1 %include { 2 /* 3 ** 2001-09-15 4 ** 5 ** The author disclaims copyright to this source code. In place of 6 ** a legal notice, here is a blessing: 7 ** 8 ** May you do good and not evil. 9 ** May you find forgiveness for yourself and forgive others. 10 ** May you share freely, never taking more than you give. 11 ** 12 ************************************************************************* 13 ** This file contains SQLite's SQL parser. 14 ** 15 ** The canonical source code to this file ("parse.y") is a Lemon grammar 16 ** file that specifies the input grammar and actions to take while parsing. 17 ** That input file is processed by Lemon to generate a C-language 18 ** implementation of a parser for the given grammer. You might be reading 19 ** this comment as part of the translated C-code. Edits should be made 20 ** to the original parse.y sources. 21 */ 22 } 23 24 // All token codes are small integers with #defines that begin with "TK_" 25 %token_prefix TK_ 26 27 // The type of the data attached to each token is Token. This is also the 28 // default type for non-terminals. 29 // 30 %token_type {Token} 31 %default_type {Token} 32 33 // An extra argument to the constructor for the parser, which is available 34 // to all actions. 35 %extra_context {Parse *pParse} 36 37 // This code runs whenever there is a syntax error 38 // 39 %syntax_error { 40 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ 41 if( TOKEN.z[0] ){ 42 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); 43 }else{ 44 sqlite3ErrorMsg(pParse, "incomplete input"); 45 } 46 } 47 %stack_overflow { 48 sqlite3ErrorMsg(pParse, "parser stack overflow"); 49 } 50 51 // The name of the generated procedure that implements the parser 52 // is as follows: 53 %name sqlite3Parser 54 55 // The following text is included near the beginning of the C source 56 // code file that implements the parser. 57 // 58 %include { 59 #include "sqliteInt.h" 60 61 /* 62 ** Disable all error recovery processing in the parser push-down 63 ** automaton. 64 */ 65 #define YYNOERRORRECOVERY 1 66 67 /* 68 ** Make yytestcase() the same as testcase() 69 */ 70 #define yytestcase(X) testcase(X) 71 72 /* 73 ** Indicate that sqlite3ParserFree() will never be called with a null 74 ** pointer. 75 */ 76 #define YYPARSEFREENEVERNULL 1 77 78 /* 79 ** In the amalgamation, the parse.c file generated by lemon and the 80 ** tokenize.c file are concatenated. In that case, sqlite3RunParser() 81 ** has access to the the size of the yyParser object and so the parser 82 ** engine can be allocated from stack. In that case, only the 83 ** sqlite3ParserInit() and sqlite3ParserFinalize() routines are invoked 84 ** and the sqlite3ParserAlloc() and sqlite3ParserFree() routines can be 85 ** omitted. 86 */ 87 #ifdef SQLITE_AMALGAMATION 88 # define sqlite3Parser_ENGINEALWAYSONSTACK 1 89 #endif 90 91 /* 92 ** Alternative datatype for the argument to the malloc() routine passed 93 ** into sqlite3ParserAlloc(). The default is size_t. 94 */ 95 #define YYMALLOCARGTYPE u64 96 97 /* 98 ** An instance of the following structure describes the event of a 99 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, 100 ** TK_DELETE, or TK_INSTEAD. If the event is of the form 101 ** 102 ** UPDATE ON (a,b,c) 103 ** 104 ** Then the "b" IdList records the list "a,b,c". 105 */ 106 struct TrigEvent { int a; IdList * b; }; 107 108 struct FrameBound { int eType; Expr *pExpr; }; 109 110 /* 111 ** Disable lookaside memory allocation for objects that might be 112 ** shared across database connections. 113 */ 114 static void disableLookaside(Parse *pParse){ 115 sqlite3 *db = pParse->db; 116 pParse->disableLookaside++; 117 DisableLookaside; 118 } 119 120 #if !defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) \ 121 && defined(SQLITE_UDL_CAPABLE_PARSER) 122 /* 123 ** Issue an error message if an ORDER BY or LIMIT clause occurs on an 124 ** UPDATE or DELETE statement. 125 */ 126 static void updateDeleteLimitError( 127 Parse *pParse, 128 ExprList *pOrderBy, 129 Expr *pLimit 130 ){ 131 if( pOrderBy ){ 132 sqlite3ErrorMsg(pParse, "syntax error near \"ORDER BY\""); 133 }else{ 134 sqlite3ErrorMsg(pParse, "syntax error near \"LIMIT\""); 135 } 136 sqlite3ExprListDelete(pParse->db, pOrderBy); 137 sqlite3ExprDelete(pParse->db, pLimit); 138 } 139 #endif /* SQLITE_ENABLE_UPDATE_DELETE_LIMIT */ 140 141 } // end %include 142 143 // Input is a single SQL command 144 input ::= cmdlist. 145 cmdlist ::= cmdlist ecmd. 146 cmdlist ::= ecmd. 147 ecmd ::= SEMI. 148 ecmd ::= cmdx SEMI. 149 %ifndef SQLITE_OMIT_EXPLAIN 150 ecmd ::= explain cmdx SEMI. {NEVER-REDUCE} 151 explain ::= EXPLAIN. { pParse->explain = 1; } 152 explain ::= EXPLAIN QUERY PLAN. { pParse->explain = 2; } 153 %endif SQLITE_OMIT_EXPLAIN 154 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } 155 156 ///////////////////// Begin and end transactions. //////////////////////////// 157 // 158 159 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} 160 trans_opt ::= . 161 trans_opt ::= TRANSACTION. 162 trans_opt ::= TRANSACTION nm. 163 %type transtype {int} 164 transtype(A) ::= . {A = TK_DEFERRED;} 165 transtype(A) ::= DEFERRED(X). {A = @X; /*A-overwrites-X*/} 166 transtype(A) ::= IMMEDIATE(X). {A = @X; /*A-overwrites-X*/} 167 transtype(A) ::= EXCLUSIVE(X). {A = @X; /*A-overwrites-X*/} 168 cmd ::= COMMIT|END(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 169 cmd ::= ROLLBACK(X) trans_opt. {sqlite3EndTransaction(pParse,@X);} 170 171 savepoint_opt ::= SAVEPOINT. 172 savepoint_opt ::= . 173 cmd ::= SAVEPOINT nm(X). { 174 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); 175 } 176 cmd ::= RELEASE savepoint_opt nm(X). { 177 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); 178 } 179 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { 180 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); 181 } 182 183 ///////////////////// The CREATE TABLE statement //////////////////////////// 184 // 185 cmd ::= create_table create_table_args. 186 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { 187 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); 188 } 189 createkw(A) ::= CREATE(A). {disableLookaside(pParse);} 190 191 %type ifnotexists {int} 192 ifnotexists(A) ::= . {A = 0;} 193 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} 194 %type temp {int} 195 %ifndef SQLITE_OMIT_TEMPDB 196 temp(A) ::= TEMP. {A = pParse->db->init.busy==0;} 197 %endif SQLITE_OMIT_TEMPDB 198 temp(A) ::= . {A = 0;} 199 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_option_set(F). { 200 sqlite3EndTable(pParse,&X,&E,F,0); 201 } 202 create_table_args ::= AS select(S). { 203 sqlite3EndTable(pParse,0,0,0,S); 204 sqlite3SelectDelete(pParse->db, S); 205 } 206 %type table_option_set {u32} 207 %type table_option {u32} 208 table_option_set(A) ::= . {A = 0;} 209 table_option_set(A) ::= table_option(A). 210 table_option_set(A) ::= table_option_set(X) COMMA table_option(Y). {A = X|Y;} 211 table_option(A) ::= WITHOUT nm(X). { 212 if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){ 213 A = TF_WithoutRowid | TF_NoVisibleRowid; 214 }else{ 215 A = 0; 216 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); 217 } 218 } 219 table_option(A) ::= nm(X). { 220 if( X.n==6 && sqlite3_strnicmp(X.z,"strict",6)==0 ){ 221 A = TF_Strict; 222 }else{ 223 A = 0; 224 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); 225 } 226 } 227 columnlist ::= columnlist COMMA columnname carglist. 228 columnlist ::= columnname carglist. 229 columnname(A) ::= nm(A) typetoken(Y). {sqlite3AddColumn(pParse,A,Y);} 230 231 // Declare some tokens early in order to influence their values, to 232 // improve performance and reduce the executable size. The goal here is 233 // to get the "jump" operations in ISNULL through ESCAPE to have numeric 234 // values that are early enough so that all jump operations are clustered 235 // at the beginning. 236 // 237 %token ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST. 238 %token CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL. 239 %token OR AND NOT IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 240 %token GT LE LT GE ESCAPE. 241 242 // The following directive causes tokens ABORT, AFTER, ASC, etc. to 243 // fallback to ID if they will not parse as their original value. 244 // This obviates the need for the "id" nonterminal. 245 // 246 %fallback ID 247 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW 248 CONFLICT DATABASE DEFERRED DESC DETACH DO 249 EACH END EXCLUSIVE EXPLAIN FAIL FOR 250 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN 251 QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW ROWS 252 ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT 253 NULLS FIRST LAST 254 %ifdef SQLITE_OMIT_COMPOUND_SELECT 255 EXCEPT INTERSECT UNION 256 %endif SQLITE_OMIT_COMPOUND_SELECT 257 %ifndef SQLITE_OMIT_WINDOWFUNC 258 CURRENT FOLLOWING PARTITION PRECEDING RANGE UNBOUNDED 259 EXCLUDE GROUPS OTHERS TIES 260 %endif SQLITE_OMIT_WINDOWFUNC 261 %ifndef SQLITE_OMIT_GENERATED_COLUMNS 262 GENERATED ALWAYS 263 %endif 264 MATERIALIZED 265 REINDEX RENAME CTIME_KW IF 266 . 267 %wildcard ANY. 268 269 // Define operator precedence early so that this is the first occurrence 270 // of the operator tokens in the grammer. Keeping the operators together 271 // causes them to be assigned integer values that are close together, 272 // which keeps parser tables smaller. 273 // 274 // The token values assigned to these symbols is determined by the order 275 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, 276 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See 277 // the sqlite3ExprIfFalse() routine for additional information on this 278 // constraint. 279 // 280 %left OR. 281 %left AND. 282 %right NOT. 283 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. 284 %left GT LE LT GE. 285 %right ESCAPE. 286 %left BITAND BITOR LSHIFT RSHIFT. 287 %left PLUS MINUS. 288 %left STAR SLASH REM. 289 %left CONCAT PTR. 290 %left COLLATE. 291 %right BITNOT. 292 %nonassoc ON. 293 294 // An IDENTIFIER can be a generic identifier, or one of several 295 // keywords. Any non-standard keyword can also be an identifier. 296 // 297 %token_class id ID|INDEXED. 298 299 300 // And "ids" is an identifer-or-string. 301 // 302 %token_class ids ID|STRING. 303 304 // The name of a column or table can be any of the following: 305 // 306 %type nm {Token} 307 nm(A) ::= id(A). 308 nm(A) ::= STRING(A). 309 nm(A) ::= JOIN_KW(A). 310 311 // A typetoken is really zero or more tokens that form a type name such 312 // as can be found after the column name in a CREATE TABLE statement. 313 // Multiple tokens are concatenated to form the value of the typetoken. 314 // 315 %type typetoken {Token} 316 typetoken(A) ::= . {A.n = 0; A.z = 0;} 317 typetoken(A) ::= typename(A). 318 typetoken(A) ::= typename(A) LP signed RP(Y). { 319 A.n = (int)(&Y.z[Y.n] - A.z); 320 } 321 typetoken(A) ::= typename(A) LP signed COMMA signed RP(Y). { 322 A.n = (int)(&Y.z[Y.n] - A.z); 323 } 324 %type typename {Token} 325 typename(A) ::= ids(A). 326 typename(A) ::= typename(A) ids(Y). {A.n=Y.n+(int)(Y.z-A.z);} 327 signed ::= plus_num. 328 signed ::= minus_num. 329 330 // The scanpt non-terminal takes a value which is a pointer to the 331 // input text just past the last token that has been shifted into 332 // the parser. By surrounding some phrase in the grammar with two 333 // scanpt non-terminals, we can capture the input text for that phrase. 334 // For example: 335 // 336 // something ::= .... scanpt(A) phrase scanpt(Z). 337 // 338 // The text that is parsed as "phrase" is a string starting at A 339 // and containing (int)(Z-A) characters. There might be some extra 340 // whitespace on either end of the text, but that can be removed in 341 // post-processing, if needed. 342 // 343 %type scanpt {const char*} 344 scanpt(A) ::= . { 345 assert( yyLookahead!=YYNOCODE ); 346 A = yyLookaheadToken.z; 347 } 348 scantok(A) ::= . { 349 assert( yyLookahead!=YYNOCODE ); 350 A = yyLookaheadToken; 351 } 352 353 // "carglist" is a list of additional constraints that come after the 354 // column name and column type in a CREATE TABLE statement. 355 // 356 carglist ::= carglist ccons. 357 carglist ::= . 358 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 359 ccons ::= DEFAULT scantok(A) term(X). 360 {sqlite3AddDefaultValue(pParse,X,A.z,&A.z[A.n]);} 361 ccons ::= DEFAULT LP(A) expr(X) RP(Z). 362 {sqlite3AddDefaultValue(pParse,X,A.z+1,Z.z);} 363 ccons ::= DEFAULT PLUS(A) scantok(Z) term(X). 364 {sqlite3AddDefaultValue(pParse,X,A.z,&Z.z[Z.n]);} 365 ccons ::= DEFAULT MINUS(A) scantok(Z) term(X). { 366 Expr *p = sqlite3PExpr(pParse, TK_UMINUS, X, 0); 367 sqlite3AddDefaultValue(pParse,p,A.z,&Z.z[Z.n]); 368 } 369 ccons ::= DEFAULT scantok id(X). { 370 Expr *p = tokenExpr(pParse, TK_STRING, X); 371 if( p ){ 372 sqlite3ExprIdToTrueFalse(p); 373 testcase( p->op==TK_TRUEFALSE && sqlite3ExprTruthValue(p) ); 374 } 375 sqlite3AddDefaultValue(pParse,p,X.z,X.z+X.n); 376 } 377 378 // In addition to the type name, we also care about the primary key and 379 // UNIQUE constraints. 380 // 381 ccons ::= NULL onconf. 382 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} 383 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). 384 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} 385 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0, 386 SQLITE_IDXTYPE_UNIQUE);} 387 ccons ::= CHECK LP(A) expr(X) RP(B). {sqlite3AddCheckConstraint(pParse,X,A.z,B.z);} 388 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R). 389 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} 390 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} 391 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} 392 ccons ::= GENERATED ALWAYS AS generated. 393 ccons ::= AS generated. 394 generated ::= LP expr(E) RP. {sqlite3AddGenerated(pParse,E,0);} 395 generated ::= LP expr(E) RP ID(TYPE). {sqlite3AddGenerated(pParse,E,&TYPE);} 396 397 // The optional AUTOINCREMENT keyword 398 %type autoinc {int} 399 autoinc(X) ::= . {X = 0;} 400 autoinc(X) ::= AUTOINCR. {X = 1;} 401 402 // The next group of rules parses the arguments to a REFERENCES clause 403 // that determine if the referential integrity checking is deferred or 404 // or immediate and which determine what action to take if a ref-integ 405 // check fails. 406 // 407 %type refargs {int} 408 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} 409 refargs(A) ::= refargs(A) refarg(Y). { A = (A & ~Y.mask) | Y.value; } 410 %type refarg {struct {int value; int mask;}} 411 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } 412 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } 413 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } 414 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } 415 %type refact {int} 416 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} 417 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} 418 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} 419 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} 420 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} 421 %type defer_subclause {int} 422 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} 423 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} 424 %type init_deferred_pred_opt {int} 425 init_deferred_pred_opt(A) ::= . {A = 0;} 426 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} 427 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} 428 429 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} 430 conslist_opt(A) ::= COMMA(A) conslist. 431 conslist ::= conslist tconscomma tcons. 432 conslist ::= tcons. 433 tconscomma ::= COMMA. {pParse->constraintName.n = 0;} 434 tconscomma ::= . 435 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} 436 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R). 437 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} 438 tcons ::= UNIQUE LP sortlist(X) RP onconf(R). 439 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0, 440 SQLITE_IDXTYPE_UNIQUE);} 441 tcons ::= CHECK LP(A) expr(E) RP(B) onconf. 442 {sqlite3AddCheckConstraint(pParse,E,A.z,B.z);} 443 tcons ::= FOREIGN KEY LP eidlist(FA) RP 444 REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). { 445 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); 446 sqlite3DeferForeignKey(pParse, D); 447 } 448 %type defer_subclause_opt {int} 449 defer_subclause_opt(A) ::= . {A = 0;} 450 defer_subclause_opt(A) ::= defer_subclause(A). 451 452 // The following is a non-standard extension that allows us to declare the 453 // default behavior when there is a constraint conflict. 454 // 455 %type onconf {int} 456 %type orconf {int} 457 %type resolvetype {int} 458 onconf(A) ::= . {A = OE_Default;} 459 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} 460 orconf(A) ::= . {A = OE_Default;} 461 orconf(A) ::= OR resolvetype(X). {A = X;} 462 resolvetype(A) ::= raisetype(A). 463 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} 464 resolvetype(A) ::= REPLACE. {A = OE_Replace;} 465 466 ////////////////////////// The DROP TABLE ///////////////////////////////////// 467 // 468 cmd ::= DROP TABLE ifexists(E) fullname(X). { 469 sqlite3DropTable(pParse, X, 0, E); 470 } 471 %type ifexists {int} 472 ifexists(A) ::= IF EXISTS. {A = 1;} 473 ifexists(A) ::= . {A = 0;} 474 475 ///////////////////// The CREATE VIEW statement ///////////////////////////// 476 // 477 %ifndef SQLITE_OMIT_VIEW 478 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C) 479 AS select(S). { 480 sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E); 481 } 482 cmd ::= DROP VIEW ifexists(E) fullname(X). { 483 sqlite3DropTable(pParse, X, 1, E); 484 } 485 %endif SQLITE_OMIT_VIEW 486 487 //////////////////////// The SELECT statement ///////////////////////////////// 488 // 489 cmd ::= select(X). { 490 SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0, 0}; 491 sqlite3Select(pParse, X, &dest); 492 sqlite3SelectDelete(pParse->db, X); 493 } 494 495 %type select {Select*} 496 %destructor select {sqlite3SelectDelete(pParse->db, $$);} 497 %type selectnowith {Select*} 498 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);} 499 %type oneselect {Select*} 500 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} 501 502 %include { 503 /* 504 ** For a compound SELECT statement, make sure p->pPrior->pNext==p for 505 ** all elements in the list. And make sure list length does not exceed 506 ** SQLITE_LIMIT_COMPOUND_SELECT. 507 */ 508 static void parserDoubleLinkSelect(Parse *pParse, Select *p){ 509 assert( p!=0 ); 510 if( p->pPrior ){ 511 Select *pNext = 0, *pLoop = p; 512 int mxSelect, cnt = 1; 513 while(1){ 514 pLoop->pNext = pNext; 515 pLoop->selFlags |= SF_Compound; 516 pNext = pLoop; 517 pLoop = pLoop->pPrior; 518 if( pLoop==0 ) break; 519 cnt++; 520 if( pLoop->pOrderBy || pLoop->pLimit ){ 521 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before", 522 pLoop->pOrderBy!=0 ? "ORDER BY" : "LIMIT", 523 sqlite3SelectOpName(pNext->op)); 524 break; 525 } 526 } 527 if( (p->selFlags & SF_MultiValue)==0 && 528 (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 && 529 cnt>mxSelect 530 ){ 531 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); 532 } 533 } 534 } 535 536 /* Attach a With object describing the WITH clause to a Select 537 ** object describing the query for which the WITH clause is a prefix. 538 */ 539 static Select *attachWithToSelect(Parse *pParse, Select *pSelect, With *pWith){ 540 if( pSelect ){ 541 pSelect->pWith = pWith; 542 parserDoubleLinkSelect(pParse, pSelect); 543 }else{ 544 sqlite3WithDelete(pParse->db, pWith); 545 } 546 return pSelect; 547 } 548 } 549 550 %ifndef SQLITE_OMIT_CTE 551 select(A) ::= WITH wqlist(W) selectnowith(X). {A = attachWithToSelect(pParse,X,W);} 552 select(A) ::= WITH RECURSIVE wqlist(W) selectnowith(X). 553 {A = attachWithToSelect(pParse,X,W);} 554 %endif /* SQLITE_OMIT_CTE */ 555 select(A) ::= selectnowith(X). { 556 Select *p = X; 557 if( p ){ 558 parserDoubleLinkSelect(pParse, p); 559 } 560 A = p; /*A-overwrites-X*/ 561 } 562 563 selectnowith(A) ::= oneselect(A). 564 %ifndef SQLITE_OMIT_COMPOUND_SELECT 565 selectnowith(A) ::= selectnowith(A) multiselect_op(Y) oneselect(Z). { 566 Select *pRhs = Z; 567 Select *pLhs = A; 568 if( pRhs && pRhs->pPrior ){ 569 SrcList *pFrom; 570 Token x; 571 x.n = 0; 572 parserDoubleLinkSelect(pParse, pRhs); 573 pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0); 574 pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0); 575 } 576 if( pRhs ){ 577 pRhs->op = (u8)Y; 578 pRhs->pPrior = pLhs; 579 if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue; 580 pRhs->selFlags &= ~SF_MultiValue; 581 if( Y!=TK_ALL ) pParse->hasCompound = 1; 582 }else{ 583 sqlite3SelectDelete(pParse->db, pLhs); 584 } 585 A = pRhs; 586 } 587 %type multiselect_op {int} 588 multiselect_op(A) ::= UNION(OP). {A = @OP; /*A-overwrites-OP*/} 589 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} 590 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP; /*A-overwrites-OP*/} 591 %endif SQLITE_OMIT_COMPOUND_SELECT 592 593 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 594 groupby_opt(P) having_opt(Q) 595 orderby_opt(Z) limit_opt(L). { 596 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L); 597 } 598 %ifndef SQLITE_OMIT_WINDOWFUNC 599 oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y) 600 groupby_opt(P) having_opt(Q) window_clause(R) 601 orderby_opt(Z) limit_opt(L). { 602 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L); 603 if( A ){ 604 A->pWinDefn = R; 605 }else{ 606 sqlite3WindowListDelete(pParse->db, R); 607 } 608 } 609 %endif 610 611 612 oneselect(A) ::= values(A). 613 614 %type values {Select*} 615 %destructor values {sqlite3SelectDelete(pParse->db, $$);} 616 values(A) ::= VALUES LP nexprlist(X) RP. { 617 A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0); 618 } 619 values(A) ::= values(A) COMMA LP nexprlist(Y) RP. { 620 Select *pRight, *pLeft = A; 621 pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0); 622 if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue; 623 if( pRight ){ 624 pRight->op = TK_ALL; 625 pRight->pPrior = pLeft; 626 A = pRight; 627 }else{ 628 A = pLeft; 629 } 630 } 631 632 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is 633 // present and false (0) if it is not. 634 // 635 %type distinct {int} 636 distinct(A) ::= DISTINCT. {A = SF_Distinct;} 637 distinct(A) ::= ALL. {A = SF_All;} 638 distinct(A) ::= . {A = 0;} 639 640 // selcollist is a list of expressions that are to become the return 641 // values of the SELECT statement. The "*" in statements like 642 // "SELECT * FROM ..." is encoded as a special expression with an 643 // opcode of TK_ASTERISK. 644 // 645 %type selcollist {ExprList*} 646 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} 647 %type sclp {ExprList*} 648 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} 649 sclp(A) ::= selcollist(A) COMMA. 650 sclp(A) ::= . {A = 0;} 651 selcollist(A) ::= sclp(A) scanpt(B) expr(X) scanpt(Z) as(Y). { 652 A = sqlite3ExprListAppend(pParse, A, X); 653 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); 654 sqlite3ExprListSetSpan(pParse,A,B,Z); 655 } 656 selcollist(A) ::= sclp(A) scanpt STAR. { 657 Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0); 658 A = sqlite3ExprListAppend(pParse, A, p); 659 } 660 selcollist(A) ::= sclp(A) scanpt nm(X) DOT STAR. { 661 Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0); 662 Expr *pLeft = tokenExpr(pParse, TK_ID, X); 663 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight); 664 A = sqlite3ExprListAppend(pParse,A, pDot); 665 } 666 667 // An option "AS <id>" phrase that can follow one of the expressions that 668 // define the result set, or one of the tables in the FROM clause. 669 // 670 %type as {Token} 671 as(X) ::= AS nm(Y). {X = Y;} 672 as(X) ::= ids(X). 673 as(X) ::= . {X.n = 0; X.z = 0;} 674 675 676 %type seltablist {SrcList*} 677 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} 678 %type stl_prefix {SrcList*} 679 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} 680 %type from {SrcList*} 681 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} 682 683 // A complete FROM clause. 684 // 685 from(A) ::= . {A = 0;} 686 from(A) ::= FROM seltablist(X). { 687 A = X; 688 sqlite3SrcListShiftJoinType(A); 689 } 690 691 // "seltablist" is a "Select Table List" - the content of the FROM clause 692 // in a SELECT statement. "stl_prefix" is a prefix of this list. 693 // 694 stl_prefix(A) ::= seltablist(A) joinop(Y). { 695 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y; 696 } 697 stl_prefix(A) ::= . {A = 0;} 698 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) as(Z) indexed_opt(I) 699 on_opt(N) using_opt(U). { 700 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 701 sqlite3SrcListIndexedBy(pParse, A, &I); 702 } 703 seltablist(A) ::= stl_prefix(A) nm(Y) dbnm(D) LP exprlist(E) RP as(Z) 704 on_opt(N) using_opt(U). { 705 A = sqlite3SrcListAppendFromTerm(pParse,A,&Y,&D,&Z,0,N,U); 706 sqlite3SrcListFuncArgs(pParse, A, E); 707 } 708 %ifndef SQLITE_OMIT_SUBQUERY 709 seltablist(A) ::= stl_prefix(A) LP select(S) RP 710 as(Z) on_opt(N) using_opt(U). { 711 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,S,N,U); 712 } 713 seltablist(A) ::= stl_prefix(A) LP seltablist(F) RP 714 as(Z) on_opt(N) using_opt(U). { 715 if( A==0 && Z.n==0 && N==0 && U==0 ){ 716 A = F; 717 }else if( F->nSrc==1 ){ 718 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,0,N,U); 719 if( A ){ 720 SrcItem *pNew = &A->a[A->nSrc-1]; 721 SrcItem *pOld = F->a; 722 pNew->zName = pOld->zName; 723 pNew->zDatabase = pOld->zDatabase; 724 pNew->pSelect = pOld->pSelect; 725 if( pOld->fg.isTabFunc ){ 726 pNew->u1.pFuncArg = pOld->u1.pFuncArg; 727 pOld->u1.pFuncArg = 0; 728 pOld->fg.isTabFunc = 0; 729 pNew->fg.isTabFunc = 1; 730 } 731 pOld->zName = pOld->zDatabase = 0; 732 pOld->pSelect = 0; 733 } 734 sqlite3SrcListDelete(pParse->db, F); 735 }else{ 736 Select *pSubquery; 737 sqlite3SrcListShiftJoinType(F); 738 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0); 739 A = sqlite3SrcListAppendFromTerm(pParse,A,0,0,&Z,pSubquery,N,U); 740 } 741 } 742 %endif SQLITE_OMIT_SUBQUERY 743 744 %type dbnm {Token} 745 dbnm(A) ::= . {A.z=0; A.n=0;} 746 dbnm(A) ::= DOT nm(X). {A = X;} 747 748 %type fullname {SrcList*} 749 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} 750 fullname(A) ::= nm(X). { 751 A = sqlite3SrcListAppend(pParse,0,&X,0); 752 if( IN_RENAME_OBJECT && A ) sqlite3RenameTokenMap(pParse, A->a[0].zName, &X); 753 } 754 fullname(A) ::= nm(X) DOT nm(Y). { 755 A = sqlite3SrcListAppend(pParse,0,&X,&Y); 756 if( IN_RENAME_OBJECT && A ) sqlite3RenameTokenMap(pParse, A->a[0].zName, &Y); 757 } 758 759 %type xfullname {SrcList*} 760 %destructor xfullname {sqlite3SrcListDelete(pParse->db, $$);} 761 xfullname(A) ::= nm(X). 762 {A = sqlite3SrcListAppend(pParse,0,&X,0); /*A-overwrites-X*/} 763 xfullname(A) ::= nm(X) DOT nm(Y). 764 {A = sqlite3SrcListAppend(pParse,0,&X,&Y); /*A-overwrites-X*/} 765 xfullname(A) ::= nm(X) DOT nm(Y) AS nm(Z). { 766 A = sqlite3SrcListAppend(pParse,0,&X,&Y); /*A-overwrites-X*/ 767 if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); 768 } 769 xfullname(A) ::= nm(X) AS nm(Z). { 770 A = sqlite3SrcListAppend(pParse,0,&X,0); /*A-overwrites-X*/ 771 if( A ) A->a[0].zAlias = sqlite3NameFromToken(pParse->db, &Z); 772 } 773 774 %type joinop {int} 775 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } 776 joinop(X) ::= JOIN_KW(A) JOIN. 777 {X = sqlite3JoinType(pParse,&A,0,0); /*X-overwrites-A*/} 778 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. 779 {X = sqlite3JoinType(pParse,&A,&B,0); /*X-overwrites-A*/} 780 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. 781 {X = sqlite3JoinType(pParse,&A,&B,&C);/*X-overwrites-A*/} 782 783 // There is a parsing abiguity in an upsert statement that uses a 784 // SELECT on the RHS of a the INSERT: 785 // 786 // INSERT INTO tab SELECT * FROM aaa JOIN bbb ON CONFLICT ... 787 // here ----^^ 788 // 789 // When the ON token is encountered, the parser does not know if it is 790 // the beginning of an ON CONFLICT clause, or the beginning of an ON 791 // clause associated with the JOIN. The conflict is resolved in favor 792 // of the JOIN. If an ON CONFLICT clause is intended, insert a dummy 793 // WHERE clause in between, like this: 794 // 795 // INSERT INTO tab SELECT * FROM aaa JOIN bbb WHERE true ON CONFLICT ... 796 // 797 // The [AND] and [OR] precedence marks in the rules for on_opt cause the 798 // ON in this context to always be interpreted as belonging to the JOIN. 799 // 800 %type on_opt {Expr*} 801 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} 802 on_opt(N) ::= ON expr(E). {N = E;} 803 on_opt(N) ::= . [OR] {N = 0;} 804 805 // Note that this block abuses the Token type just a little. If there is 806 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If 807 // there is an INDEXED BY clause, then the token is populated as per normal, 808 // with z pointing to the token data and n containing the number of bytes 809 // in the token. 810 // 811 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is 812 // normally illegal. The sqlite3SrcListIndexedBy() function 813 // recognizes and interprets this as a special case. 814 // 815 %type indexed_opt {Token} 816 indexed_opt(A) ::= . {A.z=0; A.n=0;} 817 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} 818 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} 819 820 %type using_opt {IdList*} 821 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} 822 using_opt(U) ::= USING LP idlist(L) RP. {U = L;} 823 using_opt(U) ::= . {U = 0;} 824 825 826 %type orderby_opt {ExprList*} 827 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} 828 829 // the sortlist non-terminal stores a list of expression where each 830 // expression is optionally followed by ASC or DESC to indicate the 831 // sort order. 832 // 833 %type sortlist {ExprList*} 834 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} 835 836 orderby_opt(A) ::= . {A = 0;} 837 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} 838 sortlist(A) ::= sortlist(A) COMMA expr(Y) sortorder(Z) nulls(X). { 839 A = sqlite3ExprListAppend(pParse,A,Y); 840 sqlite3ExprListSetSortOrder(A,Z,X); 841 } 842 sortlist(A) ::= expr(Y) sortorder(Z) nulls(X). { 843 A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/ 844 sqlite3ExprListSetSortOrder(A,Z,X); 845 } 846 847 %type sortorder {int} 848 849 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} 850 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} 851 sortorder(A) ::= . {A = SQLITE_SO_UNDEFINED;} 852 853 %type nulls {int} 854 nulls(A) ::= NULLS FIRST. {A = SQLITE_SO_ASC;} 855 nulls(A) ::= NULLS LAST. {A = SQLITE_SO_DESC;} 856 nulls(A) ::= . {A = SQLITE_SO_UNDEFINED;} 857 858 %type groupby_opt {ExprList*} 859 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} 860 groupby_opt(A) ::= . {A = 0;} 861 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} 862 863 %type having_opt {Expr*} 864 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} 865 having_opt(A) ::= . {A = 0;} 866 having_opt(A) ::= HAVING expr(X). {A = X;} 867 868 %type limit_opt {Expr*} 869 870 // The destructor for limit_opt will never fire in the current grammar. 871 // The limit_opt non-terminal only occurs at the end of a single production 872 // rule for SELECT statements. As soon as the rule that create the 873 // limit_opt non-terminal reduces, the SELECT statement rule will also 874 // reduce. So there is never a limit_opt non-terminal on the stack 875 // except as a transient. So there is never anything to destroy. 876 // 877 //%destructor limit_opt {sqlite3ExprDelete(pParse->db, $$);} 878 limit_opt(A) ::= . {A = 0;} 879 limit_opt(A) ::= LIMIT expr(X). 880 {A = sqlite3PExpr(pParse,TK_LIMIT,X,0);} 881 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). 882 {A = sqlite3PExpr(pParse,TK_LIMIT,X,Y);} 883 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). 884 {A = sqlite3PExpr(pParse,TK_LIMIT,Y,X);} 885 886 /////////////////////////// The DELETE statement ///////////////////////////// 887 // 888 %if SQLITE_ENABLE_UPDATE_DELETE_LIMIT || SQLITE_UDL_CAPABLE_PARSER 889 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt_ret(W) 890 orderby_opt(O) limit_opt(L). { 891 sqlite3SrcListIndexedBy(pParse, X, &I); 892 #ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 893 if( O || L ){ 894 updateDeleteLimitError(pParse,O,L); 895 O = 0; 896 L = 0; 897 } 898 #endif 899 sqlite3DeleteFrom(pParse,X,W,O,L); 900 } 901 %else 902 cmd ::= with DELETE FROM xfullname(X) indexed_opt(I) where_opt_ret(W). { 903 sqlite3SrcListIndexedBy(pParse, X, &I); 904 sqlite3DeleteFrom(pParse,X,W,0,0); 905 } 906 %endif 907 908 %type where_opt {Expr*} 909 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} 910 %type where_opt_ret {Expr*} 911 %destructor where_opt_ret {sqlite3ExprDelete(pParse->db, $$);} 912 913 where_opt(A) ::= . {A = 0;} 914 where_opt(A) ::= WHERE expr(X). {A = X;} 915 where_opt_ret(A) ::= . {A = 0;} 916 where_opt_ret(A) ::= WHERE expr(X). {A = X;} 917 where_opt_ret(A) ::= RETURNING selcollist(X). 918 {sqlite3AddReturning(pParse,X); A = 0;} 919 where_opt_ret(A) ::= WHERE expr(X) RETURNING selcollist(Y). 920 {sqlite3AddReturning(pParse,Y); A = X;} 921 922 ////////////////////////// The UPDATE command //////////////////////////////// 923 // 924 %if SQLITE_ENABLE_UPDATE_DELETE_LIMIT || SQLITE_UDL_CAPABLE_PARSER 925 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) from(F) 926 where_opt_ret(W) orderby_opt(O) limit_opt(L). { 927 sqlite3SrcListIndexedBy(pParse, X, &I); 928 X = sqlite3SrcListAppendList(pParse, X, F); 929 sqlite3ExprListCheckLength(pParse,Y,"set list"); 930 #ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT 931 if( O || L ){ 932 updateDeleteLimitError(pParse,O,L); 933 O = 0; 934 L = 0; 935 } 936 #endif 937 sqlite3Update(pParse,X,Y,W,R,O,L,0); 938 } 939 %else 940 cmd ::= with UPDATE orconf(R) xfullname(X) indexed_opt(I) SET setlist(Y) from(F) 941 where_opt_ret(W). { 942 sqlite3SrcListIndexedBy(pParse, X, &I); 943 sqlite3ExprListCheckLength(pParse,Y,"set list"); 944 X = sqlite3SrcListAppendList(pParse, X, F); 945 sqlite3Update(pParse,X,Y,W,R,0,0,0); 946 } 947 %endif 948 949 950 951 %type setlist {ExprList*} 952 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} 953 954 setlist(A) ::= setlist(A) COMMA nm(X) EQ expr(Y). { 955 A = sqlite3ExprListAppend(pParse, A, Y); 956 sqlite3ExprListSetName(pParse, A, &X, 1); 957 } 958 setlist(A) ::= setlist(A) COMMA LP idlist(X) RP EQ expr(Y). { 959 A = sqlite3ExprListAppendVector(pParse, A, X, Y); 960 } 961 setlist(A) ::= nm(X) EQ expr(Y). { 962 A = sqlite3ExprListAppend(pParse, 0, Y); 963 sqlite3ExprListSetName(pParse, A, &X, 1); 964 } 965 setlist(A) ::= LP idlist(X) RP EQ expr(Y). { 966 A = sqlite3ExprListAppendVector(pParse, 0, X, Y); 967 } 968 969 ////////////////////////// The INSERT command ///////////////////////////////// 970 // 971 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) select(S) 972 upsert(U). { 973 sqlite3Insert(pParse, X, S, F, R, U); 974 } 975 cmd ::= with insert_cmd(R) INTO xfullname(X) idlist_opt(F) DEFAULT VALUES returning. 976 { 977 sqlite3Insert(pParse, X, 0, F, R, 0); 978 } 979 980 %type upsert {Upsert*} 981 982 // Because upsert only occurs at the tip end of the INSERT rule for cmd, 983 // there is never a case where the value of the upsert pointer will not 984 // be destroyed by the cmd action. So comment-out the destructor to 985 // avoid unreachable code. 986 //%destructor upsert {sqlite3UpsertDelete(pParse->db,$$);} 987 upsert(A) ::= . { A = 0; } 988 upsert(A) ::= RETURNING selcollist(X). { A = 0; sqlite3AddReturning(pParse,X); } 989 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) 990 DO UPDATE SET setlist(Z) where_opt(W) upsert(N). 991 { A = sqlite3UpsertNew(pParse->db,T,TW,Z,W,N);} 992 upsert(A) ::= ON CONFLICT LP sortlist(T) RP where_opt(TW) DO NOTHING upsert(N). 993 { A = sqlite3UpsertNew(pParse->db,T,TW,0,0,N); } 994 upsert(A) ::= ON CONFLICT DO NOTHING returning. 995 { A = sqlite3UpsertNew(pParse->db,0,0,0,0,0); } 996 upsert(A) ::= ON CONFLICT DO UPDATE SET setlist(Z) where_opt(W) returning. 997 { A = sqlite3UpsertNew(pParse->db,0,0,Z,W,0);} 998 999 returning ::= RETURNING selcollist(X). {sqlite3AddReturning(pParse,X);} 1000 returning ::= . 1001 1002 %type insert_cmd {int} 1003 insert_cmd(A) ::= INSERT orconf(R). {A = R;} 1004 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} 1005 1006 %type idlist_opt {IdList*} 1007 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);} 1008 %type idlist {IdList*} 1009 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);} 1010 1011 idlist_opt(A) ::= . {A = 0;} 1012 idlist_opt(A) ::= LP idlist(X) RP. {A = X;} 1013 idlist(A) ::= idlist(A) COMMA nm(Y). 1014 {A = sqlite3IdListAppend(pParse,A,&Y);} 1015 idlist(A) ::= nm(Y). 1016 {A = sqlite3IdListAppend(pParse,0,&Y); /*A-overwrites-Y*/} 1017 1018 /////////////////////////// Expression Processing ///////////////////////////// 1019 // 1020 1021 %type expr {Expr*} 1022 %destructor expr {sqlite3ExprDelete(pParse->db, $$);} 1023 %type term {Expr*} 1024 %destructor term {sqlite3ExprDelete(pParse->db, $$);} 1025 1026 %include { 1027 1028 /* Construct a new Expr object from a single token */ 1029 static Expr *tokenExpr(Parse *pParse, int op, Token t){ 1030 Expr *p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)+t.n+1); 1031 if( p ){ 1032 /* memset(p, 0, sizeof(Expr)); */ 1033 p->op = (u8)op; 1034 p->affExpr = 0; 1035 p->flags = EP_Leaf; 1036 ExprClearVVAProperties(p); 1037 p->iAgg = -1; 1038 p->pLeft = p->pRight = 0; 1039 p->pAggInfo = 0; 1040 memset(&p->x, 0, sizeof(p->x)); 1041 memset(&p->y, 0, sizeof(p->y)); 1042 p->op2 = 0; 1043 p->iTable = 0; 1044 p->iColumn = 0; 1045 p->u.zToken = (char*)&p[1]; 1046 memcpy(p->u.zToken, t.z, t.n); 1047 p->u.zToken[t.n] = 0; 1048 p->w.iOfst = (int)(t.z - pParse->zTail); 1049 if( sqlite3Isquote(p->u.zToken[0]) ){ 1050 sqlite3DequoteExpr(p); 1051 } 1052 #if SQLITE_MAX_EXPR_DEPTH>0 1053 p->nHeight = 1; 1054 #endif 1055 if( IN_RENAME_OBJECT ){ 1056 return (Expr*)sqlite3RenameTokenMap(pParse, (void*)p, &t); 1057 } 1058 } 1059 return p; 1060 } 1061 1062 } 1063 1064 expr(A) ::= term(A). 1065 expr(A) ::= LP expr(X) RP. {A = X;} 1066 expr(A) ::= id(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 1067 expr(A) ::= JOIN_KW(X). {A=tokenExpr(pParse,TK_ID,X); /*A-overwrites-X*/} 1068 expr(A) ::= nm(X) DOT nm(Y). { 1069 Expr *temp1 = tokenExpr(pParse,TK_ID,X); 1070 Expr *temp2 = tokenExpr(pParse,TK_ID,Y); 1071 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp2); 1072 } 1073 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { 1074 Expr *temp1 = tokenExpr(pParse,TK_ID,X); 1075 Expr *temp2 = tokenExpr(pParse,TK_ID,Y); 1076 Expr *temp3 = tokenExpr(pParse,TK_ID,Z); 1077 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3); 1078 A = sqlite3PExpr(pParse, TK_DOT, temp1, temp4); 1079 } 1080 term(A) ::= NULL|FLOAT|BLOB(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 1081 term(A) ::= STRING(X). {A=tokenExpr(pParse,@X,X); /*A-overwrites-X*/} 1082 term(A) ::= INTEGER(X). { 1083 A = sqlite3ExprAlloc(pParse->db, TK_INTEGER, &X, 1); 1084 if( A ) A->w.iOfst = (int)(X.z - pParse->zTail); 1085 } 1086 expr(A) ::= VARIABLE(X). { 1087 if( !(X.z[0]=='#' && sqlite3Isdigit(X.z[1])) ){ 1088 u32 n = X.n; 1089 A = tokenExpr(pParse, TK_VARIABLE, X); 1090 sqlite3ExprAssignVarNumber(pParse, A, n); 1091 }else{ 1092 /* When doing a nested parse, one can include terms in an expression 1093 ** that look like this: #1 #2 ... These terms refer to registers 1094 ** in the virtual machine. #N is the N-th register. */ 1095 Token t = X; /*A-overwrites-X*/ 1096 assert( t.n>=2 ); 1097 if( pParse->nested==0 ){ 1098 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &t); 1099 A = 0; 1100 }else{ 1101 A = sqlite3PExpr(pParse, TK_REGISTER, 0, 0); 1102 if( A ) sqlite3GetInt32(&t.z[1], &A->iTable); 1103 } 1104 } 1105 } 1106 expr(A) ::= expr(A) COLLATE ids(C). { 1107 A = sqlite3ExprAddCollateToken(pParse, A, &C, 1); 1108 } 1109 %ifndef SQLITE_OMIT_CAST 1110 expr(A) ::= CAST LP expr(E) AS typetoken(T) RP. { 1111 A = sqlite3ExprAlloc(pParse->db, TK_CAST, &T, 1); 1112 sqlite3ExprAttachSubtrees(pParse->db, A, E, 0); 1113 } 1114 %endif SQLITE_OMIT_CAST 1115 1116 1117 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP. { 1118 A = sqlite3ExprFunction(pParse, Y, &X, D); 1119 } 1120 expr(A) ::= id(X) LP STAR RP. { 1121 A = sqlite3ExprFunction(pParse, 0, &X, 0); 1122 } 1123 1124 %ifndef SQLITE_OMIT_WINDOWFUNC 1125 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP filter_over(Z). { 1126 A = sqlite3ExprFunction(pParse, Y, &X, D); 1127 sqlite3WindowAttach(pParse, A, Z); 1128 } 1129 expr(A) ::= id(X) LP STAR RP filter_over(Z). { 1130 A = sqlite3ExprFunction(pParse, 0, &X, 0); 1131 sqlite3WindowAttach(pParse, A, Z); 1132 } 1133 %endif 1134 1135 term(A) ::= CTIME_KW(OP). { 1136 A = sqlite3ExprFunction(pParse, 0, &OP, 0); 1137 } 1138 1139 expr(A) ::= LP nexprlist(X) COMMA expr(Y) RP. { 1140 ExprList *pList = sqlite3ExprListAppend(pParse, X, Y); 1141 A = sqlite3PExpr(pParse, TK_VECTOR, 0, 0); 1142 if( A ){ 1143 A->x.pList = pList; 1144 if( ALWAYS(pList->nExpr) ){ 1145 A->flags |= pList->a[0].pExpr->flags & EP_Propagate; 1146 } 1147 }else{ 1148 sqlite3ExprListDelete(pParse->db, pList); 1149 } 1150 } 1151 1152 expr(A) ::= expr(A) AND expr(Y). {A=sqlite3ExprAnd(pParse,A,Y);} 1153 expr(A) ::= expr(A) OR(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1154 expr(A) ::= expr(A) LT|GT|GE|LE(OP) expr(Y). 1155 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1156 expr(A) ::= expr(A) EQ|NE(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1157 expr(A) ::= expr(A) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). 1158 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1159 expr(A) ::= expr(A) PLUS|MINUS(OP) expr(Y). 1160 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1161 expr(A) ::= expr(A) STAR|SLASH|REM(OP) expr(Y). 1162 {A=sqlite3PExpr(pParse,@OP,A,Y);} 1163 expr(A) ::= expr(A) CONCAT(OP) expr(Y). {A=sqlite3PExpr(pParse,@OP,A,Y);} 1164 %type likeop {Token} 1165 likeop(A) ::= LIKE_KW|MATCH(A). 1166 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A=X; A.n|=0x80000000; /*A-overwrite-X*/} 1167 expr(A) ::= expr(A) likeop(OP) expr(Y). [LIKE_KW] { 1168 ExprList *pList; 1169 int bNot = OP.n & 0x80000000; 1170 OP.n &= 0x7fffffff; 1171 pList = sqlite3ExprListAppend(pParse,0, Y); 1172 pList = sqlite3ExprListAppend(pParse,pList, A); 1173 A = sqlite3ExprFunction(pParse, pList, &OP, 0); 1174 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1175 if( A ) A->flags |= EP_InfixFunc; 1176 } 1177 expr(A) ::= expr(A) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { 1178 ExprList *pList; 1179 int bNot = OP.n & 0x80000000; 1180 OP.n &= 0x7fffffff; 1181 pList = sqlite3ExprListAppend(pParse,0, Y); 1182 pList = sqlite3ExprListAppend(pParse,pList, A); 1183 pList = sqlite3ExprListAppend(pParse,pList, E); 1184 A = sqlite3ExprFunction(pParse, pList, &OP, 0); 1185 if( bNot ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1186 if( A ) A->flags |= EP_InfixFunc; 1187 } 1188 1189 expr(A) ::= expr(A) ISNULL|NOTNULL(E). {A = sqlite3PExpr(pParse,@E,A,0);} 1190 expr(A) ::= expr(A) NOT NULL. {A = sqlite3PExpr(pParse,TK_NOTNULL,A,0);} 1191 1192 %include { 1193 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a 1194 ** unary TK_ISNULL or TK_NOTNULL expression. */ 1195 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ 1196 sqlite3 *db = pParse->db; 1197 if( pA && pY && pY->op==TK_NULL && !IN_RENAME_OBJECT ){ 1198 pA->op = (u8)op; 1199 sqlite3ExprDelete(db, pA->pRight); 1200 pA->pRight = 0; 1201 } 1202 } 1203 } 1204 1205 // expr1 IS expr2 1206 // expr1 IS NOT expr2 1207 // 1208 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 1209 // is any other expression, code as TK_IS or TK_ISNOT. 1210 // 1211 expr(A) ::= expr(A) IS expr(Y). { 1212 A = sqlite3PExpr(pParse,TK_IS,A,Y); 1213 binaryToUnaryIfNull(pParse, Y, A, TK_ISNULL); 1214 } 1215 expr(A) ::= expr(A) IS NOT expr(Y). { 1216 A = sqlite3PExpr(pParse,TK_ISNOT,A,Y); 1217 binaryToUnaryIfNull(pParse, Y, A, TK_NOTNULL); 1218 } 1219 1220 expr(A) ::= NOT(B) expr(X). 1221 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1222 expr(A) ::= BITNOT(B) expr(X). 1223 {A = sqlite3PExpr(pParse, @B, X, 0);/*A-overwrites-B*/} 1224 expr(A) ::= PLUS|MINUS(B) expr(X). [BITNOT] { 1225 A = sqlite3PExpr(pParse, @B==TK_PLUS ? TK_UPLUS : TK_UMINUS, X, 0); 1226 /*A-overwrites-B*/ 1227 } 1228 1229 expr(A) ::= expr(B) PTR(C) expr(D). { 1230 ExprList *pList = sqlite3ExprListAppend(pParse, 0, B); 1231 pList = sqlite3ExprListAppend(pParse, pList, D); 1232 A = sqlite3ExprFunction(pParse, pList, &C, 0); 1233 } 1234 1235 %type between_op {int} 1236 between_op(A) ::= BETWEEN. {A = 0;} 1237 between_op(A) ::= NOT BETWEEN. {A = 1;} 1238 expr(A) ::= expr(A) between_op(N) expr(X) AND expr(Y). [BETWEEN] { 1239 ExprList *pList = sqlite3ExprListAppend(pParse,0, X); 1240 pList = sqlite3ExprListAppend(pParse,pList, Y); 1241 A = sqlite3PExpr(pParse, TK_BETWEEN, A, 0); 1242 if( A ){ 1243 A->x.pList = pList; 1244 }else{ 1245 sqlite3ExprListDelete(pParse->db, pList); 1246 } 1247 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1248 } 1249 %ifndef SQLITE_OMIT_SUBQUERY 1250 %type in_op {int} 1251 in_op(A) ::= IN. {A = 0;} 1252 in_op(A) ::= NOT IN. {A = 1;} 1253 expr(A) ::= expr(A) in_op(N) LP exprlist(Y) RP. [IN] { 1254 if( Y==0 ){ 1255 /* Expressions of the form 1256 ** 1257 ** expr1 IN () 1258 ** expr1 NOT IN () 1259 ** 1260 ** simplify to constants 0 (false) and 1 (true), respectively, 1261 ** regardless of the value of expr1. 1262 */ 1263 sqlite3ExprUnmapAndDelete(pParse, A); 1264 A = sqlite3Expr(pParse->db, TK_INTEGER, N ? "1" : "0"); 1265 }else{ 1266 Expr *pRHS = Y->a[0].pExpr; 1267 if( Y->nExpr==1 && sqlite3ExprIsConstant(pRHS) && A->op!=TK_VECTOR ){ 1268 Y->a[0].pExpr = 0; 1269 sqlite3ExprListDelete(pParse->db, Y); 1270 pRHS = sqlite3PExpr(pParse, TK_UPLUS, pRHS, 0); 1271 A = sqlite3PExpr(pParse, TK_EQ, A, pRHS); 1272 }else{ 1273 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1274 if( A==0 ){ 1275 sqlite3ExprListDelete(pParse->db, Y); 1276 }else if( A->pLeft->op==TK_VECTOR ){ 1277 int nExpr = A->pLeft->x.pList->nExpr; 1278 Select *pSelectRHS = sqlite3ExprListToValues(pParse, nExpr, Y); 1279 if( pSelectRHS ){ 1280 parserDoubleLinkSelect(pParse, pSelectRHS); 1281 sqlite3PExprAddSelect(pParse, A, pSelectRHS); 1282 } 1283 }else{ 1284 A->x.pList = Y; 1285 sqlite3ExprSetHeightAndFlags(pParse, A); 1286 } 1287 } 1288 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1289 } 1290 } 1291 expr(A) ::= LP select(X) RP. { 1292 A = sqlite3PExpr(pParse, TK_SELECT, 0, 0); 1293 sqlite3PExprAddSelect(pParse, A, X); 1294 } 1295 expr(A) ::= expr(A) in_op(N) LP select(Y) RP. [IN] { 1296 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1297 sqlite3PExprAddSelect(pParse, A, Y); 1298 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1299 } 1300 expr(A) ::= expr(A) in_op(N) nm(Y) dbnm(Z) paren_exprlist(E). [IN] { 1301 SrcList *pSrc = sqlite3SrcListAppend(pParse, 0,&Y,&Z); 1302 Select *pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0); 1303 if( E ) sqlite3SrcListFuncArgs(pParse, pSelect ? pSrc : 0, E); 1304 A = sqlite3PExpr(pParse, TK_IN, A, 0); 1305 sqlite3PExprAddSelect(pParse, A, pSelect); 1306 if( N ) A = sqlite3PExpr(pParse, TK_NOT, A, 0); 1307 } 1308 expr(A) ::= EXISTS LP select(Y) RP. { 1309 Expr *p; 1310 p = A = sqlite3PExpr(pParse, TK_EXISTS, 0, 0); 1311 sqlite3PExprAddSelect(pParse, p, Y); 1312 } 1313 %endif SQLITE_OMIT_SUBQUERY 1314 1315 /* CASE expressions */ 1316 expr(A) ::= CASE case_operand(X) case_exprlist(Y) case_else(Z) END. { 1317 A = sqlite3PExpr(pParse, TK_CASE, X, 0); 1318 if( A ){ 1319 A->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y; 1320 sqlite3ExprSetHeightAndFlags(pParse, A); 1321 }else{ 1322 sqlite3ExprListDelete(pParse->db, Y); 1323 sqlite3ExprDelete(pParse->db, Z); 1324 } 1325 } 1326 %type case_exprlist {ExprList*} 1327 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1328 case_exprlist(A) ::= case_exprlist(A) WHEN expr(Y) THEN expr(Z). { 1329 A = sqlite3ExprListAppend(pParse,A, Y); 1330 A = sqlite3ExprListAppend(pParse,A, Z); 1331 } 1332 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { 1333 A = sqlite3ExprListAppend(pParse,0, Y); 1334 A = sqlite3ExprListAppend(pParse,A, Z); 1335 } 1336 %type case_else {Expr*} 1337 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} 1338 case_else(A) ::= ELSE expr(X). {A = X;} 1339 case_else(A) ::= . {A = 0;} 1340 %type case_operand {Expr*} 1341 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} 1342 case_operand(A) ::= expr(X). {A = X; /*A-overwrites-X*/} 1343 case_operand(A) ::= . {A = 0;} 1344 1345 %type exprlist {ExprList*} 1346 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1347 %type nexprlist {ExprList*} 1348 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} 1349 1350 exprlist(A) ::= nexprlist(A). 1351 exprlist(A) ::= . {A = 0;} 1352 nexprlist(A) ::= nexprlist(A) COMMA expr(Y). 1353 {A = sqlite3ExprListAppend(pParse,A,Y);} 1354 nexprlist(A) ::= expr(Y). 1355 {A = sqlite3ExprListAppend(pParse,0,Y); /*A-overwrites-Y*/} 1356 1357 %ifndef SQLITE_OMIT_SUBQUERY 1358 /* A paren_exprlist is an optional expression list contained inside 1359 ** of parenthesis */ 1360 %type paren_exprlist {ExprList*} 1361 %destructor paren_exprlist {sqlite3ExprListDelete(pParse->db, $$);} 1362 paren_exprlist(A) ::= . {A = 0;} 1363 paren_exprlist(A) ::= LP exprlist(X) RP. {A = X;} 1364 %endif SQLITE_OMIT_SUBQUERY 1365 1366 1367 ///////////////////////////// The CREATE INDEX command /////////////////////// 1368 // 1369 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) 1370 ON nm(Y) LP sortlist(Z) RP where_opt(W). { 1371 sqlite3CreateIndex(pParse, &X, &D, 1372 sqlite3SrcListAppend(pParse,0,&Y,0), Z, U, 1373 &S, W, SQLITE_SO_ASC, NE, SQLITE_IDXTYPE_APPDEF); 1374 if( IN_RENAME_OBJECT && pParse->pNewIndex ){ 1375 sqlite3RenameTokenMap(pParse, pParse->pNewIndex->zName, &Y); 1376 } 1377 } 1378 1379 %type uniqueflag {int} 1380 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} 1381 uniqueflag(A) ::= . {A = OE_None;} 1382 1383 1384 // The eidlist non-terminal (Expression Id List) generates an ExprList 1385 // from a list of identifiers. The identifier names are in ExprList.a[].zName. 1386 // This list is stored in an ExprList rather than an IdList so that it 1387 // can be easily sent to sqlite3ColumnsExprList(). 1388 // 1389 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal 1390 // used for the arguments to an index. That is just an historical accident. 1391 // 1392 // IMPORTANT COMPATIBILITY NOTE: Some prior versions of SQLite accepted 1393 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate 1394 // places - places that might have been stored in the sqlite_schema table. 1395 // Those extra features were ignored. But because they might be in some 1396 // (busted) old databases, we need to continue parsing them when loading 1397 // historical schemas. 1398 // 1399 %type eidlist {ExprList*} 1400 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);} 1401 %type eidlist_opt {ExprList*} 1402 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);} 1403 1404 %include { 1405 /* Add a single new term to an ExprList that is used to store a 1406 ** list of identifiers. Report an error if the ID list contains 1407 ** a COLLATE clause or an ASC or DESC keyword, except ignore the 1408 ** error while parsing a legacy schema. 1409 */ 1410 static ExprList *parserAddExprIdListTerm( 1411 Parse *pParse, 1412 ExprList *pPrior, 1413 Token *pIdToken, 1414 int hasCollate, 1415 int sortOrder 1416 ){ 1417 ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0); 1418 if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED) 1419 && pParse->db->init.busy==0 1420 ){ 1421 sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"", 1422 pIdToken->n, pIdToken->z); 1423 } 1424 sqlite3ExprListSetName(pParse, p, pIdToken, 1); 1425 return p; 1426 } 1427 } // end %include 1428 1429 eidlist_opt(A) ::= . {A = 0;} 1430 eidlist_opt(A) ::= LP eidlist(X) RP. {A = X;} 1431 eidlist(A) ::= eidlist(A) COMMA nm(Y) collate(C) sortorder(Z). { 1432 A = parserAddExprIdListTerm(pParse, A, &Y, C, Z); 1433 } 1434 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). { 1435 A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); /*A-overwrites-Y*/ 1436 } 1437 1438 %type collate {int} 1439 collate(C) ::= . {C = 0;} 1440 collate(C) ::= COLLATE ids. {C = 1;} 1441 1442 1443 ///////////////////////////// The DROP INDEX command ///////////////////////// 1444 // 1445 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} 1446 1447 ///////////////////////////// The VACUUM command ///////////////////////////// 1448 // 1449 %if !SQLITE_OMIT_VACUUM && !SQLITE_OMIT_ATTACH 1450 %type vinto {Expr*} 1451 %destructor vinto {sqlite3ExprDelete(pParse->db, $$);} 1452 cmd ::= VACUUM vinto(Y). {sqlite3Vacuum(pParse,0,Y);} 1453 cmd ::= VACUUM nm(X) vinto(Y). {sqlite3Vacuum(pParse,&X,Y);} 1454 vinto(A) ::= INTO expr(X). {A = X;} 1455 vinto(A) ::= . {A = 0;} 1456 %endif 1457 1458 ///////////////////////////// The PRAGMA command ///////////////////////////// 1459 // 1460 %ifndef SQLITE_OMIT_PRAGMA 1461 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} 1462 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1463 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} 1464 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). 1465 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1466 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. 1467 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} 1468 1469 nmnum(A) ::= plus_num(A). 1470 nmnum(A) ::= nm(A). 1471 nmnum(A) ::= ON(A). 1472 nmnum(A) ::= DELETE(A). 1473 nmnum(A) ::= DEFAULT(A). 1474 %endif SQLITE_OMIT_PRAGMA 1475 %token_class number INTEGER|FLOAT. 1476 plus_num(A) ::= PLUS number(X). {A = X;} 1477 plus_num(A) ::= number(A). 1478 minus_num(A) ::= MINUS number(X). {A = X;} 1479 //////////////////////////// The CREATE TRIGGER command ///////////////////// 1480 1481 %ifndef SQLITE_OMIT_TRIGGER 1482 1483 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { 1484 Token all; 1485 all.z = A.z; 1486 all.n = (int)(Z.z - A.z) + Z.n; 1487 sqlite3FinishTrigger(pParse, S, &all); 1488 } 1489 1490 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) 1491 trigger_time(C) trigger_event(D) 1492 ON fullname(E) foreach_clause when_clause(G). { 1493 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); 1494 A = (Z.n==0?B:Z); /*A-overwrites-T*/ 1495 } 1496 1497 %type trigger_time {int} 1498 trigger_time(A) ::= BEFORE|AFTER(X). { A = @X; /*A-overwrites-X*/ } 1499 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} 1500 trigger_time(A) ::= . { A = TK_BEFORE; } 1501 1502 %type trigger_event {struct TrigEvent} 1503 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} 1504 trigger_event(A) ::= DELETE|INSERT(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1505 trigger_event(A) ::= UPDATE(X). {A.a = @X; /*A-overwrites-X*/ A.b = 0;} 1506 trigger_event(A) ::= UPDATE OF idlist(X).{A.a = TK_UPDATE; A.b = X;} 1507 1508 foreach_clause ::= . 1509 foreach_clause ::= FOR EACH ROW. 1510 1511 %type when_clause {Expr*} 1512 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} 1513 when_clause(A) ::= . { A = 0; } 1514 when_clause(A) ::= WHEN expr(X). { A = X; } 1515 1516 %type trigger_cmd_list {TriggerStep*} 1517 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} 1518 trigger_cmd_list(A) ::= trigger_cmd_list(A) trigger_cmd(X) SEMI. { 1519 assert( A!=0 ); 1520 A->pLast->pNext = X; 1521 A->pLast = X; 1522 } 1523 trigger_cmd_list(A) ::= trigger_cmd(A) SEMI. { 1524 assert( A!=0 ); 1525 A->pLast = A; 1526 } 1527 1528 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements 1529 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in 1530 // the same database as the table that the trigger fires on. 1531 // 1532 %type trnm {Token} 1533 trnm(A) ::= nm(A). 1534 trnm(A) ::= nm DOT nm(X). { 1535 A = X; 1536 sqlite3ErrorMsg(pParse, 1537 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " 1538 "statements within triggers"); 1539 } 1540 1541 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE 1542 // statements within triggers. We make a specific error message for this 1543 // since it is an exception to the default grammar rules. 1544 // 1545 tridxby ::= . 1546 tridxby ::= INDEXED BY nm. { 1547 sqlite3ErrorMsg(pParse, 1548 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " 1549 "within triggers"); 1550 } 1551 tridxby ::= NOT INDEXED. { 1552 sqlite3ErrorMsg(pParse, 1553 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " 1554 "within triggers"); 1555 } 1556 1557 1558 1559 %type trigger_cmd {TriggerStep*} 1560 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} 1561 // UPDATE 1562 trigger_cmd(A) ::= 1563 UPDATE(B) orconf(R) trnm(X) tridxby SET setlist(Y) from(F) where_opt(Z) scanpt(E). 1564 {A = sqlite3TriggerUpdateStep(pParse, &X, F, Y, Z, R, B.z, E);} 1565 1566 // INSERT 1567 trigger_cmd(A) ::= scanpt(B) insert_cmd(R) INTO 1568 trnm(X) idlist_opt(F) select(S) upsert(U) scanpt(Z). { 1569 A = sqlite3TriggerInsertStep(pParse,&X,F,S,R,U,B,Z);/*A-overwrites-R*/ 1570 } 1571 // DELETE 1572 trigger_cmd(A) ::= DELETE(B) FROM trnm(X) tridxby where_opt(Y) scanpt(E). 1573 {A = sqlite3TriggerDeleteStep(pParse, &X, Y, B.z, E);} 1574 1575 // SELECT 1576 trigger_cmd(A) ::= scanpt(B) select(X) scanpt(E). 1577 {A = sqlite3TriggerSelectStep(pParse->db, X, B, E); /*A-overwrites-X*/} 1578 1579 // The special RAISE expression that may occur in trigger programs 1580 expr(A) ::= RAISE LP IGNORE RP. { 1581 A = sqlite3PExpr(pParse, TK_RAISE, 0, 0); 1582 if( A ){ 1583 A->affExpr = OE_Ignore; 1584 } 1585 } 1586 expr(A) ::= RAISE LP raisetype(T) COMMA nm(Z) RP. { 1587 A = sqlite3ExprAlloc(pParse->db, TK_RAISE, &Z, 1); 1588 if( A ) { 1589 A->affExpr = (char)T; 1590 } 1591 } 1592 %endif !SQLITE_OMIT_TRIGGER 1593 1594 %type raisetype {int} 1595 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} 1596 raisetype(A) ::= ABORT. {A = OE_Abort;} 1597 raisetype(A) ::= FAIL. {A = OE_Fail;} 1598 1599 1600 //////////////////////// DROP TRIGGER statement ////////////////////////////// 1601 %ifndef SQLITE_OMIT_TRIGGER 1602 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { 1603 sqlite3DropTrigger(pParse,X,NOERR); 1604 } 1605 %endif !SQLITE_OMIT_TRIGGER 1606 1607 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// 1608 %ifndef SQLITE_OMIT_ATTACH 1609 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { 1610 sqlite3Attach(pParse, F, D, K); 1611 } 1612 cmd ::= DETACH database_kw_opt expr(D). { 1613 sqlite3Detach(pParse, D); 1614 } 1615 1616 %type key_opt {Expr*} 1617 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} 1618 key_opt(A) ::= . { A = 0; } 1619 key_opt(A) ::= KEY expr(X). { A = X; } 1620 1621 database_kw_opt ::= DATABASE. 1622 database_kw_opt ::= . 1623 %endif SQLITE_OMIT_ATTACH 1624 1625 ////////////////////////// REINDEX collation ////////////////////////////////// 1626 %ifndef SQLITE_OMIT_REINDEX 1627 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} 1628 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} 1629 %endif SQLITE_OMIT_REINDEX 1630 1631 /////////////////////////////////// ANALYZE /////////////////////////////////// 1632 %ifndef SQLITE_OMIT_ANALYZE 1633 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} 1634 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} 1635 %endif 1636 1637 //////////////////////// ALTER TABLE table ... //////////////////////////////// 1638 %ifndef SQLITE_OMIT_ALTERTABLE 1639 %ifndef SQLITE_OMIT_VIRTUALTABLE 1640 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { 1641 sqlite3AlterRenameTable(pParse,X,&Z); 1642 } 1643 cmd ::= ALTER TABLE add_column_fullname 1644 ADD kwcolumn_opt columnname(Y) carglist. { 1645 Y.n = (int)(pParse->sLastToken.z-Y.z) + pParse->sLastToken.n; 1646 sqlite3AlterFinishAddColumn(pParse, &Y); 1647 } 1648 cmd ::= ALTER TABLE fullname(X) DROP kwcolumn_opt nm(Y). { 1649 sqlite3AlterDropColumn(pParse, X, &Y); 1650 } 1651 1652 add_column_fullname ::= fullname(X). { 1653 disableLookaside(pParse); 1654 sqlite3AlterBeginAddColumn(pParse, X); 1655 } 1656 cmd ::= ALTER TABLE fullname(X) RENAME kwcolumn_opt nm(Y) TO nm(Z). { 1657 sqlite3AlterRenameColumn(pParse, X, &Y, &Z); 1658 } 1659 1660 kwcolumn_opt ::= . 1661 kwcolumn_opt ::= COLUMNKW. 1662 1663 %endif SQLITE_OMIT_VIRTUALTABLE 1664 %endif SQLITE_OMIT_ALTERTABLE 1665 1666 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// 1667 %ifndef SQLITE_OMIT_VIRTUALTABLE 1668 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} 1669 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} 1670 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E) 1671 nm(X) dbnm(Y) USING nm(Z). { 1672 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E); 1673 } 1674 vtabarglist ::= vtabarg. 1675 vtabarglist ::= vtabarglist COMMA vtabarg. 1676 vtabarg ::= . {sqlite3VtabArgInit(pParse);} 1677 vtabarg ::= vtabarg vtabargtoken. 1678 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} 1679 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} 1680 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} 1681 anylist ::= . 1682 anylist ::= anylist LP anylist RP. 1683 anylist ::= anylist ANY. 1684 %endif SQLITE_OMIT_VIRTUALTABLE 1685 1686 1687 //////////////////////// COMMON TABLE EXPRESSIONS //////////////////////////// 1688 %type wqlist {With*} 1689 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);} 1690 %type wqitem {Cte*} 1691 // %destructor wqitem {sqlite3CteDelete(pParse->db, $$);} // not reachable 1692 1693 with ::= . 1694 %ifndef SQLITE_OMIT_CTE 1695 with ::= WITH wqlist(W). { sqlite3WithPush(pParse, W, 1); } 1696 with ::= WITH RECURSIVE wqlist(W). { sqlite3WithPush(pParse, W, 1); } 1697 1698 %type wqas {u8} 1699 wqas(A) ::= AS. {A = M10d_Any;} 1700 wqas(A) ::= AS MATERIALIZED. {A = M10d_Yes;} 1701 wqas(A) ::= AS NOT MATERIALIZED. {A = M10d_No;} 1702 wqitem(A) ::= nm(X) eidlist_opt(Y) wqas(M) LP select(Z) RP. { 1703 A = sqlite3CteNew(pParse, &X, Y, Z, M); /*A-overwrites-X*/ 1704 } 1705 wqlist(A) ::= wqitem(X). { 1706 A = sqlite3WithAdd(pParse, 0, X); /*A-overwrites-X*/ 1707 } 1708 wqlist(A) ::= wqlist(A) COMMA wqitem(X). { 1709 A = sqlite3WithAdd(pParse, A, X); 1710 } 1711 %endif SQLITE_OMIT_CTE 1712 1713 //////////////////////// WINDOW FUNCTION EXPRESSIONS ///////////////////////// 1714 // These must be at the end of this file. Specifically, the rules that 1715 // introduce tokens WINDOW, OVER and FILTER must appear last. This causes 1716 // the integer values assigned to these tokens to be larger than all other 1717 // tokens that may be output by the tokenizer except TK_SPACE and TK_ILLEGAL. 1718 // 1719 %ifndef SQLITE_OMIT_WINDOWFUNC 1720 %type windowdefn_list {Window*} 1721 %destructor windowdefn_list {sqlite3WindowListDelete(pParse->db, $$);} 1722 windowdefn_list(A) ::= windowdefn(Z). { A = Z; } 1723 windowdefn_list(A) ::= windowdefn_list(Y) COMMA windowdefn(Z). { 1724 assert( Z!=0 ); 1725 sqlite3WindowChain(pParse, Z, Y); 1726 Z->pNextWin = Y; 1727 A = Z; 1728 } 1729 1730 %type windowdefn {Window*} 1731 %destructor windowdefn {sqlite3WindowDelete(pParse->db, $$);} 1732 windowdefn(A) ::= nm(X) AS LP window(Y) RP. { 1733 if( ALWAYS(Y) ){ 1734 Y->zName = sqlite3DbStrNDup(pParse->db, X.z, X.n); 1735 } 1736 A = Y; 1737 } 1738 1739 %type window {Window*} 1740 %destructor window {sqlite3WindowDelete(pParse->db, $$);} 1741 1742 %type frame_opt {Window*} 1743 %destructor frame_opt {sqlite3WindowDelete(pParse->db, $$);} 1744 1745 %type part_opt {ExprList*} 1746 %destructor part_opt {sqlite3ExprListDelete(pParse->db, $$);} 1747 1748 %type filter_clause {Expr*} 1749 %destructor filter_clause {sqlite3ExprDelete(pParse->db, $$);} 1750 1751 %type over_clause {Window*} 1752 %destructor over_clause {sqlite3WindowDelete(pParse->db, $$);} 1753 1754 %type filter_over {Window*} 1755 %destructor filter_over {sqlite3WindowDelete(pParse->db, $$);} 1756 1757 %type range_or_rows {int} 1758 1759 %type frame_bound {struct FrameBound} 1760 %destructor frame_bound {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1761 %type frame_bound_s {struct FrameBound} 1762 %destructor frame_bound_s {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1763 %type frame_bound_e {struct FrameBound} 1764 %destructor frame_bound_e {sqlite3ExprDelete(pParse->db, $$.pExpr);} 1765 1766 window(A) ::= PARTITION BY nexprlist(X) orderby_opt(Y) frame_opt(Z). { 1767 A = sqlite3WindowAssemble(pParse, Z, X, Y, 0); 1768 } 1769 window(A) ::= nm(W) PARTITION BY nexprlist(X) orderby_opt(Y) frame_opt(Z). { 1770 A = sqlite3WindowAssemble(pParse, Z, X, Y, &W); 1771 } 1772 window(A) ::= ORDER BY sortlist(Y) frame_opt(Z). { 1773 A = sqlite3WindowAssemble(pParse, Z, 0, Y, 0); 1774 } 1775 window(A) ::= nm(W) ORDER BY sortlist(Y) frame_opt(Z). { 1776 A = sqlite3WindowAssemble(pParse, Z, 0, Y, &W); 1777 } 1778 window(A) ::= frame_opt(Z). { 1779 A = Z; 1780 } 1781 window(A) ::= nm(W) frame_opt(Z). { 1782 A = sqlite3WindowAssemble(pParse, Z, 0, 0, &W); 1783 } 1784 1785 frame_opt(A) ::= . { 1786 A = sqlite3WindowAlloc(pParse, 0, TK_UNBOUNDED, 0, TK_CURRENT, 0, 0); 1787 } 1788 frame_opt(A) ::= range_or_rows(X) frame_bound_s(Y) frame_exclude_opt(Z). { 1789 A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, TK_CURRENT, 0, Z); 1790 } 1791 frame_opt(A) ::= range_or_rows(X) BETWEEN frame_bound_s(Y) AND 1792 frame_bound_e(Z) frame_exclude_opt(W). { 1793 A = sqlite3WindowAlloc(pParse, X, Y.eType, Y.pExpr, Z.eType, Z.pExpr, W); 1794 } 1795 1796 range_or_rows(A) ::= RANGE|ROWS|GROUPS(X). {A = @X; /*A-overwrites-X*/} 1797 1798 frame_bound_s(A) ::= frame_bound(X). {A = X;} 1799 frame_bound_s(A) ::= UNBOUNDED(X) PRECEDING. {A.eType = @X; A.pExpr = 0;} 1800 frame_bound_e(A) ::= frame_bound(X). {A = X;} 1801 frame_bound_e(A) ::= UNBOUNDED(X) FOLLOWING. {A.eType = @X; A.pExpr = 0;} 1802 1803 frame_bound(A) ::= expr(X) PRECEDING|FOLLOWING(Y). 1804 {A.eType = @Y; A.pExpr = X;} 1805 frame_bound(A) ::= CURRENT(X) ROW. {A.eType = @X; A.pExpr = 0;} 1806 1807 %type frame_exclude_opt {u8} 1808 frame_exclude_opt(A) ::= . {A = 0;} 1809 frame_exclude_opt(A) ::= EXCLUDE frame_exclude(X). {A = X;} 1810 1811 %type frame_exclude {u8} 1812 frame_exclude(A) ::= NO(X) OTHERS. {A = @X; /*A-overwrites-X*/} 1813 frame_exclude(A) ::= CURRENT(X) ROW. {A = @X; /*A-overwrites-X*/} 1814 frame_exclude(A) ::= GROUP|TIES(X). {A = @X; /*A-overwrites-X*/} 1815 1816 1817 %type window_clause {Window*} 1818 %destructor window_clause {sqlite3WindowListDelete(pParse->db, $$);} 1819 window_clause(A) ::= WINDOW windowdefn_list(B). { A = B; } 1820 1821 filter_over(A) ::= filter_clause(F) over_clause(O). { 1822 if( O ){ 1823 O->pFilter = F; 1824 }else{ 1825 sqlite3ExprDelete(pParse->db, F); 1826 } 1827 A = O; 1828 } 1829 filter_over(A) ::= over_clause(O). { 1830 A = O; 1831 } 1832 filter_over(A) ::= filter_clause(F). { 1833 A = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1834 if( A ){ 1835 A->eFrmType = TK_FILTER; 1836 A->pFilter = F; 1837 }else{ 1838 sqlite3ExprDelete(pParse->db, F); 1839 } 1840 } 1841 1842 over_clause(A) ::= OVER LP window(Z) RP. { 1843 A = Z; 1844 assert( A!=0 ); 1845 } 1846 over_clause(A) ::= OVER nm(Z). { 1847 A = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window)); 1848 if( A ){ 1849 A->zName = sqlite3DbStrNDup(pParse->db, Z.z, Z.n); 1850 } 1851 } 1852 1853 filter_clause(A) ::= FILTER LP WHERE expr(X) RP. { A = X; } 1854 %endif /* SQLITE_OMIT_WINDOWFUNC */ 1855 1856 /* 1857 ** The code generator needs some extra TK_ token values for tokens that 1858 ** are synthesized and do not actually appear in the grammar: 1859 */ 1860 %token 1861 COLUMN /* Reference to a table column */ 1862 AGG_FUNCTION /* An aggregate function */ 1863 AGG_COLUMN /* An aggregated column */ 1864 TRUEFALSE /* True or false keyword */ 1865 ISNOT /* Combination of IS and NOT */ 1866 FUNCTION /* A function invocation */ 1867 UMINUS /* Unary minus */ 1868 UPLUS /* Unary plus */ 1869 TRUTH /* IS TRUE or IS FALSE or IS NOT TRUE or IS NOT FALSE */ 1870 REGISTER /* Reference to a VDBE register */ 1871 VECTOR /* Vector */ 1872 SELECT_COLUMN /* Choose a single column from a multi-column SELECT */ 1873 IF_NULL_ROW /* the if-null-row operator */ 1874 ASTERISK /* The "*" in count(*) and similar */ 1875 SPAN /* The span operator */ 1876 ERROR /* An expression containing an error */ 1877 . 1878 /* There must be no more than 255 tokens defined above. If this grammar 1879 ** is extended with new rules and tokens, they must either be so few in 1880 ** number that TK_SPAN is no more than 255, or else the new tokens must 1881 ** appear after this line. 1882 */ 1883 %include { 1884 #if TK_SPAN>255 1885 # error too many tokens in the grammar 1886 #endif 1887 } 1888 1889 /* 1890 ** The TK_SPACE and TK_ILLEGAL tokens must be the last two tokens. The 1891 ** parser depends on this. Those tokens are not used in any grammar rule. 1892 ** They are only used by the tokenizer. Declare them last so that they 1893 ** are guaranteed to be the last two tokens 1894 */ 1895 %token SPACE ILLEGAL. 1896