xref: /sqlite-3.40.0/src/parse.y (revision 1e2896ec)
1 %include {
2 /*
3 ** 2001-09-15
4 **
5 ** The author disclaims copyright to this source code.  In place of
6 ** a legal notice, here is a blessing:
7 **
8 **    May you do good and not evil.
9 **    May you find forgiveness for yourself and forgive others.
10 **    May you share freely, never taking more than you give.
11 **
12 *************************************************************************
13 ** This file contains SQLite's SQL parser.
14 **
15 ** The canonical source code to this file ("parse.y") is a Lemon grammar
16 ** file that specifies the input grammar and actions to take while parsing.
17 ** That input file is processed by Lemon to generate a C-language
18 ** implementation of a parser for the given grammer.  You might be reading
19 ** this comment as part of the translated C-code.  Edits should be made
20 ** to the original parse.y sources.
21 */
22 }
23 
24 // All token codes are small integers with #defines that begin with "TK_"
25 %token_prefix TK_
26 
27 // The type of the data attached to each token is Token.  This is also the
28 // default type for non-terminals.
29 //
30 %token_type {Token}
31 %default_type {Token}
32 
33 // An extra argument to the constructor for the parser, which is available
34 // to all actions.
35 %extra_context {Parse *pParse}
36 
37 // This code runs whenever there is a syntax error
38 //
39 %syntax_error {
40   UNUSED_PARAMETER(yymajor);  /* Silence some compiler warnings */
41   if( TOKEN.z[0] ){
42     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
43   }else{
44     sqlite3ErrorMsg(pParse, "incomplete input");
45   }
46 }
47 %stack_overflow {
48   sqlite3ErrorMsg(pParse, "parser stack overflow");
49 }
50 
51 // The name of the generated procedure that implements the parser
52 // is as follows:
53 %name sqlite3Parser
54 
55 // The following text is included near the beginning of the C source
56 // code file that implements the parser.
57 //
58 %include {
59 #include "sqliteInt.h"
60 
61 /*
62 ** Disable all error recovery processing in the parser push-down
63 ** automaton.
64 */
65 #define YYNOERRORRECOVERY 1
66 
67 /*
68 ** Make yytestcase() the same as testcase()
69 */
70 #define yytestcase(X) testcase(X)
71 
72 /*
73 ** Indicate that sqlite3ParserFree() will never be called with a null
74 ** pointer.
75 */
76 #define YYPARSEFREENEVERNULL 1
77 
78 /*
79 ** In the amalgamation, the parse.c file generated by lemon and the
80 ** tokenize.c file are concatenated.  In that case, sqlite3RunParser()
81 ** has access to the the size of the yyParser object and so the parser
82 ** engine can be allocated from stack.  In that case, only the
83 ** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked
84 ** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be
85 ** omitted.
86 */
87 #ifdef SQLITE_AMALGAMATION
88 # define sqlite3Parser_ENGINEALWAYSONSTACK 1
89 #endif
90 
91 /*
92 ** Alternative datatype for the argument to the malloc() routine passed
93 ** into sqlite3ParserAlloc().  The default is size_t.
94 */
95 #define YYMALLOCARGTYPE  u64
96 
97 /*
98 ** An instance of the following structure describes the event of a
99 ** TRIGGER.  "a" is the event type, one of TK_UPDATE, TK_INSERT,
100 ** TK_DELETE, or TK_INSTEAD.  If the event is of the form
101 **
102 **      UPDATE ON (a,b,c)
103 **
104 ** Then the "b" IdList records the list "a,b,c".
105 */
106 struct TrigEvent { int a; IdList * b; };
107 
108 struct FrameBound     { int eType; Expr *pExpr; };
109 
110 /*
111 ** Disable lookaside memory allocation for objects that might be
112 ** shared across database connections.
113 */
114 static void disableLookaside(Parse *pParse){
115   sqlite3 *db = pParse->db;
116   pParse->disableLookaside++;
117   DisableLookaside;
118 }
119 
120 #if !defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) \
121  && defined(SQLITE_UDL_CAPABLE_PARSER)
122 /*
123 ** Issue an error message if an ORDER BY or LIMIT clause occurs on an
124 ** UPDATE or DELETE statement.
125 */
126 static void updateDeleteLimitError(
127   Parse *pParse,
128   ExprList *pOrderBy,
129   Expr *pLimit
130 ){
131   if( pOrderBy ){
132     sqlite3ErrorMsg(pParse, "syntax error near \"ORDER BY\"");
133   }else{
134     sqlite3ErrorMsg(pParse, "syntax error near \"LIMIT\"");
135   }
136   sqlite3ExprListDelete(pParse->db, pOrderBy);
137   sqlite3ExprDelete(pParse->db, pLimit);
138 }
139 #endif /* SQLITE_ENABLE_UPDATE_DELETE_LIMIT */
140 
141 } // end %include
142 
143 // Input is a single SQL command
144 input ::= cmdlist.
145 cmdlist ::= cmdlist ecmd.
146 cmdlist ::= ecmd.
147 ecmd ::= SEMI.
148 ecmd ::= cmdx SEMI.
149 %ifndef SQLITE_OMIT_EXPLAIN
150 ecmd ::= explain cmdx SEMI.       {NEVER-REDUCE}
151 explain ::= EXPLAIN.              { pParse->explain = 1; }
152 explain ::= EXPLAIN QUERY PLAN.   { pParse->explain = 2; }
153 %endif  SQLITE_OMIT_EXPLAIN
154 cmdx ::= cmd.           { sqlite3FinishCoding(pParse); }
155 
156 ///////////////////// Begin and end transactions. ////////////////////////////
157 //
158 
159 cmd ::= BEGIN transtype(Y) trans_opt.  {sqlite3BeginTransaction(pParse, Y);}
160 trans_opt ::= .
161 trans_opt ::= TRANSACTION.
162 trans_opt ::= TRANSACTION nm.
163 %type transtype {int}
164 transtype(A) ::= .             {A = TK_DEFERRED;}
165 transtype(A) ::= DEFERRED(X).  {A = @X; /*A-overwrites-X*/}
166 transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/}
167 transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/}
168 cmd ::= COMMIT|END(X) trans_opt.   {sqlite3EndTransaction(pParse,@X);}
169 cmd ::= ROLLBACK(X) trans_opt.     {sqlite3EndTransaction(pParse,@X);}
170 
171 savepoint_opt ::= SAVEPOINT.
172 savepoint_opt ::= .
173 cmd ::= SAVEPOINT nm(X). {
174   sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X);
175 }
176 cmd ::= RELEASE savepoint_opt nm(X). {
177   sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X);
178 }
179 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). {
180   sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X);
181 }
182 
183 ///////////////////// The CREATE TABLE statement ////////////////////////////
184 //
185 cmd ::= create_table create_table_args.
186 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). {
187    sqlite3StartTable(pParse,&Y,&Z,T,0,0,E);
188 }
189 createkw(A) ::= CREATE(A).  {disableLookaside(pParse);}
190 
191 %type ifnotexists {int}
192 ifnotexists(A) ::= .              {A = 0;}
193 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;}
194 %type temp {int}
195 %ifndef SQLITE_OMIT_TEMPDB
196 temp(A) ::= TEMP.  {A = 1;}
197 %endif  SQLITE_OMIT_TEMPDB
198 temp(A) ::= .      {A = 0;}
199 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). {
200   sqlite3EndTable(pParse,&X,&E,F,0);
201 }
202 create_table_args ::= AS select(S). {
203   sqlite3EndTable(pParse,0,0,0,S);
204   sqlite3SelectDelete(pParse->db, S);
205 }
206 %type table_options {int}
207 table_options(A) ::= .    {A = 0;}
208 table_options(A) ::= WITHOUT nm(X). {
209   if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){
210     A = TF_WithoutRowid | TF_NoVisibleRowid;
211   }else{
212     A = 0;
213     sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z);
214   }
215 }
216 columnlist ::= columnlist COMMA columnname carglist.
217 columnlist ::= columnname carglist.
218 columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,&A,&Y);}
219 
220 // Declare some tokens early in order to influence their values, to
221 // improve performance and reduce the executable size.  The goal here is
222 // to get the "jump" operations in ISNULL through ESCAPE to have numeric
223 // values that are early enough so that all jump operations are clustered
224 // at the beginning.
225 //
226 %token ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST.
227 %token CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL.
228 %token OR AND NOT IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ.
229 %token GT LE LT GE ESCAPE.
230 
231 // The following directive causes tokens ABORT, AFTER, ASC, etc. to
232 // fallback to ID if they will not parse as their original value.
233 // This obviates the need for the "id" nonterminal.
234 //
235 %fallback ID
236   ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW
237   CONFLICT DATABASE DEFERRED DESC DETACH DO
238   EACH END EXCLUSIVE EXPLAIN FAIL FOR
239   IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN
240   QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW ROWS
241   ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT
242   NULLS FIRST LAST
243 %ifdef SQLITE_OMIT_COMPOUND_SELECT
244   EXCEPT INTERSECT UNION
245 %endif SQLITE_OMIT_COMPOUND_SELECT
246 %ifndef SQLITE_OMIT_WINDOWFUNC
247   CURRENT FOLLOWING PARTITION PRECEDING RANGE UNBOUNDED
248   EXCLUDE GROUPS OTHERS TIES
249 %endif SQLITE_OMIT_WINDOWFUNC
250 %ifndef SQLITE_OMIT_GENERATED_COLUMNS
251   GENERATED ALWAYS
252 %endif
253   REINDEX RENAME CTIME_KW IF
254   .
255 %wildcard ANY.
256 
257 // Define operator precedence early so that this is the first occurrence
258 // of the operator tokens in the grammer.  Keeping the operators together
259 // causes them to be assigned integer values that are close together,
260 // which keeps parser tables smaller.
261 //
262 // The token values assigned to these symbols is determined by the order
263 // in which lemon first sees them.  It must be the case that ISNULL/NOTNULL,
264 // NE/EQ, GT/LE, and GE/LT are separated by only a single value.  See
265 // the sqlite3ExprIfFalse() routine for additional information on this
266 // constraint.
267 //
268 %left OR.
269 %left AND.
270 %right NOT.
271 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ.
272 %left GT LE LT GE.
273 %right ESCAPE.
274 %left BITAND BITOR LSHIFT RSHIFT.
275 %left PLUS MINUS.
276 %left STAR SLASH REM.
277 %left CONCAT.
278 %left COLLATE.
279 %right BITNOT.
280 %nonassoc ON.
281 
282 // An IDENTIFIER can be a generic identifier, or one of several
283 // keywords.  Any non-standard keyword can also be an identifier.
284 //
285 %token_class id  ID|INDEXED.
286 
287 
288 // And "ids" is an identifer-or-string.
289 //
290 %token_class ids  ID|STRING.
291 
292 // The name of a column or table can be any of the following:
293 //
294 %type nm {Token}
295 nm(A) ::= id(A).
296 nm(A) ::= STRING(A).
297 nm(A) ::= JOIN_KW(A).
298 
299 // A typetoken is really zero or more tokens that form a type name such
300 // as can be found after the column name in a CREATE TABLE statement.
301 // Multiple tokens are concatenated to form the value of the typetoken.
302 //
303 %type typetoken {Token}
304 typetoken(A) ::= .   {A.n = 0; A.z = 0;}
305 typetoken(A) ::= typename(A).
306 typetoken(A) ::= typename(A) LP signed RP(Y). {
307   A.n = (int)(&Y.z[Y.n] - A.z);
308 }
309 typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). {
310   A.n = (int)(&Y.z[Y.n] - A.z);
311 }
312 %type typename {Token}
313 typename(A) ::= ids(A).
314 typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);}
315 signed ::= plus_num.
316 signed ::= minus_num.
317 
318 // The scanpt non-terminal takes a value which is a pointer to the
319 // input text just past the last token that has been shifted into
320 // the parser.  By surrounding some phrase in the grammar with two
321 // scanpt non-terminals, we can capture the input text for that phrase.
322 // For example:
323 //
324 //      something ::= .... scanpt(A) phrase scanpt(Z).
325 //
326 // The text that is parsed as "phrase" is a string starting at A
327 // and containing (int)(Z-A) characters.  There might be some extra
328 // whitespace on either end of the text, but that can be removed in
329 // post-processing, if needed.
330 //
331 %type scanpt {const char*}
332 scanpt(A) ::= . {
333   assert( yyLookahead!=YYNOCODE );
334   A = yyLookaheadToken.z;
335 }
336 scantok(A) ::= . {
337   assert( yyLookahead!=YYNOCODE );
338   A = yyLookaheadToken;
339 }
340 
341 // "carglist" is a list of additional constraints that come after the
342 // column name and column type in a CREATE TABLE statement.
343 //
344 carglist ::= carglist ccons.
345 carglist ::= .
346 ccons ::= CONSTRAINT nm(X).           {pParse->constraintName = X;}
347 ccons ::= DEFAULT scantok(A) term(X).
348                             {sqlite3AddDefaultValue(pParse,X,A.z,&A.z[A.n]);}
349 ccons ::= DEFAULT LP(A) expr(X) RP(Z).
350                             {sqlite3AddDefaultValue(pParse,X,A.z+1,Z.z);}
351 ccons ::= DEFAULT PLUS(A) scantok(Z) term(X).
352                             {sqlite3AddDefaultValue(pParse,X,A.z,&Z.z[Z.n]);}
353 ccons ::= DEFAULT MINUS(A) scantok(Z) term(X). {
354   Expr *p = sqlite3PExpr(pParse, TK_UMINUS, X, 0);
355   sqlite3AddDefaultValue(pParse,p,A.z,&Z.z[Z.n]);
356 }
357 ccons ::= DEFAULT scantok id(X).       {
358   Expr *p = tokenExpr(pParse, TK_STRING, X);
359   if( p ){
360     sqlite3ExprIdToTrueFalse(p);
361     testcase( p->op==TK_TRUEFALSE && sqlite3ExprTruthValue(p) );
362   }
363     sqlite3AddDefaultValue(pParse,p,X.z,X.z+X.n);
364 }
365 
366 // In addition to the type name, we also care about the primary key and
367 // UNIQUE constraints.
368 //
369 ccons ::= NULL onconf.
370 ccons ::= NOT NULL onconf(R).    {sqlite3AddNotNull(pParse, R);}
371 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I).
372                                  {sqlite3AddPrimaryKey(pParse,0,R,I,Z);}
373 ccons ::= UNIQUE onconf(R).      {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0,
374                                    SQLITE_IDXTYPE_UNIQUE);}
375 ccons ::= CHECK LP(A) expr(X) RP(B).  {sqlite3AddCheckConstraint(pParse,X,A.z,B.z);}
376 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R).
377                                  {sqlite3CreateForeignKey(pParse,0,&T,TA,R);}
378 ccons ::= defer_subclause(D).    {sqlite3DeferForeignKey(pParse,D);}
379 ccons ::= COLLATE ids(C).        {sqlite3AddCollateType(pParse, &C);}
380 ccons ::= GENERATED ALWAYS AS generated.
381 ccons ::= AS generated.
382 generated ::= LP expr(E) RP.          {sqlite3AddGenerated(pParse,E,0);}
383 generated ::= LP expr(E) RP ID(TYPE). {sqlite3AddGenerated(pParse,E,&TYPE);}
384 
385 // The optional AUTOINCREMENT keyword
386 %type autoinc {int}
387 autoinc(X) ::= .          {X = 0;}
388 autoinc(X) ::= AUTOINCR.  {X = 1;}
389 
390 // The next group of rules parses the arguments to a REFERENCES clause
391 // that determine if the referential integrity checking is deferred or
392 // or immediate and which determine what action to take if a ref-integ
393 // check fails.
394 //
395 %type refargs {int}
396 refargs(A) ::= .                  { A = OE_None*0x0101; /* EV: R-19803-45884 */}
397 refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; }
398 %type refarg {struct {int value; int mask;}}
399 refarg(A) ::= MATCH nm.              { A.value = 0;     A.mask = 0x000000; }
400 refarg(A) ::= ON INSERT refact.      { A.value = 0;     A.mask = 0x000000; }
401 refarg(A) ::= ON DELETE refact(X).   { A.value = X;     A.mask = 0x0000ff; }
402 refarg(A) ::= ON UPDATE refact(X).   { A.value = X<<8;  A.mask = 0x00ff00; }
403 %type refact {int}
404 refact(A) ::= SET NULL.              { A = OE_SetNull;  /* EV: R-33326-45252 */}
405 refact(A) ::= SET DEFAULT.           { A = OE_SetDflt;  /* EV: R-33326-45252 */}
406 refact(A) ::= CASCADE.               { A = OE_Cascade;  /* EV: R-33326-45252 */}
407 refact(A) ::= RESTRICT.              { A = OE_Restrict; /* EV: R-33326-45252 */}
408 refact(A) ::= NO ACTION.             { A = OE_None;     /* EV: R-33326-45252 */}
409 %type defer_subclause {int}
410 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt.     {A = 0;}
411 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X).      {A = X;}
412 %type init_deferred_pred_opt {int}
413 init_deferred_pred_opt(A) ::= .                       {A = 0;}
414 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED.     {A = 1;}
415 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE.    {A = 0;}
416 
417 conslist_opt(A) ::= .                         {A.n = 0; A.z = 0;}
418 conslist_opt(A) ::= COMMA(A) conslist.
419 conslist ::= conslist tconscomma tcons.
420 conslist ::= tcons.
421 tconscomma ::= COMMA.            {pParse->constraintName.n = 0;}
422 tconscomma ::= .
423 tcons ::= CONSTRAINT nm(X).      {pParse->constraintName = X;}
424 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R).
425                                  {sqlite3AddPrimaryKey(pParse,X,R,I,0);}
426 tcons ::= UNIQUE LP sortlist(X) RP onconf(R).
427                                  {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0,
428                                        SQLITE_IDXTYPE_UNIQUE);}
429 tcons ::= CHECK LP(A) expr(E) RP(B) onconf.
430                                  {sqlite3AddCheckConstraint(pParse,E,A.z,B.z);}
431 tcons ::= FOREIGN KEY LP eidlist(FA) RP
432           REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). {
433     sqlite3CreateForeignKey(pParse, FA, &T, TA, R);
434     sqlite3DeferForeignKey(pParse, D);
435 }
436 %type defer_subclause_opt {int}
437 defer_subclause_opt(A) ::= .                    {A = 0;}
438 defer_subclause_opt(A) ::= defer_subclause(A).
439 
440 // The following is a non-standard extension that allows us to declare the
441 // default behavior when there is a constraint conflict.
442 //
443 %type onconf {int}
444 %type orconf {int}
445 %type resolvetype {int}
446 onconf(A) ::= .                              {A = OE_Default;}
447 onconf(A) ::= ON CONFLICT resolvetype(X).    {A = X;}
448 orconf(A) ::= .                              {A = OE_Default;}
449 orconf(A) ::= OR resolvetype(X).             {A = X;}
450 resolvetype(A) ::= raisetype(A).
451 resolvetype(A) ::= IGNORE.                   {A = OE_Ignore;}
452 resolvetype(A) ::= REPLACE.                  {A = OE_Replace;}
453 
454 ////////////////////////// The DROP TABLE /////////////////////////////////////
455 //
456 cmd ::= DROP TABLE ifexists(E) fullname(X). {
457   sqlite3DropTable(pParse, X, 0, E);
458 }
459 %type ifexists {int}
460 ifexists(A) ::= IF EXISTS.   {A = 1;}
461 ifexists(A) ::= .            {A = 0;}
462 
463 ///////////////////// The CREATE VIEW statement /////////////////////////////
464 //
465 %ifndef SQLITE_OMIT_VIEW
466 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C)
467           AS select(S). {
468   sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E);
469 }
470 cmd ::= DROP VIEW ifexists(E) fullname(X). {
471   sqlite3DropTable(pParse, X, 1, E);
472 }
473 %endif  SQLITE_OMIT_VIEW
474 
475 //////////////////////// The SELECT statement /////////////////////////////////
476 //
477 cmd ::= select(X).  {
478   SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0, 0};
479   sqlite3Select(pParse, X, &dest);
480   sqlite3SelectDelete(pParse->db, X);
481 }
482 
483 %type select {Select*}
484 %destructor select {sqlite3SelectDelete(pParse->db, $$);}
485 %type selectnowith {Select*}
486 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);}
487 %type oneselect {Select*}
488 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);}
489 
490 %include {
491   /*
492   ** For a compound SELECT statement, make sure p->pPrior->pNext==p for
493   ** all elements in the list.  And make sure list length does not exceed
494   ** SQLITE_LIMIT_COMPOUND_SELECT.
495   */
496   static void parserDoubleLinkSelect(Parse *pParse, Select *p){
497     assert( p!=0 );
498     if( p->pPrior ){
499       Select *pNext = 0, *pLoop;
500       int mxSelect, cnt = 0;
501       for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){
502         pLoop->pNext = pNext;
503         pLoop->selFlags |= SF_Compound;
504       }
505       if( (p->selFlags & SF_MultiValue)==0 &&
506         (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 &&
507         cnt>mxSelect
508       ){
509         sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
510       }
511     }
512   }
513 }
514 
515 %ifndef SQLITE_OMIT_CTE
516 select(A) ::= WITH wqlist(W) selectnowith(X). {
517   Select *p = X;
518   if( p ){
519     p->pWith = W;
520     parserDoubleLinkSelect(pParse, p);
521   }else{
522     sqlite3WithDelete(pParse->db, W);
523   }
524   A = p;
525 }
526 select(A) ::= WITH RECURSIVE wqlist(W) selectnowith(X). {
527   Select *p = X;
528   if( p ){
529     p->pWith = W;
530     parserDoubleLinkSelect(pParse, p);
531   }else{
532     sqlite3WithDelete(pParse->db, W);
533   }
534   A = p;
535 }
536 %endif /* SQLITE_OMIT_CTE */
537 select(A) ::= selectnowith(X). {
538   Select *p = X;
539   if( p ){
540     parserDoubleLinkSelect(pParse, p);
541   }
542   A = p; /*A-overwrites-X*/
543 }
544 
545 selectnowith(A) ::= oneselect(A).
546 %ifndef SQLITE_OMIT_COMPOUND_SELECT
547 selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z).  {
548   Select *pRhs = Z;
549   Select *pLhs = A;
550   if( pRhs && pRhs->pPrior ){
551     SrcList *pFrom;
552     Token x;
553     x.n = 0;
554     parserDoubleLinkSelect(pParse, pRhs);
555     pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0);
556     pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0);
557   }
558   if( pRhs ){
559     pRhs->op = (u8)Y;
560     pRhs->pPrior = pLhs;
561     if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue;
562     pRhs->selFlags &= ~SF_MultiValue;
563     if( Y!=TK_ALL ) pParse->hasCompound = 1;
564   }else{
565     sqlite3SelectDelete(pParse->db, pLhs);
566   }
567   A = pRhs;
568 }
569 %type multiselect_op {int}
570 multiselect_op(A) ::= UNION(OP).             {A = @OP; /*A-overwrites-OP*/}
571 multiselect_op(A) ::= UNION ALL.             {A = TK_ALL;}
572 multiselect_op(A) ::= EXCEPT|INTERSECT(OP).  {A = @OP; /*A-overwrites-OP*/}
573 %endif SQLITE_OMIT_COMPOUND_SELECT
574 
575 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y)
576                  groupby_opt(P) having_opt(Q)
577                  orderby_opt(Z) limit_opt(L). {
578   A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L);
579 }
580 %ifndef SQLITE_OMIT_WINDOWFUNC
581 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y)
582                  groupby_opt(P) having_opt(Q) window_clause(R)
583                  orderby_opt(Z) limit_opt(L). {
584   A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L);
585   if( A ){
586     A->pWinDefn = R;
587   }else{
588     sqlite3WindowListDelete(pParse->db, R);
589   }
590 }
591 %endif
592 
593 
594 oneselect(A) ::= values(A).
595 
596 %type values {Select*}
597 %destructor values {sqlite3SelectDelete(pParse->db, $$);}
598 values(A) ::= VALUES LP nexprlist(X) RP. {
599   A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0);
600 }
601 values(A) ::= values(A) COMMA LP nexprlist(Y) RP. {
602   Select *pRight, *pLeft = A;
603   pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0);
604   if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue;
605   if( pRight ){
606     pRight->op = TK_ALL;
607     pRight->pPrior = pLeft;
608     A = pRight;
609   }else{
610     A = pLeft;
611   }
612 }
613 
614 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is
615 // present and false (0) if it is not.
616 //
617 %type distinct {int}
618 distinct(A) ::= DISTINCT.   {A = SF_Distinct;}
619 distinct(A) ::= ALL.        {A = SF_All;}
620 distinct(A) ::= .           {A = 0;}
621 
622 // selcollist is a list of expressions that are to become the return
623 // values of the SELECT statement.  The "*" in statements like
624 // "SELECT * FROM ..." is encoded as a special expression with an
625 // opcode of TK_ASTERISK.
626 //
627 %type selcollist {ExprList*}
628 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);}
629 %type sclp {ExprList*}
630 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);}
631 sclp(A) ::= selcollist(A) COMMA.
632 sclp(A) ::= .                                {A = 0;}
633 selcollist(A) ::= sclp(A) scanpt(B) expr(X) scanpt(Z) as(Y).     {
634    A = sqlite3ExprListAppend(pParse, A, X);
635    if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1);
636    sqlite3ExprListSetSpan(pParse,A,B,Z);
637 }
638 selcollist(A) ::= sclp(A) scanpt STAR. {
639   Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0);
640   A = sqlite3ExprListAppend(pParse, A, p);
641 }
642 selcollist(A) ::= sclp(A) scanpt nm(X) DOT STAR. {
643   Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0);
644   Expr *pLeft = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
645   Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
646   A = sqlite3ExprListAppend(pParse,A, pDot);
647 }
648 
649 // An option "AS <id>" phrase that can follow one of the expressions that
650 // define the result set, or one of the tables in the FROM clause.
651 //
652 %type as {Token}
653 as(X) ::= AS nm(Y).    {X = Y;}
654 as(X) ::= ids(X).
655 as(X) ::= .            {X.n = 0; X.z = 0;}
656 
657 
658 %type seltablist {SrcList*}
659 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);}
660 %type stl_prefix {SrcList*}
661 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);}
662 %type from {SrcList*}
663 %destructor from {sqlite3SrcListDelete(pParse->db, $$);}
664 
665 // A complete FROM clause.
666 //
667 from(A) ::= .                {A = 0;}
668 from(A) ::= FROM seltablist(X). {
669   A = X;
670   sqlite3SrcListShiftJoinType(A);
671 }
672 
673 // "seltablist" is a "Select Table List" - the content of the FROM clause
674 // in a SELECT statement.  "stl_prefix" is a prefix of this list.
675 //
676 stl_prefix(A) ::= seltablist(A) joinop(Y).    {
677    if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y;
678 }
679 stl_prefix(A) ::= .                           {A = 0;}
680 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_opt(I)
681                   on_opt(N) using_opt(U). {
682   A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U);
683   sqlite3SrcListIndexedBy(pParse, A, &I);
684 }
685 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z)
686                   on_opt(N) using_opt(U). {
687   A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U);
688   sqlite3SrcListFuncArgs(pParse, A, E);
689 }
690 %ifndef SQLITE_OMIT_SUBQUERY
691   seltablist(A) ::= stl_prefix(A) LP select(S) RP
692                     as(Z) on_opt(N) using_opt(U). {
693     A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,N,U);
694   }
695   seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP
696                     as(Z) on_opt(N) using_opt(U). {
697     if( A==0 && Z.n==0 && N==0 && U==0 ){
698       A = F;
699     }else if( F->nSrc==1 ){
700       A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,N,U);
701       if( A ){
702         struct SrcList_item *pNew = &A->a[A->nSrc-1];
703         struct SrcList_item *pOld = F->a;
704         pNew->zName = pOld->zName;
705         pNew->zDatabase = pOld->zDatabase;
706         pNew->pSelect = pOld->pSelect;
707         if( pOld->fg.isTabFunc ){
708           pNew->u1.pFuncArg = pOld->u1.pFuncArg;
709           pOld->u1.pFuncArg = 0;
710           pOld->fg.isTabFunc = 0;
711           pNew->fg.isTabFunc = 1;
712         }
713         pOld->zName = pOld->zDatabase = 0;
714         pOld->pSelect = 0;
715       }
716       sqlite3SrcListDelete(pParse->db, F);
717     }else{
718       Select *pSubquery;
719       sqlite3SrcListShiftJoinType(F);
720       pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0);
721       A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,N,U);
722     }
723   }
724 %endif  SQLITE_OMIT_SUBQUERY
725 
726 %type dbnm {Token}
727 dbnm(A) ::= .          {A.z=0; A.n=0;}
728 dbnm(A) ::= DOT nm(X). {A = X;}
729 
730 %type fullname {SrcList*}
731 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);}
732 fullname(A) ::= nm(X).  {
733   A = sqlite3SrcListAppend(pParse,0,&X,0);
734   if( IN_RENAME_OBJECT && A ) sqlite3RenameTokenMap(pParse, A->a[0].zName, &X);
735 }
736 fullname(A) ::= nm(X) DOT nm(Y). {
737   A = sqlite3SrcListAppend(pParse,0,&X,&Y);
738   if( IN_RENAME_OBJECT && A ) sqlite3RenameTokenMap(pParse, A->a[0].zName, &Y);
739 }
740 
741 %type xfullname {SrcList*}
742 %destructor xfullname {sqlite3SrcListDelete(pParse->db, $$);}
743 xfullname(A) ::= nm(X).
744    {A = sqlite3SrcListAppend(pParse,0,&X,0); /*A-overwrites-X*/}
745 xfullname(A) ::= nm(X) DOT nm(Y).
746    {A = sqlite3SrcListAppend(pParse,0,&X,&Y); /*A-overwrites-X*/}
747 xfullname(A) ::= nm(X) DOT nm(Y) AS nm(Z).  {
748    A = sqlite3SrcListAppend(pParse,0,&X,&Y); /*A-overwrites-X*/
749    if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z);
750 }
751 xfullname(A) ::= nm(X) AS nm(Z). {
752    A = sqlite3SrcListAppend(pParse,0,&X,0); /*A-overwrites-X*/
753    if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z);
754 }
755 
756 %type joinop {int}
757 joinop(X) ::= COMMA|JOIN.              { X = JT_INNER; }
758 joinop(X) ::= JOIN_KW(A) JOIN.
759                   {X = sqlite3JoinType(pParse,&A,0,0);  /*X-overwrites-A*/}
760 joinop(X) ::= JOIN_KW(A) nm(B) JOIN.
761                   {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/}
762 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
763                   {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/}
764 
765 // There is a parsing abiguity in an upsert statement that uses a
766 // SELECT on the RHS of a the INSERT:
767 //
768 //      INSERT INTO tab SELECT * FROM aaa JOIN bbb ON CONFLICT ...
769 //                                        here ----^^
770 //
771 // When the ON token is encountered, the parser does not know if it is
772 // the beginning of an ON CONFLICT clause, or the beginning of an ON
773 // clause associated with the JOIN.  The conflict is resolved in favor
774 // of the JOIN.  If an ON CONFLICT clause is intended, insert a dummy
775 // WHERE clause in between, like this:
776 //
777 //      INSERT INTO tab SELECT * FROM aaa JOIN bbb WHERE true ON CONFLICT ...
778 //
779 // The [AND] and [OR] precedence marks in the rules for on_opt cause the
780 // ON in this context to always be interpreted as belonging to the JOIN.
781 //
782 %type on_opt {Expr*}
783 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);}
784 on_opt(N) ::= ON expr(E).  {N = E;}
785 on_opt(N) ::= .     [OR]   {N = 0;}
786 
787 // Note that this block abuses the Token type just a little. If there is
788 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If
789 // there is an INDEXED BY clause, then the token is populated as per normal,
790 // with z pointing to the token data and n containing the number of bytes
791 // in the token.
792 //
793 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is
794 // normally illegal. The sqlite3SrcListIndexedBy() function
795 // recognizes and interprets this as a special case.
796 //
797 %type indexed_opt {Token}
798 indexed_opt(A) ::= .                 {A.z=0; A.n=0;}
799 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;}
800 indexed_opt(A) ::= NOT INDEXED.      {A.z=0; A.n=1;}
801 
802 %type using_opt {IdList*}
803 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);}
804 using_opt(U) ::= USING LP idlist(L) RP.  {U = L;}
805 using_opt(U) ::= .                        {U = 0;}
806 
807 
808 %type orderby_opt {ExprList*}
809 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);}
810 
811 // the sortlist non-terminal stores a list of expression where each
812 // expression is optionally followed by ASC or DESC to indicate the
813 // sort order.
814 //
815 %type sortlist {ExprList*}
816 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);}
817 
818 orderby_opt(A) ::= .                          {A = 0;}
819 orderby_opt(A) ::= ORDER BY sortlist(X).      {A = X;}
820 sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z) nulls(X). {
821   A = sqlite3ExprListAppend(pParse,A,Y);
822   sqlite3ExprListSetSortOrder(A,Z,X);
823 }
824 sortlist(A) ::= expr(Y) sortorder(Z) nulls(X). {
825   A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/
826   sqlite3ExprListSetSortOrder(A,Z,X);
827 }
828 
829 %type sortorder {int}
830 
831 sortorder(A) ::= ASC.           {A = SQLITE_SO_ASC;}
832 sortorder(A) ::= DESC.          {A = SQLITE_SO_DESC;}
833 sortorder(A) ::= .              {A = SQLITE_SO_UNDEFINED;}
834 
835 %type nulls {int}
836 nulls(A) ::= NULLS FIRST.       {A = SQLITE_SO_ASC;}
837 nulls(A) ::= NULLS LAST.        {A = SQLITE_SO_DESC;}
838 nulls(A) ::= .                  {A = SQLITE_SO_UNDEFINED;}
839 
840 %type groupby_opt {ExprList*}
841 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);}
842 groupby_opt(A) ::= .                      {A = 0;}
843 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;}
844 
845 %type having_opt {Expr*}
846 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);}
847 having_opt(A) ::= .                {A = 0;}
848 having_opt(A) ::= HAVING expr(X).  {A = X;}
849 
850 %type limit_opt {Expr*}
851 
852 // The destructor for limit_opt will never fire in the current grammar.
853 // The limit_opt non-terminal only occurs at the end of a single production
854 // rule for SELECT statements.  As soon as the rule that create the
855 // limit_opt non-terminal reduces, the SELECT statement rule will also
856 // reduce.  So there is never a limit_opt non-terminal on the stack
857 // except as a transient.  So there is never anything to destroy.
858 //
859 //%destructor limit_opt {sqlite3ExprDelete(pParse->db, $$);}
860 limit_opt(A) ::= .       {A = 0;}
861 limit_opt(A) ::= LIMIT expr(X).
862                          {A = sqlite3PExpr(pParse,TK_LIMIT,X,0);}
863 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y).
864                          {A = sqlite3PExpr(pParse,TK_LIMIT,X,Y);}
865 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y).
866                          {A = sqlite3PExpr(pParse,TK_LIMIT,Y,X);}
867 
868 /////////////////////////// The DELETE statement /////////////////////////////
869 //
870 %if SQLITE_ENABLE_UPDATE_DELETE_LIMIT || SQLITE_UDL_CAPABLE_PARSER
871 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt(W)
872         orderby_opt(O) limit_opt(L). {
873   sqlite3SrcListIndexedBy(pParse, X, &I);
874 #ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
875   if( O || L ){
876     updateDeleteLimitError(pParse,O,L);
877     O = 0;
878     L = 0;
879   }
880 #endif
881   sqlite3DeleteFrom(pParse,X,W,O,L);
882 }
883 %else
884 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt(W). {
885   sqlite3SrcListIndexedBy(pParse, X, &I);
886   sqlite3DeleteFrom(pParse,X,W,0,0);
887 }
888 %endif
889 
890 %type where_opt {Expr*}
891 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);}
892 
893 where_opt(A) ::= .                    {A = 0;}
894 where_opt(A) ::= WHERE expr(X).       {A = X;}
895 
896 ////////////////////////// The UPDATE command ////////////////////////////////
897 //
898 %if SQLITE_ENABLE_UPDATE_DELETE_LIMIT || SQLITE_UDL_CAPABLE_PARSER
899 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) from(F)
900         where_opt(W) orderby_opt(O) limit_opt(L).  {
901   sqlite3SrcListIndexedBy(pParse, X, &I);
902   X = sqlite3SrcListAppendList(pParse, X, F);
903   sqlite3ExprListCheckLength(pParse,Y,"set list");
904 #ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
905   if( O || L ){
906     updateDeleteLimitError(pParse,O,L);
907     O = 0;
908     L = 0;
909   }
910 #endif
911   sqlite3Update(pParse,X,Y,W,R,O,L,0);
912 }
913 %else
914 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) from(F)
915         where_opt(W). {
916   sqlite3SrcListIndexedBy(pParse, X, &I);
917   sqlite3ExprListCheckLength(pParse,Y,"set list");
918   X = sqlite3SrcListAppendList(pParse, X, F);
919   sqlite3Update(pParse,X,Y,W,R,0,0,0);
920 }
921 %endif
922 
923 
924 
925 %type setlist {ExprList*}
926 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}
927 
928 setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). {
929   A = sqlite3ExprListAppend(pParse, A, Y);
930   sqlite3ExprListSetName(pParse, A, &X, 1);
931 }
932 setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). {
933   A = sqlite3ExprListAppendVector(pParse, A, X, Y);
934 }
935 setlist(A) ::= nm(X) EQ expr(Y). {
936   A = sqlite3ExprListAppend(pParse, 0, Y);
937   sqlite3ExprListSetName(pParse, A, &X, 1);
938 }
939 setlist(A) ::= LP idlist(X) RP EQ expr(Y). {
940   A = sqlite3ExprListAppendVector(pParse, 0, X, Y);
941 }
942 
943 ////////////////////////// The INSERT command /////////////////////////////////
944 //
945 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) select(S)
946         upsert(U). {
947   sqlite3Insert(pParse, X, S, F, R, U);
948 }
949 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) DEFAULT VALUES.
950 {
951   sqlite3Insert(pParse, X, 0, F, R, 0);
952 }
953 
954 %type upsert {Upsert*}
955 
956 // Because upsert only occurs at the tip end of the INSERT rule for cmd,
957 // there is never a case where the value of the upsert pointer will not
958 // be destroyed by the cmd action.  So comment-out the destructor to
959 // avoid unreachable code.
960 //%destructor upsert {sqlite3UpsertDelete(pParse->db,$$);}
961 upsert(A) ::= . { A = 0; }
962 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW)
963               DO UPDATE SET setlist(Z) where_opt(W) upsert(N).
964               { A = sqlite3UpsertNew(pParse->db,T,TW,Z,W,N);}
965 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) DO NOTHING upsert(N).
966               { A = sqlite3UpsertNew(pParse->db,T,TW,0,0,N); }
967 upsert(A) ::= ON CONFLICT DO NOTHING.
968               { A = sqlite3UpsertNew(pParse->db,0,0,0,0,0); }
969 upsert(A) ::= ON CONFLICT DO UPDATE SET setlist(Z) where_opt(W).
970               { A = sqlite3UpsertNew(pParse->db,0,0,Z,W,0);}
971 
972 %type insert_cmd {int}
973 insert_cmd(A) ::= INSERT orconf(R).   {A = R;}
974 insert_cmd(A) ::= REPLACE.            {A = OE_Replace;}
975 
976 %type idlist_opt {IdList*}
977 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);}
978 %type idlist {IdList*}
979 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);}
980 
981 idlist_opt(A) ::= .                       {A = 0;}
982 idlist_opt(A) ::= LP idlist(X) RP.    {A = X;}
983 idlist(A) ::= idlist(A) COMMA nm(Y).
984     {A = sqlite3IdListAppend(pParse,A,&Y);}
985 idlist(A) ::= nm(Y).
986     {A = sqlite3IdListAppend(pParse,0,&Y); /*A-overwrites-Y*/}
987 
988 /////////////////////////// Expression Processing /////////////////////////////
989 //
990 
991 %type expr {Expr*}
992 %destructor expr {sqlite3ExprDelete(pParse->db, $$);}
993 %type term {Expr*}
994 %destructor term {sqlite3ExprDelete(pParse->db, $$);}
995 
996 %include {
997 
998   /* Construct a new Expr object from a single identifier.  Use the
999   ** new Expr to populate pOut.  Set the span of pOut to be the identifier
1000   ** that created the expression.
1001   */
1002   static Expr *tokenExpr(Parse *pParse, int op, Token t){
1003     Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1);
1004     if( p ){
1005       /* memset(p, 0, sizeof(Expr)); */
1006       p->op = (u8)op;
1007       p->affExpr = 0;
1008       p->flags = EP_Leaf;
1009       ExprClearVVAProperties(p);
1010       p->iAgg = -1;
1011       p->pLeft = p->pRight = 0;
1012       p->x.pList = 0;
1013       p->pAggInfo = 0;
1014       p->y.pTab = 0;
1015       p->op2 = 0;
1016       p->iTable = 0;
1017       p->iColumn = 0;
1018       p->u.zToken = (char*)&p[1];
1019       memcpy(p->u.zToken, t.z, t.n);
1020       p->u.zToken[t.n] = 0;
1021       if( sqlite3Isquote(p->u.zToken[0]) ){
1022         sqlite3DequoteExpr(p);
1023       }
1024 #if SQLITE_MAX_EXPR_DEPTH>0
1025       p->nHeight = 1;
1026 #endif
1027       if( IN_RENAME_OBJECT ){
1028         return (Expr*)sqlite3RenameTokenMap(pParse, (void*)p, &t);
1029       }
1030     }
1031     return p;
1032   }
1033 
1034 }
1035 
1036 expr(A) ::= term(A).
1037 expr(A) ::= LP expr(X) RP. {A = X;}
1038 expr(A) ::= id(X).          {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/}
1039 expr(A) ::= JOIN_KW(X).     {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/}
1040 expr(A) ::= nm(X) DOT nm(Y). {
1041   Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
1042   Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1);
1043   if( IN_RENAME_OBJECT ){
1044     sqlite3RenameTokenMap(pParse, (void*)temp2, &Y);
1045     sqlite3RenameTokenMap(pParse, (void*)temp1, &X);
1046   }
1047   A = sqlite3PExpr(pParse, TK_DOT, temp1, temp2);
1048 }
1049 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). {
1050   Expr *temp1 = sqlite3ExprAlloc(pParse->db, TK_ID, &X, 1);
1051   Expr *temp2 = sqlite3ExprAlloc(pParse->db, TK_ID, &Y, 1);
1052   Expr *temp3 = sqlite3ExprAlloc(pParse->db, TK_ID, &Z, 1);
1053   Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3);
1054   if( IN_RENAME_OBJECT ){
1055     sqlite3RenameTokenMap(pParse, (void*)temp3, &Z);
1056     sqlite3RenameTokenMap(pParse, (void*)temp2, &Y);
1057   }
1058   A = sqlite3PExpr(pParse, TK_DOT, temp1, temp4);
1059 }
1060 term(A) ::= NULL|FLOAT|BLOB(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/}
1061 term(A) ::= STRING(X).          {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/}
1062 term(A) ::= INTEGER(X). {
1063   A = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1);
1064 }
1065 expr(A) ::= VARIABLE(X).     {
1066   if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){
1067     u32 n = X.n;
1068     A = tokenExpr(pParse, TK_VARIABLE, X);
1069     sqlite3ExprAssignVarNumber(pParse, A, n);
1070   }else{
1071     /* When doing a nested parse, one can include terms in an expression
1072     ** that look like this:   #1 #2 ...  These terms refer to registers
1073     ** in the virtual machine.  #N is the N-th register. */
1074     Token t = X; /*A-overwrites-X*/
1075     assert( t.n>=2 );
1076     if( pParse->nested==0 ){
1077       sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t);
1078       A = 0;
1079     }else{
1080       A = sqlite3PExpr(pParse, TK_REGISTER, 0, 0);
1081       if( A ) sqlite3GetInt32(&t.z[1], &A->iTable);
1082     }
1083   }
1084 }
1085 expr(A) ::= expr(A) COLLATE ids(C). {
1086   A = sqlite3ExprAddCollateToken(pParse, A, &C, 1);
1087 }
1088 %ifndef SQLITE_OMIT_CAST
1089 expr(A) ::= CAST LP expr(E) AS typetoken(T) RP. {
1090   A = sqlite3ExprAlloc(pParse->db, TK_CAST, &T, 1);
1091   sqlite3ExprAttachSubtrees(pParse->db, A, E, 0);
1092 }
1093 %endif  SQLITE_OMIT_CAST
1094 
1095 
1096 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP. {
1097   A = sqlite3ExprFunction(pParse, Y, &X, D);
1098 }
1099 expr(A) ::= id(X) LP STAR RP. {
1100   A = sqlite3ExprFunction(pParse, 0, &X, 0);
1101 }
1102 
1103 %ifndef SQLITE_OMIT_WINDOWFUNC
1104 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP filter_over(Z). {
1105   A = sqlite3ExprFunction(pParse, Y, &X, D);
1106   sqlite3WindowAttach(pParse, A, Z);
1107 }
1108 expr(A) ::= id(X) LP STAR RP filter_over(Z). {
1109   A = sqlite3ExprFunction(pParse, 0, &X, 0);
1110   sqlite3WindowAttach(pParse, A, Z);
1111 }
1112 %endif
1113 
1114 term(A) ::= CTIME_KW(OP). {
1115   A = sqlite3ExprFunction(pParse, 0, &OP, 0);
1116 }
1117 
1118 expr(A) ::= LP nexprlist(X) COMMA expr(Y) RP. {
1119   ExprList *pList = sqlite3ExprListAppend(pParse, X, Y);
1120   A = sqlite3PExpr(pParse, TK_VECTOR, 0, 0);
1121   if( A ){
1122     A->x.pList = pList;
1123     if( ALWAYS(pList->nExpr) ){
1124       A->flags |= pList->a[0].pExpr->flags & EP_Propagate;
1125     }
1126   }else{
1127     sqlite3ExprListDelete(pParse->db, pList);
1128   }
1129 }
1130 
1131 expr(A) ::= expr(A) AND expr(Y).        {A=sqlite3ExprAnd(pParse,A,Y);}
1132 expr(A) ::= expr(A) OR(OP) expr(Y).     {A=sqlite3PExpr(pParse,@OP,A,Y);}
1133 expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y).
1134                                         {A=sqlite3PExpr(pParse,@OP,A,Y);}
1135 expr(A) ::= expr(A) EQ|NE(OP) expr(Y).  {A=sqlite3PExpr(pParse,@OP,A,Y);}
1136 expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y).
1137                                         {A=sqlite3PExpr(pParse,@OP,A,Y);}
1138 expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y).
1139                                         {A=sqlite3PExpr(pParse,@OP,A,Y);}
1140 expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y).
1141                                         {A=sqlite3PExpr(pParse,@OP,A,Y);}
1142 expr(A) ::= expr(A) CONCAT(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);}
1143 %type likeop {Token}
1144 likeop(A) ::= LIKE_KW|MATCH(A).
1145 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A=X; A.n|=0x80000000; /*A-overwrite-X*/}
1146 expr(A) ::= expr(A) likeop(OP) expr(Y).  [LIKE_KW]  {
1147   ExprList *pList;
1148   int bNot = OP.n & 0x80000000;
1149   OP.n &= 0x7fffffff;
1150   pList = sqlite3ExprListAppend(pParse,0, Y);
1151   pList = sqlite3ExprListAppend(pParse,pList, A);
1152   A = sqlite3ExprFunction(pParse, pList, &OP, 0);
1153   if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1154   if( A ) A->flags |= EP_InfixFunc;
1155 }
1156 expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E).  [LIKE_KW]  {
1157   ExprList *pList;
1158   int bNot = OP.n & 0x80000000;
1159   OP.n &= 0x7fffffff;
1160   pList = sqlite3ExprListAppend(pParse,0, Y);
1161   pList = sqlite3ExprListAppend(pParse,pList, A);
1162   pList = sqlite3ExprListAppend(pParse,pList, E);
1163   A = sqlite3ExprFunction(pParse, pList, &OP, 0);
1164   if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1165   if( A ) A->flags |= EP_InfixFunc;
1166 }
1167 
1168 expr(A) ::= expr(A) ISNULL|NOTNULL(E).   {A = sqlite3PExpr(pParse,@E,A,0);}
1169 expr(A) ::= expr(A) NOT NULL.    {A = sqlite3PExpr(pParse,TK_NOTNULL,A,0);}
1170 
1171 %include {
1172   /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
1173   ** unary TK_ISNULL or TK_NOTNULL expression. */
1174   static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
1175     sqlite3 *db = pParse->db;
1176     if( pA && pY && pY->op==TK_NULL && !IN_RENAME_OBJECT ){
1177       pA->op = (u8)op;
1178       sqlite3ExprDelete(db, pA->pRight);
1179       pA->pRight = 0;
1180     }
1181   }
1182 }
1183 
1184 //    expr1 IS expr2
1185 //    expr1 IS NOT expr2
1186 //
1187 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL.  If expr2
1188 // is any other expression, code as TK_IS or TK_ISNOT.
1189 //
1190 expr(A) ::= expr(A) IS expr(Y).     {
1191   A = sqlite3PExpr(pParse,TK_IS,A,Y);
1192   binaryToUnaryIfNull(pParse, Y, A, TK_ISNULL);
1193 }
1194 expr(A) ::= expr(A) IS NOT expr(Y). {
1195   A = sqlite3PExpr(pParse,TK_ISNOT,A,Y);
1196   binaryToUnaryIfNull(pParse, Y, A, TK_NOTNULL);
1197 }
1198 
1199 expr(A) ::= NOT(B) expr(X).
1200               {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/}
1201 expr(A) ::= BITNOT(B) expr(X).
1202               {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/}
1203 expr(A) ::= PLUS|MINUS(B) expr(X). [BITNOT] {
1204   A = sqlite3PExpr(pParse, @B==TK_PLUS ? TK_UPLUS : TK_UMINUS, X, 0);
1205   /*A-overwrites-B*/
1206 }
1207 
1208 %type between_op {int}
1209 between_op(A) ::= BETWEEN.     {A = 0;}
1210 between_op(A) ::= NOT BETWEEN. {A = 1;}
1211 expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] {
1212   ExprList *pList = sqlite3ExprListAppend(pParse,0, X);
1213   pList = sqlite3ExprListAppend(pParse,pList, Y);
1214   A = sqlite3PExpr(pParse, TK_BETWEEN, A, 0);
1215   if( A ){
1216     A->x.pList = pList;
1217   }else{
1218     sqlite3ExprListDelete(pParse->db, pList);
1219   }
1220   if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1221 }
1222 %ifndef SQLITE_OMIT_SUBQUERY
1223   %type in_op {int}
1224   in_op(A) ::= IN.      {A = 0;}
1225   in_op(A) ::= NOT IN.  {A = 1;}
1226   expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP. [IN] {
1227     if( Y==0 ){
1228       /* Expressions of the form
1229       **
1230       **      expr1 IN ()
1231       **      expr1 NOT IN ()
1232       **
1233       ** simplify to constants 0 (false) and 1 (true), respectively,
1234       ** regardless of the value of expr1.
1235       */
1236       sqlite3ExprUnmapAndDelete(pParse, A);
1237       A = sqlite3Expr(pParse->db, TK_INTEGER, N ? "1" : "0");
1238     }else if( Y->nExpr==1 && sqlite3ExprIsConstant(Y->a[0].pExpr) ){
1239       Expr *pRHS = Y->a[0].pExpr;
1240       Y->a[0].pExpr = 0;
1241       sqlite3ExprListDelete(pParse->db, Y);
1242       pRHS = sqlite3PExpr(pParse, TK_UPLUS, pRHS, 0);
1243       A = sqlite3PExpr(pParse, TK_EQ, A, pRHS);
1244       if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1245     }else{
1246       A = sqlite3PExpr(pParse, TK_IN, A, 0);
1247       if( A ){
1248         A->x.pList = Y;
1249         sqlite3ExprSetHeightAndFlags(pParse, A);
1250       }else{
1251         sqlite3ExprListDelete(pParse->db, Y);
1252       }
1253       if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1254     }
1255   }
1256   expr(A) ::= LP select(X) RP. {
1257     A = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
1258     sqlite3PExprAddSelect(pParse, A, X);
1259   }
1260   expr(A) ::= expr(A) in_op(N) LP select(Y) RP.  [IN] {
1261     A = sqlite3PExpr(pParse, TK_IN, A, 0);
1262     sqlite3PExprAddSelect(pParse, A, Y);
1263     if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1264   }
1265   expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z) paren_exprlist(E). [IN] {
1266     SrcList *pSrc = sqlite3SrcListAppend(pParse, 0,&Y,&Z);
1267     Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0);
1268     if( E )  sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, E);
1269     A = sqlite3PExpr(pParse, TK_IN, A, 0);
1270     sqlite3PExprAddSelect(pParse, A, pSelect);
1271     if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0);
1272   }
1273   expr(A) ::= EXISTS LP select(Y) RP. {
1274     Expr *p;
1275     p = A = sqlite3PExpr(pParse, TK_EXISTS, 0, 0);
1276     sqlite3PExprAddSelect(pParse, p, Y);
1277   }
1278 %endif SQLITE_OMIT_SUBQUERY
1279 
1280 /* CASE expressions */
1281 expr(A) ::= CASE case_operand(X) case_exprlist(Y) case_else(Z) END. {
1282   A = sqlite3PExpr(pParse, TK_CASE, X, 0);
1283   if( A ){
1284     A->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y;
1285     sqlite3ExprSetHeightAndFlags(pParse, A);
1286   }else{
1287     sqlite3ExprListDelete(pParse->db, Y);
1288     sqlite3ExprDelete(pParse->db, Z);
1289   }
1290 }
1291 %type case_exprlist {ExprList*}
1292 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1293 case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). {
1294   A = sqlite3ExprListAppend(pParse,A, Y);
1295   A = sqlite3ExprListAppend(pParse,A, Z);
1296 }
1297 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
1298   A = sqlite3ExprListAppend(pParse,0, Y);
1299   A = sqlite3ExprListAppend(pParse,A, Z);
1300 }
1301 %type case_else {Expr*}
1302 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);}
1303 case_else(A) ::=  ELSE expr(X).         {A = X;}
1304 case_else(A) ::=  .                     {A = 0;}
1305 %type case_operand {Expr*}
1306 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);}
1307 case_operand(A) ::= expr(X).            {A = X; /*A-overwrites-X*/}
1308 case_operand(A) ::= .                   {A = 0;}
1309 
1310 %type exprlist {ExprList*}
1311 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1312 %type nexprlist {ExprList*}
1313 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);}
1314 
1315 exprlist(A) ::= nexprlist(A).
1316 exprlist(A) ::= .                            {A = 0;}
1317 nexprlist(A) ::= nexprlist(A) COMMA expr(Y).
1318     {A = sqlite3ExprListAppend(pParse,A,Y);}
1319 nexprlist(A) ::= expr(Y).
1320     {A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/}
1321 
1322 %ifndef SQLITE_OMIT_SUBQUERY
1323 /* A paren_exprlist is an optional expression list contained inside
1324 ** of parenthesis */
1325 %type paren_exprlist {ExprList*}
1326 %destructor paren_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1327 paren_exprlist(A) ::= .   {A = 0;}
1328 paren_exprlist(A) ::= LP exprlist(X) RP.  {A = X;}
1329 %endif SQLITE_OMIT_SUBQUERY
1330 
1331 
1332 ///////////////////////////// The CREATE INDEX command ///////////////////////
1333 //
1334 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D)
1335         ON nm(Y) LP sortlist(Z) RP where_opt(W). {
1336   sqlite3CreateIndex(pParse, &X, &D,
1337                      sqlite3SrcListAppend(pParse,0,&Y,0), Z, U,
1338                       &S, W, SQLITE_SO_ASC, NE, SQLITE_IDXTYPE_APPDEF);
1339   if( IN_RENAME_OBJECT && pParse->pNewIndex ){
1340     sqlite3RenameTokenMap(pParse, pParse->pNewIndex->zName, &Y);
1341   }
1342 }
1343 
1344 %type uniqueflag {int}
1345 uniqueflag(A) ::= UNIQUE.  {A = OE_Abort;}
1346 uniqueflag(A) ::= .        {A = OE_None;}
1347 
1348 
1349 // The eidlist non-terminal (Expression Id List) generates an ExprList
1350 // from a list of identifiers.  The identifier names are in ExprList.a[].zName.
1351 // This list is stored in an ExprList rather than an IdList so that it
1352 // can be easily sent to sqlite3ColumnsExprList().
1353 //
1354 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal
1355 // used for the arguments to an index.  That is just an historical accident.
1356 //
1357 // IMPORTANT COMPATIBILITY NOTE:  Some prior versions of SQLite accepted
1358 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate
1359 // places - places that might have been stored in the sqlite_schema table.
1360 // Those extra features were ignored.  But because they might be in some
1361 // (busted) old databases, we need to continue parsing them when loading
1362 // historical schemas.
1363 //
1364 %type eidlist {ExprList*}
1365 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);}
1366 %type eidlist_opt {ExprList*}
1367 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);}
1368 
1369 %include {
1370   /* Add a single new term to an ExprList that is used to store a
1371   ** list of identifiers.  Report an error if the ID list contains
1372   ** a COLLATE clause or an ASC or DESC keyword, except ignore the
1373   ** error while parsing a legacy schema.
1374   */
1375   static ExprList *parserAddExprIdListTerm(
1376     Parse *pParse,
1377     ExprList *pPrior,
1378     Token *pIdToken,
1379     int hasCollate,
1380     int sortOrder
1381   ){
1382     ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0);
1383     if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED)
1384         && pParse->db->init.busy==0
1385     ){
1386       sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"",
1387                          pIdToken->n, pIdToken->z);
1388     }
1389     sqlite3ExprListSetName(pParse, p, pIdToken, 1);
1390     return p;
1391   }
1392 } // end %include
1393 
1394 eidlist_opt(A) ::= .                         {A = 0;}
1395 eidlist_opt(A) ::= LP eidlist(X) RP.         {A = X;}
1396 eidlist(A) ::= eidlist(A) COMMA nm(Y) collate(C) sortorder(Z).  {
1397   A = parserAddExprIdListTerm(pParse, A, &Y, C, Z);
1398 }
1399 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). {
1400   A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); /*A-overwrites-Y*/
1401 }
1402 
1403 %type collate {int}
1404 collate(C) ::= .              {C = 0;}
1405 collate(C) ::= COLLATE ids.   {C = 1;}
1406 
1407 
1408 ///////////////////////////// The DROP INDEX command /////////////////////////
1409 //
1410 cmd ::= DROP INDEX ifexists(E) fullname(X).   {sqlite3DropIndex(pParse, X, E);}
1411 
1412 ///////////////////////////// The VACUUM command /////////////////////////////
1413 //
1414 %if !SQLITE_OMIT_VACUUM && !SQLITE_OMIT_ATTACH
1415 %type vinto {Expr*}
1416 %destructor vinto {sqlite3ExprDelete(pParse->db, $$);}
1417 cmd ::= VACUUM vinto(Y).                {sqlite3Vacuum(pParse,0,Y);}
1418 cmd ::= VACUUM nm(X) vinto(Y).          {sqlite3Vacuum(pParse,&X,Y);}
1419 vinto(A) ::= INTO expr(X).              {A = X;}
1420 vinto(A) ::= .                          {A = 0;}
1421 %endif
1422 
1423 ///////////////////////////// The PRAGMA command /////////////////////////////
1424 //
1425 %ifndef SQLITE_OMIT_PRAGMA
1426 cmd ::= PRAGMA nm(X) dbnm(Z).                {sqlite3Pragma(pParse,&X,&Z,0,0);}
1427 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y).    {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1428 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1429 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y).
1430                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1431 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP.
1432                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1433 
1434 nmnum(A) ::= plus_num(A).
1435 nmnum(A) ::= nm(A).
1436 nmnum(A) ::= ON(A).
1437 nmnum(A) ::= DELETE(A).
1438 nmnum(A) ::= DEFAULT(A).
1439 %endif SQLITE_OMIT_PRAGMA
1440 %token_class number INTEGER|FLOAT.
1441 plus_num(A) ::= PLUS number(X).       {A = X;}
1442 plus_num(A) ::= number(A).
1443 minus_num(A) ::= MINUS number(X).     {A = X;}
1444 //////////////////////////// The CREATE TRIGGER command /////////////////////
1445 
1446 %ifndef SQLITE_OMIT_TRIGGER
1447 
1448 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). {
1449   Token all;
1450   all.z = A.z;
1451   all.n = (int)(Z.z - A.z) + Z.n;
1452   sqlite3FinishTrigger(pParse, S, &all);
1453 }
1454 
1455 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z)
1456                     trigger_time(C) trigger_event(D)
1457                     ON fullname(E) foreach_clause when_clause(G). {
1458   sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR);
1459   A = (Z.n==0?B:Z); /*A-overwrites-T*/
1460 }
1461 
1462 %type trigger_time {int}
1463 trigger_time(A) ::= BEFORE|AFTER(X).  { A = @X; /*A-overwrites-X*/ }
1464 trigger_time(A) ::= INSTEAD OF.  { A = TK_INSTEAD;}
1465 trigger_time(A) ::= .            { A = TK_BEFORE; }
1466 
1467 %type trigger_event {struct TrigEvent}
1468 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);}
1469 trigger_event(A) ::= DELETE|INSERT(X).   {A.a = @X; /*A-overwrites-X*/ A.b = 0;}
1470 trigger_event(A) ::= UPDATE(X).          {A.a = @X; /*A-overwrites-X*/ A.b = 0;}
1471 trigger_event(A) ::= UPDATE OF idlist(X).{A.a = TK_UPDATE; A.b = X;}
1472 
1473 foreach_clause ::= .
1474 foreach_clause ::= FOR EACH ROW.
1475 
1476 %type when_clause {Expr*}
1477 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);}
1478 when_clause(A) ::= .             { A = 0; }
1479 when_clause(A) ::= WHEN expr(X). { A = X; }
1480 
1481 %type trigger_cmd_list {TriggerStep*}
1482 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);}
1483 trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. {
1484   assert( A!=0 );
1485   A->pLast->pNext = X;
1486   A->pLast = X;
1487 }
1488 trigger_cmd_list(A) ::= trigger_cmd(A) SEMI. {
1489   assert( A!=0 );
1490   A->pLast = A;
1491 }
1492 
1493 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements
1494 // within a trigger.  The table to INSERT, UPDATE, or DELETE is always in
1495 // the same database as the table that the trigger fires on.
1496 //
1497 %type trnm {Token}
1498 trnm(A) ::= nm(A).
1499 trnm(A) ::= nm DOT nm(X). {
1500   A = X;
1501   sqlite3ErrorMsg(pParse,
1502         "qualified table names are not allowed on INSERT, UPDATE, and DELETE "
1503         "statements within triggers");
1504 }
1505 
1506 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE
1507 // statements within triggers.  We make a specific error message for this
1508 // since it is an exception to the default grammar rules.
1509 //
1510 tridxby ::= .
1511 tridxby ::= INDEXED BY nm. {
1512   sqlite3ErrorMsg(pParse,
1513         "the INDEXED BY clause is not allowed on UPDATE or DELETE statements "
1514         "within triggers");
1515 }
1516 tridxby ::= NOT INDEXED. {
1517   sqlite3ErrorMsg(pParse,
1518         "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements "
1519         "within triggers");
1520 }
1521 
1522 
1523 
1524 %type trigger_cmd {TriggerStep*}
1525 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);}
1526 // UPDATE
1527 trigger_cmd(A) ::=
1528    UPDATE(B) orconf(R) trnm(X) tridxby SET setlist(Y) from(F) where_opt(Z) scanpt(E).
1529    {A = sqlite3TriggerUpdateStep(pParse, &X, F, Y, Z, R, B.z, E);}
1530 
1531 // INSERT
1532 trigger_cmd(A) ::= scanpt(B) insert_cmd(R) INTO
1533                       trnm(X) idlist_opt(F) select(S) upsert(U) scanpt(Z). {
1534    A = sqlite3TriggerInsertStep(pParse,&X,F,S,R,U,B,Z);/*A-overwrites-R*/
1535 }
1536 // DELETE
1537 trigger_cmd(A) ::= DELETE(B) FROM trnm(X) tridxby where_opt(Y) scanpt(E).
1538    {A = sqlite3TriggerDeleteStep(pParse, &X, Y, B.z, E);}
1539 
1540 // SELECT
1541 trigger_cmd(A) ::= scanpt(B) select(X) scanpt(E).
1542    {A = sqlite3TriggerSelectStep(pParse->db, X, B, E); /*A-overwrites-X*/}
1543 
1544 // The special RAISE expression that may occur in trigger programs
1545 expr(A) ::= RAISE LP IGNORE RP.  {
1546   A = sqlite3PExpr(pParse, TK_RAISE, 0, 0);
1547   if( A ){
1548     A->affExpr = OE_Ignore;
1549   }
1550 }
1551 expr(A) ::= RAISE LP raisetype(T) COMMA nm(Z) RP.  {
1552   A = sqlite3ExprAlloc(pParse->db, TK_RAISE, &Z, 1);
1553   if( A ) {
1554     A->affExpr = (char)T;
1555   }
1556 }
1557 %endif  !SQLITE_OMIT_TRIGGER
1558 
1559 %type raisetype {int}
1560 raisetype(A) ::= ROLLBACK.  {A = OE_Rollback;}
1561 raisetype(A) ::= ABORT.     {A = OE_Abort;}
1562 raisetype(A) ::= FAIL.      {A = OE_Fail;}
1563 
1564 
1565 ////////////////////////  DROP TRIGGER statement //////////////////////////////
1566 %ifndef SQLITE_OMIT_TRIGGER
1567 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). {
1568   sqlite3DropTrigger(pParse,X,NOERR);
1569 }
1570 %endif  !SQLITE_OMIT_TRIGGER
1571 
1572 //////////////////////// ATTACH DATABASE file AS name /////////////////////////
1573 %ifndef SQLITE_OMIT_ATTACH
1574 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). {
1575   sqlite3Attach(pParse, F, D, K);
1576 }
1577 cmd ::= DETACH database_kw_opt expr(D). {
1578   sqlite3Detach(pParse, D);
1579 }
1580 
1581 %type key_opt {Expr*}
1582 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);}
1583 key_opt(A) ::= .                     { A = 0; }
1584 key_opt(A) ::= KEY expr(X).          { A = X; }
1585 
1586 database_kw_opt ::= DATABASE.
1587 database_kw_opt ::= .
1588 %endif SQLITE_OMIT_ATTACH
1589 
1590 ////////////////////////// REINDEX collation //////////////////////////////////
1591 %ifndef SQLITE_OMIT_REINDEX
1592 cmd ::= REINDEX.                {sqlite3Reindex(pParse, 0, 0);}
1593 cmd ::= REINDEX nm(X) dbnm(Y).  {sqlite3Reindex(pParse, &X, &Y);}
1594 %endif  SQLITE_OMIT_REINDEX
1595 
1596 /////////////////////////////////// ANALYZE ///////////////////////////////////
1597 %ifndef SQLITE_OMIT_ANALYZE
1598 cmd ::= ANALYZE.                {sqlite3Analyze(pParse, 0, 0);}
1599 cmd ::= ANALYZE nm(X) dbnm(Y).  {sqlite3Analyze(pParse, &X, &Y);}
1600 %endif
1601 
1602 //////////////////////// ALTER TABLE table ... ////////////////////////////////
1603 %ifndef SQLITE_OMIT_ALTERTABLE
1604 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). {
1605   sqlite3AlterRenameTable(pParse,X,&Z);
1606 }
1607 cmd ::= ALTER TABLE add_column_fullname
1608         ADD kwcolumn_opt columnname(Y) carglist. {
1609   Y.n = (int)(pParse->sLastToken.z-Y.z) + pParse->sLastToken.n;
1610   sqlite3AlterFinishAddColumn(pParse, &Y);
1611 }
1612 add_column_fullname ::= fullname(X). {
1613   disableLookaside(pParse);
1614   sqlite3AlterBeginAddColumn(pParse, X);
1615 }
1616 cmd ::= ALTER TABLE fullname(X) RENAME kwcolumn_opt nm(Y) TO nm(Z). {
1617   sqlite3AlterRenameColumn(pParse, X, &Y, &Z);
1618 }
1619 
1620 kwcolumn_opt ::= .
1621 kwcolumn_opt ::= COLUMNKW.
1622 
1623 %endif  SQLITE_OMIT_ALTERTABLE
1624 
1625 //////////////////////// CREATE VIRTUAL TABLE ... /////////////////////////////
1626 %ifndef SQLITE_OMIT_VIRTUALTABLE
1627 cmd ::= create_vtab.                       {sqlite3VtabFinishParse(pParse,0);}
1628 cmd ::= create_vtab LP vtabarglist RP(X).  {sqlite3VtabFinishParse(pParse,&X);}
1629 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E)
1630                 nm(X) dbnm(Y) USING nm(Z). {
1631     sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E);
1632 }
1633 vtabarglist ::= vtabarg.
1634 vtabarglist ::= vtabarglist COMMA vtabarg.
1635 vtabarg ::= .                       {sqlite3VtabArgInit(pParse);}
1636 vtabarg ::= vtabarg vtabargtoken.
1637 vtabargtoken ::= ANY(X).            {sqlite3VtabArgExtend(pParse,&X);}
1638 vtabargtoken ::= lp anylist RP(X).  {sqlite3VtabArgExtend(pParse,&X);}
1639 lp ::= LP(X).                       {sqlite3VtabArgExtend(pParse,&X);}
1640 anylist ::= .
1641 anylist ::= anylist LP anylist RP.
1642 anylist ::= anylist ANY.
1643 %endif  SQLITE_OMIT_VIRTUALTABLE
1644 
1645 
1646 //////////////////////// COMMON TABLE EXPRESSIONS ////////////////////////////
1647 %type wqlist {With*}
1648 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);}
1649 
1650 with ::= .
1651 %ifndef SQLITE_OMIT_CTE
1652 with ::= WITH wqlist(W).              { sqlite3WithPush(pParse, W, 1); }
1653 with ::= WITH RECURSIVE wqlist(W).    { sqlite3WithPush(pParse, W, 1); }
1654 
1655 wqlist(A) ::= nm(X) eidlist_opt(Y) AS LP select(Z) RP. {
1656   A = sqlite3WithAdd(pParse, 0, &X, Y, Z); /*A-overwrites-X*/
1657 }
1658 wqlist(A) ::= wqlist(A) COMMA nm(X) eidlist_opt(Y) AS LP select(Z) RP. {
1659   A = sqlite3WithAdd(pParse, A, &X, Y, Z);
1660 }
1661 %endif  SQLITE_OMIT_CTE
1662 
1663 //////////////////////// WINDOW FUNCTION EXPRESSIONS /////////////////////////
1664 // These must be at the end of this file. Specifically, the rules that
1665 // introduce tokens WINDOW, OVER and FILTER must appear last. This causes
1666 // the integer values assigned to these tokens to be larger than all other
1667 // tokens that may be output by the tokenizer except TK_SPACE and TK_ILLEGAL.
1668 //
1669 %ifndef SQLITE_OMIT_WINDOWFUNC
1670 %type windowdefn_list {Window*}
1671 %destructor windowdefn_list {sqlite3WindowListDelete(pParse->db, $$);}
1672 windowdefn_list(A) ::= windowdefn(Z). { A = Z; }
1673 windowdefn_list(A) ::= windowdefn_list(Y) COMMA windowdefn(Z). {
1674   assert( Z!=0 );
1675   sqlite3WindowChain(pParse, Z, Y);
1676   Z->pNextWin = Y;
1677   A = Z;
1678 }
1679 
1680 %type windowdefn {Window*}
1681 %destructor windowdefn {sqlite3WindowDelete(pParse->db, $$);}
1682 windowdefn(A) ::= nm(X) AS LP window(Y) RP. {
1683   if( ALWAYS(Y) ){
1684     Y->zName = sqlite3DbStrNDup(pParse->db, X.z, X.n);
1685   }
1686   A = Y;
1687 }
1688 
1689 %type window {Window*}
1690 %destructor window {sqlite3WindowDelete(pParse->db, $$);}
1691 
1692 %type frame_opt {Window*}
1693 %destructor frame_opt {sqlite3WindowDelete(pParse->db, $$);}
1694 
1695 %type part_opt {ExprList*}
1696 %destructor part_opt {sqlite3ExprListDelete(pParse->db, $$);}
1697 
1698 %type filter_clause {Expr*}
1699 %destructor filter_clause {sqlite3ExprDelete(pParse->db, $$);}
1700 
1701 %type over_clause {Window*}
1702 %destructor over_clause {sqlite3WindowDelete(pParse->db, $$);}
1703 
1704 %type filter_over {Window*}
1705 %destructor filter_over {sqlite3WindowDelete(pParse->db, $$);}
1706 
1707 %type range_or_rows {int}
1708 
1709 %type frame_bound {struct FrameBound}
1710 %destructor frame_bound {sqlite3ExprDelete(pParse->db, $$.pExpr);}
1711 %type frame_bound_s {struct FrameBound}
1712 %destructor frame_bound_s {sqlite3ExprDelete(pParse->db, $$.pExpr);}
1713 %type frame_bound_e {struct FrameBound}
1714 %destructor frame_bound_e {sqlite3ExprDelete(pParse->db, $$.pExpr);}
1715 
1716 window(A) ::= PARTITION BY nexprlist(X) orderby_opt(Y) frame_opt(Z). {
1717   A = sqlite3WindowAssemble(pParse, Z, X, Y, 0);
1718 }
1719 window(A) ::= nm(W) PARTITION BY nexprlist(X) orderby_opt(Y) frame_opt(Z). {
1720   A = sqlite3WindowAssemble(pParse, Z, X, Y, &W);
1721 }
1722 window(A) ::= ORDER BY sortlist(Y) frame_opt(Z). {
1723   A = sqlite3WindowAssemble(pParse, Z, 0, Y, 0);
1724 }
1725 window(A) ::= nm(W) ORDER BY sortlist(Y) frame_opt(Z). {
1726   A = sqlite3WindowAssemble(pParse, Z, 0, Y, &W);
1727 }
1728 window(A) ::= frame_opt(Z). {
1729   A = Z;
1730 }
1731 window(A) ::= nm(W) frame_opt(Z). {
1732   A = sqlite3WindowAssemble(pParse, Z, 0, 0, &W);
1733 }
1734 
1735 frame_opt(A) ::= .                             {
1736   A = sqlite3WindowAlloc(pParse, 0, TK_UNBOUNDED, 0, TK_CURRENT, 0, 0);
1737 }
1738 frame_opt(A) ::= range_or_rows(X) frame_bound_s(Y) frame_exclude_opt(Z). {
1739   A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, TK_CURRENT, 0, Z);
1740 }
1741 frame_opt(A) ::= range_or_rows(X) BETWEEN frame_bound_s(Y) AND
1742                           frame_bound_e(Z) frame_exclude_opt(W). {
1743   A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, Z.eType, Z.pExpr, W);
1744 }
1745 
1746 range_or_rows(A) ::= RANGE|ROWS|GROUPS(X).   {A = @X; /*A-overwrites-X*/}
1747 
1748 frame_bound_s(A) ::= frame_bound(X).         {A = X;}
1749 frame_bound_s(A) ::= UNBOUNDED(X) PRECEDING. {A.eType = @X; A.pExpr = 0;}
1750 frame_bound_e(A) ::= frame_bound(X).         {A = X;}
1751 frame_bound_e(A) ::= UNBOUNDED(X) FOLLOWING. {A.eType = @X; A.pExpr = 0;}
1752 
1753 frame_bound(A) ::= expr(X) PRECEDING|FOLLOWING(Y).
1754                                              {A.eType = @Y; A.pExpr = X;}
1755 frame_bound(A) ::= CURRENT(X) ROW.           {A.eType = @X; A.pExpr = 0;}
1756 
1757 %type frame_exclude_opt {u8}
1758 frame_exclude_opt(A) ::= . {A = 0;}
1759 frame_exclude_opt(A) ::= EXCLUDE frame_exclude(X). {A = X;}
1760 
1761 %type frame_exclude {u8}
1762 frame_exclude(A) ::= NO(X) OTHERS.   {A = @X; /*A-overwrites-X*/}
1763 frame_exclude(A) ::= CURRENT(X) ROW. {A = @X; /*A-overwrites-X*/}
1764 frame_exclude(A) ::= GROUP|TIES(X).  {A = @X; /*A-overwrites-X*/}
1765 
1766 
1767 %type window_clause {Window*}
1768 %destructor window_clause {sqlite3WindowListDelete(pParse->db, $$);}
1769 window_clause(A) ::= WINDOW windowdefn_list(B). { A = B; }
1770 
1771 filter_over(A) ::= filter_clause(F) over_clause(O). {
1772   O->pFilter = F;
1773   A = O;
1774 }
1775 filter_over(A) ::= over_clause(O). {
1776   A = O;
1777 }
1778 filter_over(A) ::= filter_clause(F). {
1779   A = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
1780   if( A ){
1781     A->eFrmType = TK_FILTER;
1782     A->pFilter = F;
1783   }else{
1784     sqlite3ExprDelete(pParse->db, F);
1785   }
1786 }
1787 
1788 over_clause(A) ::= OVER LP window(Z) RP. {
1789   A = Z;
1790   assert( A!=0 );
1791 }
1792 over_clause(A) ::= OVER nm(Z). {
1793   A = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
1794   if( A ){
1795     A->zName = sqlite3DbStrNDup(pParse->db, Z.z, Z.n);
1796   }
1797 }
1798 
1799 filter_clause(A) ::= FILTER LP WHERE expr(X) RP.  { A = X; }
1800 %endif /* SQLITE_OMIT_WINDOWFUNC */
1801 
1802 /*
1803 ** The code generator needs some extra TK_ token values for tokens that
1804 ** are synthesized and do not actually appear in the grammar:
1805 */
1806 %token
1807   COLUMN          /* Reference to a table column */
1808   AGG_FUNCTION    /* An aggregate function */
1809   AGG_COLUMN      /* An aggregated column */
1810   TRUEFALSE       /* True or false keyword */
1811   ISNOT           /* Combination of IS and NOT */
1812   FUNCTION        /* A function invocation */
1813   UMINUS          /* Unary minus */
1814   UPLUS           /* Unary plus */
1815   TRUTH           /* IS TRUE or IS FALSE or IS NOT TRUE or IS NOT FALSE */
1816   REGISTER        /* Reference to a VDBE register */
1817   VECTOR          /* Vector */
1818   SELECT_COLUMN   /* Choose a single column from a multi-column SELECT */
1819   IF_NULL_ROW     /* the if-null-row operator */
1820   ASTERISK        /* The "*" in count(*) and similar */
1821   SPAN            /* The span operator */
1822 .
1823 /* There must be no more than 255 tokens defined above.  If this grammar
1824 ** is extended with new rules and tokens, they must either be so few in
1825 ** number that TK_SPAN is no more than 255, or else the new tokens must
1826 ** appear after this line.
1827 */
1828 %include {
1829 #if TK_SPAN>255
1830 # error too many tokens in the grammar
1831 #endif
1832 }
1833 
1834 /*
1835 ** The TK_SPACE and TK_ILLEGAL tokens must be the last two tokens.  The
1836 ** parser depends on this.  Those tokens are not used in any grammar rule.
1837 ** They are only used by the tokenizer.  Declare them last so that they
1838 ** are guaranteed to be the last two tokens
1839 */
1840 %token SPACE ILLEGAL.
1841