1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains SQLite's grammar for SQL. Process this file 13 ** using the lemon parser generator to generate C code that runs 14 ** the parser. Lemon will also generate a header file containing 15 ** numeric codes for all of the tokens. 16 */ 17 18 // All token codes are small integers with #defines that begin with "TK_" 19 %token_prefix TK_ 20 21 // The type of the data attached to each token is Token. This is also the 22 // default type for non-terminals. 23 // 24 %token_type {Token} 25 %default_type {Token} 26 27 // An extra argument to the constructor for the parser, which is available 28 // to all actions. 29 %extra_context {Parse *pParse} 30 31 // This code runs whenever there is a syntax error 32 // 33 %syntax_error { 34 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 35 if( TOKEN.z[0] ){ 36 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 37 }else{ 38 sqlite3ErrorMsg(pParse, "incomplete input"); 39 } 40 } 41 %stack_overflow { 42 sqlite3ErrorMsg(pParse, "parser stack overflow"); 43 } 44 45 // The name of the generated procedure that implements the parser 46 // is as follows: 47 %name sqlite3Parser 48 49 // The following text is included near the beginning of the C source 50 // code file that implements the parser. 51 // 52 %include { 53 #include "sqliteInt.h" 54 55 /* 56 ** Disable all error recovery processing in the parser push-down 57 ** automaton. 58 */ 59 #define YYNOERRORRECOVERY 1 60 61 /* 62 ** Make yytestcase() the same as testcase() 63 */ 64 #define yytestcase(X) testcase(X) 65 66 /* 67 ** Indicate that sqlite3ParserFree() will never be called with a null 68 ** pointer. 69 */ 70 #define YYPARSEFREENEVERNULL 1 71 72 /* 73 ** In the amalgamation, the parse.c file generated by lemon and the 74 ** tokenize.c file are concatenated. In that case, sqlite3RunParser() 75 ** has access to the the size of the yyParser object and so the parser 76 ** engine can be allocated from stack. In that case, only the 77 ** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked 78 ** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be 79 ** omitted. 80 */ 81 #ifdef SQLITE_AMALGAMATION 82 # define sqlite3Parser_ENGINEALWAYSONSTACK 1 83 #endif 84 85 /* 86 ** Alternative datatype for the argument to the malloc() routine passed 87 ** into sqlite3ParserAlloc(). The default is size_t. 88 */ 89 #define YYMALLOCARGTYPE u64 90 91 /* 92 ** An instance of the following structure describes the event of a 93 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 94 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 95 ** 96 ** UPDATE ON (a,b,c) 97 ** 98 ** Then the "b" IdList records the list "a,b,c". 99 */ 100 struct TrigEvent { int a; IdList * b; }; 101 102 struct FrameBound { int eType; Expr *pExpr; }; 103 104 /* 105 ** Disable lookaside memory allocation for objects that might be 106 ** shared across database connections. 107 */ 108 static void disableLookaside(Parse *pParse){ 109 pParse->disableLookaside++; 110 pParse->db->lookaside.bDisable++; 111 } 112 113 } // end %include 114 115 // Input is a single SQL command 116 input ::= cmdlist. 117 cmdlist ::= cmdlist ecmd. 118 cmdlist ::= ecmd. 119 ecmd ::= SEMI. 120 ecmd ::= cmdx SEMI. 121 %ifndef SQLITE_OMIT_EXPLAIN 122 ecmd ::= explain cmdx. 123 explain ::= EXPLAIN. { pParse->explain = 1; } 124 explain ::= EXPLAIN QUERY PLAN. { pParse->explain = 2; } 125 %endif SQLITE_OMIT_EXPLAIN 126 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 127 128 ///////////////////// Begin and end transactions. //////////////////////////// 129 // 130 131 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 132 trans_opt ::= . 133 trans_opt ::= TRANSACTION. 134 trans_opt ::= TRANSACTION nm. 135 %type transtype {int} 136 transtype(A) ::= . {A = TK_DEFERRED;} 137 transtype(A) ::= DEFERRED(X). {A = @X; /*A-overwrites-X*/} 138 transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/} 139 transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/} 140 cmd ::= COMMIT|END(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 141 cmd ::= ROLLBACK(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 142 143 savepoint_opt ::= SAVEPOINT. 144 savepoint_opt ::= . 145 cmd ::= SAVEPOINT nm(X). { 146 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 147 } 148 cmd ::= RELEASE savepoint_opt nm(X). { 149 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 150 } 151 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 152 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 153 } 154 155 ///////////////////// The CREATE TABLE statement //////////////////////////// 156 // 157 cmd ::= create_table create_table_args. 158 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 159 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 160 } 161 createkw(A) ::= CREATE(A). {disableLookaside(pParse);} 162 163 %type ifnotexists {int} 164 ifnotexists(A) ::= . {A = 0;} 165 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 166 %type temp {int} 167 %ifndef SQLITE_OMIT_TEMPDB 168 temp(A) ::= TEMP. {A = 1;} 169 %endif SQLITE_OMIT_TEMPDB 170 temp(A) ::= . {A = 0;} 171 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). { 172 sqlite3EndTable(pParse,&X,&E,F,0); 173 } 174 create_table_args ::= AS select(S). { 175 sqlite3EndTable(pParse,0,0,0,S); 176 sqlite3SelectDelete(pParse->db, S); 177 } 178 %type table_options {int} 179 table_options(A) ::= . {A = 0;} 180 table_options(A) ::= WITHOUT nm(X). { 181 if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){ 182 A = TF_WithoutRowid | TF_NoVisibleRowid; 183 }else{ 184 A = 0; 185 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); 186 } 187 } 188 columnlist ::= columnlist COMMA columnname carglist. 189 columnlist ::= columnname carglist. 190 columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,&A,&Y);} 191 192 // Declare some tokens early in order to influence their values, to 193 // improve performance and reduce the executable size. The goal here is 194 // to get the "jump" operations in ISNULL through ESCAPE to have numeric 195 // values that are early enough so that all jump operations are clustered 196 // at the beginning. 197 // 198 %token ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST. 199 %token CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL. 200 %token OR AND NOT IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 201 %token GT LE LT GE ESCAPE. 202 203 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 204 // fallback to ID if they will not parse as their original value. 205 // This obviates the need for the "id" nonterminal. 206 // 207 %fallback ID 208 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 209 CONFLICT DATABASE DEFERRED DESC DETACH DO 210 EACH END EXCLUSIVE EXPLAIN FAIL FOR 211 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 212 QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW ROWS 213 ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT 214 NULLS FIRST LAST 215 %ifdef SQLITE_OMIT_COMPOUND_SELECT 216 EXCEPT INTERSECT UNION 217 %endif SQLITE_OMIT_COMPOUND_SELECT 218 %ifndef SQLITE_OMIT_WINDOWFUNC 219 CURRENT FOLLOWING PARTITION PRECEDING RANGE UNBOUNDED 220 EXCLUDE GROUPS OTHERS TIES 221 %endif SQLITE_OMIT_WINDOWFUNC 222 REINDEX RENAME CTIME_KW IF 223 . 224 %wildcard ANY. 225 226 // Define operator precedence early so that this is the first occurrence 227 // of the operator tokens in the grammer. Keeping the operators together 228 // causes them to be assigned integer values that are close together, 229 // which keeps parser tables smaller. 230 // 231 // The token values assigned to these symbols is determined by the order 232 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 233 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 234 // the sqlite3ExprIfFalse() routine for additional information on this 235 // constraint. 236 // 237 %left OR. 238 %left AND. 239 %right NOT. 240 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 241 %left GT LE LT GE. 242 %right ESCAPE. 243 %left BITAND BITOR LSHIFT RSHIFT. 244 %left PLUS MINUS. 245 %left STAR SLASH REM. 246 %left CONCAT. 247 %left COLLATE. 248 %right BITNOT. 249 %nonassoc ON. 250 251 // An IDENTIFIER can be a generic identifier, or one of several 252 // keywords. Any non-standard keyword can also be an identifier. 253 // 254 %token_class id ID|INDEXED. 255 256 257 // And "ids" is an identifer-or-string. 258 // 259 %token_class ids ID|STRING. 260 261 // The name of a column or table can be any of the following: 262 // 263 %type nm {Token} 264 nm(A) ::= id(A). 265 nm(A) ::= STRING(A). 266 nm(A) ::= JOIN_KW(A). 267 268 // A typetoken is really zero or more tokens that form a type name such 269 // as can be found after the column name in a CREATE TABLE statement. 270 // Multiple tokens are concatenated to form the value of the typetoken. 271 // 272 %type typetoken {Token} 273 typetoken(A) ::= . {A.n = 0; A.z = 0;} 274 typetoken(A) ::= typename(A). 275 typetoken(A) ::= typename(A) LP signed RP(Y). { 276 A.n = (int)(&Y.z[Y.n] - A.z); 277 } 278 typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). { 279 A.n = (int)(&Y.z[Y.n] - A.z); 280 } 281 %type typename {Token} 282 typename(A) ::= ids(A). 283 typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);} 284 signed ::= plus_num. 285 signed ::= minus_num. 286 287 // The scanpt non-terminal takes a value which is a pointer to the 288 // input text just past the last token that has been shifted into 289 // the parser. By surrounding some phrase in the grammar with two 290 // scanpt non-terminals, we can capture the input text for that phrase. 291 // For example: 292 // 293 // something ::= .... scanpt(A) phrase scanpt(Z). 294 // 295 // The text that is parsed as "phrase" is a string starting at A 296 // and containing (int)(Z-A) characters. There might be some extra 297 // whitespace on either end of the text, but that can be removed in 298 // post-processing, if needed. 299 // 300 %type scanpt {const char*} 301 scanpt(A) ::= . { 302 assert( yyLookahead!=YYNOCODE ); 303 A = yyLookaheadToken.z; 304 } 305 scantok(A) ::= . { 306 assert( yyLookahead!=YYNOCODE ); 307 A = yyLookaheadToken; 308 } 309 310 // "carglist" is a list of additional constraints that come after the 311 // column name and column type in a CREATE TABLE statement. 312 // 313 carglist ::= carglist ccons. 314 carglist ::= . 315 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 316 ccons ::= DEFAULT scantok(A) term(X). 317 {sqlite3AddDefaultValue(pParse,X,A.z,&A.z[A.n]);} 318 ccons ::= DEFAULT LP(A) expr(X) RP(Z). 319 {sqlite3AddDefaultValue(pParse,X,A.z+1,Z.z);} 320 ccons ::= DEFAULT PLUS(A) scantok(Z) term(X). 321 {sqlite3AddDefaultValue(pParse,X,A.z,&Z.z[Z.n]);} 322 ccons ::= DEFAULT MINUS(A) scantok(Z) term(X). { 323 Expr *p = sqlite3PExpr(pParse, TK_UMINUS, X, 0); 324 sqlite3AddDefaultValue(pParse,p,A.z,&Z.z[Z.n]); 325 } 326 ccons ::= DEFAULT scantok id(X). { 327 Expr *p = tokenExpr(pParse, TK_STRING, X); 328 if( p ){ 329 sqlite3ExprIdToTrueFalse(p); 330 testcase( p->op==TK_TRUEFALSE && sqlite3ExprTruthValue(p) ); 331 } 332 sqlite3AddDefaultValue(pParse,p,X.z,X.z+X.n); 333 } 334 335 // In addition to the type name, we also care about the primary key and 336 // UNIQUE constraints. 337 // 338 ccons ::= NULL onconf. 339 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 340 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 341 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 342 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0, 343 SQLITE_IDXTYPE_UNIQUE);} 344 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X);} 345 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R). 346 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 347 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 348 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 349 350 // The optional AUTOINCREMENT keyword 351 %type autoinc {int} 352 autoinc(X) ::= . {X = 0;} 353 autoinc(X) ::= AUTOINCR. {X = 1;} 354 355 // The next group of rules parses the arguments to a REFERENCES clause 356 // that determine if the referential integrity checking is deferred or 357 // or immediate and which determine what action to take if a ref-integ 358 // check fails. 359 // 360 %type refargs {int} 361 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} 362 refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; } 363 %type refarg {struct {int value; int mask;}} 364 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 365 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } 366 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 367 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 368 %type refact {int} 369 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} 370 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} 371 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} 372 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} 373 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} 374 %type defer_subclause {int} 375 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 376 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 377 %type init_deferred_pred_opt {int} 378 init_deferred_pred_opt(A) ::= . {A = 0;} 379 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 380 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 381 382 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 383 conslist_opt(A) ::= COMMA(A) conslist. 384 conslist ::= conslist tconscomma tcons. 385 conslist ::= tcons. 386 tconscomma ::= COMMA. {pParse->constraintName.n = 0;} 387 tconscomma ::= . 388 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 389 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R). 390 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 391 tcons ::= UNIQUE LP sortlist(X) RP onconf(R). 392 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0, 393 SQLITE_IDXTYPE_UNIQUE);} 394 tcons ::= CHECK LP expr(E) RP onconf. 395 {sqlite3AddCheckConstraint(pParse,E);} 396 tcons ::= FOREIGN KEY LP eidlist(FA) RP 397 REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). { 398 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 399 sqlite3DeferForeignKey(pParse, D); 400 } 401 %type defer_subclause_opt {int} 402 defer_subclause_opt(A) ::= . {A = 0;} 403 defer_subclause_opt(A) ::= defer_subclause(A). 404 405 // The following is a non-standard extension that allows us to declare the 406 // default behavior when there is a constraint conflict. 407 // 408 %type onconf {int} 409 %type orconf {int} 410 %type resolvetype {int} 411 onconf(A) ::= . {A = OE_Default;} 412 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 413 orconf(A) ::= . {A = OE_Default;} 414 orconf(A) ::= OR resolvetype(X). {A = X;} 415 resolvetype(A) ::= raisetype(A). 416 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 417 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 418 419 ////////////////////////// The DROP TABLE ///////////////////////////////////// 420 // 421 cmd ::= DROP TABLE ifexists(E) fullname(X). { 422 sqlite3DropTable(pParse, X, 0, E); 423 } 424 %type ifexists {int} 425 ifexists(A) ::= IF EXISTS. {A = 1;} 426 ifexists(A) ::= . {A = 0;} 427 428 ///////////////////// The CREATE VIEW statement ///////////////////////////// 429 // 430 %ifndef SQLITE_OMIT_VIEW 431 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C) 432 AS select(S). { 433 sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E); 434 } 435 cmd ::= DROP VIEW ifexists(E) fullname(X). { 436 sqlite3DropTable(pParse, X, 1, E); 437 } 438 %endif SQLITE_OMIT_VIEW 439 440 //////////////////////// The SELECT statement ///////////////////////////////// 441 // 442 cmd ::= select(X). { 443 SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0}; 444 sqlite3Select(pParse, X, &dest); 445 sqlite3SelectDelete(pParse->db, X); 446 } 447 448 %type select {Select*} 449 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 450 %type selectnowith {Select*} 451 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);} 452 %type oneselect {Select*} 453 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 454 455 %include { 456 /* 457 ** For a compound SELECT statement, make sure p->pPrior->pNext==p for 458 ** all elements in the list. And make sure list length does not exceed 459 ** SQLITE_LIMIT_COMPOUND_SELECT. 460 */ 461 static void parserDoubleLinkSelect(Parse *pParse, Select *p){ 462 assert( p!=0 ); 463 if( p->pPrior ){ 464 Select *pNext = 0, *pLoop; 465 int mxSelect, cnt = 0; 466 for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){ 467 pLoop->pNext = pNext; 468 pLoop->selFlags |= SF_Compound; 469 } 470 if( (p->selFlags & SF_MultiValue)==0 && 471 (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 && 472 cnt>mxSelect 473 ){ 474 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 475 } 476 } 477 } 478 } 479 480 %ifndef SQLITE_OMIT_CTE 481 select(A) ::= WITH wqlist(W) selectnowith(X). { 482 Select *p = X; 483 if( p ){ 484 p->pWith = W; 485 parserDoubleLinkSelect(pParse, p); 486 }else{ 487 sqlite3WithDelete(pParse->db, W); 488 } 489 A = p; 490 } 491 select(A) ::= WITH RECURSIVE wqlist(W) selectnowith(X). { 492 Select *p = X; 493 if( p ){ 494 p->pWith = W; 495 parserDoubleLinkSelect(pParse, p); 496 }else{ 497 sqlite3WithDelete(pParse->db, W); 498 } 499 A = p; 500 } 501 %endif /* SQLITE_OMIT_CTE */ 502 select(A) ::= selectnowith(X). { 503 Select *p = X; 504 if( p ){ 505 parserDoubleLinkSelect(pParse, p); 506 } 507 A = p; /*A-overwrites-X*/ 508 } 509 510 selectnowith(A) ::= oneselect(A). 511 %ifndef SQLITE_OMIT_COMPOUND_SELECT 512 selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z). { 513 Select *pRhs = Z; 514 Select *pLhs = A; 515 if( pRhs && pRhs->pPrior ){ 516 SrcList *pFrom; 517 Token x; 518 x.n = 0; 519 parserDoubleLinkSelect(pParse, pRhs); 520 pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0); 521 pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0); 522 } 523 if( pRhs ){ 524 pRhs->op = (u8)Y; 525 pRhs->pPrior = pLhs; 526 if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue; 527 pRhs->selFlags &= ~SF_MultiValue; 528 if( Y!=TK_ALL ) pParse->hasCompound = 1; 529 }else{ 530 sqlite3SelectDelete(pParse->db, pLhs); 531 } 532 A = pRhs; 533 } 534 %type multiselect_op {int} 535 multiselect_op(A) ::= UNION(OP). {A = @OP; /*A-overwrites-OP*/} 536 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 537 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP; /*A-overwrites-OP*/} 538 %endif SQLITE_OMIT_COMPOUND_SELECT 539 540 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 541 groupby_opt(P) having_opt(Q) 542 orderby_opt(Z) limit_opt(L). { 543 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L); 544 } 545 %ifndef SQLITE_OMIT_WINDOWFUNC 546 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 547 groupby_opt(P) having_opt(Q) window_clause(R) 548 orderby_opt(Z) limit_opt(L). { 549 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L); 550 if( A ){ 551 A->pWinDefn = R; 552 }else{ 553 sqlite3WindowListDelete(pParse->db, R); 554 } 555 } 556 %endif 557 558 559 oneselect(A) ::= values(A). 560 561 %type values {Select*} 562 %destructor values {sqlite3SelectDelete(pParse->db, $$);} 563 values(A) ::= VALUES LP nexprlist(X) RP. { 564 A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0); 565 } 566 values(A) ::= values(A) COMMA LP nexprlist(Y) RP. { 567 Select *pRight, *pLeft = A; 568 pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0); 569 if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue; 570 if( pRight ){ 571 pRight->op = TK_ALL; 572 pRight->pPrior = pLeft; 573 A = pRight; 574 }else{ 575 A = pLeft; 576 } 577 } 578 579 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 580 // present and false (0) if it is not. 581 // 582 %type distinct {int} 583 distinct(A) ::= DISTINCT. {A = SF_Distinct;} 584 distinct(A) ::= ALL. {A = SF_All;} 585 distinct(A) ::= . {A = 0;} 586 587 // selcollist is a list of expressions that are to become the return 588 // values of the SELECT statement. The "*" in statements like 589 // "SELECT * FROM ..." is encoded as a special expression with an 590 // opcode of TK_ASTERISK. 591 // 592 %type selcollist {ExprList*} 593 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 594 %type sclp {ExprList*} 595 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 596 sclp(A) ::= selcollist(A) COMMA. 597 sclp(A) ::= . {A = 0;} 598 selcollist(A) ::= sclp(A) scanpt(B) expr(X) scanpt(Z) as(Y). { 599 A = sqlite3ExprListAppend(pParse, A, X); 600 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 601 sqlite3ExprListSetSpan(pParse,A,B,Z); 602 } 603 selcollist(A) ::= sclp(A) scanpt STAR. { 604 Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0); 605 A = sqlite3ExprListAppend(pParse, A, p); 606 } 607 selcollist(A) ::= sclp(A) scanpt nm(X) DOT STAR. { 608 Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0); 609 Expr *pLeft = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 610 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 611 A = sqlite3ExprListAppend(pParse,A, pDot); 612 } 613 614 // An option "AS <id>" phrase that can follow one of the expressions that 615 // define the result set, or one of the tables in the FROM clause. 616 // 617 %type as {Token} 618 as(X) ::= AS nm(Y). {X = Y;} 619 as(X) ::= ids(X). 620 as(X) ::= . {X.n = 0; X.z = 0;} 621 622 623 %type seltablist {SrcList*} 624 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 625 %type stl_prefix {SrcList*} 626 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 627 %type from {SrcList*} 628 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 629 630 // A complete FROM clause. 631 // 632 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} 633 from(A) ::= FROM seltablist(X). { 634 A = X; 635 sqlite3SrcListShiftJoinType(A); 636 } 637 638 // "seltablist" is a "Select Table List" - the content of the FROM clause 639 // in a SELECT statement. "stl_prefix" is a prefix of this list. 640 // 641 stl_prefix(A) ::= seltablist(A) joinop(Y). { 642 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y; 643 } 644 stl_prefix(A) ::= . {A = 0;} 645 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_opt(I) 646 on_opt(N) using_opt(U). { 647 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 648 sqlite3SrcListIndexedBy(pParse, A, &I); 649 } 650 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z) 651 on_opt(N) using_opt(U). { 652 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 653 sqlite3SrcListFuncArgs(pParse, A, E); 654 } 655 %ifndef SQLITE_OMIT_SUBQUERY 656 seltablist(A) ::= stl_prefix(A) LP select(S) RP 657 as(Z) on_opt(N) using_opt(U). { 658 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,N,U); 659 } 660 seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP 661 as(Z) on_opt(N) using_opt(U). { 662 if( A==0 && Z.n==0 && N==0 && U==0 ){ 663 A = F; 664 }else if( F->nSrc==1 ){ 665 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,N,U); 666 if( A ){ 667 struct SrcList_item *pNew = &A->a[A->nSrc-1]; 668 struct SrcList_item *pOld = F->a; 669 pNew->zName = pOld->zName; 670 pNew->zDatabase = pOld->zDatabase; 671 pNew->pSelect = pOld->pSelect; 672 if( pOld->fg.isTabFunc ){ 673 pNew->u1.pFuncArg = pOld->u1.pFuncArg; 674 pOld->u1.pFuncArg = 0; 675 pOld->fg.isTabFunc = 0; 676 pNew->fg.isTabFunc = 1; 677 } 678 pOld->zName = pOld->zDatabase = 0; 679 pOld->pSelect = 0; 680 } 681 sqlite3SrcListDelete(pParse->db, F); 682 }else{ 683 Select *pSubquery; 684 sqlite3SrcListShiftJoinType(F); 685 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0); 686 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,N,U); 687 } 688 } 689 %endif SQLITE_OMIT_SUBQUERY 690 691 %type dbnm {Token} 692 dbnm(A) ::= . {A.z=0; A.n=0;} 693 dbnm(A) ::= DOT nm(X). {A = X;} 694 695 %type fullname {SrcList*} 696 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 697 fullname(A) ::= nm(X). { 698 A = sqlite3SrcListAppend(pParse,0,&X,0); 699 if( IN_RENAME_OBJECT && A ) sqlite3RenameTokenMap(pParse, A->a[0].zName, &X); 700 } 701 fullname(A) ::= nm(X) DOT nm(Y). { 702 A = sqlite3SrcListAppend(pParse,0,&X,&Y); 703 if( IN_RENAME_OBJECT && A ) sqlite3RenameTokenMap(pParse, A->a[0].zName, &Y); 704 } 705 706 %type xfullname {SrcList*} 707 %destructor xfullname {sqlite3SrcListDelete(pParse->db, $$);} 708 xfullname(A) ::= nm(X). 709 {A = sqlite3SrcListAppend(pParse,0,&X,0); /*A-overwrites-X*/} 710 xfullname(A) ::= nm(X) DOT nm(Y). 711 {A = sqlite3SrcListAppend(pParse,0,&X,&Y); /*A-overwrites-X*/} 712 xfullname(A) ::= nm(X) DOT nm(Y) AS nm(Z). { 713 A = sqlite3SrcListAppend(pParse,0,&X,&Y); /*A-overwrites-X*/ 714 if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); 715 } 716 xfullname(A) ::= nm(X) AS nm(Z). { 717 A = sqlite3SrcListAppend(pParse,0,&X,0); /*A-overwrites-X*/ 718 if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); 719 } 720 721 %type joinop {int} 722 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 723 joinop(X) ::= JOIN_KW(A) JOIN. 724 {X = sqlite3JoinType(pParse,&A,0,0); /*X-overwrites-A*/} 725 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. 726 {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/} 727 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 728 {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/} 729 730 // There is a parsing abiguity in an upsert statement that uses a 731 // SELECT on the RHS of a the INSERT: 732 // 733 // INSERT INTO tab SELECT * FROM aaa JOIN bbb ON CONFLICT ... 734 // here ----^^ 735 // 736 // When the ON token is encountered, the parser does not know if it is 737 // the beginning of an ON CONFLICT clause, or the beginning of an ON 738 // clause associated with the JOIN. The conflict is resolved in favor 739 // of the JOIN. If an ON CONFLICT clause is intended, insert a dummy 740 // WHERE clause in between, like this: 741 // 742 // INSERT INTO tab SELECT * FROM aaa JOIN bbb WHERE true ON CONFLICT ... 743 // 744 // The [AND] and [OR] precedence marks in the rules for on_opt cause the 745 // ON in this context to always be interpreted as belonging to the JOIN. 746 // 747 %type on_opt {Expr*} 748 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} 749 on_opt(N) ::= ON expr(E). {N = E;} 750 on_opt(N) ::= . [OR] {N = 0;} 751 752 // Note that this block abuses the Token type just a little. If there is 753 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 754 // there is an INDEXED BY clause, then the token is populated as per normal, 755 // with z pointing to the token data and n containing the number of bytes 756 // in the token. 757 // 758 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 759 // normally illegal. The sqlite3SrcListIndexedBy() function 760 // recognizes and interprets this as a special case. 761 // 762 %type indexed_opt {Token} 763 indexed_opt(A) ::= . {A.z=0; A.n=0;} 764 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} 765 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 766 767 %type using_opt {IdList*} 768 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} 769 using_opt(U) ::= USING LP idlist(L) RP. {U = L;} 770 using_opt(U) ::= . {U = 0;} 771 772 773 %type orderby_opt {ExprList*} 774 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 775 776 // the sortlist non-terminal stores a list of expression where each 777 // expression is optionally followed by ASC or DESC to indicate the 778 // sort order. 779 // 780 %type sortlist {ExprList*} 781 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 782 783 orderby_opt(A) ::= . {A = 0;} 784 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 785 sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z) nulls(X). { 786 A = sqlite3ExprListAppend(pParse,A,Y); 787 sqlite3ExprListSetSortOrder(A,Z,X); 788 } 789 sortlist(A) ::= expr(Y) sortorder(Z) nulls(X). { 790 A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/ 791 sqlite3ExprListSetSortOrder(A,Z,X); 792 } 793 794 %type sortorder {int} 795 796 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 797 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 798 sortorder(A) ::= . {A = SQLITE_SO_UNDEFINED;} 799 800 %type nulls {int} 801 nulls(A) ::= NULLS FIRST. {A = SQLITE_SO_ASC;} 802 nulls(A) ::= NULLS LAST. {A = SQLITE_SO_DESC;} 803 nulls(A) ::= . {A = SQLITE_SO_UNDEFINED;} 804 805 %type groupby_opt {ExprList*} 806 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 807 groupby_opt(A) ::= . {A = 0;} 808 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 809 810 %type having_opt {Expr*} 811 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 812 having_opt(A) ::= . {A = 0;} 813 having_opt(A) ::= HAVING expr(X). {A = X;} 814 815 %type limit_opt {Expr*} 816 817 // The destructor for limit_opt will never fire in the current grammar. 818 // The limit_opt non-terminal only occurs at the end of a single production 819 // rule for SELECT statements. As soon as the rule that create the 820 // limit_opt non-terminal reduces, the SELECT statement rule will also 821 // reduce. So there is never a limit_opt non-terminal on the stack 822 // except as a transient. So there is never anything to destroy. 823 // 824 //%destructor limit_opt {sqlite3ExprDelete(pParse->db, $$);} 825 limit_opt(A) ::= . {A = 0;} 826 limit_opt(A) ::= LIMIT expr(X). 827 {A = sqlite3PExpr(pParse,TK_LIMIT,X,0);} 828 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 829 {A = sqlite3PExpr(pParse,TK_LIMIT,X,Y);} 830 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 831 {A = sqlite3PExpr(pParse,TK_LIMIT,Y,X);} 832 833 /////////////////////////// The DELETE statement ///////////////////////////// 834 // 835 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 836 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt(W) 837 orderby_opt(O) limit_opt(L). { 838 sqlite3SrcListIndexedBy(pParse, X, &I); 839 #ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 840 sqlite3ExprListDelete(pParse->db, O); O = 0; 841 sqlite3ExprDelete(pParse->db, L); L = 0; 842 #endif 843 sqlite3DeleteFrom(pParse,X,W,O,L); 844 } 845 %endif 846 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 847 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt(W). { 848 sqlite3SrcListIndexedBy(pParse, X, &I); 849 sqlite3DeleteFrom(pParse,X,W,0,0); 850 } 851 %endif 852 853 %type where_opt {Expr*} 854 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 855 856 where_opt(A) ::= . {A = 0;} 857 where_opt(A) ::= WHERE expr(X). {A = X;} 858 859 ////////////////////////// The UPDATE command //////////////////////////////// 860 // 861 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 862 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) 863 where_opt(W) orderby_opt(O) limit_opt(L). { 864 sqlite3SrcListIndexedBy(pParse, X, &I); 865 sqlite3ExprListCheckLength(pParse,Y,"set list"); 866 sqlite3Update(pParse,X,Y,W,R,O,L,0); 867 } 868 %endif 869 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 870 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) 871 where_opt(W). { 872 sqlite3SrcListIndexedBy(pParse, X, &I); 873 sqlite3ExprListCheckLength(pParse,Y,"set list"); 874 sqlite3Update(pParse,X,Y,W,R,0,0,0); 875 } 876 %endif 877 878 %type setlist {ExprList*} 879 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 880 881 setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). { 882 A = sqlite3ExprListAppend(pParse, A, Y); 883 sqlite3ExprListSetName(pParse, A, &X, 1); 884 } 885 setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). { 886 A = sqlite3ExprListAppendVector(pParse, A, X, Y); 887 } 888 setlist(A) ::= nm(X) EQ expr(Y). { 889 A = sqlite3ExprListAppend(pParse, 0, Y); 890 sqlite3ExprListSetName(pParse, A, &X, 1); 891 } 892 setlist(A) ::= LP idlist(X) RP EQ expr(Y). { 893 A = sqlite3ExprListAppendVector(pParse, 0, X, Y); 894 } 895 896 ////////////////////////// The INSERT command ///////////////////////////////// 897 // 898 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) select(S) 899 upsert(U). { 900 sqlite3Insert(pParse, X, S, F, R, U); 901 } 902 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) DEFAULT VALUES. 903 { 904 sqlite3Insert(pParse, X, 0, F, R, 0); 905 } 906 907 %type upsert {Upsert*} 908 909 // Because upsert only occurs at the tip end of the INSERT rule for cmd, 910 // there is never a case where the value of the upsert pointer will not 911 // be destroyed by the cmd action. So comment-out the destructor to 912 // avoid unreachable code. 913 //%destructor upsert {sqlite3UpsertDelete(pParse->db,$$);} 914 upsert(A) ::= . { A = 0; } 915 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) 916 DO UPDATE SET setlist(Z) where_opt(W). 917 { A = sqlite3UpsertNew(pParse->db,T,TW,Z,W);} 918 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) DO NOTHING. 919 { A = sqlite3UpsertNew(pParse->db,T,TW,0,0); } 920 upsert(A) ::= ON CONFLICT DO NOTHING. 921 { A = sqlite3UpsertNew(pParse->db,0,0,0,0); } 922 923 %type insert_cmd {int} 924 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 925 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 926 927 %type idlist_opt {IdList*} 928 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);} 929 %type idlist {IdList*} 930 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);} 931 932 idlist_opt(A) ::= . {A = 0;} 933 idlist_opt(A) ::= LP idlist(X) RP. {A = X;} 934 idlist(A) ::= idlist(A) COMMA nm(Y). 935 {A = sqlite3IdListAppend(pParse,A,&Y);} 936 idlist(A) ::= nm(Y). 937 {A = sqlite3IdListAppend(pParse,0,&Y); /*A-overwrites-Y*/} 938 939 /////////////////////////// Expression Processing ///////////////////////////// 940 // 941 942 %type expr {Expr*} 943 %destructor expr {sqlite3ExprDelete(pParse->db, $$);} 944 %type term {Expr*} 945 %destructor term {sqlite3ExprDelete(pParse->db, $$);} 946 947 %include { 948 949 /* Construct a new Expr object from a single identifier. Use the 950 ** new Expr to populate pOut. Set the span of pOut to be the identifier 951 ** that created the expression. 952 */ 953 static Expr *tokenExpr(Parse *pParse, int op, Token t){ 954 Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1); 955 if( p ){ 956 /* memset(p, 0, sizeof(Expr)); */ 957 p->op = (u8)op; 958 p->affExpr = 0; 959 p->flags = EP_Leaf; 960 p->iAgg = -1; 961 p->pLeft = p->pRight = 0; 962 p->x.pList = 0; 963 p->pAggInfo = 0; 964 p->y.pTab = 0; 965 p->op2 = 0; 966 p->iTable = 0; 967 p->iColumn = 0; 968 p->u.zToken = (char*)&p[1]; 969 memcpy(p->u.zToken, t.z, t.n); 970 p->u.zToken[t.n] = 0; 971 if( sqlite3Isquote(p->u.zToken[0]) ){ 972 sqlite3DequoteExpr(p); 973 } 974 #if SQLITE_MAX_EXPR_DEPTH>0 975 p->nHeight = 1; 976 #endif 977 if( IN_RENAME_OBJECT ){ 978 return (Expr*)sqlite3RenameTokenMap(pParse, (void*)p, &t); 979 } 980 } 981 return p; 982 } 983 984 } 985 986 expr(A) ::= term(A). 987 expr(A) ::= LP expr(X) RP. {A = X;} 988 expr(A) ::= id(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 989 expr(A) ::= JOIN_KW(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 990 expr(A) ::= nm(X) DOT nm(Y). { 991 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 992 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); 993 if( IN_RENAME_OBJECT ){ 994 sqlite3RenameTokenMap(pParse, (void*)temp2, &Y); 995 sqlite3RenameTokenMap(pParse, (void*)temp1, &X); 996 } 997 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp2); 998 } 999 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 1000 Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1); 1001 Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1); 1002 Expr *temp3 = sqlite3ExprAlloc(pParse->db, TK_ID, &Z, 1); 1003 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3); 1004 if( IN_RENAME_OBJECT ){ 1005 sqlite3RenameTokenMap(pParse, (void*)temp3, &Z); 1006 sqlite3RenameTokenMap(pParse, (void*)temp2, &Y); 1007 } 1008 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp4); 1009 } 1010 term(A) ::= NULL|FLOAT|BLOB(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 1011 term(A) ::= STRING(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 1012 term(A) ::= INTEGER(X). { 1013 A = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1); 1014 } 1015 expr(A) ::= VARIABLE(X). { 1016 if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){ 1017 u32 n = X.n; 1018 A = tokenExpr(pParse, TK_VARIABLE, X); 1019 sqlite3ExprAssignVarNumber(pParse, A, n); 1020 }else{ 1021 /* When doing a nested parse, one can include terms in an expression 1022 ** that look like this: #1 #2 ... These terms refer to registers 1023 ** in the virtual machine. #N is the N-th register. */ 1024 Token t = X; /*A-overwrites-X*/ 1025 assert( t.n>=2 ); 1026 if( pParse->nested==0 ){ 1027 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t); 1028 A = 0; 1029 }else{ 1030 A = sqlite3PExpr(pParse, TK_REGISTER, 0, 0); 1031 if( A ) sqlite3GetInt32(&t.z[1], &A->iTable); 1032 } 1033 } 1034 } 1035 expr(A) ::= expr(A) COLLATE ids(C). { 1036 A = sqlite3ExprAddCollateToken(pParse, A, &C, 1); 1037 } 1038 %ifndef SQLITE_OMIT_CAST 1039 expr(A) ::= CAST LP expr(E) AS typetoken(T) RP. { 1040 A = sqlite3ExprAlloc(pParse->db, TK_CAST, &T, 1); 1041 sqlite3ExprAttachSubtrees(pParse->db, A, E, 0); 1042 } 1043 %endif SQLITE_OMIT_CAST 1044 1045 1046 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP. { 1047 A = sqlite3ExprFunction(pParse, Y, &X, D); 1048 } 1049 expr(A) ::= id(X) LP STAR RP. { 1050 A = sqlite3ExprFunction(pParse, 0, &X, 0); 1051 } 1052 1053 %ifndef SQLITE_OMIT_WINDOWFUNC 1054 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP filter_over(Z). { 1055 A = sqlite3ExprFunction(pParse, Y, &X, D); 1056 sqlite3WindowAttach(pParse, A, Z); 1057 } 1058 expr(A) ::= id(X) LP STAR RP filter_over(Z). { 1059 A = sqlite3ExprFunction(pParse, 0, &X, 0); 1060 sqlite3WindowAttach(pParse, A, Z); 1061 } 1062 %endif 1063 1064 term(A) ::= CTIME_KW(OP). { 1065 A = sqlite3ExprFunction(pParse, 0, &OP, 0); 1066 } 1067 1068 expr(A) ::= LP nexprlist(X) COMMA expr(Y) RP. { 1069 ExprList *pList = sqlite3ExprListAppend(pParse, X, Y); 1070 A = sqlite3PExpr(pParse, TK_VECTOR, 0, 0); 1071 if( A ){ 1072 A->x.pList = pList; 1073 }else{ 1074 sqlite3ExprListDelete(pParse->db, pList); 1075 } 1076 } 1077 1078 expr(A) ::= expr(A) AND expr(Y). {A=sqlite3ExprAnd(pParse,A,Y);} 1079 expr(A) ::= expr(A) OR(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1080 expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y). 1081 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1082 expr(A) ::= expr(A) EQ|NE(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1083 expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 1084 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1085 expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y). 1086 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1087 expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y). 1088 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1089 expr(A) ::= expr(A) CONCAT(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1090 %type likeop {Token} 1091 likeop(A) ::= LIKE_KW|MATCH(A). 1092 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A=X; A.n|=0x80000000; /*A-overwrite-X*/} 1093 expr(A) ::= expr(A) likeop(OP) expr(Y). [LIKE_KW] { 1094 ExprList *pList; 1095 int bNot = OP.n & 0x80000000; 1096 OP.n &= 0x7fffffff; 1097 pList = sqlite3ExprListAppend(pParse,0, Y); 1098 pList = sqlite3ExprListAppend(pParse,pList, A); 1099 A = sqlite3ExprFunction(pParse, pList, &OP, 0); 1100 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1101 if( A ) A->flags |= EP_InfixFunc; 1102 } 1103 expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { 1104 ExprList *pList; 1105 int bNot = OP.n & 0x80000000; 1106 OP.n &= 0x7fffffff; 1107 pList = sqlite3ExprListAppend(pParse,0, Y); 1108 pList = sqlite3ExprListAppend(pParse,pList, A); 1109 pList = sqlite3ExprListAppend(pParse,pList, E); 1110 A = sqlite3ExprFunction(pParse, pList, &OP, 0); 1111 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1112 if( A ) A->flags |= EP_InfixFunc; 1113 } 1114 1115 expr(A) ::= expr(A) ISNULL|NOTNULL(E). {A = sqlite3PExpr(pParse,@E,A,0);} 1116 expr(A) ::= expr(A) NOT NULL. {A = sqlite3PExpr(pParse,TK_NOTNULL,A,0);} 1117 1118 %include { 1119 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a 1120 ** unary TK_ISNULL or TK_NOTNULL expression. */ 1121 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ 1122 sqlite3 *db = pParse->db; 1123 if( pA && pY && pY->op==TK_NULL && !IN_RENAME_OBJECT ){ 1124 pA->op = (u8)op; 1125 sqlite3ExprDelete(db, pA->pRight); 1126 pA->pRight = 0; 1127 } 1128 } 1129 } 1130 1131 // expr1 IS expr2 1132 // expr1 IS NOT expr2 1133 // 1134 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 1135 // is any other expression, code as TK_IS or TK_ISNOT. 1136 // 1137 expr(A) ::= expr(A) IS expr(Y). { 1138 A = sqlite3PExpr(pParse,TK_IS,A,Y); 1139 binaryToUnaryIfNull(pParse, Y, A, TK_ISNULL); 1140 } 1141 expr(A) ::= expr(A) IS NOT expr(Y). { 1142 A = sqlite3PExpr(pParse,TK_ISNOT,A,Y); 1143 binaryToUnaryIfNull(pParse, Y, A, TK_NOTNULL); 1144 } 1145 1146 expr(A) ::= NOT(B) expr(X). 1147 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1148 expr(A) ::= BITNOT(B) expr(X). 1149 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1150 expr(A) ::= PLUS|MINUS(B) expr(X). [BITNOT] { 1151 A = sqlite3PExpr(pParse, @B==TK_PLUS ? TK_UPLUS : TK_UMINUS, X, 0); 1152 /*A-overwrites-B*/ 1153 } 1154 1155 %type between_op {int} 1156 between_op(A) ::= BETWEEN. {A = 0;} 1157 between_op(A) ::= NOT BETWEEN. {A = 1;} 1158 expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 1159 ExprList *pList = sqlite3ExprListAppend(pParse,0, X); 1160 pList = sqlite3ExprListAppend(pParse,pList, Y); 1161 A = sqlite3PExpr(pParse, TK_BETWEEN, A, 0); 1162 if( A ){ 1163 A->x.pList = pList; 1164 }else{ 1165 sqlite3ExprListDelete(pParse->db, pList); 1166 } 1167 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1168 } 1169 %ifndef SQLITE_OMIT_SUBQUERY 1170 %type in_op {int} 1171 in_op(A) ::= IN. {A = 0;} 1172 in_op(A) ::= NOT IN. {A = 1;} 1173 expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP. [IN] { 1174 if( Y==0 ){ 1175 /* Expressions of the form 1176 ** 1177 ** expr1 IN () 1178 ** expr1 NOT IN () 1179 ** 1180 ** simplify to constants 0 (false) and 1 (true), respectively, 1181 ** regardless of the value of expr1. 1182 */ 1183 sqlite3ExprUnmapAndDelete(pParse, A); 1184 A = sqlite3ExprAlloc(pParse->db, TK_INTEGER,&sqlite3IntTokens[N],1); 1185 }else if( Y->nExpr==1 ){ 1186 /* Expressions of the form: 1187 ** 1188 ** expr1 IN (?1) 1189 ** expr1 NOT IN (?2) 1190 ** 1191 ** with exactly one value on the RHS can be simplified to something 1192 ** like this: 1193 ** 1194 ** expr1 == ?1 1195 ** expr1 <> ?2 1196 ** 1197 ** But, the RHS of the == or <> is marked with the EP_Generic flag 1198 ** so that it may not contribute to the computation of comparison 1199 ** affinity or the collating sequence to use for comparison. Otherwise, 1200 ** the semantics would be subtly different from IN or NOT IN. 1201 */ 1202 Expr *pRHS = Y->a[0].pExpr; 1203 Y->a[0].pExpr = 0; 1204 sqlite3ExprListDelete(pParse->db, Y); 1205 /* pRHS cannot be NULL because a malloc error would have been detected 1206 ** before now and control would have never reached this point */ 1207 if( ALWAYS(pRHS) ){ 1208 pRHS->flags &= ~EP_Collate; 1209 pRHS->flags |= EP_Generic; 1210 } 1211 A = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, A, pRHS); 1212 }else{ 1213 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1214 if( A ){ 1215 A->x.pList = Y; 1216 sqlite3ExprSetHeightAndFlags(pParse, A); 1217 }else{ 1218 sqlite3ExprListDelete(pParse->db, Y); 1219 } 1220 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1221 } 1222 } 1223 expr(A) ::= LP select(X) RP. { 1224 A = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 1225 sqlite3PExprAddSelect(pParse, A, X); 1226 } 1227 expr(A) ::= expr(A) in_op(N) LP select(Y) RP. [IN] { 1228 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1229 sqlite3PExprAddSelect(pParse, A, Y); 1230 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1231 } 1232 expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z) paren_exprlist(E). [IN] { 1233 SrcList *pSrc = sqlite3SrcListAppend(pParse, 0,&Y,&Z); 1234 Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0); 1235 if( E ) sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, E); 1236 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1237 sqlite3PExprAddSelect(pParse, A, pSelect); 1238 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1239 } 1240 expr(A) ::= EXISTS LP select(Y) RP. { 1241 Expr *p; 1242 p = A = sqlite3PExpr(pParse, TK_EXISTS, 0, 0); 1243 sqlite3PExprAddSelect(pParse, p, Y); 1244 } 1245 %endif SQLITE_OMIT_SUBQUERY 1246 1247 /* CASE expressions */ 1248 expr(A) ::= CASE case_operand(X) case_exprlist(Y) case_else(Z) END. { 1249 A = sqlite3PExpr(pParse, TK_CASE, X, 0); 1250 if( A ){ 1251 A->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y; 1252 sqlite3ExprSetHeightAndFlags(pParse, A); 1253 }else{ 1254 sqlite3ExprListDelete(pParse->db, Y); 1255 sqlite3ExprDelete(pParse->db, Z); 1256 } 1257 } 1258 %type case_exprlist {ExprList*} 1259 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1260 case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). { 1261 A = sqlite3ExprListAppend(pParse,A, Y); 1262 A = sqlite3ExprListAppend(pParse,A, Z); 1263 } 1264 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1265 A = sqlite3ExprListAppend(pParse,0, Y); 1266 A = sqlite3ExprListAppend(pParse,A, Z); 1267 } 1268 %type case_else {Expr*} 1269 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1270 case_else(A) ::= ELSE expr(X). {A = X;} 1271 case_else(A) ::= . {A = 0;} 1272 %type case_operand {Expr*} 1273 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1274 case_operand(A) ::= expr(X). {A = X; /*A-overwrites-X*/} 1275 case_operand(A) ::= . {A = 0;} 1276 1277 %type exprlist {ExprList*} 1278 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1279 %type nexprlist {ExprList*} 1280 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1281 1282 exprlist(A) ::= nexprlist(A). 1283 exprlist(A) ::= . {A = 0;} 1284 nexprlist(A) ::= nexprlist(A) COMMA expr(Y). 1285 {A = sqlite3ExprListAppend(pParse,A,Y);} 1286 nexprlist(A) ::= expr(Y). 1287 {A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/} 1288 1289 %ifndef SQLITE_OMIT_SUBQUERY 1290 /* A paren_exprlist is an optional expression list contained inside 1291 ** of parenthesis */ 1292 %type paren_exprlist {ExprList*} 1293 %destructor paren_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1294 paren_exprlist(A) ::= . {A = 0;} 1295 paren_exprlist(A) ::= LP exprlist(X) RP. {A = X;} 1296 %endif SQLITE_OMIT_SUBQUERY 1297 1298 1299 ///////////////////////////// The CREATE INDEX command /////////////////////// 1300 // 1301 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1302 ON nm(Y) LP sortlist(Z) RP where_opt(W). { 1303 sqlite3CreateIndex(pParse, &X, &D, 1304 sqlite3SrcListAppend(pParse,0,&Y,0), Z, U, 1305 &S, W, SQLITE_SO_ASC, NE, SQLITE_IDXTYPE_APPDEF); 1306 if( IN_RENAME_OBJECT && pParse->pNewIndex ){ 1307 sqlite3RenameTokenMap(pParse, pParse->pNewIndex->zName, &Y); 1308 } 1309 } 1310 1311 %type uniqueflag {int} 1312 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1313 uniqueflag(A) ::= . {A = OE_None;} 1314 1315 1316 // The eidlist non-terminal (Expression Id List) generates an ExprList 1317 // from a list of identifiers. The identifier names are in ExprList.a[].zName. 1318 // This list is stored in an ExprList rather than an IdList so that it 1319 // can be easily sent to sqlite3ColumnsExprList(). 1320 // 1321 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal 1322 // used for the arguments to an index. That is just an historical accident. 1323 // 1324 // IMPORTANT COMPATIBILITY NOTE: Some prior versions of SQLite accepted 1325 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate 1326 // places - places that might have been stored in the sqlite_master schema. 1327 // Those extra features were ignored. But because they might be in some 1328 // (busted) old databases, we need to continue parsing them when loading 1329 // historical schemas. 1330 // 1331 %type eidlist {ExprList*} 1332 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);} 1333 %type eidlist_opt {ExprList*} 1334 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1335 1336 %include { 1337 /* Add a single new term to an ExprList that is used to store a 1338 ** list of identifiers. Report an error if the ID list contains 1339 ** a COLLATE clause or an ASC or DESC keyword, except ignore the 1340 ** error while parsing a legacy schema. 1341 */ 1342 static ExprList *parserAddExprIdListTerm( 1343 Parse *pParse, 1344 ExprList *pPrior, 1345 Token *pIdToken, 1346 int hasCollate, 1347 int sortOrder 1348 ){ 1349 ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0); 1350 if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED) 1351 && pParse->db->init.busy==0 1352 ){ 1353 sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"", 1354 pIdToken->n, pIdToken->z); 1355 } 1356 sqlite3ExprListSetName(pParse, p, pIdToken, 1); 1357 return p; 1358 } 1359 } // end %include 1360 1361 eidlist_opt(A) ::= . {A = 0;} 1362 eidlist_opt(A) ::= LP eidlist(X) RP. {A = X;} 1363 eidlist(A) ::= eidlist(A) COMMA nm(Y) collate(C) sortorder(Z). { 1364 A = parserAddExprIdListTerm(pParse, A, &Y, C, Z); 1365 } 1366 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1367 A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); /*A-overwrites-Y*/ 1368 } 1369 1370 %type collate {int} 1371 collate(C) ::= . {C = 0;} 1372 collate(C) ::= COLLATE ids. {C = 1;} 1373 1374 1375 ///////////////////////////// The DROP INDEX command ///////////////////////// 1376 // 1377 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1378 1379 ///////////////////////////// The VACUUM command ///////////////////////////// 1380 // 1381 %ifndef SQLITE_OMIT_VACUUM 1382 %ifndef SQLITE_OMIT_ATTACH 1383 %type vinto {Expr*} 1384 %destructor vinto {sqlite3ExprDelete(pParse->db, $$);} 1385 cmd ::= VACUUM vinto(Y). {sqlite3Vacuum(pParse,0,Y);} 1386 cmd ::= VACUUM nm(X) vinto(Y). {sqlite3Vacuum(pParse,&X,Y);} 1387 vinto(A) ::= INTO expr(X). {A = X;} 1388 vinto(A) ::= . {A = 0;} 1389 %endif SQLITE_OMIT_ATTACH 1390 %endif SQLITE_OMIT_VACUUM 1391 1392 ///////////////////////////// The PRAGMA command ///////////////////////////// 1393 // 1394 %ifndef SQLITE_OMIT_PRAGMA 1395 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1396 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1397 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1398 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1399 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1400 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1401 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1402 1403 nmnum(A) ::= plus_num(A). 1404 nmnum(A) ::= nm(A). 1405 nmnum(A) ::= ON(A). 1406 nmnum(A) ::= DELETE(A). 1407 nmnum(A) ::= DEFAULT(A). 1408 %endif SQLITE_OMIT_PRAGMA 1409 %token_class number INTEGER|FLOAT. 1410 plus_num(A) ::= PLUS number(X). {A = X;} 1411 plus_num(A) ::= number(A). 1412 minus_num(A) ::= MINUS number(X). {A = X;} 1413 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1414 1415 %ifndef SQLITE_OMIT_TRIGGER 1416 1417 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1418 Token all; 1419 all.z = A.z; 1420 all.n = (int)(Z.z - A.z) + Z.n; 1421 sqlite3FinishTrigger(pParse, S, &all); 1422 } 1423 1424 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1425 trigger_time(C) trigger_event(D) 1426 ON fullname(E) foreach_clause when_clause(G). { 1427 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1428 A = (Z.n==0?B:Z); /*A-overwrites-T*/ 1429 } 1430 1431 %type trigger_time {int} 1432 trigger_time(A) ::= BEFORE|AFTER(X). { A = @X; /*A-overwrites-X*/ } 1433 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1434 trigger_time(A) ::= . { A = TK_BEFORE; } 1435 1436 %type trigger_event {struct TrigEvent} 1437 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1438 trigger_event(A) ::= DELETE|INSERT(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1439 trigger_event(A) ::= UPDATE(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1440 trigger_event(A) ::= UPDATE OF idlist(X).{A.a = TK_UPDATE; A.b = X;} 1441 1442 foreach_clause ::= . 1443 foreach_clause ::= FOR EACH ROW. 1444 1445 %type when_clause {Expr*} 1446 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1447 when_clause(A) ::= . { A = 0; } 1448 when_clause(A) ::= WHEN expr(X). { A = X; } 1449 1450 %type trigger_cmd_list {TriggerStep*} 1451 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1452 trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. { 1453 assert( A!=0 ); 1454 A->pLast->pNext = X; 1455 A->pLast = X; 1456 } 1457 trigger_cmd_list(A) ::= trigger_cmd(A) SEMI. { 1458 assert( A!=0 ); 1459 A->pLast = A; 1460 } 1461 1462 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1463 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1464 // the same database as the table that the trigger fires on. 1465 // 1466 %type trnm {Token} 1467 trnm(A) ::= nm(A). 1468 trnm(A) ::= nm DOT nm(X). { 1469 A = X; 1470 sqlite3ErrorMsg(pParse, 1471 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1472 "statements within triggers"); 1473 } 1474 1475 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1476 // statements within triggers. We make a specific error message for this 1477 // since it is an exception to the default grammar rules. 1478 // 1479 tridxby ::= . 1480 tridxby ::= INDEXED BY nm. { 1481 sqlite3ErrorMsg(pParse, 1482 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1483 "within triggers"); 1484 } 1485 tridxby ::= NOT INDEXED. { 1486 sqlite3ErrorMsg(pParse, 1487 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1488 "within triggers"); 1489 } 1490 1491 1492 1493 %type trigger_cmd {TriggerStep*} 1494 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1495 // UPDATE 1496 trigger_cmd(A) ::= 1497 UPDATE(B) orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z) scanpt(E). 1498 {A = sqlite3TriggerUpdateStep(pParse, &X, Y, Z, R, B.z, E);} 1499 1500 // INSERT 1501 trigger_cmd(A) ::= scanpt(B) insert_cmd(R) INTO 1502 trnm(X) idlist_opt(F) select(S) upsert(U) scanpt(Z). { 1503 A = sqlite3TriggerInsertStep(pParse,&X,F,S,R,U,B,Z);/*A-overwrites-R*/ 1504 } 1505 // DELETE 1506 trigger_cmd(A) ::= DELETE(B) FROM trnm(X) tridxby where_opt(Y) scanpt(E). 1507 {A = sqlite3TriggerDeleteStep(pParse, &X, Y, B.z, E);} 1508 1509 // SELECT 1510 trigger_cmd(A) ::= scanpt(B) select(X) scanpt(E). 1511 {A = sqlite3TriggerSelectStep(pParse->db, X, B, E); /*A-overwrites-X*/} 1512 1513 // The special RAISE expression that may occur in trigger programs 1514 expr(A) ::= RAISE LP IGNORE RP. { 1515 A = sqlite3PExpr(pParse, TK_RAISE, 0, 0); 1516 if( A ){ 1517 A->affExpr = OE_Ignore; 1518 } 1519 } 1520 expr(A) ::= RAISE LP raisetype(T) COMMA nm(Z) RP. { 1521 A = sqlite3ExprAlloc(pParse->db, TK_RAISE, &Z, 1); 1522 if( A ) { 1523 A->affExpr = (char)T; 1524 } 1525 } 1526 %endif !SQLITE_OMIT_TRIGGER 1527 1528 %type raisetype {int} 1529 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1530 raisetype(A) ::= ABORT. {A = OE_Abort;} 1531 raisetype(A) ::= FAIL. {A = OE_Fail;} 1532 1533 1534 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1535 %ifndef SQLITE_OMIT_TRIGGER 1536 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1537 sqlite3DropTrigger(pParse,X,NOERR); 1538 } 1539 %endif !SQLITE_OMIT_TRIGGER 1540 1541 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1542 %ifndef SQLITE_OMIT_ATTACH 1543 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1544 sqlite3Attach(pParse, F, D, K); 1545 } 1546 cmd ::= DETACH database_kw_opt expr(D). { 1547 sqlite3Detach(pParse, D); 1548 } 1549 1550 %type key_opt {Expr*} 1551 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1552 key_opt(A) ::= . { A = 0; } 1553 key_opt(A) ::= KEY expr(X). { A = X; } 1554 1555 database_kw_opt ::= DATABASE. 1556 database_kw_opt ::= . 1557 %endif SQLITE_OMIT_ATTACH 1558 1559 ////////////////////////// REINDEX collation ////////////////////////////////// 1560 %ifndef SQLITE_OMIT_REINDEX 1561 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1562 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1563 %endif SQLITE_OMIT_REINDEX 1564 1565 /////////////////////////////////// ANALYZE /////////////////////////////////// 1566 %ifndef SQLITE_OMIT_ANALYZE 1567 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1568 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1569 %endif 1570 1571 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1572 %ifndef SQLITE_OMIT_ALTERTABLE 1573 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1574 sqlite3AlterRenameTable(pParse,X,&Z); 1575 } 1576 cmd ::= ALTER TABLE add_column_fullname 1577 ADD kwcolumn_opt columnname(Y) carglist. { 1578 Y.n = (int)(pParse->sLastToken.z-Y.z) + pParse->sLastToken.n; 1579 sqlite3AlterFinishAddColumn(pParse, &Y); 1580 } 1581 add_column_fullname ::= fullname(X). { 1582 disableLookaside(pParse); 1583 sqlite3AlterBeginAddColumn(pParse, X); 1584 } 1585 cmd ::= ALTER TABLE fullname(X) RENAME kwcolumn_opt nm(Y) TO nm(Z). { 1586 sqlite3AlterRenameColumn(pParse, X, &Y, &Z); 1587 } 1588 1589 kwcolumn_opt ::= . 1590 kwcolumn_opt ::= COLUMNKW. 1591 1592 %endif SQLITE_OMIT_ALTERTABLE 1593 1594 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1595 %ifndef SQLITE_OMIT_VIRTUALTABLE 1596 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1597 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1598 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E) 1599 nm(X) dbnm(Y) USING nm(Z). { 1600 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E); 1601 } 1602 vtabarglist ::= vtabarg. 1603 vtabarglist ::= vtabarglist COMMA vtabarg. 1604 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1605 vtabarg ::= vtabarg vtabargtoken. 1606 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1607 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1608 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1609 anylist ::= . 1610 anylist ::= anylist LP anylist RP. 1611 anylist ::= anylist ANY. 1612 %endif SQLITE_OMIT_VIRTUALTABLE 1613 1614 1615 //////////////////////// COMMON TABLE EXPRESSIONS //////////////////////////// 1616 %type wqlist {With*} 1617 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);} 1618 1619 with ::= . 1620 %ifndef SQLITE_OMIT_CTE 1621 with ::= WITH wqlist(W). { sqlite3WithPush(pParse, W, 1); } 1622 with ::= WITH RECURSIVE wqlist(W). { sqlite3WithPush(pParse, W, 1); } 1623 1624 wqlist(A) ::= nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1625 A = sqlite3WithAdd(pParse, 0, &X, Y, Z); /*A-overwrites-X*/ 1626 } 1627 wqlist(A) ::= wqlist(A) COMMA nm(X) eidlist_opt(Y) AS LP select(Z) RP. { 1628 A = sqlite3WithAdd(pParse, A, &X, Y, Z); 1629 } 1630 %endif SQLITE_OMIT_CTE 1631 1632 //////////////////////// WINDOW FUNCTION EXPRESSIONS ///////////////////////// 1633 // These must be at the end of this file. Specifically, the rules that 1634 // introduce tokens WINDOW, OVER and FILTER must appear last. This causes 1635 // the integer values assigned to these tokens to be larger than all other 1636 // tokens that may be output by the tokenizer except TK_SPACE and TK_ILLEGAL. 1637 // 1638 %ifndef SQLITE_OMIT_WINDOWFUNC 1639 %type windowdefn_list {Window*} 1640 %destructor windowdefn_list {sqlite3WindowListDelete(pParse->db, $$);} 1641 windowdefn_list(A) ::= windowdefn(Z). { A = Z; } 1642 windowdefn_list(A) ::= windowdefn_list(Y) COMMA windowdefn(Z). { 1643 assert( Z!=0 ); 1644 sqlite3WindowChain(pParse, Z, Y); 1645 Z->pNextWin = Y; 1646 A = Z; 1647 } 1648 1649 %type windowdefn {Window*} 1650 %destructor windowdefn {sqlite3WindowDelete(pParse->db, $$);} 1651 windowdefn(A) ::= nm(X) AS LP window(Y) RP. { 1652 if( ALWAYS(Y) ){ 1653 Y->zName = sqlite3DbStrNDup(pParse->db, X.z, X.n); 1654 } 1655 A = Y; 1656 } 1657 1658 %type window {Window*} 1659 %destructor window {sqlite3WindowDelete(pParse->db, $$);} 1660 1661 %type frame_opt {Window*} 1662 %destructor frame_opt {sqlite3WindowDelete(pParse->db, $$);} 1663 1664 %type part_opt {ExprList*} 1665 %destructor part_opt {sqlite3ExprListDelete(pParse->db, $$);} 1666 1667 %type filter_clause {Expr*} 1668 %destructor filter_clause {sqlite3ExprDelete(pParse->db, $$);} 1669 1670 %type over_clause {Window*} 1671 %destructor over_clause {sqlite3WindowDelete(pParse->db, $$);} 1672 1673 %type filter_over {Window*} 1674 %destructor filter_over {sqlite3WindowDelete(pParse->db, $$);} 1675 1676 %type range_or_rows {int} 1677 1678 %type frame_bound {struct FrameBound} 1679 %destructor frame_bound {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1680 %type frame_bound_s {struct FrameBound} 1681 %destructor frame_bound_s {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1682 %type frame_bound_e {struct FrameBound} 1683 %destructor frame_bound_e {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1684 1685 window(A) ::= PARTITION BY nexprlist(X) orderby_opt(Y) frame_opt(Z). { 1686 A = sqlite3WindowAssemble(pParse, Z, X, Y, 0); 1687 } 1688 window(A) ::= nm(W) PARTITION BY nexprlist(X) orderby_opt(Y) frame_opt(Z). { 1689 A = sqlite3WindowAssemble(pParse, Z, X, Y, &W); 1690 } 1691 window(A) ::= ORDER BY sortlist(Y) frame_opt(Z). { 1692 A = sqlite3WindowAssemble(pParse, Z, 0, Y, 0); 1693 } 1694 window(A) ::= nm(W) ORDER BY sortlist(Y) frame_opt(Z). { 1695 A = sqlite3WindowAssemble(pParse, Z, 0, Y, &W); 1696 } 1697 window(A) ::= frame_opt(Z). { 1698 A = Z; 1699 } 1700 window(A) ::= nm(W) frame_opt(Z). { 1701 A = sqlite3WindowAssemble(pParse, Z, 0, 0, &W); 1702 } 1703 1704 frame_opt(A) ::= . { 1705 A = sqlite3WindowAlloc(pParse, 0, TK_UNBOUNDED, 0, TK_CURRENT, 0, 0); 1706 } 1707 frame_opt(A) ::= range_or_rows(X) frame_bound_s(Y) frame_exclude_opt(Z). { 1708 A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, TK_CURRENT, 0, Z); 1709 } 1710 frame_opt(A) ::= range_or_rows(X) BETWEEN frame_bound_s(Y) AND 1711 frame_bound_e(Z) frame_exclude_opt(W). { 1712 A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, Z.eType, Z.pExpr, W); 1713 } 1714 1715 range_or_rows(A) ::= RANGE|ROWS|GROUPS(X). {A = @X; /*A-overwrites-X*/} 1716 1717 frame_bound_s(A) ::= frame_bound(X). {A = X;} 1718 frame_bound_s(A) ::= UNBOUNDED(X) PRECEDING. {A.eType = @X; A.pExpr = 0;} 1719 frame_bound_e(A) ::= frame_bound(X). {A = X;} 1720 frame_bound_e(A) ::= UNBOUNDED(X) FOLLOWING. {A.eType = @X; A.pExpr = 0;} 1721 1722 frame_bound(A) ::= expr(X) PRECEDING|FOLLOWING(Y). 1723 {A.eType = @Y; A.pExpr = X;} 1724 frame_bound(A) ::= CURRENT(X) ROW. {A.eType = @X; A.pExpr = 0;} 1725 1726 %type frame_exclude_opt {u8} 1727 frame_exclude_opt(A) ::= . {A = 0;} 1728 frame_exclude_opt(A) ::= EXCLUDE frame_exclude(X). {A = X;} 1729 1730 %type frame_exclude {u8} 1731 frame_exclude(A) ::= NO(X) OTHERS. {A = @X; /*A-overwrites-X*/} 1732 frame_exclude(A) ::= CURRENT(X) ROW. {A = @X; /*A-overwrites-X*/} 1733 frame_exclude(A) ::= GROUP|TIES(X). {A = @X; /*A-overwrites-X*/} 1734 1735 1736 %type window_clause {Window*} 1737 %destructor window_clause {sqlite3WindowListDelete(pParse->db, $$);} 1738 window_clause(A) ::= WINDOW windowdefn_list(B). { A = B; } 1739 1740 filter_over(A) ::= filter_clause(F) over_clause(O). { 1741 O->pFilter = F; 1742 A = O; 1743 } 1744 filter_over(A) ::= over_clause(O). { 1745 A = O; 1746 } 1747 filter_over(A) ::= filter_clause(F). { 1748 A = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1749 if( A ){ 1750 A->eFrmType = TK_FILTER; 1751 A->pFilter = F; 1752 }else{ 1753 sqlite3ExprDelete(pParse->db, F); 1754 } 1755 } 1756 1757 over_clause(A) ::= OVER LP window(Z) RP. { 1758 A = Z; 1759 assert( A!=0 ); 1760 } 1761 over_clause(A) ::= OVER nm(Z). { 1762 A = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1763 if( A ){ 1764 A->zName = sqlite3DbStrNDup(pParse->db, Z.z, Z.n); 1765 } 1766 } 1767 1768 filter_clause(A) ::= FILTER LP WHERE expr(X) RP. { A = X; } 1769 %endif /* SQLITE_OMIT_WINDOWFUNC */ 1770 1771 /* 1772 ** The code generator needs some extra TK_ token values for tokens that 1773 ** are synthesized and do not actually appear in the grammar: 1774 */ 1775 %token 1776 TRUEFALSE /* True or false keyword */ 1777 ISNOT /* Combination of IS and NOT */ 1778 FUNCTION /* A function invocation */ 1779 COLUMN /* Reference to a table column */ 1780 AGG_FUNCTION /* An aggregate function */ 1781 AGG_COLUMN /* An aggregated column */ 1782 UMINUS /* Unary minus */ 1783 UPLUS /* Unary plus */ 1784 TRUTH /* IS TRUE or IS FALSE or IS NOT TRUE or IS NOT FALSE */ 1785 REGISTER /* Reference to a VDBE register */ 1786 VECTOR /* Vector */ 1787 SELECT_COLUMN /* Choose a single column from a multi-column SELECT */ 1788 IF_NULL_ROW /* the if-null-row operator */ 1789 ASTERISK /* The "*" in count(*) and similar */ 1790 SPAN /* The span operator */ 1791 . 1792 /* There must be no more than 255 tokens defined above. If this grammar 1793 ** is extended with new rules and tokens, they must either be so few in 1794 ** number that TK_SPAN is no more than 255, or else the new tokens must 1795 ** appear after this line. 1796 */ 1797 %include { 1798 #if TK_SPAN>255 1799 # error too many tokens in the grammar 1800 #endif 1801 } 1802 1803 /* 1804 ** The TK_SPACE and TK_ILLEGAL tokens must be the last two tokens. The 1805 ** parser depends on this. Those tokens are not used in any grammar rule. 1806 ** They are only used by the tokenizer. Declare them last so that they 1807 ** are guaranteed to be the last two tokens 1808 */ 1809 %token SPACE ILLEGAL. 1810