FILTER LP WHERE expr(X) RP. { A = X; } 1857 %endif /* SQLITE_OMIT_WINDOWFUNC */ 1858 1859 /* 1860 ** The code generator needs some extra TK_ token values for tokens that 1861 ** are synthesized and do not actually appear in the grammar: 1862 */ 1863 %token 1864 COLUMN /* Reference to a table column */ 1865 AGG_FUNCTION /* An aggregate function */ 1866 AGG_COLUMN /* An aggregated column */ 1867 TRUEFALSE /* True or false keyword */ 1868 ISNOT /* Combination of IS and NOT */ 1869 FUNCTION /* A function invocation */ 1870 UMINUS /* Unary minus */ 1871 UPLUS /* Unary plus */ 1872 TRUTH /* IS TRUE or IS FALSE or IS NOT TRUE or IS NOT FALSE */ 1873 REGISTER /* Reference to a VDBE register */ 1874 VECTOR /* Vector */ 1875 SELECT_COLUMN /* Choose a single column from a multi-column SELECT */ 1876 IF_NULL_ROW /* the if-null-row operator */ 1877 ASTERISK /* The "*" in count(*) and similar */ 1878 SPAN /* The span operator */ 1879 ERROR /* An expression containing an error */ 1880 . 1881 /* There must be no more than 255 tokens defined above. If this grammar 1882 ** is extended with new rules and tokens, they must either be so few in 1883 ** number that TK_SPAN is no more than 255, or else the new tokens must 1884 ** appear after this line. 1885 */ 1886 %include { 1887 #if TK_SPAN>255 1888 # error too many tokens in the grammar 1889 #endif 1890 } 1891 1892 /* 1893 ** The TK_SPACE and TK_ILLEGAL tokens must be the last two tokens. The 1894 ** parser depends on this. Those tokens are not used in any grammar rule. 1895 ** They are only used by the tokenizer. Declare them last so that they 1896 ** are guaranteed to be the last two tokens 1897 */ 1898 %token SPACE ILLEGAL. 1899