xref: /sqlite-3.40.0/src/parse.y (revision 36f6b891)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains SQLite's grammar for SQL.  Process this file
13 ** using the lemon parser generator to generate C code that runs
14 ** the parser.  Lemon will also generate a header file containing
15 ** numeric codes for all of the tokens.
16 */
17 
18 // All token codes are small integers with #defines that begin with "TK_"
19 %token_prefix TK_
20 
21 // The type of the data attached to each token is Token.  This is also the
22 // default type for non-terminals.
23 //
24 %token_type {Token}
25 %default_type {Token}
26 
27 // The generated parser function takes a 4th argument as follows:
28 %extra_argument {Parse *pParse}
29 
30 // This code runs whenever there is a syntax error
31 //
32 %syntax_error {
33   UNUSED_PARAMETER(yymajor);  /* Silence some compiler warnings */
34   assert( TOKEN.z[0] );  /* The tokenizer always gives us a token */
35   sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
36 }
37 %stack_overflow {
38   UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */
39   sqlite3ErrorMsg(pParse, "parser stack overflow");
40 }
41 
42 // The name of the generated procedure that implements the parser
43 // is as follows:
44 %name sqlite3Parser
45 
46 // The following text is included near the beginning of the C source
47 // code file that implements the parser.
48 //
49 %include {
50 #include "sqliteInt.h"
51 
52 /*
53 ** Disable all error recovery processing in the parser push-down
54 ** automaton.
55 */
56 #define YYNOERRORRECOVERY 1
57 
58 /*
59 ** Make yytestcase() the same as testcase()
60 */
61 #define yytestcase(X) testcase(X)
62 
63 /*
64 ** An instance of this structure holds information about the
65 ** LIMIT clause of a SELECT statement.
66 */
67 struct LimitVal {
68   Expr *pLimit;    /* The LIMIT expression.  NULL if there is no limit */
69   Expr *pOffset;   /* The OFFSET expression.  NULL if there is none */
70 };
71 
72 /*
73 ** An instance of this structure is used to store the LIKE,
74 ** GLOB, NOT LIKE, and NOT GLOB operators.
75 */
76 struct LikeOp {
77   Token eOperator;  /* "like" or "glob" or "regexp" */
78   int not;         /* True if the NOT keyword is present */
79 };
80 
81 /*
82 ** An instance of the following structure describes the event of a
83 ** TRIGGER.  "a" is the event type, one of TK_UPDATE, TK_INSERT,
84 ** TK_DELETE, or TK_INSTEAD.  If the event is of the form
85 **
86 **      UPDATE ON (a,b,c)
87 **
88 ** Then the "b" IdList records the list "a,b,c".
89 */
90 struct TrigEvent { int a; IdList * b; };
91 
92 /*
93 ** An instance of this structure holds the ATTACH key and the key type.
94 */
95 struct AttachKey { int type;  Token key; };
96 
97 /*
98 ** One or more VALUES claues
99 */
100 struct ValueList {
101   ExprList *pList;
102   Select *pSelect;
103 };
104 
105 } // end %include
106 
107 // Input is a single SQL command
108 input ::= cmdlist.
109 cmdlist ::= cmdlist ecmd.
110 cmdlist ::= ecmd.
111 ecmd ::= SEMI.
112 ecmd ::= explain cmdx SEMI.
113 explain ::= .           { sqlite3BeginParse(pParse, 0); }
114 %ifndef SQLITE_OMIT_EXPLAIN
115 explain ::= EXPLAIN.              { sqlite3BeginParse(pParse, 1); }
116 explain ::= EXPLAIN QUERY PLAN.   { sqlite3BeginParse(pParse, 2); }
117 %endif  SQLITE_OMIT_EXPLAIN
118 cmdx ::= cmd.           { sqlite3FinishCoding(pParse); }
119 
120 ///////////////////// Begin and end transactions. ////////////////////////////
121 //
122 
123 cmd ::= BEGIN transtype(Y) trans_opt.  {sqlite3BeginTransaction(pParse, Y);}
124 trans_opt ::= .
125 trans_opt ::= TRANSACTION.
126 trans_opt ::= TRANSACTION nm.
127 %type transtype {int}
128 transtype(A) ::= .             {A = TK_DEFERRED;}
129 transtype(A) ::= DEFERRED(X).  {A = @X;}
130 transtype(A) ::= IMMEDIATE(X). {A = @X;}
131 transtype(A) ::= EXCLUSIVE(X). {A = @X;}
132 cmd ::= COMMIT trans_opt.      {sqlite3CommitTransaction(pParse);}
133 cmd ::= END trans_opt.         {sqlite3CommitTransaction(pParse);}
134 cmd ::= ROLLBACK trans_opt.    {sqlite3RollbackTransaction(pParse);}
135 
136 savepoint_opt ::= SAVEPOINT.
137 savepoint_opt ::= .
138 cmd ::= SAVEPOINT nm(X). {
139   sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X);
140 }
141 cmd ::= RELEASE savepoint_opt nm(X). {
142   sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X);
143 }
144 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). {
145   sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X);
146 }
147 
148 ///////////////////// The CREATE TABLE statement ////////////////////////////
149 //
150 cmd ::= create_table create_table_args.
151 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). {
152    sqlite3StartTable(pParse,&Y,&Z,T,0,0,E);
153 }
154 createkw(A) ::= CREATE(X).  {
155   pParse->db->lookaside.bEnabled = 0;
156   A = X;
157 }
158 %type ifnotexists {int}
159 ifnotexists(A) ::= .              {A = 0;}
160 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;}
161 %type temp {int}
162 %ifndef SQLITE_OMIT_TEMPDB
163 temp(A) ::= TEMP.  {A = 1;}
164 %endif  SQLITE_OMIT_TEMPDB
165 temp(A) ::= .      {A = 0;}
166 create_table_args ::= LP columnlist conslist_opt(X) RP(Y). {
167   sqlite3EndTable(pParse,&X,&Y,0);
168 }
169 create_table_args ::= AS select(S). {
170   sqlite3EndTable(pParse,0,0,S);
171   sqlite3SelectDelete(pParse->db, S);
172 }
173 columnlist ::= columnlist COMMA column.
174 columnlist ::= column.
175 
176 // A "column" is a complete description of a single column in a
177 // CREATE TABLE statement.  This includes the column name, its
178 // datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES,
179 // NOT NULL and so forth.
180 //
181 column(A) ::= columnid(X) type carglist. {
182   A.z = X.z;
183   A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n;
184 }
185 columnid(A) ::= nm(X). {
186   sqlite3AddColumn(pParse,&X);
187   A = X;
188 }
189 
190 
191 // An IDENTIFIER can be a generic identifier, or one of several
192 // keywords.  Any non-standard keyword can also be an identifier.
193 //
194 %type id {Token}
195 id(A) ::= ID(X).         {A = X;}
196 id(A) ::= INDEXED(X).    {A = X;}
197 
198 // The following directive causes tokens ABORT, AFTER, ASC, etc. to
199 // fallback to ID if they will not parse as their original value.
200 // This obviates the need for the "id" nonterminal.
201 //
202 %fallback ID
203   ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW
204   CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR
205   IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN
206   QUERY KEY OF OFFSET PRAGMA RAISE RELEASE REPLACE RESTRICT ROW ROLLBACK
207   SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL
208 %ifdef SQLITE_OMIT_COMPOUND_SELECT
209   EXCEPT INTERSECT UNION
210 %endif SQLITE_OMIT_COMPOUND_SELECT
211   REINDEX RENAME CTIME_KW IF
212   .
213 %wildcard ANY.
214 
215 // Define operator precedence early so that this is the first occurance
216 // of the operator tokens in the grammer.  Keeping the operators together
217 // causes them to be assigned integer values that are close together,
218 // which keeps parser tables smaller.
219 //
220 // The token values assigned to these symbols is determined by the order
221 // in which lemon first sees them.  It must be the case that ISNULL/NOTNULL,
222 // NE/EQ, GT/LE, and GE/LT are separated by only a single value.  See
223 // the sqlite3ExprIfFalse() routine for additional information on this
224 // constraint.
225 //
226 %left OR.
227 %left AND.
228 %right NOT.
229 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ.
230 %left GT LE LT GE.
231 %right ESCAPE.
232 %left BITAND BITOR LSHIFT RSHIFT.
233 %left PLUS MINUS.
234 %left STAR SLASH REM.
235 %left CONCAT.
236 %left COLLATE.
237 %right BITNOT.
238 
239 // And "ids" is an identifer-or-string.
240 //
241 %type ids {Token}
242 ids(A) ::= ID|STRING(X).   {A = X;}
243 
244 // The name of a column or table can be any of the following:
245 //
246 %type nm {Token}
247 nm(A) ::= id(X).         {A = X;}
248 nm(A) ::= STRING(X).     {A = X;}
249 nm(A) ::= JOIN_KW(X).    {A = X;}
250 
251 // A typetoken is really one or more tokens that form a type name such
252 // as can be found after the column name in a CREATE TABLE statement.
253 // Multiple tokens are concatenated to form the value of the typetoken.
254 //
255 %type typetoken {Token}
256 type ::= .
257 type ::= typetoken(X).                   {sqlite3AddColumnType(pParse,&X);}
258 typetoken(A) ::= typename(X).   {A = X;}
259 typetoken(A) ::= typename(X) LP signed RP(Y). {
260   A.z = X.z;
261   A.n = (int)(&Y.z[Y.n] - X.z);
262 }
263 typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). {
264   A.z = X.z;
265   A.n = (int)(&Y.z[Y.n] - X.z);
266 }
267 %type typename {Token}
268 typename(A) ::= ids(X).             {A = X;}
269 typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);}
270 signed ::= plus_num.
271 signed ::= minus_num.
272 
273 // "carglist" is a list of additional constraints that come after the
274 // column name and column type in a CREATE TABLE statement.
275 //
276 carglist ::= carglist carg.
277 carglist ::= .
278 carg ::= CONSTRAINT nm ccons.
279 carg ::= ccons.
280 ccons ::= DEFAULT term(X).            {sqlite3AddDefaultValue(pParse,&X);}
281 ccons ::= DEFAULT LP expr(X) RP.      {sqlite3AddDefaultValue(pParse,&X);}
282 ccons ::= DEFAULT PLUS term(X).       {sqlite3AddDefaultValue(pParse,&X);}
283 ccons ::= DEFAULT MINUS(A) term(X).      {
284   ExprSpan v;
285   v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0);
286   v.zStart = A.z;
287   v.zEnd = X.zEnd;
288   sqlite3AddDefaultValue(pParse,&v);
289 }
290 ccons ::= DEFAULT id(X).              {
291   ExprSpan v;
292   spanExpr(&v, pParse, TK_STRING, &X);
293   sqlite3AddDefaultValue(pParse,&v);
294 }
295 
296 // In addition to the type name, we also care about the primary key and
297 // UNIQUE constraints.
298 //
299 ccons ::= NULL onconf.
300 ccons ::= NOT NULL onconf(R).    {sqlite3AddNotNull(pParse, R);}
301 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I).
302                                  {sqlite3AddPrimaryKey(pParse,0,R,I,Z);}
303 ccons ::= UNIQUE onconf(R).      {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);}
304 ccons ::= CHECK LP expr(X) RP.   {sqlite3AddCheckConstraint(pParse,X.pExpr);}
305 ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R).
306                                  {sqlite3CreateForeignKey(pParse,0,&T,TA,R);}
307 ccons ::= defer_subclause(D).    {sqlite3DeferForeignKey(pParse,D);}
308 ccons ::= COLLATE ids(C).        {sqlite3AddCollateType(pParse, &C);}
309 
310 // The optional AUTOINCREMENT keyword
311 %type autoinc {int}
312 autoinc(X) ::= .          {X = 0;}
313 autoinc(X) ::= AUTOINCR.  {X = 1;}
314 
315 // The next group of rules parses the arguments to a REFERENCES clause
316 // that determine if the referential integrity checking is deferred or
317 // or immediate and which determine what action to take if a ref-integ
318 // check fails.
319 //
320 %type refargs {int}
321 refargs(A) ::= .                  { A = OE_None*0x0101; /* EV: R-19803-45884 */}
322 refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; }
323 %type refarg {struct {int value; int mask;}}
324 refarg(A) ::= MATCH nm.              { A.value = 0;     A.mask = 0x000000; }
325 refarg(A) ::= ON INSERT refact.      { A.value = 0;     A.mask = 0x000000; }
326 refarg(A) ::= ON DELETE refact(X).   { A.value = X;     A.mask = 0x0000ff; }
327 refarg(A) ::= ON UPDATE refact(X).   { A.value = X<<8;  A.mask = 0x00ff00; }
328 %type refact {int}
329 refact(A) ::= SET NULL.              { A = OE_SetNull;  /* EV: R-33326-45252 */}
330 refact(A) ::= SET DEFAULT.           { A = OE_SetDflt;  /* EV: R-33326-45252 */}
331 refact(A) ::= CASCADE.               { A = OE_Cascade;  /* EV: R-33326-45252 */}
332 refact(A) ::= RESTRICT.              { A = OE_Restrict; /* EV: R-33326-45252 */}
333 refact(A) ::= NO ACTION.             { A = OE_None;     /* EV: R-33326-45252 */}
334 %type defer_subclause {int}
335 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt.     {A = 0;}
336 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X).      {A = X;}
337 %type init_deferred_pred_opt {int}
338 init_deferred_pred_opt(A) ::= .                       {A = 0;}
339 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED.     {A = 1;}
340 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE.    {A = 0;}
341 
342 // For the time being, the only constraint we care about is the primary
343 // key and UNIQUE.  Both create indices.
344 //
345 conslist_opt(A) ::= .                   {A.n = 0; A.z = 0;}
346 conslist_opt(A) ::= COMMA(X) conslist.  {A = X;}
347 conslist ::= conslist COMMA tcons.
348 conslist ::= conslist tcons.
349 conslist ::= tcons.
350 tcons ::= CONSTRAINT nm.
351 tcons ::= PRIMARY KEY LP idxlist(X) autoinc(I) RP onconf(R).
352                                  {sqlite3AddPrimaryKey(pParse,X,R,I,0);}
353 tcons ::= UNIQUE LP idxlist(X) RP onconf(R).
354                                  {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);}
355 tcons ::= CHECK LP expr(E) RP onconf.
356                                  {sqlite3AddCheckConstraint(pParse,E.pExpr);}
357 tcons ::= FOREIGN KEY LP idxlist(FA) RP
358           REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). {
359     sqlite3CreateForeignKey(pParse, FA, &T, TA, R);
360     sqlite3DeferForeignKey(pParse, D);
361 }
362 %type defer_subclause_opt {int}
363 defer_subclause_opt(A) ::= .                    {A = 0;}
364 defer_subclause_opt(A) ::= defer_subclause(X).  {A = X;}
365 
366 // The following is a non-standard extension that allows us to declare the
367 // default behavior when there is a constraint conflict.
368 //
369 %type onconf {int}
370 %type orconf {u8}
371 %type resolvetype {int}
372 onconf(A) ::= .                              {A = OE_Default;}
373 onconf(A) ::= ON CONFLICT resolvetype(X).    {A = X;}
374 orconf(A) ::= .                              {A = OE_Default;}
375 orconf(A) ::= OR resolvetype(X).             {A = (u8)X;}
376 resolvetype(A) ::= raisetype(X).             {A = X;}
377 resolvetype(A) ::= IGNORE.                   {A = OE_Ignore;}
378 resolvetype(A) ::= REPLACE.                  {A = OE_Replace;}
379 
380 ////////////////////////// The DROP TABLE /////////////////////////////////////
381 //
382 cmd ::= DROP TABLE ifexists(E) fullname(X). {
383   sqlite3DropTable(pParse, X, 0, E);
384 }
385 %type ifexists {int}
386 ifexists(A) ::= IF EXISTS.   {A = 1;}
387 ifexists(A) ::= .            {A = 0;}
388 
389 ///////////////////// The CREATE VIEW statement /////////////////////////////
390 //
391 %ifndef SQLITE_OMIT_VIEW
392 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) AS select(S). {
393   sqlite3CreateView(pParse, &X, &Y, &Z, S, T, E);
394 }
395 cmd ::= DROP VIEW ifexists(E) fullname(X). {
396   sqlite3DropTable(pParse, X, 1, E);
397 }
398 %endif  SQLITE_OMIT_VIEW
399 
400 //////////////////////// The SELECT statement /////////////////////////////////
401 //
402 cmd ::= select(X).  {
403   SelectDest dest = {SRT_Output, 0, 0, 0, 0};
404   sqlite3Select(pParse, X, &dest);
405   sqlite3ExplainBegin(pParse->pVdbe);
406   sqlite3ExplainSelect(pParse->pVdbe, X);
407   sqlite3ExplainFinish(pParse->pVdbe);
408   sqlite3SelectDelete(pParse->db, X);
409 }
410 
411 %type select {Select*}
412 %destructor select {sqlite3SelectDelete(pParse->db, $$);}
413 %type oneselect {Select*}
414 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);}
415 
416 select(A) ::= oneselect(X).                      {A = X;}
417 %ifndef SQLITE_OMIT_COMPOUND_SELECT
418 select(A) ::= select(X) multiselect_op(Y) oneselect(Z).  {
419   if( Z ){
420     Z->op = (u8)Y;
421     Z->pPrior = X;
422   }else{
423     sqlite3SelectDelete(pParse->db, X);
424   }
425   A = Z;
426 }
427 %type multiselect_op {int}
428 multiselect_op(A) ::= UNION(OP).             {A = @OP;}
429 multiselect_op(A) ::= UNION ALL.             {A = TK_ALL;}
430 multiselect_op(A) ::= EXCEPT|INTERSECT(OP).  {A = @OP;}
431 %endif SQLITE_OMIT_COMPOUND_SELECT
432 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y)
433                  groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
434   A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset);
435 }
436 
437 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is
438 // present and false (0) if it is not.
439 //
440 %type distinct {int}
441 distinct(A) ::= DISTINCT.   {A = 1;}
442 distinct(A) ::= ALL.        {A = 0;}
443 distinct(A) ::= .           {A = 0;}
444 
445 // selcollist is a list of expressions that are to become the return
446 // values of the SELECT statement.  The "*" in statements like
447 // "SELECT * FROM ..." is encoded as a special expression with an
448 // opcode of TK_ALL.
449 //
450 %type selcollist {ExprList*}
451 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);}
452 %type sclp {ExprList*}
453 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);}
454 sclp(A) ::= selcollist(X) COMMA.             {A = X;}
455 sclp(A) ::= .                                {A = 0;}
456 selcollist(A) ::= sclp(P) expr(X) as(Y).     {
457    A = sqlite3ExprListAppend(pParse, P, X.pExpr);
458    if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1);
459    sqlite3ExprListSetSpan(pParse,A,&X);
460 }
461 selcollist(A) ::= sclp(P) STAR. {
462   Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0);
463   A = sqlite3ExprListAppend(pParse, P, p);
464 }
465 selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). {
466   Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &Y);
467   Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
468   Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
469   A = sqlite3ExprListAppend(pParse,P, pDot);
470 }
471 
472 // An option "AS <id>" phrase that can follow one of the expressions that
473 // define the result set, or one of the tables in the FROM clause.
474 //
475 %type as {Token}
476 as(X) ::= AS nm(Y).    {X = Y;}
477 as(X) ::= ids(Y).      {X = Y;}
478 as(X) ::= .            {X.n = 0;}
479 
480 
481 %type seltablist {SrcList*}
482 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);}
483 %type stl_prefix {SrcList*}
484 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);}
485 %type from {SrcList*}
486 %destructor from {sqlite3SrcListDelete(pParse->db, $$);}
487 
488 // A complete FROM clause.
489 //
490 from(A) ::= .                {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));}
491 from(A) ::= FROM seltablist(X). {
492   A = X;
493   sqlite3SrcListShiftJoinType(A);
494 }
495 
496 // "seltablist" is a "Select Table List" - the content of the FROM clause
497 // in a SELECT statement.  "stl_prefix" is a prefix of this list.
498 //
499 stl_prefix(A) ::= seltablist(X) joinop(Y).    {
500    A = X;
501    if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].jointype = (u8)Y;
502 }
503 stl_prefix(A) ::= .                           {A = 0;}
504 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I) on_opt(N) using_opt(U). {
505   A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U);
506   sqlite3SrcListIndexedBy(pParse, A, &I);
507 }
508 %ifndef SQLITE_OMIT_SUBQUERY
509   seltablist(A) ::= stl_prefix(X) LP select(S) RP
510                     as(Z) on_opt(N) using_opt(U). {
511     A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U);
512   }
513   seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP
514                     as(Z) on_opt(N) using_opt(U). {
515     if( X==0 && Z.n==0 && N==0 && U==0 ){
516       A = F;
517     }else{
518       Select *pSubquery;
519       sqlite3SrcListShiftJoinType(F);
520       pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0);
521       A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U);
522     }
523   }
524 
525   // A seltablist_paren nonterminal represents anything in a FROM that
526   // is contained inside parentheses.  This can be either a subquery or
527   // a grouping of table and subqueries.
528   //
529 //  %type seltablist_paren {Select*}
530 //  %destructor seltablist_paren {sqlite3SelectDelete(pParse->db, $$);}
531 //  seltablist_paren(A) ::= select(S).      {A = S;}
532 //  seltablist_paren(A) ::= seltablist(F).  {
533 //     sqlite3SrcListShiftJoinType(F);
534 //     A = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0);
535 //  }
536 %endif  SQLITE_OMIT_SUBQUERY
537 
538 %type dbnm {Token}
539 dbnm(A) ::= .          {A.z=0; A.n=0;}
540 dbnm(A) ::= DOT nm(X). {A = X;}
541 
542 %type fullname {SrcList*}
543 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);}
544 fullname(A) ::= nm(X) dbnm(Y).  {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);}
545 
546 %type joinop {int}
547 %type joinop2 {int}
548 joinop(X) ::= COMMA|JOIN.              { X = JT_INNER; }
549 joinop(X) ::= JOIN_KW(A) JOIN.         { X = sqlite3JoinType(pParse,&A,0,0); }
550 joinop(X) ::= JOIN_KW(A) nm(B) JOIN.   { X = sqlite3JoinType(pParse,&A,&B,0); }
551 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
552                                        { X = sqlite3JoinType(pParse,&A,&B,&C); }
553 
554 %type on_opt {Expr*}
555 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);}
556 on_opt(N) ::= ON expr(E).   {N = E.pExpr;}
557 on_opt(N) ::= .             {N = 0;}
558 
559 // Note that this block abuses the Token type just a little. If there is
560 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If
561 // there is an INDEXED BY clause, then the token is populated as per normal,
562 // with z pointing to the token data and n containing the number of bytes
563 // in the token.
564 //
565 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is
566 // normally illegal. The sqlite3SrcListIndexedBy() function
567 // recognizes and interprets this as a special case.
568 //
569 %type indexed_opt {Token}
570 indexed_opt(A) ::= .                 {A.z=0; A.n=0;}
571 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;}
572 indexed_opt(A) ::= NOT INDEXED.      {A.z=0; A.n=1;}
573 
574 %type using_opt {IdList*}
575 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);}
576 using_opt(U) ::= USING LP inscollist(L) RP.  {U = L;}
577 using_opt(U) ::= .                        {U = 0;}
578 
579 
580 %type orderby_opt {ExprList*}
581 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);}
582 %type sortlist {ExprList*}
583 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);}
584 
585 orderby_opt(A) ::= .                          {A = 0;}
586 orderby_opt(A) ::= ORDER BY sortlist(X).      {A = X;}
587 sortlist(A) ::= sortlist(X) COMMA expr(Y) sortorder(Z). {
588   A = sqlite3ExprListAppend(pParse,X,Y.pExpr);
589   if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
590 }
591 sortlist(A) ::= expr(Y) sortorder(Z). {
592   A = sqlite3ExprListAppend(pParse,0,Y.pExpr);
593   if( A && ALWAYS(A->a) ) A->a[0].sortOrder = (u8)Z;
594 }
595 
596 %type sortorder {int}
597 
598 sortorder(A) ::= ASC.           {A = SQLITE_SO_ASC;}
599 sortorder(A) ::= DESC.          {A = SQLITE_SO_DESC;}
600 sortorder(A) ::= .              {A = SQLITE_SO_ASC;}
601 
602 %type groupby_opt {ExprList*}
603 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);}
604 groupby_opt(A) ::= .                      {A = 0;}
605 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;}
606 
607 %type having_opt {Expr*}
608 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);}
609 having_opt(A) ::= .                {A = 0;}
610 having_opt(A) ::= HAVING expr(X).  {A = X.pExpr;}
611 
612 %type limit_opt {struct LimitVal}
613 
614 // The destructor for limit_opt will never fire in the current grammar.
615 // The limit_opt non-terminal only occurs at the end of a single production
616 // rule for SELECT statements.  As soon as the rule that create the
617 // limit_opt non-terminal reduces, the SELECT statement rule will also
618 // reduce.  So there is never a limit_opt non-terminal on the stack
619 // except as a transient.  So there is never anything to destroy.
620 //
621 //%destructor limit_opt {
622 //  sqlite3ExprDelete(pParse->db, $$.pLimit);
623 //  sqlite3ExprDelete(pParse->db, $$.pOffset);
624 //}
625 limit_opt(A) ::= .                    {A.pLimit = 0; A.pOffset = 0;}
626 limit_opt(A) ::= LIMIT expr(X).       {A.pLimit = X.pExpr; A.pOffset = 0;}
627 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y).
628                                       {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;}
629 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y).
630                                       {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;}
631 
632 /////////////////////////// The DELETE statement /////////////////////////////
633 //
634 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
635 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W)
636         orderby_opt(O) limit_opt(L). {
637   sqlite3SrcListIndexedBy(pParse, X, &I);
638   W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE");
639   sqlite3DeleteFrom(pParse,X,W);
640 }
641 %endif
642 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
643 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W). {
644   sqlite3SrcListIndexedBy(pParse, X, &I);
645   sqlite3DeleteFrom(pParse,X,W);
646 }
647 %endif
648 
649 %type where_opt {Expr*}
650 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);}
651 
652 where_opt(A) ::= .                    {A = 0;}
653 where_opt(A) ::= WHERE expr(X).       {A = X.pExpr;}
654 
655 ////////////////////////// The UPDATE command ////////////////////////////////
656 //
657 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
658 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W) orderby_opt(O) limit_opt(L).  {
659   sqlite3SrcListIndexedBy(pParse, X, &I);
660   sqlite3ExprListCheckLength(pParse,Y,"set list");
661   W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE");
662   sqlite3Update(pParse,X,Y,W,R);
663 }
664 %endif
665 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
666 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W).  {
667   sqlite3SrcListIndexedBy(pParse, X, &I);
668   sqlite3ExprListCheckLength(pParse,Y,"set list");
669   sqlite3Update(pParse,X,Y,W,R);
670 }
671 %endif
672 
673 %type setlist {ExprList*}
674 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}
675 
676 setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). {
677   A = sqlite3ExprListAppend(pParse, Z, Y.pExpr);
678   sqlite3ExprListSetName(pParse, A, &X, 1);
679 }
680 setlist(A) ::= nm(X) EQ expr(Y). {
681   A = sqlite3ExprListAppend(pParse, 0, Y.pExpr);
682   sqlite3ExprListSetName(pParse, A, &X, 1);
683 }
684 
685 ////////////////////////// The INSERT command /////////////////////////////////
686 //
687 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) valuelist(Y).
688             {sqlite3Insert(pParse, X, Y.pList, Y.pSelect, F, R);}
689 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) select(S).
690             {sqlite3Insert(pParse, X, 0, S, F, R);}
691 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) DEFAULT VALUES.
692             {sqlite3Insert(pParse, X, 0, 0, F, R);}
693 
694 %type insert_cmd {u8}
695 insert_cmd(A) ::= INSERT orconf(R).   {A = R;}
696 insert_cmd(A) ::= REPLACE.            {A = OE_Replace;}
697 
698 // A ValueList is either a single VALUES clause or a comma-separated list
699 // of VALUES clauses.  If it is a single VALUES clause then the
700 // ValueList.pList field points to the expression list of that clause.
701 // If it is a list of VALUES clauses, then those clauses are transformed
702 // into a set of SELECT statements without FROM clauses and connected by
703 // UNION ALL and the ValueList.pSelect points to the right-most SELECT in
704 // that compound.
705 %type valuelist {struct ValueList}
706 %destructor valuelist {
707   sqlite3ExprListDelete(pParse->db, $$.pList);
708   sqlite3SelectDelete(pParse->db, $$.pSelect);
709 }
710 valuelist(A) ::= VALUES LP nexprlist(X) RP. {
711   A.pList = X;
712   A.pSelect = 0;
713 }
714 
715 // Since a list of VALUEs is inplemented as a compound SELECT, we have
716 // to disable the value list option if compound SELECTs are disabled.
717 %ifndef SQLITE_OMIT_COMPOUND_SELECT
718 valuelist(A) ::= valuelist(X) COMMA LP exprlist(Y) RP. {
719   Select *pRight = sqlite3SelectNew(pParse, Y, 0, 0, 0, 0, 0, 0, 0, 0);
720   if( X.pList ){
721     X.pSelect = sqlite3SelectNew(pParse, X.pList, 0, 0, 0, 0, 0, 0, 0, 0);
722     X.pList = 0;
723   }
724   A.pList = 0;
725   if( X.pSelect==0 || pRight==0 ){
726     sqlite3SelectDelete(pParse->db, pRight);
727     sqlite3SelectDelete(pParse->db, X.pSelect);
728     A.pSelect = 0;
729   }else{
730     pRight->op = TK_ALL;
731     pRight->pPrior = X.pSelect;
732     pRight->selFlags |= SF_Values;
733     pRight->pPrior->selFlags |= SF_Values;
734     A.pSelect = pRight;
735   }
736 }
737 %endif SQLITE_OMIT_COMPOUND_SELECT
738 
739 %type inscollist_opt {IdList*}
740 %destructor inscollist_opt {sqlite3IdListDelete(pParse->db, $$);}
741 %type inscollist {IdList*}
742 %destructor inscollist {sqlite3IdListDelete(pParse->db, $$);}
743 
744 inscollist_opt(A) ::= .                       {A = 0;}
745 inscollist_opt(A) ::= LP inscollist(X) RP.    {A = X;}
746 inscollist(A) ::= inscollist(X) COMMA nm(Y).
747     {A = sqlite3IdListAppend(pParse->db,X,&Y);}
748 inscollist(A) ::= nm(Y).
749     {A = sqlite3IdListAppend(pParse->db,0,&Y);}
750 
751 /////////////////////////// Expression Processing /////////////////////////////
752 //
753 
754 %type expr {ExprSpan}
755 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);}
756 %type term {ExprSpan}
757 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);}
758 
759 %include {
760   /* This is a utility routine used to set the ExprSpan.zStart and
761   ** ExprSpan.zEnd values of pOut so that the span covers the complete
762   ** range of text beginning with pStart and going to the end of pEnd.
763   */
764   static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){
765     pOut->zStart = pStart->z;
766     pOut->zEnd = &pEnd->z[pEnd->n];
767   }
768 
769   /* Construct a new Expr object from a single identifier.  Use the
770   ** new Expr to populate pOut.  Set the span of pOut to be the identifier
771   ** that created the expression.
772   */
773   static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){
774     pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue);
775     pOut->zStart = pValue->z;
776     pOut->zEnd = &pValue->z[pValue->n];
777   }
778 }
779 
780 expr(A) ::= term(X).             {A = X;}
781 expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);}
782 term(A) ::= NULL(X).             {spanExpr(&A, pParse, @X, &X);}
783 expr(A) ::= id(X).               {spanExpr(&A, pParse, TK_ID, &X);}
784 expr(A) ::= JOIN_KW(X).          {spanExpr(&A, pParse, TK_ID, &X);}
785 expr(A) ::= nm(X) DOT nm(Y). {
786   Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
787   Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y);
788   A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0);
789   spanSet(&A,&X,&Y);
790 }
791 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). {
792   Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
793   Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y);
794   Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z);
795   Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0);
796   A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0);
797   spanSet(&A,&X,&Z);
798 }
799 term(A) ::= INTEGER|FLOAT|BLOB(X).  {spanExpr(&A, pParse, @X, &X);}
800 term(A) ::= STRING(X).              {spanExpr(&A, pParse, @X, &X);}
801 expr(A) ::= REGISTER(X).     {
802   /* When doing a nested parse, one can include terms in an expression
803   ** that look like this:   #1 #2 ...  These terms refer to registers
804   ** in the virtual machine.  #N is the N-th register. */
805   if( pParse->nested==0 ){
806     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X);
807     A.pExpr = 0;
808   }else{
809     A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X);
810     if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable);
811   }
812   spanSet(&A, &X, &X);
813 }
814 expr(A) ::= VARIABLE(X).     {
815   spanExpr(&A, pParse, TK_VARIABLE, &X);
816   sqlite3ExprAssignVarNumber(pParse, A.pExpr);
817   spanSet(&A, &X, &X);
818 }
819 expr(A) ::= expr(E) COLLATE ids(C). {
820   A.pExpr = sqlite3ExprSetCollByToken(pParse, E.pExpr, &C);
821   A.zStart = E.zStart;
822   A.zEnd = &C.z[C.n];
823 }
824 %ifndef SQLITE_OMIT_CAST
825 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). {
826   A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T);
827   spanSet(&A,&X,&Y);
828 }
829 %endif  SQLITE_OMIT_CAST
830 expr(A) ::= ID(X) LP distinct(D) exprlist(Y) RP(E). {
831   if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
832     sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X);
833   }
834   A.pExpr = sqlite3ExprFunction(pParse, Y, &X);
835   spanSet(&A,&X,&E);
836   if( D && A.pExpr ){
837     A.pExpr->flags |= EP_Distinct;
838   }
839 }
840 expr(A) ::= ID(X) LP STAR RP(E). {
841   A.pExpr = sqlite3ExprFunction(pParse, 0, &X);
842   spanSet(&A,&X,&E);
843 }
844 term(A) ::= CTIME_KW(OP). {
845   /* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are
846   ** treated as functions that return constants */
847   A.pExpr = sqlite3ExprFunction(pParse, 0,&OP);
848   if( A.pExpr ){
849     A.pExpr->op = TK_CONST_FUNC;
850   }
851   spanSet(&A, &OP, &OP);
852 }
853 
854 %include {
855   /* This routine constructs a binary expression node out of two ExprSpan
856   ** objects and uses the result to populate a new ExprSpan object.
857   */
858   static void spanBinaryExpr(
859     ExprSpan *pOut,     /* Write the result here */
860     Parse *pParse,      /* The parsing context.  Errors accumulate here */
861     int op,             /* The binary operation */
862     ExprSpan *pLeft,    /* The left operand */
863     ExprSpan *pRight    /* The right operand */
864   ){
865     pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0);
866     pOut->zStart = pLeft->zStart;
867     pOut->zEnd = pRight->zEnd;
868   }
869 }
870 
871 expr(A) ::= expr(X) AND(OP) expr(Y).    {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
872 expr(A) ::= expr(X) OR(OP) expr(Y).     {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
873 expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y).
874                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
875 expr(A) ::= expr(X) EQ|NE(OP) expr(Y).  {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
876 expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y).
877                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
878 expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y).
879                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
880 expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y).
881                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
882 expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
883 %type likeop {struct LikeOp}
884 likeop(A) ::= LIKE_KW(X).     {A.eOperator = X; A.not = 0;}
885 likeop(A) ::= NOT LIKE_KW(X). {A.eOperator = X; A.not = 1;}
886 likeop(A) ::= MATCH(X).       {A.eOperator = X; A.not = 0;}
887 likeop(A) ::= NOT MATCH(X).   {A.eOperator = X; A.not = 1;}
888 expr(A) ::= expr(X) likeop(OP) expr(Y).  [LIKE_KW]  {
889   ExprList *pList;
890   pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
891   pList = sqlite3ExprListAppend(pParse,pList, X.pExpr);
892   A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator);
893   if( OP.not ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
894   A.zStart = X.zStart;
895   A.zEnd = Y.zEnd;
896   if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
897 }
898 expr(A) ::= expr(X) likeop(OP) expr(Y) ESCAPE expr(E).  [LIKE_KW]  {
899   ExprList *pList;
900   pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
901   pList = sqlite3ExprListAppend(pParse,pList, X.pExpr);
902   pList = sqlite3ExprListAppend(pParse,pList, E.pExpr);
903   A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator);
904   if( OP.not ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
905   A.zStart = X.zStart;
906   A.zEnd = E.zEnd;
907   if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
908 }
909 
910 %include {
911   /* Construct an expression node for a unary postfix operator
912   */
913   static void spanUnaryPostfix(
914     ExprSpan *pOut,        /* Write the new expression node here */
915     Parse *pParse,         /* Parsing context to record errors */
916     int op,                /* The operator */
917     ExprSpan *pOperand,    /* The operand */
918     Token *pPostOp         /* The operand token for setting the span */
919   ){
920     pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
921     pOut->zStart = pOperand->zStart;
922     pOut->zEnd = &pPostOp->z[pPostOp->n];
923   }
924 }
925 
926 expr(A) ::= expr(X) ISNULL|NOTNULL(E).   {spanUnaryPostfix(&A,pParse,@E,&X,&E);}
927 expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);}
928 
929 %include {
930   /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
931   ** unary TK_ISNULL or TK_NOTNULL expression. */
932   static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
933     sqlite3 *db = pParse->db;
934     if( db->mallocFailed==0 && pY->op==TK_NULL ){
935       pA->op = (u8)op;
936       sqlite3ExprDelete(db, pA->pRight);
937       pA->pRight = 0;
938     }
939   }
940 }
941 
942 //    expr1 IS expr2
943 //    expr1 IS NOT expr2
944 //
945 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL.  If expr2
946 // is any other expression, code as TK_IS or TK_ISNOT.
947 //
948 expr(A) ::= expr(X) IS expr(Y).     {
949   spanBinaryExpr(&A,pParse,TK_IS,&X,&Y);
950   binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL);
951 }
952 expr(A) ::= expr(X) IS NOT expr(Y). {
953   spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y);
954   binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL);
955 }
956 
957 %include {
958   /* Construct an expression node for a unary prefix operator
959   */
960   static void spanUnaryPrefix(
961     ExprSpan *pOut,        /* Write the new expression node here */
962     Parse *pParse,         /* Parsing context to record errors */
963     int op,                /* The operator */
964     ExprSpan *pOperand,    /* The operand */
965     Token *pPreOp         /* The operand token for setting the span */
966   ){
967     pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
968     pOut->zStart = pPreOp->z;
969     pOut->zEnd = pOperand->zEnd;
970   }
971 }
972 
973 
974 
975 expr(A) ::= NOT(B) expr(X).    {spanUnaryPrefix(&A,pParse,@B,&X,&B);}
976 expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);}
977 expr(A) ::= MINUS(B) expr(X). [BITNOT]
978                                {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);}
979 expr(A) ::= PLUS(B) expr(X). [BITNOT]
980                                {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);}
981 
982 %type between_op {int}
983 between_op(A) ::= BETWEEN.     {A = 0;}
984 between_op(A) ::= NOT BETWEEN. {A = 1;}
985 expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] {
986   ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr);
987   pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr);
988   A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0);
989   if( A.pExpr ){
990     A.pExpr->x.pList = pList;
991   }else{
992     sqlite3ExprListDelete(pParse->db, pList);
993   }
994   if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
995   A.zStart = W.zStart;
996   A.zEnd = Y.zEnd;
997 }
998 %ifndef SQLITE_OMIT_SUBQUERY
999   %type in_op {int}
1000   in_op(A) ::= IN.      {A = 0;}
1001   in_op(A) ::= NOT IN.  {A = 1;}
1002   expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] {
1003     if( Y==0 ){
1004       /* Expressions of the form
1005       **
1006       **      expr1 IN ()
1007       **      expr1 NOT IN ()
1008       **
1009       ** simplify to constants 0 (false) and 1 (true), respectively,
1010       ** regardless of the value of expr1.
1011       */
1012       A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]);
1013       sqlite3ExprDelete(pParse->db, X.pExpr);
1014     }else{
1015       A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
1016       if( A.pExpr ){
1017         A.pExpr->x.pList = Y;
1018         sqlite3ExprSetHeight(pParse, A.pExpr);
1019       }else{
1020         sqlite3ExprListDelete(pParse->db, Y);
1021       }
1022       if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
1023     }
1024     A.zStart = X.zStart;
1025     A.zEnd = &E.z[E.n];
1026   }
1027   expr(A) ::= LP(B) select(X) RP(E). {
1028     A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
1029     if( A.pExpr ){
1030       A.pExpr->x.pSelect = X;
1031       ExprSetProperty(A.pExpr, EP_xIsSelect);
1032       sqlite3ExprSetHeight(pParse, A.pExpr);
1033     }else{
1034       sqlite3SelectDelete(pParse->db, X);
1035     }
1036     A.zStart = B.z;
1037     A.zEnd = &E.z[E.n];
1038   }
1039   expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E).  [IN] {
1040     A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
1041     if( A.pExpr ){
1042       A.pExpr->x.pSelect = Y;
1043       ExprSetProperty(A.pExpr, EP_xIsSelect);
1044       sqlite3ExprSetHeight(pParse, A.pExpr);
1045     }else{
1046       sqlite3SelectDelete(pParse->db, Y);
1047     }
1048     if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
1049     A.zStart = X.zStart;
1050     A.zEnd = &E.z[E.n];
1051   }
1052   expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] {
1053     SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z);
1054     A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
1055     if( A.pExpr ){
1056       A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
1057       ExprSetProperty(A.pExpr, EP_xIsSelect);
1058       sqlite3ExprSetHeight(pParse, A.pExpr);
1059     }else{
1060       sqlite3SrcListDelete(pParse->db, pSrc);
1061     }
1062     if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
1063     A.zStart = X.zStart;
1064     A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n];
1065   }
1066   expr(A) ::= EXISTS(B) LP select(Y) RP(E). {
1067     Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
1068     if( p ){
1069       p->x.pSelect = Y;
1070       ExprSetProperty(p, EP_xIsSelect);
1071       sqlite3ExprSetHeight(pParse, p);
1072     }else{
1073       sqlite3SelectDelete(pParse->db, Y);
1074     }
1075     A.zStart = B.z;
1076     A.zEnd = &E.z[E.n];
1077   }
1078 %endif SQLITE_OMIT_SUBQUERY
1079 
1080 /* CASE expressions */
1081 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). {
1082   A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, Z, 0);
1083   if( A.pExpr ){
1084     A.pExpr->x.pList = Y;
1085     sqlite3ExprSetHeight(pParse, A.pExpr);
1086   }else{
1087     sqlite3ExprListDelete(pParse->db, Y);
1088   }
1089   A.zStart = C.z;
1090   A.zEnd = &E.z[E.n];
1091 }
1092 %type case_exprlist {ExprList*}
1093 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1094 case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). {
1095   A = sqlite3ExprListAppend(pParse,X, Y.pExpr);
1096   A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
1097 }
1098 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
1099   A = sqlite3ExprListAppend(pParse,0, Y.pExpr);
1100   A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
1101 }
1102 %type case_else {Expr*}
1103 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);}
1104 case_else(A) ::=  ELSE expr(X).         {A = X.pExpr;}
1105 case_else(A) ::=  .                     {A = 0;}
1106 %type case_operand {Expr*}
1107 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);}
1108 case_operand(A) ::= expr(X).            {A = X.pExpr;}
1109 case_operand(A) ::= .                   {A = 0;}
1110 
1111 %type exprlist {ExprList*}
1112 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1113 %type nexprlist {ExprList*}
1114 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);}
1115 
1116 exprlist(A) ::= nexprlist(X).                {A = X;}
1117 exprlist(A) ::= .                            {A = 0;}
1118 nexprlist(A) ::= nexprlist(X) COMMA expr(Y).
1119     {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);}
1120 nexprlist(A) ::= expr(Y).
1121     {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);}
1122 
1123 
1124 ///////////////////////////// The CREATE INDEX command ///////////////////////
1125 //
1126 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D)
1127         ON nm(Y) LP idxlist(Z) RP(E). {
1128   sqlite3CreateIndex(pParse, &X, &D,
1129                      sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U,
1130                       &S, &E, SQLITE_SO_ASC, NE);
1131 }
1132 
1133 %type uniqueflag {int}
1134 uniqueflag(A) ::= UNIQUE.  {A = OE_Abort;}
1135 uniqueflag(A) ::= .        {A = OE_None;}
1136 
1137 %type idxlist {ExprList*}
1138 %destructor idxlist {sqlite3ExprListDelete(pParse->db, $$);}
1139 %type idxlist_opt {ExprList*}
1140 %destructor idxlist_opt {sqlite3ExprListDelete(pParse->db, $$);}
1141 
1142 idxlist_opt(A) ::= .                         {A = 0;}
1143 idxlist_opt(A) ::= LP idxlist(X) RP.         {A = X;}
1144 idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z).  {
1145   Expr *p = 0;
1146   if( C.n>0 ){
1147     p = sqlite3Expr(pParse->db, TK_COLUMN, 0);
1148     sqlite3ExprSetCollByToken(pParse, p, &C);
1149   }
1150   A = sqlite3ExprListAppend(pParse,X, p);
1151   sqlite3ExprListSetName(pParse,A,&Y,1);
1152   sqlite3ExprListCheckLength(pParse, A, "index");
1153   if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
1154 }
1155 idxlist(A) ::= nm(Y) collate(C) sortorder(Z). {
1156   Expr *p = 0;
1157   if( C.n>0 ){
1158     p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
1159     sqlite3ExprSetCollByToken(pParse, p, &C);
1160   }
1161   A = sqlite3ExprListAppend(pParse,0, p);
1162   sqlite3ExprListSetName(pParse, A, &Y, 1);
1163   sqlite3ExprListCheckLength(pParse, A, "index");
1164   if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
1165 }
1166 
1167 %type collate {Token}
1168 collate(C) ::= .                 {C.z = 0; C.n = 0;}
1169 collate(C) ::= COLLATE ids(X).   {C = X;}
1170 
1171 
1172 ///////////////////////////// The DROP INDEX command /////////////////////////
1173 //
1174 cmd ::= DROP INDEX ifexists(E) fullname(X).   {sqlite3DropIndex(pParse, X, E);}
1175 
1176 ///////////////////////////// The VACUUM command /////////////////////////////
1177 //
1178 %ifndef SQLITE_OMIT_VACUUM
1179 %ifndef SQLITE_OMIT_ATTACH
1180 cmd ::= VACUUM.                {sqlite3Vacuum(pParse);}
1181 cmd ::= VACUUM nm.             {sqlite3Vacuum(pParse);}
1182 %endif  SQLITE_OMIT_ATTACH
1183 %endif  SQLITE_OMIT_VACUUM
1184 
1185 ///////////////////////////// The PRAGMA command /////////////////////////////
1186 //
1187 %ifndef SQLITE_OMIT_PRAGMA
1188 cmd ::= PRAGMA nm(X) dbnm(Z).                {sqlite3Pragma(pParse,&X,&Z,0,0);}
1189 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y).    {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1190 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1191 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y).
1192                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1193 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP.
1194                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1195 
1196 nmnum(A) ::= plus_num(X).             {A = X;}
1197 nmnum(A) ::= nm(X).                   {A = X;}
1198 nmnum(A) ::= ON(X).                   {A = X;}
1199 nmnum(A) ::= DELETE(X).               {A = X;}
1200 nmnum(A) ::= DEFAULT(X).              {A = X;}
1201 %endif SQLITE_OMIT_PRAGMA
1202 plus_num(A) ::= PLUS number(X).       {A = X;}
1203 plus_num(A) ::= number(X).            {A = X;}
1204 minus_num(A) ::= MINUS number(X).     {A = X;}
1205 number(A) ::= INTEGER|FLOAT(X).       {A = X;}
1206 
1207 //////////////////////////// The CREATE TRIGGER command /////////////////////
1208 
1209 %ifndef SQLITE_OMIT_TRIGGER
1210 
1211 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). {
1212   Token all;
1213   all.z = A.z;
1214   all.n = (int)(Z.z - A.z) + Z.n;
1215   sqlite3FinishTrigger(pParse, S, &all);
1216 }
1217 
1218 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z)
1219                     trigger_time(C) trigger_event(D)
1220                     ON fullname(E) foreach_clause when_clause(G). {
1221   sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR);
1222   A = (Z.n==0?B:Z);
1223 }
1224 
1225 %type trigger_time {int}
1226 trigger_time(A) ::= BEFORE.      { A = TK_BEFORE; }
1227 trigger_time(A) ::= AFTER.       { A = TK_AFTER;  }
1228 trigger_time(A) ::= INSTEAD OF.  { A = TK_INSTEAD;}
1229 trigger_time(A) ::= .            { A = TK_BEFORE; }
1230 
1231 %type trigger_event {struct TrigEvent}
1232 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);}
1233 trigger_event(A) ::= DELETE|INSERT(OP).       {A.a = @OP; A.b = 0;}
1234 trigger_event(A) ::= UPDATE(OP).              {A.a = @OP; A.b = 0;}
1235 trigger_event(A) ::= UPDATE OF inscollist(X). {A.a = TK_UPDATE; A.b = X;}
1236 
1237 foreach_clause ::= .
1238 foreach_clause ::= FOR EACH ROW.
1239 
1240 %type when_clause {Expr*}
1241 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);}
1242 when_clause(A) ::= .             { A = 0; }
1243 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; }
1244 
1245 %type trigger_cmd_list {TriggerStep*}
1246 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);}
1247 trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. {
1248   assert( Y!=0 );
1249   Y->pLast->pNext = X;
1250   Y->pLast = X;
1251   A = Y;
1252 }
1253 trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. {
1254   assert( X!=0 );
1255   X->pLast = X;
1256   A = X;
1257 }
1258 
1259 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements
1260 // within a trigger.  The table to INSERT, UPDATE, or DELETE is always in
1261 // the same database as the table that the trigger fires on.
1262 //
1263 %type trnm {Token}
1264 trnm(A) ::= nm(X).   {A = X;}
1265 trnm(A) ::= nm DOT nm(X). {
1266   A = X;
1267   sqlite3ErrorMsg(pParse,
1268         "qualified table names are not allowed on INSERT, UPDATE, and DELETE "
1269         "statements within triggers");
1270 }
1271 
1272 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE
1273 // statements within triggers.  We make a specific error message for this
1274 // since it is an exception to the default grammar rules.
1275 //
1276 tridxby ::= .
1277 tridxby ::= INDEXED BY nm. {
1278   sqlite3ErrorMsg(pParse,
1279         "the INDEXED BY clause is not allowed on UPDATE or DELETE statements "
1280         "within triggers");
1281 }
1282 tridxby ::= NOT INDEXED. {
1283   sqlite3ErrorMsg(pParse,
1284         "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements "
1285         "within triggers");
1286 }
1287 
1288 
1289 
1290 %type trigger_cmd {TriggerStep*}
1291 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);}
1292 // UPDATE
1293 trigger_cmd(A) ::=
1294    UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z).
1295    { A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); }
1296 
1297 // INSERT
1298 trigger_cmd(A) ::=
1299    insert_cmd(R) INTO trnm(X) inscollist_opt(F) valuelist(Y).
1300    {A = sqlite3TriggerInsertStep(pParse->db, &X, F, Y.pList, Y.pSelect, R);}
1301 
1302 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) inscollist_opt(F) select(S).
1303                {A = sqlite3TriggerInsertStep(pParse->db, &X, F, 0, S, R);}
1304 
1305 // DELETE
1306 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y).
1307                {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);}
1308 
1309 // SELECT
1310 trigger_cmd(A) ::= select(X).  {A = sqlite3TriggerSelectStep(pParse->db, X); }
1311 
1312 // The special RAISE expression that may occur in trigger programs
1313 expr(A) ::= RAISE(X) LP IGNORE RP(Y).  {
1314   A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0);
1315   if( A.pExpr ){
1316     A.pExpr->affinity = OE_Ignore;
1317   }
1318   A.zStart = X.z;
1319   A.zEnd = &Y.z[Y.n];
1320 }
1321 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y).  {
1322   A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z);
1323   if( A.pExpr ) {
1324     A.pExpr->affinity = (char)T;
1325   }
1326   A.zStart = X.z;
1327   A.zEnd = &Y.z[Y.n];
1328 }
1329 %endif  !SQLITE_OMIT_TRIGGER
1330 
1331 %type raisetype {int}
1332 raisetype(A) ::= ROLLBACK.  {A = OE_Rollback;}
1333 raisetype(A) ::= ABORT.     {A = OE_Abort;}
1334 raisetype(A) ::= FAIL.      {A = OE_Fail;}
1335 
1336 
1337 ////////////////////////  DROP TRIGGER statement //////////////////////////////
1338 %ifndef SQLITE_OMIT_TRIGGER
1339 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). {
1340   sqlite3DropTrigger(pParse,X,NOERR);
1341 }
1342 %endif  !SQLITE_OMIT_TRIGGER
1343 
1344 //////////////////////// ATTACH DATABASE file AS name /////////////////////////
1345 %ifndef SQLITE_OMIT_ATTACH
1346 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). {
1347   sqlite3Attach(pParse, F.pExpr, D.pExpr, K);
1348 }
1349 cmd ::= DETACH database_kw_opt expr(D). {
1350   sqlite3Detach(pParse, D.pExpr);
1351 }
1352 
1353 %type key_opt {Expr*}
1354 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);}
1355 key_opt(A) ::= .                     { A = 0; }
1356 key_opt(A) ::= KEY expr(X).          { A = X.pExpr; }
1357 
1358 database_kw_opt ::= DATABASE.
1359 database_kw_opt ::= .
1360 %endif SQLITE_OMIT_ATTACH
1361 
1362 ////////////////////////// REINDEX collation //////////////////////////////////
1363 %ifndef SQLITE_OMIT_REINDEX
1364 cmd ::= REINDEX.                {sqlite3Reindex(pParse, 0, 0);}
1365 cmd ::= REINDEX nm(X) dbnm(Y).  {sqlite3Reindex(pParse, &X, &Y);}
1366 %endif  SQLITE_OMIT_REINDEX
1367 
1368 /////////////////////////////////// ANALYZE ///////////////////////////////////
1369 %ifndef SQLITE_OMIT_ANALYZE
1370 cmd ::= ANALYZE.                {sqlite3Analyze(pParse, 0, 0);}
1371 cmd ::= ANALYZE nm(X) dbnm(Y).  {sqlite3Analyze(pParse, &X, &Y);}
1372 %endif
1373 
1374 //////////////////////// ALTER TABLE table ... ////////////////////////////////
1375 %ifndef SQLITE_OMIT_ALTERTABLE
1376 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). {
1377   sqlite3AlterRenameTable(pParse,X,&Z);
1378 }
1379 cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). {
1380   sqlite3AlterFinishAddColumn(pParse, &Y);
1381 }
1382 add_column_fullname ::= fullname(X). {
1383   pParse->db->lookaside.bEnabled = 0;
1384   sqlite3AlterBeginAddColumn(pParse, X);
1385 }
1386 kwcolumn_opt ::= .
1387 kwcolumn_opt ::= COLUMNKW.
1388 %endif  SQLITE_OMIT_ALTERTABLE
1389 
1390 //////////////////////// CREATE VIRTUAL TABLE ... /////////////////////////////
1391 %ifndef SQLITE_OMIT_VIRTUALTABLE
1392 cmd ::= create_vtab.                       {sqlite3VtabFinishParse(pParse,0);}
1393 cmd ::= create_vtab LP vtabarglist RP(X).  {sqlite3VtabFinishParse(pParse,&X);}
1394 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E)
1395                 nm(X) dbnm(Y) USING nm(Z). {
1396     sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E);
1397 }
1398 vtabarglist ::= vtabarg.
1399 vtabarglist ::= vtabarglist COMMA vtabarg.
1400 vtabarg ::= .                       {sqlite3VtabArgInit(pParse);}
1401 vtabarg ::= vtabarg vtabargtoken.
1402 vtabargtoken ::= ANY(X).            {sqlite3VtabArgExtend(pParse,&X);}
1403 vtabargtoken ::= lp anylist RP(X).  {sqlite3VtabArgExtend(pParse,&X);}
1404 lp ::= LP(X).                       {sqlite3VtabArgExtend(pParse,&X);}
1405 anylist ::= .
1406 anylist ::= anylist LP anylist RP.
1407 anylist ::= anylist ANY.
1408 %endif  SQLITE_OMIT_VIRTUALTABLE
1409