1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This is the implementation of the page cache subsystem or "pager". 13 ** 14 ** The pager is used to access a database disk file. It implements 15 ** atomic commit and rollback through the use of a journal file that 16 ** is separate from the database file. The pager also implements file 17 ** locking to prevent two processes from writing the same database 18 ** file simultaneously, or one process from reading the database while 19 ** another is writing. 20 */ 21 #ifndef SQLITE_OMIT_DISKIO 22 #include "sqliteInt.h" 23 #include "wal.h" 24 25 26 /******************* NOTES ON THE DESIGN OF THE PAGER ************************ 27 ** 28 ** This comment block describes invariants that hold when using a rollback 29 ** journal. These invariants do not apply for journal_mode=WAL, 30 ** journal_mode=MEMORY, or journal_mode=OFF. 31 ** 32 ** Within this comment block, a page is deemed to have been synced 33 ** automatically as soon as it is written when PRAGMA synchronous=OFF. 34 ** Otherwise, the page is not synced until the xSync method of the VFS 35 ** is called successfully on the file containing the page. 36 ** 37 ** Definition: A page of the database file is said to be "overwriteable" if 38 ** one or more of the following are true about the page: 39 ** 40 ** (a) The original content of the page as it was at the beginning of 41 ** the transaction has been written into the rollback journal and 42 ** synced. 43 ** 44 ** (b) The page was a freelist leaf page at the start of the transaction. 45 ** 46 ** (c) The page number is greater than the largest page that existed in 47 ** the database file at the start of the transaction. 48 ** 49 ** (1) A page of the database file is never overwritten unless one of the 50 ** following are true: 51 ** 52 ** (a) The page and all other pages on the same sector are overwriteable. 53 ** 54 ** (b) The atomic page write optimization is enabled, and the entire 55 ** transaction other than the update of the transaction sequence 56 ** number consists of a single page change. 57 ** 58 ** (2) The content of a page written into the rollback journal exactly matches 59 ** both the content in the database when the rollback journal was written 60 ** and the content in the database at the beginning of the current 61 ** transaction. 62 ** 63 ** (3) Writes to the database file are an integer multiple of the page size 64 ** in length and are aligned on a page boundary. 65 ** 66 ** (4) Reads from the database file are either aligned on a page boundary and 67 ** an integer multiple of the page size in length or are taken from the 68 ** first 100 bytes of the database file. 69 ** 70 ** (5) All writes to the database file are synced prior to the rollback journal 71 ** being deleted, truncated, or zeroed. 72 ** 73 ** (6) If a master journal file is used, then all writes to the database file 74 ** are synced prior to the master journal being deleted. 75 ** 76 ** Definition: Two databases (or the same database at two points it time) 77 ** are said to be "logically equivalent" if they give the same answer to 78 ** all queries. Note in particular the content of freelist leaf 79 ** pages can be changed arbitrarily without affecting the logical equivalence 80 ** of the database. 81 ** 82 ** (7) At any time, if any subset, including the empty set and the total set, 83 ** of the unsynced changes to a rollback journal are removed and the 84 ** journal is rolled back, the resulting database file will be logically 85 ** equivalent to the database file at the beginning of the transaction. 86 ** 87 ** (8) When a transaction is rolled back, the xTruncate method of the VFS 88 ** is called to restore the database file to the same size it was at 89 ** the beginning of the transaction. (In some VFSes, the xTruncate 90 ** method is a no-op, but that does not change the fact the SQLite will 91 ** invoke it.) 92 ** 93 ** (9) Whenever the database file is modified, at least one bit in the range 94 ** of bytes from 24 through 39 inclusive will be changed prior to releasing 95 ** the EXCLUSIVE lock, thus signaling other connections on the same 96 ** database to flush their caches. 97 ** 98 ** (10) The pattern of bits in bytes 24 through 39 shall not repeat in less 99 ** than one billion transactions. 100 ** 101 ** (11) A database file is well-formed at the beginning and at the conclusion 102 ** of every transaction. 103 ** 104 ** (12) An EXCLUSIVE lock is held on the database file when writing to 105 ** the database file. 106 ** 107 ** (13) A SHARED lock is held on the database file while reading any 108 ** content out of the database file. 109 ** 110 ******************************************************************************/ 111 112 /* 113 ** Macros for troubleshooting. Normally turned off 114 */ 115 #if 0 116 int sqlite3PagerTrace=1; /* True to enable tracing */ 117 #define sqlite3DebugPrintf printf 118 #define PAGERTRACE(X) if( sqlite3PagerTrace ){ sqlite3DebugPrintf X; } 119 #else 120 #define PAGERTRACE(X) 121 #endif 122 123 /* 124 ** The following two macros are used within the PAGERTRACE() macros above 125 ** to print out file-descriptors. 126 ** 127 ** PAGERID() takes a pointer to a Pager struct as its argument. The 128 ** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file 129 ** struct as its argument. 130 */ 131 #define PAGERID(p) (SQLITE_PTR_TO_INT(p->fd)) 132 #define FILEHANDLEID(fd) (SQLITE_PTR_TO_INT(fd)) 133 134 /* 135 ** The Pager.eState variable stores the current 'state' of a pager. A 136 ** pager may be in any one of the seven states shown in the following 137 ** state diagram. 138 ** 139 ** OPEN <------+------+ 140 ** | | | 141 ** V | | 142 ** +---------> READER-------+ | 143 ** | | | 144 ** | V | 145 ** |<-------WRITER_LOCKED------> ERROR 146 ** | | ^ 147 ** | V | 148 ** |<------WRITER_CACHEMOD-------->| 149 ** | | | 150 ** | V | 151 ** |<-------WRITER_DBMOD---------->| 152 ** | | | 153 ** | V | 154 ** +<------WRITER_FINISHED-------->+ 155 ** 156 ** 157 ** List of state transitions and the C [function] that performs each: 158 ** 159 ** OPEN -> READER [sqlite3PagerSharedLock] 160 ** READER -> OPEN [pager_unlock] 161 ** 162 ** READER -> WRITER_LOCKED [sqlite3PagerBegin] 163 ** WRITER_LOCKED -> WRITER_CACHEMOD [pager_open_journal] 164 ** WRITER_CACHEMOD -> WRITER_DBMOD [syncJournal] 165 ** WRITER_DBMOD -> WRITER_FINISHED [sqlite3PagerCommitPhaseOne] 166 ** WRITER_*** -> READER [pager_end_transaction] 167 ** 168 ** WRITER_*** -> ERROR [pager_error] 169 ** ERROR -> OPEN [pager_unlock] 170 ** 171 ** 172 ** OPEN: 173 ** 174 ** The pager starts up in this state. Nothing is guaranteed in this 175 ** state - the file may or may not be locked and the database size is 176 ** unknown. The database may not be read or written. 177 ** 178 ** * No read or write transaction is active. 179 ** * Any lock, or no lock at all, may be held on the database file. 180 ** * The dbSize, dbOrigSize and dbFileSize variables may not be trusted. 181 ** 182 ** READER: 183 ** 184 ** In this state all the requirements for reading the database in 185 ** rollback (non-WAL) mode are met. Unless the pager is (or recently 186 ** was) in exclusive-locking mode, a user-level read transaction is 187 ** open. The database size is known in this state. 188 ** 189 ** A connection running with locking_mode=normal enters this state when 190 ** it opens a read-transaction on the database and returns to state 191 ** OPEN after the read-transaction is completed. However a connection 192 ** running in locking_mode=exclusive (including temp databases) remains in 193 ** this state even after the read-transaction is closed. The only way 194 ** a locking_mode=exclusive connection can transition from READER to OPEN 195 ** is via the ERROR state (see below). 196 ** 197 ** * A read transaction may be active (but a write-transaction cannot). 198 ** * A SHARED or greater lock is held on the database file. 199 ** * The dbSize variable may be trusted (even if a user-level read 200 ** transaction is not active). The dbOrigSize and dbFileSize variables 201 ** may not be trusted at this point. 202 ** * If the database is a WAL database, then the WAL connection is open. 203 ** * Even if a read-transaction is not open, it is guaranteed that 204 ** there is no hot-journal in the file-system. 205 ** 206 ** WRITER_LOCKED: 207 ** 208 ** The pager moves to this state from READER when a write-transaction 209 ** is first opened on the database. In WRITER_LOCKED state, all locks 210 ** required to start a write-transaction are held, but no actual 211 ** modifications to the cache or database have taken place. 212 ** 213 ** In rollback mode, a RESERVED or (if the transaction was opened with 214 ** BEGIN EXCLUSIVE) EXCLUSIVE lock is obtained on the database file when 215 ** moving to this state, but the journal file is not written to or opened 216 ** to in this state. If the transaction is committed or rolled back while 217 ** in WRITER_LOCKED state, all that is required is to unlock the database 218 ** file. 219 ** 220 ** IN WAL mode, WalBeginWriteTransaction() is called to lock the log file. 221 ** If the connection is running with locking_mode=exclusive, an attempt 222 ** is made to obtain an EXCLUSIVE lock on the database file. 223 ** 224 ** * A write transaction is active. 225 ** * If the connection is open in rollback-mode, a RESERVED or greater 226 ** lock is held on the database file. 227 ** * If the connection is open in WAL-mode, a WAL write transaction 228 ** is open (i.e. sqlite3WalBeginWriteTransaction() has been successfully 229 ** called). 230 ** * The dbSize, dbOrigSize and dbFileSize variables are all valid. 231 ** * The contents of the pager cache have not been modified. 232 ** * The journal file may or may not be open. 233 ** * Nothing (not even the first header) has been written to the journal. 234 ** 235 ** WRITER_CACHEMOD: 236 ** 237 ** A pager moves from WRITER_LOCKED state to this state when a page is 238 ** first modified by the upper layer. In rollback mode the journal file 239 ** is opened (if it is not already open) and a header written to the 240 ** start of it. The database file on disk has not been modified. 241 ** 242 ** * A write transaction is active. 243 ** * A RESERVED or greater lock is held on the database file. 244 ** * The journal file is open and the first header has been written 245 ** to it, but the header has not been synced to disk. 246 ** * The contents of the page cache have been modified. 247 ** 248 ** WRITER_DBMOD: 249 ** 250 ** The pager transitions from WRITER_CACHEMOD into WRITER_DBMOD state 251 ** when it modifies the contents of the database file. WAL connections 252 ** never enter this state (since they do not modify the database file, 253 ** just the log file). 254 ** 255 ** * A write transaction is active. 256 ** * An EXCLUSIVE or greater lock is held on the database file. 257 ** * The journal file is open and the first header has been written 258 ** and synced to disk. 259 ** * The contents of the page cache have been modified (and possibly 260 ** written to disk). 261 ** 262 ** WRITER_FINISHED: 263 ** 264 ** It is not possible for a WAL connection to enter this state. 265 ** 266 ** A rollback-mode pager changes to WRITER_FINISHED state from WRITER_DBMOD 267 ** state after the entire transaction has been successfully written into the 268 ** database file. In this state the transaction may be committed simply 269 ** by finalizing the journal file. Once in WRITER_FINISHED state, it is 270 ** not possible to modify the database further. At this point, the upper 271 ** layer must either commit or rollback the transaction. 272 ** 273 ** * A write transaction is active. 274 ** * An EXCLUSIVE or greater lock is held on the database file. 275 ** * All writing and syncing of journal and database data has finished. 276 ** If no error occurred, all that remains is to finalize the journal to 277 ** commit the transaction. If an error did occur, the caller will need 278 ** to rollback the transaction. 279 ** 280 ** ERROR: 281 ** 282 ** The ERROR state is entered when an IO or disk-full error (including 283 ** SQLITE_IOERR_NOMEM) occurs at a point in the code that makes it 284 ** difficult to be sure that the in-memory pager state (cache contents, 285 ** db size etc.) are consistent with the contents of the file-system. 286 ** 287 ** Temporary pager files may enter the ERROR state, but in-memory pagers 288 ** cannot. 289 ** 290 ** For example, if an IO error occurs while performing a rollback, 291 ** the contents of the page-cache may be left in an inconsistent state. 292 ** At this point it would be dangerous to change back to READER state 293 ** (as usually happens after a rollback). Any subsequent readers might 294 ** report database corruption (due to the inconsistent cache), and if 295 ** they upgrade to writers, they may inadvertently corrupt the database 296 ** file. To avoid this hazard, the pager switches into the ERROR state 297 ** instead of READER following such an error. 298 ** 299 ** Once it has entered the ERROR state, any attempt to use the pager 300 ** to read or write data returns an error. Eventually, once all 301 ** outstanding transactions have been abandoned, the pager is able to 302 ** transition back to OPEN state, discarding the contents of the 303 ** page-cache and any other in-memory state at the same time. Everything 304 ** is reloaded from disk (and, if necessary, hot-journal rollback peformed) 305 ** when a read-transaction is next opened on the pager (transitioning 306 ** the pager into READER state). At that point the system has recovered 307 ** from the error. 308 ** 309 ** Specifically, the pager jumps into the ERROR state if: 310 ** 311 ** 1. An error occurs while attempting a rollback. This happens in 312 ** function sqlite3PagerRollback(). 313 ** 314 ** 2. An error occurs while attempting to finalize a journal file 315 ** following a commit in function sqlite3PagerCommitPhaseTwo(). 316 ** 317 ** 3. An error occurs while attempting to write to the journal or 318 ** database file in function pagerStress() in order to free up 319 ** memory. 320 ** 321 ** In other cases, the error is returned to the b-tree layer. The b-tree 322 ** layer then attempts a rollback operation. If the error condition 323 ** persists, the pager enters the ERROR state via condition (1) above. 324 ** 325 ** Condition (3) is necessary because it can be triggered by a read-only 326 ** statement executed within a transaction. In this case, if the error 327 ** code were simply returned to the user, the b-tree layer would not 328 ** automatically attempt a rollback, as it assumes that an error in a 329 ** read-only statement cannot leave the pager in an internally inconsistent 330 ** state. 331 ** 332 ** * The Pager.errCode variable is set to something other than SQLITE_OK. 333 ** * There are one or more outstanding references to pages (after the 334 ** last reference is dropped the pager should move back to OPEN state). 335 ** * The pager is not an in-memory pager. 336 ** 337 ** 338 ** Notes: 339 ** 340 ** * A pager is never in WRITER_DBMOD or WRITER_FINISHED state if the 341 ** connection is open in WAL mode. A WAL connection is always in one 342 ** of the first four states. 343 ** 344 ** * Normally, a connection open in exclusive mode is never in PAGER_OPEN 345 ** state. There are two exceptions: immediately after exclusive-mode has 346 ** been turned on (and before any read or write transactions are 347 ** executed), and when the pager is leaving the "error state". 348 ** 349 ** * See also: assert_pager_state(). 350 */ 351 #define PAGER_OPEN 0 352 #define PAGER_READER 1 353 #define PAGER_WRITER_LOCKED 2 354 #define PAGER_WRITER_CACHEMOD 3 355 #define PAGER_WRITER_DBMOD 4 356 #define PAGER_WRITER_FINISHED 5 357 #define PAGER_ERROR 6 358 359 /* 360 ** The Pager.eLock variable is almost always set to one of the 361 ** following locking-states, according to the lock currently held on 362 ** the database file: NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. 363 ** This variable is kept up to date as locks are taken and released by 364 ** the pagerLockDb() and pagerUnlockDb() wrappers. 365 ** 366 ** If the VFS xLock() or xUnlock() returns an error other than SQLITE_BUSY 367 ** (i.e. one of the SQLITE_IOERR subtypes), it is not clear whether or not 368 ** the operation was successful. In these circumstances pagerLockDb() and 369 ** pagerUnlockDb() take a conservative approach - eLock is always updated 370 ** when unlocking the file, and only updated when locking the file if the 371 ** VFS call is successful. This way, the Pager.eLock variable may be set 372 ** to a less exclusive (lower) value than the lock that is actually held 373 ** at the system level, but it is never set to a more exclusive value. 374 ** 375 ** This is usually safe. If an xUnlock fails or appears to fail, there may 376 ** be a few redundant xLock() calls or a lock may be held for longer than 377 ** required, but nothing really goes wrong. 378 ** 379 ** The exception is when the database file is unlocked as the pager moves 380 ** from ERROR to OPEN state. At this point there may be a hot-journal file 381 ** in the file-system that needs to be rolled back (as part of an OPEN->SHARED 382 ** transition, by the same pager or any other). If the call to xUnlock() 383 ** fails at this point and the pager is left holding an EXCLUSIVE lock, this 384 ** can confuse the call to xCheckReservedLock() call made later as part 385 ** of hot-journal detection. 386 ** 387 ** xCheckReservedLock() is defined as returning true "if there is a RESERVED 388 ** lock held by this process or any others". So xCheckReservedLock may 389 ** return true because the caller itself is holding an EXCLUSIVE lock (but 390 ** doesn't know it because of a previous error in xUnlock). If this happens 391 ** a hot-journal may be mistaken for a journal being created by an active 392 ** transaction in another process, causing SQLite to read from the database 393 ** without rolling it back. 394 ** 395 ** To work around this, if a call to xUnlock() fails when unlocking the 396 ** database in the ERROR state, Pager.eLock is set to UNKNOWN_LOCK. It 397 ** is only changed back to a real locking state after a successful call 398 ** to xLock(EXCLUSIVE). Also, the code to do the OPEN->SHARED state transition 399 ** omits the check for a hot-journal if Pager.eLock is set to UNKNOWN_LOCK 400 ** lock. Instead, it assumes a hot-journal exists and obtains an EXCLUSIVE 401 ** lock on the database file before attempting to roll it back. See function 402 ** PagerSharedLock() for more detail. 403 ** 404 ** Pager.eLock may only be set to UNKNOWN_LOCK when the pager is in 405 ** PAGER_OPEN state. 406 */ 407 #define UNKNOWN_LOCK (EXCLUSIVE_LOCK+1) 408 409 /* 410 ** A macro used for invoking the codec if there is one 411 */ 412 #ifdef SQLITE_HAS_CODEC 413 # define CODEC1(P,D,N,X,E) \ 414 if( P->xCodec && P->xCodec(P->pCodec,D,N,X)==0 ){ E; } 415 # define CODEC2(P,D,N,X,E,O) \ 416 if( P->xCodec==0 ){ O=(char*)D; }else \ 417 if( (O=(char*)(P->xCodec(P->pCodec,D,N,X)))==0 ){ E; } 418 #else 419 # define CODEC1(P,D,N,X,E) /* NO-OP */ 420 # define CODEC2(P,D,N,X,E,O) O=(char*)D 421 #endif 422 423 /* 424 ** The maximum allowed sector size. 64KiB. If the xSectorsize() method 425 ** returns a value larger than this, then MAX_SECTOR_SIZE is used instead. 426 ** This could conceivably cause corruption following a power failure on 427 ** such a system. This is currently an undocumented limit. 428 */ 429 #define MAX_SECTOR_SIZE 0x10000 430 431 432 /* 433 ** An instance of the following structure is allocated for each active 434 ** savepoint and statement transaction in the system. All such structures 435 ** are stored in the Pager.aSavepoint[] array, which is allocated and 436 ** resized using sqlite3Realloc(). 437 ** 438 ** When a savepoint is created, the PagerSavepoint.iHdrOffset field is 439 ** set to 0. If a journal-header is written into the main journal while 440 ** the savepoint is active, then iHdrOffset is set to the byte offset 441 ** immediately following the last journal record written into the main 442 ** journal before the journal-header. This is required during savepoint 443 ** rollback (see pagerPlaybackSavepoint()). 444 */ 445 typedef struct PagerSavepoint PagerSavepoint; 446 struct PagerSavepoint { 447 i64 iOffset; /* Starting offset in main journal */ 448 i64 iHdrOffset; /* See above */ 449 Bitvec *pInSavepoint; /* Set of pages in this savepoint */ 450 Pgno nOrig; /* Original number of pages in file */ 451 Pgno iSubRec; /* Index of first record in sub-journal */ 452 #ifndef SQLITE_OMIT_WAL 453 u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */ 454 #endif 455 }; 456 457 /* 458 ** Bits of the Pager.doNotSpill flag. See further description below. 459 */ 460 #define SPILLFLAG_OFF 0x01 /* Never spill cache. Set via pragma */ 461 #define SPILLFLAG_ROLLBACK 0x02 /* Current rolling back, so do not spill */ 462 #define SPILLFLAG_NOSYNC 0x04 /* Spill is ok, but do not sync */ 463 464 /* 465 ** An open page cache is an instance of struct Pager. A description of 466 ** some of the more important member variables follows: 467 ** 468 ** eState 469 ** 470 ** The current 'state' of the pager object. See the comment and state 471 ** diagram above for a description of the pager state. 472 ** 473 ** eLock 474 ** 475 ** For a real on-disk database, the current lock held on the database file - 476 ** NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. 477 ** 478 ** For a temporary or in-memory database (neither of which require any 479 ** locks), this variable is always set to EXCLUSIVE_LOCK. Since such 480 ** databases always have Pager.exclusiveMode==1, this tricks the pager 481 ** logic into thinking that it already has all the locks it will ever 482 ** need (and no reason to release them). 483 ** 484 ** In some (obscure) circumstances, this variable may also be set to 485 ** UNKNOWN_LOCK. See the comment above the #define of UNKNOWN_LOCK for 486 ** details. 487 ** 488 ** changeCountDone 489 ** 490 ** This boolean variable is used to make sure that the change-counter 491 ** (the 4-byte header field at byte offset 24 of the database file) is 492 ** not updated more often than necessary. 493 ** 494 ** It is set to true when the change-counter field is updated, which 495 ** can only happen if an exclusive lock is held on the database file. 496 ** It is cleared (set to false) whenever an exclusive lock is 497 ** relinquished on the database file. Each time a transaction is committed, 498 ** The changeCountDone flag is inspected. If it is true, the work of 499 ** updating the change-counter is omitted for the current transaction. 500 ** 501 ** This mechanism means that when running in exclusive mode, a connection 502 ** need only update the change-counter once, for the first transaction 503 ** committed. 504 ** 505 ** setMaster 506 ** 507 ** When PagerCommitPhaseOne() is called to commit a transaction, it may 508 ** (or may not) specify a master-journal name to be written into the 509 ** journal file before it is synced to disk. 510 ** 511 ** Whether or not a journal file contains a master-journal pointer affects 512 ** the way in which the journal file is finalized after the transaction is 513 ** committed or rolled back when running in "journal_mode=PERSIST" mode. 514 ** If a journal file does not contain a master-journal pointer, it is 515 ** finalized by overwriting the first journal header with zeroes. If 516 ** it does contain a master-journal pointer the journal file is finalized 517 ** by truncating it to zero bytes, just as if the connection were 518 ** running in "journal_mode=truncate" mode. 519 ** 520 ** Journal files that contain master journal pointers cannot be finalized 521 ** simply by overwriting the first journal-header with zeroes, as the 522 ** master journal pointer could interfere with hot-journal rollback of any 523 ** subsequently interrupted transaction that reuses the journal file. 524 ** 525 ** The flag is cleared as soon as the journal file is finalized (either 526 ** by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the 527 ** journal file from being successfully finalized, the setMaster flag 528 ** is cleared anyway (and the pager will move to ERROR state). 529 ** 530 ** doNotSpill 531 ** 532 ** This variables control the behavior of cache-spills (calls made by 533 ** the pcache module to the pagerStress() routine to write cached data 534 ** to the file-system in order to free up memory). 535 ** 536 ** When bits SPILLFLAG_OFF or SPILLFLAG_ROLLBACK of doNotSpill are set, 537 ** writing to the database from pagerStress() is disabled altogether. 538 ** The SPILLFLAG_ROLLBACK case is done in a very obscure case that 539 ** comes up during savepoint rollback that requires the pcache module 540 ** to allocate a new page to prevent the journal file from being written 541 ** while it is being traversed by code in pager_playback(). The SPILLFLAG_OFF 542 ** case is a user preference. 543 ** 544 ** If the SPILLFLAG_NOSYNC bit is set, writing to the database from 545 ** pagerStress() is permitted, but syncing the journal file is not. 546 ** This flag is set by sqlite3PagerWrite() when the file-system sector-size 547 ** is larger than the database page-size in order to prevent a journal sync 548 ** from happening in between the journalling of two pages on the same sector. 549 ** 550 ** subjInMemory 551 ** 552 ** This is a boolean variable. If true, then any required sub-journal 553 ** is opened as an in-memory journal file. If false, then in-memory 554 ** sub-journals are only used for in-memory pager files. 555 ** 556 ** This variable is updated by the upper layer each time a new 557 ** write-transaction is opened. 558 ** 559 ** dbSize, dbOrigSize, dbFileSize 560 ** 561 ** Variable dbSize is set to the number of pages in the database file. 562 ** It is valid in PAGER_READER and higher states (all states except for 563 ** OPEN and ERROR). 564 ** 565 ** dbSize is set based on the size of the database file, which may be 566 ** larger than the size of the database (the value stored at offset 567 ** 28 of the database header by the btree). If the size of the file 568 ** is not an integer multiple of the page-size, the value stored in 569 ** dbSize is rounded down (i.e. a 5KB file with 2K page-size has dbSize==2). 570 ** Except, any file that is greater than 0 bytes in size is considered 571 ** to have at least one page. (i.e. a 1KB file with 2K page-size leads 572 ** to dbSize==1). 573 ** 574 ** During a write-transaction, if pages with page-numbers greater than 575 ** dbSize are modified in the cache, dbSize is updated accordingly. 576 ** Similarly, if the database is truncated using PagerTruncateImage(), 577 ** dbSize is updated. 578 ** 579 ** Variables dbOrigSize and dbFileSize are valid in states 580 ** PAGER_WRITER_LOCKED and higher. dbOrigSize is a copy of the dbSize 581 ** variable at the start of the transaction. It is used during rollback, 582 ** and to determine whether or not pages need to be journalled before 583 ** being modified. 584 ** 585 ** Throughout a write-transaction, dbFileSize contains the size of 586 ** the file on disk in pages. It is set to a copy of dbSize when the 587 ** write-transaction is first opened, and updated when VFS calls are made 588 ** to write or truncate the database file on disk. 589 ** 590 ** The only reason the dbFileSize variable is required is to suppress 591 ** unnecessary calls to xTruncate() after committing a transaction. If, 592 ** when a transaction is committed, the dbFileSize variable indicates 593 ** that the database file is larger than the database image (Pager.dbSize), 594 ** pager_truncate() is called. The pager_truncate() call uses xFilesize() 595 ** to measure the database file on disk, and then truncates it if required. 596 ** dbFileSize is not used when rolling back a transaction. In this case 597 ** pager_truncate() is called unconditionally (which means there may be 598 ** a call to xFilesize() that is not strictly required). In either case, 599 ** pager_truncate() may cause the file to become smaller or larger. 600 ** 601 ** dbHintSize 602 ** 603 ** The dbHintSize variable is used to limit the number of calls made to 604 ** the VFS xFileControl(FCNTL_SIZE_HINT) method. 605 ** 606 ** dbHintSize is set to a copy of the dbSize variable when a 607 ** write-transaction is opened (at the same time as dbFileSize and 608 ** dbOrigSize). If the xFileControl(FCNTL_SIZE_HINT) method is called, 609 ** dbHintSize is increased to the number of pages that correspond to the 610 ** size-hint passed to the method call. See pager_write_pagelist() for 611 ** details. 612 ** 613 ** errCode 614 ** 615 ** The Pager.errCode variable is only ever used in PAGER_ERROR state. It 616 ** is set to zero in all other states. In PAGER_ERROR state, Pager.errCode 617 ** is always set to SQLITE_FULL, SQLITE_IOERR or one of the SQLITE_IOERR_XXX 618 ** sub-codes. 619 ** 620 ** syncFlags, walSyncFlags 621 ** 622 ** syncFlags is either SQLITE_SYNC_NORMAL (0x02) or SQLITE_SYNC_FULL (0x03). 623 ** syncFlags is used for rollback mode. walSyncFlags is used for WAL mode 624 ** and contains the flags used to sync the checkpoint operations in the 625 ** lower two bits, and sync flags used for transaction commits in the WAL 626 ** file in bits 0x04 and 0x08. In other words, to get the correct sync flags 627 ** for checkpoint operations, use (walSyncFlags&0x03) and to get the correct 628 ** sync flags for transaction commit, use ((walSyncFlags>>2)&0x03). Note 629 ** that with synchronous=NORMAL in WAL mode, transaction commit is not synced 630 ** meaning that the 0x04 and 0x08 bits are both zero. 631 */ 632 struct Pager { 633 sqlite3_vfs *pVfs; /* OS functions to use for IO */ 634 u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */ 635 u8 journalMode; /* One of the PAGER_JOURNALMODE_* values */ 636 u8 useJournal; /* Use a rollback journal on this file */ 637 u8 noSync; /* Do not sync the journal if true */ 638 u8 fullSync; /* Do extra syncs of the journal for robustness */ 639 u8 extraSync; /* sync directory after journal delete */ 640 u8 syncFlags; /* SYNC_NORMAL or SYNC_FULL otherwise */ 641 u8 walSyncFlags; /* See description above */ 642 u8 tempFile; /* zFilename is a temporary or immutable file */ 643 u8 noLock; /* Do not lock (except in WAL mode) */ 644 u8 readOnly; /* True for a read-only database */ 645 u8 memDb; /* True to inhibit all file I/O */ 646 647 /************************************************************************** 648 ** The following block contains those class members that change during 649 ** routine operation. Class members not in this block are either fixed 650 ** when the pager is first created or else only change when there is a 651 ** significant mode change (such as changing the page_size, locking_mode, 652 ** or the journal_mode). From another view, these class members describe 653 ** the "state" of the pager, while other class members describe the 654 ** "configuration" of the pager. 655 */ 656 u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */ 657 u8 eLock; /* Current lock held on database file */ 658 u8 changeCountDone; /* Set after incrementing the change-counter */ 659 u8 setMaster; /* True if a m-j name has been written to jrnl */ 660 u8 doNotSpill; /* Do not spill the cache when non-zero */ 661 u8 subjInMemory; /* True to use in-memory sub-journals */ 662 u8 bUseFetch; /* True to use xFetch() */ 663 u8 hasHeldSharedLock; /* True if a shared lock has ever been held */ 664 Pgno dbSize; /* Number of pages in the database */ 665 Pgno dbOrigSize; /* dbSize before the current transaction */ 666 Pgno dbFileSize; /* Number of pages in the database file */ 667 Pgno dbHintSize; /* Value passed to FCNTL_SIZE_HINT call */ 668 int errCode; /* One of several kinds of errors */ 669 int nRec; /* Pages journalled since last j-header written */ 670 u32 cksumInit; /* Quasi-random value added to every checksum */ 671 u32 nSubRec; /* Number of records written to sub-journal */ 672 Bitvec *pInJournal; /* One bit for each page in the database file */ 673 sqlite3_file *fd; /* File descriptor for database */ 674 sqlite3_file *jfd; /* File descriptor for main journal */ 675 sqlite3_file *sjfd; /* File descriptor for sub-journal */ 676 i64 journalOff; /* Current write offset in the journal file */ 677 i64 journalHdr; /* Byte offset to previous journal header */ 678 sqlite3_backup *pBackup; /* Pointer to list of ongoing backup processes */ 679 PagerSavepoint *aSavepoint; /* Array of active savepoints */ 680 int nSavepoint; /* Number of elements in aSavepoint[] */ 681 u32 iDataVersion; /* Changes whenever database content changes */ 682 char dbFileVers[16]; /* Changes whenever database file changes */ 683 684 int nMmapOut; /* Number of mmap pages currently outstanding */ 685 sqlite3_int64 szMmap; /* Desired maximum mmap size */ 686 PgHdr *pMmapFreelist; /* List of free mmap page headers (pDirty) */ 687 /* 688 ** End of the routinely-changing class members 689 ***************************************************************************/ 690 691 u16 nExtra; /* Add this many bytes to each in-memory page */ 692 i16 nReserve; /* Number of unused bytes at end of each page */ 693 u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */ 694 u32 sectorSize; /* Assumed sector size during rollback */ 695 int pageSize; /* Number of bytes in a page */ 696 Pgno mxPgno; /* Maximum allowed size of the database */ 697 i64 journalSizeLimit; /* Size limit for persistent journal files */ 698 char *zFilename; /* Name of the database file */ 699 char *zJournal; /* Name of the journal file */ 700 int (*xBusyHandler)(void*); /* Function to call when busy */ 701 void *pBusyHandlerArg; /* Context argument for xBusyHandler */ 702 int aStat[4]; /* Total cache hits, misses, writes, spills */ 703 #ifdef SQLITE_TEST 704 int nRead; /* Database pages read */ 705 #endif 706 void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */ 707 int (*xGet)(Pager*,Pgno,DbPage**,int); /* Routine to fetch a patch */ 708 #ifdef SQLITE_HAS_CODEC 709 void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */ 710 void (*xCodecSizeChng)(void*,int,int); /* Notify of page size changes */ 711 void (*xCodecFree)(void*); /* Destructor for the codec */ 712 void *pCodec; /* First argument to xCodec... methods */ 713 #endif 714 char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */ 715 PCache *pPCache; /* Pointer to page cache object */ 716 #ifndef SQLITE_OMIT_WAL 717 Wal *pWal; /* Write-ahead log used by "journal_mode=wal" */ 718 char *zWal; /* File name for write-ahead log */ 719 #endif 720 }; 721 722 /* 723 ** Indexes for use with Pager.aStat[]. The Pager.aStat[] array contains 724 ** the values accessed by passing SQLITE_DBSTATUS_CACHE_HIT, CACHE_MISS 725 ** or CACHE_WRITE to sqlite3_db_status(). 726 */ 727 #define PAGER_STAT_HIT 0 728 #define PAGER_STAT_MISS 1 729 #define PAGER_STAT_WRITE 2 730 #define PAGER_STAT_SPILL 3 731 732 /* 733 ** The following global variables hold counters used for 734 ** testing purposes only. These variables do not exist in 735 ** a non-testing build. These variables are not thread-safe. 736 */ 737 #ifdef SQLITE_TEST 738 int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */ 739 int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */ 740 int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */ 741 # define PAGER_INCR(v) v++ 742 #else 743 # define PAGER_INCR(v) 744 #endif 745 746 747 748 /* 749 ** Journal files begin with the following magic string. The data 750 ** was obtained from /dev/random. It is used only as a sanity check. 751 ** 752 ** Since version 2.8.0, the journal format contains additional sanity 753 ** checking information. If the power fails while the journal is being 754 ** written, semi-random garbage data might appear in the journal 755 ** file after power is restored. If an attempt is then made 756 ** to roll the journal back, the database could be corrupted. The additional 757 ** sanity checking data is an attempt to discover the garbage in the 758 ** journal and ignore it. 759 ** 760 ** The sanity checking information for the new journal format consists 761 ** of a 32-bit checksum on each page of data. The checksum covers both 762 ** the page number and the pPager->pageSize bytes of data for the page. 763 ** This cksum is initialized to a 32-bit random value that appears in the 764 ** journal file right after the header. The random initializer is important, 765 ** because garbage data that appears at the end of a journal is likely 766 ** data that was once in other files that have now been deleted. If the 767 ** garbage data came from an obsolete journal file, the checksums might 768 ** be correct. But by initializing the checksum to random value which 769 ** is different for every journal, we minimize that risk. 770 */ 771 static const unsigned char aJournalMagic[] = { 772 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7, 773 }; 774 775 /* 776 ** The size of the of each page record in the journal is given by 777 ** the following macro. 778 */ 779 #define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8) 780 781 /* 782 ** The journal header size for this pager. This is usually the same 783 ** size as a single disk sector. See also setSectorSize(). 784 */ 785 #define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize) 786 787 /* 788 ** The macro MEMDB is true if we are dealing with an in-memory database. 789 ** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set, 790 ** the value of MEMDB will be a constant and the compiler will optimize 791 ** out code that would never execute. 792 */ 793 #ifdef SQLITE_OMIT_MEMORYDB 794 # define MEMDB 0 795 #else 796 # define MEMDB pPager->memDb 797 #endif 798 799 /* 800 ** The macro USEFETCH is true if we are allowed to use the xFetch and xUnfetch 801 ** interfaces to access the database using memory-mapped I/O. 802 */ 803 #if SQLITE_MAX_MMAP_SIZE>0 804 # define USEFETCH(x) ((x)->bUseFetch) 805 #else 806 # define USEFETCH(x) 0 807 #endif 808 809 /* 810 ** The maximum legal page number is (2^31 - 1). 811 */ 812 #define PAGER_MAX_PGNO 2147483647 813 814 /* 815 ** The argument to this macro is a file descriptor (type sqlite3_file*). 816 ** Return 0 if it is not open, or non-zero (but not 1) if it is. 817 ** 818 ** This is so that expressions can be written as: 819 ** 820 ** if( isOpen(pPager->jfd) ){ ... 821 ** 822 ** instead of 823 ** 824 ** if( pPager->jfd->pMethods ){ ... 825 */ 826 #define isOpen(pFd) ((pFd)->pMethods!=0) 827 828 /* 829 ** Return true if this pager uses a write-ahead log to read page pgno. 830 ** Return false if the pager reads pgno directly from the database. 831 */ 832 #if !defined(SQLITE_OMIT_WAL) && defined(SQLITE_DIRECT_OVERFLOW_READ) 833 int sqlite3PagerUseWal(Pager *pPager, Pgno pgno){ 834 u32 iRead = 0; 835 int rc; 836 if( pPager->pWal==0 ) return 0; 837 rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iRead); 838 return rc || iRead; 839 } 840 #endif 841 #ifndef SQLITE_OMIT_WAL 842 # define pagerUseWal(x) ((x)->pWal!=0) 843 #else 844 # define pagerUseWal(x) 0 845 # define pagerRollbackWal(x) 0 846 # define pagerWalFrames(v,w,x,y) 0 847 # define pagerOpenWalIfPresent(z) SQLITE_OK 848 # define pagerBeginReadTransaction(z) SQLITE_OK 849 #endif 850 851 #ifndef NDEBUG 852 /* 853 ** Usage: 854 ** 855 ** assert( assert_pager_state(pPager) ); 856 ** 857 ** This function runs many asserts to try to find inconsistencies in 858 ** the internal state of the Pager object. 859 */ 860 static int assert_pager_state(Pager *p){ 861 Pager *pPager = p; 862 863 /* State must be valid. */ 864 assert( p->eState==PAGER_OPEN 865 || p->eState==PAGER_READER 866 || p->eState==PAGER_WRITER_LOCKED 867 || p->eState==PAGER_WRITER_CACHEMOD 868 || p->eState==PAGER_WRITER_DBMOD 869 || p->eState==PAGER_WRITER_FINISHED 870 || p->eState==PAGER_ERROR 871 ); 872 873 /* Regardless of the current state, a temp-file connection always behaves 874 ** as if it has an exclusive lock on the database file. It never updates 875 ** the change-counter field, so the changeCountDone flag is always set. 876 */ 877 assert( p->tempFile==0 || p->eLock==EXCLUSIVE_LOCK ); 878 assert( p->tempFile==0 || pPager->changeCountDone ); 879 880 /* If the useJournal flag is clear, the journal-mode must be "OFF". 881 ** And if the journal-mode is "OFF", the journal file must not be open. 882 */ 883 assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->useJournal ); 884 assert( p->journalMode!=PAGER_JOURNALMODE_OFF || !isOpen(p->jfd) ); 885 886 /* Check that MEMDB implies noSync. And an in-memory journal. Since 887 ** this means an in-memory pager performs no IO at all, it cannot encounter 888 ** either SQLITE_IOERR or SQLITE_FULL during rollback or while finalizing 889 ** a journal file. (although the in-memory journal implementation may 890 ** return SQLITE_IOERR_NOMEM while the journal file is being written). It 891 ** is therefore not possible for an in-memory pager to enter the ERROR 892 ** state. 893 */ 894 if( MEMDB ){ 895 assert( !isOpen(p->fd) ); 896 assert( p->noSync ); 897 assert( p->journalMode==PAGER_JOURNALMODE_OFF 898 || p->journalMode==PAGER_JOURNALMODE_MEMORY 899 ); 900 assert( p->eState!=PAGER_ERROR && p->eState!=PAGER_OPEN ); 901 assert( pagerUseWal(p)==0 ); 902 } 903 904 /* If changeCountDone is set, a RESERVED lock or greater must be held 905 ** on the file. 906 */ 907 assert( pPager->changeCountDone==0 || pPager->eLock>=RESERVED_LOCK ); 908 assert( p->eLock!=PENDING_LOCK ); 909 910 switch( p->eState ){ 911 case PAGER_OPEN: 912 assert( !MEMDB ); 913 assert( pPager->errCode==SQLITE_OK ); 914 assert( sqlite3PcacheRefCount(pPager->pPCache)==0 || pPager->tempFile ); 915 break; 916 917 case PAGER_READER: 918 assert( pPager->errCode==SQLITE_OK ); 919 assert( p->eLock!=UNKNOWN_LOCK ); 920 assert( p->eLock>=SHARED_LOCK ); 921 break; 922 923 case PAGER_WRITER_LOCKED: 924 assert( p->eLock!=UNKNOWN_LOCK ); 925 assert( pPager->errCode==SQLITE_OK ); 926 if( !pagerUseWal(pPager) ){ 927 assert( p->eLock>=RESERVED_LOCK ); 928 } 929 assert( pPager->dbSize==pPager->dbOrigSize ); 930 assert( pPager->dbOrigSize==pPager->dbFileSize ); 931 assert( pPager->dbOrigSize==pPager->dbHintSize ); 932 assert( pPager->setMaster==0 ); 933 break; 934 935 case PAGER_WRITER_CACHEMOD: 936 assert( p->eLock!=UNKNOWN_LOCK ); 937 assert( pPager->errCode==SQLITE_OK ); 938 if( !pagerUseWal(pPager) ){ 939 /* It is possible that if journal_mode=wal here that neither the 940 ** journal file nor the WAL file are open. This happens during 941 ** a rollback transaction that switches from journal_mode=off 942 ** to journal_mode=wal. 943 */ 944 assert( p->eLock>=RESERVED_LOCK ); 945 assert( isOpen(p->jfd) 946 || p->journalMode==PAGER_JOURNALMODE_OFF 947 || p->journalMode==PAGER_JOURNALMODE_WAL 948 ); 949 } 950 assert( pPager->dbOrigSize==pPager->dbFileSize ); 951 assert( pPager->dbOrigSize==pPager->dbHintSize ); 952 break; 953 954 case PAGER_WRITER_DBMOD: 955 assert( p->eLock==EXCLUSIVE_LOCK ); 956 assert( pPager->errCode==SQLITE_OK ); 957 assert( !pagerUseWal(pPager) ); 958 assert( p->eLock>=EXCLUSIVE_LOCK ); 959 assert( isOpen(p->jfd) 960 || p->journalMode==PAGER_JOURNALMODE_OFF 961 || p->journalMode==PAGER_JOURNALMODE_WAL 962 || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC) 963 ); 964 assert( pPager->dbOrigSize<=pPager->dbHintSize ); 965 break; 966 967 case PAGER_WRITER_FINISHED: 968 assert( p->eLock==EXCLUSIVE_LOCK ); 969 assert( pPager->errCode==SQLITE_OK ); 970 assert( !pagerUseWal(pPager) ); 971 assert( isOpen(p->jfd) 972 || p->journalMode==PAGER_JOURNALMODE_OFF 973 || p->journalMode==PAGER_JOURNALMODE_WAL 974 || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC) 975 ); 976 break; 977 978 case PAGER_ERROR: 979 /* There must be at least one outstanding reference to the pager if 980 ** in ERROR state. Otherwise the pager should have already dropped 981 ** back to OPEN state. 982 */ 983 assert( pPager->errCode!=SQLITE_OK ); 984 assert( sqlite3PcacheRefCount(pPager->pPCache)>0 || pPager->tempFile ); 985 break; 986 } 987 988 return 1; 989 } 990 #endif /* ifndef NDEBUG */ 991 992 #ifdef SQLITE_DEBUG 993 /* 994 ** Return a pointer to a human readable string in a static buffer 995 ** containing the state of the Pager object passed as an argument. This 996 ** is intended to be used within debuggers. For example, as an alternative 997 ** to "print *pPager" in gdb: 998 ** 999 ** (gdb) printf "%s", print_pager_state(pPager) 1000 */ 1001 static char *print_pager_state(Pager *p){ 1002 static char zRet[1024]; 1003 1004 sqlite3_snprintf(1024, zRet, 1005 "Filename: %s\n" 1006 "State: %s errCode=%d\n" 1007 "Lock: %s\n" 1008 "Locking mode: locking_mode=%s\n" 1009 "Journal mode: journal_mode=%s\n" 1010 "Backing store: tempFile=%d memDb=%d useJournal=%d\n" 1011 "Journal: journalOff=%lld journalHdr=%lld\n" 1012 "Size: dbsize=%d dbOrigSize=%d dbFileSize=%d\n" 1013 , p->zFilename 1014 , p->eState==PAGER_OPEN ? "OPEN" : 1015 p->eState==PAGER_READER ? "READER" : 1016 p->eState==PAGER_WRITER_LOCKED ? "WRITER_LOCKED" : 1017 p->eState==PAGER_WRITER_CACHEMOD ? "WRITER_CACHEMOD" : 1018 p->eState==PAGER_WRITER_DBMOD ? "WRITER_DBMOD" : 1019 p->eState==PAGER_WRITER_FINISHED ? "WRITER_FINISHED" : 1020 p->eState==PAGER_ERROR ? "ERROR" : "?error?" 1021 , (int)p->errCode 1022 , p->eLock==NO_LOCK ? "NO_LOCK" : 1023 p->eLock==RESERVED_LOCK ? "RESERVED" : 1024 p->eLock==EXCLUSIVE_LOCK ? "EXCLUSIVE" : 1025 p->eLock==SHARED_LOCK ? "SHARED" : 1026 p->eLock==UNKNOWN_LOCK ? "UNKNOWN" : "?error?" 1027 , p->exclusiveMode ? "exclusive" : "normal" 1028 , p->journalMode==PAGER_JOURNALMODE_MEMORY ? "memory" : 1029 p->journalMode==PAGER_JOURNALMODE_OFF ? "off" : 1030 p->journalMode==PAGER_JOURNALMODE_DELETE ? "delete" : 1031 p->journalMode==PAGER_JOURNALMODE_PERSIST ? "persist" : 1032 p->journalMode==PAGER_JOURNALMODE_TRUNCATE ? "truncate" : 1033 p->journalMode==PAGER_JOURNALMODE_WAL ? "wal" : "?error?" 1034 , (int)p->tempFile, (int)p->memDb, (int)p->useJournal 1035 , p->journalOff, p->journalHdr 1036 , (int)p->dbSize, (int)p->dbOrigSize, (int)p->dbFileSize 1037 ); 1038 1039 return zRet; 1040 } 1041 #endif 1042 1043 /* Forward references to the various page getters */ 1044 static int getPageNormal(Pager*,Pgno,DbPage**,int); 1045 static int getPageError(Pager*,Pgno,DbPage**,int); 1046 #if SQLITE_MAX_MMAP_SIZE>0 1047 static int getPageMMap(Pager*,Pgno,DbPage**,int); 1048 #endif 1049 1050 /* 1051 ** Set the Pager.xGet method for the appropriate routine used to fetch 1052 ** content from the pager. 1053 */ 1054 static void setGetterMethod(Pager *pPager){ 1055 if( pPager->errCode ){ 1056 pPager->xGet = getPageError; 1057 #if SQLITE_MAX_MMAP_SIZE>0 1058 }else if( USEFETCH(pPager) 1059 #ifdef SQLITE_HAS_CODEC 1060 && pPager->xCodec==0 1061 #endif 1062 ){ 1063 pPager->xGet = getPageMMap; 1064 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 1065 }else{ 1066 pPager->xGet = getPageNormal; 1067 } 1068 } 1069 1070 /* 1071 ** Return true if it is necessary to write page *pPg into the sub-journal. 1072 ** A page needs to be written into the sub-journal if there exists one 1073 ** or more open savepoints for which: 1074 ** 1075 ** * The page-number is less than or equal to PagerSavepoint.nOrig, and 1076 ** * The bit corresponding to the page-number is not set in 1077 ** PagerSavepoint.pInSavepoint. 1078 */ 1079 static int subjRequiresPage(PgHdr *pPg){ 1080 Pager *pPager = pPg->pPager; 1081 PagerSavepoint *p; 1082 Pgno pgno = pPg->pgno; 1083 int i; 1084 for(i=0; i<pPager->nSavepoint; i++){ 1085 p = &pPager->aSavepoint[i]; 1086 if( p->nOrig>=pgno && 0==sqlite3BitvecTestNotNull(p->pInSavepoint, pgno) ){ 1087 return 1; 1088 } 1089 } 1090 return 0; 1091 } 1092 1093 #ifdef SQLITE_DEBUG 1094 /* 1095 ** Return true if the page is already in the journal file. 1096 */ 1097 static int pageInJournal(Pager *pPager, PgHdr *pPg){ 1098 return sqlite3BitvecTest(pPager->pInJournal, pPg->pgno); 1099 } 1100 #endif 1101 1102 /* 1103 ** Read a 32-bit integer from the given file descriptor. Store the integer 1104 ** that is read in *pRes. Return SQLITE_OK if everything worked, or an 1105 ** error code is something goes wrong. 1106 ** 1107 ** All values are stored on disk as big-endian. 1108 */ 1109 static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){ 1110 unsigned char ac[4]; 1111 int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset); 1112 if( rc==SQLITE_OK ){ 1113 *pRes = sqlite3Get4byte(ac); 1114 } 1115 return rc; 1116 } 1117 1118 /* 1119 ** Write a 32-bit integer into a string buffer in big-endian byte order. 1120 */ 1121 #define put32bits(A,B) sqlite3Put4byte((u8*)A,B) 1122 1123 1124 /* 1125 ** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK 1126 ** on success or an error code is something goes wrong. 1127 */ 1128 static int write32bits(sqlite3_file *fd, i64 offset, u32 val){ 1129 char ac[4]; 1130 put32bits(ac, val); 1131 return sqlite3OsWrite(fd, ac, 4, offset); 1132 } 1133 1134 /* 1135 ** Unlock the database file to level eLock, which must be either NO_LOCK 1136 ** or SHARED_LOCK. Regardless of whether or not the call to xUnlock() 1137 ** succeeds, set the Pager.eLock variable to match the (attempted) new lock. 1138 ** 1139 ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is 1140 ** called, do not modify it. See the comment above the #define of 1141 ** UNKNOWN_LOCK for an explanation of this. 1142 */ 1143 static int pagerUnlockDb(Pager *pPager, int eLock){ 1144 int rc = SQLITE_OK; 1145 1146 assert( !pPager->exclusiveMode || pPager->eLock==eLock ); 1147 assert( eLock==NO_LOCK || eLock==SHARED_LOCK ); 1148 assert( eLock!=NO_LOCK || pagerUseWal(pPager)==0 ); 1149 if( isOpen(pPager->fd) ){ 1150 assert( pPager->eLock>=eLock ); 1151 rc = pPager->noLock ? SQLITE_OK : sqlite3OsUnlock(pPager->fd, eLock); 1152 if( pPager->eLock!=UNKNOWN_LOCK ){ 1153 pPager->eLock = (u8)eLock; 1154 } 1155 IOTRACE(("UNLOCK %p %d\n", pPager, eLock)) 1156 } 1157 return rc; 1158 } 1159 1160 /* 1161 ** Lock the database file to level eLock, which must be either SHARED_LOCK, 1162 ** RESERVED_LOCK or EXCLUSIVE_LOCK. If the caller is successful, set the 1163 ** Pager.eLock variable to the new locking state. 1164 ** 1165 ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is 1166 ** called, do not modify it unless the new locking state is EXCLUSIVE_LOCK. 1167 ** See the comment above the #define of UNKNOWN_LOCK for an explanation 1168 ** of this. 1169 */ 1170 static int pagerLockDb(Pager *pPager, int eLock){ 1171 int rc = SQLITE_OK; 1172 1173 assert( eLock==SHARED_LOCK || eLock==RESERVED_LOCK || eLock==EXCLUSIVE_LOCK ); 1174 if( pPager->eLock<eLock || pPager->eLock==UNKNOWN_LOCK ){ 1175 rc = pPager->noLock ? SQLITE_OK : sqlite3OsLock(pPager->fd, eLock); 1176 if( rc==SQLITE_OK && (pPager->eLock!=UNKNOWN_LOCK||eLock==EXCLUSIVE_LOCK) ){ 1177 pPager->eLock = (u8)eLock; 1178 IOTRACE(("LOCK %p %d\n", pPager, eLock)) 1179 } 1180 } 1181 return rc; 1182 } 1183 1184 /* 1185 ** This function determines whether or not the atomic-write or 1186 ** atomic-batch-write optimizations can be used with this pager. The 1187 ** atomic-write optimization can be used if: 1188 ** 1189 ** (a) the value returned by OsDeviceCharacteristics() indicates that 1190 ** a database page may be written atomically, and 1191 ** (b) the value returned by OsSectorSize() is less than or equal 1192 ** to the page size. 1193 ** 1194 ** If it can be used, then the value returned is the size of the journal 1195 ** file when it contains rollback data for exactly one page. 1196 ** 1197 ** The atomic-batch-write optimization can be used if OsDeviceCharacteristics() 1198 ** returns a value with the SQLITE_IOCAP_BATCH_ATOMIC bit set. -1 is 1199 ** returned in this case. 1200 ** 1201 ** If neither optimization can be used, 0 is returned. 1202 */ 1203 static int jrnlBufferSize(Pager *pPager){ 1204 assert( !MEMDB ); 1205 1206 #if defined(SQLITE_ENABLE_ATOMIC_WRITE) \ 1207 || defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) 1208 int dc; /* Device characteristics */ 1209 1210 assert( isOpen(pPager->fd) ); 1211 dc = sqlite3OsDeviceCharacteristics(pPager->fd); 1212 #else 1213 UNUSED_PARAMETER(pPager); 1214 #endif 1215 1216 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 1217 if( pPager->dbSize>0 && (dc&SQLITE_IOCAP_BATCH_ATOMIC) ){ 1218 return -1; 1219 } 1220 #endif 1221 1222 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 1223 { 1224 int nSector = pPager->sectorSize; 1225 int szPage = pPager->pageSize; 1226 1227 assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); 1228 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); 1229 if( 0==(dc&(SQLITE_IOCAP_ATOMIC|(szPage>>8)) || nSector>szPage) ){ 1230 return 0; 1231 } 1232 } 1233 1234 return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager); 1235 #endif 1236 1237 return 0; 1238 } 1239 1240 /* 1241 ** If SQLITE_CHECK_PAGES is defined then we do some sanity checking 1242 ** on the cache using a hash function. This is used for testing 1243 ** and debugging only. 1244 */ 1245 #ifdef SQLITE_CHECK_PAGES 1246 /* 1247 ** Return a 32-bit hash of the page data for pPage. 1248 */ 1249 static u32 pager_datahash(int nByte, unsigned char *pData){ 1250 u32 hash = 0; 1251 int i; 1252 for(i=0; i<nByte; i++){ 1253 hash = (hash*1039) + pData[i]; 1254 } 1255 return hash; 1256 } 1257 static u32 pager_pagehash(PgHdr *pPage){ 1258 return pager_datahash(pPage->pPager->pageSize, (unsigned char *)pPage->pData); 1259 } 1260 static void pager_set_pagehash(PgHdr *pPage){ 1261 pPage->pageHash = pager_pagehash(pPage); 1262 } 1263 1264 /* 1265 ** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES 1266 ** is defined, and NDEBUG is not defined, an assert() statement checks 1267 ** that the page is either dirty or still matches the calculated page-hash. 1268 */ 1269 #define CHECK_PAGE(x) checkPage(x) 1270 static void checkPage(PgHdr *pPg){ 1271 Pager *pPager = pPg->pPager; 1272 assert( pPager->eState!=PAGER_ERROR ); 1273 assert( (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) ); 1274 } 1275 1276 #else 1277 #define pager_datahash(X,Y) 0 1278 #define pager_pagehash(X) 0 1279 #define pager_set_pagehash(X) 1280 #define CHECK_PAGE(x) 1281 #endif /* SQLITE_CHECK_PAGES */ 1282 1283 /* 1284 ** When this is called the journal file for pager pPager must be open. 1285 ** This function attempts to read a master journal file name from the 1286 ** end of the file and, if successful, copies it into memory supplied 1287 ** by the caller. See comments above writeMasterJournal() for the format 1288 ** used to store a master journal file name at the end of a journal file. 1289 ** 1290 ** zMaster must point to a buffer of at least nMaster bytes allocated by 1291 ** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is 1292 ** enough space to write the master journal name). If the master journal 1293 ** name in the journal is longer than nMaster bytes (including a 1294 ** nul-terminator), then this is handled as if no master journal name 1295 ** were present in the journal. 1296 ** 1297 ** If a master journal file name is present at the end of the journal 1298 ** file, then it is copied into the buffer pointed to by zMaster. A 1299 ** nul-terminator byte is appended to the buffer following the master 1300 ** journal file name. 1301 ** 1302 ** If it is determined that no master journal file name is present 1303 ** zMaster[0] is set to 0 and SQLITE_OK returned. 1304 ** 1305 ** If an error occurs while reading from the journal file, an SQLite 1306 ** error code is returned. 1307 */ 1308 static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, u32 nMaster){ 1309 int rc; /* Return code */ 1310 u32 len; /* Length in bytes of master journal name */ 1311 i64 szJ; /* Total size in bytes of journal file pJrnl */ 1312 u32 cksum; /* MJ checksum value read from journal */ 1313 u32 u; /* Unsigned loop counter */ 1314 unsigned char aMagic[8]; /* A buffer to hold the magic header */ 1315 zMaster[0] = '\0'; 1316 1317 if( SQLITE_OK!=(rc = sqlite3OsFileSize(pJrnl, &szJ)) 1318 || szJ<16 1319 || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-16, &len)) 1320 || len>=nMaster 1321 || len>szJ-16 1322 || len==0 1323 || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-12, &cksum)) 1324 || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8)) 1325 || memcmp(aMagic, aJournalMagic, 8) 1326 || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len)) 1327 ){ 1328 return rc; 1329 } 1330 1331 /* See if the checksum matches the master journal name */ 1332 for(u=0; u<len; u++){ 1333 cksum -= zMaster[u]; 1334 } 1335 if( cksum ){ 1336 /* If the checksum doesn't add up, then one or more of the disk sectors 1337 ** containing the master journal filename is corrupted. This means 1338 ** definitely roll back, so just return SQLITE_OK and report a (nul) 1339 ** master-journal filename. 1340 */ 1341 len = 0; 1342 } 1343 zMaster[len] = '\0'; 1344 1345 return SQLITE_OK; 1346 } 1347 1348 /* 1349 ** Return the offset of the sector boundary at or immediately 1350 ** following the value in pPager->journalOff, assuming a sector 1351 ** size of pPager->sectorSize bytes. 1352 ** 1353 ** i.e for a sector size of 512: 1354 ** 1355 ** Pager.journalOff Return value 1356 ** --------------------------------------- 1357 ** 0 0 1358 ** 512 512 1359 ** 100 512 1360 ** 2000 2048 1361 ** 1362 */ 1363 static i64 journalHdrOffset(Pager *pPager){ 1364 i64 offset = 0; 1365 i64 c = pPager->journalOff; 1366 if( c ){ 1367 offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager); 1368 } 1369 assert( offset%JOURNAL_HDR_SZ(pPager)==0 ); 1370 assert( offset>=c ); 1371 assert( (offset-c)<JOURNAL_HDR_SZ(pPager) ); 1372 return offset; 1373 } 1374 1375 /* 1376 ** The journal file must be open when this function is called. 1377 ** 1378 ** This function is a no-op if the journal file has not been written to 1379 ** within the current transaction (i.e. if Pager.journalOff==0). 1380 ** 1381 ** If doTruncate is non-zero or the Pager.journalSizeLimit variable is 1382 ** set to 0, then truncate the journal file to zero bytes in size. Otherwise, 1383 ** zero the 28-byte header at the start of the journal file. In either case, 1384 ** if the pager is not in no-sync mode, sync the journal file immediately 1385 ** after writing or truncating it. 1386 ** 1387 ** If Pager.journalSizeLimit is set to a positive, non-zero value, and 1388 ** following the truncation or zeroing described above the size of the 1389 ** journal file in bytes is larger than this value, then truncate the 1390 ** journal file to Pager.journalSizeLimit bytes. The journal file does 1391 ** not need to be synced following this operation. 1392 ** 1393 ** If an IO error occurs, abandon processing and return the IO error code. 1394 ** Otherwise, return SQLITE_OK. 1395 */ 1396 static int zeroJournalHdr(Pager *pPager, int doTruncate){ 1397 int rc = SQLITE_OK; /* Return code */ 1398 assert( isOpen(pPager->jfd) ); 1399 assert( !sqlite3JournalIsInMemory(pPager->jfd) ); 1400 if( pPager->journalOff ){ 1401 const i64 iLimit = pPager->journalSizeLimit; /* Local cache of jsl */ 1402 1403 IOTRACE(("JZEROHDR %p\n", pPager)) 1404 if( doTruncate || iLimit==0 ){ 1405 rc = sqlite3OsTruncate(pPager->jfd, 0); 1406 }else{ 1407 static const char zeroHdr[28] = {0}; 1408 rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0); 1409 } 1410 if( rc==SQLITE_OK && !pPager->noSync ){ 1411 rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->syncFlags); 1412 } 1413 1414 /* At this point the transaction is committed but the write lock 1415 ** is still held on the file. If there is a size limit configured for 1416 ** the persistent journal and the journal file currently consumes more 1417 ** space than that limit allows for, truncate it now. There is no need 1418 ** to sync the file following this operation. 1419 */ 1420 if( rc==SQLITE_OK && iLimit>0 ){ 1421 i64 sz; 1422 rc = sqlite3OsFileSize(pPager->jfd, &sz); 1423 if( rc==SQLITE_OK && sz>iLimit ){ 1424 rc = sqlite3OsTruncate(pPager->jfd, iLimit); 1425 } 1426 } 1427 } 1428 return rc; 1429 } 1430 1431 /* 1432 ** The journal file must be open when this routine is called. A journal 1433 ** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the 1434 ** current location. 1435 ** 1436 ** The format for the journal header is as follows: 1437 ** - 8 bytes: Magic identifying journal format. 1438 ** - 4 bytes: Number of records in journal, or -1 no-sync mode is on. 1439 ** - 4 bytes: Random number used for page hash. 1440 ** - 4 bytes: Initial database page count. 1441 ** - 4 bytes: Sector size used by the process that wrote this journal. 1442 ** - 4 bytes: Database page size. 1443 ** 1444 ** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space. 1445 */ 1446 static int writeJournalHdr(Pager *pPager){ 1447 int rc = SQLITE_OK; /* Return code */ 1448 char *zHeader = pPager->pTmpSpace; /* Temporary space used to build header */ 1449 u32 nHeader = (u32)pPager->pageSize;/* Size of buffer pointed to by zHeader */ 1450 u32 nWrite; /* Bytes of header sector written */ 1451 int ii; /* Loop counter */ 1452 1453 assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ 1454 1455 if( nHeader>JOURNAL_HDR_SZ(pPager) ){ 1456 nHeader = JOURNAL_HDR_SZ(pPager); 1457 } 1458 1459 /* If there are active savepoints and any of them were created 1460 ** since the most recent journal header was written, update the 1461 ** PagerSavepoint.iHdrOffset fields now. 1462 */ 1463 for(ii=0; ii<pPager->nSavepoint; ii++){ 1464 if( pPager->aSavepoint[ii].iHdrOffset==0 ){ 1465 pPager->aSavepoint[ii].iHdrOffset = pPager->journalOff; 1466 } 1467 } 1468 1469 pPager->journalHdr = pPager->journalOff = journalHdrOffset(pPager); 1470 1471 /* 1472 ** Write the nRec Field - the number of page records that follow this 1473 ** journal header. Normally, zero is written to this value at this time. 1474 ** After the records are added to the journal (and the journal synced, 1475 ** if in full-sync mode), the zero is overwritten with the true number 1476 ** of records (see syncJournal()). 1477 ** 1478 ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When 1479 ** reading the journal this value tells SQLite to assume that the 1480 ** rest of the journal file contains valid page records. This assumption 1481 ** is dangerous, as if a failure occurred whilst writing to the journal 1482 ** file it may contain some garbage data. There are two scenarios 1483 ** where this risk can be ignored: 1484 ** 1485 ** * When the pager is in no-sync mode. Corruption can follow a 1486 ** power failure in this case anyway. 1487 ** 1488 ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees 1489 ** that garbage data is never appended to the journal file. 1490 */ 1491 assert( isOpen(pPager->fd) || pPager->noSync ); 1492 if( pPager->noSync || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY) 1493 || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) 1494 ){ 1495 memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); 1496 put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff); 1497 }else{ 1498 memset(zHeader, 0, sizeof(aJournalMagic)+4); 1499 } 1500 1501 /* The random check-hash initializer */ 1502 sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit); 1503 put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit); 1504 /* The initial database size */ 1505 put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbOrigSize); 1506 /* The assumed sector size for this process */ 1507 put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize); 1508 1509 /* The page size */ 1510 put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize); 1511 1512 /* Initializing the tail of the buffer is not necessary. Everything 1513 ** works find if the following memset() is omitted. But initializing 1514 ** the memory prevents valgrind from complaining, so we are willing to 1515 ** take the performance hit. 1516 */ 1517 memset(&zHeader[sizeof(aJournalMagic)+20], 0, 1518 nHeader-(sizeof(aJournalMagic)+20)); 1519 1520 /* In theory, it is only necessary to write the 28 bytes that the 1521 ** journal header consumes to the journal file here. Then increment the 1522 ** Pager.journalOff variable by JOURNAL_HDR_SZ so that the next 1523 ** record is written to the following sector (leaving a gap in the file 1524 ** that will be implicitly filled in by the OS). 1525 ** 1526 ** However it has been discovered that on some systems this pattern can 1527 ** be significantly slower than contiguously writing data to the file, 1528 ** even if that means explicitly writing data to the block of 1529 ** (JOURNAL_HDR_SZ - 28) bytes that will not be used. So that is what 1530 ** is done. 1531 ** 1532 ** The loop is required here in case the sector-size is larger than the 1533 ** database page size. Since the zHeader buffer is only Pager.pageSize 1534 ** bytes in size, more than one call to sqlite3OsWrite() may be required 1535 ** to populate the entire journal header sector. 1536 */ 1537 for(nWrite=0; rc==SQLITE_OK&&nWrite<JOURNAL_HDR_SZ(pPager); nWrite+=nHeader){ 1538 IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, nHeader)) 1539 rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff); 1540 assert( pPager->journalHdr <= pPager->journalOff ); 1541 pPager->journalOff += nHeader; 1542 } 1543 1544 return rc; 1545 } 1546 1547 /* 1548 ** The journal file must be open when this is called. A journal header file 1549 ** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal 1550 ** file. The current location in the journal file is given by 1551 ** pPager->journalOff. See comments above function writeJournalHdr() for 1552 ** a description of the journal header format. 1553 ** 1554 ** If the header is read successfully, *pNRec is set to the number of 1555 ** page records following this header and *pDbSize is set to the size of the 1556 ** database before the transaction began, in pages. Also, pPager->cksumInit 1557 ** is set to the value read from the journal header. SQLITE_OK is returned 1558 ** in this case. 1559 ** 1560 ** If the journal header file appears to be corrupted, SQLITE_DONE is 1561 ** returned and *pNRec and *PDbSize are undefined. If JOURNAL_HDR_SZ bytes 1562 ** cannot be read from the journal file an error code is returned. 1563 */ 1564 static int readJournalHdr( 1565 Pager *pPager, /* Pager object */ 1566 int isHot, 1567 i64 journalSize, /* Size of the open journal file in bytes */ 1568 u32 *pNRec, /* OUT: Value read from the nRec field */ 1569 u32 *pDbSize /* OUT: Value of original database size field */ 1570 ){ 1571 int rc; /* Return code */ 1572 unsigned char aMagic[8]; /* A buffer to hold the magic header */ 1573 i64 iHdrOff; /* Offset of journal header being read */ 1574 1575 assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ 1576 1577 /* Advance Pager.journalOff to the start of the next sector. If the 1578 ** journal file is too small for there to be a header stored at this 1579 ** point, return SQLITE_DONE. 1580 */ 1581 pPager->journalOff = journalHdrOffset(pPager); 1582 if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){ 1583 return SQLITE_DONE; 1584 } 1585 iHdrOff = pPager->journalOff; 1586 1587 /* Read in the first 8 bytes of the journal header. If they do not match 1588 ** the magic string found at the start of each journal header, return 1589 ** SQLITE_DONE. If an IO error occurs, return an error code. Otherwise, 1590 ** proceed. 1591 */ 1592 if( isHot || iHdrOff!=pPager->journalHdr ){ 1593 rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), iHdrOff); 1594 if( rc ){ 1595 return rc; 1596 } 1597 if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){ 1598 return SQLITE_DONE; 1599 } 1600 } 1601 1602 /* Read the first three 32-bit fields of the journal header: The nRec 1603 ** field, the checksum-initializer and the database size at the start 1604 ** of the transaction. Return an error code if anything goes wrong. 1605 */ 1606 if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+8, pNRec)) 1607 || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+12, &pPager->cksumInit)) 1608 || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+16, pDbSize)) 1609 ){ 1610 return rc; 1611 } 1612 1613 if( pPager->journalOff==0 ){ 1614 u32 iPageSize; /* Page-size field of journal header */ 1615 u32 iSectorSize; /* Sector-size field of journal header */ 1616 1617 /* Read the page-size and sector-size journal header fields. */ 1618 if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+20, &iSectorSize)) 1619 || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+24, &iPageSize)) 1620 ){ 1621 return rc; 1622 } 1623 1624 /* Versions of SQLite prior to 3.5.8 set the page-size field of the 1625 ** journal header to zero. In this case, assume that the Pager.pageSize 1626 ** variable is already set to the correct page size. 1627 */ 1628 if( iPageSize==0 ){ 1629 iPageSize = pPager->pageSize; 1630 } 1631 1632 /* Check that the values read from the page-size and sector-size fields 1633 ** are within range. To be 'in range', both values need to be a power 1634 ** of two greater than or equal to 512 or 32, and not greater than their 1635 ** respective compile time maximum limits. 1636 */ 1637 if( iPageSize<512 || iSectorSize<32 1638 || iPageSize>SQLITE_MAX_PAGE_SIZE || iSectorSize>MAX_SECTOR_SIZE 1639 || ((iPageSize-1)&iPageSize)!=0 || ((iSectorSize-1)&iSectorSize)!=0 1640 ){ 1641 /* If the either the page-size or sector-size in the journal-header is 1642 ** invalid, then the process that wrote the journal-header must have 1643 ** crashed before the header was synced. In this case stop reading 1644 ** the journal file here. 1645 */ 1646 return SQLITE_DONE; 1647 } 1648 1649 /* Update the page-size to match the value read from the journal. 1650 ** Use a testcase() macro to make sure that malloc failure within 1651 ** PagerSetPagesize() is tested. 1652 */ 1653 rc = sqlite3PagerSetPagesize(pPager, &iPageSize, -1); 1654 testcase( rc!=SQLITE_OK ); 1655 1656 /* Update the assumed sector-size to match the value used by 1657 ** the process that created this journal. If this journal was 1658 ** created by a process other than this one, then this routine 1659 ** is being called from within pager_playback(). The local value 1660 ** of Pager.sectorSize is restored at the end of that routine. 1661 */ 1662 pPager->sectorSize = iSectorSize; 1663 } 1664 1665 pPager->journalOff += JOURNAL_HDR_SZ(pPager); 1666 return rc; 1667 } 1668 1669 1670 /* 1671 ** Write the supplied master journal name into the journal file for pager 1672 ** pPager at the current location. The master journal name must be the last 1673 ** thing written to a journal file. If the pager is in full-sync mode, the 1674 ** journal file descriptor is advanced to the next sector boundary before 1675 ** anything is written. The format is: 1676 ** 1677 ** + 4 bytes: PAGER_MJ_PGNO. 1678 ** + N bytes: Master journal filename in utf-8. 1679 ** + 4 bytes: N (length of master journal name in bytes, no nul-terminator). 1680 ** + 4 bytes: Master journal name checksum. 1681 ** + 8 bytes: aJournalMagic[]. 1682 ** 1683 ** The master journal page checksum is the sum of the bytes in the master 1684 ** journal name, where each byte is interpreted as a signed 8-bit integer. 1685 ** 1686 ** If zMaster is a NULL pointer (occurs for a single database transaction), 1687 ** this call is a no-op. 1688 */ 1689 static int writeMasterJournal(Pager *pPager, const char *zMaster){ 1690 int rc; /* Return code */ 1691 int nMaster; /* Length of string zMaster */ 1692 i64 iHdrOff; /* Offset of header in journal file */ 1693 i64 jrnlSize; /* Size of journal file on disk */ 1694 u32 cksum = 0; /* Checksum of string zMaster */ 1695 1696 assert( pPager->setMaster==0 ); 1697 assert( !pagerUseWal(pPager) ); 1698 1699 if( !zMaster 1700 || pPager->journalMode==PAGER_JOURNALMODE_MEMORY 1701 || !isOpen(pPager->jfd) 1702 ){ 1703 return SQLITE_OK; 1704 } 1705 pPager->setMaster = 1; 1706 assert( pPager->journalHdr <= pPager->journalOff ); 1707 1708 /* Calculate the length in bytes and the checksum of zMaster */ 1709 for(nMaster=0; zMaster[nMaster]; nMaster++){ 1710 cksum += zMaster[nMaster]; 1711 } 1712 1713 /* If in full-sync mode, advance to the next disk sector before writing 1714 ** the master journal name. This is in case the previous page written to 1715 ** the journal has already been synced. 1716 */ 1717 if( pPager->fullSync ){ 1718 pPager->journalOff = journalHdrOffset(pPager); 1719 } 1720 iHdrOff = pPager->journalOff; 1721 1722 /* Write the master journal data to the end of the journal file. If 1723 ** an error occurs, return the error code to the caller. 1724 */ 1725 if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_MJ_PGNO(pPager)))) 1726 || (0 != (rc = sqlite3OsWrite(pPager->jfd, zMaster, nMaster, iHdrOff+4))) 1727 || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster, nMaster))) 1728 || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster+4, cksum))) 1729 || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8, 1730 iHdrOff+4+nMaster+8))) 1731 ){ 1732 return rc; 1733 } 1734 pPager->journalOff += (nMaster+20); 1735 1736 /* If the pager is in peristent-journal mode, then the physical 1737 ** journal-file may extend past the end of the master-journal name 1738 ** and 8 bytes of magic data just written to the file. This is 1739 ** dangerous because the code to rollback a hot-journal file 1740 ** will not be able to find the master-journal name to determine 1741 ** whether or not the journal is hot. 1742 ** 1743 ** Easiest thing to do in this scenario is to truncate the journal 1744 ** file to the required size. 1745 */ 1746 if( SQLITE_OK==(rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize)) 1747 && jrnlSize>pPager->journalOff 1748 ){ 1749 rc = sqlite3OsTruncate(pPager->jfd, pPager->journalOff); 1750 } 1751 return rc; 1752 } 1753 1754 /* 1755 ** Discard the entire contents of the in-memory page-cache. 1756 */ 1757 static void pager_reset(Pager *pPager){ 1758 pPager->iDataVersion++; 1759 sqlite3BackupRestart(pPager->pBackup); 1760 sqlite3PcacheClear(pPager->pPCache); 1761 } 1762 1763 /* 1764 ** Return the pPager->iDataVersion value 1765 */ 1766 u32 sqlite3PagerDataVersion(Pager *pPager){ 1767 assert( pPager->eState>PAGER_OPEN ); 1768 return pPager->iDataVersion; 1769 } 1770 1771 /* 1772 ** Free all structures in the Pager.aSavepoint[] array and set both 1773 ** Pager.aSavepoint and Pager.nSavepoint to zero. Close the sub-journal 1774 ** if it is open and the pager is not in exclusive mode. 1775 */ 1776 static void releaseAllSavepoints(Pager *pPager){ 1777 int ii; /* Iterator for looping through Pager.aSavepoint */ 1778 for(ii=0; ii<pPager->nSavepoint; ii++){ 1779 sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); 1780 } 1781 if( !pPager->exclusiveMode || sqlite3JournalIsInMemory(pPager->sjfd) ){ 1782 sqlite3OsClose(pPager->sjfd); 1783 } 1784 sqlite3_free(pPager->aSavepoint); 1785 pPager->aSavepoint = 0; 1786 pPager->nSavepoint = 0; 1787 pPager->nSubRec = 0; 1788 } 1789 1790 /* 1791 ** Set the bit number pgno in the PagerSavepoint.pInSavepoint 1792 ** bitvecs of all open savepoints. Return SQLITE_OK if successful 1793 ** or SQLITE_NOMEM if a malloc failure occurs. 1794 */ 1795 static int addToSavepointBitvecs(Pager *pPager, Pgno pgno){ 1796 int ii; /* Loop counter */ 1797 int rc = SQLITE_OK; /* Result code */ 1798 1799 for(ii=0; ii<pPager->nSavepoint; ii++){ 1800 PagerSavepoint *p = &pPager->aSavepoint[ii]; 1801 if( pgno<=p->nOrig ){ 1802 rc |= sqlite3BitvecSet(p->pInSavepoint, pgno); 1803 testcase( rc==SQLITE_NOMEM ); 1804 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 1805 } 1806 } 1807 return rc; 1808 } 1809 1810 /* 1811 ** This function is a no-op if the pager is in exclusive mode and not 1812 ** in the ERROR state. Otherwise, it switches the pager to PAGER_OPEN 1813 ** state. 1814 ** 1815 ** If the pager is not in exclusive-access mode, the database file is 1816 ** completely unlocked. If the file is unlocked and the file-system does 1817 ** not exhibit the UNDELETABLE_WHEN_OPEN property, the journal file is 1818 ** closed (if it is open). 1819 ** 1820 ** If the pager is in ERROR state when this function is called, the 1821 ** contents of the pager cache are discarded before switching back to 1822 ** the OPEN state. Regardless of whether the pager is in exclusive-mode 1823 ** or not, any journal file left in the file-system will be treated 1824 ** as a hot-journal and rolled back the next time a read-transaction 1825 ** is opened (by this or by any other connection). 1826 */ 1827 static void pager_unlock(Pager *pPager){ 1828 1829 assert( pPager->eState==PAGER_READER 1830 || pPager->eState==PAGER_OPEN 1831 || pPager->eState==PAGER_ERROR 1832 ); 1833 1834 sqlite3BitvecDestroy(pPager->pInJournal); 1835 pPager->pInJournal = 0; 1836 releaseAllSavepoints(pPager); 1837 1838 if( pagerUseWal(pPager) ){ 1839 assert( !isOpen(pPager->jfd) ); 1840 sqlite3WalEndReadTransaction(pPager->pWal); 1841 pPager->eState = PAGER_OPEN; 1842 }else if( !pPager->exclusiveMode ){ 1843 int rc; /* Error code returned by pagerUnlockDb() */ 1844 int iDc = isOpen(pPager->fd)?sqlite3OsDeviceCharacteristics(pPager->fd):0; 1845 1846 /* If the operating system support deletion of open files, then 1847 ** close the journal file when dropping the database lock. Otherwise 1848 ** another connection with journal_mode=delete might delete the file 1849 ** out from under us. 1850 */ 1851 assert( (PAGER_JOURNALMODE_MEMORY & 5)!=1 ); 1852 assert( (PAGER_JOURNALMODE_OFF & 5)!=1 ); 1853 assert( (PAGER_JOURNALMODE_WAL & 5)!=1 ); 1854 assert( (PAGER_JOURNALMODE_DELETE & 5)!=1 ); 1855 assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); 1856 assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); 1857 if( 0==(iDc & SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN) 1858 || 1!=(pPager->journalMode & 5) 1859 ){ 1860 sqlite3OsClose(pPager->jfd); 1861 } 1862 1863 /* If the pager is in the ERROR state and the call to unlock the database 1864 ** file fails, set the current lock to UNKNOWN_LOCK. See the comment 1865 ** above the #define for UNKNOWN_LOCK for an explanation of why this 1866 ** is necessary. 1867 */ 1868 rc = pagerUnlockDb(pPager, NO_LOCK); 1869 if( rc!=SQLITE_OK && pPager->eState==PAGER_ERROR ){ 1870 pPager->eLock = UNKNOWN_LOCK; 1871 } 1872 1873 /* The pager state may be changed from PAGER_ERROR to PAGER_OPEN here 1874 ** without clearing the error code. This is intentional - the error 1875 ** code is cleared and the cache reset in the block below. 1876 */ 1877 assert( pPager->errCode || pPager->eState!=PAGER_ERROR ); 1878 pPager->changeCountDone = 0; 1879 pPager->eState = PAGER_OPEN; 1880 } 1881 1882 /* If Pager.errCode is set, the contents of the pager cache cannot be 1883 ** trusted. Now that there are no outstanding references to the pager, 1884 ** it can safely move back to PAGER_OPEN state. This happens in both 1885 ** normal and exclusive-locking mode. 1886 */ 1887 assert( pPager->errCode==SQLITE_OK || !MEMDB ); 1888 if( pPager->errCode ){ 1889 if( pPager->tempFile==0 ){ 1890 pager_reset(pPager); 1891 pPager->changeCountDone = 0; 1892 pPager->eState = PAGER_OPEN; 1893 }else{ 1894 pPager->eState = (isOpen(pPager->jfd) ? PAGER_OPEN : PAGER_READER); 1895 } 1896 if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0); 1897 pPager->errCode = SQLITE_OK; 1898 setGetterMethod(pPager); 1899 } 1900 1901 pPager->journalOff = 0; 1902 pPager->journalHdr = 0; 1903 pPager->setMaster = 0; 1904 } 1905 1906 /* 1907 ** This function is called whenever an IOERR or FULL error that requires 1908 ** the pager to transition into the ERROR state may ahve occurred. 1909 ** The first argument is a pointer to the pager structure, the second 1910 ** the error-code about to be returned by a pager API function. The 1911 ** value returned is a copy of the second argument to this function. 1912 ** 1913 ** If the second argument is SQLITE_FULL, SQLITE_IOERR or one of the 1914 ** IOERR sub-codes, the pager enters the ERROR state and the error code 1915 ** is stored in Pager.errCode. While the pager remains in the ERROR state, 1916 ** all major API calls on the Pager will immediately return Pager.errCode. 1917 ** 1918 ** The ERROR state indicates that the contents of the pager-cache 1919 ** cannot be trusted. This state can be cleared by completely discarding 1920 ** the contents of the pager-cache. If a transaction was active when 1921 ** the persistent error occurred, then the rollback journal may need 1922 ** to be replayed to restore the contents of the database file (as if 1923 ** it were a hot-journal). 1924 */ 1925 static int pager_error(Pager *pPager, int rc){ 1926 int rc2 = rc & 0xff; 1927 assert( rc==SQLITE_OK || !MEMDB ); 1928 assert( 1929 pPager->errCode==SQLITE_FULL || 1930 pPager->errCode==SQLITE_OK || 1931 (pPager->errCode & 0xff)==SQLITE_IOERR 1932 ); 1933 if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR ){ 1934 pPager->errCode = rc; 1935 pPager->eState = PAGER_ERROR; 1936 setGetterMethod(pPager); 1937 } 1938 return rc; 1939 } 1940 1941 static int pager_truncate(Pager *pPager, Pgno nPage); 1942 1943 /* 1944 ** The write transaction open on pPager is being committed (bCommit==1) 1945 ** or rolled back (bCommit==0). 1946 ** 1947 ** Return TRUE if and only if all dirty pages should be flushed to disk. 1948 ** 1949 ** Rules: 1950 ** 1951 ** * For non-TEMP databases, always sync to disk. This is necessary 1952 ** for transactions to be durable. 1953 ** 1954 ** * Sync TEMP database only on a COMMIT (not a ROLLBACK) when the backing 1955 ** file has been created already (via a spill on pagerStress()) and 1956 ** when the number of dirty pages in memory exceeds 25% of the total 1957 ** cache size. 1958 */ 1959 static int pagerFlushOnCommit(Pager *pPager, int bCommit){ 1960 if( pPager->tempFile==0 ) return 1; 1961 if( !bCommit ) return 0; 1962 if( !isOpen(pPager->fd) ) return 0; 1963 return (sqlite3PCachePercentDirty(pPager->pPCache)>=25); 1964 } 1965 1966 /* 1967 ** This routine ends a transaction. A transaction is usually ended by 1968 ** either a COMMIT or a ROLLBACK operation. This routine may be called 1969 ** after rollback of a hot-journal, or if an error occurs while opening 1970 ** the journal file or writing the very first journal-header of a 1971 ** database transaction. 1972 ** 1973 ** This routine is never called in PAGER_ERROR state. If it is called 1974 ** in PAGER_NONE or PAGER_SHARED state and the lock held is less 1975 ** exclusive than a RESERVED lock, it is a no-op. 1976 ** 1977 ** Otherwise, any active savepoints are released. 1978 ** 1979 ** If the journal file is open, then it is "finalized". Once a journal 1980 ** file has been finalized it is not possible to use it to roll back a 1981 ** transaction. Nor will it be considered to be a hot-journal by this 1982 ** or any other database connection. Exactly how a journal is finalized 1983 ** depends on whether or not the pager is running in exclusive mode and 1984 ** the current journal-mode (Pager.journalMode value), as follows: 1985 ** 1986 ** journalMode==MEMORY 1987 ** Journal file descriptor is simply closed. This destroys an 1988 ** in-memory journal. 1989 ** 1990 ** journalMode==TRUNCATE 1991 ** Journal file is truncated to zero bytes in size. 1992 ** 1993 ** journalMode==PERSIST 1994 ** The first 28 bytes of the journal file are zeroed. This invalidates 1995 ** the first journal header in the file, and hence the entire journal 1996 ** file. An invalid journal file cannot be rolled back. 1997 ** 1998 ** journalMode==DELETE 1999 ** The journal file is closed and deleted using sqlite3OsDelete(). 2000 ** 2001 ** If the pager is running in exclusive mode, this method of finalizing 2002 ** the journal file is never used. Instead, if the journalMode is 2003 ** DELETE and the pager is in exclusive mode, the method described under 2004 ** journalMode==PERSIST is used instead. 2005 ** 2006 ** After the journal is finalized, the pager moves to PAGER_READER state. 2007 ** If running in non-exclusive rollback mode, the lock on the file is 2008 ** downgraded to a SHARED_LOCK. 2009 ** 2010 ** SQLITE_OK is returned if no error occurs. If an error occurs during 2011 ** any of the IO operations to finalize the journal file or unlock the 2012 ** database then the IO error code is returned to the user. If the 2013 ** operation to finalize the journal file fails, then the code still 2014 ** tries to unlock the database file if not in exclusive mode. If the 2015 ** unlock operation fails as well, then the first error code related 2016 ** to the first error encountered (the journal finalization one) is 2017 ** returned. 2018 */ 2019 static int pager_end_transaction(Pager *pPager, int hasMaster, int bCommit){ 2020 int rc = SQLITE_OK; /* Error code from journal finalization operation */ 2021 int rc2 = SQLITE_OK; /* Error code from db file unlock operation */ 2022 2023 /* Do nothing if the pager does not have an open write transaction 2024 ** or at least a RESERVED lock. This function may be called when there 2025 ** is no write-transaction active but a RESERVED or greater lock is 2026 ** held under two circumstances: 2027 ** 2028 ** 1. After a successful hot-journal rollback, it is called with 2029 ** eState==PAGER_NONE and eLock==EXCLUSIVE_LOCK. 2030 ** 2031 ** 2. If a connection with locking_mode=exclusive holding an EXCLUSIVE 2032 ** lock switches back to locking_mode=normal and then executes a 2033 ** read-transaction, this function is called with eState==PAGER_READER 2034 ** and eLock==EXCLUSIVE_LOCK when the read-transaction is closed. 2035 */ 2036 assert( assert_pager_state(pPager) ); 2037 assert( pPager->eState!=PAGER_ERROR ); 2038 if( pPager->eState<PAGER_WRITER_LOCKED && pPager->eLock<RESERVED_LOCK ){ 2039 return SQLITE_OK; 2040 } 2041 2042 releaseAllSavepoints(pPager); 2043 assert( isOpen(pPager->jfd) || pPager->pInJournal==0 2044 || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_BATCH_ATOMIC) 2045 ); 2046 if( isOpen(pPager->jfd) ){ 2047 assert( !pagerUseWal(pPager) ); 2048 2049 /* Finalize the journal file. */ 2050 if( sqlite3JournalIsInMemory(pPager->jfd) ){ 2051 /* assert( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ); */ 2052 sqlite3OsClose(pPager->jfd); 2053 }else if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE ){ 2054 if( pPager->journalOff==0 ){ 2055 rc = SQLITE_OK; 2056 }else{ 2057 rc = sqlite3OsTruncate(pPager->jfd, 0); 2058 if( rc==SQLITE_OK && pPager->fullSync ){ 2059 /* Make sure the new file size is written into the inode right away. 2060 ** Otherwise the journal might resurrect following a power loss and 2061 ** cause the last transaction to roll back. See 2062 ** https://bugzilla.mozilla.org/show_bug.cgi?id=1072773 2063 */ 2064 rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags); 2065 } 2066 } 2067 pPager->journalOff = 0; 2068 }else if( pPager->journalMode==PAGER_JOURNALMODE_PERSIST 2069 || (pPager->exclusiveMode && pPager->journalMode!=PAGER_JOURNALMODE_WAL) 2070 ){ 2071 rc = zeroJournalHdr(pPager, hasMaster||pPager->tempFile); 2072 pPager->journalOff = 0; 2073 }else{ 2074 /* This branch may be executed with Pager.journalMode==MEMORY if 2075 ** a hot-journal was just rolled back. In this case the journal 2076 ** file should be closed and deleted. If this connection writes to 2077 ** the database file, it will do so using an in-memory journal. 2078 */ 2079 int bDelete = !pPager->tempFile; 2080 assert( sqlite3JournalIsInMemory(pPager->jfd)==0 ); 2081 assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE 2082 || pPager->journalMode==PAGER_JOURNALMODE_MEMORY 2083 || pPager->journalMode==PAGER_JOURNALMODE_WAL 2084 ); 2085 sqlite3OsClose(pPager->jfd); 2086 if( bDelete ){ 2087 rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, pPager->extraSync); 2088 } 2089 } 2090 } 2091 2092 #ifdef SQLITE_CHECK_PAGES 2093 sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash); 2094 if( pPager->dbSize==0 && sqlite3PcacheRefCount(pPager->pPCache)>0 ){ 2095 PgHdr *p = sqlite3PagerLookup(pPager, 1); 2096 if( p ){ 2097 p->pageHash = 0; 2098 sqlite3PagerUnrefNotNull(p); 2099 } 2100 } 2101 #endif 2102 2103 sqlite3BitvecDestroy(pPager->pInJournal); 2104 pPager->pInJournal = 0; 2105 pPager->nRec = 0; 2106 if( rc==SQLITE_OK ){ 2107 if( MEMDB || pagerFlushOnCommit(pPager, bCommit) ){ 2108 sqlite3PcacheCleanAll(pPager->pPCache); 2109 }else{ 2110 sqlite3PcacheClearWritable(pPager->pPCache); 2111 } 2112 sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize); 2113 } 2114 2115 if( pagerUseWal(pPager) ){ 2116 /* Drop the WAL write-lock, if any. Also, if the connection was in 2117 ** locking_mode=exclusive mode but is no longer, drop the EXCLUSIVE 2118 ** lock held on the database file. 2119 */ 2120 rc2 = sqlite3WalEndWriteTransaction(pPager->pWal); 2121 assert( rc2==SQLITE_OK ); 2122 }else if( rc==SQLITE_OK && bCommit && pPager->dbFileSize>pPager->dbSize ){ 2123 /* This branch is taken when committing a transaction in rollback-journal 2124 ** mode if the database file on disk is larger than the database image. 2125 ** At this point the journal has been finalized and the transaction 2126 ** successfully committed, but the EXCLUSIVE lock is still held on the 2127 ** file. So it is safe to truncate the database file to its minimum 2128 ** required size. */ 2129 assert( pPager->eLock==EXCLUSIVE_LOCK ); 2130 rc = pager_truncate(pPager, pPager->dbSize); 2131 } 2132 2133 if( rc==SQLITE_OK && bCommit ){ 2134 rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_COMMIT_PHASETWO, 0); 2135 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 2136 } 2137 2138 if( !pPager->exclusiveMode 2139 && (!pagerUseWal(pPager) || sqlite3WalExclusiveMode(pPager->pWal, 0)) 2140 ){ 2141 rc2 = pagerUnlockDb(pPager, SHARED_LOCK); 2142 pPager->changeCountDone = 0; 2143 } 2144 pPager->eState = PAGER_READER; 2145 pPager->setMaster = 0; 2146 2147 return (rc==SQLITE_OK?rc2:rc); 2148 } 2149 2150 /* 2151 ** Execute a rollback if a transaction is active and unlock the 2152 ** database file. 2153 ** 2154 ** If the pager has already entered the ERROR state, do not attempt 2155 ** the rollback at this time. Instead, pager_unlock() is called. The 2156 ** call to pager_unlock() will discard all in-memory pages, unlock 2157 ** the database file and move the pager back to OPEN state. If this 2158 ** means that there is a hot-journal left in the file-system, the next 2159 ** connection to obtain a shared lock on the pager (which may be this one) 2160 ** will roll it back. 2161 ** 2162 ** If the pager has not already entered the ERROR state, but an IO or 2163 ** malloc error occurs during a rollback, then this will itself cause 2164 ** the pager to enter the ERROR state. Which will be cleared by the 2165 ** call to pager_unlock(), as described above. 2166 */ 2167 static void pagerUnlockAndRollback(Pager *pPager){ 2168 if( pPager->eState!=PAGER_ERROR && pPager->eState!=PAGER_OPEN ){ 2169 assert( assert_pager_state(pPager) ); 2170 if( pPager->eState>=PAGER_WRITER_LOCKED ){ 2171 sqlite3BeginBenignMalloc(); 2172 sqlite3PagerRollback(pPager); 2173 sqlite3EndBenignMalloc(); 2174 }else if( !pPager->exclusiveMode ){ 2175 assert( pPager->eState==PAGER_READER ); 2176 pager_end_transaction(pPager, 0, 0); 2177 } 2178 } 2179 pager_unlock(pPager); 2180 } 2181 2182 /* 2183 ** Parameter aData must point to a buffer of pPager->pageSize bytes 2184 ** of data. Compute and return a checksum based ont the contents of the 2185 ** page of data and the current value of pPager->cksumInit. 2186 ** 2187 ** This is not a real checksum. It is really just the sum of the 2188 ** random initial value (pPager->cksumInit) and every 200th byte 2189 ** of the page data, starting with byte offset (pPager->pageSize%200). 2190 ** Each byte is interpreted as an 8-bit unsigned integer. 2191 ** 2192 ** Changing the formula used to compute this checksum results in an 2193 ** incompatible journal file format. 2194 ** 2195 ** If journal corruption occurs due to a power failure, the most likely 2196 ** scenario is that one end or the other of the record will be changed. 2197 ** It is much less likely that the two ends of the journal record will be 2198 ** correct and the middle be corrupt. Thus, this "checksum" scheme, 2199 ** though fast and simple, catches the mostly likely kind of corruption. 2200 */ 2201 static u32 pager_cksum(Pager *pPager, const u8 *aData){ 2202 u32 cksum = pPager->cksumInit; /* Checksum value to return */ 2203 int i = pPager->pageSize-200; /* Loop counter */ 2204 while( i>0 ){ 2205 cksum += aData[i]; 2206 i -= 200; 2207 } 2208 return cksum; 2209 } 2210 2211 /* 2212 ** Report the current page size and number of reserved bytes back 2213 ** to the codec. 2214 */ 2215 #ifdef SQLITE_HAS_CODEC 2216 static void pagerReportSize(Pager *pPager){ 2217 if( pPager->xCodecSizeChng ){ 2218 pPager->xCodecSizeChng(pPager->pCodec, pPager->pageSize, 2219 (int)pPager->nReserve); 2220 } 2221 } 2222 #else 2223 # define pagerReportSize(X) /* No-op if we do not support a codec */ 2224 #endif 2225 2226 #ifdef SQLITE_HAS_CODEC 2227 /* 2228 ** Make sure the number of reserved bits is the same in the destination 2229 ** pager as it is in the source. This comes up when a VACUUM changes the 2230 ** number of reserved bits to the "optimal" amount. 2231 */ 2232 void sqlite3PagerAlignReserve(Pager *pDest, Pager *pSrc){ 2233 if( pDest->nReserve!=pSrc->nReserve ){ 2234 pDest->nReserve = pSrc->nReserve; 2235 pagerReportSize(pDest); 2236 } 2237 } 2238 #endif 2239 2240 /* 2241 ** Read a single page from either the journal file (if isMainJrnl==1) or 2242 ** from the sub-journal (if isMainJrnl==0) and playback that page. 2243 ** The page begins at offset *pOffset into the file. The *pOffset 2244 ** value is increased to the start of the next page in the journal. 2245 ** 2246 ** The main rollback journal uses checksums - the statement journal does 2247 ** not. 2248 ** 2249 ** If the page number of the page record read from the (sub-)journal file 2250 ** is greater than the current value of Pager.dbSize, then playback is 2251 ** skipped and SQLITE_OK is returned. 2252 ** 2253 ** If pDone is not NULL, then it is a record of pages that have already 2254 ** been played back. If the page at *pOffset has already been played back 2255 ** (if the corresponding pDone bit is set) then skip the playback. 2256 ** Make sure the pDone bit corresponding to the *pOffset page is set 2257 ** prior to returning. 2258 ** 2259 ** If the page record is successfully read from the (sub-)journal file 2260 ** and played back, then SQLITE_OK is returned. If an IO error occurs 2261 ** while reading the record from the (sub-)journal file or while writing 2262 ** to the database file, then the IO error code is returned. If data 2263 ** is successfully read from the (sub-)journal file but appears to be 2264 ** corrupted, SQLITE_DONE is returned. Data is considered corrupted in 2265 ** two circumstances: 2266 ** 2267 ** * If the record page-number is illegal (0 or PAGER_MJ_PGNO), or 2268 ** * If the record is being rolled back from the main journal file 2269 ** and the checksum field does not match the record content. 2270 ** 2271 ** Neither of these two scenarios are possible during a savepoint rollback. 2272 ** 2273 ** If this is a savepoint rollback, then memory may have to be dynamically 2274 ** allocated by this function. If this is the case and an allocation fails, 2275 ** SQLITE_NOMEM is returned. 2276 */ 2277 static int pager_playback_one_page( 2278 Pager *pPager, /* The pager being played back */ 2279 i64 *pOffset, /* Offset of record to playback */ 2280 Bitvec *pDone, /* Bitvec of pages already played back */ 2281 int isMainJrnl, /* 1 -> main journal. 0 -> sub-journal. */ 2282 int isSavepnt /* True for a savepoint rollback */ 2283 ){ 2284 int rc; 2285 PgHdr *pPg; /* An existing page in the cache */ 2286 Pgno pgno; /* The page number of a page in journal */ 2287 u32 cksum; /* Checksum used for sanity checking */ 2288 char *aData; /* Temporary storage for the page */ 2289 sqlite3_file *jfd; /* The file descriptor for the journal file */ 2290 int isSynced; /* True if journal page is synced */ 2291 #ifdef SQLITE_HAS_CODEC 2292 /* The jrnlEnc flag is true if Journal pages should be passed through 2293 ** the codec. It is false for pure in-memory journals. */ 2294 const int jrnlEnc = (isMainJrnl || pPager->subjInMemory==0); 2295 #endif 2296 2297 assert( (isMainJrnl&~1)==0 ); /* isMainJrnl is 0 or 1 */ 2298 assert( (isSavepnt&~1)==0 ); /* isSavepnt is 0 or 1 */ 2299 assert( isMainJrnl || pDone ); /* pDone always used on sub-journals */ 2300 assert( isSavepnt || pDone==0 ); /* pDone never used on non-savepoint */ 2301 2302 aData = pPager->pTmpSpace; 2303 assert( aData ); /* Temp storage must have already been allocated */ 2304 assert( pagerUseWal(pPager)==0 || (!isMainJrnl && isSavepnt) ); 2305 2306 /* Either the state is greater than PAGER_WRITER_CACHEMOD (a transaction 2307 ** or savepoint rollback done at the request of the caller) or this is 2308 ** a hot-journal rollback. If it is a hot-journal rollback, the pager 2309 ** is in state OPEN and holds an EXCLUSIVE lock. Hot-journal rollback 2310 ** only reads from the main journal, not the sub-journal. 2311 */ 2312 assert( pPager->eState>=PAGER_WRITER_CACHEMOD 2313 || (pPager->eState==PAGER_OPEN && pPager->eLock==EXCLUSIVE_LOCK) 2314 ); 2315 assert( pPager->eState>=PAGER_WRITER_CACHEMOD || isMainJrnl ); 2316 2317 /* Read the page number and page data from the journal or sub-journal 2318 ** file. Return an error code to the caller if an IO error occurs. 2319 */ 2320 jfd = isMainJrnl ? pPager->jfd : pPager->sjfd; 2321 rc = read32bits(jfd, *pOffset, &pgno); 2322 if( rc!=SQLITE_OK ) return rc; 2323 rc = sqlite3OsRead(jfd, (u8*)aData, pPager->pageSize, (*pOffset)+4); 2324 if( rc!=SQLITE_OK ) return rc; 2325 *pOffset += pPager->pageSize + 4 + isMainJrnl*4; 2326 2327 /* Sanity checking on the page. This is more important that I originally 2328 ** thought. If a power failure occurs while the journal is being written, 2329 ** it could cause invalid data to be written into the journal. We need to 2330 ** detect this invalid data (with high probability) and ignore it. 2331 */ 2332 if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ 2333 assert( !isSavepnt ); 2334 return SQLITE_DONE; 2335 } 2336 if( pgno>(Pgno)pPager->dbSize || sqlite3BitvecTest(pDone, pgno) ){ 2337 return SQLITE_OK; 2338 } 2339 if( isMainJrnl ){ 2340 rc = read32bits(jfd, (*pOffset)-4, &cksum); 2341 if( rc ) return rc; 2342 if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){ 2343 return SQLITE_DONE; 2344 } 2345 } 2346 2347 /* If this page has already been played back before during the current 2348 ** rollback, then don't bother to play it back again. 2349 */ 2350 if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){ 2351 return rc; 2352 } 2353 2354 /* When playing back page 1, restore the nReserve setting 2355 */ 2356 if( pgno==1 && pPager->nReserve!=((u8*)aData)[20] ){ 2357 pPager->nReserve = ((u8*)aData)[20]; 2358 pagerReportSize(pPager); 2359 } 2360 2361 /* If the pager is in CACHEMOD state, then there must be a copy of this 2362 ** page in the pager cache. In this case just update the pager cache, 2363 ** not the database file. The page is left marked dirty in this case. 2364 ** 2365 ** An exception to the above rule: If the database is in no-sync mode 2366 ** and a page is moved during an incremental vacuum then the page may 2367 ** not be in the pager cache. Later: if a malloc() or IO error occurs 2368 ** during a Movepage() call, then the page may not be in the cache 2369 ** either. So the condition described in the above paragraph is not 2370 ** assert()able. 2371 ** 2372 ** If in WRITER_DBMOD, WRITER_FINISHED or OPEN state, then we update the 2373 ** pager cache if it exists and the main file. The page is then marked 2374 ** not dirty. Since this code is only executed in PAGER_OPEN state for 2375 ** a hot-journal rollback, it is guaranteed that the page-cache is empty 2376 ** if the pager is in OPEN state. 2377 ** 2378 ** Ticket #1171: The statement journal might contain page content that is 2379 ** different from the page content at the start of the transaction. 2380 ** This occurs when a page is changed prior to the start of a statement 2381 ** then changed again within the statement. When rolling back such a 2382 ** statement we must not write to the original database unless we know 2383 ** for certain that original page contents are synced into the main rollback 2384 ** journal. Otherwise, a power loss might leave modified data in the 2385 ** database file without an entry in the rollback journal that can 2386 ** restore the database to its original form. Two conditions must be 2387 ** met before writing to the database files. (1) the database must be 2388 ** locked. (2) we know that the original page content is fully synced 2389 ** in the main journal either because the page is not in cache or else 2390 ** the page is marked as needSync==0. 2391 ** 2392 ** 2008-04-14: When attempting to vacuum a corrupt database file, it 2393 ** is possible to fail a statement on a database that does not yet exist. 2394 ** Do not attempt to write if database file has never been opened. 2395 */ 2396 if( pagerUseWal(pPager) ){ 2397 pPg = 0; 2398 }else{ 2399 pPg = sqlite3PagerLookup(pPager, pgno); 2400 } 2401 assert( pPg || !MEMDB ); 2402 assert( pPager->eState!=PAGER_OPEN || pPg==0 || pPager->tempFile ); 2403 PAGERTRACE(("PLAYBACK %d page %d hash(%08x) %s\n", 2404 PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, (u8*)aData), 2405 (isMainJrnl?"main-journal":"sub-journal") 2406 )); 2407 if( isMainJrnl ){ 2408 isSynced = pPager->noSync || (*pOffset <= pPager->journalHdr); 2409 }else{ 2410 isSynced = (pPg==0 || 0==(pPg->flags & PGHDR_NEED_SYNC)); 2411 } 2412 if( isOpen(pPager->fd) 2413 && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) 2414 && isSynced 2415 ){ 2416 i64 ofst = (pgno-1)*(i64)pPager->pageSize; 2417 testcase( !isSavepnt && pPg!=0 && (pPg->flags&PGHDR_NEED_SYNC)!=0 ); 2418 assert( !pagerUseWal(pPager) ); 2419 2420 /* Write the data read from the journal back into the database file. 2421 ** This is usually safe even for an encrypted database - as the data 2422 ** was encrypted before it was written to the journal file. The exception 2423 ** is if the data was just read from an in-memory sub-journal. In that 2424 ** case it must be encrypted here before it is copied into the database 2425 ** file. */ 2426 #ifdef SQLITE_HAS_CODEC 2427 if( !jrnlEnc ){ 2428 CODEC2(pPager, aData, pgno, 7, rc=SQLITE_NOMEM_BKPT, aData); 2429 rc = sqlite3OsWrite(pPager->fd, (u8 *)aData, pPager->pageSize, ofst); 2430 CODEC1(pPager, aData, pgno, 3, rc=SQLITE_NOMEM_BKPT); 2431 }else 2432 #endif 2433 rc = sqlite3OsWrite(pPager->fd, (u8 *)aData, pPager->pageSize, ofst); 2434 2435 if( pgno>pPager->dbFileSize ){ 2436 pPager->dbFileSize = pgno; 2437 } 2438 if( pPager->pBackup ){ 2439 #ifdef SQLITE_HAS_CODEC 2440 if( jrnlEnc ){ 2441 CODEC1(pPager, aData, pgno, 3, rc=SQLITE_NOMEM_BKPT); 2442 sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData); 2443 CODEC2(pPager, aData, pgno, 7, rc=SQLITE_NOMEM_BKPT,aData); 2444 }else 2445 #endif 2446 sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData); 2447 } 2448 }else if( !isMainJrnl && pPg==0 ){ 2449 /* If this is a rollback of a savepoint and data was not written to 2450 ** the database and the page is not in-memory, there is a potential 2451 ** problem. When the page is next fetched by the b-tree layer, it 2452 ** will be read from the database file, which may or may not be 2453 ** current. 2454 ** 2455 ** There are a couple of different ways this can happen. All are quite 2456 ** obscure. When running in synchronous mode, this can only happen 2457 ** if the page is on the free-list at the start of the transaction, then 2458 ** populated, then moved using sqlite3PagerMovepage(). 2459 ** 2460 ** The solution is to add an in-memory page to the cache containing 2461 ** the data just read from the sub-journal. Mark the page as dirty 2462 ** and if the pager requires a journal-sync, then mark the page as 2463 ** requiring a journal-sync before it is written. 2464 */ 2465 assert( isSavepnt ); 2466 assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)==0 ); 2467 pPager->doNotSpill |= SPILLFLAG_ROLLBACK; 2468 rc = sqlite3PagerGet(pPager, pgno, &pPg, 1); 2469 assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)!=0 ); 2470 pPager->doNotSpill &= ~SPILLFLAG_ROLLBACK; 2471 if( rc!=SQLITE_OK ) return rc; 2472 sqlite3PcacheMakeDirty(pPg); 2473 } 2474 if( pPg ){ 2475 /* No page should ever be explicitly rolled back that is in use, except 2476 ** for page 1 which is held in use in order to keep the lock on the 2477 ** database active. However such a page may be rolled back as a result 2478 ** of an internal error resulting in an automatic call to 2479 ** sqlite3PagerRollback(). 2480 */ 2481 void *pData; 2482 pData = pPg->pData; 2483 memcpy(pData, (u8*)aData, pPager->pageSize); 2484 pPager->xReiniter(pPg); 2485 /* It used to be that sqlite3PcacheMakeClean(pPg) was called here. But 2486 ** that call was dangerous and had no detectable benefit since the cache 2487 ** is normally cleaned by sqlite3PcacheCleanAll() after rollback and so 2488 ** has been removed. */ 2489 pager_set_pagehash(pPg); 2490 2491 /* If this was page 1, then restore the value of Pager.dbFileVers. 2492 ** Do this before any decoding. */ 2493 if( pgno==1 ){ 2494 memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers)); 2495 } 2496 2497 /* Decode the page just read from disk */ 2498 #if SQLITE_HAS_CODEC 2499 if( jrnlEnc ){ CODEC1(pPager, pData, pPg->pgno, 3, rc=SQLITE_NOMEM_BKPT); } 2500 #endif 2501 sqlite3PcacheRelease(pPg); 2502 } 2503 return rc; 2504 } 2505 2506 /* 2507 ** Parameter zMaster is the name of a master journal file. A single journal 2508 ** file that referred to the master journal file has just been rolled back. 2509 ** This routine checks if it is possible to delete the master journal file, 2510 ** and does so if it is. 2511 ** 2512 ** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not 2513 ** available for use within this function. 2514 ** 2515 ** When a master journal file is created, it is populated with the names 2516 ** of all of its child journals, one after another, formatted as utf-8 2517 ** encoded text. The end of each child journal file is marked with a 2518 ** nul-terminator byte (0x00). i.e. the entire contents of a master journal 2519 ** file for a transaction involving two databases might be: 2520 ** 2521 ** "/home/bill/a.db-journal\x00/home/bill/b.db-journal\x00" 2522 ** 2523 ** A master journal file may only be deleted once all of its child 2524 ** journals have been rolled back. 2525 ** 2526 ** This function reads the contents of the master-journal file into 2527 ** memory and loops through each of the child journal names. For 2528 ** each child journal, it checks if: 2529 ** 2530 ** * if the child journal exists, and if so 2531 ** * if the child journal contains a reference to master journal 2532 ** file zMaster 2533 ** 2534 ** If a child journal can be found that matches both of the criteria 2535 ** above, this function returns without doing anything. Otherwise, if 2536 ** no such child journal can be found, file zMaster is deleted from 2537 ** the file-system using sqlite3OsDelete(). 2538 ** 2539 ** If an IO error within this function, an error code is returned. This 2540 ** function allocates memory by calling sqlite3Malloc(). If an allocation 2541 ** fails, SQLITE_NOMEM is returned. Otherwise, if no IO or malloc errors 2542 ** occur, SQLITE_OK is returned. 2543 ** 2544 ** TODO: This function allocates a single block of memory to load 2545 ** the entire contents of the master journal file. This could be 2546 ** a couple of kilobytes or so - potentially larger than the page 2547 ** size. 2548 */ 2549 static int pager_delmaster(Pager *pPager, const char *zMaster){ 2550 sqlite3_vfs *pVfs = pPager->pVfs; 2551 int rc; /* Return code */ 2552 sqlite3_file *pMaster; /* Malloc'd master-journal file descriptor */ 2553 sqlite3_file *pJournal; /* Malloc'd child-journal file descriptor */ 2554 char *zMasterJournal = 0; /* Contents of master journal file */ 2555 i64 nMasterJournal; /* Size of master journal file */ 2556 char *zJournal; /* Pointer to one journal within MJ file */ 2557 char *zMasterPtr; /* Space to hold MJ filename from a journal file */ 2558 int nMasterPtr; /* Amount of space allocated to zMasterPtr[] */ 2559 2560 /* Allocate space for both the pJournal and pMaster file descriptors. 2561 ** If successful, open the master journal file for reading. 2562 */ 2563 pMaster = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile * 2); 2564 pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile); 2565 if( !pMaster ){ 2566 rc = SQLITE_NOMEM_BKPT; 2567 }else{ 2568 const int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL); 2569 rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0); 2570 } 2571 if( rc!=SQLITE_OK ) goto delmaster_out; 2572 2573 /* Load the entire master journal file into space obtained from 2574 ** sqlite3_malloc() and pointed to by zMasterJournal. Also obtain 2575 ** sufficient space (in zMasterPtr) to hold the names of master 2576 ** journal files extracted from regular rollback-journals. 2577 */ 2578 rc = sqlite3OsFileSize(pMaster, &nMasterJournal); 2579 if( rc!=SQLITE_OK ) goto delmaster_out; 2580 nMasterPtr = pVfs->mxPathname+1; 2581 zMasterJournal = sqlite3Malloc(nMasterJournal + nMasterPtr + 1); 2582 if( !zMasterJournal ){ 2583 rc = SQLITE_NOMEM_BKPT; 2584 goto delmaster_out; 2585 } 2586 zMasterPtr = &zMasterJournal[nMasterJournal+1]; 2587 rc = sqlite3OsRead(pMaster, zMasterJournal, (int)nMasterJournal, 0); 2588 if( rc!=SQLITE_OK ) goto delmaster_out; 2589 zMasterJournal[nMasterJournal] = 0; 2590 2591 zJournal = zMasterJournal; 2592 while( (zJournal-zMasterJournal)<nMasterJournal ){ 2593 int exists; 2594 rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS, &exists); 2595 if( rc!=SQLITE_OK ){ 2596 goto delmaster_out; 2597 } 2598 if( exists ){ 2599 /* One of the journals pointed to by the master journal exists. 2600 ** Open it and check if it points at the master journal. If 2601 ** so, return without deleting the master journal file. 2602 */ 2603 int c; 2604 int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL); 2605 rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0); 2606 if( rc!=SQLITE_OK ){ 2607 goto delmaster_out; 2608 } 2609 2610 rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr); 2611 sqlite3OsClose(pJournal); 2612 if( rc!=SQLITE_OK ){ 2613 goto delmaster_out; 2614 } 2615 2616 c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0; 2617 if( c ){ 2618 /* We have a match. Do not delete the master journal file. */ 2619 goto delmaster_out; 2620 } 2621 } 2622 zJournal += (sqlite3Strlen30(zJournal)+1); 2623 } 2624 2625 sqlite3OsClose(pMaster); 2626 rc = sqlite3OsDelete(pVfs, zMaster, 0); 2627 2628 delmaster_out: 2629 sqlite3_free(zMasterJournal); 2630 if( pMaster ){ 2631 sqlite3OsClose(pMaster); 2632 assert( !isOpen(pJournal) ); 2633 sqlite3_free(pMaster); 2634 } 2635 return rc; 2636 } 2637 2638 2639 /* 2640 ** This function is used to change the actual size of the database 2641 ** file in the file-system. This only happens when committing a transaction, 2642 ** or rolling back a transaction (including rolling back a hot-journal). 2643 ** 2644 ** If the main database file is not open, or the pager is not in either 2645 ** DBMOD or OPEN state, this function is a no-op. Otherwise, the size 2646 ** of the file is changed to nPage pages (nPage*pPager->pageSize bytes). 2647 ** If the file on disk is currently larger than nPage pages, then use the VFS 2648 ** xTruncate() method to truncate it. 2649 ** 2650 ** Or, it might be the case that the file on disk is smaller than 2651 ** nPage pages. Some operating system implementations can get confused if 2652 ** you try to truncate a file to some size that is larger than it 2653 ** currently is, so detect this case and write a single zero byte to 2654 ** the end of the new file instead. 2655 ** 2656 ** If successful, return SQLITE_OK. If an IO error occurs while modifying 2657 ** the database file, return the error code to the caller. 2658 */ 2659 static int pager_truncate(Pager *pPager, Pgno nPage){ 2660 int rc = SQLITE_OK; 2661 assert( pPager->eState!=PAGER_ERROR ); 2662 assert( pPager->eState!=PAGER_READER ); 2663 2664 if( isOpen(pPager->fd) 2665 && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) 2666 ){ 2667 i64 currentSize, newSize; 2668 int szPage = pPager->pageSize; 2669 assert( pPager->eLock==EXCLUSIVE_LOCK ); 2670 /* TODO: Is it safe to use Pager.dbFileSize here? */ 2671 rc = sqlite3OsFileSize(pPager->fd, ¤tSize); 2672 newSize = szPage*(i64)nPage; 2673 if( rc==SQLITE_OK && currentSize!=newSize ){ 2674 if( currentSize>newSize ){ 2675 rc = sqlite3OsTruncate(pPager->fd, newSize); 2676 }else if( (currentSize+szPage)<=newSize ){ 2677 char *pTmp = pPager->pTmpSpace; 2678 memset(pTmp, 0, szPage); 2679 testcase( (newSize-szPage) == currentSize ); 2680 testcase( (newSize-szPage) > currentSize ); 2681 rc = sqlite3OsWrite(pPager->fd, pTmp, szPage, newSize-szPage); 2682 } 2683 if( rc==SQLITE_OK ){ 2684 pPager->dbFileSize = nPage; 2685 } 2686 } 2687 } 2688 return rc; 2689 } 2690 2691 /* 2692 ** Return a sanitized version of the sector-size of OS file pFile. The 2693 ** return value is guaranteed to lie between 32 and MAX_SECTOR_SIZE. 2694 */ 2695 int sqlite3SectorSize(sqlite3_file *pFile){ 2696 int iRet = sqlite3OsSectorSize(pFile); 2697 if( iRet<32 ){ 2698 iRet = 512; 2699 }else if( iRet>MAX_SECTOR_SIZE ){ 2700 assert( MAX_SECTOR_SIZE>=512 ); 2701 iRet = MAX_SECTOR_SIZE; 2702 } 2703 return iRet; 2704 } 2705 2706 /* 2707 ** Set the value of the Pager.sectorSize variable for the given 2708 ** pager based on the value returned by the xSectorSize method 2709 ** of the open database file. The sector size will be used 2710 ** to determine the size and alignment of journal header and 2711 ** master journal pointers within created journal files. 2712 ** 2713 ** For temporary files the effective sector size is always 512 bytes. 2714 ** 2715 ** Otherwise, for non-temporary files, the effective sector size is 2716 ** the value returned by the xSectorSize() method rounded up to 32 if 2717 ** it is less than 32, or rounded down to MAX_SECTOR_SIZE if it 2718 ** is greater than MAX_SECTOR_SIZE. 2719 ** 2720 ** If the file has the SQLITE_IOCAP_POWERSAFE_OVERWRITE property, then set 2721 ** the effective sector size to its minimum value (512). The purpose of 2722 ** pPager->sectorSize is to define the "blast radius" of bytes that 2723 ** might change if a crash occurs while writing to a single byte in 2724 ** that range. But with POWERSAFE_OVERWRITE, the blast radius is zero 2725 ** (that is what POWERSAFE_OVERWRITE means), so we minimize the sector 2726 ** size. For backwards compatibility of the rollback journal file format, 2727 ** we cannot reduce the effective sector size below 512. 2728 */ 2729 static void setSectorSize(Pager *pPager){ 2730 assert( isOpen(pPager->fd) || pPager->tempFile ); 2731 2732 if( pPager->tempFile 2733 || (sqlite3OsDeviceCharacteristics(pPager->fd) & 2734 SQLITE_IOCAP_POWERSAFE_OVERWRITE)!=0 2735 ){ 2736 /* Sector size doesn't matter for temporary files. Also, the file 2737 ** may not have been opened yet, in which case the OsSectorSize() 2738 ** call will segfault. */ 2739 pPager->sectorSize = 512; 2740 }else{ 2741 pPager->sectorSize = sqlite3SectorSize(pPager->fd); 2742 } 2743 } 2744 2745 /* 2746 ** Playback the journal and thus restore the database file to 2747 ** the state it was in before we started making changes. 2748 ** 2749 ** The journal file format is as follows: 2750 ** 2751 ** (1) 8 byte prefix. A copy of aJournalMagic[]. 2752 ** (2) 4 byte big-endian integer which is the number of valid page records 2753 ** in the journal. If this value is 0xffffffff, then compute the 2754 ** number of page records from the journal size. 2755 ** (3) 4 byte big-endian integer which is the initial value for the 2756 ** sanity checksum. 2757 ** (4) 4 byte integer which is the number of pages to truncate the 2758 ** database to during a rollback. 2759 ** (5) 4 byte big-endian integer which is the sector size. The header 2760 ** is this many bytes in size. 2761 ** (6) 4 byte big-endian integer which is the page size. 2762 ** (7) zero padding out to the next sector size. 2763 ** (8) Zero or more pages instances, each as follows: 2764 ** + 4 byte page number. 2765 ** + pPager->pageSize bytes of data. 2766 ** + 4 byte checksum 2767 ** 2768 ** When we speak of the journal header, we mean the first 7 items above. 2769 ** Each entry in the journal is an instance of the 8th item. 2770 ** 2771 ** Call the value from the second bullet "nRec". nRec is the number of 2772 ** valid page entries in the journal. In most cases, you can compute the 2773 ** value of nRec from the size of the journal file. But if a power 2774 ** failure occurred while the journal was being written, it could be the 2775 ** case that the size of the journal file had already been increased but 2776 ** the extra entries had not yet made it safely to disk. In such a case, 2777 ** the value of nRec computed from the file size would be too large. For 2778 ** that reason, we always use the nRec value in the header. 2779 ** 2780 ** If the nRec value is 0xffffffff it means that nRec should be computed 2781 ** from the file size. This value is used when the user selects the 2782 ** no-sync option for the journal. A power failure could lead to corruption 2783 ** in this case. But for things like temporary table (which will be 2784 ** deleted when the power is restored) we don't care. 2785 ** 2786 ** If the file opened as the journal file is not a well-formed 2787 ** journal file then all pages up to the first corrupted page are rolled 2788 ** back (or no pages if the journal header is corrupted). The journal file 2789 ** is then deleted and SQLITE_OK returned, just as if no corruption had 2790 ** been encountered. 2791 ** 2792 ** If an I/O or malloc() error occurs, the journal-file is not deleted 2793 ** and an error code is returned. 2794 ** 2795 ** The isHot parameter indicates that we are trying to rollback a journal 2796 ** that might be a hot journal. Or, it could be that the journal is 2797 ** preserved because of JOURNALMODE_PERSIST or JOURNALMODE_TRUNCATE. 2798 ** If the journal really is hot, reset the pager cache prior rolling 2799 ** back any content. If the journal is merely persistent, no reset is 2800 ** needed. 2801 */ 2802 static int pager_playback(Pager *pPager, int isHot){ 2803 sqlite3_vfs *pVfs = pPager->pVfs; 2804 i64 szJ; /* Size of the journal file in bytes */ 2805 u32 nRec; /* Number of Records in the journal */ 2806 u32 u; /* Unsigned loop counter */ 2807 Pgno mxPg = 0; /* Size of the original file in pages */ 2808 int rc; /* Result code of a subroutine */ 2809 int res = 1; /* Value returned by sqlite3OsAccess() */ 2810 char *zMaster = 0; /* Name of master journal file if any */ 2811 int needPagerReset; /* True to reset page prior to first page rollback */ 2812 int nPlayback = 0; /* Total number of pages restored from journal */ 2813 u32 savedPageSize = pPager->pageSize; 2814 2815 /* Figure out how many records are in the journal. Abort early if 2816 ** the journal is empty. 2817 */ 2818 assert( isOpen(pPager->jfd) ); 2819 rc = sqlite3OsFileSize(pPager->jfd, &szJ); 2820 if( rc!=SQLITE_OK ){ 2821 goto end_playback; 2822 } 2823 2824 /* Read the master journal name from the journal, if it is present. 2825 ** If a master journal file name is specified, but the file is not 2826 ** present on disk, then the journal is not hot and does not need to be 2827 ** played back. 2828 ** 2829 ** TODO: Technically the following is an error because it assumes that 2830 ** buffer Pager.pTmpSpace is (mxPathname+1) bytes or larger. i.e. that 2831 ** (pPager->pageSize >= pPager->pVfs->mxPathname+1). Using os_unix.c, 2832 ** mxPathname is 512, which is the same as the minimum allowable value 2833 ** for pageSize. 2834 */ 2835 zMaster = pPager->pTmpSpace; 2836 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); 2837 if( rc==SQLITE_OK && zMaster[0] ){ 2838 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2839 } 2840 zMaster = 0; 2841 if( rc!=SQLITE_OK || !res ){ 2842 goto end_playback; 2843 } 2844 pPager->journalOff = 0; 2845 needPagerReset = isHot; 2846 2847 /* This loop terminates either when a readJournalHdr() or 2848 ** pager_playback_one_page() call returns SQLITE_DONE or an IO error 2849 ** occurs. 2850 */ 2851 while( 1 ){ 2852 /* Read the next journal header from the journal file. If there are 2853 ** not enough bytes left in the journal file for a complete header, or 2854 ** it is corrupted, then a process must have failed while writing it. 2855 ** This indicates nothing more needs to be rolled back. 2856 */ 2857 rc = readJournalHdr(pPager, isHot, szJ, &nRec, &mxPg); 2858 if( rc!=SQLITE_OK ){ 2859 if( rc==SQLITE_DONE ){ 2860 rc = SQLITE_OK; 2861 } 2862 goto end_playback; 2863 } 2864 2865 /* If nRec is 0xffffffff, then this journal was created by a process 2866 ** working in no-sync mode. This means that the rest of the journal 2867 ** file consists of pages, there are no more journal headers. Compute 2868 ** the value of nRec based on this assumption. 2869 */ 2870 if( nRec==0xffffffff ){ 2871 assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ); 2872 nRec = (int)((szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager)); 2873 } 2874 2875 /* If nRec is 0 and this rollback is of a transaction created by this 2876 ** process and if this is the final header in the journal, then it means 2877 ** that this part of the journal was being filled but has not yet been 2878 ** synced to disk. Compute the number of pages based on the remaining 2879 ** size of the file. 2880 ** 2881 ** The third term of the test was added to fix ticket #2565. 2882 ** When rolling back a hot journal, nRec==0 always means that the next 2883 ** chunk of the journal contains zero pages to be rolled back. But 2884 ** when doing a ROLLBACK and the nRec==0 chunk is the last chunk in 2885 ** the journal, it means that the journal might contain additional 2886 ** pages that need to be rolled back and that the number of pages 2887 ** should be computed based on the journal file size. 2888 */ 2889 if( nRec==0 && !isHot && 2890 pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){ 2891 nRec = (int)((szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager)); 2892 } 2893 2894 /* If this is the first header read from the journal, truncate the 2895 ** database file back to its original size. 2896 */ 2897 if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){ 2898 rc = pager_truncate(pPager, mxPg); 2899 if( rc!=SQLITE_OK ){ 2900 goto end_playback; 2901 } 2902 pPager->dbSize = mxPg; 2903 } 2904 2905 /* Copy original pages out of the journal and back into the 2906 ** database file and/or page cache. 2907 */ 2908 for(u=0; u<nRec; u++){ 2909 if( needPagerReset ){ 2910 pager_reset(pPager); 2911 needPagerReset = 0; 2912 } 2913 rc = pager_playback_one_page(pPager,&pPager->journalOff,0,1,0); 2914 if( rc==SQLITE_OK ){ 2915 nPlayback++; 2916 }else{ 2917 if( rc==SQLITE_DONE ){ 2918 pPager->journalOff = szJ; 2919 break; 2920 }else if( rc==SQLITE_IOERR_SHORT_READ ){ 2921 /* If the journal has been truncated, simply stop reading and 2922 ** processing the journal. This might happen if the journal was 2923 ** not completely written and synced prior to a crash. In that 2924 ** case, the database should have never been written in the 2925 ** first place so it is OK to simply abandon the rollback. */ 2926 rc = SQLITE_OK; 2927 goto end_playback; 2928 }else{ 2929 /* If we are unable to rollback, quit and return the error 2930 ** code. This will cause the pager to enter the error state 2931 ** so that no further harm will be done. Perhaps the next 2932 ** process to come along will be able to rollback the database. 2933 */ 2934 goto end_playback; 2935 } 2936 } 2937 } 2938 } 2939 /*NOTREACHED*/ 2940 assert( 0 ); 2941 2942 end_playback: 2943 if( rc==SQLITE_OK ){ 2944 rc = sqlite3PagerSetPagesize(pPager, &savedPageSize, -1); 2945 } 2946 /* Following a rollback, the database file should be back in its original 2947 ** state prior to the start of the transaction, so invoke the 2948 ** SQLITE_FCNTL_DB_UNCHANGED file-control method to disable the 2949 ** assertion that the transaction counter was modified. 2950 */ 2951 #ifdef SQLITE_DEBUG 2952 sqlite3OsFileControlHint(pPager->fd,SQLITE_FCNTL_DB_UNCHANGED,0); 2953 #endif 2954 2955 /* If this playback is happening automatically as a result of an IO or 2956 ** malloc error that occurred after the change-counter was updated but 2957 ** before the transaction was committed, then the change-counter 2958 ** modification may just have been reverted. If this happens in exclusive 2959 ** mode, then subsequent transactions performed by the connection will not 2960 ** update the change-counter at all. This may lead to cache inconsistency 2961 ** problems for other processes at some point in the future. So, just 2962 ** in case this has happened, clear the changeCountDone flag now. 2963 */ 2964 pPager->changeCountDone = pPager->tempFile; 2965 2966 if( rc==SQLITE_OK ){ 2967 zMaster = pPager->pTmpSpace; 2968 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); 2969 testcase( rc!=SQLITE_OK ); 2970 } 2971 if( rc==SQLITE_OK 2972 && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) 2973 ){ 2974 rc = sqlite3PagerSync(pPager, 0); 2975 } 2976 if( rc==SQLITE_OK ){ 2977 rc = pager_end_transaction(pPager, zMaster[0]!='\0', 0); 2978 testcase( rc!=SQLITE_OK ); 2979 } 2980 if( rc==SQLITE_OK && zMaster[0] && res ){ 2981 /* If there was a master journal and this routine will return success, 2982 ** see if it is possible to delete the master journal. 2983 */ 2984 rc = pager_delmaster(pPager, zMaster); 2985 testcase( rc!=SQLITE_OK ); 2986 } 2987 if( isHot && nPlayback ){ 2988 sqlite3_log(SQLITE_NOTICE_RECOVER_ROLLBACK, "recovered %d pages from %s", 2989 nPlayback, pPager->zJournal); 2990 } 2991 2992 /* The Pager.sectorSize variable may have been updated while rolling 2993 ** back a journal created by a process with a different sector size 2994 ** value. Reset it to the correct value for this process. 2995 */ 2996 setSectorSize(pPager); 2997 return rc; 2998 } 2999 3000 3001 /* 3002 ** Read the content for page pPg out of the database file (or out of 3003 ** the WAL if that is where the most recent copy if found) into 3004 ** pPg->pData. A shared lock or greater must be held on the database 3005 ** file before this function is called. 3006 ** 3007 ** If page 1 is read, then the value of Pager.dbFileVers[] is set to 3008 ** the value read from the database file. 3009 ** 3010 ** If an IO error occurs, then the IO error is returned to the caller. 3011 ** Otherwise, SQLITE_OK is returned. 3012 */ 3013 static int readDbPage(PgHdr *pPg){ 3014 Pager *pPager = pPg->pPager; /* Pager object associated with page pPg */ 3015 int rc = SQLITE_OK; /* Return code */ 3016 3017 #ifndef SQLITE_OMIT_WAL 3018 u32 iFrame = 0; /* Frame of WAL containing pgno */ 3019 3020 assert( pPager->eState>=PAGER_READER && !MEMDB ); 3021 assert( isOpen(pPager->fd) ); 3022 3023 if( pagerUseWal(pPager) ){ 3024 rc = sqlite3WalFindFrame(pPager->pWal, pPg->pgno, &iFrame); 3025 if( rc ) return rc; 3026 } 3027 if( iFrame ){ 3028 rc = sqlite3WalReadFrame(pPager->pWal, iFrame,pPager->pageSize,pPg->pData); 3029 }else 3030 #endif 3031 { 3032 i64 iOffset = (pPg->pgno-1)*(i64)pPager->pageSize; 3033 rc = sqlite3OsRead(pPager->fd, pPg->pData, pPager->pageSize, iOffset); 3034 if( rc==SQLITE_IOERR_SHORT_READ ){ 3035 rc = SQLITE_OK; 3036 } 3037 } 3038 3039 if( pPg->pgno==1 ){ 3040 if( rc ){ 3041 /* If the read is unsuccessful, set the dbFileVers[] to something 3042 ** that will never be a valid file version. dbFileVers[] is a copy 3043 ** of bytes 24..39 of the database. Bytes 28..31 should always be 3044 ** zero or the size of the database in page. Bytes 32..35 and 35..39 3045 ** should be page numbers which are never 0xffffffff. So filling 3046 ** pPager->dbFileVers[] with all 0xff bytes should suffice. 3047 ** 3048 ** For an encrypted database, the situation is more complex: bytes 3049 ** 24..39 of the database are white noise. But the probability of 3050 ** white noise equaling 16 bytes of 0xff is vanishingly small so 3051 ** we should still be ok. 3052 */ 3053 memset(pPager->dbFileVers, 0xff, sizeof(pPager->dbFileVers)); 3054 }else{ 3055 u8 *dbFileVers = &((u8*)pPg->pData)[24]; 3056 memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers)); 3057 } 3058 } 3059 CODEC1(pPager, pPg->pData, pPg->pgno, 3, rc = SQLITE_NOMEM_BKPT); 3060 3061 PAGER_INCR(sqlite3_pager_readdb_count); 3062 PAGER_INCR(pPager->nRead); 3063 IOTRACE(("PGIN %p %d\n", pPager, pPg->pgno)); 3064 PAGERTRACE(("FETCH %d page %d hash(%08x)\n", 3065 PAGERID(pPager), pPg->pgno, pager_pagehash(pPg))); 3066 3067 return rc; 3068 } 3069 3070 /* 3071 ** Update the value of the change-counter at offsets 24 and 92 in 3072 ** the header and the sqlite version number at offset 96. 3073 ** 3074 ** This is an unconditional update. See also the pager_incr_changecounter() 3075 ** routine which only updates the change-counter if the update is actually 3076 ** needed, as determined by the pPager->changeCountDone state variable. 3077 */ 3078 static void pager_write_changecounter(PgHdr *pPg){ 3079 u32 change_counter; 3080 3081 /* Increment the value just read and write it back to byte 24. */ 3082 change_counter = sqlite3Get4byte((u8*)pPg->pPager->dbFileVers)+1; 3083 put32bits(((char*)pPg->pData)+24, change_counter); 3084 3085 /* Also store the SQLite version number in bytes 96..99 and in 3086 ** bytes 92..95 store the change counter for which the version number 3087 ** is valid. */ 3088 put32bits(((char*)pPg->pData)+92, change_counter); 3089 put32bits(((char*)pPg->pData)+96, SQLITE_VERSION_NUMBER); 3090 } 3091 3092 #ifndef SQLITE_OMIT_WAL 3093 /* 3094 ** This function is invoked once for each page that has already been 3095 ** written into the log file when a WAL transaction is rolled back. 3096 ** Parameter iPg is the page number of said page. The pCtx argument 3097 ** is actually a pointer to the Pager structure. 3098 ** 3099 ** If page iPg is present in the cache, and has no outstanding references, 3100 ** it is discarded. Otherwise, if there are one or more outstanding 3101 ** references, the page content is reloaded from the database. If the 3102 ** attempt to reload content from the database is required and fails, 3103 ** return an SQLite error code. Otherwise, SQLITE_OK. 3104 */ 3105 static int pagerUndoCallback(void *pCtx, Pgno iPg){ 3106 int rc = SQLITE_OK; 3107 Pager *pPager = (Pager *)pCtx; 3108 PgHdr *pPg; 3109 3110 assert( pagerUseWal(pPager) ); 3111 pPg = sqlite3PagerLookup(pPager, iPg); 3112 if( pPg ){ 3113 if( sqlite3PcachePageRefcount(pPg)==1 ){ 3114 sqlite3PcacheDrop(pPg); 3115 }else{ 3116 rc = readDbPage(pPg); 3117 if( rc==SQLITE_OK ){ 3118 pPager->xReiniter(pPg); 3119 } 3120 sqlite3PagerUnrefNotNull(pPg); 3121 } 3122 } 3123 3124 /* Normally, if a transaction is rolled back, any backup processes are 3125 ** updated as data is copied out of the rollback journal and into the 3126 ** database. This is not generally possible with a WAL database, as 3127 ** rollback involves simply truncating the log file. Therefore, if one 3128 ** or more frames have already been written to the log (and therefore 3129 ** also copied into the backup databases) as part of this transaction, 3130 ** the backups must be restarted. 3131 */ 3132 sqlite3BackupRestart(pPager->pBackup); 3133 3134 return rc; 3135 } 3136 3137 /* 3138 ** This function is called to rollback a transaction on a WAL database. 3139 */ 3140 static int pagerRollbackWal(Pager *pPager){ 3141 int rc; /* Return Code */ 3142 PgHdr *pList; /* List of dirty pages to revert */ 3143 3144 /* For all pages in the cache that are currently dirty or have already 3145 ** been written (but not committed) to the log file, do one of the 3146 ** following: 3147 ** 3148 ** + Discard the cached page (if refcount==0), or 3149 ** + Reload page content from the database (if refcount>0). 3150 */ 3151 pPager->dbSize = pPager->dbOrigSize; 3152 rc = sqlite3WalUndo(pPager->pWal, pagerUndoCallback, (void *)pPager); 3153 pList = sqlite3PcacheDirtyList(pPager->pPCache); 3154 while( pList && rc==SQLITE_OK ){ 3155 PgHdr *pNext = pList->pDirty; 3156 rc = pagerUndoCallback((void *)pPager, pList->pgno); 3157 pList = pNext; 3158 } 3159 3160 return rc; 3161 } 3162 3163 /* 3164 ** This function is a wrapper around sqlite3WalFrames(). As well as logging 3165 ** the contents of the list of pages headed by pList (connected by pDirty), 3166 ** this function notifies any active backup processes that the pages have 3167 ** changed. 3168 ** 3169 ** The list of pages passed into this routine is always sorted by page number. 3170 ** Hence, if page 1 appears anywhere on the list, it will be the first page. 3171 */ 3172 static int pagerWalFrames( 3173 Pager *pPager, /* Pager object */ 3174 PgHdr *pList, /* List of frames to log */ 3175 Pgno nTruncate, /* Database size after this commit */ 3176 int isCommit /* True if this is a commit */ 3177 ){ 3178 int rc; /* Return code */ 3179 int nList; /* Number of pages in pList */ 3180 PgHdr *p; /* For looping over pages */ 3181 3182 assert( pPager->pWal ); 3183 assert( pList ); 3184 #ifdef SQLITE_DEBUG 3185 /* Verify that the page list is in accending order */ 3186 for(p=pList; p && p->pDirty; p=p->pDirty){ 3187 assert( p->pgno < p->pDirty->pgno ); 3188 } 3189 #endif 3190 3191 assert( pList->pDirty==0 || isCommit ); 3192 if( isCommit ){ 3193 /* If a WAL transaction is being committed, there is no point in writing 3194 ** any pages with page numbers greater than nTruncate into the WAL file. 3195 ** They will never be read by any client. So remove them from the pDirty 3196 ** list here. */ 3197 PgHdr **ppNext = &pList; 3198 nList = 0; 3199 for(p=pList; (*ppNext = p)!=0; p=p->pDirty){ 3200 if( p->pgno<=nTruncate ){ 3201 ppNext = &p->pDirty; 3202 nList++; 3203 } 3204 } 3205 assert( pList ); 3206 }else{ 3207 nList = 1; 3208 } 3209 pPager->aStat[PAGER_STAT_WRITE] += nList; 3210 3211 if( pList->pgno==1 ) pager_write_changecounter(pList); 3212 rc = sqlite3WalFrames(pPager->pWal, 3213 pPager->pageSize, pList, nTruncate, isCommit, pPager->walSyncFlags 3214 ); 3215 if( rc==SQLITE_OK && pPager->pBackup ){ 3216 for(p=pList; p; p=p->pDirty){ 3217 sqlite3BackupUpdate(pPager->pBackup, p->pgno, (u8 *)p->pData); 3218 } 3219 } 3220 3221 #ifdef SQLITE_CHECK_PAGES 3222 pList = sqlite3PcacheDirtyList(pPager->pPCache); 3223 for(p=pList; p; p=p->pDirty){ 3224 pager_set_pagehash(p); 3225 } 3226 #endif 3227 3228 return rc; 3229 } 3230 3231 /* 3232 ** Begin a read transaction on the WAL. 3233 ** 3234 ** This routine used to be called "pagerOpenSnapshot()" because it essentially 3235 ** makes a snapshot of the database at the current point in time and preserves 3236 ** that snapshot for use by the reader in spite of concurrently changes by 3237 ** other writers or checkpointers. 3238 */ 3239 static int pagerBeginReadTransaction(Pager *pPager){ 3240 int rc; /* Return code */ 3241 int changed = 0; /* True if cache must be reset */ 3242 3243 assert( pagerUseWal(pPager) ); 3244 assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); 3245 3246 /* sqlite3WalEndReadTransaction() was not called for the previous 3247 ** transaction in locking_mode=EXCLUSIVE. So call it now. If we 3248 ** are in locking_mode=NORMAL and EndRead() was previously called, 3249 ** the duplicate call is harmless. 3250 */ 3251 sqlite3WalEndReadTransaction(pPager->pWal); 3252 3253 rc = sqlite3WalBeginReadTransaction(pPager->pWal, &changed); 3254 if( rc!=SQLITE_OK || changed ){ 3255 pager_reset(pPager); 3256 if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0); 3257 } 3258 3259 return rc; 3260 } 3261 #endif 3262 3263 /* 3264 ** This function is called as part of the transition from PAGER_OPEN 3265 ** to PAGER_READER state to determine the size of the database file 3266 ** in pages (assuming the page size currently stored in Pager.pageSize). 3267 ** 3268 ** If no error occurs, SQLITE_OK is returned and the size of the database 3269 ** in pages is stored in *pnPage. Otherwise, an error code (perhaps 3270 ** SQLITE_IOERR_FSTAT) is returned and *pnPage is left unmodified. 3271 */ 3272 static int pagerPagecount(Pager *pPager, Pgno *pnPage){ 3273 Pgno nPage; /* Value to return via *pnPage */ 3274 3275 /* Query the WAL sub-system for the database size. The WalDbsize() 3276 ** function returns zero if the WAL is not open (i.e. Pager.pWal==0), or 3277 ** if the database size is not available. The database size is not 3278 ** available from the WAL sub-system if the log file is empty or 3279 ** contains no valid committed transactions. 3280 */ 3281 assert( pPager->eState==PAGER_OPEN ); 3282 assert( pPager->eLock>=SHARED_LOCK ); 3283 assert( isOpen(pPager->fd) ); 3284 assert( pPager->tempFile==0 ); 3285 nPage = sqlite3WalDbsize(pPager->pWal); 3286 3287 /* If the number of pages in the database is not available from the 3288 ** WAL sub-system, determine the page count based on the size of 3289 ** the database file. If the size of the database file is not an 3290 ** integer multiple of the page-size, round up the result. 3291 */ 3292 if( nPage==0 && ALWAYS(isOpen(pPager->fd)) ){ 3293 i64 n = 0; /* Size of db file in bytes */ 3294 int rc = sqlite3OsFileSize(pPager->fd, &n); 3295 if( rc!=SQLITE_OK ){ 3296 return rc; 3297 } 3298 nPage = (Pgno)((n+pPager->pageSize-1) / pPager->pageSize); 3299 } 3300 3301 /* If the current number of pages in the file is greater than the 3302 ** configured maximum pager number, increase the allowed limit so 3303 ** that the file can be read. 3304 */ 3305 if( nPage>pPager->mxPgno ){ 3306 pPager->mxPgno = (Pgno)nPage; 3307 } 3308 3309 *pnPage = nPage; 3310 return SQLITE_OK; 3311 } 3312 3313 #ifndef SQLITE_OMIT_WAL 3314 /* 3315 ** Check if the *-wal file that corresponds to the database opened by pPager 3316 ** exists if the database is not empy, or verify that the *-wal file does 3317 ** not exist (by deleting it) if the database file is empty. 3318 ** 3319 ** If the database is not empty and the *-wal file exists, open the pager 3320 ** in WAL mode. If the database is empty or if no *-wal file exists and 3321 ** if no error occurs, make sure Pager.journalMode is not set to 3322 ** PAGER_JOURNALMODE_WAL. 3323 ** 3324 ** Return SQLITE_OK or an error code. 3325 ** 3326 ** The caller must hold a SHARED lock on the database file to call this 3327 ** function. Because an EXCLUSIVE lock on the db file is required to delete 3328 ** a WAL on a none-empty database, this ensures there is no race condition 3329 ** between the xAccess() below and an xDelete() being executed by some 3330 ** other connection. 3331 */ 3332 static int pagerOpenWalIfPresent(Pager *pPager){ 3333 int rc = SQLITE_OK; 3334 assert( pPager->eState==PAGER_OPEN ); 3335 assert( pPager->eLock>=SHARED_LOCK ); 3336 3337 if( !pPager->tempFile ){ 3338 int isWal; /* True if WAL file exists */ 3339 rc = sqlite3OsAccess( 3340 pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &isWal 3341 ); 3342 if( rc==SQLITE_OK ){ 3343 if( isWal ){ 3344 Pgno nPage; /* Size of the database file */ 3345 3346 rc = pagerPagecount(pPager, &nPage); 3347 if( rc ) return rc; 3348 if( nPage==0 ){ 3349 rc = sqlite3OsDelete(pPager->pVfs, pPager->zWal, 0); 3350 }else{ 3351 testcase( sqlite3PcachePagecount(pPager->pPCache)==0 ); 3352 rc = sqlite3PagerOpenWal(pPager, 0); 3353 } 3354 }else if( pPager->journalMode==PAGER_JOURNALMODE_WAL ){ 3355 pPager->journalMode = PAGER_JOURNALMODE_DELETE; 3356 } 3357 } 3358 } 3359 return rc; 3360 } 3361 #endif 3362 3363 /* 3364 ** Playback savepoint pSavepoint. Or, if pSavepoint==NULL, then playback 3365 ** the entire master journal file. The case pSavepoint==NULL occurs when 3366 ** a ROLLBACK TO command is invoked on a SAVEPOINT that is a transaction 3367 ** savepoint. 3368 ** 3369 ** When pSavepoint is not NULL (meaning a non-transaction savepoint is 3370 ** being rolled back), then the rollback consists of up to three stages, 3371 ** performed in the order specified: 3372 ** 3373 ** * Pages are played back from the main journal starting at byte 3374 ** offset PagerSavepoint.iOffset and continuing to 3375 ** PagerSavepoint.iHdrOffset, or to the end of the main journal 3376 ** file if PagerSavepoint.iHdrOffset is zero. 3377 ** 3378 ** * If PagerSavepoint.iHdrOffset is not zero, then pages are played 3379 ** back starting from the journal header immediately following 3380 ** PagerSavepoint.iHdrOffset to the end of the main journal file. 3381 ** 3382 ** * Pages are then played back from the sub-journal file, starting 3383 ** with the PagerSavepoint.iSubRec and continuing to the end of 3384 ** the journal file. 3385 ** 3386 ** Throughout the rollback process, each time a page is rolled back, the 3387 ** corresponding bit is set in a bitvec structure (variable pDone in the 3388 ** implementation below). This is used to ensure that a page is only 3389 ** rolled back the first time it is encountered in either journal. 3390 ** 3391 ** If pSavepoint is NULL, then pages are only played back from the main 3392 ** journal file. There is no need for a bitvec in this case. 3393 ** 3394 ** In either case, before playback commences the Pager.dbSize variable 3395 ** is reset to the value that it held at the start of the savepoint 3396 ** (or transaction). No page with a page-number greater than this value 3397 ** is played back. If one is encountered it is simply skipped. 3398 */ 3399 static int pagerPlaybackSavepoint(Pager *pPager, PagerSavepoint *pSavepoint){ 3400 i64 szJ; /* Effective size of the main journal */ 3401 i64 iHdrOff; /* End of first segment of main-journal records */ 3402 int rc = SQLITE_OK; /* Return code */ 3403 Bitvec *pDone = 0; /* Bitvec to ensure pages played back only once */ 3404 3405 assert( pPager->eState!=PAGER_ERROR ); 3406 assert( pPager->eState>=PAGER_WRITER_LOCKED ); 3407 3408 /* Allocate a bitvec to use to store the set of pages rolled back */ 3409 if( pSavepoint ){ 3410 pDone = sqlite3BitvecCreate(pSavepoint->nOrig); 3411 if( !pDone ){ 3412 return SQLITE_NOMEM_BKPT; 3413 } 3414 } 3415 3416 /* Set the database size back to the value it was before the savepoint 3417 ** being reverted was opened. 3418 */ 3419 pPager->dbSize = pSavepoint ? pSavepoint->nOrig : pPager->dbOrigSize; 3420 pPager->changeCountDone = pPager->tempFile; 3421 3422 if( !pSavepoint && pagerUseWal(pPager) ){ 3423 return pagerRollbackWal(pPager); 3424 } 3425 3426 /* Use pPager->journalOff as the effective size of the main rollback 3427 ** journal. The actual file might be larger than this in 3428 ** PAGER_JOURNALMODE_TRUNCATE or PAGER_JOURNALMODE_PERSIST. But anything 3429 ** past pPager->journalOff is off-limits to us. 3430 */ 3431 szJ = pPager->journalOff; 3432 assert( pagerUseWal(pPager)==0 || szJ==0 ); 3433 3434 /* Begin by rolling back records from the main journal starting at 3435 ** PagerSavepoint.iOffset and continuing to the next journal header. 3436 ** There might be records in the main journal that have a page number 3437 ** greater than the current database size (pPager->dbSize) but those 3438 ** will be skipped automatically. Pages are added to pDone as they 3439 ** are played back. 3440 */ 3441 if( pSavepoint && !pagerUseWal(pPager) ){ 3442 iHdrOff = pSavepoint->iHdrOffset ? pSavepoint->iHdrOffset : szJ; 3443 pPager->journalOff = pSavepoint->iOffset; 3444 while( rc==SQLITE_OK && pPager->journalOff<iHdrOff ){ 3445 rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1); 3446 } 3447 assert( rc!=SQLITE_DONE ); 3448 }else{ 3449 pPager->journalOff = 0; 3450 } 3451 3452 /* Continue rolling back records out of the main journal starting at 3453 ** the first journal header seen and continuing until the effective end 3454 ** of the main journal file. Continue to skip out-of-range pages and 3455 ** continue adding pages rolled back to pDone. 3456 */ 3457 while( rc==SQLITE_OK && pPager->journalOff<szJ ){ 3458 u32 ii; /* Loop counter */ 3459 u32 nJRec = 0; /* Number of Journal Records */ 3460 u32 dummy; 3461 rc = readJournalHdr(pPager, 0, szJ, &nJRec, &dummy); 3462 assert( rc!=SQLITE_DONE ); 3463 3464 /* 3465 ** The "pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff" 3466 ** test is related to ticket #2565. See the discussion in the 3467 ** pager_playback() function for additional information. 3468 */ 3469 if( nJRec==0 3470 && pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff 3471 ){ 3472 nJRec = (u32)((szJ - pPager->journalOff)/JOURNAL_PG_SZ(pPager)); 3473 } 3474 for(ii=0; rc==SQLITE_OK && ii<nJRec && pPager->journalOff<szJ; ii++){ 3475 rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1); 3476 } 3477 assert( rc!=SQLITE_DONE ); 3478 } 3479 assert( rc!=SQLITE_OK || pPager->journalOff>=szJ ); 3480 3481 /* Finally, rollback pages from the sub-journal. Page that were 3482 ** previously rolled back out of the main journal (and are hence in pDone) 3483 ** will be skipped. Out-of-range pages are also skipped. 3484 */ 3485 if( pSavepoint ){ 3486 u32 ii; /* Loop counter */ 3487 i64 offset = (i64)pSavepoint->iSubRec*(4+pPager->pageSize); 3488 3489 if( pagerUseWal(pPager) ){ 3490 rc = sqlite3WalSavepointUndo(pPager->pWal, pSavepoint->aWalData); 3491 } 3492 for(ii=pSavepoint->iSubRec; rc==SQLITE_OK && ii<pPager->nSubRec; ii++){ 3493 assert( offset==(i64)ii*(4+pPager->pageSize) ); 3494 rc = pager_playback_one_page(pPager, &offset, pDone, 0, 1); 3495 } 3496 assert( rc!=SQLITE_DONE ); 3497 } 3498 3499 sqlite3BitvecDestroy(pDone); 3500 if( rc==SQLITE_OK ){ 3501 pPager->journalOff = szJ; 3502 } 3503 3504 return rc; 3505 } 3506 3507 /* 3508 ** Change the maximum number of in-memory pages that are allowed 3509 ** before attempting to recycle clean and unused pages. 3510 */ 3511 void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){ 3512 sqlite3PcacheSetCachesize(pPager->pPCache, mxPage); 3513 } 3514 3515 /* 3516 ** Change the maximum number of in-memory pages that are allowed 3517 ** before attempting to spill pages to journal. 3518 */ 3519 int sqlite3PagerSetSpillsize(Pager *pPager, int mxPage){ 3520 return sqlite3PcacheSetSpillsize(pPager->pPCache, mxPage); 3521 } 3522 3523 /* 3524 ** Invoke SQLITE_FCNTL_MMAP_SIZE based on the current value of szMmap. 3525 */ 3526 static void pagerFixMaplimit(Pager *pPager){ 3527 #if SQLITE_MAX_MMAP_SIZE>0 3528 sqlite3_file *fd = pPager->fd; 3529 if( isOpen(fd) && fd->pMethods->iVersion>=3 ){ 3530 sqlite3_int64 sz; 3531 sz = pPager->szMmap; 3532 pPager->bUseFetch = (sz>0); 3533 setGetterMethod(pPager); 3534 sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_MMAP_SIZE, &sz); 3535 } 3536 #endif 3537 } 3538 3539 /* 3540 ** Change the maximum size of any memory mapping made of the database file. 3541 */ 3542 void sqlite3PagerSetMmapLimit(Pager *pPager, sqlite3_int64 szMmap){ 3543 pPager->szMmap = szMmap; 3544 pagerFixMaplimit(pPager); 3545 } 3546 3547 /* 3548 ** Free as much memory as possible from the pager. 3549 */ 3550 void sqlite3PagerShrink(Pager *pPager){ 3551 sqlite3PcacheShrink(pPager->pPCache); 3552 } 3553 3554 /* 3555 ** Adjust settings of the pager to those specified in the pgFlags parameter. 3556 ** 3557 ** The "level" in pgFlags & PAGER_SYNCHRONOUS_MASK sets the robustness 3558 ** of the database to damage due to OS crashes or power failures by 3559 ** changing the number of syncs()s when writing the journals. 3560 ** There are four levels: 3561 ** 3562 ** OFF sqlite3OsSync() is never called. This is the default 3563 ** for temporary and transient files. 3564 ** 3565 ** NORMAL The journal is synced once before writes begin on the 3566 ** database. This is normally adequate protection, but 3567 ** it is theoretically possible, though very unlikely, 3568 ** that an inopertune power failure could leave the journal 3569 ** in a state which would cause damage to the database 3570 ** when it is rolled back. 3571 ** 3572 ** FULL The journal is synced twice before writes begin on the 3573 ** database (with some additional information - the nRec field 3574 ** of the journal header - being written in between the two 3575 ** syncs). If we assume that writing a 3576 ** single disk sector is atomic, then this mode provides 3577 ** assurance that the journal will not be corrupted to the 3578 ** point of causing damage to the database during rollback. 3579 ** 3580 ** EXTRA This is like FULL except that is also syncs the directory 3581 ** that contains the rollback journal after the rollback 3582 ** journal is unlinked. 3583 ** 3584 ** The above is for a rollback-journal mode. For WAL mode, OFF continues 3585 ** to mean that no syncs ever occur. NORMAL means that the WAL is synced 3586 ** prior to the start of checkpoint and that the database file is synced 3587 ** at the conclusion of the checkpoint if the entire content of the WAL 3588 ** was written back into the database. But no sync operations occur for 3589 ** an ordinary commit in NORMAL mode with WAL. FULL means that the WAL 3590 ** file is synced following each commit operation, in addition to the 3591 ** syncs associated with NORMAL. There is no difference between FULL 3592 ** and EXTRA for WAL mode. 3593 ** 3594 ** Do not confuse synchronous=FULL with SQLITE_SYNC_FULL. The 3595 ** SQLITE_SYNC_FULL macro means to use the MacOSX-style full-fsync 3596 ** using fcntl(F_FULLFSYNC). SQLITE_SYNC_NORMAL means to do an 3597 ** ordinary fsync() call. There is no difference between SQLITE_SYNC_FULL 3598 ** and SQLITE_SYNC_NORMAL on platforms other than MacOSX. But the 3599 ** synchronous=FULL versus synchronous=NORMAL setting determines when 3600 ** the xSync primitive is called and is relevant to all platforms. 3601 ** 3602 ** Numeric values associated with these states are OFF==1, NORMAL=2, 3603 ** and FULL=3. 3604 */ 3605 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 3606 void sqlite3PagerSetFlags( 3607 Pager *pPager, /* The pager to set safety level for */ 3608 unsigned pgFlags /* Various flags */ 3609 ){ 3610 unsigned level = pgFlags & PAGER_SYNCHRONOUS_MASK; 3611 if( pPager->tempFile ){ 3612 pPager->noSync = 1; 3613 pPager->fullSync = 0; 3614 pPager->extraSync = 0; 3615 }else{ 3616 pPager->noSync = level==PAGER_SYNCHRONOUS_OFF ?1:0; 3617 pPager->fullSync = level>=PAGER_SYNCHRONOUS_FULL ?1:0; 3618 pPager->extraSync = level==PAGER_SYNCHRONOUS_EXTRA ?1:0; 3619 } 3620 if( pPager->noSync ){ 3621 pPager->syncFlags = 0; 3622 }else if( pgFlags & PAGER_FULLFSYNC ){ 3623 pPager->syncFlags = SQLITE_SYNC_FULL; 3624 }else{ 3625 pPager->syncFlags = SQLITE_SYNC_NORMAL; 3626 } 3627 pPager->walSyncFlags = (pPager->syncFlags<<2); 3628 if( pPager->fullSync ){ 3629 pPager->walSyncFlags |= pPager->syncFlags; 3630 } 3631 if( (pgFlags & PAGER_CKPT_FULLFSYNC) && !pPager->noSync ){ 3632 pPager->walSyncFlags |= (SQLITE_SYNC_FULL<<2); 3633 } 3634 if( pgFlags & PAGER_CACHESPILL ){ 3635 pPager->doNotSpill &= ~SPILLFLAG_OFF; 3636 }else{ 3637 pPager->doNotSpill |= SPILLFLAG_OFF; 3638 } 3639 } 3640 #endif 3641 3642 /* 3643 ** The following global variable is incremented whenever the library 3644 ** attempts to open a temporary file. This information is used for 3645 ** testing and analysis only. 3646 */ 3647 #ifdef SQLITE_TEST 3648 int sqlite3_opentemp_count = 0; 3649 #endif 3650 3651 /* 3652 ** Open a temporary file. 3653 ** 3654 ** Write the file descriptor into *pFile. Return SQLITE_OK on success 3655 ** or some other error code if we fail. The OS will automatically 3656 ** delete the temporary file when it is closed. 3657 ** 3658 ** The flags passed to the VFS layer xOpen() call are those specified 3659 ** by parameter vfsFlags ORed with the following: 3660 ** 3661 ** SQLITE_OPEN_READWRITE 3662 ** SQLITE_OPEN_CREATE 3663 ** SQLITE_OPEN_EXCLUSIVE 3664 ** SQLITE_OPEN_DELETEONCLOSE 3665 */ 3666 static int pagerOpentemp( 3667 Pager *pPager, /* The pager object */ 3668 sqlite3_file *pFile, /* Write the file descriptor here */ 3669 int vfsFlags /* Flags passed through to the VFS */ 3670 ){ 3671 int rc; /* Return code */ 3672 3673 #ifdef SQLITE_TEST 3674 sqlite3_opentemp_count++; /* Used for testing and analysis only */ 3675 #endif 3676 3677 vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | 3678 SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE; 3679 rc = sqlite3OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0); 3680 assert( rc!=SQLITE_OK || isOpen(pFile) ); 3681 return rc; 3682 } 3683 3684 /* 3685 ** Set the busy handler function. 3686 ** 3687 ** The pager invokes the busy-handler if sqlite3OsLock() returns 3688 ** SQLITE_BUSY when trying to upgrade from no-lock to a SHARED lock, 3689 ** or when trying to upgrade from a RESERVED lock to an EXCLUSIVE 3690 ** lock. It does *not* invoke the busy handler when upgrading from 3691 ** SHARED to RESERVED, or when upgrading from SHARED to EXCLUSIVE 3692 ** (which occurs during hot-journal rollback). Summary: 3693 ** 3694 ** Transition | Invokes xBusyHandler 3695 ** -------------------------------------------------------- 3696 ** NO_LOCK -> SHARED_LOCK | Yes 3697 ** SHARED_LOCK -> RESERVED_LOCK | No 3698 ** SHARED_LOCK -> EXCLUSIVE_LOCK | No 3699 ** RESERVED_LOCK -> EXCLUSIVE_LOCK | Yes 3700 ** 3701 ** If the busy-handler callback returns non-zero, the lock is 3702 ** retried. If it returns zero, then the SQLITE_BUSY error is 3703 ** returned to the caller of the pager API function. 3704 */ 3705 void sqlite3PagerSetBusyHandler( 3706 Pager *pPager, /* Pager object */ 3707 int (*xBusyHandler)(void *), /* Pointer to busy-handler function */ 3708 void *pBusyHandlerArg /* Argument to pass to xBusyHandler */ 3709 ){ 3710 void **ap; 3711 pPager->xBusyHandler = xBusyHandler; 3712 pPager->pBusyHandlerArg = pBusyHandlerArg; 3713 ap = (void **)&pPager->xBusyHandler; 3714 assert( ((int(*)(void *))(ap[0]))==xBusyHandler ); 3715 assert( ap[1]==pBusyHandlerArg ); 3716 sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_BUSYHANDLER, (void *)ap); 3717 } 3718 3719 /* 3720 ** Change the page size used by the Pager object. The new page size 3721 ** is passed in *pPageSize. 3722 ** 3723 ** If the pager is in the error state when this function is called, it 3724 ** is a no-op. The value returned is the error state error code (i.e. 3725 ** one of SQLITE_IOERR, an SQLITE_IOERR_xxx sub-code or SQLITE_FULL). 3726 ** 3727 ** Otherwise, if all of the following are true: 3728 ** 3729 ** * the new page size (value of *pPageSize) is valid (a power 3730 ** of two between 512 and SQLITE_MAX_PAGE_SIZE, inclusive), and 3731 ** 3732 ** * there are no outstanding page references, and 3733 ** 3734 ** * the database is either not an in-memory database or it is 3735 ** an in-memory database that currently consists of zero pages. 3736 ** 3737 ** then the pager object page size is set to *pPageSize. 3738 ** 3739 ** If the page size is changed, then this function uses sqlite3PagerMalloc() 3740 ** to obtain a new Pager.pTmpSpace buffer. If this allocation attempt 3741 ** fails, SQLITE_NOMEM is returned and the page size remains unchanged. 3742 ** In all other cases, SQLITE_OK is returned. 3743 ** 3744 ** If the page size is not changed, either because one of the enumerated 3745 ** conditions above is not true, the pager was in error state when this 3746 ** function was called, or because the memory allocation attempt failed, 3747 ** then *pPageSize is set to the old, retained page size before returning. 3748 */ 3749 int sqlite3PagerSetPagesize(Pager *pPager, u32 *pPageSize, int nReserve){ 3750 int rc = SQLITE_OK; 3751 3752 /* It is not possible to do a full assert_pager_state() here, as this 3753 ** function may be called from within PagerOpen(), before the state 3754 ** of the Pager object is internally consistent. 3755 ** 3756 ** At one point this function returned an error if the pager was in 3757 ** PAGER_ERROR state. But since PAGER_ERROR state guarantees that 3758 ** there is at least one outstanding page reference, this function 3759 ** is a no-op for that case anyhow. 3760 */ 3761 3762 u32 pageSize = *pPageSize; 3763 assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) ); 3764 if( (pPager->memDb==0 || pPager->dbSize==0) 3765 && sqlite3PcacheRefCount(pPager->pPCache)==0 3766 && pageSize && pageSize!=(u32)pPager->pageSize 3767 ){ 3768 char *pNew = NULL; /* New temp space */ 3769 i64 nByte = 0; 3770 3771 if( pPager->eState>PAGER_OPEN && isOpen(pPager->fd) ){ 3772 rc = sqlite3OsFileSize(pPager->fd, &nByte); 3773 } 3774 if( rc==SQLITE_OK ){ 3775 pNew = (char *)sqlite3PageMalloc(pageSize); 3776 if( !pNew ) rc = SQLITE_NOMEM_BKPT; 3777 } 3778 3779 if( rc==SQLITE_OK ){ 3780 pager_reset(pPager); 3781 rc = sqlite3PcacheSetPageSize(pPager->pPCache, pageSize); 3782 } 3783 if( rc==SQLITE_OK ){ 3784 sqlite3PageFree(pPager->pTmpSpace); 3785 pPager->pTmpSpace = pNew; 3786 pPager->dbSize = (Pgno)((nByte+pageSize-1)/pageSize); 3787 pPager->pageSize = pageSize; 3788 }else{ 3789 sqlite3PageFree(pNew); 3790 } 3791 } 3792 3793 *pPageSize = pPager->pageSize; 3794 if( rc==SQLITE_OK ){ 3795 if( nReserve<0 ) nReserve = pPager->nReserve; 3796 assert( nReserve>=0 && nReserve<1000 ); 3797 pPager->nReserve = (i16)nReserve; 3798 pagerReportSize(pPager); 3799 pagerFixMaplimit(pPager); 3800 } 3801 return rc; 3802 } 3803 3804 /* 3805 ** Return a pointer to the "temporary page" buffer held internally 3806 ** by the pager. This is a buffer that is big enough to hold the 3807 ** entire content of a database page. This buffer is used internally 3808 ** during rollback and will be overwritten whenever a rollback 3809 ** occurs. But other modules are free to use it too, as long as 3810 ** no rollbacks are happening. 3811 */ 3812 void *sqlite3PagerTempSpace(Pager *pPager){ 3813 return pPager->pTmpSpace; 3814 } 3815 3816 /* 3817 ** Attempt to set the maximum database page count if mxPage is positive. 3818 ** Make no changes if mxPage is zero or negative. And never reduce the 3819 ** maximum page count below the current size of the database. 3820 ** 3821 ** Regardless of mxPage, return the current maximum page count. 3822 */ 3823 int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){ 3824 if( mxPage>0 ){ 3825 pPager->mxPgno = mxPage; 3826 } 3827 assert( pPager->eState!=PAGER_OPEN ); /* Called only by OP_MaxPgcnt */ 3828 assert( pPager->mxPgno>=pPager->dbSize ); /* OP_MaxPgcnt enforces this */ 3829 return pPager->mxPgno; 3830 } 3831 3832 /* 3833 ** The following set of routines are used to disable the simulated 3834 ** I/O error mechanism. These routines are used to avoid simulated 3835 ** errors in places where we do not care about errors. 3836 ** 3837 ** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops 3838 ** and generate no code. 3839 */ 3840 #ifdef SQLITE_TEST 3841 extern int sqlite3_io_error_pending; 3842 extern int sqlite3_io_error_hit; 3843 static int saved_cnt; 3844 void disable_simulated_io_errors(void){ 3845 saved_cnt = sqlite3_io_error_pending; 3846 sqlite3_io_error_pending = -1; 3847 } 3848 void enable_simulated_io_errors(void){ 3849 sqlite3_io_error_pending = saved_cnt; 3850 } 3851 #else 3852 # define disable_simulated_io_errors() 3853 # define enable_simulated_io_errors() 3854 #endif 3855 3856 /* 3857 ** Read the first N bytes from the beginning of the file into memory 3858 ** that pDest points to. 3859 ** 3860 ** If the pager was opened on a transient file (zFilename==""), or 3861 ** opened on a file less than N bytes in size, the output buffer is 3862 ** zeroed and SQLITE_OK returned. The rationale for this is that this 3863 ** function is used to read database headers, and a new transient or 3864 ** zero sized database has a header than consists entirely of zeroes. 3865 ** 3866 ** If any IO error apart from SQLITE_IOERR_SHORT_READ is encountered, 3867 ** the error code is returned to the caller and the contents of the 3868 ** output buffer undefined. 3869 */ 3870 int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){ 3871 int rc = SQLITE_OK; 3872 memset(pDest, 0, N); 3873 assert( isOpen(pPager->fd) || pPager->tempFile ); 3874 3875 /* This routine is only called by btree immediately after creating 3876 ** the Pager object. There has not been an opportunity to transition 3877 ** to WAL mode yet. 3878 */ 3879 assert( !pagerUseWal(pPager) ); 3880 3881 if( isOpen(pPager->fd) ){ 3882 IOTRACE(("DBHDR %p 0 %d\n", pPager, N)) 3883 rc = sqlite3OsRead(pPager->fd, pDest, N, 0); 3884 if( rc==SQLITE_IOERR_SHORT_READ ){ 3885 rc = SQLITE_OK; 3886 } 3887 } 3888 return rc; 3889 } 3890 3891 /* 3892 ** This function may only be called when a read-transaction is open on 3893 ** the pager. It returns the total number of pages in the database. 3894 ** 3895 ** However, if the file is between 1 and <page-size> bytes in size, then 3896 ** this is considered a 1 page file. 3897 */ 3898 void sqlite3PagerPagecount(Pager *pPager, int *pnPage){ 3899 assert( pPager->eState>=PAGER_READER ); 3900 assert( pPager->eState!=PAGER_WRITER_FINISHED ); 3901 *pnPage = (int)pPager->dbSize; 3902 } 3903 3904 3905 /* 3906 ** Try to obtain a lock of type locktype on the database file. If 3907 ** a similar or greater lock is already held, this function is a no-op 3908 ** (returning SQLITE_OK immediately). 3909 ** 3910 ** Otherwise, attempt to obtain the lock using sqlite3OsLock(). Invoke 3911 ** the busy callback if the lock is currently not available. Repeat 3912 ** until the busy callback returns false or until the attempt to 3913 ** obtain the lock succeeds. 3914 ** 3915 ** Return SQLITE_OK on success and an error code if we cannot obtain 3916 ** the lock. If the lock is obtained successfully, set the Pager.state 3917 ** variable to locktype before returning. 3918 */ 3919 static int pager_wait_on_lock(Pager *pPager, int locktype){ 3920 int rc; /* Return code */ 3921 3922 /* Check that this is either a no-op (because the requested lock is 3923 ** already held), or one of the transitions that the busy-handler 3924 ** may be invoked during, according to the comment above 3925 ** sqlite3PagerSetBusyhandler(). 3926 */ 3927 assert( (pPager->eLock>=locktype) 3928 || (pPager->eLock==NO_LOCK && locktype==SHARED_LOCK) 3929 || (pPager->eLock==RESERVED_LOCK && locktype==EXCLUSIVE_LOCK) 3930 ); 3931 3932 do { 3933 rc = pagerLockDb(pPager, locktype); 3934 }while( rc==SQLITE_BUSY && pPager->xBusyHandler(pPager->pBusyHandlerArg) ); 3935 return rc; 3936 } 3937 3938 /* 3939 ** Function assertTruncateConstraint(pPager) checks that one of the 3940 ** following is true for all dirty pages currently in the page-cache: 3941 ** 3942 ** a) The page number is less than or equal to the size of the 3943 ** current database image, in pages, OR 3944 ** 3945 ** b) if the page content were written at this time, it would not 3946 ** be necessary to write the current content out to the sub-journal 3947 ** (as determined by function subjRequiresPage()). 3948 ** 3949 ** If the condition asserted by this function were not true, and the 3950 ** dirty page were to be discarded from the cache via the pagerStress() 3951 ** routine, pagerStress() would not write the current page content to 3952 ** the database file. If a savepoint transaction were rolled back after 3953 ** this happened, the correct behavior would be to restore the current 3954 ** content of the page. However, since this content is not present in either 3955 ** the database file or the portion of the rollback journal and 3956 ** sub-journal rolled back the content could not be restored and the 3957 ** database image would become corrupt. It is therefore fortunate that 3958 ** this circumstance cannot arise. 3959 */ 3960 #if defined(SQLITE_DEBUG) 3961 static void assertTruncateConstraintCb(PgHdr *pPg){ 3962 assert( pPg->flags&PGHDR_DIRTY ); 3963 assert( !subjRequiresPage(pPg) || pPg->pgno<=pPg->pPager->dbSize ); 3964 } 3965 static void assertTruncateConstraint(Pager *pPager){ 3966 sqlite3PcacheIterateDirty(pPager->pPCache, assertTruncateConstraintCb); 3967 } 3968 #else 3969 # define assertTruncateConstraint(pPager) 3970 #endif 3971 3972 /* 3973 ** Truncate the in-memory database file image to nPage pages. This 3974 ** function does not actually modify the database file on disk. It 3975 ** just sets the internal state of the pager object so that the 3976 ** truncation will be done when the current transaction is committed. 3977 ** 3978 ** This function is only called right before committing a transaction. 3979 ** Once this function has been called, the transaction must either be 3980 ** rolled back or committed. It is not safe to call this function and 3981 ** then continue writing to the database. 3982 */ 3983 void sqlite3PagerTruncateImage(Pager *pPager, Pgno nPage){ 3984 assert( pPager->dbSize>=nPage ); 3985 assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); 3986 pPager->dbSize = nPage; 3987 3988 /* At one point the code here called assertTruncateConstraint() to 3989 ** ensure that all pages being truncated away by this operation are, 3990 ** if one or more savepoints are open, present in the savepoint 3991 ** journal so that they can be restored if the savepoint is rolled 3992 ** back. This is no longer necessary as this function is now only 3993 ** called right before committing a transaction. So although the 3994 ** Pager object may still have open savepoints (Pager.nSavepoint!=0), 3995 ** they cannot be rolled back. So the assertTruncateConstraint() call 3996 ** is no longer correct. */ 3997 } 3998 3999 4000 /* 4001 ** This function is called before attempting a hot-journal rollback. It 4002 ** syncs the journal file to disk, then sets pPager->journalHdr to the 4003 ** size of the journal file so that the pager_playback() routine knows 4004 ** that the entire journal file has been synced. 4005 ** 4006 ** Syncing a hot-journal to disk before attempting to roll it back ensures 4007 ** that if a power-failure occurs during the rollback, the process that 4008 ** attempts rollback following system recovery sees the same journal 4009 ** content as this process. 4010 ** 4011 ** If everything goes as planned, SQLITE_OK is returned. Otherwise, 4012 ** an SQLite error code. 4013 */ 4014 static int pagerSyncHotJournal(Pager *pPager){ 4015 int rc = SQLITE_OK; 4016 if( !pPager->noSync ){ 4017 rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_NORMAL); 4018 } 4019 if( rc==SQLITE_OK ){ 4020 rc = sqlite3OsFileSize(pPager->jfd, &pPager->journalHdr); 4021 } 4022 return rc; 4023 } 4024 4025 #if SQLITE_MAX_MMAP_SIZE>0 4026 /* 4027 ** Obtain a reference to a memory mapped page object for page number pgno. 4028 ** The new object will use the pointer pData, obtained from xFetch(). 4029 ** If successful, set *ppPage to point to the new page reference 4030 ** and return SQLITE_OK. Otherwise, return an SQLite error code and set 4031 ** *ppPage to zero. 4032 ** 4033 ** Page references obtained by calling this function should be released 4034 ** by calling pagerReleaseMapPage(). 4035 */ 4036 static int pagerAcquireMapPage( 4037 Pager *pPager, /* Pager object */ 4038 Pgno pgno, /* Page number */ 4039 void *pData, /* xFetch()'d data for this page */ 4040 PgHdr **ppPage /* OUT: Acquired page object */ 4041 ){ 4042 PgHdr *p; /* Memory mapped page to return */ 4043 4044 if( pPager->pMmapFreelist ){ 4045 *ppPage = p = pPager->pMmapFreelist; 4046 pPager->pMmapFreelist = p->pDirty; 4047 p->pDirty = 0; 4048 assert( pPager->nExtra>=8 ); 4049 memset(p->pExtra, 0, 8); 4050 }else{ 4051 *ppPage = p = (PgHdr *)sqlite3MallocZero(sizeof(PgHdr) + pPager->nExtra); 4052 if( p==0 ){ 4053 sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1) * pPager->pageSize, pData); 4054 return SQLITE_NOMEM_BKPT; 4055 } 4056 p->pExtra = (void *)&p[1]; 4057 p->flags = PGHDR_MMAP; 4058 p->nRef = 1; 4059 p->pPager = pPager; 4060 } 4061 4062 assert( p->pExtra==(void *)&p[1] ); 4063 assert( p->pPage==0 ); 4064 assert( p->flags==PGHDR_MMAP ); 4065 assert( p->pPager==pPager ); 4066 assert( p->nRef==1 ); 4067 4068 p->pgno = pgno; 4069 p->pData = pData; 4070 pPager->nMmapOut++; 4071 4072 return SQLITE_OK; 4073 } 4074 #endif 4075 4076 /* 4077 ** Release a reference to page pPg. pPg must have been returned by an 4078 ** earlier call to pagerAcquireMapPage(). 4079 */ 4080 static void pagerReleaseMapPage(PgHdr *pPg){ 4081 Pager *pPager = pPg->pPager; 4082 pPager->nMmapOut--; 4083 pPg->pDirty = pPager->pMmapFreelist; 4084 pPager->pMmapFreelist = pPg; 4085 4086 assert( pPager->fd->pMethods->iVersion>=3 ); 4087 sqlite3OsUnfetch(pPager->fd, (i64)(pPg->pgno-1)*pPager->pageSize, pPg->pData); 4088 } 4089 4090 /* 4091 ** Free all PgHdr objects stored in the Pager.pMmapFreelist list. 4092 */ 4093 static void pagerFreeMapHdrs(Pager *pPager){ 4094 PgHdr *p; 4095 PgHdr *pNext; 4096 for(p=pPager->pMmapFreelist; p; p=pNext){ 4097 pNext = p->pDirty; 4098 sqlite3_free(p); 4099 } 4100 } 4101 4102 /* Verify that the database file has not be deleted or renamed out from 4103 ** under the pager. Return SQLITE_OK if the database is still where it ought 4104 ** to be on disk. Return non-zero (SQLITE_READONLY_DBMOVED or some other error 4105 ** code from sqlite3OsAccess()) if the database has gone missing. 4106 */ 4107 static int databaseIsUnmoved(Pager *pPager){ 4108 int bHasMoved = 0; 4109 int rc; 4110 4111 if( pPager->tempFile ) return SQLITE_OK; 4112 if( pPager->dbSize==0 ) return SQLITE_OK; 4113 assert( pPager->zFilename && pPager->zFilename[0] ); 4114 rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_HAS_MOVED, &bHasMoved); 4115 if( rc==SQLITE_NOTFOUND ){ 4116 /* If the HAS_MOVED file-control is unimplemented, assume that the file 4117 ** has not been moved. That is the historical behavior of SQLite: prior to 4118 ** version 3.8.3, it never checked */ 4119 rc = SQLITE_OK; 4120 }else if( rc==SQLITE_OK && bHasMoved ){ 4121 rc = SQLITE_READONLY_DBMOVED; 4122 } 4123 return rc; 4124 } 4125 4126 4127 /* 4128 ** Shutdown the page cache. Free all memory and close all files. 4129 ** 4130 ** If a transaction was in progress when this routine is called, that 4131 ** transaction is rolled back. All outstanding pages are invalidated 4132 ** and their memory is freed. Any attempt to use a page associated 4133 ** with this page cache after this function returns will likely 4134 ** result in a coredump. 4135 ** 4136 ** This function always succeeds. If a transaction is active an attempt 4137 ** is made to roll it back. If an error occurs during the rollback 4138 ** a hot journal may be left in the filesystem but no error is returned 4139 ** to the caller. 4140 */ 4141 int sqlite3PagerClose(Pager *pPager, sqlite3 *db){ 4142 u8 *pTmp = (u8*)pPager->pTmpSpace; 4143 assert( db || pagerUseWal(pPager)==0 ); 4144 assert( assert_pager_state(pPager) ); 4145 disable_simulated_io_errors(); 4146 sqlite3BeginBenignMalloc(); 4147 pagerFreeMapHdrs(pPager); 4148 /* pPager->errCode = 0; */ 4149 pPager->exclusiveMode = 0; 4150 #ifndef SQLITE_OMIT_WAL 4151 { 4152 u8 *a = 0; 4153 assert( db || pPager->pWal==0 ); 4154 if( db && 0==(db->flags & SQLITE_NoCkptOnClose) 4155 && SQLITE_OK==databaseIsUnmoved(pPager) 4156 ){ 4157 a = pTmp; 4158 } 4159 sqlite3WalClose(pPager->pWal, db, pPager->walSyncFlags, pPager->pageSize,a); 4160 pPager->pWal = 0; 4161 } 4162 #endif 4163 pager_reset(pPager); 4164 if( MEMDB ){ 4165 pager_unlock(pPager); 4166 }else{ 4167 /* If it is open, sync the journal file before calling UnlockAndRollback. 4168 ** If this is not done, then an unsynced portion of the open journal 4169 ** file may be played back into the database. If a power failure occurs 4170 ** while this is happening, the database could become corrupt. 4171 ** 4172 ** If an error occurs while trying to sync the journal, shift the pager 4173 ** into the ERROR state. This causes UnlockAndRollback to unlock the 4174 ** database and close the journal file without attempting to roll it 4175 ** back or finalize it. The next database user will have to do hot-journal 4176 ** rollback before accessing the database file. 4177 */ 4178 if( isOpen(pPager->jfd) ){ 4179 pager_error(pPager, pagerSyncHotJournal(pPager)); 4180 } 4181 pagerUnlockAndRollback(pPager); 4182 } 4183 sqlite3EndBenignMalloc(); 4184 enable_simulated_io_errors(); 4185 PAGERTRACE(("CLOSE %d\n", PAGERID(pPager))); 4186 IOTRACE(("CLOSE %p\n", pPager)) 4187 sqlite3OsClose(pPager->jfd); 4188 sqlite3OsClose(pPager->fd); 4189 sqlite3PageFree(pTmp); 4190 sqlite3PcacheClose(pPager->pPCache); 4191 4192 #ifdef SQLITE_HAS_CODEC 4193 if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec); 4194 #endif 4195 4196 assert( !pPager->aSavepoint && !pPager->pInJournal ); 4197 assert( !isOpen(pPager->jfd) && !isOpen(pPager->sjfd) ); 4198 4199 sqlite3_free(pPager); 4200 return SQLITE_OK; 4201 } 4202 4203 #if !defined(NDEBUG) || defined(SQLITE_TEST) 4204 /* 4205 ** Return the page number for page pPg. 4206 */ 4207 Pgno sqlite3PagerPagenumber(DbPage *pPg){ 4208 return pPg->pgno; 4209 } 4210 #endif 4211 4212 /* 4213 ** Increment the reference count for page pPg. 4214 */ 4215 void sqlite3PagerRef(DbPage *pPg){ 4216 sqlite3PcacheRef(pPg); 4217 } 4218 4219 /* 4220 ** Sync the journal. In other words, make sure all the pages that have 4221 ** been written to the journal have actually reached the surface of the 4222 ** disk and can be restored in the event of a hot-journal rollback. 4223 ** 4224 ** If the Pager.noSync flag is set, then this function is a no-op. 4225 ** Otherwise, the actions required depend on the journal-mode and the 4226 ** device characteristics of the file-system, as follows: 4227 ** 4228 ** * If the journal file is an in-memory journal file, no action need 4229 ** be taken. 4230 ** 4231 ** * Otherwise, if the device does not support the SAFE_APPEND property, 4232 ** then the nRec field of the most recently written journal header 4233 ** is updated to contain the number of journal records that have 4234 ** been written following it. If the pager is operating in full-sync 4235 ** mode, then the journal file is synced before this field is updated. 4236 ** 4237 ** * If the device does not support the SEQUENTIAL property, then 4238 ** journal file is synced. 4239 ** 4240 ** Or, in pseudo-code: 4241 ** 4242 ** if( NOT <in-memory journal> ){ 4243 ** if( NOT SAFE_APPEND ){ 4244 ** if( <full-sync mode> ) xSync(<journal file>); 4245 ** <update nRec field> 4246 ** } 4247 ** if( NOT SEQUENTIAL ) xSync(<journal file>); 4248 ** } 4249 ** 4250 ** If successful, this routine clears the PGHDR_NEED_SYNC flag of every 4251 ** page currently held in memory before returning SQLITE_OK. If an IO 4252 ** error is encountered, then the IO error code is returned to the caller. 4253 */ 4254 static int syncJournal(Pager *pPager, int newHdr){ 4255 int rc; /* Return code */ 4256 4257 assert( pPager->eState==PAGER_WRITER_CACHEMOD 4258 || pPager->eState==PAGER_WRITER_DBMOD 4259 ); 4260 assert( assert_pager_state(pPager) ); 4261 assert( !pagerUseWal(pPager) ); 4262 4263 rc = sqlite3PagerExclusiveLock(pPager); 4264 if( rc!=SQLITE_OK ) return rc; 4265 4266 if( !pPager->noSync ){ 4267 assert( !pPager->tempFile ); 4268 if( isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){ 4269 const int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); 4270 assert( isOpen(pPager->jfd) ); 4271 4272 if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ 4273 /* This block deals with an obscure problem. If the last connection 4274 ** that wrote to this database was operating in persistent-journal 4275 ** mode, then the journal file may at this point actually be larger 4276 ** than Pager.journalOff bytes. If the next thing in the journal 4277 ** file happens to be a journal-header (written as part of the 4278 ** previous connection's transaction), and a crash or power-failure 4279 ** occurs after nRec is updated but before this connection writes 4280 ** anything else to the journal file (or commits/rolls back its 4281 ** transaction), then SQLite may become confused when doing the 4282 ** hot-journal rollback following recovery. It may roll back all 4283 ** of this connections data, then proceed to rolling back the old, 4284 ** out-of-date data that follows it. Database corruption. 4285 ** 4286 ** To work around this, if the journal file does appear to contain 4287 ** a valid header following Pager.journalOff, then write a 0x00 4288 ** byte to the start of it to prevent it from being recognized. 4289 ** 4290 ** Variable iNextHdrOffset is set to the offset at which this 4291 ** problematic header will occur, if it exists. aMagic is used 4292 ** as a temporary buffer to inspect the first couple of bytes of 4293 ** the potential journal header. 4294 */ 4295 i64 iNextHdrOffset; 4296 u8 aMagic[8]; 4297 u8 zHeader[sizeof(aJournalMagic)+4]; 4298 4299 memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); 4300 put32bits(&zHeader[sizeof(aJournalMagic)], pPager->nRec); 4301 4302 iNextHdrOffset = journalHdrOffset(pPager); 4303 rc = sqlite3OsRead(pPager->jfd, aMagic, 8, iNextHdrOffset); 4304 if( rc==SQLITE_OK && 0==memcmp(aMagic, aJournalMagic, 8) ){ 4305 static const u8 zerobyte = 0; 4306 rc = sqlite3OsWrite(pPager->jfd, &zerobyte, 1, iNextHdrOffset); 4307 } 4308 if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){ 4309 return rc; 4310 } 4311 4312 /* Write the nRec value into the journal file header. If in 4313 ** full-synchronous mode, sync the journal first. This ensures that 4314 ** all data has really hit the disk before nRec is updated to mark 4315 ** it as a candidate for rollback. 4316 ** 4317 ** This is not required if the persistent media supports the 4318 ** SAFE_APPEND property. Because in this case it is not possible 4319 ** for garbage data to be appended to the file, the nRec field 4320 ** is populated with 0xFFFFFFFF when the journal header is written 4321 ** and never needs to be updated. 4322 */ 4323 if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ 4324 PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); 4325 IOTRACE(("JSYNC %p\n", pPager)) 4326 rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags); 4327 if( rc!=SQLITE_OK ) return rc; 4328 } 4329 IOTRACE(("JHDR %p %lld\n", pPager, pPager->journalHdr)); 4330 rc = sqlite3OsWrite( 4331 pPager->jfd, zHeader, sizeof(zHeader), pPager->journalHdr 4332 ); 4333 if( rc!=SQLITE_OK ) return rc; 4334 } 4335 if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ 4336 PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); 4337 IOTRACE(("JSYNC %p\n", pPager)) 4338 rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags| 4339 (pPager->syncFlags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0) 4340 ); 4341 if( rc!=SQLITE_OK ) return rc; 4342 } 4343 4344 pPager->journalHdr = pPager->journalOff; 4345 if( newHdr && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ 4346 pPager->nRec = 0; 4347 rc = writeJournalHdr(pPager); 4348 if( rc!=SQLITE_OK ) return rc; 4349 } 4350 }else{ 4351 pPager->journalHdr = pPager->journalOff; 4352 } 4353 } 4354 4355 /* Unless the pager is in noSync mode, the journal file was just 4356 ** successfully synced. Either way, clear the PGHDR_NEED_SYNC flag on 4357 ** all pages. 4358 */ 4359 sqlite3PcacheClearSyncFlags(pPager->pPCache); 4360 pPager->eState = PAGER_WRITER_DBMOD; 4361 assert( assert_pager_state(pPager) ); 4362 return SQLITE_OK; 4363 } 4364 4365 /* 4366 ** The argument is the first in a linked list of dirty pages connected 4367 ** by the PgHdr.pDirty pointer. This function writes each one of the 4368 ** in-memory pages in the list to the database file. The argument may 4369 ** be NULL, representing an empty list. In this case this function is 4370 ** a no-op. 4371 ** 4372 ** The pager must hold at least a RESERVED lock when this function 4373 ** is called. Before writing anything to the database file, this lock 4374 ** is upgraded to an EXCLUSIVE lock. If the lock cannot be obtained, 4375 ** SQLITE_BUSY is returned and no data is written to the database file. 4376 ** 4377 ** If the pager is a temp-file pager and the actual file-system file 4378 ** is not yet open, it is created and opened before any data is 4379 ** written out. 4380 ** 4381 ** Once the lock has been upgraded and, if necessary, the file opened, 4382 ** the pages are written out to the database file in list order. Writing 4383 ** a page is skipped if it meets either of the following criteria: 4384 ** 4385 ** * The page number is greater than Pager.dbSize, or 4386 ** * The PGHDR_DONT_WRITE flag is set on the page. 4387 ** 4388 ** If writing out a page causes the database file to grow, Pager.dbFileSize 4389 ** is updated accordingly. If page 1 is written out, then the value cached 4390 ** in Pager.dbFileVers[] is updated to match the new value stored in 4391 ** the database file. 4392 ** 4393 ** If everything is successful, SQLITE_OK is returned. If an IO error 4394 ** occurs, an IO error code is returned. Or, if the EXCLUSIVE lock cannot 4395 ** be obtained, SQLITE_BUSY is returned. 4396 */ 4397 static int pager_write_pagelist(Pager *pPager, PgHdr *pList){ 4398 int rc = SQLITE_OK; /* Return code */ 4399 4400 /* This function is only called for rollback pagers in WRITER_DBMOD state. */ 4401 assert( !pagerUseWal(pPager) ); 4402 assert( pPager->tempFile || pPager->eState==PAGER_WRITER_DBMOD ); 4403 assert( pPager->eLock==EXCLUSIVE_LOCK ); 4404 assert( isOpen(pPager->fd) || pList->pDirty==0 ); 4405 4406 /* If the file is a temp-file has not yet been opened, open it now. It 4407 ** is not possible for rc to be other than SQLITE_OK if this branch 4408 ** is taken, as pager_wait_on_lock() is a no-op for temp-files. 4409 */ 4410 if( !isOpen(pPager->fd) ){ 4411 assert( pPager->tempFile && rc==SQLITE_OK ); 4412 rc = pagerOpentemp(pPager, pPager->fd, pPager->vfsFlags); 4413 } 4414 4415 /* Before the first write, give the VFS a hint of what the final 4416 ** file size will be. 4417 */ 4418 assert( rc!=SQLITE_OK || isOpen(pPager->fd) ); 4419 if( rc==SQLITE_OK 4420 && pPager->dbHintSize<pPager->dbSize 4421 && (pList->pDirty || pList->pgno>pPager->dbHintSize) 4422 ){ 4423 sqlite3_int64 szFile = pPager->pageSize * (sqlite3_int64)pPager->dbSize; 4424 sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile); 4425 pPager->dbHintSize = pPager->dbSize; 4426 } 4427 4428 while( rc==SQLITE_OK && pList ){ 4429 Pgno pgno = pList->pgno; 4430 4431 /* If there are dirty pages in the page cache with page numbers greater 4432 ** than Pager.dbSize, this means sqlite3PagerTruncateImage() was called to 4433 ** make the file smaller (presumably by auto-vacuum code). Do not write 4434 ** any such pages to the file. 4435 ** 4436 ** Also, do not write out any page that has the PGHDR_DONT_WRITE flag 4437 ** set (set by sqlite3PagerDontWrite()). 4438 */ 4439 if( pgno<=pPager->dbSize && 0==(pList->flags&PGHDR_DONT_WRITE) ){ 4440 i64 offset = (pgno-1)*(i64)pPager->pageSize; /* Offset to write */ 4441 char *pData; /* Data to write */ 4442 4443 assert( (pList->flags&PGHDR_NEED_SYNC)==0 ); 4444 if( pList->pgno==1 ) pager_write_changecounter(pList); 4445 4446 /* Encode the database */ 4447 CODEC2(pPager, pList->pData, pgno, 6, return SQLITE_NOMEM_BKPT, pData); 4448 4449 /* Write out the page data. */ 4450 rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset); 4451 4452 /* If page 1 was just written, update Pager.dbFileVers to match 4453 ** the value now stored in the database file. If writing this 4454 ** page caused the database file to grow, update dbFileSize. 4455 */ 4456 if( pgno==1 ){ 4457 memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers)); 4458 } 4459 if( pgno>pPager->dbFileSize ){ 4460 pPager->dbFileSize = pgno; 4461 } 4462 pPager->aStat[PAGER_STAT_WRITE]++; 4463 4464 /* Update any backup objects copying the contents of this pager. */ 4465 sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)pList->pData); 4466 4467 PAGERTRACE(("STORE %d page %d hash(%08x)\n", 4468 PAGERID(pPager), pgno, pager_pagehash(pList))); 4469 IOTRACE(("PGOUT %p %d\n", pPager, pgno)); 4470 PAGER_INCR(sqlite3_pager_writedb_count); 4471 }else{ 4472 PAGERTRACE(("NOSTORE %d page %d\n", PAGERID(pPager), pgno)); 4473 } 4474 pager_set_pagehash(pList); 4475 pList = pList->pDirty; 4476 } 4477 4478 return rc; 4479 } 4480 4481 /* 4482 ** Ensure that the sub-journal file is open. If it is already open, this 4483 ** function is a no-op. 4484 ** 4485 ** SQLITE_OK is returned if everything goes according to plan. An 4486 ** SQLITE_IOERR_XXX error code is returned if a call to sqlite3OsOpen() 4487 ** fails. 4488 */ 4489 static int openSubJournal(Pager *pPager){ 4490 int rc = SQLITE_OK; 4491 if( !isOpen(pPager->sjfd) ){ 4492 const int flags = SQLITE_OPEN_SUBJOURNAL | SQLITE_OPEN_READWRITE 4493 | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE 4494 | SQLITE_OPEN_DELETEONCLOSE; 4495 int nStmtSpill = sqlite3Config.nStmtSpill; 4496 if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->subjInMemory ){ 4497 nStmtSpill = -1; 4498 } 4499 rc = sqlite3JournalOpen(pPager->pVfs, 0, pPager->sjfd, flags, nStmtSpill); 4500 } 4501 return rc; 4502 } 4503 4504 /* 4505 ** Append a record of the current state of page pPg to the sub-journal. 4506 ** 4507 ** If successful, set the bit corresponding to pPg->pgno in the bitvecs 4508 ** for all open savepoints before returning. 4509 ** 4510 ** This function returns SQLITE_OK if everything is successful, an IO 4511 ** error code if the attempt to write to the sub-journal fails, or 4512 ** SQLITE_NOMEM if a malloc fails while setting a bit in a savepoint 4513 ** bitvec. 4514 */ 4515 static int subjournalPage(PgHdr *pPg){ 4516 int rc = SQLITE_OK; 4517 Pager *pPager = pPg->pPager; 4518 if( pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ 4519 4520 /* Open the sub-journal, if it has not already been opened */ 4521 assert( pPager->useJournal ); 4522 assert( isOpen(pPager->jfd) || pagerUseWal(pPager) ); 4523 assert( isOpen(pPager->sjfd) || pPager->nSubRec==0 ); 4524 assert( pagerUseWal(pPager) 4525 || pageInJournal(pPager, pPg) 4526 || pPg->pgno>pPager->dbOrigSize 4527 ); 4528 rc = openSubJournal(pPager); 4529 4530 /* If the sub-journal was opened successfully (or was already open), 4531 ** write the journal record into the file. */ 4532 if( rc==SQLITE_OK ){ 4533 void *pData = pPg->pData; 4534 i64 offset = (i64)pPager->nSubRec*(4+pPager->pageSize); 4535 char *pData2; 4536 4537 #if SQLITE_HAS_CODEC 4538 if( !pPager->subjInMemory ){ 4539 CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM_BKPT, pData2); 4540 }else 4541 #endif 4542 pData2 = pData; 4543 PAGERTRACE(("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno)); 4544 rc = write32bits(pPager->sjfd, offset, pPg->pgno); 4545 if( rc==SQLITE_OK ){ 4546 rc = sqlite3OsWrite(pPager->sjfd, pData2, pPager->pageSize, offset+4); 4547 } 4548 } 4549 } 4550 if( rc==SQLITE_OK ){ 4551 pPager->nSubRec++; 4552 assert( pPager->nSavepoint>0 ); 4553 rc = addToSavepointBitvecs(pPager, pPg->pgno); 4554 } 4555 return rc; 4556 } 4557 static int subjournalPageIfRequired(PgHdr *pPg){ 4558 if( subjRequiresPage(pPg) ){ 4559 return subjournalPage(pPg); 4560 }else{ 4561 return SQLITE_OK; 4562 } 4563 } 4564 4565 /* 4566 ** This function is called by the pcache layer when it has reached some 4567 ** soft memory limit. The first argument is a pointer to a Pager object 4568 ** (cast as a void*). The pager is always 'purgeable' (not an in-memory 4569 ** database). The second argument is a reference to a page that is 4570 ** currently dirty but has no outstanding references. The page 4571 ** is always associated with the Pager object passed as the first 4572 ** argument. 4573 ** 4574 ** The job of this function is to make pPg clean by writing its contents 4575 ** out to the database file, if possible. This may involve syncing the 4576 ** journal file. 4577 ** 4578 ** If successful, sqlite3PcacheMakeClean() is called on the page and 4579 ** SQLITE_OK returned. If an IO error occurs while trying to make the 4580 ** page clean, the IO error code is returned. If the page cannot be 4581 ** made clean for some other reason, but no error occurs, then SQLITE_OK 4582 ** is returned by sqlite3PcacheMakeClean() is not called. 4583 */ 4584 static int pagerStress(void *p, PgHdr *pPg){ 4585 Pager *pPager = (Pager *)p; 4586 int rc = SQLITE_OK; 4587 4588 assert( pPg->pPager==pPager ); 4589 assert( pPg->flags&PGHDR_DIRTY ); 4590 4591 /* The doNotSpill NOSYNC bit is set during times when doing a sync of 4592 ** journal (and adding a new header) is not allowed. This occurs 4593 ** during calls to sqlite3PagerWrite() while trying to journal multiple 4594 ** pages belonging to the same sector. 4595 ** 4596 ** The doNotSpill ROLLBACK and OFF bits inhibits all cache spilling 4597 ** regardless of whether or not a sync is required. This is set during 4598 ** a rollback or by user request, respectively. 4599 ** 4600 ** Spilling is also prohibited when in an error state since that could 4601 ** lead to database corruption. In the current implementation it 4602 ** is impossible for sqlite3PcacheFetch() to be called with createFlag==3 4603 ** while in the error state, hence it is impossible for this routine to 4604 ** be called in the error state. Nevertheless, we include a NEVER() 4605 ** test for the error state as a safeguard against future changes. 4606 */ 4607 if( NEVER(pPager->errCode) ) return SQLITE_OK; 4608 testcase( pPager->doNotSpill & SPILLFLAG_ROLLBACK ); 4609 testcase( pPager->doNotSpill & SPILLFLAG_OFF ); 4610 testcase( pPager->doNotSpill & SPILLFLAG_NOSYNC ); 4611 if( pPager->doNotSpill 4612 && ((pPager->doNotSpill & (SPILLFLAG_ROLLBACK|SPILLFLAG_OFF))!=0 4613 || (pPg->flags & PGHDR_NEED_SYNC)!=0) 4614 ){ 4615 return SQLITE_OK; 4616 } 4617 4618 pPager->aStat[PAGER_STAT_SPILL]++; 4619 pPg->pDirty = 0; 4620 if( pagerUseWal(pPager) ){ 4621 /* Write a single frame for this page to the log. */ 4622 rc = subjournalPageIfRequired(pPg); 4623 if( rc==SQLITE_OK ){ 4624 rc = pagerWalFrames(pPager, pPg, 0, 0); 4625 } 4626 }else{ 4627 4628 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 4629 if( pPager->tempFile==0 ){ 4630 rc = sqlite3JournalCreate(pPager->jfd); 4631 if( rc!=SQLITE_OK ) return pager_error(pPager, rc); 4632 } 4633 #endif 4634 4635 /* Sync the journal file if required. */ 4636 if( pPg->flags&PGHDR_NEED_SYNC 4637 || pPager->eState==PAGER_WRITER_CACHEMOD 4638 ){ 4639 rc = syncJournal(pPager, 1); 4640 } 4641 4642 /* Write the contents of the page out to the database file. */ 4643 if( rc==SQLITE_OK ){ 4644 assert( (pPg->flags&PGHDR_NEED_SYNC)==0 ); 4645 rc = pager_write_pagelist(pPager, pPg); 4646 } 4647 } 4648 4649 /* Mark the page as clean. */ 4650 if( rc==SQLITE_OK ){ 4651 PAGERTRACE(("STRESS %d page %d\n", PAGERID(pPager), pPg->pgno)); 4652 sqlite3PcacheMakeClean(pPg); 4653 } 4654 4655 return pager_error(pPager, rc); 4656 } 4657 4658 /* 4659 ** Flush all unreferenced dirty pages to disk. 4660 */ 4661 int sqlite3PagerFlush(Pager *pPager){ 4662 int rc = pPager->errCode; 4663 if( !MEMDB ){ 4664 PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache); 4665 assert( assert_pager_state(pPager) ); 4666 while( rc==SQLITE_OK && pList ){ 4667 PgHdr *pNext = pList->pDirty; 4668 if( pList->nRef==0 ){ 4669 rc = pagerStress((void*)pPager, pList); 4670 } 4671 pList = pNext; 4672 } 4673 } 4674 4675 return rc; 4676 } 4677 4678 /* 4679 ** Allocate and initialize a new Pager object and put a pointer to it 4680 ** in *ppPager. The pager should eventually be freed by passing it 4681 ** to sqlite3PagerClose(). 4682 ** 4683 ** The zFilename argument is the path to the database file to open. 4684 ** If zFilename is NULL then a randomly-named temporary file is created 4685 ** and used as the file to be cached. Temporary files are be deleted 4686 ** automatically when they are closed. If zFilename is ":memory:" then 4687 ** all information is held in cache. It is never written to disk. 4688 ** This can be used to implement an in-memory database. 4689 ** 4690 ** The nExtra parameter specifies the number of bytes of space allocated 4691 ** along with each page reference. This space is available to the user 4692 ** via the sqlite3PagerGetExtra() API. When a new page is allocated, the 4693 ** first 8 bytes of this space are zeroed but the remainder is uninitialized. 4694 ** (The extra space is used by btree as the MemPage object.) 4695 ** 4696 ** The flags argument is used to specify properties that affect the 4697 ** operation of the pager. It should be passed some bitwise combination 4698 ** of the PAGER_* flags. 4699 ** 4700 ** The vfsFlags parameter is a bitmask to pass to the flags parameter 4701 ** of the xOpen() method of the supplied VFS when opening files. 4702 ** 4703 ** If the pager object is allocated and the specified file opened 4704 ** successfully, SQLITE_OK is returned and *ppPager set to point to 4705 ** the new pager object. If an error occurs, *ppPager is set to NULL 4706 ** and error code returned. This function may return SQLITE_NOMEM 4707 ** (sqlite3Malloc() is used to allocate memory), SQLITE_CANTOPEN or 4708 ** various SQLITE_IO_XXX errors. 4709 */ 4710 int sqlite3PagerOpen( 4711 sqlite3_vfs *pVfs, /* The virtual file system to use */ 4712 Pager **ppPager, /* OUT: Return the Pager structure here */ 4713 const char *zFilename, /* Name of the database file to open */ 4714 int nExtra, /* Extra bytes append to each in-memory page */ 4715 int flags, /* flags controlling this file */ 4716 int vfsFlags, /* flags passed through to sqlite3_vfs.xOpen() */ 4717 void (*xReinit)(DbPage*) /* Function to reinitialize pages */ 4718 ){ 4719 u8 *pPtr; 4720 Pager *pPager = 0; /* Pager object to allocate and return */ 4721 int rc = SQLITE_OK; /* Return code */ 4722 int tempFile = 0; /* True for temp files (incl. in-memory files) */ 4723 int memDb = 0; /* True if this is an in-memory file */ 4724 #ifdef SQLITE_ENABLE_DESERIALIZE 4725 int memJM = 0; /* Memory journal mode */ 4726 #else 4727 # define memJM 0 4728 #endif 4729 int readOnly = 0; /* True if this is a read-only file */ 4730 int journalFileSize; /* Bytes to allocate for each journal fd */ 4731 char *zPathname = 0; /* Full path to database file */ 4732 int nPathname = 0; /* Number of bytes in zPathname */ 4733 int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; /* False to omit journal */ 4734 int pcacheSize = sqlite3PcacheSize(); /* Bytes to allocate for PCache */ 4735 u32 szPageDflt = SQLITE_DEFAULT_PAGE_SIZE; /* Default page size */ 4736 const char *zUri = 0; /* URI args to copy */ 4737 int nUri = 0; /* Number of bytes of URI args at *zUri */ 4738 4739 /* Figure out how much space is required for each journal file-handle 4740 ** (there are two of them, the main journal and the sub-journal). */ 4741 journalFileSize = ROUND8(sqlite3JournalSize(pVfs)); 4742 4743 /* Set the output variable to NULL in case an error occurs. */ 4744 *ppPager = 0; 4745 4746 #ifndef SQLITE_OMIT_MEMORYDB 4747 if( flags & PAGER_MEMORY ){ 4748 memDb = 1; 4749 if( zFilename && zFilename[0] ){ 4750 zPathname = sqlite3DbStrDup(0, zFilename); 4751 if( zPathname==0 ) return SQLITE_NOMEM_BKPT; 4752 nPathname = sqlite3Strlen30(zPathname); 4753 zFilename = 0; 4754 } 4755 } 4756 #endif 4757 4758 /* Compute and store the full pathname in an allocated buffer pointed 4759 ** to by zPathname, length nPathname. Or, if this is a temporary file, 4760 ** leave both nPathname and zPathname set to 0. 4761 */ 4762 if( zFilename && zFilename[0] ){ 4763 const char *z; 4764 nPathname = pVfs->mxPathname+1; 4765 zPathname = sqlite3DbMallocRaw(0, nPathname*2); 4766 if( zPathname==0 ){ 4767 return SQLITE_NOMEM_BKPT; 4768 } 4769 zPathname[0] = 0; /* Make sure initialized even if FullPathname() fails */ 4770 rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname); 4771 nPathname = sqlite3Strlen30(zPathname); 4772 z = zUri = &zFilename[sqlite3Strlen30(zFilename)+1]; 4773 while( *z ){ 4774 z += sqlite3Strlen30(z)+1; 4775 z += sqlite3Strlen30(z)+1; 4776 } 4777 nUri = (int)(&z[1] - zUri); 4778 assert( nUri>=0 ); 4779 if( rc==SQLITE_OK && nPathname+8>pVfs->mxPathname ){ 4780 /* This branch is taken when the journal path required by 4781 ** the database being opened will be more than pVfs->mxPathname 4782 ** bytes in length. This means the database cannot be opened, 4783 ** as it will not be possible to open the journal file or even 4784 ** check for a hot-journal before reading. 4785 */ 4786 rc = SQLITE_CANTOPEN_BKPT; 4787 } 4788 if( rc!=SQLITE_OK ){ 4789 sqlite3DbFree(0, zPathname); 4790 return rc; 4791 } 4792 } 4793 4794 /* Allocate memory for the Pager structure, PCache object, the 4795 ** three file descriptors, the database file name and the journal 4796 ** file name. The layout in memory is as follows: 4797 ** 4798 ** Pager object (sizeof(Pager) bytes) 4799 ** PCache object (sqlite3PcacheSize() bytes) 4800 ** Database file handle (pVfs->szOsFile bytes) 4801 ** Sub-journal file handle (journalFileSize bytes) 4802 ** Main journal file handle (journalFileSize bytes) 4803 ** Database file name (nPathname+1 bytes) 4804 ** Journal file name (nPathname+8+1 bytes) 4805 */ 4806 pPtr = (u8 *)sqlite3MallocZero( 4807 ROUND8(sizeof(*pPager)) + /* Pager structure */ 4808 ROUND8(pcacheSize) + /* PCache object */ 4809 ROUND8(pVfs->szOsFile) + /* The main db file */ 4810 journalFileSize * 2 + /* The two journal files */ 4811 nPathname + 1 + nUri + /* zFilename */ 4812 nPathname + 8 + 2 /* zJournal */ 4813 #ifndef SQLITE_OMIT_WAL 4814 + nPathname + 4 + 2 /* zWal */ 4815 #endif 4816 ); 4817 assert( EIGHT_BYTE_ALIGNMENT(SQLITE_INT_TO_PTR(journalFileSize)) ); 4818 if( !pPtr ){ 4819 sqlite3DbFree(0, zPathname); 4820 return SQLITE_NOMEM_BKPT; 4821 } 4822 pPager = (Pager*)(pPtr); 4823 pPager->pPCache = (PCache*)(pPtr += ROUND8(sizeof(*pPager))); 4824 pPager->fd = (sqlite3_file*)(pPtr += ROUND8(pcacheSize)); 4825 pPager->sjfd = (sqlite3_file*)(pPtr += ROUND8(pVfs->szOsFile)); 4826 pPager->jfd = (sqlite3_file*)(pPtr += journalFileSize); 4827 pPager->zFilename = (char*)(pPtr += journalFileSize); 4828 assert( EIGHT_BYTE_ALIGNMENT(pPager->jfd) ); 4829 4830 /* Fill in the Pager.zFilename and Pager.zJournal buffers, if required. */ 4831 if( zPathname ){ 4832 assert( nPathname>0 ); 4833 pPager->zJournal = (char*)(pPtr += nPathname + 1 + nUri); 4834 memcpy(pPager->zFilename, zPathname, nPathname); 4835 if( nUri ) memcpy(&pPager->zFilename[nPathname+1], zUri, nUri); 4836 memcpy(pPager->zJournal, zPathname, nPathname); 4837 memcpy(&pPager->zJournal[nPathname], "-journal\000", 8+2); 4838 sqlite3FileSuffix3(pPager->zFilename, pPager->zJournal); 4839 #ifndef SQLITE_OMIT_WAL 4840 pPager->zWal = &pPager->zJournal[nPathname+8+1]; 4841 memcpy(pPager->zWal, zPathname, nPathname); 4842 memcpy(&pPager->zWal[nPathname], "-wal\000", 4+1); 4843 sqlite3FileSuffix3(pPager->zFilename, pPager->zWal); 4844 #endif 4845 sqlite3DbFree(0, zPathname); 4846 } 4847 pPager->pVfs = pVfs; 4848 pPager->vfsFlags = vfsFlags; 4849 4850 /* Open the pager file. 4851 */ 4852 if( zFilename && zFilename[0] ){ 4853 int fout = 0; /* VFS flags returned by xOpen() */ 4854 rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, vfsFlags, &fout); 4855 assert( !memDb ); 4856 #ifdef SQLITE_ENABLE_DESERIALIZE 4857 memJM = (fout&SQLITE_OPEN_MEMORY)!=0; 4858 #endif 4859 readOnly = (fout&SQLITE_OPEN_READONLY)!=0; 4860 4861 /* If the file was successfully opened for read/write access, 4862 ** choose a default page size in case we have to create the 4863 ** database file. The default page size is the maximum of: 4864 ** 4865 ** + SQLITE_DEFAULT_PAGE_SIZE, 4866 ** + The value returned by sqlite3OsSectorSize() 4867 ** + The largest page size that can be written atomically. 4868 */ 4869 if( rc==SQLITE_OK ){ 4870 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); 4871 if( !readOnly ){ 4872 setSectorSize(pPager); 4873 assert(SQLITE_DEFAULT_PAGE_SIZE<=SQLITE_MAX_DEFAULT_PAGE_SIZE); 4874 if( szPageDflt<pPager->sectorSize ){ 4875 if( pPager->sectorSize>SQLITE_MAX_DEFAULT_PAGE_SIZE ){ 4876 szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE; 4877 }else{ 4878 szPageDflt = (u32)pPager->sectorSize; 4879 } 4880 } 4881 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 4882 { 4883 int ii; 4884 assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); 4885 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); 4886 assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536); 4887 for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){ 4888 if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ){ 4889 szPageDflt = ii; 4890 } 4891 } 4892 } 4893 #endif 4894 } 4895 pPager->noLock = sqlite3_uri_boolean(zFilename, "nolock", 0); 4896 if( (iDc & SQLITE_IOCAP_IMMUTABLE)!=0 4897 || sqlite3_uri_boolean(zFilename, "immutable", 0) ){ 4898 vfsFlags |= SQLITE_OPEN_READONLY; 4899 goto act_like_temp_file; 4900 } 4901 } 4902 }else{ 4903 /* If a temporary file is requested, it is not opened immediately. 4904 ** In this case we accept the default page size and delay actually 4905 ** opening the file until the first call to OsWrite(). 4906 ** 4907 ** This branch is also run for an in-memory database. An in-memory 4908 ** database is the same as a temp-file that is never written out to 4909 ** disk and uses an in-memory rollback journal. 4910 ** 4911 ** This branch also runs for files marked as immutable. 4912 */ 4913 act_like_temp_file: 4914 tempFile = 1; 4915 pPager->eState = PAGER_READER; /* Pretend we already have a lock */ 4916 pPager->eLock = EXCLUSIVE_LOCK; /* Pretend we are in EXCLUSIVE mode */ 4917 pPager->noLock = 1; /* Do no locking */ 4918 readOnly = (vfsFlags&SQLITE_OPEN_READONLY); 4919 } 4920 4921 /* The following call to PagerSetPagesize() serves to set the value of 4922 ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer. 4923 */ 4924 if( rc==SQLITE_OK ){ 4925 assert( pPager->memDb==0 ); 4926 rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1); 4927 testcase( rc!=SQLITE_OK ); 4928 } 4929 4930 /* Initialize the PCache object. */ 4931 if( rc==SQLITE_OK ){ 4932 nExtra = ROUND8(nExtra); 4933 assert( nExtra>=8 && nExtra<1000 ); 4934 rc = sqlite3PcacheOpen(szPageDflt, nExtra, !memDb, 4935 !memDb?pagerStress:0, (void *)pPager, pPager->pPCache); 4936 } 4937 4938 /* If an error occurred above, free the Pager structure and close the file. 4939 */ 4940 if( rc!=SQLITE_OK ){ 4941 sqlite3OsClose(pPager->fd); 4942 sqlite3PageFree(pPager->pTmpSpace); 4943 sqlite3_free(pPager); 4944 return rc; 4945 } 4946 4947 PAGERTRACE(("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename)); 4948 IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename)) 4949 4950 pPager->useJournal = (u8)useJournal; 4951 /* pPager->stmtOpen = 0; */ 4952 /* pPager->stmtInUse = 0; */ 4953 /* pPager->nRef = 0; */ 4954 /* pPager->stmtSize = 0; */ 4955 /* pPager->stmtJSize = 0; */ 4956 /* pPager->nPage = 0; */ 4957 pPager->mxPgno = SQLITE_MAX_PAGE_COUNT; 4958 /* pPager->state = PAGER_UNLOCK; */ 4959 /* pPager->errMask = 0; */ 4960 pPager->tempFile = (u8)tempFile; 4961 assert( tempFile==PAGER_LOCKINGMODE_NORMAL 4962 || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE ); 4963 assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 ); 4964 pPager->exclusiveMode = (u8)tempFile; 4965 pPager->changeCountDone = pPager->tempFile; 4966 pPager->memDb = (u8)memDb; 4967 pPager->readOnly = (u8)readOnly; 4968 assert( useJournal || pPager->tempFile ); 4969 pPager->noSync = pPager->tempFile; 4970 if( pPager->noSync ){ 4971 assert( pPager->fullSync==0 ); 4972 assert( pPager->extraSync==0 ); 4973 assert( pPager->syncFlags==0 ); 4974 assert( pPager->walSyncFlags==0 ); 4975 }else{ 4976 pPager->fullSync = 1; 4977 pPager->extraSync = 0; 4978 pPager->syncFlags = SQLITE_SYNC_NORMAL; 4979 pPager->walSyncFlags = SQLITE_SYNC_NORMAL | (SQLITE_SYNC_NORMAL<<2); 4980 } 4981 /* pPager->pFirst = 0; */ 4982 /* pPager->pFirstSynced = 0; */ 4983 /* pPager->pLast = 0; */ 4984 pPager->nExtra = (u16)nExtra; 4985 pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT; 4986 assert( isOpen(pPager->fd) || tempFile ); 4987 setSectorSize(pPager); 4988 if( !useJournal ){ 4989 pPager->journalMode = PAGER_JOURNALMODE_OFF; 4990 }else if( memDb || memJM ){ 4991 pPager->journalMode = PAGER_JOURNALMODE_MEMORY; 4992 } 4993 /* pPager->xBusyHandler = 0; */ 4994 /* pPager->pBusyHandlerArg = 0; */ 4995 pPager->xReiniter = xReinit; 4996 setGetterMethod(pPager); 4997 /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */ 4998 /* pPager->szMmap = SQLITE_DEFAULT_MMAP_SIZE // will be set by btree.c */ 4999 5000 *ppPager = pPager; 5001 return SQLITE_OK; 5002 } 5003 5004 5005 5006 /* 5007 ** This function is called after transitioning from PAGER_UNLOCK to 5008 ** PAGER_SHARED state. It tests if there is a hot journal present in 5009 ** the file-system for the given pager. A hot journal is one that 5010 ** needs to be played back. According to this function, a hot-journal 5011 ** file exists if the following criteria are met: 5012 ** 5013 ** * The journal file exists in the file system, and 5014 ** * No process holds a RESERVED or greater lock on the database file, and 5015 ** * The database file itself is greater than 0 bytes in size, and 5016 ** * The first byte of the journal file exists and is not 0x00. 5017 ** 5018 ** If the current size of the database file is 0 but a journal file 5019 ** exists, that is probably an old journal left over from a prior 5020 ** database with the same name. In this case the journal file is 5021 ** just deleted using OsDelete, *pExists is set to 0 and SQLITE_OK 5022 ** is returned. 5023 ** 5024 ** This routine does not check if there is a master journal filename 5025 ** at the end of the file. If there is, and that master journal file 5026 ** does not exist, then the journal file is not really hot. In this 5027 ** case this routine will return a false-positive. The pager_playback() 5028 ** routine will discover that the journal file is not really hot and 5029 ** will not roll it back. 5030 ** 5031 ** If a hot-journal file is found to exist, *pExists is set to 1 and 5032 ** SQLITE_OK returned. If no hot-journal file is present, *pExists is 5033 ** set to 0 and SQLITE_OK returned. If an IO error occurs while trying 5034 ** to determine whether or not a hot-journal file exists, the IO error 5035 ** code is returned and the value of *pExists is undefined. 5036 */ 5037 static int hasHotJournal(Pager *pPager, int *pExists){ 5038 sqlite3_vfs * const pVfs = pPager->pVfs; 5039 int rc = SQLITE_OK; /* Return code */ 5040 int exists = 1; /* True if a journal file is present */ 5041 int jrnlOpen = !!isOpen(pPager->jfd); 5042 5043 assert( pPager->useJournal ); 5044 assert( isOpen(pPager->fd) ); 5045 assert( pPager->eState==PAGER_OPEN ); 5046 5047 assert( jrnlOpen==0 || ( sqlite3OsDeviceCharacteristics(pPager->jfd) & 5048 SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN 5049 )); 5050 5051 *pExists = 0; 5052 if( !jrnlOpen ){ 5053 rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists); 5054 } 5055 if( rc==SQLITE_OK && exists ){ 5056 int locked = 0; /* True if some process holds a RESERVED lock */ 5057 5058 /* Race condition here: Another process might have been holding the 5059 ** the RESERVED lock and have a journal open at the sqlite3OsAccess() 5060 ** call above, but then delete the journal and drop the lock before 5061 ** we get to the following sqlite3OsCheckReservedLock() call. If that 5062 ** is the case, this routine might think there is a hot journal when 5063 ** in fact there is none. This results in a false-positive which will 5064 ** be dealt with by the playback routine. Ticket #3883. 5065 */ 5066 rc = sqlite3OsCheckReservedLock(pPager->fd, &locked); 5067 if( rc==SQLITE_OK && !locked ){ 5068 Pgno nPage; /* Number of pages in database file */ 5069 5070 assert( pPager->tempFile==0 ); 5071 rc = pagerPagecount(pPager, &nPage); 5072 if( rc==SQLITE_OK ){ 5073 /* If the database is zero pages in size, that means that either (1) the 5074 ** journal is a remnant from a prior database with the same name where 5075 ** the database file but not the journal was deleted, or (2) the initial 5076 ** transaction that populates a new database is being rolled back. 5077 ** In either case, the journal file can be deleted. However, take care 5078 ** not to delete the journal file if it is already open due to 5079 ** journal_mode=PERSIST. 5080 */ 5081 if( nPage==0 && !jrnlOpen ){ 5082 sqlite3BeginBenignMalloc(); 5083 if( pagerLockDb(pPager, RESERVED_LOCK)==SQLITE_OK ){ 5084 sqlite3OsDelete(pVfs, pPager->zJournal, 0); 5085 if( !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK); 5086 } 5087 sqlite3EndBenignMalloc(); 5088 }else{ 5089 /* The journal file exists and no other connection has a reserved 5090 ** or greater lock on the database file. Now check that there is 5091 ** at least one non-zero bytes at the start of the journal file. 5092 ** If there is, then we consider this journal to be hot. If not, 5093 ** it can be ignored. 5094 */ 5095 if( !jrnlOpen ){ 5096 int f = SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL; 5097 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &f); 5098 } 5099 if( rc==SQLITE_OK ){ 5100 u8 first = 0; 5101 rc = sqlite3OsRead(pPager->jfd, (void *)&first, 1, 0); 5102 if( rc==SQLITE_IOERR_SHORT_READ ){ 5103 rc = SQLITE_OK; 5104 } 5105 if( !jrnlOpen ){ 5106 sqlite3OsClose(pPager->jfd); 5107 } 5108 *pExists = (first!=0); 5109 }else if( rc==SQLITE_CANTOPEN ){ 5110 /* If we cannot open the rollback journal file in order to see if 5111 ** it has a zero header, that might be due to an I/O error, or 5112 ** it might be due to the race condition described above and in 5113 ** ticket #3883. Either way, assume that the journal is hot. 5114 ** This might be a false positive. But if it is, then the 5115 ** automatic journal playback and recovery mechanism will deal 5116 ** with it under an EXCLUSIVE lock where we do not need to 5117 ** worry so much with race conditions. 5118 */ 5119 *pExists = 1; 5120 rc = SQLITE_OK; 5121 } 5122 } 5123 } 5124 } 5125 } 5126 5127 return rc; 5128 } 5129 5130 /* 5131 ** This function is called to obtain a shared lock on the database file. 5132 ** It is illegal to call sqlite3PagerGet() until after this function 5133 ** has been successfully called. If a shared-lock is already held when 5134 ** this function is called, it is a no-op. 5135 ** 5136 ** The following operations are also performed by this function. 5137 ** 5138 ** 1) If the pager is currently in PAGER_OPEN state (no lock held 5139 ** on the database file), then an attempt is made to obtain a 5140 ** SHARED lock on the database file. Immediately after obtaining 5141 ** the SHARED lock, the file-system is checked for a hot-journal, 5142 ** which is played back if present. Following any hot-journal 5143 ** rollback, the contents of the cache are validated by checking 5144 ** the 'change-counter' field of the database file header and 5145 ** discarded if they are found to be invalid. 5146 ** 5147 ** 2) If the pager is running in exclusive-mode, and there are currently 5148 ** no outstanding references to any pages, and is in the error state, 5149 ** then an attempt is made to clear the error state by discarding 5150 ** the contents of the page cache and rolling back any open journal 5151 ** file. 5152 ** 5153 ** If everything is successful, SQLITE_OK is returned. If an IO error 5154 ** occurs while locking the database, checking for a hot-journal file or 5155 ** rolling back a journal file, the IO error code is returned. 5156 */ 5157 int sqlite3PagerSharedLock(Pager *pPager){ 5158 int rc = SQLITE_OK; /* Return code */ 5159 5160 /* This routine is only called from b-tree and only when there are no 5161 ** outstanding pages. This implies that the pager state should either 5162 ** be OPEN or READER. READER is only possible if the pager is or was in 5163 ** exclusive access mode. */ 5164 assert( sqlite3PcacheRefCount(pPager->pPCache)==0 ); 5165 assert( assert_pager_state(pPager) ); 5166 assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); 5167 assert( pPager->errCode==SQLITE_OK ); 5168 5169 if( !pagerUseWal(pPager) && pPager->eState==PAGER_OPEN ){ 5170 int bHotJournal = 1; /* True if there exists a hot journal-file */ 5171 5172 assert( !MEMDB ); 5173 assert( pPager->tempFile==0 || pPager->eLock==EXCLUSIVE_LOCK ); 5174 5175 rc = pager_wait_on_lock(pPager, SHARED_LOCK); 5176 if( rc!=SQLITE_OK ){ 5177 assert( pPager->eLock==NO_LOCK || pPager->eLock==UNKNOWN_LOCK ); 5178 goto failed; 5179 } 5180 5181 /* If a journal file exists, and there is no RESERVED lock on the 5182 ** database file, then it either needs to be played back or deleted. 5183 */ 5184 if( pPager->eLock<=SHARED_LOCK ){ 5185 rc = hasHotJournal(pPager, &bHotJournal); 5186 } 5187 if( rc!=SQLITE_OK ){ 5188 goto failed; 5189 } 5190 if( bHotJournal ){ 5191 if( pPager->readOnly ){ 5192 rc = SQLITE_READONLY_ROLLBACK; 5193 goto failed; 5194 } 5195 5196 /* Get an EXCLUSIVE lock on the database file. At this point it is 5197 ** important that a RESERVED lock is not obtained on the way to the 5198 ** EXCLUSIVE lock. If it were, another process might open the 5199 ** database file, detect the RESERVED lock, and conclude that the 5200 ** database is safe to read while this process is still rolling the 5201 ** hot-journal back. 5202 ** 5203 ** Because the intermediate RESERVED lock is not requested, any 5204 ** other process attempting to access the database file will get to 5205 ** this point in the code and fail to obtain its own EXCLUSIVE lock 5206 ** on the database file. 5207 ** 5208 ** Unless the pager is in locking_mode=exclusive mode, the lock is 5209 ** downgraded to SHARED_LOCK before this function returns. 5210 */ 5211 rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); 5212 if( rc!=SQLITE_OK ){ 5213 goto failed; 5214 } 5215 5216 /* If it is not already open and the file exists on disk, open the 5217 ** journal for read/write access. Write access is required because 5218 ** in exclusive-access mode the file descriptor will be kept open 5219 ** and possibly used for a transaction later on. Also, write-access 5220 ** is usually required to finalize the journal in journal_mode=persist 5221 ** mode (and also for journal_mode=truncate on some systems). 5222 ** 5223 ** If the journal does not exist, it usually means that some 5224 ** other connection managed to get in and roll it back before 5225 ** this connection obtained the exclusive lock above. Or, it 5226 ** may mean that the pager was in the error-state when this 5227 ** function was called and the journal file does not exist. 5228 */ 5229 if( !isOpen(pPager->jfd) ){ 5230 sqlite3_vfs * const pVfs = pPager->pVfs; 5231 int bExists; /* True if journal file exists */ 5232 rc = sqlite3OsAccess( 5233 pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &bExists); 5234 if( rc==SQLITE_OK && bExists ){ 5235 int fout = 0; 5236 int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL; 5237 assert( !pPager->tempFile ); 5238 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout); 5239 assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); 5240 if( rc==SQLITE_OK && fout&SQLITE_OPEN_READONLY ){ 5241 rc = SQLITE_CANTOPEN_BKPT; 5242 sqlite3OsClose(pPager->jfd); 5243 } 5244 } 5245 } 5246 5247 /* Playback and delete the journal. Drop the database write 5248 ** lock and reacquire the read lock. Purge the cache before 5249 ** playing back the hot-journal so that we don't end up with 5250 ** an inconsistent cache. Sync the hot journal before playing 5251 ** it back since the process that crashed and left the hot journal 5252 ** probably did not sync it and we are required to always sync 5253 ** the journal before playing it back. 5254 */ 5255 if( isOpen(pPager->jfd) ){ 5256 assert( rc==SQLITE_OK ); 5257 rc = pagerSyncHotJournal(pPager); 5258 if( rc==SQLITE_OK ){ 5259 rc = pager_playback(pPager, !pPager->tempFile); 5260 pPager->eState = PAGER_OPEN; 5261 } 5262 }else if( !pPager->exclusiveMode ){ 5263 pagerUnlockDb(pPager, SHARED_LOCK); 5264 } 5265 5266 if( rc!=SQLITE_OK ){ 5267 /* This branch is taken if an error occurs while trying to open 5268 ** or roll back a hot-journal while holding an EXCLUSIVE lock. The 5269 ** pager_unlock() routine will be called before returning to unlock 5270 ** the file. If the unlock attempt fails, then Pager.eLock must be 5271 ** set to UNKNOWN_LOCK (see the comment above the #define for 5272 ** UNKNOWN_LOCK above for an explanation). 5273 ** 5274 ** In order to get pager_unlock() to do this, set Pager.eState to 5275 ** PAGER_ERROR now. This is not actually counted as a transition 5276 ** to ERROR state in the state diagram at the top of this file, 5277 ** since we know that the same call to pager_unlock() will very 5278 ** shortly transition the pager object to the OPEN state. Calling 5279 ** assert_pager_state() would fail now, as it should not be possible 5280 ** to be in ERROR state when there are zero outstanding page 5281 ** references. 5282 */ 5283 pager_error(pPager, rc); 5284 goto failed; 5285 } 5286 5287 assert( pPager->eState==PAGER_OPEN ); 5288 assert( (pPager->eLock==SHARED_LOCK) 5289 || (pPager->exclusiveMode && pPager->eLock>SHARED_LOCK) 5290 ); 5291 } 5292 5293 if( !pPager->tempFile && pPager->hasHeldSharedLock ){ 5294 /* The shared-lock has just been acquired then check to 5295 ** see if the database has been modified. If the database has changed, 5296 ** flush the cache. The hasHeldSharedLock flag prevents this from 5297 ** occurring on the very first access to a file, in order to save a 5298 ** single unnecessary sqlite3OsRead() call at the start-up. 5299 ** 5300 ** Database changes are detected by looking at 15 bytes beginning 5301 ** at offset 24 into the file. The first 4 of these 16 bytes are 5302 ** a 32-bit counter that is incremented with each change. The 5303 ** other bytes change randomly with each file change when 5304 ** a codec is in use. 5305 ** 5306 ** There is a vanishingly small chance that a change will not be 5307 ** detected. The chance of an undetected change is so small that 5308 ** it can be neglected. 5309 */ 5310 char dbFileVers[sizeof(pPager->dbFileVers)]; 5311 5312 IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers))); 5313 rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24); 5314 if( rc!=SQLITE_OK ){ 5315 if( rc!=SQLITE_IOERR_SHORT_READ ){ 5316 goto failed; 5317 } 5318 memset(dbFileVers, 0, sizeof(dbFileVers)); 5319 } 5320 5321 if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){ 5322 pager_reset(pPager); 5323 5324 /* Unmap the database file. It is possible that external processes 5325 ** may have truncated the database file and then extended it back 5326 ** to its original size while this process was not holding a lock. 5327 ** In this case there may exist a Pager.pMap mapping that appears 5328 ** to be the right size but is not actually valid. Avoid this 5329 ** possibility by unmapping the db here. */ 5330 if( USEFETCH(pPager) ){ 5331 sqlite3OsUnfetch(pPager->fd, 0, 0); 5332 } 5333 } 5334 } 5335 5336 /* If there is a WAL file in the file-system, open this database in WAL 5337 ** mode. Otherwise, the following function call is a no-op. 5338 */ 5339 rc = pagerOpenWalIfPresent(pPager); 5340 #ifndef SQLITE_OMIT_WAL 5341 assert( pPager->pWal==0 || rc==SQLITE_OK ); 5342 #endif 5343 } 5344 5345 if( pagerUseWal(pPager) ){ 5346 assert( rc==SQLITE_OK ); 5347 rc = pagerBeginReadTransaction(pPager); 5348 } 5349 5350 if( pPager->tempFile==0 && pPager->eState==PAGER_OPEN && rc==SQLITE_OK ){ 5351 rc = pagerPagecount(pPager, &pPager->dbSize); 5352 } 5353 5354 failed: 5355 if( rc!=SQLITE_OK ){ 5356 assert( !MEMDB ); 5357 pager_unlock(pPager); 5358 assert( pPager->eState==PAGER_OPEN ); 5359 }else{ 5360 pPager->eState = PAGER_READER; 5361 pPager->hasHeldSharedLock = 1; 5362 } 5363 return rc; 5364 } 5365 5366 /* 5367 ** If the reference count has reached zero, rollback any active 5368 ** transaction and unlock the pager. 5369 ** 5370 ** Except, in locking_mode=EXCLUSIVE when there is nothing to in 5371 ** the rollback journal, the unlock is not performed and there is 5372 ** nothing to rollback, so this routine is a no-op. 5373 */ 5374 static void pagerUnlockIfUnused(Pager *pPager){ 5375 if( sqlite3PcacheRefCount(pPager->pPCache)==0 ){ 5376 assert( pPager->nMmapOut==0 ); /* because page1 is never memory mapped */ 5377 pagerUnlockAndRollback(pPager); 5378 } 5379 } 5380 5381 /* 5382 ** The page getter methods each try to acquire a reference to a 5383 ** page with page number pgno. If the requested reference is 5384 ** successfully obtained, it is copied to *ppPage and SQLITE_OK returned. 5385 ** 5386 ** There are different implementations of the getter method depending 5387 ** on the current state of the pager. 5388 ** 5389 ** getPageNormal() -- The normal getter 5390 ** getPageError() -- Used if the pager is in an error state 5391 ** getPageMmap() -- Used if memory-mapped I/O is enabled 5392 ** 5393 ** If the requested page is already in the cache, it is returned. 5394 ** Otherwise, a new page object is allocated and populated with data 5395 ** read from the database file. In some cases, the pcache module may 5396 ** choose not to allocate a new page object and may reuse an existing 5397 ** object with no outstanding references. 5398 ** 5399 ** The extra data appended to a page is always initialized to zeros the 5400 ** first time a page is loaded into memory. If the page requested is 5401 ** already in the cache when this function is called, then the extra 5402 ** data is left as it was when the page object was last used. 5403 ** 5404 ** If the database image is smaller than the requested page or if 5405 ** the flags parameter contains the PAGER_GET_NOCONTENT bit and the 5406 ** requested page is not already stored in the cache, then no 5407 ** actual disk read occurs. In this case the memory image of the 5408 ** page is initialized to all zeros. 5409 ** 5410 ** If PAGER_GET_NOCONTENT is true, it means that we do not care about 5411 ** the contents of the page. This occurs in two scenarios: 5412 ** 5413 ** a) When reading a free-list leaf page from the database, and 5414 ** 5415 ** b) When a savepoint is being rolled back and we need to load 5416 ** a new page into the cache to be filled with the data read 5417 ** from the savepoint journal. 5418 ** 5419 ** If PAGER_GET_NOCONTENT is true, then the data returned is zeroed instead 5420 ** of being read from the database. Additionally, the bits corresponding 5421 ** to pgno in Pager.pInJournal (bitvec of pages already written to the 5422 ** journal file) and the PagerSavepoint.pInSavepoint bitvecs of any open 5423 ** savepoints are set. This means if the page is made writable at any 5424 ** point in the future, using a call to sqlite3PagerWrite(), its contents 5425 ** will not be journaled. This saves IO. 5426 ** 5427 ** The acquisition might fail for several reasons. In all cases, 5428 ** an appropriate error code is returned and *ppPage is set to NULL. 5429 ** 5430 ** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt 5431 ** to find a page in the in-memory cache first. If the page is not already 5432 ** in memory, this routine goes to disk to read it in whereas Lookup() 5433 ** just returns 0. This routine acquires a read-lock the first time it 5434 ** has to go to disk, and could also playback an old journal if necessary. 5435 ** Since Lookup() never goes to disk, it never has to deal with locks 5436 ** or journal files. 5437 */ 5438 static int getPageNormal( 5439 Pager *pPager, /* The pager open on the database file */ 5440 Pgno pgno, /* Page number to fetch */ 5441 DbPage **ppPage, /* Write a pointer to the page here */ 5442 int flags /* PAGER_GET_XXX flags */ 5443 ){ 5444 int rc = SQLITE_OK; 5445 PgHdr *pPg; 5446 u8 noContent; /* True if PAGER_GET_NOCONTENT is set */ 5447 sqlite3_pcache_page *pBase; 5448 5449 assert( pPager->errCode==SQLITE_OK ); 5450 assert( pPager->eState>=PAGER_READER ); 5451 assert( assert_pager_state(pPager) ); 5452 assert( pPager->hasHeldSharedLock==1 ); 5453 5454 if( pgno==0 ) return SQLITE_CORRUPT_BKPT; 5455 pBase = sqlite3PcacheFetch(pPager->pPCache, pgno, 3); 5456 if( pBase==0 ){ 5457 pPg = 0; 5458 rc = sqlite3PcacheFetchStress(pPager->pPCache, pgno, &pBase); 5459 if( rc!=SQLITE_OK ) goto pager_acquire_err; 5460 if( pBase==0 ){ 5461 rc = SQLITE_NOMEM_BKPT; 5462 goto pager_acquire_err; 5463 } 5464 } 5465 pPg = *ppPage = sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pBase); 5466 assert( pPg==(*ppPage) ); 5467 assert( pPg->pgno==pgno ); 5468 assert( pPg->pPager==pPager || pPg->pPager==0 ); 5469 5470 noContent = (flags & PAGER_GET_NOCONTENT)!=0; 5471 if( pPg->pPager && !noContent ){ 5472 /* In this case the pcache already contains an initialized copy of 5473 ** the page. Return without further ado. */ 5474 assert( pgno<=PAGER_MAX_PGNO && pgno!=PAGER_MJ_PGNO(pPager) ); 5475 pPager->aStat[PAGER_STAT_HIT]++; 5476 return SQLITE_OK; 5477 5478 }else{ 5479 /* The pager cache has created a new page. Its content needs to 5480 ** be initialized. But first some error checks: 5481 ** 5482 ** (1) The maximum page number is 2^31 5483 ** (2) Never try to fetch the locking page 5484 */ 5485 if( pgno>PAGER_MAX_PGNO || pgno==PAGER_MJ_PGNO(pPager) ){ 5486 rc = SQLITE_CORRUPT_BKPT; 5487 goto pager_acquire_err; 5488 } 5489 5490 pPg->pPager = pPager; 5491 5492 assert( !isOpen(pPager->fd) || !MEMDB ); 5493 if( !isOpen(pPager->fd) || pPager->dbSize<pgno || noContent ){ 5494 if( pgno>pPager->mxPgno ){ 5495 rc = SQLITE_FULL; 5496 goto pager_acquire_err; 5497 } 5498 if( noContent ){ 5499 /* Failure to set the bits in the InJournal bit-vectors is benign. 5500 ** It merely means that we might do some extra work to journal a 5501 ** page that does not need to be journaled. Nevertheless, be sure 5502 ** to test the case where a malloc error occurs while trying to set 5503 ** a bit in a bit vector. 5504 */ 5505 sqlite3BeginBenignMalloc(); 5506 if( pgno<=pPager->dbOrigSize ){ 5507 TESTONLY( rc = ) sqlite3BitvecSet(pPager->pInJournal, pgno); 5508 testcase( rc==SQLITE_NOMEM ); 5509 } 5510 TESTONLY( rc = ) addToSavepointBitvecs(pPager, pgno); 5511 testcase( rc==SQLITE_NOMEM ); 5512 sqlite3EndBenignMalloc(); 5513 } 5514 memset(pPg->pData, 0, pPager->pageSize); 5515 IOTRACE(("ZERO %p %d\n", pPager, pgno)); 5516 }else{ 5517 assert( pPg->pPager==pPager ); 5518 pPager->aStat[PAGER_STAT_MISS]++; 5519 rc = readDbPage(pPg); 5520 if( rc!=SQLITE_OK ){ 5521 goto pager_acquire_err; 5522 } 5523 } 5524 pager_set_pagehash(pPg); 5525 } 5526 return SQLITE_OK; 5527 5528 pager_acquire_err: 5529 assert( rc!=SQLITE_OK ); 5530 if( pPg ){ 5531 sqlite3PcacheDrop(pPg); 5532 } 5533 pagerUnlockIfUnused(pPager); 5534 *ppPage = 0; 5535 return rc; 5536 } 5537 5538 #if SQLITE_MAX_MMAP_SIZE>0 5539 /* The page getter for when memory-mapped I/O is enabled */ 5540 static int getPageMMap( 5541 Pager *pPager, /* The pager open on the database file */ 5542 Pgno pgno, /* Page number to fetch */ 5543 DbPage **ppPage, /* Write a pointer to the page here */ 5544 int flags /* PAGER_GET_XXX flags */ 5545 ){ 5546 int rc = SQLITE_OK; 5547 PgHdr *pPg = 0; 5548 u32 iFrame = 0; /* Frame to read from WAL file */ 5549 5550 /* It is acceptable to use a read-only (mmap) page for any page except 5551 ** page 1 if there is no write-transaction open or the ACQUIRE_READONLY 5552 ** flag was specified by the caller. And so long as the db is not a 5553 ** temporary or in-memory database. */ 5554 const int bMmapOk = (pgno>1 5555 && (pPager->eState==PAGER_READER || (flags & PAGER_GET_READONLY)) 5556 ); 5557 5558 assert( USEFETCH(pPager) ); 5559 #ifdef SQLITE_HAS_CODEC 5560 assert( pPager->xCodec==0 ); 5561 #endif 5562 5563 /* Optimization note: Adding the "pgno<=1" term before "pgno==0" here 5564 ** allows the compiler optimizer to reuse the results of the "pgno>1" 5565 ** test in the previous statement, and avoid testing pgno==0 in the 5566 ** common case where pgno is large. */ 5567 if( pgno<=1 && pgno==0 ){ 5568 return SQLITE_CORRUPT_BKPT; 5569 } 5570 assert( pPager->eState>=PAGER_READER ); 5571 assert( assert_pager_state(pPager) ); 5572 assert( pPager->hasHeldSharedLock==1 ); 5573 assert( pPager->errCode==SQLITE_OK ); 5574 5575 if( bMmapOk && pagerUseWal(pPager) ){ 5576 rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iFrame); 5577 if( rc!=SQLITE_OK ){ 5578 *ppPage = 0; 5579 return rc; 5580 } 5581 } 5582 if( bMmapOk && iFrame==0 ){ 5583 void *pData = 0; 5584 rc = sqlite3OsFetch(pPager->fd, 5585 (i64)(pgno-1) * pPager->pageSize, pPager->pageSize, &pData 5586 ); 5587 if( rc==SQLITE_OK && pData ){ 5588 if( pPager->eState>PAGER_READER || pPager->tempFile ){ 5589 pPg = sqlite3PagerLookup(pPager, pgno); 5590 } 5591 if( pPg==0 ){ 5592 rc = pagerAcquireMapPage(pPager, pgno, pData, &pPg); 5593 }else{ 5594 sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1)*pPager->pageSize, pData); 5595 } 5596 if( pPg ){ 5597 assert( rc==SQLITE_OK ); 5598 *ppPage = pPg; 5599 return SQLITE_OK; 5600 } 5601 } 5602 if( rc!=SQLITE_OK ){ 5603 *ppPage = 0; 5604 return rc; 5605 } 5606 } 5607 return getPageNormal(pPager, pgno, ppPage, flags); 5608 } 5609 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 5610 5611 /* The page getter method for when the pager is an error state */ 5612 static int getPageError( 5613 Pager *pPager, /* The pager open on the database file */ 5614 Pgno pgno, /* Page number to fetch */ 5615 DbPage **ppPage, /* Write a pointer to the page here */ 5616 int flags /* PAGER_GET_XXX flags */ 5617 ){ 5618 UNUSED_PARAMETER(pgno); 5619 UNUSED_PARAMETER(flags); 5620 assert( pPager->errCode!=SQLITE_OK ); 5621 *ppPage = 0; 5622 return pPager->errCode; 5623 } 5624 5625 5626 /* Dispatch all page fetch requests to the appropriate getter method. 5627 */ 5628 int sqlite3PagerGet( 5629 Pager *pPager, /* The pager open on the database file */ 5630 Pgno pgno, /* Page number to fetch */ 5631 DbPage **ppPage, /* Write a pointer to the page here */ 5632 int flags /* PAGER_GET_XXX flags */ 5633 ){ 5634 return pPager->xGet(pPager, pgno, ppPage, flags); 5635 } 5636 5637 /* 5638 ** Acquire a page if it is already in the in-memory cache. Do 5639 ** not read the page from disk. Return a pointer to the page, 5640 ** or 0 if the page is not in cache. 5641 ** 5642 ** See also sqlite3PagerGet(). The difference between this routine 5643 ** and sqlite3PagerGet() is that _get() will go to the disk and read 5644 ** in the page if the page is not already in cache. This routine 5645 ** returns NULL if the page is not in cache or if a disk I/O error 5646 ** has ever happened. 5647 */ 5648 DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ 5649 sqlite3_pcache_page *pPage; 5650 assert( pPager!=0 ); 5651 assert( pgno!=0 ); 5652 assert( pPager->pPCache!=0 ); 5653 pPage = sqlite3PcacheFetch(pPager->pPCache, pgno, 0); 5654 assert( pPage==0 || pPager->hasHeldSharedLock ); 5655 if( pPage==0 ) return 0; 5656 return sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pPage); 5657 } 5658 5659 /* 5660 ** Release a page reference. 5661 ** 5662 ** The sqlite3PagerUnref() and sqlite3PagerUnrefNotNull() may only be 5663 ** used if we know that the page being released is not the last page. 5664 ** The btree layer always holds page1 open until the end, so these first 5665 ** to routines can be used to release any page other than BtShared.pPage1. 5666 ** 5667 ** Use sqlite3PagerUnrefPageOne() to release page1. This latter routine 5668 ** checks the total number of outstanding pages and if the number of 5669 ** pages reaches zero it drops the database lock. 5670 */ 5671 void sqlite3PagerUnrefNotNull(DbPage *pPg){ 5672 TESTONLY( Pager *pPager = pPg->pPager; ) 5673 assert( pPg!=0 ); 5674 if( pPg->flags & PGHDR_MMAP ){ 5675 assert( pPg->pgno!=1 ); /* Page1 is never memory mapped */ 5676 pagerReleaseMapPage(pPg); 5677 }else{ 5678 sqlite3PcacheRelease(pPg); 5679 } 5680 /* Do not use this routine to release the last reference to page1 */ 5681 assert( sqlite3PcacheRefCount(pPager->pPCache)>0 ); 5682 } 5683 void sqlite3PagerUnref(DbPage *pPg){ 5684 if( pPg ) sqlite3PagerUnrefNotNull(pPg); 5685 } 5686 void sqlite3PagerUnrefPageOne(DbPage *pPg){ 5687 Pager *pPager; 5688 assert( pPg!=0 ); 5689 assert( pPg->pgno==1 ); 5690 assert( (pPg->flags & PGHDR_MMAP)==0 ); /* Page1 is never memory mapped */ 5691 pPager = pPg->pPager; 5692 sqlite3PagerResetLockTimeout(pPager); 5693 sqlite3PcacheRelease(pPg); 5694 pagerUnlockIfUnused(pPager); 5695 } 5696 5697 /* 5698 ** This function is called at the start of every write transaction. 5699 ** There must already be a RESERVED or EXCLUSIVE lock on the database 5700 ** file when this routine is called. 5701 ** 5702 ** Open the journal file for pager pPager and write a journal header 5703 ** to the start of it. If there are active savepoints, open the sub-journal 5704 ** as well. This function is only used when the journal file is being 5705 ** opened to write a rollback log for a transaction. It is not used 5706 ** when opening a hot journal file to roll it back. 5707 ** 5708 ** If the journal file is already open (as it may be in exclusive mode), 5709 ** then this function just writes a journal header to the start of the 5710 ** already open file. 5711 ** 5712 ** Whether or not the journal file is opened by this function, the 5713 ** Pager.pInJournal bitvec structure is allocated. 5714 ** 5715 ** Return SQLITE_OK if everything is successful. Otherwise, return 5716 ** SQLITE_NOMEM if the attempt to allocate Pager.pInJournal fails, or 5717 ** an IO error code if opening or writing the journal file fails. 5718 */ 5719 static int pager_open_journal(Pager *pPager){ 5720 int rc = SQLITE_OK; /* Return code */ 5721 sqlite3_vfs * const pVfs = pPager->pVfs; /* Local cache of vfs pointer */ 5722 5723 assert( pPager->eState==PAGER_WRITER_LOCKED ); 5724 assert( assert_pager_state(pPager) ); 5725 assert( pPager->pInJournal==0 ); 5726 5727 /* If already in the error state, this function is a no-op. But on 5728 ** the other hand, this routine is never called if we are already in 5729 ** an error state. */ 5730 if( NEVER(pPager->errCode) ) return pPager->errCode; 5731 5732 if( !pagerUseWal(pPager) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ 5733 pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize); 5734 if( pPager->pInJournal==0 ){ 5735 return SQLITE_NOMEM_BKPT; 5736 } 5737 5738 /* Open the journal file if it is not already open. */ 5739 if( !isOpen(pPager->jfd) ){ 5740 if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ){ 5741 sqlite3MemJournalOpen(pPager->jfd); 5742 }else{ 5743 int flags = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE; 5744 int nSpill; 5745 5746 if( pPager->tempFile ){ 5747 flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL); 5748 nSpill = sqlite3Config.nStmtSpill; 5749 }else{ 5750 flags |= SQLITE_OPEN_MAIN_JOURNAL; 5751 nSpill = jrnlBufferSize(pPager); 5752 } 5753 5754 /* Verify that the database still has the same name as it did when 5755 ** it was originally opened. */ 5756 rc = databaseIsUnmoved(pPager); 5757 if( rc==SQLITE_OK ){ 5758 rc = sqlite3JournalOpen ( 5759 pVfs, pPager->zJournal, pPager->jfd, flags, nSpill 5760 ); 5761 } 5762 } 5763 assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); 5764 } 5765 5766 5767 /* Write the first journal header to the journal file and open 5768 ** the sub-journal if necessary. 5769 */ 5770 if( rc==SQLITE_OK ){ 5771 /* TODO: Check if all of these are really required. */ 5772 pPager->nRec = 0; 5773 pPager->journalOff = 0; 5774 pPager->setMaster = 0; 5775 pPager->journalHdr = 0; 5776 rc = writeJournalHdr(pPager); 5777 } 5778 } 5779 5780 if( rc!=SQLITE_OK ){ 5781 sqlite3BitvecDestroy(pPager->pInJournal); 5782 pPager->pInJournal = 0; 5783 }else{ 5784 assert( pPager->eState==PAGER_WRITER_LOCKED ); 5785 pPager->eState = PAGER_WRITER_CACHEMOD; 5786 } 5787 5788 return rc; 5789 } 5790 5791 /* 5792 ** Begin a write-transaction on the specified pager object. If a 5793 ** write-transaction has already been opened, this function is a no-op. 5794 ** 5795 ** If the exFlag argument is false, then acquire at least a RESERVED 5796 ** lock on the database file. If exFlag is true, then acquire at least 5797 ** an EXCLUSIVE lock. If such a lock is already held, no locking 5798 ** functions need be called. 5799 ** 5800 ** If the subjInMemory argument is non-zero, then any sub-journal opened 5801 ** within this transaction will be opened as an in-memory file. This 5802 ** has no effect if the sub-journal is already opened (as it may be when 5803 ** running in exclusive mode) or if the transaction does not require a 5804 ** sub-journal. If the subjInMemory argument is zero, then any required 5805 ** sub-journal is implemented in-memory if pPager is an in-memory database, 5806 ** or using a temporary file otherwise. 5807 */ 5808 int sqlite3PagerBegin(Pager *pPager, int exFlag, int subjInMemory){ 5809 int rc = SQLITE_OK; 5810 5811 if( pPager->errCode ) return pPager->errCode; 5812 assert( pPager->eState>=PAGER_READER && pPager->eState<PAGER_ERROR ); 5813 pPager->subjInMemory = (u8)subjInMemory; 5814 5815 if( ALWAYS(pPager->eState==PAGER_READER) ){ 5816 assert( pPager->pInJournal==0 ); 5817 5818 if( pagerUseWal(pPager) ){ 5819 /* If the pager is configured to use locking_mode=exclusive, and an 5820 ** exclusive lock on the database is not already held, obtain it now. 5821 */ 5822 if( pPager->exclusiveMode && sqlite3WalExclusiveMode(pPager->pWal, -1) ){ 5823 rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); 5824 if( rc!=SQLITE_OK ){ 5825 return rc; 5826 } 5827 (void)sqlite3WalExclusiveMode(pPager->pWal, 1); 5828 } 5829 5830 /* Grab the write lock on the log file. If successful, upgrade to 5831 ** PAGER_RESERVED state. Otherwise, return an error code to the caller. 5832 ** The busy-handler is not invoked if another connection already 5833 ** holds the write-lock. If possible, the upper layer will call it. 5834 */ 5835 rc = sqlite3WalBeginWriteTransaction(pPager->pWal); 5836 }else{ 5837 /* Obtain a RESERVED lock on the database file. If the exFlag parameter 5838 ** is true, then immediately upgrade this to an EXCLUSIVE lock. The 5839 ** busy-handler callback can be used when upgrading to the EXCLUSIVE 5840 ** lock, but not when obtaining the RESERVED lock. 5841 */ 5842 rc = pagerLockDb(pPager, RESERVED_LOCK); 5843 if( rc==SQLITE_OK && exFlag ){ 5844 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); 5845 } 5846 } 5847 5848 if( rc==SQLITE_OK ){ 5849 /* Change to WRITER_LOCKED state. 5850 ** 5851 ** WAL mode sets Pager.eState to PAGER_WRITER_LOCKED or CACHEMOD 5852 ** when it has an open transaction, but never to DBMOD or FINISHED. 5853 ** This is because in those states the code to roll back savepoint 5854 ** transactions may copy data from the sub-journal into the database 5855 ** file as well as into the page cache. Which would be incorrect in 5856 ** WAL mode. 5857 */ 5858 pPager->eState = PAGER_WRITER_LOCKED; 5859 pPager->dbHintSize = pPager->dbSize; 5860 pPager->dbFileSize = pPager->dbSize; 5861 pPager->dbOrigSize = pPager->dbSize; 5862 pPager->journalOff = 0; 5863 } 5864 5865 assert( rc==SQLITE_OK || pPager->eState==PAGER_READER ); 5866 assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED ); 5867 assert( assert_pager_state(pPager) ); 5868 } 5869 5870 PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager))); 5871 return rc; 5872 } 5873 5874 /* 5875 ** Write page pPg onto the end of the rollback journal. 5876 */ 5877 static SQLITE_NOINLINE int pagerAddPageToRollbackJournal(PgHdr *pPg){ 5878 Pager *pPager = pPg->pPager; 5879 int rc; 5880 u32 cksum; 5881 char *pData2; 5882 i64 iOff = pPager->journalOff; 5883 5884 /* We should never write to the journal file the page that 5885 ** contains the database locks. The following assert verifies 5886 ** that we do not. */ 5887 assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) ); 5888 5889 assert( pPager->journalHdr<=pPager->journalOff ); 5890 CODEC2(pPager, pPg->pData, pPg->pgno, 7, return SQLITE_NOMEM_BKPT, pData2); 5891 cksum = pager_cksum(pPager, (u8*)pData2); 5892 5893 /* Even if an IO or diskfull error occurs while journalling the 5894 ** page in the block above, set the need-sync flag for the page. 5895 ** Otherwise, when the transaction is rolled back, the logic in 5896 ** playback_one_page() will think that the page needs to be restored 5897 ** in the database file. And if an IO error occurs while doing so, 5898 ** then corruption may follow. 5899 */ 5900 pPg->flags |= PGHDR_NEED_SYNC; 5901 5902 rc = write32bits(pPager->jfd, iOff, pPg->pgno); 5903 if( rc!=SQLITE_OK ) return rc; 5904 rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4); 5905 if( rc!=SQLITE_OK ) return rc; 5906 rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum); 5907 if( rc!=SQLITE_OK ) return rc; 5908 5909 IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, 5910 pPager->journalOff, pPager->pageSize)); 5911 PAGER_INCR(sqlite3_pager_writej_count); 5912 PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n", 5913 PAGERID(pPager), pPg->pgno, 5914 ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg))); 5915 5916 pPager->journalOff += 8 + pPager->pageSize; 5917 pPager->nRec++; 5918 assert( pPager->pInJournal!=0 ); 5919 rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno); 5920 testcase( rc==SQLITE_NOMEM ); 5921 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 5922 rc |= addToSavepointBitvecs(pPager, pPg->pgno); 5923 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 5924 return rc; 5925 } 5926 5927 /* 5928 ** Mark a single data page as writeable. The page is written into the 5929 ** main journal or sub-journal as required. If the page is written into 5930 ** one of the journals, the corresponding bit is set in the 5931 ** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs 5932 ** of any open savepoints as appropriate. 5933 */ 5934 static int pager_write(PgHdr *pPg){ 5935 Pager *pPager = pPg->pPager; 5936 int rc = SQLITE_OK; 5937 5938 /* This routine is not called unless a write-transaction has already 5939 ** been started. The journal file may or may not be open at this point. 5940 ** It is never called in the ERROR state. 5941 */ 5942 assert( pPager->eState==PAGER_WRITER_LOCKED 5943 || pPager->eState==PAGER_WRITER_CACHEMOD 5944 || pPager->eState==PAGER_WRITER_DBMOD 5945 ); 5946 assert( assert_pager_state(pPager) ); 5947 assert( pPager->errCode==0 ); 5948 assert( pPager->readOnly==0 ); 5949 CHECK_PAGE(pPg); 5950 5951 /* The journal file needs to be opened. Higher level routines have already 5952 ** obtained the necessary locks to begin the write-transaction, but the 5953 ** rollback journal might not yet be open. Open it now if this is the case. 5954 ** 5955 ** This is done before calling sqlite3PcacheMakeDirty() on the page. 5956 ** Otherwise, if it were done after calling sqlite3PcacheMakeDirty(), then 5957 ** an error might occur and the pager would end up in WRITER_LOCKED state 5958 ** with pages marked as dirty in the cache. 5959 */ 5960 if( pPager->eState==PAGER_WRITER_LOCKED ){ 5961 rc = pager_open_journal(pPager); 5962 if( rc!=SQLITE_OK ) return rc; 5963 } 5964 assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); 5965 assert( assert_pager_state(pPager) ); 5966 5967 /* Mark the page that is about to be modified as dirty. */ 5968 sqlite3PcacheMakeDirty(pPg); 5969 5970 /* If a rollback journal is in use, them make sure the page that is about 5971 ** to change is in the rollback journal, or if the page is a new page off 5972 ** then end of the file, make sure it is marked as PGHDR_NEED_SYNC. 5973 */ 5974 assert( (pPager->pInJournal!=0) == isOpen(pPager->jfd) ); 5975 if( pPager->pInJournal!=0 5976 && sqlite3BitvecTestNotNull(pPager->pInJournal, pPg->pgno)==0 5977 ){ 5978 assert( pagerUseWal(pPager)==0 ); 5979 if( pPg->pgno<=pPager->dbOrigSize ){ 5980 rc = pagerAddPageToRollbackJournal(pPg); 5981 if( rc!=SQLITE_OK ){ 5982 return rc; 5983 } 5984 }else{ 5985 if( pPager->eState!=PAGER_WRITER_DBMOD ){ 5986 pPg->flags |= PGHDR_NEED_SYNC; 5987 } 5988 PAGERTRACE(("APPEND %d page %d needSync=%d\n", 5989 PAGERID(pPager), pPg->pgno, 5990 ((pPg->flags&PGHDR_NEED_SYNC)?1:0))); 5991 } 5992 } 5993 5994 /* The PGHDR_DIRTY bit is set above when the page was added to the dirty-list 5995 ** and before writing the page into the rollback journal. Wait until now, 5996 ** after the page has been successfully journalled, before setting the 5997 ** PGHDR_WRITEABLE bit that indicates that the page can be safely modified. 5998 */ 5999 pPg->flags |= PGHDR_WRITEABLE; 6000 6001 /* If the statement journal is open and the page is not in it, 6002 ** then write the page into the statement journal. 6003 */ 6004 if( pPager->nSavepoint>0 ){ 6005 rc = subjournalPageIfRequired(pPg); 6006 } 6007 6008 /* Update the database size and return. */ 6009 if( pPager->dbSize<pPg->pgno ){ 6010 pPager->dbSize = pPg->pgno; 6011 } 6012 return rc; 6013 } 6014 6015 /* 6016 ** This is a variant of sqlite3PagerWrite() that runs when the sector size 6017 ** is larger than the page size. SQLite makes the (reasonable) assumption that 6018 ** all bytes of a sector are written together by hardware. Hence, all bytes of 6019 ** a sector need to be journalled in case of a power loss in the middle of 6020 ** a write. 6021 ** 6022 ** Usually, the sector size is less than or equal to the page size, in which 6023 ** case pages can be individually written. This routine only runs in the 6024 ** exceptional case where the page size is smaller than the sector size. 6025 */ 6026 static SQLITE_NOINLINE int pagerWriteLargeSector(PgHdr *pPg){ 6027 int rc = SQLITE_OK; /* Return code */ 6028 Pgno nPageCount; /* Total number of pages in database file */ 6029 Pgno pg1; /* First page of the sector pPg is located on. */ 6030 int nPage = 0; /* Number of pages starting at pg1 to journal */ 6031 int ii; /* Loop counter */ 6032 int needSync = 0; /* True if any page has PGHDR_NEED_SYNC */ 6033 Pager *pPager = pPg->pPager; /* The pager that owns pPg */ 6034 Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize); 6035 6036 /* Set the doNotSpill NOSYNC bit to 1. This is because we cannot allow 6037 ** a journal header to be written between the pages journaled by 6038 ** this function. 6039 */ 6040 assert( !MEMDB ); 6041 assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)==0 ); 6042 pPager->doNotSpill |= SPILLFLAG_NOSYNC; 6043 6044 /* This trick assumes that both the page-size and sector-size are 6045 ** an integer power of 2. It sets variable pg1 to the identifier 6046 ** of the first page of the sector pPg is located on. 6047 */ 6048 pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1; 6049 6050 nPageCount = pPager->dbSize; 6051 if( pPg->pgno>nPageCount ){ 6052 nPage = (pPg->pgno - pg1)+1; 6053 }else if( (pg1+nPagePerSector-1)>nPageCount ){ 6054 nPage = nPageCount+1-pg1; 6055 }else{ 6056 nPage = nPagePerSector; 6057 } 6058 assert(nPage>0); 6059 assert(pg1<=pPg->pgno); 6060 assert((pg1+nPage)>pPg->pgno); 6061 6062 for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){ 6063 Pgno pg = pg1+ii; 6064 PgHdr *pPage; 6065 if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){ 6066 if( pg!=PAGER_MJ_PGNO(pPager) ){ 6067 rc = sqlite3PagerGet(pPager, pg, &pPage, 0); 6068 if( rc==SQLITE_OK ){ 6069 rc = pager_write(pPage); 6070 if( pPage->flags&PGHDR_NEED_SYNC ){ 6071 needSync = 1; 6072 } 6073 sqlite3PagerUnrefNotNull(pPage); 6074 } 6075 } 6076 }else if( (pPage = sqlite3PagerLookup(pPager, pg))!=0 ){ 6077 if( pPage->flags&PGHDR_NEED_SYNC ){ 6078 needSync = 1; 6079 } 6080 sqlite3PagerUnrefNotNull(pPage); 6081 } 6082 } 6083 6084 /* If the PGHDR_NEED_SYNC flag is set for any of the nPage pages 6085 ** starting at pg1, then it needs to be set for all of them. Because 6086 ** writing to any of these nPage pages may damage the others, the 6087 ** journal file must contain sync()ed copies of all of them 6088 ** before any of them can be written out to the database file. 6089 */ 6090 if( rc==SQLITE_OK && needSync ){ 6091 assert( !MEMDB ); 6092 for(ii=0; ii<nPage; ii++){ 6093 PgHdr *pPage = sqlite3PagerLookup(pPager, pg1+ii); 6094 if( pPage ){ 6095 pPage->flags |= PGHDR_NEED_SYNC; 6096 sqlite3PagerUnrefNotNull(pPage); 6097 } 6098 } 6099 } 6100 6101 assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)!=0 ); 6102 pPager->doNotSpill &= ~SPILLFLAG_NOSYNC; 6103 return rc; 6104 } 6105 6106 /* 6107 ** Mark a data page as writeable. This routine must be called before 6108 ** making changes to a page. The caller must check the return value 6109 ** of this function and be careful not to change any page data unless 6110 ** this routine returns SQLITE_OK. 6111 ** 6112 ** The difference between this function and pager_write() is that this 6113 ** function also deals with the special case where 2 or more pages 6114 ** fit on a single disk sector. In this case all co-resident pages 6115 ** must have been written to the journal file before returning. 6116 ** 6117 ** If an error occurs, SQLITE_NOMEM or an IO error code is returned 6118 ** as appropriate. Otherwise, SQLITE_OK. 6119 */ 6120 int sqlite3PagerWrite(PgHdr *pPg){ 6121 Pager *pPager = pPg->pPager; 6122 assert( (pPg->flags & PGHDR_MMAP)==0 ); 6123 assert( pPager->eState>=PAGER_WRITER_LOCKED ); 6124 assert( assert_pager_state(pPager) ); 6125 if( (pPg->flags & PGHDR_WRITEABLE)!=0 && pPager->dbSize>=pPg->pgno ){ 6126 if( pPager->nSavepoint ) return subjournalPageIfRequired(pPg); 6127 return SQLITE_OK; 6128 }else if( pPager->errCode ){ 6129 return pPager->errCode; 6130 }else if( pPager->sectorSize > (u32)pPager->pageSize ){ 6131 assert( pPager->tempFile==0 ); 6132 return pagerWriteLargeSector(pPg); 6133 }else{ 6134 return pager_write(pPg); 6135 } 6136 } 6137 6138 /* 6139 ** Return TRUE if the page given in the argument was previously passed 6140 ** to sqlite3PagerWrite(). In other words, return TRUE if it is ok 6141 ** to change the content of the page. 6142 */ 6143 #ifndef NDEBUG 6144 int sqlite3PagerIswriteable(DbPage *pPg){ 6145 return pPg->flags & PGHDR_WRITEABLE; 6146 } 6147 #endif 6148 6149 /* 6150 ** A call to this routine tells the pager that it is not necessary to 6151 ** write the information on page pPg back to the disk, even though 6152 ** that page might be marked as dirty. This happens, for example, when 6153 ** the page has been added as a leaf of the freelist and so its 6154 ** content no longer matters. 6155 ** 6156 ** The overlying software layer calls this routine when all of the data 6157 ** on the given page is unused. The pager marks the page as clean so 6158 ** that it does not get written to disk. 6159 ** 6160 ** Tests show that this optimization can quadruple the speed of large 6161 ** DELETE operations. 6162 ** 6163 ** This optimization cannot be used with a temp-file, as the page may 6164 ** have been dirty at the start of the transaction. In that case, if 6165 ** memory pressure forces page pPg out of the cache, the data does need 6166 ** to be written out to disk so that it may be read back in if the 6167 ** current transaction is rolled back. 6168 */ 6169 void sqlite3PagerDontWrite(PgHdr *pPg){ 6170 Pager *pPager = pPg->pPager; 6171 if( !pPager->tempFile && (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){ 6172 PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager))); 6173 IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) 6174 pPg->flags |= PGHDR_DONT_WRITE; 6175 pPg->flags &= ~PGHDR_WRITEABLE; 6176 testcase( pPg->flags & PGHDR_NEED_SYNC ); 6177 pager_set_pagehash(pPg); 6178 } 6179 } 6180 6181 /* 6182 ** This routine is called to increment the value of the database file 6183 ** change-counter, stored as a 4-byte big-endian integer starting at 6184 ** byte offset 24 of the pager file. The secondary change counter at 6185 ** 92 is also updated, as is the SQLite version number at offset 96. 6186 ** 6187 ** But this only happens if the pPager->changeCountDone flag is false. 6188 ** To avoid excess churning of page 1, the update only happens once. 6189 ** See also the pager_write_changecounter() routine that does an 6190 ** unconditional update of the change counters. 6191 ** 6192 ** If the isDirectMode flag is zero, then this is done by calling 6193 ** sqlite3PagerWrite() on page 1, then modifying the contents of the 6194 ** page data. In this case the file will be updated when the current 6195 ** transaction is committed. 6196 ** 6197 ** The isDirectMode flag may only be non-zero if the library was compiled 6198 ** with the SQLITE_ENABLE_ATOMIC_WRITE macro defined. In this case, 6199 ** if isDirect is non-zero, then the database file is updated directly 6200 ** by writing an updated version of page 1 using a call to the 6201 ** sqlite3OsWrite() function. 6202 */ 6203 static int pager_incr_changecounter(Pager *pPager, int isDirectMode){ 6204 int rc = SQLITE_OK; 6205 6206 assert( pPager->eState==PAGER_WRITER_CACHEMOD 6207 || pPager->eState==PAGER_WRITER_DBMOD 6208 ); 6209 assert( assert_pager_state(pPager) ); 6210 6211 /* Declare and initialize constant integer 'isDirect'. If the 6212 ** atomic-write optimization is enabled in this build, then isDirect 6213 ** is initialized to the value passed as the isDirectMode parameter 6214 ** to this function. Otherwise, it is always set to zero. 6215 ** 6216 ** The idea is that if the atomic-write optimization is not 6217 ** enabled at compile time, the compiler can omit the tests of 6218 ** 'isDirect' below, as well as the block enclosed in the 6219 ** "if( isDirect )" condition. 6220 */ 6221 #ifndef SQLITE_ENABLE_ATOMIC_WRITE 6222 # define DIRECT_MODE 0 6223 assert( isDirectMode==0 ); 6224 UNUSED_PARAMETER(isDirectMode); 6225 #else 6226 # define DIRECT_MODE isDirectMode 6227 #endif 6228 6229 if( !pPager->changeCountDone && ALWAYS(pPager->dbSize>0) ){ 6230 PgHdr *pPgHdr; /* Reference to page 1 */ 6231 6232 assert( !pPager->tempFile && isOpen(pPager->fd) ); 6233 6234 /* Open page 1 of the file for writing. */ 6235 rc = sqlite3PagerGet(pPager, 1, &pPgHdr, 0); 6236 assert( pPgHdr==0 || rc==SQLITE_OK ); 6237 6238 /* If page one was fetched successfully, and this function is not 6239 ** operating in direct-mode, make page 1 writable. When not in 6240 ** direct mode, page 1 is always held in cache and hence the PagerGet() 6241 ** above is always successful - hence the ALWAYS on rc==SQLITE_OK. 6242 */ 6243 if( !DIRECT_MODE && ALWAYS(rc==SQLITE_OK) ){ 6244 rc = sqlite3PagerWrite(pPgHdr); 6245 } 6246 6247 if( rc==SQLITE_OK ){ 6248 /* Actually do the update of the change counter */ 6249 pager_write_changecounter(pPgHdr); 6250 6251 /* If running in direct mode, write the contents of page 1 to the file. */ 6252 if( DIRECT_MODE ){ 6253 const void *zBuf; 6254 assert( pPager->dbFileSize>0 ); 6255 CODEC2(pPager, pPgHdr->pData, 1, 6, rc=SQLITE_NOMEM_BKPT, zBuf); 6256 if( rc==SQLITE_OK ){ 6257 rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0); 6258 pPager->aStat[PAGER_STAT_WRITE]++; 6259 } 6260 if( rc==SQLITE_OK ){ 6261 /* Update the pager's copy of the change-counter. Otherwise, the 6262 ** next time a read transaction is opened the cache will be 6263 ** flushed (as the change-counter values will not match). */ 6264 const void *pCopy = (const void *)&((const char *)zBuf)[24]; 6265 memcpy(&pPager->dbFileVers, pCopy, sizeof(pPager->dbFileVers)); 6266 pPager->changeCountDone = 1; 6267 } 6268 }else{ 6269 pPager->changeCountDone = 1; 6270 } 6271 } 6272 6273 /* Release the page reference. */ 6274 sqlite3PagerUnref(pPgHdr); 6275 } 6276 return rc; 6277 } 6278 6279 /* 6280 ** Sync the database file to disk. This is a no-op for in-memory databases 6281 ** or pages with the Pager.noSync flag set. 6282 ** 6283 ** If successful, or if called on a pager for which it is a no-op, this 6284 ** function returns SQLITE_OK. Otherwise, an IO error code is returned. 6285 */ 6286 int sqlite3PagerSync(Pager *pPager, const char *zMaster){ 6287 int rc = SQLITE_OK; 6288 void *pArg = (void*)zMaster; 6289 rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SYNC, pArg); 6290 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 6291 if( rc==SQLITE_OK && !pPager->noSync ){ 6292 assert( !MEMDB ); 6293 rc = sqlite3OsSync(pPager->fd, pPager->syncFlags); 6294 } 6295 return rc; 6296 } 6297 6298 /* 6299 ** This function may only be called while a write-transaction is active in 6300 ** rollback. If the connection is in WAL mode, this call is a no-op. 6301 ** Otherwise, if the connection does not already have an EXCLUSIVE lock on 6302 ** the database file, an attempt is made to obtain one. 6303 ** 6304 ** If the EXCLUSIVE lock is already held or the attempt to obtain it is 6305 ** successful, or the connection is in WAL mode, SQLITE_OK is returned. 6306 ** Otherwise, either SQLITE_BUSY or an SQLITE_IOERR_XXX error code is 6307 ** returned. 6308 */ 6309 int sqlite3PagerExclusiveLock(Pager *pPager){ 6310 int rc = pPager->errCode; 6311 assert( assert_pager_state(pPager) ); 6312 if( rc==SQLITE_OK ){ 6313 assert( pPager->eState==PAGER_WRITER_CACHEMOD 6314 || pPager->eState==PAGER_WRITER_DBMOD 6315 || pPager->eState==PAGER_WRITER_LOCKED 6316 ); 6317 assert( assert_pager_state(pPager) ); 6318 if( 0==pagerUseWal(pPager) ){ 6319 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); 6320 } 6321 } 6322 return rc; 6323 } 6324 6325 /* 6326 ** Sync the database file for the pager pPager. zMaster points to the name 6327 ** of a master journal file that should be written into the individual 6328 ** journal file. zMaster may be NULL, which is interpreted as no master 6329 ** journal (a single database transaction). 6330 ** 6331 ** This routine ensures that: 6332 ** 6333 ** * The database file change-counter is updated, 6334 ** * the journal is synced (unless the atomic-write optimization is used), 6335 ** * all dirty pages are written to the database file, 6336 ** * the database file is truncated (if required), and 6337 ** * the database file synced. 6338 ** 6339 ** The only thing that remains to commit the transaction is to finalize 6340 ** (delete, truncate or zero the first part of) the journal file (or 6341 ** delete the master journal file if specified). 6342 ** 6343 ** Note that if zMaster==NULL, this does not overwrite a previous value 6344 ** passed to an sqlite3PagerCommitPhaseOne() call. 6345 ** 6346 ** If the final parameter - noSync - is true, then the database file itself 6347 ** is not synced. The caller must call sqlite3PagerSync() directly to 6348 ** sync the database file before calling CommitPhaseTwo() to delete the 6349 ** journal file in this case. 6350 */ 6351 int sqlite3PagerCommitPhaseOne( 6352 Pager *pPager, /* Pager object */ 6353 const char *zMaster, /* If not NULL, the master journal name */ 6354 int noSync /* True to omit the xSync on the db file */ 6355 ){ 6356 int rc = SQLITE_OK; /* Return code */ 6357 6358 assert( pPager->eState==PAGER_WRITER_LOCKED 6359 || pPager->eState==PAGER_WRITER_CACHEMOD 6360 || pPager->eState==PAGER_WRITER_DBMOD 6361 || pPager->eState==PAGER_ERROR 6362 ); 6363 assert( assert_pager_state(pPager) ); 6364 6365 /* If a prior error occurred, report that error again. */ 6366 if( NEVER(pPager->errCode) ) return pPager->errCode; 6367 6368 /* Provide the ability to easily simulate an I/O error during testing */ 6369 if( sqlite3FaultSim(400) ) return SQLITE_IOERR; 6370 6371 PAGERTRACE(("DATABASE SYNC: File=%s zMaster=%s nSize=%d\n", 6372 pPager->zFilename, zMaster, pPager->dbSize)); 6373 6374 /* If no database changes have been made, return early. */ 6375 if( pPager->eState<PAGER_WRITER_CACHEMOD ) return SQLITE_OK; 6376 6377 assert( MEMDB==0 || pPager->tempFile ); 6378 assert( isOpen(pPager->fd) || pPager->tempFile ); 6379 if( 0==pagerFlushOnCommit(pPager, 1) ){ 6380 /* If this is an in-memory db, or no pages have been written to, or this 6381 ** function has already been called, it is mostly a no-op. However, any 6382 ** backup in progress needs to be restarted. */ 6383 sqlite3BackupRestart(pPager->pBackup); 6384 }else{ 6385 if( pagerUseWal(pPager) ){ 6386 PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache); 6387 PgHdr *pPageOne = 0; 6388 if( pList==0 ){ 6389 /* Must have at least one page for the WAL commit flag. 6390 ** Ticket [2d1a5c67dfc2363e44f29d9bbd57f] 2011-05-18 */ 6391 rc = sqlite3PagerGet(pPager, 1, &pPageOne, 0); 6392 pList = pPageOne; 6393 pList->pDirty = 0; 6394 } 6395 assert( rc==SQLITE_OK ); 6396 if( ALWAYS(pList) ){ 6397 rc = pagerWalFrames(pPager, pList, pPager->dbSize, 1); 6398 } 6399 sqlite3PagerUnref(pPageOne); 6400 if( rc==SQLITE_OK ){ 6401 sqlite3PcacheCleanAll(pPager->pPCache); 6402 } 6403 }else{ 6404 /* The bBatch boolean is true if the batch-atomic-write commit method 6405 ** should be used. No rollback journal is created if batch-atomic-write 6406 ** is enabled. 6407 */ 6408 sqlite3_file *fd = pPager->fd; 6409 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 6410 const int bBatch = zMaster==0 /* An SQLITE_IOCAP_BATCH_ATOMIC commit */ 6411 && (sqlite3OsDeviceCharacteristics(fd) & SQLITE_IOCAP_BATCH_ATOMIC) 6412 && !pPager->noSync 6413 && sqlite3JournalIsInMemory(pPager->jfd); 6414 #else 6415 # define bBatch 0 6416 #endif 6417 6418 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 6419 /* The following block updates the change-counter. Exactly how it 6420 ** does this depends on whether or not the atomic-update optimization 6421 ** was enabled at compile time, and if this transaction meets the 6422 ** runtime criteria to use the operation: 6423 ** 6424 ** * The file-system supports the atomic-write property for 6425 ** blocks of size page-size, and 6426 ** * This commit is not part of a multi-file transaction, and 6427 ** * Exactly one page has been modified and store in the journal file. 6428 ** 6429 ** If the optimization was not enabled at compile time, then the 6430 ** pager_incr_changecounter() function is called to update the change 6431 ** counter in 'indirect-mode'. If the optimization is compiled in but 6432 ** is not applicable to this transaction, call sqlite3JournalCreate() 6433 ** to make sure the journal file has actually been created, then call 6434 ** pager_incr_changecounter() to update the change-counter in indirect 6435 ** mode. 6436 ** 6437 ** Otherwise, if the optimization is both enabled and applicable, 6438 ** then call pager_incr_changecounter() to update the change-counter 6439 ** in 'direct' mode. In this case the journal file will never be 6440 ** created for this transaction. 6441 */ 6442 if( bBatch==0 ){ 6443 PgHdr *pPg; 6444 assert( isOpen(pPager->jfd) 6445 || pPager->journalMode==PAGER_JOURNALMODE_OFF 6446 || pPager->journalMode==PAGER_JOURNALMODE_WAL 6447 ); 6448 if( !zMaster && isOpen(pPager->jfd) 6449 && pPager->journalOff==jrnlBufferSize(pPager) 6450 && pPager->dbSize>=pPager->dbOrigSize 6451 && (!(pPg = sqlite3PcacheDirtyList(pPager->pPCache)) || 0==pPg->pDirty) 6452 ){ 6453 /* Update the db file change counter via the direct-write method. The 6454 ** following call will modify the in-memory representation of page 1 6455 ** to include the updated change counter and then write page 1 6456 ** directly to the database file. Because of the atomic-write 6457 ** property of the host file-system, this is safe. 6458 */ 6459 rc = pager_incr_changecounter(pPager, 1); 6460 }else{ 6461 rc = sqlite3JournalCreate(pPager->jfd); 6462 if( rc==SQLITE_OK ){ 6463 rc = pager_incr_changecounter(pPager, 0); 6464 } 6465 } 6466 } 6467 #else 6468 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 6469 if( zMaster ){ 6470 rc = sqlite3JournalCreate(pPager->jfd); 6471 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6472 } 6473 #endif 6474 rc = pager_incr_changecounter(pPager, 0); 6475 #endif 6476 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6477 6478 /* Write the master journal name into the journal file. If a master 6479 ** journal file name has already been written to the journal file, 6480 ** or if zMaster is NULL (no master journal), then this call is a no-op. 6481 */ 6482 rc = writeMasterJournal(pPager, zMaster); 6483 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6484 6485 /* Sync the journal file and write all dirty pages to the database. 6486 ** If the atomic-update optimization is being used, this sync will not 6487 ** create the journal file or perform any real IO. 6488 ** 6489 ** Because the change-counter page was just modified, unless the 6490 ** atomic-update optimization is used it is almost certain that the 6491 ** journal requires a sync here. However, in locking_mode=exclusive 6492 ** on a system under memory pressure it is just possible that this is 6493 ** not the case. In this case it is likely enough that the redundant 6494 ** xSync() call will be changed to a no-op by the OS anyhow. 6495 */ 6496 rc = syncJournal(pPager, 0); 6497 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6498 6499 if( bBatch ){ 6500 /* The pager is now in DBMOD state. But regardless of what happens 6501 ** next, attempting to play the journal back into the database would 6502 ** be unsafe. Close it now to make sure that does not happen. */ 6503 sqlite3OsClose(pPager->jfd); 6504 rc = sqlite3OsFileControl(fd, SQLITE_FCNTL_BEGIN_ATOMIC_WRITE, 0); 6505 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6506 } 6507 rc = pager_write_pagelist(pPager,sqlite3PcacheDirtyList(pPager->pPCache)); 6508 if( bBatch ){ 6509 if( rc==SQLITE_OK ){ 6510 rc = sqlite3OsFileControl(fd, SQLITE_FCNTL_COMMIT_ATOMIC_WRITE, 0); 6511 } 6512 if( rc!=SQLITE_OK ){ 6513 sqlite3OsFileControlHint(fd, SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE, 0); 6514 } 6515 } 6516 6517 if( rc!=SQLITE_OK ){ 6518 assert( rc!=SQLITE_IOERR_BLOCKED ); 6519 goto commit_phase_one_exit; 6520 } 6521 sqlite3PcacheCleanAll(pPager->pPCache); 6522 6523 /* If the file on disk is smaller than the database image, use 6524 ** pager_truncate to grow the file here. This can happen if the database 6525 ** image was extended as part of the current transaction and then the 6526 ** last page in the db image moved to the free-list. In this case the 6527 ** last page is never written out to disk, leaving the database file 6528 ** undersized. Fix this now if it is the case. */ 6529 if( pPager->dbSize>pPager->dbFileSize ){ 6530 Pgno nNew = pPager->dbSize - (pPager->dbSize==PAGER_MJ_PGNO(pPager)); 6531 assert( pPager->eState==PAGER_WRITER_DBMOD ); 6532 rc = pager_truncate(pPager, nNew); 6533 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6534 } 6535 6536 /* Finally, sync the database file. */ 6537 if( !noSync ){ 6538 rc = sqlite3PagerSync(pPager, zMaster); 6539 } 6540 IOTRACE(("DBSYNC %p\n", pPager)) 6541 } 6542 } 6543 6544 commit_phase_one_exit: 6545 if( rc==SQLITE_OK && !pagerUseWal(pPager) ){ 6546 pPager->eState = PAGER_WRITER_FINISHED; 6547 } 6548 return rc; 6549 } 6550 6551 6552 /* 6553 ** When this function is called, the database file has been completely 6554 ** updated to reflect the changes made by the current transaction and 6555 ** synced to disk. The journal file still exists in the file-system 6556 ** though, and if a failure occurs at this point it will eventually 6557 ** be used as a hot-journal and the current transaction rolled back. 6558 ** 6559 ** This function finalizes the journal file, either by deleting, 6560 ** truncating or partially zeroing it, so that it cannot be used 6561 ** for hot-journal rollback. Once this is done the transaction is 6562 ** irrevocably committed. 6563 ** 6564 ** If an error occurs, an IO error code is returned and the pager 6565 ** moves into the error state. Otherwise, SQLITE_OK is returned. 6566 */ 6567 int sqlite3PagerCommitPhaseTwo(Pager *pPager){ 6568 int rc = SQLITE_OK; /* Return code */ 6569 6570 /* This routine should not be called if a prior error has occurred. 6571 ** But if (due to a coding error elsewhere in the system) it does get 6572 ** called, just return the same error code without doing anything. */ 6573 if( NEVER(pPager->errCode) ) return pPager->errCode; 6574 6575 assert( pPager->eState==PAGER_WRITER_LOCKED 6576 || pPager->eState==PAGER_WRITER_FINISHED 6577 || (pagerUseWal(pPager) && pPager->eState==PAGER_WRITER_CACHEMOD) 6578 ); 6579 assert( assert_pager_state(pPager) ); 6580 6581 /* An optimization. If the database was not actually modified during 6582 ** this transaction, the pager is running in exclusive-mode and is 6583 ** using persistent journals, then this function is a no-op. 6584 ** 6585 ** The start of the journal file currently contains a single journal 6586 ** header with the nRec field set to 0. If such a journal is used as 6587 ** a hot-journal during hot-journal rollback, 0 changes will be made 6588 ** to the database file. So there is no need to zero the journal 6589 ** header. Since the pager is in exclusive mode, there is no need 6590 ** to drop any locks either. 6591 */ 6592 if( pPager->eState==PAGER_WRITER_LOCKED 6593 && pPager->exclusiveMode 6594 && pPager->journalMode==PAGER_JOURNALMODE_PERSIST 6595 ){ 6596 assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff ); 6597 pPager->eState = PAGER_READER; 6598 return SQLITE_OK; 6599 } 6600 6601 PAGERTRACE(("COMMIT %d\n", PAGERID(pPager))); 6602 pPager->iDataVersion++; 6603 rc = pager_end_transaction(pPager, pPager->setMaster, 1); 6604 return pager_error(pPager, rc); 6605 } 6606 6607 /* 6608 ** If a write transaction is open, then all changes made within the 6609 ** transaction are reverted and the current write-transaction is closed. 6610 ** The pager falls back to PAGER_READER state if successful, or PAGER_ERROR 6611 ** state if an error occurs. 6612 ** 6613 ** If the pager is already in PAGER_ERROR state when this function is called, 6614 ** it returns Pager.errCode immediately. No work is performed in this case. 6615 ** 6616 ** Otherwise, in rollback mode, this function performs two functions: 6617 ** 6618 ** 1) It rolls back the journal file, restoring all database file and 6619 ** in-memory cache pages to the state they were in when the transaction 6620 ** was opened, and 6621 ** 6622 ** 2) It finalizes the journal file, so that it is not used for hot 6623 ** rollback at any point in the future. 6624 ** 6625 ** Finalization of the journal file (task 2) is only performed if the 6626 ** rollback is successful. 6627 ** 6628 ** In WAL mode, all cache-entries containing data modified within the 6629 ** current transaction are either expelled from the cache or reverted to 6630 ** their pre-transaction state by re-reading data from the database or 6631 ** WAL files. The WAL transaction is then closed. 6632 */ 6633 int sqlite3PagerRollback(Pager *pPager){ 6634 int rc = SQLITE_OK; /* Return code */ 6635 PAGERTRACE(("ROLLBACK %d\n", PAGERID(pPager))); 6636 6637 /* PagerRollback() is a no-op if called in READER or OPEN state. If 6638 ** the pager is already in the ERROR state, the rollback is not 6639 ** attempted here. Instead, the error code is returned to the caller. 6640 */ 6641 assert( assert_pager_state(pPager) ); 6642 if( pPager->eState==PAGER_ERROR ) return pPager->errCode; 6643 if( pPager->eState<=PAGER_READER ) return SQLITE_OK; 6644 6645 if( pagerUseWal(pPager) ){ 6646 int rc2; 6647 rc = sqlite3PagerSavepoint(pPager, SAVEPOINT_ROLLBACK, -1); 6648 rc2 = pager_end_transaction(pPager, pPager->setMaster, 0); 6649 if( rc==SQLITE_OK ) rc = rc2; 6650 }else if( !isOpen(pPager->jfd) || pPager->eState==PAGER_WRITER_LOCKED ){ 6651 int eState = pPager->eState; 6652 rc = pager_end_transaction(pPager, 0, 0); 6653 if( !MEMDB && eState>PAGER_WRITER_LOCKED ){ 6654 /* This can happen using journal_mode=off. Move the pager to the error 6655 ** state to indicate that the contents of the cache may not be trusted. 6656 ** Any active readers will get SQLITE_ABORT. 6657 */ 6658 pPager->errCode = SQLITE_ABORT; 6659 pPager->eState = PAGER_ERROR; 6660 setGetterMethod(pPager); 6661 return rc; 6662 } 6663 }else{ 6664 rc = pager_playback(pPager, 0); 6665 } 6666 6667 assert( pPager->eState==PAGER_READER || rc!=SQLITE_OK ); 6668 assert( rc==SQLITE_OK || rc==SQLITE_FULL || rc==SQLITE_CORRUPT 6669 || rc==SQLITE_NOMEM || (rc&0xFF)==SQLITE_IOERR 6670 || rc==SQLITE_CANTOPEN 6671 ); 6672 6673 /* If an error occurs during a ROLLBACK, we can no longer trust the pager 6674 ** cache. So call pager_error() on the way out to make any error persistent. 6675 */ 6676 return pager_error(pPager, rc); 6677 } 6678 6679 /* 6680 ** Return TRUE if the database file is opened read-only. Return FALSE 6681 ** if the database is (in theory) writable. 6682 */ 6683 u8 sqlite3PagerIsreadonly(Pager *pPager){ 6684 return pPager->readOnly; 6685 } 6686 6687 #ifdef SQLITE_DEBUG 6688 /* 6689 ** Return the sum of the reference counts for all pages held by pPager. 6690 */ 6691 int sqlite3PagerRefcount(Pager *pPager){ 6692 return sqlite3PcacheRefCount(pPager->pPCache); 6693 } 6694 #endif 6695 6696 /* 6697 ** Return the approximate number of bytes of memory currently 6698 ** used by the pager and its associated cache. 6699 */ 6700 int sqlite3PagerMemUsed(Pager *pPager){ 6701 int perPageSize = pPager->pageSize + pPager->nExtra + sizeof(PgHdr) 6702 + 5*sizeof(void*); 6703 return perPageSize*sqlite3PcachePagecount(pPager->pPCache) 6704 + sqlite3MallocSize(pPager) 6705 + pPager->pageSize; 6706 } 6707 6708 /* 6709 ** Return the number of references to the specified page. 6710 */ 6711 int sqlite3PagerPageRefcount(DbPage *pPage){ 6712 return sqlite3PcachePageRefcount(pPage); 6713 } 6714 6715 #ifdef SQLITE_TEST 6716 /* 6717 ** This routine is used for testing and analysis only. 6718 */ 6719 int *sqlite3PagerStats(Pager *pPager){ 6720 static int a[11]; 6721 a[0] = sqlite3PcacheRefCount(pPager->pPCache); 6722 a[1] = sqlite3PcachePagecount(pPager->pPCache); 6723 a[2] = sqlite3PcacheGetCachesize(pPager->pPCache); 6724 a[3] = pPager->eState==PAGER_OPEN ? -1 : (int) pPager->dbSize; 6725 a[4] = pPager->eState; 6726 a[5] = pPager->errCode; 6727 a[6] = pPager->aStat[PAGER_STAT_HIT]; 6728 a[7] = pPager->aStat[PAGER_STAT_MISS]; 6729 a[8] = 0; /* Used to be pPager->nOvfl */ 6730 a[9] = pPager->nRead; 6731 a[10] = pPager->aStat[PAGER_STAT_WRITE]; 6732 return a; 6733 } 6734 #endif 6735 6736 /* 6737 ** Parameter eStat must be one of SQLITE_DBSTATUS_CACHE_HIT, _MISS, _WRITE, 6738 ** or _WRITE+1. The SQLITE_DBSTATUS_CACHE_WRITE+1 case is a translation 6739 ** of SQLITE_DBSTATUS_CACHE_SPILL. The _SPILL case is not contiguous because 6740 ** it was added later. 6741 ** 6742 ** Before returning, *pnVal is incremented by the 6743 ** current cache hit or miss count, according to the value of eStat. If the 6744 ** reset parameter is non-zero, the cache hit or miss count is zeroed before 6745 ** returning. 6746 */ 6747 void sqlite3PagerCacheStat(Pager *pPager, int eStat, int reset, int *pnVal){ 6748 6749 assert( eStat==SQLITE_DBSTATUS_CACHE_HIT 6750 || eStat==SQLITE_DBSTATUS_CACHE_MISS 6751 || eStat==SQLITE_DBSTATUS_CACHE_WRITE 6752 || eStat==SQLITE_DBSTATUS_CACHE_WRITE+1 6753 ); 6754 6755 assert( SQLITE_DBSTATUS_CACHE_HIT+1==SQLITE_DBSTATUS_CACHE_MISS ); 6756 assert( SQLITE_DBSTATUS_CACHE_HIT+2==SQLITE_DBSTATUS_CACHE_WRITE ); 6757 assert( PAGER_STAT_HIT==0 && PAGER_STAT_MISS==1 6758 && PAGER_STAT_WRITE==2 && PAGER_STAT_SPILL==3 ); 6759 6760 eStat -= SQLITE_DBSTATUS_CACHE_HIT; 6761 *pnVal += pPager->aStat[eStat]; 6762 if( reset ){ 6763 pPager->aStat[eStat] = 0; 6764 } 6765 } 6766 6767 /* 6768 ** Return true if this is an in-memory or temp-file backed pager. 6769 */ 6770 int sqlite3PagerIsMemdb(Pager *pPager){ 6771 return pPager->tempFile; 6772 } 6773 6774 /* 6775 ** Check that there are at least nSavepoint savepoints open. If there are 6776 ** currently less than nSavepoints open, then open one or more savepoints 6777 ** to make up the difference. If the number of savepoints is already 6778 ** equal to nSavepoint, then this function is a no-op. 6779 ** 6780 ** If a memory allocation fails, SQLITE_NOMEM is returned. If an error 6781 ** occurs while opening the sub-journal file, then an IO error code is 6782 ** returned. Otherwise, SQLITE_OK. 6783 */ 6784 static SQLITE_NOINLINE int pagerOpenSavepoint(Pager *pPager, int nSavepoint){ 6785 int rc = SQLITE_OK; /* Return code */ 6786 int nCurrent = pPager->nSavepoint; /* Current number of savepoints */ 6787 int ii; /* Iterator variable */ 6788 PagerSavepoint *aNew; /* New Pager.aSavepoint array */ 6789 6790 assert( pPager->eState>=PAGER_WRITER_LOCKED ); 6791 assert( assert_pager_state(pPager) ); 6792 assert( nSavepoint>nCurrent && pPager->useJournal ); 6793 6794 /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM 6795 ** if the allocation fails. Otherwise, zero the new portion in case a 6796 ** malloc failure occurs while populating it in the for(...) loop below. 6797 */ 6798 aNew = (PagerSavepoint *)sqlite3Realloc( 6799 pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint 6800 ); 6801 if( !aNew ){ 6802 return SQLITE_NOMEM_BKPT; 6803 } 6804 memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint)); 6805 pPager->aSavepoint = aNew; 6806 6807 /* Populate the PagerSavepoint structures just allocated. */ 6808 for(ii=nCurrent; ii<nSavepoint; ii++){ 6809 aNew[ii].nOrig = pPager->dbSize; 6810 if( isOpen(pPager->jfd) && pPager->journalOff>0 ){ 6811 aNew[ii].iOffset = pPager->journalOff; 6812 }else{ 6813 aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager); 6814 } 6815 aNew[ii].iSubRec = pPager->nSubRec; 6816 aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize); 6817 if( !aNew[ii].pInSavepoint ){ 6818 return SQLITE_NOMEM_BKPT; 6819 } 6820 if( pagerUseWal(pPager) ){ 6821 sqlite3WalSavepoint(pPager->pWal, aNew[ii].aWalData); 6822 } 6823 pPager->nSavepoint = ii+1; 6824 } 6825 assert( pPager->nSavepoint==nSavepoint ); 6826 assertTruncateConstraint(pPager); 6827 return rc; 6828 } 6829 int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){ 6830 assert( pPager->eState>=PAGER_WRITER_LOCKED ); 6831 assert( assert_pager_state(pPager) ); 6832 6833 if( nSavepoint>pPager->nSavepoint && pPager->useJournal ){ 6834 return pagerOpenSavepoint(pPager, nSavepoint); 6835 }else{ 6836 return SQLITE_OK; 6837 } 6838 } 6839 6840 6841 /* 6842 ** This function is called to rollback or release (commit) a savepoint. 6843 ** The savepoint to release or rollback need not be the most recently 6844 ** created savepoint. 6845 ** 6846 ** Parameter op is always either SAVEPOINT_ROLLBACK or SAVEPOINT_RELEASE. 6847 ** If it is SAVEPOINT_RELEASE, then release and destroy the savepoint with 6848 ** index iSavepoint. If it is SAVEPOINT_ROLLBACK, then rollback all changes 6849 ** that have occurred since the specified savepoint was created. 6850 ** 6851 ** The savepoint to rollback or release is identified by parameter 6852 ** iSavepoint. A value of 0 means to operate on the outermost savepoint 6853 ** (the first created). A value of (Pager.nSavepoint-1) means operate 6854 ** on the most recently created savepoint. If iSavepoint is greater than 6855 ** (Pager.nSavepoint-1), then this function is a no-op. 6856 ** 6857 ** If a negative value is passed to this function, then the current 6858 ** transaction is rolled back. This is different to calling 6859 ** sqlite3PagerRollback() because this function does not terminate 6860 ** the transaction or unlock the database, it just restores the 6861 ** contents of the database to its original state. 6862 ** 6863 ** In any case, all savepoints with an index greater than iSavepoint 6864 ** are destroyed. If this is a release operation (op==SAVEPOINT_RELEASE), 6865 ** then savepoint iSavepoint is also destroyed. 6866 ** 6867 ** This function may return SQLITE_NOMEM if a memory allocation fails, 6868 ** or an IO error code if an IO error occurs while rolling back a 6869 ** savepoint. If no errors occur, SQLITE_OK is returned. 6870 */ 6871 int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint){ 6872 int rc = pPager->errCode; 6873 6874 #ifdef SQLITE_ENABLE_ZIPVFS 6875 if( op==SAVEPOINT_RELEASE ) rc = SQLITE_OK; 6876 #endif 6877 6878 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 6879 assert( iSavepoint>=0 || op==SAVEPOINT_ROLLBACK ); 6880 6881 if( rc==SQLITE_OK && iSavepoint<pPager->nSavepoint ){ 6882 int ii; /* Iterator variable */ 6883 int nNew; /* Number of remaining savepoints after this op. */ 6884 6885 /* Figure out how many savepoints will still be active after this 6886 ** operation. Store this value in nNew. Then free resources associated 6887 ** with any savepoints that are destroyed by this operation. 6888 */ 6889 nNew = iSavepoint + (( op==SAVEPOINT_RELEASE ) ? 0 : 1); 6890 for(ii=nNew; ii<pPager->nSavepoint; ii++){ 6891 sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); 6892 } 6893 pPager->nSavepoint = nNew; 6894 6895 /* If this is a release of the outermost savepoint, truncate 6896 ** the sub-journal to zero bytes in size. */ 6897 if( op==SAVEPOINT_RELEASE ){ 6898 if( nNew==0 && isOpen(pPager->sjfd) ){ 6899 /* Only truncate if it is an in-memory sub-journal. */ 6900 if( sqlite3JournalIsInMemory(pPager->sjfd) ){ 6901 rc = sqlite3OsTruncate(pPager->sjfd, 0); 6902 assert( rc==SQLITE_OK ); 6903 } 6904 pPager->nSubRec = 0; 6905 } 6906 } 6907 /* Else this is a rollback operation, playback the specified savepoint. 6908 ** If this is a temp-file, it is possible that the journal file has 6909 ** not yet been opened. In this case there have been no changes to 6910 ** the database file, so the playback operation can be skipped. 6911 */ 6912 else if( pagerUseWal(pPager) || isOpen(pPager->jfd) ){ 6913 PagerSavepoint *pSavepoint = (nNew==0)?0:&pPager->aSavepoint[nNew-1]; 6914 rc = pagerPlaybackSavepoint(pPager, pSavepoint); 6915 assert(rc!=SQLITE_DONE); 6916 } 6917 6918 #ifdef SQLITE_ENABLE_ZIPVFS 6919 /* If the cache has been modified but the savepoint cannot be rolled 6920 ** back journal_mode=off, put the pager in the error state. This way, 6921 ** if the VFS used by this pager includes ZipVFS, the entire transaction 6922 ** can be rolled back at the ZipVFS level. */ 6923 else if( 6924 pPager->journalMode==PAGER_JOURNALMODE_OFF 6925 && pPager->eState>=PAGER_WRITER_CACHEMOD 6926 ){ 6927 pPager->errCode = SQLITE_ABORT; 6928 pPager->eState = PAGER_ERROR; 6929 setGetterMethod(pPager); 6930 } 6931 #endif 6932 } 6933 6934 return rc; 6935 } 6936 6937 /* 6938 ** Return the full pathname of the database file. 6939 ** 6940 ** Except, if the pager is in-memory only, then return an empty string if 6941 ** nullIfMemDb is true. This routine is called with nullIfMemDb==1 when 6942 ** used to report the filename to the user, for compatibility with legacy 6943 ** behavior. But when the Btree needs to know the filename for matching to 6944 ** shared cache, it uses nullIfMemDb==0 so that in-memory databases can 6945 ** participate in shared-cache. 6946 */ 6947 const char *sqlite3PagerFilename(Pager *pPager, int nullIfMemDb){ 6948 return (nullIfMemDb && pPager->memDb) ? "" : pPager->zFilename; 6949 } 6950 6951 /* 6952 ** Return the VFS structure for the pager. 6953 */ 6954 sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){ 6955 return pPager->pVfs; 6956 } 6957 6958 /* 6959 ** Return the file handle for the database file associated 6960 ** with the pager. This might return NULL if the file has 6961 ** not yet been opened. 6962 */ 6963 sqlite3_file *sqlite3PagerFile(Pager *pPager){ 6964 return pPager->fd; 6965 } 6966 6967 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 6968 /* 6969 ** Reset the lock timeout for pager. 6970 */ 6971 void sqlite3PagerResetLockTimeout(Pager *pPager){ 6972 int x = 0; 6973 sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_LOCK_TIMEOUT, &x); 6974 } 6975 #endif 6976 6977 /* 6978 ** Return the file handle for the journal file (if it exists). 6979 ** This will be either the rollback journal or the WAL file. 6980 */ 6981 sqlite3_file *sqlite3PagerJrnlFile(Pager *pPager){ 6982 #if SQLITE_OMIT_WAL 6983 return pPager->jfd; 6984 #else 6985 return pPager->pWal ? sqlite3WalFile(pPager->pWal) : pPager->jfd; 6986 #endif 6987 } 6988 6989 /* 6990 ** Return the full pathname of the journal file. 6991 */ 6992 const char *sqlite3PagerJournalname(Pager *pPager){ 6993 return pPager->zJournal; 6994 } 6995 6996 #ifdef SQLITE_HAS_CODEC 6997 /* 6998 ** Set or retrieve the codec for this pager 6999 */ 7000 void sqlite3PagerSetCodec( 7001 Pager *pPager, 7002 void *(*xCodec)(void*,void*,Pgno,int), 7003 void (*xCodecSizeChng)(void*,int,int), 7004 void (*xCodecFree)(void*), 7005 void *pCodec 7006 ){ 7007 if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec); 7008 pPager->xCodec = pPager->memDb ? 0 : xCodec; 7009 pPager->xCodecSizeChng = xCodecSizeChng; 7010 pPager->xCodecFree = xCodecFree; 7011 pPager->pCodec = pCodec; 7012 setGetterMethod(pPager); 7013 pagerReportSize(pPager); 7014 } 7015 void *sqlite3PagerGetCodec(Pager *pPager){ 7016 return pPager->pCodec; 7017 } 7018 7019 /* 7020 ** This function is called by the wal module when writing page content 7021 ** into the log file. 7022 ** 7023 ** This function returns a pointer to a buffer containing the encrypted 7024 ** page content. If a malloc fails, this function may return NULL. 7025 */ 7026 void *sqlite3PagerCodec(PgHdr *pPg){ 7027 void *aData = 0; 7028 CODEC2(pPg->pPager, pPg->pData, pPg->pgno, 6, return 0, aData); 7029 return aData; 7030 } 7031 7032 /* 7033 ** Return the current pager state 7034 */ 7035 int sqlite3PagerState(Pager *pPager){ 7036 return pPager->eState; 7037 } 7038 #endif /* SQLITE_HAS_CODEC */ 7039 7040 #ifndef SQLITE_OMIT_AUTOVACUUM 7041 /* 7042 ** Move the page pPg to location pgno in the file. 7043 ** 7044 ** There must be no references to the page previously located at 7045 ** pgno (which we call pPgOld) though that page is allowed to be 7046 ** in cache. If the page previously located at pgno is not already 7047 ** in the rollback journal, it is not put there by by this routine. 7048 ** 7049 ** References to the page pPg remain valid. Updating any 7050 ** meta-data associated with pPg (i.e. data stored in the nExtra bytes 7051 ** allocated along with the page) is the responsibility of the caller. 7052 ** 7053 ** A transaction must be active when this routine is called. It used to be 7054 ** required that a statement transaction was not active, but this restriction 7055 ** has been removed (CREATE INDEX needs to move a page when a statement 7056 ** transaction is active). 7057 ** 7058 ** If the fourth argument, isCommit, is non-zero, then this page is being 7059 ** moved as part of a database reorganization just before the transaction 7060 ** is being committed. In this case, it is guaranteed that the database page 7061 ** pPg refers to will not be written to again within this transaction. 7062 ** 7063 ** This function may return SQLITE_NOMEM or an IO error code if an error 7064 ** occurs. Otherwise, it returns SQLITE_OK. 7065 */ 7066 int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){ 7067 PgHdr *pPgOld; /* The page being overwritten. */ 7068 Pgno needSyncPgno = 0; /* Old value of pPg->pgno, if sync is required */ 7069 int rc; /* Return code */ 7070 Pgno origPgno; /* The original page number */ 7071 7072 assert( pPg->nRef>0 ); 7073 assert( pPager->eState==PAGER_WRITER_CACHEMOD 7074 || pPager->eState==PAGER_WRITER_DBMOD 7075 ); 7076 assert( assert_pager_state(pPager) ); 7077 7078 /* In order to be able to rollback, an in-memory database must journal 7079 ** the page we are moving from. 7080 */ 7081 assert( pPager->tempFile || !MEMDB ); 7082 if( pPager->tempFile ){ 7083 rc = sqlite3PagerWrite(pPg); 7084 if( rc ) return rc; 7085 } 7086 7087 /* If the page being moved is dirty and has not been saved by the latest 7088 ** savepoint, then save the current contents of the page into the 7089 ** sub-journal now. This is required to handle the following scenario: 7090 ** 7091 ** BEGIN; 7092 ** <journal page X, then modify it in memory> 7093 ** SAVEPOINT one; 7094 ** <Move page X to location Y> 7095 ** ROLLBACK TO one; 7096 ** 7097 ** If page X were not written to the sub-journal here, it would not 7098 ** be possible to restore its contents when the "ROLLBACK TO one" 7099 ** statement were is processed. 7100 ** 7101 ** subjournalPage() may need to allocate space to store pPg->pgno into 7102 ** one or more savepoint bitvecs. This is the reason this function 7103 ** may return SQLITE_NOMEM. 7104 */ 7105 if( (pPg->flags & PGHDR_DIRTY)!=0 7106 && SQLITE_OK!=(rc = subjournalPageIfRequired(pPg)) 7107 ){ 7108 return rc; 7109 } 7110 7111 PAGERTRACE(("MOVE %d page %d (needSync=%d) moves to %d\n", 7112 PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno)); 7113 IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno)) 7114 7115 /* If the journal needs to be sync()ed before page pPg->pgno can 7116 ** be written to, store pPg->pgno in local variable needSyncPgno. 7117 ** 7118 ** If the isCommit flag is set, there is no need to remember that 7119 ** the journal needs to be sync()ed before database page pPg->pgno 7120 ** can be written to. The caller has already promised not to write to it. 7121 */ 7122 if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){ 7123 needSyncPgno = pPg->pgno; 7124 assert( pPager->journalMode==PAGER_JOURNALMODE_OFF || 7125 pageInJournal(pPager, pPg) || pPg->pgno>pPager->dbOrigSize ); 7126 assert( pPg->flags&PGHDR_DIRTY ); 7127 } 7128 7129 /* If the cache contains a page with page-number pgno, remove it 7130 ** from its hash chain. Also, if the PGHDR_NEED_SYNC flag was set for 7131 ** page pgno before the 'move' operation, it needs to be retained 7132 ** for the page moved there. 7133 */ 7134 pPg->flags &= ~PGHDR_NEED_SYNC; 7135 pPgOld = sqlite3PagerLookup(pPager, pgno); 7136 assert( !pPgOld || pPgOld->nRef==1 ); 7137 if( pPgOld ){ 7138 pPg->flags |= (pPgOld->flags&PGHDR_NEED_SYNC); 7139 if( pPager->tempFile ){ 7140 /* Do not discard pages from an in-memory database since we might 7141 ** need to rollback later. Just move the page out of the way. */ 7142 sqlite3PcacheMove(pPgOld, pPager->dbSize+1); 7143 }else{ 7144 sqlite3PcacheDrop(pPgOld); 7145 } 7146 } 7147 7148 origPgno = pPg->pgno; 7149 sqlite3PcacheMove(pPg, pgno); 7150 sqlite3PcacheMakeDirty(pPg); 7151 7152 /* For an in-memory database, make sure the original page continues 7153 ** to exist, in case the transaction needs to roll back. Use pPgOld 7154 ** as the original page since it has already been allocated. 7155 */ 7156 if( pPager->tempFile && pPgOld ){ 7157 sqlite3PcacheMove(pPgOld, origPgno); 7158 sqlite3PagerUnrefNotNull(pPgOld); 7159 } 7160 7161 if( needSyncPgno ){ 7162 /* If needSyncPgno is non-zero, then the journal file needs to be 7163 ** sync()ed before any data is written to database file page needSyncPgno. 7164 ** Currently, no such page exists in the page-cache and the 7165 ** "is journaled" bitvec flag has been set. This needs to be remedied by 7166 ** loading the page into the pager-cache and setting the PGHDR_NEED_SYNC 7167 ** flag. 7168 ** 7169 ** If the attempt to load the page into the page-cache fails, (due 7170 ** to a malloc() or IO failure), clear the bit in the pInJournal[] 7171 ** array. Otherwise, if the page is loaded and written again in 7172 ** this transaction, it may be written to the database file before 7173 ** it is synced into the journal file. This way, it may end up in 7174 ** the journal file twice, but that is not a problem. 7175 */ 7176 PgHdr *pPgHdr; 7177 rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr, 0); 7178 if( rc!=SQLITE_OK ){ 7179 if( needSyncPgno<=pPager->dbOrigSize ){ 7180 assert( pPager->pTmpSpace!=0 ); 7181 sqlite3BitvecClear(pPager->pInJournal, needSyncPgno, pPager->pTmpSpace); 7182 } 7183 return rc; 7184 } 7185 pPgHdr->flags |= PGHDR_NEED_SYNC; 7186 sqlite3PcacheMakeDirty(pPgHdr); 7187 sqlite3PagerUnrefNotNull(pPgHdr); 7188 } 7189 7190 return SQLITE_OK; 7191 } 7192 #endif 7193 7194 /* 7195 ** The page handle passed as the first argument refers to a dirty page 7196 ** with a page number other than iNew. This function changes the page's 7197 ** page number to iNew and sets the value of the PgHdr.flags field to 7198 ** the value passed as the third parameter. 7199 */ 7200 void sqlite3PagerRekey(DbPage *pPg, Pgno iNew, u16 flags){ 7201 assert( pPg->pgno!=iNew ); 7202 pPg->flags = flags; 7203 sqlite3PcacheMove(pPg, iNew); 7204 } 7205 7206 /* 7207 ** Return a pointer to the data for the specified page. 7208 */ 7209 void *sqlite3PagerGetData(DbPage *pPg){ 7210 assert( pPg->nRef>0 || pPg->pPager->memDb ); 7211 return pPg->pData; 7212 } 7213 7214 /* 7215 ** Return a pointer to the Pager.nExtra bytes of "extra" space 7216 ** allocated along with the specified page. 7217 */ 7218 void *sqlite3PagerGetExtra(DbPage *pPg){ 7219 return pPg->pExtra; 7220 } 7221 7222 /* 7223 ** Get/set the locking-mode for this pager. Parameter eMode must be one 7224 ** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or 7225 ** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then 7226 ** the locking-mode is set to the value specified. 7227 ** 7228 ** The returned value is either PAGER_LOCKINGMODE_NORMAL or 7229 ** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated) 7230 ** locking-mode. 7231 */ 7232 int sqlite3PagerLockingMode(Pager *pPager, int eMode){ 7233 assert( eMode==PAGER_LOCKINGMODE_QUERY 7234 || eMode==PAGER_LOCKINGMODE_NORMAL 7235 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); 7236 assert( PAGER_LOCKINGMODE_QUERY<0 ); 7237 assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 ); 7238 assert( pPager->exclusiveMode || 0==sqlite3WalHeapMemory(pPager->pWal) ); 7239 if( eMode>=0 && !pPager->tempFile && !sqlite3WalHeapMemory(pPager->pWal) ){ 7240 pPager->exclusiveMode = (u8)eMode; 7241 } 7242 return (int)pPager->exclusiveMode; 7243 } 7244 7245 /* 7246 ** Set the journal-mode for this pager. Parameter eMode must be one of: 7247 ** 7248 ** PAGER_JOURNALMODE_DELETE 7249 ** PAGER_JOURNALMODE_TRUNCATE 7250 ** PAGER_JOURNALMODE_PERSIST 7251 ** PAGER_JOURNALMODE_OFF 7252 ** PAGER_JOURNALMODE_MEMORY 7253 ** PAGER_JOURNALMODE_WAL 7254 ** 7255 ** The journalmode is set to the value specified if the change is allowed. 7256 ** The change may be disallowed for the following reasons: 7257 ** 7258 ** * An in-memory database can only have its journal_mode set to _OFF 7259 ** or _MEMORY. 7260 ** 7261 ** * Temporary databases cannot have _WAL journalmode. 7262 ** 7263 ** The returned indicate the current (possibly updated) journal-mode. 7264 */ 7265 int sqlite3PagerSetJournalMode(Pager *pPager, int eMode){ 7266 u8 eOld = pPager->journalMode; /* Prior journalmode */ 7267 7268 #ifdef SQLITE_DEBUG 7269 /* The print_pager_state() routine is intended to be used by the debugger 7270 ** only. We invoke it once here to suppress a compiler warning. */ 7271 print_pager_state(pPager); 7272 #endif 7273 7274 7275 /* The eMode parameter is always valid */ 7276 assert( eMode==PAGER_JOURNALMODE_DELETE 7277 || eMode==PAGER_JOURNALMODE_TRUNCATE 7278 || eMode==PAGER_JOURNALMODE_PERSIST 7279 || eMode==PAGER_JOURNALMODE_OFF 7280 || eMode==PAGER_JOURNALMODE_WAL 7281 || eMode==PAGER_JOURNALMODE_MEMORY ); 7282 7283 /* This routine is only called from the OP_JournalMode opcode, and 7284 ** the logic there will never allow a temporary file to be changed 7285 ** to WAL mode. 7286 */ 7287 assert( pPager->tempFile==0 || eMode!=PAGER_JOURNALMODE_WAL ); 7288 7289 /* Do allow the journalmode of an in-memory database to be set to 7290 ** anything other than MEMORY or OFF 7291 */ 7292 if( MEMDB ){ 7293 assert( eOld==PAGER_JOURNALMODE_MEMORY || eOld==PAGER_JOURNALMODE_OFF ); 7294 if( eMode!=PAGER_JOURNALMODE_MEMORY && eMode!=PAGER_JOURNALMODE_OFF ){ 7295 eMode = eOld; 7296 } 7297 } 7298 7299 if( eMode!=eOld ){ 7300 7301 /* Change the journal mode. */ 7302 assert( pPager->eState!=PAGER_ERROR ); 7303 pPager->journalMode = (u8)eMode; 7304 7305 /* When transistioning from TRUNCATE or PERSIST to any other journal 7306 ** mode except WAL, unless the pager is in locking_mode=exclusive mode, 7307 ** delete the journal file. 7308 */ 7309 assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); 7310 assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); 7311 assert( (PAGER_JOURNALMODE_DELETE & 5)==0 ); 7312 assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 ); 7313 assert( (PAGER_JOURNALMODE_OFF & 5)==0 ); 7314 assert( (PAGER_JOURNALMODE_WAL & 5)==5 ); 7315 7316 assert( isOpen(pPager->fd) || pPager->exclusiveMode ); 7317 if( !pPager->exclusiveMode && (eOld & 5)==1 && (eMode & 1)==0 ){ 7318 7319 /* In this case we would like to delete the journal file. If it is 7320 ** not possible, then that is not a problem. Deleting the journal file 7321 ** here is an optimization only. 7322 ** 7323 ** Before deleting the journal file, obtain a RESERVED lock on the 7324 ** database file. This ensures that the journal file is not deleted 7325 ** while it is in use by some other client. 7326 */ 7327 sqlite3OsClose(pPager->jfd); 7328 if( pPager->eLock>=RESERVED_LOCK ){ 7329 sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); 7330 }else{ 7331 int rc = SQLITE_OK; 7332 int state = pPager->eState; 7333 assert( state==PAGER_OPEN || state==PAGER_READER ); 7334 if( state==PAGER_OPEN ){ 7335 rc = sqlite3PagerSharedLock(pPager); 7336 } 7337 if( pPager->eState==PAGER_READER ){ 7338 assert( rc==SQLITE_OK ); 7339 rc = pagerLockDb(pPager, RESERVED_LOCK); 7340 } 7341 if( rc==SQLITE_OK ){ 7342 sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); 7343 } 7344 if( rc==SQLITE_OK && state==PAGER_READER ){ 7345 pagerUnlockDb(pPager, SHARED_LOCK); 7346 }else if( state==PAGER_OPEN ){ 7347 pager_unlock(pPager); 7348 } 7349 assert( state==pPager->eState ); 7350 } 7351 }else if( eMode==PAGER_JOURNALMODE_OFF ){ 7352 sqlite3OsClose(pPager->jfd); 7353 } 7354 } 7355 7356 /* Return the new journal mode */ 7357 return (int)pPager->journalMode; 7358 } 7359 7360 /* 7361 ** Return the current journal mode. 7362 */ 7363 int sqlite3PagerGetJournalMode(Pager *pPager){ 7364 return (int)pPager->journalMode; 7365 } 7366 7367 /* 7368 ** Return TRUE if the pager is in a state where it is OK to change the 7369 ** journalmode. Journalmode changes can only happen when the database 7370 ** is unmodified. 7371 */ 7372 int sqlite3PagerOkToChangeJournalMode(Pager *pPager){ 7373 assert( assert_pager_state(pPager) ); 7374 if( pPager->eState>=PAGER_WRITER_CACHEMOD ) return 0; 7375 if( NEVER(isOpen(pPager->jfd) && pPager->journalOff>0) ) return 0; 7376 return 1; 7377 } 7378 7379 /* 7380 ** Get/set the size-limit used for persistent journal files. 7381 ** 7382 ** Setting the size limit to -1 means no limit is enforced. 7383 ** An attempt to set a limit smaller than -1 is a no-op. 7384 */ 7385 i64 sqlite3PagerJournalSizeLimit(Pager *pPager, i64 iLimit){ 7386 if( iLimit>=-1 ){ 7387 pPager->journalSizeLimit = iLimit; 7388 sqlite3WalLimit(pPager->pWal, iLimit); 7389 } 7390 return pPager->journalSizeLimit; 7391 } 7392 7393 /* 7394 ** Return a pointer to the pPager->pBackup variable. The backup module 7395 ** in backup.c maintains the content of this variable. This module 7396 ** uses it opaquely as an argument to sqlite3BackupRestart() and 7397 ** sqlite3BackupUpdate() only. 7398 */ 7399 sqlite3_backup **sqlite3PagerBackupPtr(Pager *pPager){ 7400 return &pPager->pBackup; 7401 } 7402 7403 #ifndef SQLITE_OMIT_VACUUM 7404 /* 7405 ** Unless this is an in-memory or temporary database, clear the pager cache. 7406 */ 7407 void sqlite3PagerClearCache(Pager *pPager){ 7408 assert( MEMDB==0 || pPager->tempFile ); 7409 if( pPager->tempFile==0 ) pager_reset(pPager); 7410 } 7411 #endif 7412 7413 7414 #ifndef SQLITE_OMIT_WAL 7415 /* 7416 ** This function is called when the user invokes "PRAGMA wal_checkpoint", 7417 ** "PRAGMA wal_blocking_checkpoint" or calls the sqlite3_wal_checkpoint() 7418 ** or wal_blocking_checkpoint() API functions. 7419 ** 7420 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 7421 */ 7422 int sqlite3PagerCheckpoint( 7423 Pager *pPager, /* Checkpoint on this pager */ 7424 sqlite3 *db, /* Db handle used to check for interrupts */ 7425 int eMode, /* Type of checkpoint */ 7426 int *pnLog, /* OUT: Final number of frames in log */ 7427 int *pnCkpt /* OUT: Final number of checkpointed frames */ 7428 ){ 7429 int rc = SQLITE_OK; 7430 if( pPager->pWal ){ 7431 rc = sqlite3WalCheckpoint(pPager->pWal, db, eMode, 7432 (eMode==SQLITE_CHECKPOINT_PASSIVE ? 0 : pPager->xBusyHandler), 7433 pPager->pBusyHandlerArg, 7434 pPager->walSyncFlags, pPager->pageSize, (u8 *)pPager->pTmpSpace, 7435 pnLog, pnCkpt 7436 ); 7437 sqlite3PagerResetLockTimeout(pPager); 7438 } 7439 return rc; 7440 } 7441 7442 int sqlite3PagerWalCallback(Pager *pPager){ 7443 return sqlite3WalCallback(pPager->pWal); 7444 } 7445 7446 /* 7447 ** Return true if the underlying VFS for the given pager supports the 7448 ** primitives necessary for write-ahead logging. 7449 */ 7450 int sqlite3PagerWalSupported(Pager *pPager){ 7451 const sqlite3_io_methods *pMethods = pPager->fd->pMethods; 7452 if( pPager->noLock ) return 0; 7453 return pPager->exclusiveMode || (pMethods->iVersion>=2 && pMethods->xShmMap); 7454 } 7455 7456 /* 7457 ** Attempt to take an exclusive lock on the database file. If a PENDING lock 7458 ** is obtained instead, immediately release it. 7459 */ 7460 static int pagerExclusiveLock(Pager *pPager){ 7461 int rc; /* Return code */ 7462 7463 assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); 7464 rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); 7465 if( rc!=SQLITE_OK ){ 7466 /* If the attempt to grab the exclusive lock failed, release the 7467 ** pending lock that may have been obtained instead. */ 7468 pagerUnlockDb(pPager, SHARED_LOCK); 7469 } 7470 7471 return rc; 7472 } 7473 7474 /* 7475 ** Call sqlite3WalOpen() to open the WAL handle. If the pager is in 7476 ** exclusive-locking mode when this function is called, take an EXCLUSIVE 7477 ** lock on the database file and use heap-memory to store the wal-index 7478 ** in. Otherwise, use the normal shared-memory. 7479 */ 7480 static int pagerOpenWal(Pager *pPager){ 7481 int rc = SQLITE_OK; 7482 7483 assert( pPager->pWal==0 && pPager->tempFile==0 ); 7484 assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); 7485 7486 /* If the pager is already in exclusive-mode, the WAL module will use 7487 ** heap-memory for the wal-index instead of the VFS shared-memory 7488 ** implementation. Take the exclusive lock now, before opening the WAL 7489 ** file, to make sure this is safe. 7490 */ 7491 if( pPager->exclusiveMode ){ 7492 rc = pagerExclusiveLock(pPager); 7493 } 7494 7495 /* Open the connection to the log file. If this operation fails, 7496 ** (e.g. due to malloc() failure), return an error code. 7497 */ 7498 if( rc==SQLITE_OK ){ 7499 rc = sqlite3WalOpen(pPager->pVfs, 7500 pPager->fd, pPager->zWal, pPager->exclusiveMode, 7501 pPager->journalSizeLimit, &pPager->pWal 7502 ); 7503 } 7504 pagerFixMaplimit(pPager); 7505 7506 return rc; 7507 } 7508 7509 7510 /* 7511 ** The caller must be holding a SHARED lock on the database file to call 7512 ** this function. 7513 ** 7514 ** If the pager passed as the first argument is open on a real database 7515 ** file (not a temp file or an in-memory database), and the WAL file 7516 ** is not already open, make an attempt to open it now. If successful, 7517 ** return SQLITE_OK. If an error occurs or the VFS used by the pager does 7518 ** not support the xShmXXX() methods, return an error code. *pbOpen is 7519 ** not modified in either case. 7520 ** 7521 ** If the pager is open on a temp-file (or in-memory database), or if 7522 ** the WAL file is already open, set *pbOpen to 1 and return SQLITE_OK 7523 ** without doing anything. 7524 */ 7525 int sqlite3PagerOpenWal( 7526 Pager *pPager, /* Pager object */ 7527 int *pbOpen /* OUT: Set to true if call is a no-op */ 7528 ){ 7529 int rc = SQLITE_OK; /* Return code */ 7530 7531 assert( assert_pager_state(pPager) ); 7532 assert( pPager->eState==PAGER_OPEN || pbOpen ); 7533 assert( pPager->eState==PAGER_READER || !pbOpen ); 7534 assert( pbOpen==0 || *pbOpen==0 ); 7535 assert( pbOpen!=0 || (!pPager->tempFile && !pPager->pWal) ); 7536 7537 if( !pPager->tempFile && !pPager->pWal ){ 7538 if( !sqlite3PagerWalSupported(pPager) ) return SQLITE_CANTOPEN; 7539 7540 /* Close any rollback journal previously open */ 7541 sqlite3OsClose(pPager->jfd); 7542 7543 rc = pagerOpenWal(pPager); 7544 if( rc==SQLITE_OK ){ 7545 pPager->journalMode = PAGER_JOURNALMODE_WAL; 7546 pPager->eState = PAGER_OPEN; 7547 } 7548 }else{ 7549 *pbOpen = 1; 7550 } 7551 7552 return rc; 7553 } 7554 7555 /* 7556 ** This function is called to close the connection to the log file prior 7557 ** to switching from WAL to rollback mode. 7558 ** 7559 ** Before closing the log file, this function attempts to take an 7560 ** EXCLUSIVE lock on the database file. If this cannot be obtained, an 7561 ** error (SQLITE_BUSY) is returned and the log connection is not closed. 7562 ** If successful, the EXCLUSIVE lock is not released before returning. 7563 */ 7564 int sqlite3PagerCloseWal(Pager *pPager, sqlite3 *db){ 7565 int rc = SQLITE_OK; 7566 7567 assert( pPager->journalMode==PAGER_JOURNALMODE_WAL ); 7568 7569 /* If the log file is not already open, but does exist in the file-system, 7570 ** it may need to be checkpointed before the connection can switch to 7571 ** rollback mode. Open it now so this can happen. 7572 */ 7573 if( !pPager->pWal ){ 7574 int logexists = 0; 7575 rc = pagerLockDb(pPager, SHARED_LOCK); 7576 if( rc==SQLITE_OK ){ 7577 rc = sqlite3OsAccess( 7578 pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &logexists 7579 ); 7580 } 7581 if( rc==SQLITE_OK && logexists ){ 7582 rc = pagerOpenWal(pPager); 7583 } 7584 } 7585 7586 /* Checkpoint and close the log. Because an EXCLUSIVE lock is held on 7587 ** the database file, the log and log-summary files will be deleted. 7588 */ 7589 if( rc==SQLITE_OK && pPager->pWal ){ 7590 rc = pagerExclusiveLock(pPager); 7591 if( rc==SQLITE_OK ){ 7592 rc = sqlite3WalClose(pPager->pWal, db, pPager->walSyncFlags, 7593 pPager->pageSize, (u8*)pPager->pTmpSpace); 7594 pPager->pWal = 0; 7595 pagerFixMaplimit(pPager); 7596 if( rc && !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK); 7597 } 7598 } 7599 return rc; 7600 } 7601 7602 #ifdef SQLITE_ENABLE_SNAPSHOT 7603 /* 7604 ** If this is a WAL database, obtain a snapshot handle for the snapshot 7605 ** currently open. Otherwise, return an error. 7606 */ 7607 int sqlite3PagerSnapshotGet(Pager *pPager, sqlite3_snapshot **ppSnapshot){ 7608 int rc = SQLITE_ERROR; 7609 if( pPager->pWal ){ 7610 rc = sqlite3WalSnapshotGet(pPager->pWal, ppSnapshot); 7611 } 7612 return rc; 7613 } 7614 7615 /* 7616 ** If this is a WAL database, store a pointer to pSnapshot. Next time a 7617 ** read transaction is opened, attempt to read from the snapshot it 7618 ** identifies. If this is not a WAL database, return an error. 7619 */ 7620 int sqlite3PagerSnapshotOpen(Pager *pPager, sqlite3_snapshot *pSnapshot){ 7621 int rc = SQLITE_OK; 7622 if( pPager->pWal ){ 7623 sqlite3WalSnapshotOpen(pPager->pWal, pSnapshot); 7624 }else{ 7625 rc = SQLITE_ERROR; 7626 } 7627 return rc; 7628 } 7629 7630 /* 7631 ** If this is a WAL database, call sqlite3WalSnapshotRecover(). If this 7632 ** is not a WAL database, return an error. 7633 */ 7634 int sqlite3PagerSnapshotRecover(Pager *pPager){ 7635 int rc; 7636 if( pPager->pWal ){ 7637 rc = sqlite3WalSnapshotRecover(pPager->pWal); 7638 }else{ 7639 rc = SQLITE_ERROR; 7640 } 7641 return rc; 7642 } 7643 #endif /* SQLITE_ENABLE_SNAPSHOT */ 7644 #endif /* !SQLITE_OMIT_WAL */ 7645 7646 #ifdef SQLITE_ENABLE_ZIPVFS 7647 /* 7648 ** A read-lock must be held on the pager when this function is called. If 7649 ** the pager is in WAL mode and the WAL file currently contains one or more 7650 ** frames, return the size in bytes of the page images stored within the 7651 ** WAL frames. Otherwise, if this is not a WAL database or the WAL file 7652 ** is empty, return 0. 7653 */ 7654 int sqlite3PagerWalFramesize(Pager *pPager){ 7655 assert( pPager->eState>=PAGER_READER ); 7656 return sqlite3WalFramesize(pPager->pWal); 7657 } 7658 #endif 7659 7660 #endif /* SQLITE_OMIT_DISKIO */ 7661