xref: /sqlite-3.40.0/src/parse.y (revision 19125aaf)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains SQLite's grammar for SQL.  Process this file
13 ** using the lemon parser generator to generate C code that runs
14 ** the parser.  Lemon will also generate a header file containing
15 ** numeric codes for all of the tokens.
16 */
17 
18 // All token codes are small integers with #defines that begin with "TK_"
19 %token_prefix TK_
20 
21 // The type of the data attached to each token is Token.  This is also the
22 // default type for non-terminals.
23 //
24 %token_type {Token}
25 %default_type {Token}
26 
27 // The generated parser function takes a 4th argument as follows:
28 %extra_argument {Parse *pParse}
29 
30 // This code runs whenever there is a syntax error
31 //
32 %syntax_error {
33   UNUSED_PARAMETER(yymajor);  /* Silence some compiler warnings */
34   assert( TOKEN.z[0] );  /* The tokenizer always gives us a token */
35   sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
36   pParse->parseError = 1;
37 }
38 %stack_overflow {
39   UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */
40   sqlite3ErrorMsg(pParse, "parser stack overflow");
41   pParse->parseError = 1;
42 }
43 
44 // The name of the generated procedure that implements the parser
45 // is as follows:
46 %name sqlite3Parser
47 
48 // The following text is included near the beginning of the C source
49 // code file that implements the parser.
50 //
51 %include {
52 #include "sqliteInt.h"
53 
54 /*
55 ** Disable all error recovery processing in the parser push-down
56 ** automaton.
57 */
58 #define YYNOERRORRECOVERY 1
59 
60 /*
61 ** Make yytestcase() the same as testcase()
62 */
63 #define yytestcase(X) testcase(X)
64 
65 /*
66 ** An instance of this structure holds information about the
67 ** LIMIT clause of a SELECT statement.
68 */
69 struct LimitVal {
70   Expr *pLimit;    /* The LIMIT expression.  NULL if there is no limit */
71   Expr *pOffset;   /* The OFFSET expression.  NULL if there is none */
72 };
73 
74 /*
75 ** An instance of this structure is used to store the LIKE,
76 ** GLOB, NOT LIKE, and NOT GLOB operators.
77 */
78 struct LikeOp {
79   Token eOperator;  /* "like" or "glob" or "regexp" */
80   int not;         /* True if the NOT keyword is present */
81 };
82 
83 /*
84 ** An instance of the following structure describes the event of a
85 ** TRIGGER.  "a" is the event type, one of TK_UPDATE, TK_INSERT,
86 ** TK_DELETE, or TK_INSTEAD.  If the event is of the form
87 **
88 **      UPDATE ON (a,b,c)
89 **
90 ** Then the "b" IdList records the list "a,b,c".
91 */
92 struct TrigEvent { int a; IdList * b; };
93 
94 /*
95 ** An instance of this structure holds the ATTACH key and the key type.
96 */
97 struct AttachKey { int type;  Token key; };
98 
99 } // end %include
100 
101 // Input is a single SQL command
102 input ::= cmdlist.
103 cmdlist ::= cmdlist ecmd.
104 cmdlist ::= ecmd.
105 ecmd ::= SEMI.
106 ecmd ::= explain cmdx SEMI.
107 explain ::= .           { sqlite3BeginParse(pParse, 0); }
108 %ifndef SQLITE_OMIT_EXPLAIN
109 explain ::= EXPLAIN.              { sqlite3BeginParse(pParse, 1); }
110 explain ::= EXPLAIN QUERY PLAN.   { sqlite3BeginParse(pParse, 2); }
111 %endif  SQLITE_OMIT_EXPLAIN
112 cmdx ::= cmd.           { sqlite3FinishCoding(pParse); }
113 
114 ///////////////////// Begin and end transactions. ////////////////////////////
115 //
116 
117 cmd ::= BEGIN transtype(Y) trans_opt.  {sqlite3BeginTransaction(pParse, Y);}
118 trans_opt ::= .
119 trans_opt ::= TRANSACTION.
120 trans_opt ::= TRANSACTION nm.
121 %type transtype {int}
122 transtype(A) ::= .             {A = TK_DEFERRED;}
123 transtype(A) ::= DEFERRED(X).  {A = @X;}
124 transtype(A) ::= IMMEDIATE(X). {A = @X;}
125 transtype(A) ::= EXCLUSIVE(X). {A = @X;}
126 cmd ::= COMMIT trans_opt.      {sqlite3CommitTransaction(pParse);}
127 cmd ::= END trans_opt.         {sqlite3CommitTransaction(pParse);}
128 cmd ::= ROLLBACK trans_opt.    {sqlite3RollbackTransaction(pParse);}
129 
130 savepoint_opt ::= SAVEPOINT.
131 savepoint_opt ::= .
132 cmd ::= SAVEPOINT nm(X). {
133   sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X);
134 }
135 cmd ::= RELEASE savepoint_opt nm(X). {
136   sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X);
137 }
138 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). {
139   sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X);
140 }
141 
142 ///////////////////// The CREATE TABLE statement ////////////////////////////
143 //
144 cmd ::= create_table create_table_args.
145 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). {
146    sqlite3StartTable(pParse,&Y,&Z,T,0,0,E);
147 }
148 createkw(A) ::= CREATE(X).  {
149   pParse->db->lookaside.bEnabled = 0;
150   A = X;
151 }
152 %type ifnotexists {int}
153 ifnotexists(A) ::= .              {A = 0;}
154 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;}
155 %type temp {int}
156 %ifndef SQLITE_OMIT_TEMPDB
157 temp(A) ::= TEMP.  {A = 1;}
158 %endif  SQLITE_OMIT_TEMPDB
159 temp(A) ::= .      {A = 0;}
160 create_table_args ::= LP columnlist conslist_opt(X) RP(Y). {
161   sqlite3EndTable(pParse,&X,&Y,0);
162 }
163 create_table_args ::= AS select(S). {
164   sqlite3EndTable(pParse,0,0,S);
165   sqlite3SelectDelete(pParse->db, S);
166 }
167 columnlist ::= columnlist COMMA column.
168 columnlist ::= column.
169 
170 // A "column" is a complete description of a single column in a
171 // CREATE TABLE statement.  This includes the column name, its
172 // datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES,
173 // NOT NULL and so forth.
174 //
175 column(A) ::= columnid(X) type carglist. {
176   A.z = X.z;
177   A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n;
178 }
179 columnid(A) ::= nm(X). {
180   sqlite3AddColumn(pParse,&X);
181   A = X;
182 }
183 
184 
185 // An IDENTIFIER can be a generic identifier, or one of several
186 // keywords.  Any non-standard keyword can also be an identifier.
187 //
188 %type id {Token}
189 id(A) ::= ID(X).         {A = X;}
190 id(A) ::= INDEXED(X).    {A = X;}
191 
192 // The following directive causes tokens ABORT, AFTER, ASC, etc. to
193 // fallback to ID if they will not parse as their original value.
194 // This obviates the need for the "id" nonterminal.
195 //
196 %fallback ID
197   ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW
198   CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR
199   IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN
200   QUERY KEY OF OFFSET PRAGMA RAISE RELEASE REPLACE RESTRICT ROW ROLLBACK
201   SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL
202 %ifdef SQLITE_OMIT_COMPOUND_SELECT
203   EXCEPT INTERSECT UNION
204 %endif SQLITE_OMIT_COMPOUND_SELECT
205   REINDEX RENAME CTIME_KW IF
206   .
207 %wildcard ANY.
208 
209 // Define operator precedence early so that this is the first occurance
210 // of the operator tokens in the grammer.  Keeping the operators together
211 // causes them to be assigned integer values that are close together,
212 // which keeps parser tables smaller.
213 //
214 // The token values assigned to these symbols is determined by the order
215 // in which lemon first sees them.  It must be the case that ISNULL/NOTNULL,
216 // NE/EQ, GT/LE, and GE/LT are separated by only a single value.  See
217 // the sqlite3ExprIfFalse() routine for additional information on this
218 // constraint.
219 //
220 %left OR.
221 %left AND.
222 %right NOT.
223 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ.
224 %left GT LE LT GE.
225 %right ESCAPE.
226 %left BITAND BITOR LSHIFT RSHIFT.
227 %left PLUS MINUS.
228 %left STAR SLASH REM.
229 %left CONCAT.
230 %left COLLATE.
231 %right BITNOT.
232 
233 // And "ids" is an identifer-or-string.
234 //
235 %type ids {Token}
236 ids(A) ::= ID|STRING(X).   {A = X;}
237 
238 // The name of a column or table can be any of the following:
239 //
240 %type nm {Token}
241 nm(A) ::= id(X).         {A = X;}
242 nm(A) ::= STRING(X).     {A = X;}
243 nm(A) ::= JOIN_KW(X).    {A = X;}
244 
245 // A typetoken is really one or more tokens that form a type name such
246 // as can be found after the column name in a CREATE TABLE statement.
247 // Multiple tokens are concatenated to form the value of the typetoken.
248 //
249 %type typetoken {Token}
250 type ::= .
251 type ::= typetoken(X).                   {sqlite3AddColumnType(pParse,&X);}
252 typetoken(A) ::= typename(X).   {A = X;}
253 typetoken(A) ::= typename(X) LP signed RP(Y). {
254   A.z = X.z;
255   A.n = (int)(&Y.z[Y.n] - X.z);
256 }
257 typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). {
258   A.z = X.z;
259   A.n = (int)(&Y.z[Y.n] - X.z);
260 }
261 %type typename {Token}
262 typename(A) ::= ids(X).             {A = X;}
263 typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);}
264 signed ::= plus_num.
265 signed ::= minus_num.
266 
267 // "carglist" is a list of additional constraints that come after the
268 // column name and column type in a CREATE TABLE statement.
269 //
270 carglist ::= carglist carg.
271 carglist ::= .
272 carg ::= CONSTRAINT nm ccons.
273 carg ::= ccons.
274 ccons ::= DEFAULT term(X).            {sqlite3AddDefaultValue(pParse,&X);}
275 ccons ::= DEFAULT LP expr(X) RP.      {sqlite3AddDefaultValue(pParse,&X);}
276 ccons ::= DEFAULT PLUS term(X).       {sqlite3AddDefaultValue(pParse,&X);}
277 ccons ::= DEFAULT MINUS(A) term(X).      {
278   ExprSpan v;
279   v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0);
280   v.zStart = A.z;
281   v.zEnd = X.zEnd;
282   sqlite3AddDefaultValue(pParse,&v);
283 }
284 ccons ::= DEFAULT id(X).              {
285   ExprSpan v;
286   spanExpr(&v, pParse, TK_STRING, &X);
287   sqlite3AddDefaultValue(pParse,&v);
288 }
289 
290 // In addition to the type name, we also care about the primary key and
291 // UNIQUE constraints.
292 //
293 ccons ::= NULL onconf.
294 ccons ::= NOT NULL onconf(R).    {sqlite3AddNotNull(pParse, R);}
295 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I).
296                                  {sqlite3AddPrimaryKey(pParse,0,R,I,Z);}
297 ccons ::= UNIQUE onconf(R).      {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);}
298 ccons ::= CHECK LP expr(X) RP.   {sqlite3AddCheckConstraint(pParse,X.pExpr);}
299 ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R).
300                                  {sqlite3CreateForeignKey(pParse,0,&T,TA,R);}
301 ccons ::= defer_subclause(D).    {sqlite3DeferForeignKey(pParse,D);}
302 ccons ::= COLLATE ids(C).        {sqlite3AddCollateType(pParse, &C);}
303 
304 // The optional AUTOINCREMENT keyword
305 %type autoinc {int}
306 autoinc(X) ::= .          {X = 0;}
307 autoinc(X) ::= AUTOINCR.  {X = 1;}
308 
309 // The next group of rules parses the arguments to a REFERENCES clause
310 // that determine if the referential integrity checking is deferred or
311 // or immediate and which determine what action to take if a ref-integ
312 // check fails.
313 //
314 %type refargs {int}
315 refargs(A) ::= .                  { A = OE_None*0x0101; /* EV: R-19803-45884 */}
316 refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; }
317 %type refarg {struct {int value; int mask;}}
318 refarg(A) ::= MATCH nm.              { A.value = 0;     A.mask = 0x000000; }
319 refarg(A) ::= ON DELETE refact(X).   { A.value = X;     A.mask = 0x0000ff; }
320 refarg(A) ::= ON UPDATE refact(X).   { A.value = X<<8;  A.mask = 0x00ff00; }
321 %type refact {int}
322 refact(A) ::= SET NULL.              { A = OE_SetNull;  /* EV: R-33326-45252 */}
323 refact(A) ::= SET DEFAULT.           { A = OE_SetDflt;  /* EV: R-33326-45252 */}
324 refact(A) ::= CASCADE.               { A = OE_Cascade;  /* EV: R-33326-45252 */}
325 refact(A) ::= RESTRICT.              { A = OE_Restrict; /* EV: R-33326-45252 */}
326 refact(A) ::= NO ACTION.             { A = OE_None;     /* EV: R-33326-45252 */}
327 %type defer_subclause {int}
328 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt.     {A = 0;}
329 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X).      {A = X;}
330 %type init_deferred_pred_opt {int}
331 init_deferred_pred_opt(A) ::= .                       {A = 0;}
332 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED.     {A = 1;}
333 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE.    {A = 0;}
334 
335 // For the time being, the only constraint we care about is the primary
336 // key and UNIQUE.  Both create indices.
337 //
338 conslist_opt(A) ::= .                   {A.n = 0; A.z = 0;}
339 conslist_opt(A) ::= COMMA(X) conslist.  {A = X;}
340 conslist ::= conslist COMMA tcons.
341 conslist ::= conslist tcons.
342 conslist ::= tcons.
343 tcons ::= CONSTRAINT nm.
344 tcons ::= PRIMARY KEY LP idxlist(X) autoinc(I) RP onconf(R).
345                                  {sqlite3AddPrimaryKey(pParse,X,R,I,0);}
346 tcons ::= UNIQUE LP idxlist(X) RP onconf(R).
347                                  {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);}
348 tcons ::= CHECK LP expr(E) RP onconf.
349                                  {sqlite3AddCheckConstraint(pParse,E.pExpr);}
350 tcons ::= FOREIGN KEY LP idxlist(FA) RP
351           REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). {
352     sqlite3CreateForeignKey(pParse, FA, &T, TA, R);
353     sqlite3DeferForeignKey(pParse, D);
354 }
355 %type defer_subclause_opt {int}
356 defer_subclause_opt(A) ::= .                    {A = 0;}
357 defer_subclause_opt(A) ::= defer_subclause(X).  {A = X;}
358 
359 // The following is a non-standard extension that allows us to declare the
360 // default behavior when there is a constraint conflict.
361 //
362 %type onconf {int}
363 %type orconf {u8}
364 %type resolvetype {int}
365 onconf(A) ::= .                              {A = OE_Default;}
366 onconf(A) ::= ON CONFLICT resolvetype(X).    {A = X;}
367 orconf(A) ::= .                              {A = OE_Default;}
368 orconf(A) ::= OR resolvetype(X).             {A = (u8)X;}
369 resolvetype(A) ::= raisetype(X).             {A = X;}
370 resolvetype(A) ::= IGNORE.                   {A = OE_Ignore;}
371 resolvetype(A) ::= REPLACE.                  {A = OE_Replace;}
372 
373 ////////////////////////// The DROP TABLE /////////////////////////////////////
374 //
375 cmd ::= DROP TABLE ifexists(E) fullname(X). {
376   sqlite3DropTable(pParse, X, 0, E);
377 }
378 %type ifexists {int}
379 ifexists(A) ::= IF EXISTS.   {A = 1;}
380 ifexists(A) ::= .            {A = 0;}
381 
382 ///////////////////// The CREATE VIEW statement /////////////////////////////
383 //
384 %ifndef SQLITE_OMIT_VIEW
385 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) AS select(S). {
386   sqlite3CreateView(pParse, &X, &Y, &Z, S, T, E);
387 }
388 cmd ::= DROP VIEW ifexists(E) fullname(X). {
389   sqlite3DropTable(pParse, X, 1, E);
390 }
391 %endif  SQLITE_OMIT_VIEW
392 
393 //////////////////////// The SELECT statement /////////////////////////////////
394 //
395 cmd ::= select(X).  {
396   SelectDest dest = {SRT_Output, 0, 0, 0, 0};
397   sqlite3Select(pParse, X, &dest);
398   sqlite3SelectDelete(pParse->db, X);
399 }
400 
401 %type select {Select*}
402 %destructor select {sqlite3SelectDelete(pParse->db, $$);}
403 %type oneselect {Select*}
404 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);}
405 
406 select(A) ::= oneselect(X).                      {A = X;}
407 %ifndef SQLITE_OMIT_COMPOUND_SELECT
408 select(A) ::= select(X) multiselect_op(Y) oneselect(Z).  {
409   if( Z ){
410     Z->op = (u8)Y;
411     Z->pPrior = X;
412   }else{
413     sqlite3SelectDelete(pParse->db, X);
414   }
415   A = Z;
416 }
417 %type multiselect_op {int}
418 multiselect_op(A) ::= UNION(OP).             {A = @OP;}
419 multiselect_op(A) ::= UNION ALL.             {A = TK_ALL;}
420 multiselect_op(A) ::= EXCEPT|INTERSECT(OP).  {A = @OP;}
421 %endif SQLITE_OMIT_COMPOUND_SELECT
422 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y)
423                  groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
424   A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset);
425 }
426 
427 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is
428 // present and false (0) if it is not.
429 //
430 %type distinct {int}
431 distinct(A) ::= DISTINCT.   {A = 1;}
432 distinct(A) ::= ALL.        {A = 0;}
433 distinct(A) ::= .           {A = 0;}
434 
435 // selcollist is a list of expressions that are to become the return
436 // values of the SELECT statement.  The "*" in statements like
437 // "SELECT * FROM ..." is encoded as a special expression with an
438 // opcode of TK_ALL.
439 //
440 %type selcollist {ExprList*}
441 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);}
442 %type sclp {ExprList*}
443 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);}
444 sclp(A) ::= selcollist(X) COMMA.             {A = X;}
445 sclp(A) ::= .                                {A = 0;}
446 selcollist(A) ::= sclp(P) expr(X) as(Y).     {
447    A = sqlite3ExprListAppend(pParse, P, X.pExpr);
448    if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1);
449    sqlite3ExprListSetSpan(pParse,A,&X);
450 }
451 selcollist(A) ::= sclp(P) STAR. {
452   Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0);
453   A = sqlite3ExprListAppend(pParse, P, p);
454 }
455 selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). {
456   Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &Y);
457   Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
458   Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
459   A = sqlite3ExprListAppend(pParse,P, pDot);
460 }
461 
462 // An option "AS <id>" phrase that can follow one of the expressions that
463 // define the result set, or one of the tables in the FROM clause.
464 //
465 %type as {Token}
466 as(X) ::= AS nm(Y).    {X = Y;}
467 as(X) ::= ids(Y).      {X = Y;}
468 as(X) ::= .            {X.n = 0;}
469 
470 
471 %type seltablist {SrcList*}
472 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);}
473 %type stl_prefix {SrcList*}
474 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);}
475 %type from {SrcList*}
476 %destructor from {sqlite3SrcListDelete(pParse->db, $$);}
477 
478 // A complete FROM clause.
479 //
480 from(A) ::= .                {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));}
481 from(A) ::= FROM seltablist(X). {
482   A = X;
483   sqlite3SrcListShiftJoinType(A);
484 }
485 
486 // "seltablist" is a "Select Table List" - the content of the FROM clause
487 // in a SELECT statement.  "stl_prefix" is a prefix of this list.
488 //
489 stl_prefix(A) ::= seltablist(X) joinop(Y).    {
490    A = X;
491    if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].jointype = (u8)Y;
492 }
493 stl_prefix(A) ::= .                           {A = 0;}
494 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I) on_opt(N) using_opt(U). {
495   A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U);
496   sqlite3SrcListIndexedBy(pParse, A, &I);
497 }
498 %ifndef SQLITE_OMIT_SUBQUERY
499   seltablist(A) ::= stl_prefix(X) LP select(S) RP
500                     as(Z) on_opt(N) using_opt(U). {
501     A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U);
502   }
503   seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP
504                     as(Z) on_opt(N) using_opt(U). {
505     if( X==0 && Z.n==0 && N==0 && U==0 ){
506       A = F;
507     }else{
508       Select *pSubquery;
509       sqlite3SrcListShiftJoinType(F);
510       pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0);
511       A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U);
512     }
513   }
514 
515   // A seltablist_paren nonterminal represents anything in a FROM that
516   // is contained inside parentheses.  This can be either a subquery or
517   // a grouping of table and subqueries.
518   //
519 //  %type seltablist_paren {Select*}
520 //  %destructor seltablist_paren {sqlite3SelectDelete(pParse->db, $$);}
521 //  seltablist_paren(A) ::= select(S).      {A = S;}
522 //  seltablist_paren(A) ::= seltablist(F).  {
523 //     sqlite3SrcListShiftJoinType(F);
524 //     A = sqlite3SelectNew(pParse,0,F,0,0,0,0,0,0,0);
525 //  }
526 %endif  SQLITE_OMIT_SUBQUERY
527 
528 %type dbnm {Token}
529 dbnm(A) ::= .          {A.z=0; A.n=0;}
530 dbnm(A) ::= DOT nm(X). {A = X;}
531 
532 %type fullname {SrcList*}
533 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);}
534 fullname(A) ::= nm(X) dbnm(Y).  {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);}
535 
536 %type joinop {int}
537 %type joinop2 {int}
538 joinop(X) ::= COMMA|JOIN.              { X = JT_INNER; }
539 joinop(X) ::= JOIN_KW(A) JOIN.         { X = sqlite3JoinType(pParse,&A,0,0); }
540 joinop(X) ::= JOIN_KW(A) nm(B) JOIN.   { X = sqlite3JoinType(pParse,&A,&B,0); }
541 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
542                                        { X = sqlite3JoinType(pParse,&A,&B,&C); }
543 
544 %type on_opt {Expr*}
545 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);}
546 on_opt(N) ::= ON expr(E).   {N = E.pExpr;}
547 on_opt(N) ::= .             {N = 0;}
548 
549 // Note that this block abuses the Token type just a little. If there is
550 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If
551 // there is an INDEXED BY clause, then the token is populated as per normal,
552 // with z pointing to the token data and n containing the number of bytes
553 // in the token.
554 //
555 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is
556 // normally illegal. The sqlite3SrcListIndexedBy() function
557 // recognizes and interprets this as a special case.
558 //
559 %type indexed_opt {Token}
560 indexed_opt(A) ::= .                 {A.z=0; A.n=0;}
561 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;}
562 indexed_opt(A) ::= NOT INDEXED.      {A.z=0; A.n=1;}
563 
564 %type using_opt {IdList*}
565 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);}
566 using_opt(U) ::= USING LP inscollist(L) RP.  {U = L;}
567 using_opt(U) ::= .                        {U = 0;}
568 
569 
570 %type orderby_opt {ExprList*}
571 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);}
572 %type sortlist {ExprList*}
573 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);}
574 %type sortitem {Expr*}
575 %destructor sortitem {sqlite3ExprDelete(pParse->db, $$);}
576 
577 orderby_opt(A) ::= .                          {A = 0;}
578 orderby_opt(A) ::= ORDER BY sortlist(X).      {A = X;}
579 sortlist(A) ::= sortlist(X) COMMA sortitem(Y) sortorder(Z). {
580   A = sqlite3ExprListAppend(pParse,X,Y);
581   if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
582 }
583 sortlist(A) ::= sortitem(Y) sortorder(Z). {
584   A = sqlite3ExprListAppend(pParse,0,Y);
585   if( A && ALWAYS(A->a) ) A->a[0].sortOrder = (u8)Z;
586 }
587 sortitem(A) ::= expr(X).   {A = X.pExpr;}
588 
589 %type sortorder {int}
590 
591 sortorder(A) ::= ASC.           {A = SQLITE_SO_ASC;}
592 sortorder(A) ::= DESC.          {A = SQLITE_SO_DESC;}
593 sortorder(A) ::= .              {A = SQLITE_SO_ASC;}
594 
595 %type groupby_opt {ExprList*}
596 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);}
597 groupby_opt(A) ::= .                      {A = 0;}
598 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;}
599 
600 %type having_opt {Expr*}
601 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);}
602 having_opt(A) ::= .                {A = 0;}
603 having_opt(A) ::= HAVING expr(X).  {A = X.pExpr;}
604 
605 %type limit_opt {struct LimitVal}
606 
607 // The destructor for limit_opt will never fire in the current grammar.
608 // The limit_opt non-terminal only occurs at the end of a single production
609 // rule for SELECT statements.  As soon as the rule that create the
610 // limit_opt non-terminal reduces, the SELECT statement rule will also
611 // reduce.  So there is never a limit_opt non-terminal on the stack
612 // except as a transient.  So there is never anything to destroy.
613 //
614 //%destructor limit_opt {
615 //  sqlite3ExprDelete(pParse->db, $$.pLimit);
616 //  sqlite3ExprDelete(pParse->db, $$.pOffset);
617 //}
618 limit_opt(A) ::= .                    {A.pLimit = 0; A.pOffset = 0;}
619 limit_opt(A) ::= LIMIT expr(X).       {A.pLimit = X.pExpr; A.pOffset = 0;}
620 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y).
621                                       {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;}
622 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y).
623                                       {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;}
624 
625 /////////////////////////// The DELETE statement /////////////////////////////
626 //
627 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
628 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W)
629         orderby_opt(O) limit_opt(L). {
630   sqlite3SrcListIndexedBy(pParse, X, &I);
631   W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE");
632   sqlite3DeleteFrom(pParse,X,W);
633 }
634 %endif
635 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
636 cmd ::= DELETE FROM fullname(X) indexed_opt(I) where_opt(W). {
637   sqlite3SrcListIndexedBy(pParse, X, &I);
638   sqlite3DeleteFrom(pParse,X,W);
639 }
640 %endif
641 
642 %type where_opt {Expr*}
643 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);}
644 
645 where_opt(A) ::= .                    {A = 0;}
646 where_opt(A) ::= WHERE expr(X).       {A = X.pExpr;}
647 
648 ////////////////////////// The UPDATE command ////////////////////////////////
649 //
650 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
651 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W) orderby_opt(O) limit_opt(L).  {
652   sqlite3SrcListIndexedBy(pParse, X, &I);
653   sqlite3ExprListCheckLength(pParse,Y,"set list");
654   W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE");
655   sqlite3Update(pParse,X,Y,W,R);
656 }
657 %endif
658 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
659 cmd ::= UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) where_opt(W).  {
660   sqlite3SrcListIndexedBy(pParse, X, &I);
661   sqlite3ExprListCheckLength(pParse,Y,"set list");
662   sqlite3Update(pParse,X,Y,W,R);
663 }
664 %endif
665 
666 %type setlist {ExprList*}
667 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}
668 
669 setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). {
670   A = sqlite3ExprListAppend(pParse, Z, Y.pExpr);
671   sqlite3ExprListSetName(pParse, A, &X, 1);
672 }
673 setlist(A) ::= nm(X) EQ expr(Y). {
674   A = sqlite3ExprListAppend(pParse, 0, Y.pExpr);
675   sqlite3ExprListSetName(pParse, A, &X, 1);
676 }
677 
678 ////////////////////////// The INSERT command /////////////////////////////////
679 //
680 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F)
681         VALUES LP itemlist(Y) RP.
682             {sqlite3Insert(pParse, X, Y, 0, F, R);}
683 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) select(S).
684             {sqlite3Insert(pParse, X, 0, S, F, R);}
685 cmd ::= insert_cmd(R) INTO fullname(X) inscollist_opt(F) DEFAULT VALUES.
686             {sqlite3Insert(pParse, X, 0, 0, F, R);}
687 
688 %type insert_cmd {u8}
689 insert_cmd(A) ::= INSERT orconf(R).   {A = R;}
690 insert_cmd(A) ::= REPLACE.            {A = OE_Replace;}
691 
692 
693 %type itemlist {ExprList*}
694 %destructor itemlist {sqlite3ExprListDelete(pParse->db, $$);}
695 
696 itemlist(A) ::= itemlist(X) COMMA expr(Y).
697     {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);}
698 itemlist(A) ::= expr(X).
699     {A = sqlite3ExprListAppend(pParse,0,X.pExpr);}
700 
701 %type inscollist_opt {IdList*}
702 %destructor inscollist_opt {sqlite3IdListDelete(pParse->db, $$);}
703 %type inscollist {IdList*}
704 %destructor inscollist {sqlite3IdListDelete(pParse->db, $$);}
705 
706 inscollist_opt(A) ::= .                       {A = 0;}
707 inscollist_opt(A) ::= LP inscollist(X) RP.    {A = X;}
708 inscollist(A) ::= inscollist(X) COMMA nm(Y).
709     {A = sqlite3IdListAppend(pParse->db,X,&Y);}
710 inscollist(A) ::= nm(Y).
711     {A = sqlite3IdListAppend(pParse->db,0,&Y);}
712 
713 /////////////////////////// Expression Processing /////////////////////////////
714 //
715 
716 %type expr {ExprSpan}
717 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);}
718 %type term {ExprSpan}
719 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);}
720 
721 %include {
722   /* This is a utility routine used to set the ExprSpan.zStart and
723   ** ExprSpan.zEnd values of pOut so that the span covers the complete
724   ** range of text beginning with pStart and going to the end of pEnd.
725   */
726   static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){
727     pOut->zStart = pStart->z;
728     pOut->zEnd = &pEnd->z[pEnd->n];
729   }
730 
731   /* Construct a new Expr object from a single identifier.  Use the
732   ** new Expr to populate pOut.  Set the span of pOut to be the identifier
733   ** that created the expression.
734   */
735   static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){
736     pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue);
737     pOut->zStart = pValue->z;
738     pOut->zEnd = &pValue->z[pValue->n];
739   }
740 }
741 
742 expr(A) ::= term(X).             {A = X;}
743 expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);}
744 term(A) ::= NULL(X).             {spanExpr(&A, pParse, @X, &X);}
745 expr(A) ::= id(X).               {spanExpr(&A, pParse, TK_ID, &X);}
746 expr(A) ::= JOIN_KW(X).          {spanExpr(&A, pParse, TK_ID, &X);}
747 expr(A) ::= nm(X) DOT nm(Y). {
748   Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
749   Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y);
750   A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0);
751   spanSet(&A,&X,&Y);
752 }
753 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). {
754   Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
755   Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y);
756   Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z);
757   Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0);
758   A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0);
759   spanSet(&A,&X,&Z);
760 }
761 term(A) ::= INTEGER|FLOAT|BLOB(X).  {spanExpr(&A, pParse, @X, &X);}
762 term(A) ::= STRING(X).              {spanExpr(&A, pParse, @X, &X);}
763 expr(A) ::= REGISTER(X).     {
764   /* When doing a nested parse, one can include terms in an expression
765   ** that look like this:   #1 #2 ...  These terms refer to registers
766   ** in the virtual machine.  #N is the N-th register. */
767   if( pParse->nested==0 ){
768     sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X);
769     A.pExpr = 0;
770   }else{
771     A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X);
772     if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable);
773   }
774   spanSet(&A, &X, &X);
775 }
776 expr(A) ::= VARIABLE(X).     {
777   spanExpr(&A, pParse, TK_VARIABLE, &X);
778   sqlite3ExprAssignVarNumber(pParse, A.pExpr);
779   spanSet(&A, &X, &X);
780 }
781 expr(A) ::= expr(E) COLLATE ids(C). {
782   A.pExpr = sqlite3ExprSetColl(pParse, E.pExpr, &C);
783   A.zStart = E.zStart;
784   A.zEnd = &C.z[C.n];
785 }
786 %ifndef SQLITE_OMIT_CAST
787 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). {
788   A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T);
789   spanSet(&A,&X,&Y);
790 }
791 %endif  SQLITE_OMIT_CAST
792 expr(A) ::= ID(X) LP distinct(D) exprlist(Y) RP(E). {
793   if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
794     sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X);
795   }
796   A.pExpr = sqlite3ExprFunction(pParse, Y, &X);
797   spanSet(&A,&X,&E);
798   if( D && A.pExpr ){
799     A.pExpr->flags |= EP_Distinct;
800   }
801 }
802 expr(A) ::= ID(X) LP STAR RP(E). {
803   A.pExpr = sqlite3ExprFunction(pParse, 0, &X);
804   spanSet(&A,&X,&E);
805 }
806 term(A) ::= CTIME_KW(OP). {
807   /* The CURRENT_TIME, CURRENT_DATE, and CURRENT_TIMESTAMP values are
808   ** treated as functions that return constants */
809   A.pExpr = sqlite3ExprFunction(pParse, 0,&OP);
810   if( A.pExpr ){
811     A.pExpr->op = TK_CONST_FUNC;
812   }
813   spanSet(&A, &OP, &OP);
814 }
815 
816 %include {
817   /* This routine constructs a binary expression node out of two ExprSpan
818   ** objects and uses the result to populate a new ExprSpan object.
819   */
820   static void spanBinaryExpr(
821     ExprSpan *pOut,     /* Write the result here */
822     Parse *pParse,      /* The parsing context.  Errors accumulate here */
823     int op,             /* The binary operation */
824     ExprSpan *pLeft,    /* The left operand */
825     ExprSpan *pRight    /* The right operand */
826   ){
827     pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0);
828     pOut->zStart = pLeft->zStart;
829     pOut->zEnd = pRight->zEnd;
830   }
831 }
832 
833 expr(A) ::= expr(X) AND(OP) expr(Y).    {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
834 expr(A) ::= expr(X) OR(OP) expr(Y).     {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
835 expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y).
836                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
837 expr(A) ::= expr(X) EQ|NE(OP) expr(Y).  {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
838 expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y).
839                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
840 expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y).
841                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
842 expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y).
843                                         {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
844 expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
845 %type likeop {struct LikeOp}
846 likeop(A) ::= LIKE_KW(X).     {A.eOperator = X; A.not = 0;}
847 likeop(A) ::= NOT LIKE_KW(X). {A.eOperator = X; A.not = 1;}
848 likeop(A) ::= MATCH(X).       {A.eOperator = X; A.not = 0;}
849 likeop(A) ::= NOT MATCH(X).   {A.eOperator = X; A.not = 1;}
850 %type escape {ExprSpan}
851 %destructor escape {sqlite3ExprDelete(pParse->db, $$.pExpr);}
852 escape(X) ::= ESCAPE expr(A). [ESCAPE] {X = A;}
853 escape(X) ::= .               [ESCAPE] {memset(&X,0,sizeof(X));}
854 expr(A) ::= expr(X) likeop(OP) expr(Y) escape(E).  [LIKE_KW]  {
855   ExprList *pList;
856   pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
857   pList = sqlite3ExprListAppend(pParse,pList, X.pExpr);
858   if( E.pExpr ){
859     pList = sqlite3ExprListAppend(pParse,pList, E.pExpr);
860   }
861   A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator);
862   if( OP.not ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
863   A.zStart = X.zStart;
864   A.zEnd = Y.zEnd;
865   if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
866 }
867 
868 %include {
869   /* Construct an expression node for a unary postfix operator
870   */
871   static void spanUnaryPostfix(
872     ExprSpan *pOut,        /* Write the new expression node here */
873     Parse *pParse,         /* Parsing context to record errors */
874     int op,                /* The operator */
875     ExprSpan *pOperand,    /* The operand */
876     Token *pPostOp         /* The operand token for setting the span */
877   ){
878     pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
879     pOut->zStart = pOperand->zStart;
880     pOut->zEnd = &pPostOp->z[pPostOp->n];
881   }
882 }
883 
884 expr(A) ::= expr(X) ISNULL|NOTNULL(E).   {spanUnaryPostfix(&A,pParse,@E,&X,&E);}
885 expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);}
886 
887 %include {
888   /* A routine to convert a binary TK_IS or TK_ISNOT expression into a
889   ** unary TK_ISNULL or TK_NOTNULL expression. */
890   static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
891     sqlite3 *db = pParse->db;
892     if( db->mallocFailed==0 && pY->op==TK_NULL ){
893       pA->op = op;
894       sqlite3ExprDelete(db, pA->pRight);
895       pA->pRight = 0;
896     }
897   }
898 }
899 
900 //    expr1 IS expr2
901 //    expr1 IS NOT expr2
902 //
903 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL.  If expr2
904 // is any other expression, code as TK_IS or TK_ISNOT.
905 //
906 expr(A) ::= expr(X) IS expr(Y).     {
907   spanBinaryExpr(&A,pParse,TK_IS,&X,&Y);
908   binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL);
909 }
910 expr(A) ::= expr(X) IS NOT expr(Y). {
911   spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y);
912   binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL);
913 }
914 
915 %include {
916   /* Construct an expression node for a unary prefix operator
917   */
918   static void spanUnaryPrefix(
919     ExprSpan *pOut,        /* Write the new expression node here */
920     Parse *pParse,         /* Parsing context to record errors */
921     int op,                /* The operator */
922     ExprSpan *pOperand,    /* The operand */
923     Token *pPreOp         /* The operand token for setting the span */
924   ){
925     pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
926     pOut->zStart = pPreOp->z;
927     pOut->zEnd = pOperand->zEnd;
928   }
929 }
930 
931 
932 
933 expr(A) ::= NOT(B) expr(X).    {spanUnaryPrefix(&A,pParse,@B,&X,&B);}
934 expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);}
935 expr(A) ::= MINUS(B) expr(X). [BITNOT]
936                                {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);}
937 expr(A) ::= PLUS(B) expr(X). [BITNOT]
938                                {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);}
939 
940 %type between_op {int}
941 between_op(A) ::= BETWEEN.     {A = 0;}
942 between_op(A) ::= NOT BETWEEN. {A = 1;}
943 expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] {
944   ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr);
945   pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr);
946   A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0);
947   if( A.pExpr ){
948     A.pExpr->x.pList = pList;
949   }else{
950     sqlite3ExprListDelete(pParse->db, pList);
951   }
952   if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
953   A.zStart = W.zStart;
954   A.zEnd = Y.zEnd;
955 }
956 %ifndef SQLITE_OMIT_SUBQUERY
957   %type in_op {int}
958   in_op(A) ::= IN.      {A = 0;}
959   in_op(A) ::= NOT IN.  {A = 1;}
960   expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] {
961     A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
962     if( A.pExpr ){
963       A.pExpr->x.pList = Y;
964       sqlite3ExprSetHeight(pParse, A.pExpr);
965     }else{
966       sqlite3ExprListDelete(pParse->db, Y);
967     }
968     if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
969     A.zStart = X.zStart;
970     A.zEnd = &E.z[E.n];
971   }
972   expr(A) ::= LP(B) select(X) RP(E). {
973     A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
974     if( A.pExpr ){
975       A.pExpr->x.pSelect = X;
976       ExprSetProperty(A.pExpr, EP_xIsSelect);
977       sqlite3ExprSetHeight(pParse, A.pExpr);
978     }else{
979       sqlite3SelectDelete(pParse->db, X);
980     }
981     A.zStart = B.z;
982     A.zEnd = &E.z[E.n];
983   }
984   expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E).  [IN] {
985     A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
986     if( A.pExpr ){
987       A.pExpr->x.pSelect = Y;
988       ExprSetProperty(A.pExpr, EP_xIsSelect);
989       sqlite3ExprSetHeight(pParse, A.pExpr);
990     }else{
991       sqlite3SelectDelete(pParse->db, Y);
992     }
993     if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
994     A.zStart = X.zStart;
995     A.zEnd = &E.z[E.n];
996   }
997   expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] {
998     SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z);
999     A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
1000     if( A.pExpr ){
1001       A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
1002       ExprSetProperty(A.pExpr, EP_xIsSelect);
1003       sqlite3ExprSetHeight(pParse, A.pExpr);
1004     }else{
1005       sqlite3SrcListDelete(pParse->db, pSrc);
1006     }
1007     if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
1008     A.zStart = X.zStart;
1009     A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n];
1010   }
1011   expr(A) ::= EXISTS(B) LP select(Y) RP(E). {
1012     Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
1013     if( p ){
1014       p->x.pSelect = Y;
1015       ExprSetProperty(p, EP_xIsSelect);
1016       sqlite3ExprSetHeight(pParse, p);
1017     }else{
1018       sqlite3SelectDelete(pParse->db, Y);
1019     }
1020     A.zStart = B.z;
1021     A.zEnd = &E.z[E.n];
1022   }
1023 %endif SQLITE_OMIT_SUBQUERY
1024 
1025 /* CASE expressions */
1026 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). {
1027   A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, Z, 0);
1028   if( A.pExpr ){
1029     A.pExpr->x.pList = Y;
1030     sqlite3ExprSetHeight(pParse, A.pExpr);
1031   }else{
1032     sqlite3ExprListDelete(pParse->db, Y);
1033   }
1034   A.zStart = C.z;
1035   A.zEnd = &E.z[E.n];
1036 }
1037 %type case_exprlist {ExprList*}
1038 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1039 case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). {
1040   A = sqlite3ExprListAppend(pParse,X, Y.pExpr);
1041   A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
1042 }
1043 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
1044   A = sqlite3ExprListAppend(pParse,0, Y.pExpr);
1045   A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
1046 }
1047 %type case_else {Expr*}
1048 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);}
1049 case_else(A) ::=  ELSE expr(X).         {A = X.pExpr;}
1050 case_else(A) ::=  .                     {A = 0;}
1051 %type case_operand {Expr*}
1052 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);}
1053 case_operand(A) ::= expr(X).            {A = X.pExpr;}
1054 case_operand(A) ::= .                   {A = 0;}
1055 
1056 %type exprlist {ExprList*}
1057 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);}
1058 %type nexprlist {ExprList*}
1059 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);}
1060 
1061 exprlist(A) ::= nexprlist(X).                {A = X;}
1062 exprlist(A) ::= .                            {A = 0;}
1063 nexprlist(A) ::= nexprlist(X) COMMA expr(Y).
1064     {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);}
1065 nexprlist(A) ::= expr(Y).
1066     {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);}
1067 
1068 
1069 ///////////////////////////// The CREATE INDEX command ///////////////////////
1070 //
1071 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D)
1072         ON nm(Y) LP idxlist(Z) RP(E). {
1073   sqlite3CreateIndex(pParse, &X, &D,
1074                      sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U,
1075                       &S, &E, SQLITE_SO_ASC, NE);
1076 }
1077 
1078 %type uniqueflag {int}
1079 uniqueflag(A) ::= UNIQUE.  {A = OE_Abort;}
1080 uniqueflag(A) ::= .        {A = OE_None;}
1081 
1082 %type idxlist {ExprList*}
1083 %destructor idxlist {sqlite3ExprListDelete(pParse->db, $$);}
1084 %type idxlist_opt {ExprList*}
1085 %destructor idxlist_opt {sqlite3ExprListDelete(pParse->db, $$);}
1086 
1087 idxlist_opt(A) ::= .                         {A = 0;}
1088 idxlist_opt(A) ::= LP idxlist(X) RP.         {A = X;}
1089 idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z).  {
1090   Expr *p = 0;
1091   if( C.n>0 ){
1092     p = sqlite3Expr(pParse->db, TK_COLUMN, 0);
1093     sqlite3ExprSetColl(pParse, p, &C);
1094   }
1095   A = sqlite3ExprListAppend(pParse,X, p);
1096   sqlite3ExprListSetName(pParse,A,&Y,1);
1097   sqlite3ExprListCheckLength(pParse, A, "index");
1098   if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
1099 }
1100 idxlist(A) ::= nm(Y) collate(C) sortorder(Z). {
1101   Expr *p = 0;
1102   if( C.n>0 ){
1103     p = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
1104     sqlite3ExprSetColl(pParse, p, &C);
1105   }
1106   A = sqlite3ExprListAppend(pParse,0, p);
1107   sqlite3ExprListSetName(pParse, A, &Y, 1);
1108   sqlite3ExprListCheckLength(pParse, A, "index");
1109   if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
1110 }
1111 
1112 %type collate {Token}
1113 collate(C) ::= .                 {C.z = 0; C.n = 0;}
1114 collate(C) ::= COLLATE ids(X).   {C = X;}
1115 
1116 
1117 ///////////////////////////// The DROP INDEX command /////////////////////////
1118 //
1119 cmd ::= DROP INDEX ifexists(E) fullname(X).   {sqlite3DropIndex(pParse, X, E);}
1120 
1121 ///////////////////////////// The VACUUM command /////////////////////////////
1122 //
1123 %ifndef SQLITE_OMIT_VACUUM
1124 %ifndef SQLITE_OMIT_ATTACH
1125 cmd ::= VACUUM.                {sqlite3Vacuum(pParse);}
1126 cmd ::= VACUUM nm.             {sqlite3Vacuum(pParse);}
1127 %endif  SQLITE_OMIT_ATTACH
1128 %endif  SQLITE_OMIT_VACUUM
1129 
1130 ///////////////////////////// The PRAGMA command /////////////////////////////
1131 //
1132 %ifndef SQLITE_OMIT_PRAGMA
1133 cmd ::= PRAGMA nm(X) dbnm(Z).                {sqlite3Pragma(pParse,&X,&Z,0,0);}
1134 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y).    {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1135 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
1136 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y).
1137                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1138 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP.
1139                                              {sqlite3Pragma(pParse,&X,&Z,&Y,1);}
1140 
1141 nmnum(A) ::= plus_num(X).             {A = X;}
1142 nmnum(A) ::= nm(X).                   {A = X;}
1143 nmnum(A) ::= ON(X).                   {A = X;}
1144 nmnum(A) ::= DELETE(X).               {A = X;}
1145 nmnum(A) ::= DEFAULT(X).              {A = X;}
1146 %endif SQLITE_OMIT_PRAGMA
1147 plus_num(A) ::= plus_opt number(X).   {A = X;}
1148 minus_num(A) ::= MINUS number(X).     {A = X;}
1149 number(A) ::= INTEGER|FLOAT(X).       {A = X;}
1150 plus_opt ::= PLUS.
1151 plus_opt ::= .
1152 
1153 //////////////////////////// The CREATE TRIGGER command /////////////////////
1154 
1155 %ifndef SQLITE_OMIT_TRIGGER
1156 
1157 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). {
1158   Token all;
1159   all.z = A.z;
1160   all.n = (int)(Z.z - A.z) + Z.n;
1161   sqlite3FinishTrigger(pParse, S, &all);
1162 }
1163 
1164 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z)
1165                     trigger_time(C) trigger_event(D)
1166                     ON fullname(E) foreach_clause when_clause(G). {
1167   sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR);
1168   A = (Z.n==0?B:Z);
1169 }
1170 
1171 %type trigger_time {int}
1172 trigger_time(A) ::= BEFORE.      { A = TK_BEFORE; }
1173 trigger_time(A) ::= AFTER.       { A = TK_AFTER;  }
1174 trigger_time(A) ::= INSTEAD OF.  { A = TK_INSTEAD;}
1175 trigger_time(A) ::= .            { A = TK_BEFORE; }
1176 
1177 %type trigger_event {struct TrigEvent}
1178 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);}
1179 trigger_event(A) ::= DELETE|INSERT(OP).       {A.a = @OP; A.b = 0;}
1180 trigger_event(A) ::= UPDATE(OP).              {A.a = @OP; A.b = 0;}
1181 trigger_event(A) ::= UPDATE OF inscollist(X). {A.a = TK_UPDATE; A.b = X;}
1182 
1183 foreach_clause ::= .
1184 foreach_clause ::= FOR EACH ROW.
1185 
1186 %type when_clause {Expr*}
1187 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);}
1188 when_clause(A) ::= .             { A = 0; }
1189 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; }
1190 
1191 %type trigger_cmd_list {TriggerStep*}
1192 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);}
1193 trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. {
1194   assert( Y!=0 );
1195   Y->pLast->pNext = X;
1196   Y->pLast = X;
1197   A = Y;
1198 }
1199 trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. {
1200   assert( X!=0 );
1201   X->pLast = X;
1202   A = X;
1203 }
1204 
1205 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements
1206 // within a trigger.  The table to INSERT, UPDATE, or DELETE is always in
1207 // the same database as the table that the trigger fires on.
1208 //
1209 %type trnm {Token}
1210 trnm(A) ::= nm(X).   {A = X;}
1211 trnm(A) ::= nm DOT nm(X). {
1212   A = X;
1213   sqlite3ErrorMsg(pParse,
1214         "qualified table names are not allowed on INSERT, UPDATE, and DELETE "
1215         "statements within triggers");
1216 }
1217 
1218 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE
1219 // statements within triggers.  We make a specific error message for this
1220 // since it is an exception to the default grammar rules.
1221 //
1222 tridxby ::= .
1223 tridxby ::= INDEXED BY nm. {
1224   sqlite3ErrorMsg(pParse,
1225         "the INDEXED BY clause is not allowed on UPDATE or DELETE statements "
1226         "within triggers");
1227 }
1228 tridxby ::= NOT INDEXED. {
1229   sqlite3ErrorMsg(pParse,
1230         "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements "
1231         "within triggers");
1232 }
1233 
1234 
1235 
1236 %type trigger_cmd {TriggerStep*}
1237 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);}
1238 // UPDATE
1239 trigger_cmd(A) ::=
1240    UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z).
1241    { A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); }
1242 
1243 // INSERT
1244 trigger_cmd(A) ::=
1245    insert_cmd(R) INTO trnm(X) inscollist_opt(F) VALUES LP itemlist(Y) RP.
1246    {A = sqlite3TriggerInsertStep(pParse->db, &X, F, Y, 0, R);}
1247 
1248 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) inscollist_opt(F) select(S).
1249                {A = sqlite3TriggerInsertStep(pParse->db, &X, F, 0, S, R);}
1250 
1251 // DELETE
1252 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y).
1253                {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);}
1254 
1255 // SELECT
1256 trigger_cmd(A) ::= select(X).  {A = sqlite3TriggerSelectStep(pParse->db, X); }
1257 
1258 // The special RAISE expression that may occur in trigger programs
1259 expr(A) ::= RAISE(X) LP IGNORE RP(Y).  {
1260   A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0);
1261   if( A.pExpr ){
1262     A.pExpr->affinity = OE_Ignore;
1263   }
1264   A.zStart = X.z;
1265   A.zEnd = &Y.z[Y.n];
1266 }
1267 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y).  {
1268   A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z);
1269   if( A.pExpr ) {
1270     A.pExpr->affinity = (char)T;
1271   }
1272   A.zStart = X.z;
1273   A.zEnd = &Y.z[Y.n];
1274 }
1275 %endif  !SQLITE_OMIT_TRIGGER
1276 
1277 %type raisetype {int}
1278 raisetype(A) ::= ROLLBACK.  {A = OE_Rollback;}
1279 raisetype(A) ::= ABORT.     {A = OE_Abort;}
1280 raisetype(A) ::= FAIL.      {A = OE_Fail;}
1281 
1282 
1283 ////////////////////////  DROP TRIGGER statement //////////////////////////////
1284 %ifndef SQLITE_OMIT_TRIGGER
1285 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). {
1286   sqlite3DropTrigger(pParse,X,NOERR);
1287 }
1288 %endif  !SQLITE_OMIT_TRIGGER
1289 
1290 //////////////////////// ATTACH DATABASE file AS name /////////////////////////
1291 %ifndef SQLITE_OMIT_ATTACH
1292 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). {
1293   sqlite3Attach(pParse, F.pExpr, D.pExpr, K);
1294 }
1295 cmd ::= DETACH database_kw_opt expr(D). {
1296   sqlite3Detach(pParse, D.pExpr);
1297 }
1298 
1299 %type key_opt {Expr*}
1300 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);}
1301 key_opt(A) ::= .                     { A = 0; }
1302 key_opt(A) ::= KEY expr(X).          { A = X.pExpr; }
1303 
1304 database_kw_opt ::= DATABASE.
1305 database_kw_opt ::= .
1306 %endif SQLITE_OMIT_ATTACH
1307 
1308 ////////////////////////// REINDEX collation //////////////////////////////////
1309 %ifndef SQLITE_OMIT_REINDEX
1310 cmd ::= REINDEX.                {sqlite3Reindex(pParse, 0, 0);}
1311 cmd ::= REINDEX nm(X) dbnm(Y).  {sqlite3Reindex(pParse, &X, &Y);}
1312 %endif  SQLITE_OMIT_REINDEX
1313 
1314 /////////////////////////////////// ANALYZE ///////////////////////////////////
1315 %ifndef SQLITE_OMIT_ANALYZE
1316 cmd ::= ANALYZE.                {sqlite3Analyze(pParse, 0, 0);}
1317 cmd ::= ANALYZE nm(X) dbnm(Y).  {sqlite3Analyze(pParse, &X, &Y);}
1318 %endif
1319 
1320 //////////////////////// ALTER TABLE table ... ////////////////////////////////
1321 %ifndef SQLITE_OMIT_ALTERTABLE
1322 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). {
1323   sqlite3AlterRenameTable(pParse,X,&Z);
1324 }
1325 cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). {
1326   sqlite3AlterFinishAddColumn(pParse, &Y);
1327 }
1328 add_column_fullname ::= fullname(X). {
1329   pParse->db->lookaside.bEnabled = 0;
1330   sqlite3AlterBeginAddColumn(pParse, X);
1331 }
1332 kwcolumn_opt ::= .
1333 kwcolumn_opt ::= COLUMNKW.
1334 %endif  SQLITE_OMIT_ALTERTABLE
1335 
1336 //////////////////////// CREATE VIRTUAL TABLE ... /////////////////////////////
1337 %ifndef SQLITE_OMIT_VIRTUALTABLE
1338 cmd ::= create_vtab.                       {sqlite3VtabFinishParse(pParse,0);}
1339 cmd ::= create_vtab LP vtabarglist RP(X).  {sqlite3VtabFinishParse(pParse,&X);}
1340 create_vtab ::= createkw VIRTUAL TABLE nm(X) dbnm(Y) USING nm(Z). {
1341     sqlite3VtabBeginParse(pParse, &X, &Y, &Z);
1342 }
1343 vtabarglist ::= vtabarg.
1344 vtabarglist ::= vtabarglist COMMA vtabarg.
1345 vtabarg ::= .                       {sqlite3VtabArgInit(pParse);}
1346 vtabarg ::= vtabarg vtabargtoken.
1347 vtabargtoken ::= ANY(X).            {sqlite3VtabArgExtend(pParse,&X);}
1348 vtabargtoken ::= lp anylist RP(X).  {sqlite3VtabArgExtend(pParse,&X);}
1349 lp ::= LP(X).                       {sqlite3VtabArgExtend(pParse,&X);}
1350 anylist ::= .
1351 anylist ::= anylist LP anylist RP.
1352 anylist ::= anylist ANY.
1353 %endif  SQLITE_OMIT_VIRTUALTABLE
1354