1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains SQLite's grammar for SQL. Process this file 13 ** using the lemon parser generator to generate C code that runs 14 ** the parser. Lemon will also generate a header file containing 15 ** numeric codes for all of the tokens. 16 */ 17 18 // All token codes are small integers with #defines that begin with "TK_" 19 %token_prefix TK_ 20 21 // The type of the data attached to each token is Token. This is also the 22 // default type for non-terminals. 23 // 24 %token_type {Token} 25 %default_type {Token} 26 27 // The generated parser function takes a 4th argument as follows: 28 %extra_argument {Parse *pParse} 29 30 // This code runs whenever there is a syntax error 31 // 32 %syntax_error { 33 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 34 assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */ 35 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 36 pParse->parseError = 1; 37 } 38 %stack_overflow { 39 UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */ 40 sqlite3ErrorMsg(pParse, "parser stack overflow"); 41 pParse->parseError = 1; 42 } 43 44 // The name of the generated procedure that implements the parser 45 // is as follows: 46 %name sqlite3Parser 47 48 // The following text is included near the beginning of the C source 49 // code file that implements the parser. 50 // 51 %include { 52 #include "sqliteInt.h" 53 54 /* 55 ** Disable all error recovery processing in the parser push-down 56 ** automaton. 57 */ 58 #define YYNOERRORRECOVERY 1 59 60 /* 61 ** Make yytestcase() the same as testcase() 62 */ 63 #define yytestcase(X) testcase(X) 64 65 /* 66 ** An instance of this structure holds information about the 67 ** LIMIT clause of a SELECT statement. 68 */ 69 struct LimitVal { 70 Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */ 71 Expr *pOffset; /* The OFFSET expression. NULL if there is none */ 72 }; 73 74 /* 75 ** An instance of this structure is used to store the LIKE, 76 ** GLOB, NOT LIKE, and NOT GLOB operators. 77 */ 78 struct LikeOp { 79 Token eOperator; /* "like" or "glob" or "regexp" */ 80 int not; /* True if the NOT keyword is present */ 81 }; 82 83 /* 84 ** An instance of the following structure describes the event of a 85 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 86 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 87 ** 88 ** UPDATE ON (a,b,c) 89 ** 90 ** Then the "b" IdList records the list "a,b,c". 91 */ 92 struct TrigEvent { int a; IdList * b; }; 93 94 /* 95 ** An instance of this structure holds the ATTACH key and the key type. 96 */ 97 struct AttachKey { int type; Token key; }; 98 99 } // end %include 100 101 // Input is a single SQL command 102 input ::= cmdlist. 103 cmdlist ::= cmdlist ecmd. 104 cmdlist ::= ecmd. 105 ecmd ::= SEMI. 106 ecmd ::= explain cmdx SEMI. 107 explain ::= . { sqlite3BeginParse(pParse, 0); } 108 %ifndef SQLITE_OMIT_EXPLAIN 109 explain ::= EXPLAIN. { sqlite3BeginParse(pParse, 1); } 110 explain ::= EXPLAIN QUERY PLAN. { sqlite3BeginParse(pParse, 2); } 111 %endif SQLITE_OMIT_EXPLAIN 112 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 113 114 ///////////////////// Begin and end transactions. //////////////////////////// 115 // 116 117 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 118 trans_opt ::= . 119 trans_opt ::= TRANSACTION. 120 trans_opt ::= TRANSACTION nm. 121 %type transtype {int} 122 transtype(A) ::= . {A = TK_DEFERRED;} 123 transtype(A) ::= DEFERRED(X). {A = @X;} 124 transtype(A) ::= IMMEDIATE(X). {A = @X;} 125 transtype(A) ::= EXCLUSIVE(X). {A = @X;} 126 cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);} 127 cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);} 128 cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);} 129 130 savepoint_opt ::= SAVEPOINT. 131 savepoint_opt ::= . 132 cmd ::= SAVEPOINT nm(X). { 133 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 134 } 135 cmd ::= RELEASE savepoint_opt nm(X). { 136 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 137 } 138 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 139 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 140 } 141 142 ///////////////////// The CREATE TABLE statement //////////////////////////// 143 // 144 cmd ::= create_table create_table_args. 145 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 146 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 147 } 148 createkw(A) ::= CREATE(X). { 149 pParse->db->lookaside.bEnabled = 0; 150 A = X; 151 } 152 %type ifnotexists {int} 153 ifnotexists(A) ::= . {A = 0;} 154 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 155 %type temp {int} 156 %ifndef SQLITE_OMIT_TEMPDB 157 temp(A) ::= TEMP. {A = 1;} 158 %endif SQLITE_OMIT_TEMPDB 159 temp(A) ::= . {A = 0;} 160 create_table_args ::= LP columnlist conslist_opt(X) RP(Y). { 161 sqlite3EndTable(pParse,&X,&Y,0); 162 } 163 create_table_args ::= AS select(S). { 164 sqlite3EndTable(pParse,0,0,S); 165 sqlite3SelectDelete(pParse->db, S); 166 } 167 columnlist ::= columnlist COMMA column. 168 columnlist ::= column. 169 170 // A "column" is a complete description of a single column in a 171 // CREATE TABLE statement. This includes the column name, its 172 // datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES, 173 // NOT NULL and so forth. 174 // 175 column(A) ::= columnid(X) type carglist. { 176 A.z = X.z; 177 A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n; 178 } 179 columnid(A) ::= nm(X). { 180 sqlite3AddColumn(pParse,&X); 181 A = X; 182 } 183 184 185 // An IDENTIFIER can be a generic identifier, or one of several 186 // keywords. Any non-standard keyword can also be an identifier. 187 // 188 %type id {Token} 189 id(A) ::= ID(X). {A = X;} 190 id(A) ::= INDEXED(X). {A = X;} 191 192 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 193 // fallback to ID if they will not parse as their original value. 194 // This obviates the need for the "id" nonterminal. 195 // 196 %fallback ID 197 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 198 CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR 199 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 200 QUERY KEY OF OFFSET PRAGMA RAISE RELEASE REPLACE RESTRICT ROW ROLLBACK 201 SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL 202 %ifdef SQLITE_OMIT_COMPOUND_SELECT 203 EXCEPT INTERSECT UNION 204 %endif SQLITE_OMIT_COMPOUND_SELECT 205 REINDEX RENAME CTIME_KW IF 206 . 207 %wildcard ANY. 208 209 // Define operator precedence early so that this is the first occurance 210 // of the operator tokens in the grammer. Keeping the operators together 211 // causes them to be assigned integer values that are close together, 212 // which keeps parser tables smaller. 213 // 214 // The token values assigned to these symbols is determined by the order 215 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 216 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 217 // the sqlite3ExprIfFalse() routine for additional information on this 218 // constraint. 219 // 220 %left OR. 221 %left AND. 222 %right NOT. 223 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 224 %left GT LE LT GE. 225 %right ESCAPE. 226 %left BITAND BITOR LSHIFT RSHIFT. 227 %left PLUS MINUS. 228 %left STAR SLASH REM. 229 %left CONCAT. 230 %left COLLATE. 231 %right BITNOT. 232 233 // And "ids" is an identifer-or-string. 234 // 235 %type ids {Token} 236 ids(A) ::= ID|STRING(X). {A = X;} 237 238 // The name of a column or table can be any of the following: 239 // 240 %type nm {Token} 241 nm(A) ::= id(X). {A = X;} 242 nm(A) ::= STRING(X). {A = X;} 243 nm(A) ::= JOIN_KW(X). {A = X;} 244 245 // A typetoken is really one or more tokens that form a type name such 246 // as can be found after the column name in a CREATE TABLE statement. 247 // Multiple tokens are concatenated to form the value of the typetoken. 248 // 249 %type typetoken {Token} 250 type ::= . 251 type ::= typetoken(X). {sqlite3AddColumnType(pParse,&X);} 252 typetoken(A) ::= typename(X). {A = X;} 253 typetoken(A) ::= typename(X) LP signed RP(Y). { 254 A.z = X.z; 255 A.n = (int)(&Y.z[Y.n] - X.z); 256 } 257 typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). { 258 A.z = X.z; 259 A.n = (int)(&Y.z[Y.n] - X.z); 260 } 261 %type typename {Token} 262 typename(A) ::= ids(X). {A = X;} 263 typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);} 264 signed ::= plus_num. 265 signed ::= minus_num. 266 267 // "carglist" is a list of additional constraints that come after the 268 // column name and column type in a CREATE TABLE statement. 269 // 270 carglist ::= carglist carg. 271 carglist ::= . 272 carg ::= CONSTRAINT nm ccons. 273 carg ::= ccons. 274 ccons ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,&X);} 275 ccons ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,&X);} 276 ccons ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,&X);} 277 ccons ::= DEFAULT MINUS(A) term(X). { 278 ExprSpan v; 279 v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0); 280 v.zStart = A.z; 281 v.zEnd = X.zEnd; 282 sqlite3AddDefaultValue(pParse,&v); 283 } 284 ccons ::= DEFAULT id(X). { 285 ExprSpan v; 286 spanExpr(&v, pParse, TK_STRING, &X); 287 sqlite3AddDefaultValue(pParse,&v); 288 } 289 290 // In addition to the type name, we also care about the primary key and 291 // UNIQUE constraints. 292 // 293 ccons ::= NULL onconf. 294 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 295 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 296 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 297 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);} 298 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X.pExpr);} 299 ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R). 300 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 301 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 302 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 303 304 // The optional AUTOINCREMENT keyword 305 %type autoinc {int} 306 autoinc(X) ::= . {X = 0;} 307 autoinc(X) ::= AUTOINCR. {X = 1;} 308 309 // The next group of rules parses the arguments to a REFERENCES clause 310 // that determine if the referential integrity checking is deferred or 311 // or immediate and which determine what action to take if a ref-integ 312 // check fails. 313 // 314 %type refargs {int} 315 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} 316 refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; } 317 %type refarg {struct {int value; int mask;}} 318 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 319 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 320 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 321 %type refact {int} 322 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} 323 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} 324 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} 325 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} 326 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} 327 %type defer_subclause {int} 328 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 329 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 330 %type init_deferred_pred_opt {int} 331 init_deferred_pred_opt(A) ::= . {A = 0;} 332 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 333 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 334 335 // For the time being, the only constraint we care about is the primary 336 // key and UNIQUE. Both create indices. 337 // 338 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 339 conslist_opt(A) ::= COMMA(X) conslist. {A = X;} 340 conslist ::= conslist COMMA tcons. 341 conslist ::= conslist tcons. 342 conslist ::= tcons. 343 tcons ::= CONSTRAINT nm. 344 tcons ::= PRIMARY KEY LP idxlist(X) autoinc(I) RP onconf(R). 345 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 346 tcons ::= UNIQUE LP idxlist(X) RP onconf(R). 347 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);} 348 tcons ::= CHECK LP expr(E) RP onconf. 349 {sqlite3AddCheckConstraint(pParse,E.pExpr);} 350 tcons ::= FOREIGN KEY LP idxlist(FA) RP 351 REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). { 352 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 353 sqlite3DeferForeignKey(pParse, D); 354 } 355 %type defer_subclause_opt {int} 356 defer_subclause_opt(A) ::= . {A = 0;} 357 defer_subclause_opt(A) ::= defer_subclause(X). {A = X;} 358 359 // The following is a non-standard extension that allows us to declare the 360 // default behavior when there is a constraint conflict. 361 // 362 %type onconf {int} 363 %type orconf {u8} 364 %type resolvetype {int} 365 onconf(A) ::= . {A = OE_Default;} 366 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 367 orconf(A) ::= . {A = OE_Default;} 368 orconf(A) ::= OR resolvetype(X). {A = (u8)X;} 369 resolvetype(A) ::= raisetype(X). {A = X;} 370 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 371 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 372 373 ////////////////////////// The DROP TABLE ///////////////////////////////////// 374 // 375 cmd ::= DROP TABLE ifexists(E) fullname(X). { 376 sqlite3DropTable(pParse, X, 0, E); 377 } 378 %type ifexists {int} 379 ifexists(A) ::= IF EXISTS. {A = 1;} 380 ifexists(A) ::= . {A = 0;} 381 382 ///////////////////// The CREATE VIEW statement ///////////////////////////// 383 // 384 %ifndef SQLITE_OMIT_VIEW 385 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) AS select(S). { 386 sqlite3CreateView(pParse, &X, &Y, &Z, S, T, E); 387 } 388 cmd ::= DROP VIEW ifexists(E) fullname(X). { 389 sqlite3DropTable(pParse, X, 1, E); 390 } 391 %endif SQLITE_OMIT_VIEW 392 393 //////////////////////// The SELECT statement ///////////////////////////////// 394 // 395 cmd ::= select(X). { 396 SelectDest dest = {SRT_Output, 0, 0, 0, 0}; 397 sqlite3Select(pParse, X, &dest); 398 sqlite3SelectDelete(pParse->db, X); 399 } 400 401 %type select {Select*} 402 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 403 %type oneselect {Select*} 404 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 405 406 select(A) ::= oneselect(X). {A = X;} 407 %ifndef SQLITE_OMIT_COMPOUND_SELECT 408 select(A) ::= select(X) multiselect_op(Y) oneselect(Z). { 409 if( Z ){ 410 Z->op = (u8)Y; 411 Z->pPrior = X; 412 }else{ 413 sqlite3SelectDelete(pParse->db, X); 414 } 415 A = Z; 416 } 417 %type multiselect_op {int} 418 multiselect_op(A) ::= UNION(OP). {A = @OP;} 419 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 420 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP;} 421 %endif SQLITE_OMIT_COMPOUND_SELECT 422 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 423 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). { 424 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset); 425 } 426 427 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 428 // present and false (0) if it is not. 429 // 430 %type distinct {int} 431 distinct(A) ::= DISTINCT. {A = 1;} 432 distinct(A) ::= ALL. {A = 0;} 433 distinct(A) ::= . {A = 0;} 434 435 // selcollist is a list of expressions that are to become the return 436 // values of the SELECT statement. The "*" in statements like 437 // "SELECT * FROM ..." is encoded as a special expression with an 438 // opcode of TK_ALL. 439 // 440 %type selcollist {ExprList*} 441 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 442 %type sclp {ExprList*} 443 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 444 sclp(A) ::= selcollist(X) COMMA. {A = X;} 445 sclp(A) ::= . {A = 0;} 446 selcollist(A) ::= sclp(P) expr(X) as(Y). { 447 A = sqlite3ExprListAppend(pParse, P, X.pExpr); 448 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 449 sqlite3ExprListSetSpan(pParse,A,&X); 450 } 451 selcollist(A) ::= sclp(P) STAR. { 452 Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0); 453 A = sqlite3ExprListAppend(pParse, P, p); 454 } 455 selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). { 456 Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &Y); 457 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 458 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); 459 A = sqlite3ExprListAppend(pParse,P, pDot); 460 } 461 462 // An option "AS <id>" phrase that can follow one of the expressions that 463 // define the result set, or one of the tables in the FROM clause. 464 // 465 %type as {Token} 466 as(X) ::= AS nm(Y). {X = Y;} 467 as(X) ::= ids(Y). {X = Y;} 468 as(X) ::= . {X.n = 0;} 469 470 471 %type seltablist {SrcList*} 472 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 473 %type stl_prefix {SrcList*} 474 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 475 %type from {SrcList*} 476 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 477 478 // A complete FROM clause. 479 // 480 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} 481 from(A) ::= FROM seltablist(X). { 482 A = X; 483 sqlite3SrcListShiftJoinType(A); 484 } 485 486 // "seltablist" is a "Select Table List" - the content of the FROM clause 487 // in a SELECT statement. "stl_prefix" is a prefix of this list. 488 // 489 stl_prefix(A) ::= seltablist(X) joinop(Y). { 490 A = X; 491 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].jointype = (u8)Y; 492 } 493 stl_prefix(A) ::= . {A = 0;} 494 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I) on_opt(N) using_opt(U). { 495 A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U); 496 sqlite3SrcListIndexedBy(pParse, A, &I); 497 } 498 %ifndef SQLITE_OMIT_SUBQUERY 499 seltablist(A) ::= stl_prefix(X) LP select(S) RP 500 as(Z) on_opt(N) using_opt(U). { 501 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U); 502 } 503 seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP 504 as(Z) on_opt(N) using_opt(U). { 505 if( X==0 && Z.n==0 && N==0 && U==0 ){ 506 A = F; 507 }else{ 508 Select *pSubquery; 509 sqlite3SrcListShiftJoinType(F); 510 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0); 511 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U); 512 } 513 } 514 515 // A seltablist_paren nonterminal represents anything in a FROM that 516 // is contained inside parentheses. This can be either a subquery or 517 // a grouping of table and subqueries. 518 // 519 // %type seltablist_paren {Select*} 520 // %destructor seltablist_paren {sqlite3SelectDelete(pParse->db, $$);} 521 // seltablist_paren(A) ::= select(S). {A = S;} 522 // seltablist_paren(A) ::= seltablist(F). { 523 // sqlite3SrcListShiftJoinType(F); 524 // A = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0); 525 // } 526 %endif SQLITE_OMIT_SUBQUERY 527 528 %type dbnm {Token} 529 dbnm(A) ::= . {A.z=0; A.n=0;} 530 dbnm(A) ::= DOT nm(X). {A = X;} 531 532 %type fullname {SrcList*} 533 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 534 fullname(A) ::= nm(X) dbnm(Y). {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);} 535 536 %type joinop {int} 537 %type joinop2 {int} 538 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 539 joinop(X) ::= JOIN_KW(A) JOIN. { X = sqlite3JoinType(pParse,&A,0,0); } 540 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. { X = sqlite3JoinType(pParse,&A,&B,0); } 541 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 542 { X = sqlite3JoinType(pParse,&A,&B,&C); } 543 544 %type on_opt {Expr*} 545 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} 546 on_opt(N) ::= ON expr(E). {N = E.pExpr;} 547 on_opt(N) ::= . {N = 0;} 548 549 // Note that this block abuses the Token type just a little. If there is 550 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 551 // there is an INDEXED BY clause, then the token is populated as per normal, 552 // with z pointing to the token data and n containing the number of bytes 553 // in the token. 554 // 555 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 556 // normally illegal. The sqlite3SrcListIndexedBy() function 557 // recognizes and interprets this as a special case. 558 // 559 %type indexed_opt {Token} 560 indexed_opt(A) ::= . {A.z=0; A.n=0;} 561 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} 562 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 563 564 %type using_opt {IdList*} 565 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} 566 using_opt(U) ::= USING LP inscollist(L) RP. {U = L;} 567 using_opt(U) ::= . {U = 0;} 568 569 570 %type orderby_opt {ExprList*} 571 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 572 %type sortlist {ExprList*} 573 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 574 %type sortitem {Expr*} 575 %destructor sortitem {sqlite3ExprDelete(pParse->db, $$);} 576 577 orderby_opt(A) ::= . {A = 0;} 578 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 579 sortlist(A) ::= sortlist(X) COMMA sortitem(Y) sortorder(Z). { 580 A = sqlite3ExprListAppend(pParse,X,Y); 581 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 582 } 583 sortlist(A) ::= sortitem(Y) sortorder(Z). { 584 A = sqlite3ExprListAppend(pParse,0,Y); 585 if( A && ALWAYS(A->a) ) A->a[0].sortOrder = (u8)Z; 586 } 587 sortitem(A) ::= expr(X). {A = X.pExpr;} 588 589 %type sortorder {int} 590 591 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 592 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 593 sortorder(A) ::= . {A = SQLITE_SO_ASC;} 594 595 %type groupby_opt {ExprList*} 596 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 597 groupby_opt(A) ::= . {A = 0;} 598 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 599 600 %type having_opt {Expr*} 601 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 602 having_opt(A) ::= . {A = 0;} 603 having_opt(A) ::= HAVING expr(X). {A = X.pExpr;} 604 605 %type limit_opt {struct LimitVal} 606 607 // The destructor for limit_opt will never fire in the current grammar. 608 // The limit_opt non-terminal only occurs at the end of a single production 609 // rule for SELECT statements. As soon as the rule that create the 610 // limit_opt non-terminal reduces, the SELECT statement rule will also 611 // reduce. So there is never a limit_opt non-terminal on the stack 612 // except as a transient. So there is never anything to destroy. 613 // 614 //%destructor limit_opt { 615 // sqlite3ExprDelete(pParse->db, $$.pLimit); 616 // sqlite3ExprDelete(pParse->db, $$.pOffset); 617 //} 618 limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;} 619 limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X.pExpr; A.pOffset = 0;} 620 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 621 {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;} 622 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 623 {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;} 624 625 /////////////////////////// The DELETE statement ///////////////////////////// 626 // 627 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 628 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W) 629 orderby_opt(O) limit_opt(L). { 630 sqlite3SrcListIndexedBy(pParse, X, &I); 631 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE"); 632 sqlite3DeleteFrom(pParse,X,W); 633 } 634 %endif 635 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 636 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W). { 637 sqlite3SrcListIndexedBy(pParse, X, &I); 638 sqlite3DeleteFrom(pParse,X,W); 639 } 640 %endif 641 642 %type where_opt {Expr*} 643 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 644 645 where_opt(A) ::= . {A = 0;} 646 where_opt(A) ::= WHERE expr(X). {A = X.pExpr;} 647 648 ////////////////////////// The UPDATE command //////////////////////////////// 649 // 650 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 651 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W) orderby_opt(O) limit_opt(L). { 652 sqlite3SrcListIndexedBy(pParse, X, &I); 653 sqlite3ExprListCheckLength(pParse,Y,"set list"); 654 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE"); 655 sqlite3Update(pParse,X,Y,W,R); 656 } 657 %endif 658 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 659 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W). { 660 sqlite3SrcListIndexedBy(pParse, X, &I); 661 sqlite3ExprListCheckLength(pParse,Y,"set list"); 662 sqlite3Update(pParse,X,Y,W,R); 663 } 664 %endif 665 666 %type setlist {ExprList*} 667 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 668 669 setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). { 670 A = sqlite3ExprListAppend(pParse, Z, Y.pExpr); 671 sqlite3ExprListSetName(pParse, A, &X, 1); 672 } 673 setlist(A) ::= nm(X) EQ expr(Y). { 674 A = sqlite3ExprListAppend(pParse, 0, Y.pExpr); 675 sqlite3ExprListSetName(pParse, A, &X, 1); 676 } 677 678 ////////////////////////// The INSERT command ///////////////////////////////// 679 // 680 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) 681 VALUES LP itemlist(Y) RP. 682 {sqlite3Insert(pParse, X, Y, 0, F, R);} 683 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) select(S). 684 {sqlite3Insert(pParse, X, 0, S, F, R);} 685 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) DEFAULT VALUES. 686 {sqlite3Insert(pParse, X, 0, 0, F, R);} 687 688 %type insert_cmd {u8} 689 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 690 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 691 692 693 %type itemlist {ExprList*} 694 %destructor itemlist {sqlite3ExprListDelete(pParse->db, $$);} 695 696 itemlist(A) ::= itemlist(X) COMMA expr(Y). 697 {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);} 698 itemlist(A) ::= expr(X). 699 {A = sqlite3ExprListAppend(pParse,0,X.pExpr);} 700 701 %type inscollist_opt {IdList*} 702 %destructor inscollist_opt {sqlite3IdListDelete(pParse->db, $$);} 703 %type inscollist {IdList*} 704 %destructor inscollist {sqlite3IdListDelete(pParse->db, $$);} 705 706 inscollist_opt(A) ::= . {A = 0;} 707 inscollist_opt(A) ::= LP inscollist(X) RP. {A = X;} 708 inscollist(A) ::= inscollist(X) COMMA nm(Y). 709 {A = sqlite3IdListAppend(pParse->db,X,&Y);} 710 inscollist(A) ::= nm(Y). 711 {A = sqlite3IdListAppend(pParse->db,0,&Y);} 712 713 /////////////////////////// Expression Processing ///////////////////////////// 714 // 715 716 %type expr {ExprSpan} 717 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);} 718 %type term {ExprSpan} 719 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);} 720 721 %include { 722 /* This is a utility routine used to set the ExprSpan.zStart and 723 ** ExprSpan.zEnd values of pOut so that the span covers the complete 724 ** range of text beginning with pStart and going to the end of pEnd. 725 */ 726 static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){ 727 pOut->zStart = pStart->z; 728 pOut->zEnd = &pEnd->z[pEnd->n]; 729 } 730 731 /* Construct a new Expr object from a single identifier. Use the 732 ** new Expr to populate pOut. Set the span of pOut to be the identifier 733 ** that created the expression. 734 */ 735 static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){ 736 pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue); 737 pOut->zStart = pValue->z; 738 pOut->zEnd = &pValue->z[pValue->n]; 739 } 740 } 741 742 expr(A) ::= term(X). {A = X;} 743 expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);} 744 term(A) ::= NULL(X). {spanExpr(&A, pParse, @X, &X);} 745 expr(A) ::= id(X). {spanExpr(&A, pParse, TK_ID, &X);} 746 expr(A) ::= JOIN_KW(X). {spanExpr(&A, pParse, TK_ID, &X);} 747 expr(A) ::= nm(X) DOT nm(Y). { 748 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 749 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 750 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0); 751 spanSet(&A,&X,&Y); 752 } 753 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 754 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); 755 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); 756 Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z); 757 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0); 758 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0); 759 spanSet(&A,&X,&Z); 760 } 761 term(A) ::= INTEGER|FLOAT|BLOB(X). {spanExpr(&A, pParse, @X, &X);} 762 term(A) ::= STRING(X). {spanExpr(&A, pParse, @X, &X);} 763 expr(A) ::= REGISTER(X). { 764 /* When doing a nested parse, one can include terms in an expression 765 ** that look like this: #1 #2 ... These terms refer to registers 766 ** in the virtual machine. #N is the N-th register. */ 767 if( pParse->nested==0 ){ 768 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X); 769 A.pExpr = 0; 770 }else{ 771 A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X); 772 if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable); 773 } 774 spanSet(&A, &X, &X); 775 } 776 expr(A) ::= VARIABLE(X). { 777 spanExpr(&A, pParse, TK_VARIABLE, &X); 778 sqlite3ExprAssignVarNumber(pParse, A.pExpr); 779 spanSet(&A, &X, &X); 780 } 781 expr(A) ::= expr(E) COLLATE ids(C). { 782 A.pExpr = sqlite3ExprSetColl(pParse, E.pExpr, &C); 783 A.zStart = E.zStart; 784 A.zEnd = &C.z[C.n]; 785 } 786 %ifndef SQLITE_OMIT_CAST 787 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). { 788 A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T); 789 spanSet(&A,&X,&Y); 790 } 791 %endif SQLITE_OMIT_CAST 792 expr(A) ::= ID(X) LP distinct(D) exprlist(Y) RP(E). { 793 if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ 794 sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X); 795 } 796 A.pExpr = sqlite3ExprFunction(pParse, Y, &X); 797 spanSet(&A,&X,&E); 798 if( D && A.pExpr ){ 799 A.pExpr->flags |= EP_Distinct; 800 } 801 } 802 expr(A) ::= ID(X) LP STAR RP(E). { 803 A.pExpr = sqlite3ExprFunction(pParse, 0, &X); 804 spanSet(&A,&X,&E); 805 } 806 term(A) ::= CTIME_KW(OP). { 807 /* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are 808 ** treated as functions that return constants */ 809 A.pExpr = sqlite3ExprFunction(pParse, 0,&OP); 810 if( A.pExpr ){ 811 A.pExpr->op = TK_CONST_FUNC; 812 } 813 spanSet(&A, &OP, &OP); 814 } 815 816 %include { 817 /* This routine constructs a binary expression node out of two ExprSpan 818 ** objects and uses the result to populate a new ExprSpan object. 819 */ 820 static void spanBinaryExpr( 821 ExprSpan *pOut, /* Write the result here */ 822 Parse *pParse, /* The parsing context. Errors accumulate here */ 823 int op, /* The binary operation */ 824 ExprSpan *pLeft, /* The left operand */ 825 ExprSpan *pRight /* The right operand */ 826 ){ 827 pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0); 828 pOut->zStart = pLeft->zStart; 829 pOut->zEnd = pRight->zEnd; 830 } 831 } 832 833 expr(A) ::= expr(X) AND(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 834 expr(A) ::= expr(X) OR(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 835 expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y). 836 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 837 expr(A) ::= expr(X) EQ|NE(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 838 expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 839 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 840 expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y). 841 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 842 expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y). 843 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 844 expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} 845 %type likeop {struct LikeOp} 846 likeop(A) ::= LIKE_KW(X). {A.eOperator = X; A.not = 0;} 847 likeop(A) ::= NOT LIKE_KW(X). {A.eOperator = X; A.not = 1;} 848 likeop(A) ::= MATCH(X). {A.eOperator = X; A.not = 0;} 849 likeop(A) ::= NOT MATCH(X). {A.eOperator = X; A.not = 1;} 850 %type escape {ExprSpan} 851 %destructor escape {sqlite3ExprDelete(pParse->db, $$.pExpr);} 852 escape(X) ::= ESCAPE expr(A). [ESCAPE] {X = A;} 853 escape(X) ::= . [ESCAPE] {memset(&X,0,sizeof(X));} 854 expr(A) ::= expr(X) likeop(OP) expr(Y) escape(E). [LIKE_KW] { 855 ExprList *pList; 856 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); 857 pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); 858 if( E.pExpr ){ 859 pList = sqlite3ExprListAppend(pParse,pList, E.pExpr); 860 } 861 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); 862 if( OP.not ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 863 A.zStart = X.zStart; 864 A.zEnd = Y.zEnd; 865 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; 866 } 867 868 %include { 869 /* Construct an expression node for a unary postfix operator 870 */ 871 static void spanUnaryPostfix( 872 ExprSpan *pOut, /* Write the new expression node here */ 873 Parse *pParse, /* Parsing context to record errors */ 874 int op, /* The operator */ 875 ExprSpan *pOperand, /* The operand */ 876 Token *pPostOp /* The operand token for setting the span */ 877 ){ 878 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 879 pOut->zStart = pOperand->zStart; 880 pOut->zEnd = &pPostOp->z[pPostOp->n]; 881 } 882 } 883 884 expr(A) ::= expr(X) ISNULL|NOTNULL(E). {spanUnaryPostfix(&A,pParse,@E,&X,&E);} 885 expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);} 886 887 %include { 888 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a 889 ** unary TK_ISNULL or TK_NOTNULL expression. */ 890 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ 891 sqlite3 *db = pParse->db; 892 if( db->mallocFailed==0 && pY->op==TK_NULL ){ 893 pA->op = op; 894 sqlite3ExprDelete(db, pA->pRight); 895 pA->pRight = 0; 896 } 897 } 898 } 899 900 // expr1 IS expr2 901 // expr1 IS NOT expr2 902 // 903 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 904 // is any other expression, code as TK_IS or TK_ISNOT. 905 // 906 expr(A) ::= expr(X) IS expr(Y). { 907 spanBinaryExpr(&A,pParse,TK_IS,&X,&Y); 908 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL); 909 } 910 expr(A) ::= expr(X) IS NOT expr(Y). { 911 spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y); 912 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL); 913 } 914 915 %include { 916 /* Construct an expression node for a unary prefix operator 917 */ 918 static void spanUnaryPrefix( 919 ExprSpan *pOut, /* Write the new expression node here */ 920 Parse *pParse, /* Parsing context to record errors */ 921 int op, /* The operator */ 922 ExprSpan *pOperand, /* The operand */ 923 Token *pPreOp /* The operand token for setting the span */ 924 ){ 925 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); 926 pOut->zStart = pPreOp->z; 927 pOut->zEnd = pOperand->zEnd; 928 } 929 } 930 931 932 933 expr(A) ::= NOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} 934 expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} 935 expr(A) ::= MINUS(B) expr(X). [BITNOT] 936 {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);} 937 expr(A) ::= PLUS(B) expr(X). [BITNOT] 938 {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);} 939 940 %type between_op {int} 941 between_op(A) ::= BETWEEN. {A = 0;} 942 between_op(A) ::= NOT BETWEEN. {A = 1;} 943 expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 944 ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr); 945 pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr); 946 A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0); 947 if( A.pExpr ){ 948 A.pExpr->x.pList = pList; 949 }else{ 950 sqlite3ExprListDelete(pParse->db, pList); 951 } 952 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 953 A.zStart = W.zStart; 954 A.zEnd = Y.zEnd; 955 } 956 %ifndef SQLITE_OMIT_SUBQUERY 957 %type in_op {int} 958 in_op(A) ::= IN. {A = 0;} 959 in_op(A) ::= NOT IN. {A = 1;} 960 expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] { 961 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 962 if( A.pExpr ){ 963 A.pExpr->x.pList = Y; 964 sqlite3ExprSetHeight(pParse, A.pExpr); 965 }else{ 966 sqlite3ExprListDelete(pParse->db, Y); 967 } 968 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 969 A.zStart = X.zStart; 970 A.zEnd = &E.z[E.n]; 971 } 972 expr(A) ::= LP(B) select(X) RP(E). { 973 A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0); 974 if( A.pExpr ){ 975 A.pExpr->x.pSelect = X; 976 ExprSetProperty(A.pExpr, EP_xIsSelect); 977 sqlite3ExprSetHeight(pParse, A.pExpr); 978 }else{ 979 sqlite3SelectDelete(pParse->db, X); 980 } 981 A.zStart = B.z; 982 A.zEnd = &E.z[E.n]; 983 } 984 expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E). [IN] { 985 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 986 if( A.pExpr ){ 987 A.pExpr->x.pSelect = Y; 988 ExprSetProperty(A.pExpr, EP_xIsSelect); 989 sqlite3ExprSetHeight(pParse, A.pExpr); 990 }else{ 991 sqlite3SelectDelete(pParse->db, Y); 992 } 993 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 994 A.zStart = X.zStart; 995 A.zEnd = &E.z[E.n]; 996 } 997 expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] { 998 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); 999 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); 1000 if( A.pExpr ){ 1001 A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0); 1002 ExprSetProperty(A.pExpr, EP_xIsSelect); 1003 sqlite3ExprSetHeight(pParse, A.pExpr); 1004 }else{ 1005 sqlite3SrcListDelete(pParse->db, pSrc); 1006 } 1007 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); 1008 A.zStart = X.zStart; 1009 A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n]; 1010 } 1011 expr(A) ::= EXISTS(B) LP select(Y) RP(E). { 1012 Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0); 1013 if( p ){ 1014 p->x.pSelect = Y; 1015 ExprSetProperty(p, EP_xIsSelect); 1016 sqlite3ExprSetHeight(pParse, p); 1017 }else{ 1018 sqlite3SelectDelete(pParse->db, Y); 1019 } 1020 A.zStart = B.z; 1021 A.zEnd = &E.z[E.n]; 1022 } 1023 %endif SQLITE_OMIT_SUBQUERY 1024 1025 /* CASE expressions */ 1026 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). { 1027 A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, Z, 0); 1028 if( A.pExpr ){ 1029 A.pExpr->x.pList = Y; 1030 sqlite3ExprSetHeight(pParse, A.pExpr); 1031 }else{ 1032 sqlite3ExprListDelete(pParse->db, Y); 1033 } 1034 A.zStart = C.z; 1035 A.zEnd = &E.z[E.n]; 1036 } 1037 %type case_exprlist {ExprList*} 1038 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1039 case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). { 1040 A = sqlite3ExprListAppend(pParse,X, Y.pExpr); 1041 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1042 } 1043 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1044 A = sqlite3ExprListAppend(pParse,0, Y.pExpr); 1045 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); 1046 } 1047 %type case_else {Expr*} 1048 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1049 case_else(A) ::= ELSE expr(X). {A = X.pExpr;} 1050 case_else(A) ::= . {A = 0;} 1051 %type case_operand {Expr*} 1052 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1053 case_operand(A) ::= expr(X). {A = X.pExpr;} 1054 case_operand(A) ::= . {A = 0;} 1055 1056 %type exprlist {ExprList*} 1057 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1058 %type nexprlist {ExprList*} 1059 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1060 1061 exprlist(A) ::= nexprlist(X). {A = X;} 1062 exprlist(A) ::= . {A = 0;} 1063 nexprlist(A) ::= nexprlist(X) COMMA expr(Y). 1064 {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);} 1065 nexprlist(A) ::= expr(Y). 1066 {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);} 1067 1068 1069 ///////////////////////////// The CREATE INDEX command /////////////////////// 1070 // 1071 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1072 ON nm(Y) LP idxlist(Z) RP(E). { 1073 sqlite3CreateIndex(pParse, &X, &D, 1074 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, 1075 &S, &E, SQLITE_SO_ASC, NE); 1076 } 1077 1078 %type uniqueflag {int} 1079 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1080 uniqueflag(A) ::= . {A = OE_None;} 1081 1082 %type idxlist {ExprList*} 1083 %destructor idxlist {sqlite3ExprListDelete(pParse->db, $$);} 1084 %type idxlist_opt {ExprList*} 1085 %destructor idxlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1086 1087 idxlist_opt(A) ::= . {A = 0;} 1088 idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;} 1089 idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z). { 1090 Expr *p = 0; 1091 if( C.n>0 ){ 1092 p = sqlite3Expr(pParse->db, TK_COLUMN, 0); 1093 sqlite3ExprSetColl(pParse, p, &C); 1094 } 1095 A = sqlite3ExprListAppend(pParse,X, p); 1096 sqlite3ExprListSetName(pParse,A,&Y,1); 1097 sqlite3ExprListCheckLength(pParse, A, "index"); 1098 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 1099 } 1100 idxlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1101 Expr *p = 0; 1102 if( C.n>0 ){ 1103 p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0); 1104 sqlite3ExprSetColl(pParse, p, &C); 1105 } 1106 A = sqlite3ExprListAppend(pParse,0, p); 1107 sqlite3ExprListSetName(pParse, A, &Y, 1); 1108 sqlite3ExprListCheckLength(pParse, A, "index"); 1109 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; 1110 } 1111 1112 %type collate {Token} 1113 collate(C) ::= . {C.z = 0; C.n = 0;} 1114 collate(C) ::= COLLATE ids(X). {C = X;} 1115 1116 1117 ///////////////////////////// The DROP INDEX command ///////////////////////// 1118 // 1119 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1120 1121 ///////////////////////////// The VACUUM command ///////////////////////////// 1122 // 1123 %ifndef SQLITE_OMIT_VACUUM 1124 %ifndef SQLITE_OMIT_ATTACH 1125 cmd ::= VACUUM. {sqlite3Vacuum(pParse);} 1126 cmd ::= VACUUM nm. {sqlite3Vacuum(pParse);} 1127 %endif SQLITE_OMIT_ATTACH 1128 %endif SQLITE_OMIT_VACUUM 1129 1130 ///////////////////////////// The PRAGMA command ///////////////////////////// 1131 // 1132 %ifndef SQLITE_OMIT_PRAGMA 1133 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1134 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1135 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1136 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1137 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1138 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1139 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1140 1141 nmnum(A) ::= plus_num(X). {A = X;} 1142 nmnum(A) ::= nm(X). {A = X;} 1143 nmnum(A) ::= ON(X). {A = X;} 1144 nmnum(A) ::= DELETE(X). {A = X;} 1145 nmnum(A) ::= DEFAULT(X). {A = X;} 1146 %endif SQLITE_OMIT_PRAGMA 1147 plus_num(A) ::= plus_opt number(X). {A = X;} 1148 minus_num(A) ::= MINUS number(X). {A = X;} 1149 number(A) ::= INTEGER|FLOAT(X). {A = X;} 1150 plus_opt ::= PLUS. 1151 plus_opt ::= . 1152 1153 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1154 1155 %ifndef SQLITE_OMIT_TRIGGER 1156 1157 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1158 Token all; 1159 all.z = A.z; 1160 all.n = (int)(Z.z - A.z) + Z.n; 1161 sqlite3FinishTrigger(pParse, S, &all); 1162 } 1163 1164 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1165 trigger_time(C) trigger_event(D) 1166 ON fullname(E) foreach_clause when_clause(G). { 1167 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1168 A = (Z.n==0?B:Z); 1169 } 1170 1171 %type trigger_time {int} 1172 trigger_time(A) ::= BEFORE. { A = TK_BEFORE; } 1173 trigger_time(A) ::= AFTER. { A = TK_AFTER; } 1174 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1175 trigger_time(A) ::= . { A = TK_BEFORE; } 1176 1177 %type trigger_event {struct TrigEvent} 1178 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1179 trigger_event(A) ::= DELETE|INSERT(OP). {A.a = @OP; A.b = 0;} 1180 trigger_event(A) ::= UPDATE(OP). {A.a = @OP; A.b = 0;} 1181 trigger_event(A) ::= UPDATE OF inscollist(X). {A.a = TK_UPDATE; A.b = X;} 1182 1183 foreach_clause ::= . 1184 foreach_clause ::= FOR EACH ROW. 1185 1186 %type when_clause {Expr*} 1187 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1188 when_clause(A) ::= . { A = 0; } 1189 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; } 1190 1191 %type trigger_cmd_list {TriggerStep*} 1192 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1193 trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. { 1194 assert( Y!=0 ); 1195 Y->pLast->pNext = X; 1196 Y->pLast = X; 1197 A = Y; 1198 } 1199 trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. { 1200 assert( X!=0 ); 1201 X->pLast = X; 1202 A = X; 1203 } 1204 1205 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1206 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1207 // the same database as the table that the trigger fires on. 1208 // 1209 %type trnm {Token} 1210 trnm(A) ::= nm(X). {A = X;} 1211 trnm(A) ::= nm DOT nm(X). { 1212 A = X; 1213 sqlite3ErrorMsg(pParse, 1214 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1215 "statements within triggers"); 1216 } 1217 1218 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1219 // statements within triggers. We make a specific error message for this 1220 // since it is an exception to the default grammar rules. 1221 // 1222 tridxby ::= . 1223 tridxby ::= INDEXED BY nm. { 1224 sqlite3ErrorMsg(pParse, 1225 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1226 "within triggers"); 1227 } 1228 tridxby ::= NOT INDEXED. { 1229 sqlite3ErrorMsg(pParse, 1230 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1231 "within triggers"); 1232 } 1233 1234 1235 1236 %type trigger_cmd {TriggerStep*} 1237 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1238 // UPDATE 1239 trigger_cmd(A) ::= 1240 UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z). 1241 { A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); } 1242 1243 // INSERT 1244 trigger_cmd(A) ::= 1245 insert_cmd(R) INTO trnm(X) inscollist_opt(F) VALUES LP itemlist(Y) RP. 1246 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, Y, 0, R);} 1247 1248 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) inscollist_opt(F) select(S). 1249 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, 0, S, R);} 1250 1251 // DELETE 1252 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y). 1253 {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);} 1254 1255 // SELECT 1256 trigger_cmd(A) ::= select(X). {A = sqlite3TriggerSelectStep(pParse->db, X); } 1257 1258 // The special RAISE expression that may occur in trigger programs 1259 expr(A) ::= RAISE(X) LP IGNORE RP(Y). { 1260 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0); 1261 if( A.pExpr ){ 1262 A.pExpr->affinity = OE_Ignore; 1263 } 1264 A.zStart = X.z; 1265 A.zEnd = &Y.z[Y.n]; 1266 } 1267 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). { 1268 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z); 1269 if( A.pExpr ) { 1270 A.pExpr->affinity = (char)T; 1271 } 1272 A.zStart = X.z; 1273 A.zEnd = &Y.z[Y.n]; 1274 } 1275 %endif !SQLITE_OMIT_TRIGGER 1276 1277 %type raisetype {int} 1278 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1279 raisetype(A) ::= ABORT. {A = OE_Abort;} 1280 raisetype(A) ::= FAIL. {A = OE_Fail;} 1281 1282 1283 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1284 %ifndef SQLITE_OMIT_TRIGGER 1285 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1286 sqlite3DropTrigger(pParse,X,NOERR); 1287 } 1288 %endif !SQLITE_OMIT_TRIGGER 1289 1290 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1291 %ifndef SQLITE_OMIT_ATTACH 1292 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1293 sqlite3Attach(pParse, F.pExpr, D.pExpr, K); 1294 } 1295 cmd ::= DETACH database_kw_opt expr(D). { 1296 sqlite3Detach(pParse, D.pExpr); 1297 } 1298 1299 %type key_opt {Expr*} 1300 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1301 key_opt(A) ::= . { A = 0; } 1302 key_opt(A) ::= KEY expr(X). { A = X.pExpr; } 1303 1304 database_kw_opt ::= DATABASE. 1305 database_kw_opt ::= . 1306 %endif SQLITE_OMIT_ATTACH 1307 1308 ////////////////////////// REINDEX collation ////////////////////////////////// 1309 %ifndef SQLITE_OMIT_REINDEX 1310 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1311 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1312 %endif SQLITE_OMIT_REINDEX 1313 1314 /////////////////////////////////// ANALYZE /////////////////////////////////// 1315 %ifndef SQLITE_OMIT_ANALYZE 1316 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1317 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1318 %endif 1319 1320 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1321 %ifndef SQLITE_OMIT_ALTERTABLE 1322 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1323 sqlite3AlterRenameTable(pParse,X,&Z); 1324 } 1325 cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). { 1326 sqlite3AlterFinishAddColumn(pParse, &Y); 1327 } 1328 add_column_fullname ::= fullname(X). { 1329 pParse->db->lookaside.bEnabled = 0; 1330 sqlite3AlterBeginAddColumn(pParse, X); 1331 } 1332 kwcolumn_opt ::= . 1333 kwcolumn_opt ::= COLUMNKW. 1334 %endif SQLITE_OMIT_ALTERTABLE 1335 1336 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1337 %ifndef SQLITE_OMIT_VIRTUALTABLE 1338 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1339 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1340 create_vtab ::= createkw VIRTUAL TABLE nm(X) dbnm(Y) USING nm(Z). { 1341 sqlite3VtabBeginParse(pParse, &X, &Y, &Z); 1342 } 1343 vtabarglist ::= vtabarg. 1344 vtabarglist ::= vtabarglist COMMA vtabarg. 1345 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1346 vtabarg ::= vtabarg vtabargtoken. 1347 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1348 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1349 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1350 anylist ::= . 1351 anylist ::= anylist LP anylist RP. 1352 anylist ::= anylist ANY. 1353 %endif SQLITE_OMIT_VIRTUALTABLE 1354