1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This is the implementation of the page cache subsystem or "pager". 13 ** 14 ** The pager is used to access a database disk file. It implements 15 ** atomic commit and rollback through the use of a journal file that 16 ** is separate from the database file. The pager also implements file 17 ** locking to prevent two processes from writing the same database 18 ** file simultaneously, or one process from reading the database while 19 ** another is writing. 20 */ 21 #ifndef SQLITE_OMIT_DISKIO 22 #include "sqliteInt.h" 23 #include "wal.h" 24 25 26 /******************* NOTES ON THE DESIGN OF THE PAGER ************************ 27 ** 28 ** This comment block describes invariants that hold when using a rollback 29 ** journal. These invariants do not apply for journal_mode=WAL, 30 ** journal_mode=MEMORY, or journal_mode=OFF. 31 ** 32 ** Within this comment block, a page is deemed to have been synced 33 ** automatically as soon as it is written when PRAGMA synchronous=OFF. 34 ** Otherwise, the page is not synced until the xSync method of the VFS 35 ** is called successfully on the file containing the page. 36 ** 37 ** Definition: A page of the database file is said to be "overwriteable" if 38 ** one or more of the following are true about the page: 39 ** 40 ** (a) The original content of the page as it was at the beginning of 41 ** the transaction has been written into the rollback journal and 42 ** synced. 43 ** 44 ** (b) The page was a freelist leaf page at the start of the transaction. 45 ** 46 ** (c) The page number is greater than the largest page that existed in 47 ** the database file at the start of the transaction. 48 ** 49 ** (1) A page of the database file is never overwritten unless one of the 50 ** following are true: 51 ** 52 ** (a) The page and all other pages on the same sector are overwriteable. 53 ** 54 ** (b) The atomic page write optimization is enabled, and the entire 55 ** transaction other than the update of the transaction sequence 56 ** number consists of a single page change. 57 ** 58 ** (2) The content of a page written into the rollback journal exactly matches 59 ** both the content in the database when the rollback journal was written 60 ** and the content in the database at the beginning of the current 61 ** transaction. 62 ** 63 ** (3) Writes to the database file are an integer multiple of the page size 64 ** in length and are aligned on a page boundary. 65 ** 66 ** (4) Reads from the database file are either aligned on a page boundary and 67 ** an integer multiple of the page size in length or are taken from the 68 ** first 100 bytes of the database file. 69 ** 70 ** (5) All writes to the database file are synced prior to the rollback journal 71 ** being deleted, truncated, or zeroed. 72 ** 73 ** (6) If a master journal file is used, then all writes to the database file 74 ** are synced prior to the master journal being deleted. 75 ** 76 ** Definition: Two databases (or the same database at two points it time) 77 ** are said to be "logically equivalent" if they give the same answer to 78 ** all queries. Note in particular the content of freelist leaf 79 ** pages can be changed arbitrarily without affecting the logical equivalence 80 ** of the database. 81 ** 82 ** (7) At any time, if any subset, including the empty set and the total set, 83 ** of the unsynced changes to a rollback journal are removed and the 84 ** journal is rolled back, the resulting database file will be logically 85 ** equivalent to the database file at the beginning of the transaction. 86 ** 87 ** (8) When a transaction is rolled back, the xTruncate method of the VFS 88 ** is called to restore the database file to the same size it was at 89 ** the beginning of the transaction. (In some VFSes, the xTruncate 90 ** method is a no-op, but that does not change the fact the SQLite will 91 ** invoke it.) 92 ** 93 ** (9) Whenever the database file is modified, at least one bit in the range 94 ** of bytes from 24 through 39 inclusive will be changed prior to releasing 95 ** the EXCLUSIVE lock, thus signaling other connections on the same 96 ** database to flush their caches. 97 ** 98 ** (10) The pattern of bits in bytes 24 through 39 shall not repeat in less 99 ** than one billion transactions. 100 ** 101 ** (11) A database file is well-formed at the beginning and at the conclusion 102 ** of every transaction. 103 ** 104 ** (12) An EXCLUSIVE lock is held on the database file when writing to 105 ** the database file. 106 ** 107 ** (13) A SHARED lock is held on the database file while reading any 108 ** content out of the database file. 109 ** 110 ******************************************************************************/ 111 112 /* 113 ** Macros for troubleshooting. Normally turned off 114 */ 115 #if 0 116 int sqlite3PagerTrace=1; /* True to enable tracing */ 117 #define sqlite3DebugPrintf printf 118 #define PAGERTRACE(X) if( sqlite3PagerTrace ){ sqlite3DebugPrintf X; } 119 #else 120 #define PAGERTRACE(X) 121 #endif 122 123 /* 124 ** The following two macros are used within the PAGERTRACE() macros above 125 ** to print out file-descriptors. 126 ** 127 ** PAGERID() takes a pointer to a Pager struct as its argument. The 128 ** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file 129 ** struct as its argument. 130 */ 131 #define PAGERID(p) (SQLITE_PTR_TO_INT(p->fd)) 132 #define FILEHANDLEID(fd) (SQLITE_PTR_TO_INT(fd)) 133 134 /* 135 ** The Pager.eState variable stores the current 'state' of a pager. A 136 ** pager may be in any one of the seven states shown in the following 137 ** state diagram. 138 ** 139 ** OPEN <------+------+ 140 ** | | | 141 ** V | | 142 ** +---------> READER-------+ | 143 ** | | | 144 ** | V | 145 ** |<-------WRITER_LOCKED------> ERROR 146 ** | | ^ 147 ** | V | 148 ** |<------WRITER_CACHEMOD-------->| 149 ** | | | 150 ** | V | 151 ** |<-------WRITER_DBMOD---------->| 152 ** | | | 153 ** | V | 154 ** +<------WRITER_FINISHED-------->+ 155 ** 156 ** 157 ** List of state transitions and the C [function] that performs each: 158 ** 159 ** OPEN -> READER [sqlite3PagerSharedLock] 160 ** READER -> OPEN [pager_unlock] 161 ** 162 ** READER -> WRITER_LOCKED [sqlite3PagerBegin] 163 ** WRITER_LOCKED -> WRITER_CACHEMOD [pager_open_journal] 164 ** WRITER_CACHEMOD -> WRITER_DBMOD [syncJournal] 165 ** WRITER_DBMOD -> WRITER_FINISHED [sqlite3PagerCommitPhaseOne] 166 ** WRITER_*** -> READER [pager_end_transaction] 167 ** 168 ** WRITER_*** -> ERROR [pager_error] 169 ** ERROR -> OPEN [pager_unlock] 170 ** 171 ** 172 ** OPEN: 173 ** 174 ** The pager starts up in this state. Nothing is guaranteed in this 175 ** state - the file may or may not be locked and the database size is 176 ** unknown. The database may not be read or written. 177 ** 178 ** * No read or write transaction is active. 179 ** * Any lock, or no lock at all, may be held on the database file. 180 ** * The dbSize, dbOrigSize and dbFileSize variables may not be trusted. 181 ** 182 ** READER: 183 ** 184 ** In this state all the requirements for reading the database in 185 ** rollback (non-WAL) mode are met. Unless the pager is (or recently 186 ** was) in exclusive-locking mode, a user-level read transaction is 187 ** open. The database size is known in this state. 188 ** 189 ** A connection running with locking_mode=normal enters this state when 190 ** it opens a read-transaction on the database and returns to state 191 ** OPEN after the read-transaction is completed. However a connection 192 ** running in locking_mode=exclusive (including temp databases) remains in 193 ** this state even after the read-transaction is closed. The only way 194 ** a locking_mode=exclusive connection can transition from READER to OPEN 195 ** is via the ERROR state (see below). 196 ** 197 ** * A read transaction may be active (but a write-transaction cannot). 198 ** * A SHARED or greater lock is held on the database file. 199 ** * The dbSize variable may be trusted (even if a user-level read 200 ** transaction is not active). The dbOrigSize and dbFileSize variables 201 ** may not be trusted at this point. 202 ** * If the database is a WAL database, then the WAL connection is open. 203 ** * Even if a read-transaction is not open, it is guaranteed that 204 ** there is no hot-journal in the file-system. 205 ** 206 ** WRITER_LOCKED: 207 ** 208 ** The pager moves to this state from READER when a write-transaction 209 ** is first opened on the database. In WRITER_LOCKED state, all locks 210 ** required to start a write-transaction are held, but no actual 211 ** modifications to the cache or database have taken place. 212 ** 213 ** In rollback mode, a RESERVED or (if the transaction was opened with 214 ** BEGIN EXCLUSIVE) EXCLUSIVE lock is obtained on the database file when 215 ** moving to this state, but the journal file is not written to or opened 216 ** to in this state. If the transaction is committed or rolled back while 217 ** in WRITER_LOCKED state, all that is required is to unlock the database 218 ** file. 219 ** 220 ** IN WAL mode, WalBeginWriteTransaction() is called to lock the log file. 221 ** If the connection is running with locking_mode=exclusive, an attempt 222 ** is made to obtain an EXCLUSIVE lock on the database file. 223 ** 224 ** * A write transaction is active. 225 ** * If the connection is open in rollback-mode, a RESERVED or greater 226 ** lock is held on the database file. 227 ** * If the connection is open in WAL-mode, a WAL write transaction 228 ** is open (i.e. sqlite3WalBeginWriteTransaction() has been successfully 229 ** called). 230 ** * The dbSize, dbOrigSize and dbFileSize variables are all valid. 231 ** * The contents of the pager cache have not been modified. 232 ** * The journal file may or may not be open. 233 ** * Nothing (not even the first header) has been written to the journal. 234 ** 235 ** WRITER_CACHEMOD: 236 ** 237 ** A pager moves from WRITER_LOCKED state to this state when a page is 238 ** first modified by the upper layer. In rollback mode the journal file 239 ** is opened (if it is not already open) and a header written to the 240 ** start of it. The database file on disk has not been modified. 241 ** 242 ** * A write transaction is active. 243 ** * A RESERVED or greater lock is held on the database file. 244 ** * The journal file is open and the first header has been written 245 ** to it, but the header has not been synced to disk. 246 ** * The contents of the page cache have been modified. 247 ** 248 ** WRITER_DBMOD: 249 ** 250 ** The pager transitions from WRITER_CACHEMOD into WRITER_DBMOD state 251 ** when it modifies the contents of the database file. WAL connections 252 ** never enter this state (since they do not modify the database file, 253 ** just the log file). 254 ** 255 ** * A write transaction is active. 256 ** * An EXCLUSIVE or greater lock is held on the database file. 257 ** * The journal file is open and the first header has been written 258 ** and synced to disk. 259 ** * The contents of the page cache have been modified (and possibly 260 ** written to disk). 261 ** 262 ** WRITER_FINISHED: 263 ** 264 ** It is not possible for a WAL connection to enter this state. 265 ** 266 ** A rollback-mode pager changes to WRITER_FINISHED state from WRITER_DBMOD 267 ** state after the entire transaction has been successfully written into the 268 ** database file. In this state the transaction may be committed simply 269 ** by finalizing the journal file. Once in WRITER_FINISHED state, it is 270 ** not possible to modify the database further. At this point, the upper 271 ** layer must either commit or rollback the transaction. 272 ** 273 ** * A write transaction is active. 274 ** * An EXCLUSIVE or greater lock is held on the database file. 275 ** * All writing and syncing of journal and database data has finished. 276 ** If no error occurred, all that remains is to finalize the journal to 277 ** commit the transaction. If an error did occur, the caller will need 278 ** to rollback the transaction. 279 ** 280 ** ERROR: 281 ** 282 ** The ERROR state is entered when an IO or disk-full error (including 283 ** SQLITE_IOERR_NOMEM) occurs at a point in the code that makes it 284 ** difficult to be sure that the in-memory pager state (cache contents, 285 ** db size etc.) are consistent with the contents of the file-system. 286 ** 287 ** Temporary pager files may enter the ERROR state, but in-memory pagers 288 ** cannot. 289 ** 290 ** For example, if an IO error occurs while performing a rollback, 291 ** the contents of the page-cache may be left in an inconsistent state. 292 ** At this point it would be dangerous to change back to READER state 293 ** (as usually happens after a rollback). Any subsequent readers might 294 ** report database corruption (due to the inconsistent cache), and if 295 ** they upgrade to writers, they may inadvertently corrupt the database 296 ** file. To avoid this hazard, the pager switches into the ERROR state 297 ** instead of READER following such an error. 298 ** 299 ** Once it has entered the ERROR state, any attempt to use the pager 300 ** to read or write data returns an error. Eventually, once all 301 ** outstanding transactions have been abandoned, the pager is able to 302 ** transition back to OPEN state, discarding the contents of the 303 ** page-cache and any other in-memory state at the same time. Everything 304 ** is reloaded from disk (and, if necessary, hot-journal rollback peformed) 305 ** when a read-transaction is next opened on the pager (transitioning 306 ** the pager into READER state). At that point the system has recovered 307 ** from the error. 308 ** 309 ** Specifically, the pager jumps into the ERROR state if: 310 ** 311 ** 1. An error occurs while attempting a rollback. This happens in 312 ** function sqlite3PagerRollback(). 313 ** 314 ** 2. An error occurs while attempting to finalize a journal file 315 ** following a commit in function sqlite3PagerCommitPhaseTwo(). 316 ** 317 ** 3. An error occurs while attempting to write to the journal or 318 ** database file in function pagerStress() in order to free up 319 ** memory. 320 ** 321 ** In other cases, the error is returned to the b-tree layer. The b-tree 322 ** layer then attempts a rollback operation. If the error condition 323 ** persists, the pager enters the ERROR state via condition (1) above. 324 ** 325 ** Condition (3) is necessary because it can be triggered by a read-only 326 ** statement executed within a transaction. In this case, if the error 327 ** code were simply returned to the user, the b-tree layer would not 328 ** automatically attempt a rollback, as it assumes that an error in a 329 ** read-only statement cannot leave the pager in an internally inconsistent 330 ** state. 331 ** 332 ** * The Pager.errCode variable is set to something other than SQLITE_OK. 333 ** * There are one or more outstanding references to pages (after the 334 ** last reference is dropped the pager should move back to OPEN state). 335 ** * The pager is not an in-memory pager. 336 ** 337 ** 338 ** Notes: 339 ** 340 ** * A pager is never in WRITER_DBMOD or WRITER_FINISHED state if the 341 ** connection is open in WAL mode. A WAL connection is always in one 342 ** of the first four states. 343 ** 344 ** * Normally, a connection open in exclusive mode is never in PAGER_OPEN 345 ** state. There are two exceptions: immediately after exclusive-mode has 346 ** been turned on (and before any read or write transactions are 347 ** executed), and when the pager is leaving the "error state". 348 ** 349 ** * See also: assert_pager_state(). 350 */ 351 #define PAGER_OPEN 0 352 #define PAGER_READER 1 353 #define PAGER_WRITER_LOCKED 2 354 #define PAGER_WRITER_CACHEMOD 3 355 #define PAGER_WRITER_DBMOD 4 356 #define PAGER_WRITER_FINISHED 5 357 #define PAGER_ERROR 6 358 359 /* 360 ** The Pager.eLock variable is almost always set to one of the 361 ** following locking-states, according to the lock currently held on 362 ** the database file: NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. 363 ** This variable is kept up to date as locks are taken and released by 364 ** the pagerLockDb() and pagerUnlockDb() wrappers. 365 ** 366 ** If the VFS xLock() or xUnlock() returns an error other than SQLITE_BUSY 367 ** (i.e. one of the SQLITE_IOERR subtypes), it is not clear whether or not 368 ** the operation was successful. In these circumstances pagerLockDb() and 369 ** pagerUnlockDb() take a conservative approach - eLock is always updated 370 ** when unlocking the file, and only updated when locking the file if the 371 ** VFS call is successful. This way, the Pager.eLock variable may be set 372 ** to a less exclusive (lower) value than the lock that is actually held 373 ** at the system level, but it is never set to a more exclusive value. 374 ** 375 ** This is usually safe. If an xUnlock fails or appears to fail, there may 376 ** be a few redundant xLock() calls or a lock may be held for longer than 377 ** required, but nothing really goes wrong. 378 ** 379 ** The exception is when the database file is unlocked as the pager moves 380 ** from ERROR to OPEN state. At this point there may be a hot-journal file 381 ** in the file-system that needs to be rolled back (as part of an OPEN->SHARED 382 ** transition, by the same pager or any other). If the call to xUnlock() 383 ** fails at this point and the pager is left holding an EXCLUSIVE lock, this 384 ** can confuse the call to xCheckReservedLock() call made later as part 385 ** of hot-journal detection. 386 ** 387 ** xCheckReservedLock() is defined as returning true "if there is a RESERVED 388 ** lock held by this process or any others". So xCheckReservedLock may 389 ** return true because the caller itself is holding an EXCLUSIVE lock (but 390 ** doesn't know it because of a previous error in xUnlock). If this happens 391 ** a hot-journal may be mistaken for a journal being created by an active 392 ** transaction in another process, causing SQLite to read from the database 393 ** without rolling it back. 394 ** 395 ** To work around this, if a call to xUnlock() fails when unlocking the 396 ** database in the ERROR state, Pager.eLock is set to UNKNOWN_LOCK. It 397 ** is only changed back to a real locking state after a successful call 398 ** to xLock(EXCLUSIVE). Also, the code to do the OPEN->SHARED state transition 399 ** omits the check for a hot-journal if Pager.eLock is set to UNKNOWN_LOCK 400 ** lock. Instead, it assumes a hot-journal exists and obtains an EXCLUSIVE 401 ** lock on the database file before attempting to roll it back. See function 402 ** PagerSharedLock() for more detail. 403 ** 404 ** Pager.eLock may only be set to UNKNOWN_LOCK when the pager is in 405 ** PAGER_OPEN state. 406 */ 407 #define UNKNOWN_LOCK (EXCLUSIVE_LOCK+1) 408 409 /* 410 ** A macro used for invoking the codec if there is one 411 */ 412 #ifdef SQLITE_HAS_CODEC 413 # define CODEC1(P,D,N,X,E) \ 414 if( P->xCodec && P->xCodec(P->pCodec,D,N,X)==0 ){ E; } 415 # define CODEC2(P,D,N,X,E,O) \ 416 if( P->xCodec==0 ){ O=(char*)D; }else \ 417 if( (O=(char*)(P->xCodec(P->pCodec,D,N,X)))==0 ){ E; } 418 #else 419 # define CODEC1(P,D,N,X,E) /* NO-OP */ 420 # define CODEC2(P,D,N,X,E,O) O=(char*)D 421 #endif 422 423 /* 424 ** The maximum allowed sector size. 64KiB. If the xSectorsize() method 425 ** returns a value larger than this, then MAX_SECTOR_SIZE is used instead. 426 ** This could conceivably cause corruption following a power failure on 427 ** such a system. This is currently an undocumented limit. 428 */ 429 #define MAX_SECTOR_SIZE 0x10000 430 431 432 /* 433 ** An instance of the following structure is allocated for each active 434 ** savepoint and statement transaction in the system. All such structures 435 ** are stored in the Pager.aSavepoint[] array, which is allocated and 436 ** resized using sqlite3Realloc(). 437 ** 438 ** When a savepoint is created, the PagerSavepoint.iHdrOffset field is 439 ** set to 0. If a journal-header is written into the main journal while 440 ** the savepoint is active, then iHdrOffset is set to the byte offset 441 ** immediately following the last journal record written into the main 442 ** journal before the journal-header. This is required during savepoint 443 ** rollback (see pagerPlaybackSavepoint()). 444 */ 445 typedef struct PagerSavepoint PagerSavepoint; 446 struct PagerSavepoint { 447 i64 iOffset; /* Starting offset in main journal */ 448 i64 iHdrOffset; /* See above */ 449 Bitvec *pInSavepoint; /* Set of pages in this savepoint */ 450 Pgno nOrig; /* Original number of pages in file */ 451 Pgno iSubRec; /* Index of first record in sub-journal */ 452 #ifndef SQLITE_OMIT_WAL 453 u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */ 454 #endif 455 }; 456 457 /* 458 ** Bits of the Pager.doNotSpill flag. See further description below. 459 */ 460 #define SPILLFLAG_OFF 0x01 /* Never spill cache. Set via pragma */ 461 #define SPILLFLAG_ROLLBACK 0x02 /* Current rolling back, so do not spill */ 462 #define SPILLFLAG_NOSYNC 0x04 /* Spill is ok, but do not sync */ 463 464 /* 465 ** An open page cache is an instance of struct Pager. A description of 466 ** some of the more important member variables follows: 467 ** 468 ** eState 469 ** 470 ** The current 'state' of the pager object. See the comment and state 471 ** diagram above for a description of the pager state. 472 ** 473 ** eLock 474 ** 475 ** For a real on-disk database, the current lock held on the database file - 476 ** NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. 477 ** 478 ** For a temporary or in-memory database (neither of which require any 479 ** locks), this variable is always set to EXCLUSIVE_LOCK. Since such 480 ** databases always have Pager.exclusiveMode==1, this tricks the pager 481 ** logic into thinking that it already has all the locks it will ever 482 ** need (and no reason to release them). 483 ** 484 ** In some (obscure) circumstances, this variable may also be set to 485 ** UNKNOWN_LOCK. See the comment above the #define of UNKNOWN_LOCK for 486 ** details. 487 ** 488 ** changeCountDone 489 ** 490 ** This boolean variable is used to make sure that the change-counter 491 ** (the 4-byte header field at byte offset 24 of the database file) is 492 ** not updated more often than necessary. 493 ** 494 ** It is set to true when the change-counter field is updated, which 495 ** can only happen if an exclusive lock is held on the database file. 496 ** It is cleared (set to false) whenever an exclusive lock is 497 ** relinquished on the database file. Each time a transaction is committed, 498 ** The changeCountDone flag is inspected. If it is true, the work of 499 ** updating the change-counter is omitted for the current transaction. 500 ** 501 ** This mechanism means that when running in exclusive mode, a connection 502 ** need only update the change-counter once, for the first transaction 503 ** committed. 504 ** 505 ** setMaster 506 ** 507 ** When PagerCommitPhaseOne() is called to commit a transaction, it may 508 ** (or may not) specify a master-journal name to be written into the 509 ** journal file before it is synced to disk. 510 ** 511 ** Whether or not a journal file contains a master-journal pointer affects 512 ** the way in which the journal file is finalized after the transaction is 513 ** committed or rolled back when running in "journal_mode=PERSIST" mode. 514 ** If a journal file does not contain a master-journal pointer, it is 515 ** finalized by overwriting the first journal header with zeroes. If 516 ** it does contain a master-journal pointer the journal file is finalized 517 ** by truncating it to zero bytes, just as if the connection were 518 ** running in "journal_mode=truncate" mode. 519 ** 520 ** Journal files that contain master journal pointers cannot be finalized 521 ** simply by overwriting the first journal-header with zeroes, as the 522 ** master journal pointer could interfere with hot-journal rollback of any 523 ** subsequently interrupted transaction that reuses the journal file. 524 ** 525 ** The flag is cleared as soon as the journal file is finalized (either 526 ** by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the 527 ** journal file from being successfully finalized, the setMaster flag 528 ** is cleared anyway (and the pager will move to ERROR state). 529 ** 530 ** doNotSpill 531 ** 532 ** This variables control the behavior of cache-spills (calls made by 533 ** the pcache module to the pagerStress() routine to write cached data 534 ** to the file-system in order to free up memory). 535 ** 536 ** When bits SPILLFLAG_OFF or SPILLFLAG_ROLLBACK of doNotSpill are set, 537 ** writing to the database from pagerStress() is disabled altogether. 538 ** The SPILLFLAG_ROLLBACK case is done in a very obscure case that 539 ** comes up during savepoint rollback that requires the pcache module 540 ** to allocate a new page to prevent the journal file from being written 541 ** while it is being traversed by code in pager_playback(). The SPILLFLAG_OFF 542 ** case is a user preference. 543 ** 544 ** If the SPILLFLAG_NOSYNC bit is set, writing to the database from 545 ** pagerStress() is permitted, but syncing the journal file is not. 546 ** This flag is set by sqlite3PagerWrite() when the file-system sector-size 547 ** is larger than the database page-size in order to prevent a journal sync 548 ** from happening in between the journalling of two pages on the same sector. 549 ** 550 ** subjInMemory 551 ** 552 ** This is a boolean variable. If true, then any required sub-journal 553 ** is opened as an in-memory journal file. If false, then in-memory 554 ** sub-journals are only used for in-memory pager files. 555 ** 556 ** This variable is updated by the upper layer each time a new 557 ** write-transaction is opened. 558 ** 559 ** dbSize, dbOrigSize, dbFileSize 560 ** 561 ** Variable dbSize is set to the number of pages in the database file. 562 ** It is valid in PAGER_READER and higher states (all states except for 563 ** OPEN and ERROR). 564 ** 565 ** dbSize is set based on the size of the database file, which may be 566 ** larger than the size of the database (the value stored at offset 567 ** 28 of the database header by the btree). If the size of the file 568 ** is not an integer multiple of the page-size, the value stored in 569 ** dbSize is rounded down (i.e. a 5KB file with 2K page-size has dbSize==2). 570 ** Except, any file that is greater than 0 bytes in size is considered 571 ** to have at least one page. (i.e. a 1KB file with 2K page-size leads 572 ** to dbSize==1). 573 ** 574 ** During a write-transaction, if pages with page-numbers greater than 575 ** dbSize are modified in the cache, dbSize is updated accordingly. 576 ** Similarly, if the database is truncated using PagerTruncateImage(), 577 ** dbSize is updated. 578 ** 579 ** Variables dbOrigSize and dbFileSize are valid in states 580 ** PAGER_WRITER_LOCKED and higher. dbOrigSize is a copy of the dbSize 581 ** variable at the start of the transaction. It is used during rollback, 582 ** and to determine whether or not pages need to be journalled before 583 ** being modified. 584 ** 585 ** Throughout a write-transaction, dbFileSize contains the size of 586 ** the file on disk in pages. It is set to a copy of dbSize when the 587 ** write-transaction is first opened, and updated when VFS calls are made 588 ** to write or truncate the database file on disk. 589 ** 590 ** The only reason the dbFileSize variable is required is to suppress 591 ** unnecessary calls to xTruncate() after committing a transaction. If, 592 ** when a transaction is committed, the dbFileSize variable indicates 593 ** that the database file is larger than the database image (Pager.dbSize), 594 ** pager_truncate() is called. The pager_truncate() call uses xFilesize() 595 ** to measure the database file on disk, and then truncates it if required. 596 ** dbFileSize is not used when rolling back a transaction. In this case 597 ** pager_truncate() is called unconditionally (which means there may be 598 ** a call to xFilesize() that is not strictly required). In either case, 599 ** pager_truncate() may cause the file to become smaller or larger. 600 ** 601 ** dbHintSize 602 ** 603 ** The dbHintSize variable is used to limit the number of calls made to 604 ** the VFS xFileControl(FCNTL_SIZE_HINT) method. 605 ** 606 ** dbHintSize is set to a copy of the dbSize variable when a 607 ** write-transaction is opened (at the same time as dbFileSize and 608 ** dbOrigSize). If the xFileControl(FCNTL_SIZE_HINT) method is called, 609 ** dbHintSize is increased to the number of pages that correspond to the 610 ** size-hint passed to the method call. See pager_write_pagelist() for 611 ** details. 612 ** 613 ** errCode 614 ** 615 ** The Pager.errCode variable is only ever used in PAGER_ERROR state. It 616 ** is set to zero in all other states. In PAGER_ERROR state, Pager.errCode 617 ** is always set to SQLITE_FULL, SQLITE_IOERR or one of the SQLITE_IOERR_XXX 618 ** sub-codes. 619 ** 620 ** syncFlags, walSyncFlags 621 ** 622 ** syncFlags is either SQLITE_SYNC_NORMAL (0x02) or SQLITE_SYNC_FULL (0x03). 623 ** syncFlags is used for rollback mode. walSyncFlags is used for WAL mode 624 ** and contains the flags used to sync the checkpoint operations in the 625 ** lower two bits, and sync flags used for transaction commits in the WAL 626 ** file in bits 0x04 and 0x08. In other words, to get the correct sync flags 627 ** for checkpoint operations, use (walSyncFlags&0x03) and to get the correct 628 ** sync flags for transaction commit, use ((walSyncFlags>>2)&0x03). Note 629 ** that with synchronous=NORMAL in WAL mode, transaction commit is not synced 630 ** meaning that the 0x04 and 0x08 bits are both zero. 631 */ 632 struct Pager { 633 sqlite3_vfs *pVfs; /* OS functions to use for IO */ 634 u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */ 635 u8 journalMode; /* One of the PAGER_JOURNALMODE_* values */ 636 u8 useJournal; /* Use a rollback journal on this file */ 637 u8 noSync; /* Do not sync the journal if true */ 638 u8 fullSync; /* Do extra syncs of the journal for robustness */ 639 u8 extraSync; /* sync directory after journal delete */ 640 u8 syncFlags; /* SYNC_NORMAL or SYNC_FULL otherwise */ 641 u8 walSyncFlags; /* See description above */ 642 u8 tempFile; /* zFilename is a temporary or immutable file */ 643 u8 noLock; /* Do not lock (except in WAL mode) */ 644 u8 readOnly; /* True for a read-only database */ 645 u8 memDb; /* True to inhibit all file I/O */ 646 647 /************************************************************************** 648 ** The following block contains those class members that change during 649 ** routine operation. Class members not in this block are either fixed 650 ** when the pager is first created or else only change when there is a 651 ** significant mode change (such as changing the page_size, locking_mode, 652 ** or the journal_mode). From another view, these class members describe 653 ** the "state" of the pager, while other class members describe the 654 ** "configuration" of the pager. 655 */ 656 u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */ 657 u8 eLock; /* Current lock held on database file */ 658 u8 changeCountDone; /* Set after incrementing the change-counter */ 659 u8 setMaster; /* True if a m-j name has been written to jrnl */ 660 u8 doNotSpill; /* Do not spill the cache when non-zero */ 661 u8 subjInMemory; /* True to use in-memory sub-journals */ 662 u8 bUseFetch; /* True to use xFetch() */ 663 u8 hasHeldSharedLock; /* True if a shared lock has ever been held */ 664 Pgno dbSize; /* Number of pages in the database */ 665 Pgno dbOrigSize; /* dbSize before the current transaction */ 666 Pgno dbFileSize; /* Number of pages in the database file */ 667 Pgno dbHintSize; /* Value passed to FCNTL_SIZE_HINT call */ 668 int errCode; /* One of several kinds of errors */ 669 int nRec; /* Pages journalled since last j-header written */ 670 u32 cksumInit; /* Quasi-random value added to every checksum */ 671 u32 nSubRec; /* Number of records written to sub-journal */ 672 Bitvec *pInJournal; /* One bit for each page in the database file */ 673 sqlite3_file *fd; /* File descriptor for database */ 674 sqlite3_file *jfd; /* File descriptor for main journal */ 675 sqlite3_file *sjfd; /* File descriptor for sub-journal */ 676 i64 journalOff; /* Current write offset in the journal file */ 677 i64 journalHdr; /* Byte offset to previous journal header */ 678 sqlite3_backup *pBackup; /* Pointer to list of ongoing backup processes */ 679 PagerSavepoint *aSavepoint; /* Array of active savepoints */ 680 int nSavepoint; /* Number of elements in aSavepoint[] */ 681 u32 iDataVersion; /* Changes whenever database content changes */ 682 char dbFileVers[16]; /* Changes whenever database file changes */ 683 684 int nMmapOut; /* Number of mmap pages currently outstanding */ 685 sqlite3_int64 szMmap; /* Desired maximum mmap size */ 686 PgHdr *pMmapFreelist; /* List of free mmap page headers (pDirty) */ 687 /* 688 ** End of the routinely-changing class members 689 ***************************************************************************/ 690 691 u16 nExtra; /* Add this many bytes to each in-memory page */ 692 i16 nReserve; /* Number of unused bytes at end of each page */ 693 u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */ 694 u32 sectorSize; /* Assumed sector size during rollback */ 695 int pageSize; /* Number of bytes in a page */ 696 Pgno mxPgno; /* Maximum allowed size of the database */ 697 i64 journalSizeLimit; /* Size limit for persistent journal files */ 698 char *zFilename; /* Name of the database file */ 699 char *zJournal; /* Name of the journal file */ 700 int (*xBusyHandler)(void*); /* Function to call when busy */ 701 void *pBusyHandlerArg; /* Context argument for xBusyHandler */ 702 int aStat[4]; /* Total cache hits, misses, writes, spills */ 703 #ifdef SQLITE_TEST 704 int nRead; /* Database pages read */ 705 #endif 706 void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */ 707 int (*xGet)(Pager*,Pgno,DbPage**,int); /* Routine to fetch a patch */ 708 #ifdef SQLITE_HAS_CODEC 709 void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */ 710 void (*xCodecSizeChng)(void*,int,int); /* Notify of page size changes */ 711 void (*xCodecFree)(void*); /* Destructor for the codec */ 712 void *pCodec; /* First argument to xCodec... methods */ 713 #endif 714 char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */ 715 PCache *pPCache; /* Pointer to page cache object */ 716 #ifndef SQLITE_OMIT_WAL 717 Wal *pWal; /* Write-ahead log used by "journal_mode=wal" */ 718 char *zWal; /* File name for write-ahead log */ 719 #endif 720 }; 721 722 /* 723 ** Indexes for use with Pager.aStat[]. The Pager.aStat[] array contains 724 ** the values accessed by passing SQLITE_DBSTATUS_CACHE_HIT, CACHE_MISS 725 ** or CACHE_WRITE to sqlite3_db_status(). 726 */ 727 #define PAGER_STAT_HIT 0 728 #define PAGER_STAT_MISS 1 729 #define PAGER_STAT_WRITE 2 730 #define PAGER_STAT_SPILL 3 731 732 /* 733 ** The following global variables hold counters used for 734 ** testing purposes only. These variables do not exist in 735 ** a non-testing build. These variables are not thread-safe. 736 */ 737 #ifdef SQLITE_TEST 738 int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */ 739 int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */ 740 int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */ 741 # define PAGER_INCR(v) v++ 742 #else 743 # define PAGER_INCR(v) 744 #endif 745 746 747 748 /* 749 ** Journal files begin with the following magic string. The data 750 ** was obtained from /dev/random. It is used only as a sanity check. 751 ** 752 ** Since version 2.8.0, the journal format contains additional sanity 753 ** checking information. If the power fails while the journal is being 754 ** written, semi-random garbage data might appear in the journal 755 ** file after power is restored. If an attempt is then made 756 ** to roll the journal back, the database could be corrupted. The additional 757 ** sanity checking data is an attempt to discover the garbage in the 758 ** journal and ignore it. 759 ** 760 ** The sanity checking information for the new journal format consists 761 ** of a 32-bit checksum on each page of data. The checksum covers both 762 ** the page number and the pPager->pageSize bytes of data for the page. 763 ** This cksum is initialized to a 32-bit random value that appears in the 764 ** journal file right after the header. The random initializer is important, 765 ** because garbage data that appears at the end of a journal is likely 766 ** data that was once in other files that have now been deleted. If the 767 ** garbage data came from an obsolete journal file, the checksums might 768 ** be correct. But by initializing the checksum to random value which 769 ** is different for every journal, we minimize that risk. 770 */ 771 static const unsigned char aJournalMagic[] = { 772 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7, 773 }; 774 775 /* 776 ** The size of the of each page record in the journal is given by 777 ** the following macro. 778 */ 779 #define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8) 780 781 /* 782 ** The journal header size for this pager. This is usually the same 783 ** size as a single disk sector. See also setSectorSize(). 784 */ 785 #define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize) 786 787 /* 788 ** The macro MEMDB is true if we are dealing with an in-memory database. 789 ** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set, 790 ** the value of MEMDB will be a constant and the compiler will optimize 791 ** out code that would never execute. 792 */ 793 #ifdef SQLITE_OMIT_MEMORYDB 794 # define MEMDB 0 795 #else 796 # define MEMDB pPager->memDb 797 #endif 798 799 /* 800 ** The macro USEFETCH is true if we are allowed to use the xFetch and xUnfetch 801 ** interfaces to access the database using memory-mapped I/O. 802 */ 803 #if SQLITE_MAX_MMAP_SIZE>0 804 # define USEFETCH(x) ((x)->bUseFetch) 805 #else 806 # define USEFETCH(x) 0 807 #endif 808 809 /* 810 ** The maximum legal page number is (2^31 - 1). 811 */ 812 #define PAGER_MAX_PGNO 2147483647 813 814 /* 815 ** The argument to this macro is a file descriptor (type sqlite3_file*). 816 ** Return 0 if it is not open, or non-zero (but not 1) if it is. 817 ** 818 ** This is so that expressions can be written as: 819 ** 820 ** if( isOpen(pPager->jfd) ){ ... 821 ** 822 ** instead of 823 ** 824 ** if( pPager->jfd->pMethods ){ ... 825 */ 826 #define isOpen(pFd) ((pFd)->pMethods!=0) 827 828 #ifdef SQLITE_DIRECT_OVERFLOW_READ 829 /* 830 ** Return true if page pgno can be read directly from the database file 831 ** by the b-tree layer. This is the case if: 832 ** 833 ** * the database file is open, 834 ** * there are no dirty pages in the cache, and 835 ** * the desired page is not currently in the wal file. 836 */ 837 int sqlite3PagerDirectReadOk(Pager *pPager, Pgno pgno){ 838 if( pPager->fd->pMethods==0 ) return 0; 839 if( sqlite3PCacheIsDirty(pPager->pPCache) ) return 0; 840 #ifndef SQLITE_OMIT_WAL 841 if( pPager->pWal ){ 842 u32 iRead = 0; 843 int rc; 844 rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iRead); 845 return (rc==SQLITE_OK && iRead==0); 846 } 847 #endif 848 return 1; 849 } 850 #endif 851 852 #ifndef SQLITE_OMIT_WAL 853 # define pagerUseWal(x) ((x)->pWal!=0) 854 #else 855 # define pagerUseWal(x) 0 856 # define pagerRollbackWal(x) 0 857 # define pagerWalFrames(v,w,x,y) 0 858 # define pagerOpenWalIfPresent(z) SQLITE_OK 859 # define pagerBeginReadTransaction(z) SQLITE_OK 860 #endif 861 862 #ifndef NDEBUG 863 /* 864 ** Usage: 865 ** 866 ** assert( assert_pager_state(pPager) ); 867 ** 868 ** This function runs many asserts to try to find inconsistencies in 869 ** the internal state of the Pager object. 870 */ 871 static int assert_pager_state(Pager *p){ 872 Pager *pPager = p; 873 874 /* State must be valid. */ 875 assert( p->eState==PAGER_OPEN 876 || p->eState==PAGER_READER 877 || p->eState==PAGER_WRITER_LOCKED 878 || p->eState==PAGER_WRITER_CACHEMOD 879 || p->eState==PAGER_WRITER_DBMOD 880 || p->eState==PAGER_WRITER_FINISHED 881 || p->eState==PAGER_ERROR 882 ); 883 884 /* Regardless of the current state, a temp-file connection always behaves 885 ** as if it has an exclusive lock on the database file. It never updates 886 ** the change-counter field, so the changeCountDone flag is always set. 887 */ 888 assert( p->tempFile==0 || p->eLock==EXCLUSIVE_LOCK ); 889 assert( p->tempFile==0 || pPager->changeCountDone ); 890 891 /* If the useJournal flag is clear, the journal-mode must be "OFF". 892 ** And if the journal-mode is "OFF", the journal file must not be open. 893 */ 894 assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->useJournal ); 895 assert( p->journalMode!=PAGER_JOURNALMODE_OFF || !isOpen(p->jfd) ); 896 897 /* Check that MEMDB implies noSync. And an in-memory journal. Since 898 ** this means an in-memory pager performs no IO at all, it cannot encounter 899 ** either SQLITE_IOERR or SQLITE_FULL during rollback or while finalizing 900 ** a journal file. (although the in-memory journal implementation may 901 ** return SQLITE_IOERR_NOMEM while the journal file is being written). It 902 ** is therefore not possible for an in-memory pager to enter the ERROR 903 ** state. 904 */ 905 if( MEMDB ){ 906 assert( !isOpen(p->fd) ); 907 assert( p->noSync ); 908 assert( p->journalMode==PAGER_JOURNALMODE_OFF 909 || p->journalMode==PAGER_JOURNALMODE_MEMORY 910 ); 911 assert( p->eState!=PAGER_ERROR && p->eState!=PAGER_OPEN ); 912 assert( pagerUseWal(p)==0 ); 913 } 914 915 /* If changeCountDone is set, a RESERVED lock or greater must be held 916 ** on the file. 917 */ 918 assert( pPager->changeCountDone==0 || pPager->eLock>=RESERVED_LOCK ); 919 assert( p->eLock!=PENDING_LOCK ); 920 921 switch( p->eState ){ 922 case PAGER_OPEN: 923 assert( !MEMDB ); 924 assert( pPager->errCode==SQLITE_OK ); 925 assert( sqlite3PcacheRefCount(pPager->pPCache)==0 || pPager->tempFile ); 926 break; 927 928 case PAGER_READER: 929 assert( pPager->errCode==SQLITE_OK ); 930 assert( p->eLock!=UNKNOWN_LOCK ); 931 assert( p->eLock>=SHARED_LOCK ); 932 break; 933 934 case PAGER_WRITER_LOCKED: 935 assert( p->eLock!=UNKNOWN_LOCK ); 936 assert( pPager->errCode==SQLITE_OK ); 937 if( !pagerUseWal(pPager) ){ 938 assert( p->eLock>=RESERVED_LOCK ); 939 } 940 assert( pPager->dbSize==pPager->dbOrigSize ); 941 assert( pPager->dbOrigSize==pPager->dbFileSize ); 942 assert( pPager->dbOrigSize==pPager->dbHintSize ); 943 assert( pPager->setMaster==0 ); 944 break; 945 946 case PAGER_WRITER_CACHEMOD: 947 assert( p->eLock!=UNKNOWN_LOCK ); 948 assert( pPager->errCode==SQLITE_OK ); 949 if( !pagerUseWal(pPager) ){ 950 /* It is possible that if journal_mode=wal here that neither the 951 ** journal file nor the WAL file are open. This happens during 952 ** a rollback transaction that switches from journal_mode=off 953 ** to journal_mode=wal. 954 */ 955 assert( p->eLock>=RESERVED_LOCK ); 956 assert( isOpen(p->jfd) 957 || p->journalMode==PAGER_JOURNALMODE_OFF 958 || p->journalMode==PAGER_JOURNALMODE_WAL 959 ); 960 } 961 assert( pPager->dbOrigSize==pPager->dbFileSize ); 962 assert( pPager->dbOrigSize==pPager->dbHintSize ); 963 break; 964 965 case PAGER_WRITER_DBMOD: 966 assert( p->eLock==EXCLUSIVE_LOCK ); 967 assert( pPager->errCode==SQLITE_OK ); 968 assert( !pagerUseWal(pPager) ); 969 assert( p->eLock>=EXCLUSIVE_LOCK ); 970 assert( isOpen(p->jfd) 971 || p->journalMode==PAGER_JOURNALMODE_OFF 972 || p->journalMode==PAGER_JOURNALMODE_WAL 973 || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC) 974 ); 975 assert( pPager->dbOrigSize<=pPager->dbHintSize ); 976 break; 977 978 case PAGER_WRITER_FINISHED: 979 assert( p->eLock==EXCLUSIVE_LOCK ); 980 assert( pPager->errCode==SQLITE_OK ); 981 assert( !pagerUseWal(pPager) ); 982 assert( isOpen(p->jfd) 983 || p->journalMode==PAGER_JOURNALMODE_OFF 984 || p->journalMode==PAGER_JOURNALMODE_WAL 985 || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC) 986 ); 987 break; 988 989 case PAGER_ERROR: 990 /* There must be at least one outstanding reference to the pager if 991 ** in ERROR state. Otherwise the pager should have already dropped 992 ** back to OPEN state. 993 */ 994 assert( pPager->errCode!=SQLITE_OK ); 995 assert( sqlite3PcacheRefCount(pPager->pPCache)>0 || pPager->tempFile ); 996 break; 997 } 998 999 return 1; 1000 } 1001 #endif /* ifndef NDEBUG */ 1002 1003 #ifdef SQLITE_DEBUG 1004 /* 1005 ** Return a pointer to a human readable string in a static buffer 1006 ** containing the state of the Pager object passed as an argument. This 1007 ** is intended to be used within debuggers. For example, as an alternative 1008 ** to "print *pPager" in gdb: 1009 ** 1010 ** (gdb) printf "%s", print_pager_state(pPager) 1011 ** 1012 ** This routine has external linkage in order to suppress compiler warnings 1013 ** about an unused function. It is enclosed within SQLITE_DEBUG and so does 1014 ** not appear in normal builds. 1015 */ 1016 char *print_pager_state(Pager *p){ 1017 static char zRet[1024]; 1018 1019 sqlite3_snprintf(1024, zRet, 1020 "Filename: %s\n" 1021 "State: %s errCode=%d\n" 1022 "Lock: %s\n" 1023 "Locking mode: locking_mode=%s\n" 1024 "Journal mode: journal_mode=%s\n" 1025 "Backing store: tempFile=%d memDb=%d useJournal=%d\n" 1026 "Journal: journalOff=%lld journalHdr=%lld\n" 1027 "Size: dbsize=%d dbOrigSize=%d dbFileSize=%d\n" 1028 , p->zFilename 1029 , p->eState==PAGER_OPEN ? "OPEN" : 1030 p->eState==PAGER_READER ? "READER" : 1031 p->eState==PAGER_WRITER_LOCKED ? "WRITER_LOCKED" : 1032 p->eState==PAGER_WRITER_CACHEMOD ? "WRITER_CACHEMOD" : 1033 p->eState==PAGER_WRITER_DBMOD ? "WRITER_DBMOD" : 1034 p->eState==PAGER_WRITER_FINISHED ? "WRITER_FINISHED" : 1035 p->eState==PAGER_ERROR ? "ERROR" : "?error?" 1036 , (int)p->errCode 1037 , p->eLock==NO_LOCK ? "NO_LOCK" : 1038 p->eLock==RESERVED_LOCK ? "RESERVED" : 1039 p->eLock==EXCLUSIVE_LOCK ? "EXCLUSIVE" : 1040 p->eLock==SHARED_LOCK ? "SHARED" : 1041 p->eLock==UNKNOWN_LOCK ? "UNKNOWN" : "?error?" 1042 , p->exclusiveMode ? "exclusive" : "normal" 1043 , p->journalMode==PAGER_JOURNALMODE_MEMORY ? "memory" : 1044 p->journalMode==PAGER_JOURNALMODE_OFF ? "off" : 1045 p->journalMode==PAGER_JOURNALMODE_DELETE ? "delete" : 1046 p->journalMode==PAGER_JOURNALMODE_PERSIST ? "persist" : 1047 p->journalMode==PAGER_JOURNALMODE_TRUNCATE ? "truncate" : 1048 p->journalMode==PAGER_JOURNALMODE_WAL ? "wal" : "?error?" 1049 , (int)p->tempFile, (int)p->memDb, (int)p->useJournal 1050 , p->journalOff, p->journalHdr 1051 , (int)p->dbSize, (int)p->dbOrigSize, (int)p->dbFileSize 1052 ); 1053 1054 return zRet; 1055 } 1056 #endif 1057 1058 /* Forward references to the various page getters */ 1059 static int getPageNormal(Pager*,Pgno,DbPage**,int); 1060 static int getPageError(Pager*,Pgno,DbPage**,int); 1061 #if SQLITE_MAX_MMAP_SIZE>0 1062 static int getPageMMap(Pager*,Pgno,DbPage**,int); 1063 #endif 1064 1065 /* 1066 ** Set the Pager.xGet method for the appropriate routine used to fetch 1067 ** content from the pager. 1068 */ 1069 static void setGetterMethod(Pager *pPager){ 1070 if( pPager->errCode ){ 1071 pPager->xGet = getPageError; 1072 #if SQLITE_MAX_MMAP_SIZE>0 1073 }else if( USEFETCH(pPager) 1074 #ifdef SQLITE_HAS_CODEC 1075 && pPager->xCodec==0 1076 #endif 1077 ){ 1078 pPager->xGet = getPageMMap; 1079 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 1080 }else{ 1081 pPager->xGet = getPageNormal; 1082 } 1083 } 1084 1085 /* 1086 ** Return true if it is necessary to write page *pPg into the sub-journal. 1087 ** A page needs to be written into the sub-journal if there exists one 1088 ** or more open savepoints for which: 1089 ** 1090 ** * The page-number is less than or equal to PagerSavepoint.nOrig, and 1091 ** * The bit corresponding to the page-number is not set in 1092 ** PagerSavepoint.pInSavepoint. 1093 */ 1094 static int subjRequiresPage(PgHdr *pPg){ 1095 Pager *pPager = pPg->pPager; 1096 PagerSavepoint *p; 1097 Pgno pgno = pPg->pgno; 1098 int i; 1099 for(i=0; i<pPager->nSavepoint; i++){ 1100 p = &pPager->aSavepoint[i]; 1101 if( p->nOrig>=pgno && 0==sqlite3BitvecTestNotNull(p->pInSavepoint, pgno) ){ 1102 return 1; 1103 } 1104 } 1105 return 0; 1106 } 1107 1108 #ifdef SQLITE_DEBUG 1109 /* 1110 ** Return true if the page is already in the journal file. 1111 */ 1112 static int pageInJournal(Pager *pPager, PgHdr *pPg){ 1113 return sqlite3BitvecTest(pPager->pInJournal, pPg->pgno); 1114 } 1115 #endif 1116 1117 /* 1118 ** Read a 32-bit integer from the given file descriptor. Store the integer 1119 ** that is read in *pRes. Return SQLITE_OK if everything worked, or an 1120 ** error code is something goes wrong. 1121 ** 1122 ** All values are stored on disk as big-endian. 1123 */ 1124 static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){ 1125 unsigned char ac[4]; 1126 int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset); 1127 if( rc==SQLITE_OK ){ 1128 *pRes = sqlite3Get4byte(ac); 1129 } 1130 return rc; 1131 } 1132 1133 /* 1134 ** Write a 32-bit integer into a string buffer in big-endian byte order. 1135 */ 1136 #define put32bits(A,B) sqlite3Put4byte((u8*)A,B) 1137 1138 1139 /* 1140 ** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK 1141 ** on success or an error code is something goes wrong. 1142 */ 1143 static int write32bits(sqlite3_file *fd, i64 offset, u32 val){ 1144 char ac[4]; 1145 put32bits(ac, val); 1146 return sqlite3OsWrite(fd, ac, 4, offset); 1147 } 1148 1149 /* 1150 ** Unlock the database file to level eLock, which must be either NO_LOCK 1151 ** or SHARED_LOCK. Regardless of whether or not the call to xUnlock() 1152 ** succeeds, set the Pager.eLock variable to match the (attempted) new lock. 1153 ** 1154 ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is 1155 ** called, do not modify it. See the comment above the #define of 1156 ** UNKNOWN_LOCK for an explanation of this. 1157 */ 1158 static int pagerUnlockDb(Pager *pPager, int eLock){ 1159 int rc = SQLITE_OK; 1160 1161 assert( !pPager->exclusiveMode || pPager->eLock==eLock ); 1162 assert( eLock==NO_LOCK || eLock==SHARED_LOCK ); 1163 assert( eLock!=NO_LOCK || pagerUseWal(pPager)==0 ); 1164 if( isOpen(pPager->fd) ){ 1165 assert( pPager->eLock>=eLock ); 1166 rc = pPager->noLock ? SQLITE_OK : sqlite3OsUnlock(pPager->fd, eLock); 1167 if( pPager->eLock!=UNKNOWN_LOCK ){ 1168 pPager->eLock = (u8)eLock; 1169 } 1170 IOTRACE(("UNLOCK %p %d\n", pPager, eLock)) 1171 } 1172 return rc; 1173 } 1174 1175 /* 1176 ** Lock the database file to level eLock, which must be either SHARED_LOCK, 1177 ** RESERVED_LOCK or EXCLUSIVE_LOCK. If the caller is successful, set the 1178 ** Pager.eLock variable to the new locking state. 1179 ** 1180 ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is 1181 ** called, do not modify it unless the new locking state is EXCLUSIVE_LOCK. 1182 ** See the comment above the #define of UNKNOWN_LOCK for an explanation 1183 ** of this. 1184 */ 1185 static int pagerLockDb(Pager *pPager, int eLock){ 1186 int rc = SQLITE_OK; 1187 1188 assert( eLock==SHARED_LOCK || eLock==RESERVED_LOCK || eLock==EXCLUSIVE_LOCK ); 1189 if( pPager->eLock<eLock || pPager->eLock==UNKNOWN_LOCK ){ 1190 rc = pPager->noLock ? SQLITE_OK : sqlite3OsLock(pPager->fd, eLock); 1191 if( rc==SQLITE_OK && (pPager->eLock!=UNKNOWN_LOCK||eLock==EXCLUSIVE_LOCK) ){ 1192 pPager->eLock = (u8)eLock; 1193 IOTRACE(("LOCK %p %d\n", pPager, eLock)) 1194 } 1195 } 1196 return rc; 1197 } 1198 1199 /* 1200 ** This function determines whether or not the atomic-write or 1201 ** atomic-batch-write optimizations can be used with this pager. The 1202 ** atomic-write optimization can be used if: 1203 ** 1204 ** (a) the value returned by OsDeviceCharacteristics() indicates that 1205 ** a database page may be written atomically, and 1206 ** (b) the value returned by OsSectorSize() is less than or equal 1207 ** to the page size. 1208 ** 1209 ** If it can be used, then the value returned is the size of the journal 1210 ** file when it contains rollback data for exactly one page. 1211 ** 1212 ** The atomic-batch-write optimization can be used if OsDeviceCharacteristics() 1213 ** returns a value with the SQLITE_IOCAP_BATCH_ATOMIC bit set. -1 is 1214 ** returned in this case. 1215 ** 1216 ** If neither optimization can be used, 0 is returned. 1217 */ 1218 static int jrnlBufferSize(Pager *pPager){ 1219 assert( !MEMDB ); 1220 1221 #if defined(SQLITE_ENABLE_ATOMIC_WRITE) \ 1222 || defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) 1223 int dc; /* Device characteristics */ 1224 1225 assert( isOpen(pPager->fd) ); 1226 dc = sqlite3OsDeviceCharacteristics(pPager->fd); 1227 #else 1228 UNUSED_PARAMETER(pPager); 1229 #endif 1230 1231 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 1232 if( pPager->dbSize>0 && (dc&SQLITE_IOCAP_BATCH_ATOMIC) ){ 1233 return -1; 1234 } 1235 #endif 1236 1237 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 1238 { 1239 int nSector = pPager->sectorSize; 1240 int szPage = pPager->pageSize; 1241 1242 assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); 1243 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); 1244 if( 0==(dc&(SQLITE_IOCAP_ATOMIC|(szPage>>8)) || nSector>szPage) ){ 1245 return 0; 1246 } 1247 } 1248 1249 return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager); 1250 #endif 1251 1252 return 0; 1253 } 1254 1255 /* 1256 ** If SQLITE_CHECK_PAGES is defined then we do some sanity checking 1257 ** on the cache using a hash function. This is used for testing 1258 ** and debugging only. 1259 */ 1260 #ifdef SQLITE_CHECK_PAGES 1261 /* 1262 ** Return a 32-bit hash of the page data for pPage. 1263 */ 1264 static u32 pager_datahash(int nByte, unsigned char *pData){ 1265 u32 hash = 0; 1266 int i; 1267 for(i=0; i<nByte; i++){ 1268 hash = (hash*1039) + pData[i]; 1269 } 1270 return hash; 1271 } 1272 static u32 pager_pagehash(PgHdr *pPage){ 1273 return pager_datahash(pPage->pPager->pageSize, (unsigned char *)pPage->pData); 1274 } 1275 static void pager_set_pagehash(PgHdr *pPage){ 1276 pPage->pageHash = pager_pagehash(pPage); 1277 } 1278 1279 /* 1280 ** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES 1281 ** is defined, and NDEBUG is not defined, an assert() statement checks 1282 ** that the page is either dirty or still matches the calculated page-hash. 1283 */ 1284 #define CHECK_PAGE(x) checkPage(x) 1285 static void checkPage(PgHdr *pPg){ 1286 Pager *pPager = pPg->pPager; 1287 assert( pPager->eState!=PAGER_ERROR ); 1288 assert( (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) ); 1289 } 1290 1291 #else 1292 #define pager_datahash(X,Y) 0 1293 #define pager_pagehash(X) 0 1294 #define pager_set_pagehash(X) 1295 #define CHECK_PAGE(x) 1296 #endif /* SQLITE_CHECK_PAGES */ 1297 1298 /* 1299 ** When this is called the journal file for pager pPager must be open. 1300 ** This function attempts to read a master journal file name from the 1301 ** end of the file and, if successful, copies it into memory supplied 1302 ** by the caller. See comments above writeMasterJournal() for the format 1303 ** used to store a master journal file name at the end of a journal file. 1304 ** 1305 ** zMaster must point to a buffer of at least nMaster bytes allocated by 1306 ** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is 1307 ** enough space to write the master journal name). If the master journal 1308 ** name in the journal is longer than nMaster bytes (including a 1309 ** nul-terminator), then this is handled as if no master journal name 1310 ** were present in the journal. 1311 ** 1312 ** If a master journal file name is present at the end of the journal 1313 ** file, then it is copied into the buffer pointed to by zMaster. A 1314 ** nul-terminator byte is appended to the buffer following the master 1315 ** journal file name. 1316 ** 1317 ** If it is determined that no master journal file name is present 1318 ** zMaster[0] is set to 0 and SQLITE_OK returned. 1319 ** 1320 ** If an error occurs while reading from the journal file, an SQLite 1321 ** error code is returned. 1322 */ 1323 static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, u32 nMaster){ 1324 int rc; /* Return code */ 1325 u32 len; /* Length in bytes of master journal name */ 1326 i64 szJ; /* Total size in bytes of journal file pJrnl */ 1327 u32 cksum; /* MJ checksum value read from journal */ 1328 u32 u; /* Unsigned loop counter */ 1329 unsigned char aMagic[8]; /* A buffer to hold the magic header */ 1330 zMaster[0] = '\0'; 1331 1332 if( SQLITE_OK!=(rc = sqlite3OsFileSize(pJrnl, &szJ)) 1333 || szJ<16 1334 || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-16, &len)) 1335 || len>=nMaster 1336 || len>szJ-16 1337 || len==0 1338 || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-12, &cksum)) 1339 || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8)) 1340 || memcmp(aMagic, aJournalMagic, 8) 1341 || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len)) 1342 ){ 1343 return rc; 1344 } 1345 1346 /* See if the checksum matches the master journal name */ 1347 for(u=0; u<len; u++){ 1348 cksum -= zMaster[u]; 1349 } 1350 if( cksum ){ 1351 /* If the checksum doesn't add up, then one or more of the disk sectors 1352 ** containing the master journal filename is corrupted. This means 1353 ** definitely roll back, so just return SQLITE_OK and report a (nul) 1354 ** master-journal filename. 1355 */ 1356 len = 0; 1357 } 1358 zMaster[len] = '\0'; 1359 1360 return SQLITE_OK; 1361 } 1362 1363 /* 1364 ** Return the offset of the sector boundary at or immediately 1365 ** following the value in pPager->journalOff, assuming a sector 1366 ** size of pPager->sectorSize bytes. 1367 ** 1368 ** i.e for a sector size of 512: 1369 ** 1370 ** Pager.journalOff Return value 1371 ** --------------------------------------- 1372 ** 0 0 1373 ** 512 512 1374 ** 100 512 1375 ** 2000 2048 1376 ** 1377 */ 1378 static i64 journalHdrOffset(Pager *pPager){ 1379 i64 offset = 0; 1380 i64 c = pPager->journalOff; 1381 if( c ){ 1382 offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager); 1383 } 1384 assert( offset%JOURNAL_HDR_SZ(pPager)==0 ); 1385 assert( offset>=c ); 1386 assert( (offset-c)<JOURNAL_HDR_SZ(pPager) ); 1387 return offset; 1388 } 1389 1390 /* 1391 ** The journal file must be open when this function is called. 1392 ** 1393 ** This function is a no-op if the journal file has not been written to 1394 ** within the current transaction (i.e. if Pager.journalOff==0). 1395 ** 1396 ** If doTruncate is non-zero or the Pager.journalSizeLimit variable is 1397 ** set to 0, then truncate the journal file to zero bytes in size. Otherwise, 1398 ** zero the 28-byte header at the start of the journal file. In either case, 1399 ** if the pager is not in no-sync mode, sync the journal file immediately 1400 ** after writing or truncating it. 1401 ** 1402 ** If Pager.journalSizeLimit is set to a positive, non-zero value, and 1403 ** following the truncation or zeroing described above the size of the 1404 ** journal file in bytes is larger than this value, then truncate the 1405 ** journal file to Pager.journalSizeLimit bytes. The journal file does 1406 ** not need to be synced following this operation. 1407 ** 1408 ** If an IO error occurs, abandon processing and return the IO error code. 1409 ** Otherwise, return SQLITE_OK. 1410 */ 1411 static int zeroJournalHdr(Pager *pPager, int doTruncate){ 1412 int rc = SQLITE_OK; /* Return code */ 1413 assert( isOpen(pPager->jfd) ); 1414 assert( !sqlite3JournalIsInMemory(pPager->jfd) ); 1415 if( pPager->journalOff ){ 1416 const i64 iLimit = pPager->journalSizeLimit; /* Local cache of jsl */ 1417 1418 IOTRACE(("JZEROHDR %p\n", pPager)) 1419 if( doTruncate || iLimit==0 ){ 1420 rc = sqlite3OsTruncate(pPager->jfd, 0); 1421 }else{ 1422 static const char zeroHdr[28] = {0}; 1423 rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0); 1424 } 1425 if( rc==SQLITE_OK && !pPager->noSync ){ 1426 rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->syncFlags); 1427 } 1428 1429 /* At this point the transaction is committed but the write lock 1430 ** is still held on the file. If there is a size limit configured for 1431 ** the persistent journal and the journal file currently consumes more 1432 ** space than that limit allows for, truncate it now. There is no need 1433 ** to sync the file following this operation. 1434 */ 1435 if( rc==SQLITE_OK && iLimit>0 ){ 1436 i64 sz; 1437 rc = sqlite3OsFileSize(pPager->jfd, &sz); 1438 if( rc==SQLITE_OK && sz>iLimit ){ 1439 rc = sqlite3OsTruncate(pPager->jfd, iLimit); 1440 } 1441 } 1442 } 1443 return rc; 1444 } 1445 1446 /* 1447 ** The journal file must be open when this routine is called. A journal 1448 ** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the 1449 ** current location. 1450 ** 1451 ** The format for the journal header is as follows: 1452 ** - 8 bytes: Magic identifying journal format. 1453 ** - 4 bytes: Number of records in journal, or -1 no-sync mode is on. 1454 ** - 4 bytes: Random number used for page hash. 1455 ** - 4 bytes: Initial database page count. 1456 ** - 4 bytes: Sector size used by the process that wrote this journal. 1457 ** - 4 bytes: Database page size. 1458 ** 1459 ** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space. 1460 */ 1461 static int writeJournalHdr(Pager *pPager){ 1462 int rc = SQLITE_OK; /* Return code */ 1463 char *zHeader = pPager->pTmpSpace; /* Temporary space used to build header */ 1464 u32 nHeader = (u32)pPager->pageSize;/* Size of buffer pointed to by zHeader */ 1465 u32 nWrite; /* Bytes of header sector written */ 1466 int ii; /* Loop counter */ 1467 1468 assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ 1469 1470 if( nHeader>JOURNAL_HDR_SZ(pPager) ){ 1471 nHeader = JOURNAL_HDR_SZ(pPager); 1472 } 1473 1474 /* If there are active savepoints and any of them were created 1475 ** since the most recent journal header was written, update the 1476 ** PagerSavepoint.iHdrOffset fields now. 1477 */ 1478 for(ii=0; ii<pPager->nSavepoint; ii++){ 1479 if( pPager->aSavepoint[ii].iHdrOffset==0 ){ 1480 pPager->aSavepoint[ii].iHdrOffset = pPager->journalOff; 1481 } 1482 } 1483 1484 pPager->journalHdr = pPager->journalOff = journalHdrOffset(pPager); 1485 1486 /* 1487 ** Write the nRec Field - the number of page records that follow this 1488 ** journal header. Normally, zero is written to this value at this time. 1489 ** After the records are added to the journal (and the journal synced, 1490 ** if in full-sync mode), the zero is overwritten with the true number 1491 ** of records (see syncJournal()). 1492 ** 1493 ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When 1494 ** reading the journal this value tells SQLite to assume that the 1495 ** rest of the journal file contains valid page records. This assumption 1496 ** is dangerous, as if a failure occurred whilst writing to the journal 1497 ** file it may contain some garbage data. There are two scenarios 1498 ** where this risk can be ignored: 1499 ** 1500 ** * When the pager is in no-sync mode. Corruption can follow a 1501 ** power failure in this case anyway. 1502 ** 1503 ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees 1504 ** that garbage data is never appended to the journal file. 1505 */ 1506 assert( isOpen(pPager->fd) || pPager->noSync ); 1507 if( pPager->noSync || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY) 1508 || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) 1509 ){ 1510 memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); 1511 put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff); 1512 }else{ 1513 memset(zHeader, 0, sizeof(aJournalMagic)+4); 1514 } 1515 1516 /* The random check-hash initializer */ 1517 sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit); 1518 put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit); 1519 /* The initial database size */ 1520 put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbOrigSize); 1521 /* The assumed sector size for this process */ 1522 put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize); 1523 1524 /* The page size */ 1525 put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize); 1526 1527 /* Initializing the tail of the buffer is not necessary. Everything 1528 ** works find if the following memset() is omitted. But initializing 1529 ** the memory prevents valgrind from complaining, so we are willing to 1530 ** take the performance hit. 1531 */ 1532 memset(&zHeader[sizeof(aJournalMagic)+20], 0, 1533 nHeader-(sizeof(aJournalMagic)+20)); 1534 1535 /* In theory, it is only necessary to write the 28 bytes that the 1536 ** journal header consumes to the journal file here. Then increment the 1537 ** Pager.journalOff variable by JOURNAL_HDR_SZ so that the next 1538 ** record is written to the following sector (leaving a gap in the file 1539 ** that will be implicitly filled in by the OS). 1540 ** 1541 ** However it has been discovered that on some systems this pattern can 1542 ** be significantly slower than contiguously writing data to the file, 1543 ** even if that means explicitly writing data to the block of 1544 ** (JOURNAL_HDR_SZ - 28) bytes that will not be used. So that is what 1545 ** is done. 1546 ** 1547 ** The loop is required here in case the sector-size is larger than the 1548 ** database page size. Since the zHeader buffer is only Pager.pageSize 1549 ** bytes in size, more than one call to sqlite3OsWrite() may be required 1550 ** to populate the entire journal header sector. 1551 */ 1552 for(nWrite=0; rc==SQLITE_OK&&nWrite<JOURNAL_HDR_SZ(pPager); nWrite+=nHeader){ 1553 IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, nHeader)) 1554 rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff); 1555 assert( pPager->journalHdr <= pPager->journalOff ); 1556 pPager->journalOff += nHeader; 1557 } 1558 1559 return rc; 1560 } 1561 1562 /* 1563 ** The journal file must be open when this is called. A journal header file 1564 ** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal 1565 ** file. The current location in the journal file is given by 1566 ** pPager->journalOff. See comments above function writeJournalHdr() for 1567 ** a description of the journal header format. 1568 ** 1569 ** If the header is read successfully, *pNRec is set to the number of 1570 ** page records following this header and *pDbSize is set to the size of the 1571 ** database before the transaction began, in pages. Also, pPager->cksumInit 1572 ** is set to the value read from the journal header. SQLITE_OK is returned 1573 ** in this case. 1574 ** 1575 ** If the journal header file appears to be corrupted, SQLITE_DONE is 1576 ** returned and *pNRec and *PDbSize are undefined. If JOURNAL_HDR_SZ bytes 1577 ** cannot be read from the journal file an error code is returned. 1578 */ 1579 static int readJournalHdr( 1580 Pager *pPager, /* Pager object */ 1581 int isHot, 1582 i64 journalSize, /* Size of the open journal file in bytes */ 1583 u32 *pNRec, /* OUT: Value read from the nRec field */ 1584 u32 *pDbSize /* OUT: Value of original database size field */ 1585 ){ 1586 int rc; /* Return code */ 1587 unsigned char aMagic[8]; /* A buffer to hold the magic header */ 1588 i64 iHdrOff; /* Offset of journal header being read */ 1589 1590 assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ 1591 1592 /* Advance Pager.journalOff to the start of the next sector. If the 1593 ** journal file is too small for there to be a header stored at this 1594 ** point, return SQLITE_DONE. 1595 */ 1596 pPager->journalOff = journalHdrOffset(pPager); 1597 if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){ 1598 return SQLITE_DONE; 1599 } 1600 iHdrOff = pPager->journalOff; 1601 1602 /* Read in the first 8 bytes of the journal header. If they do not match 1603 ** the magic string found at the start of each journal header, return 1604 ** SQLITE_DONE. If an IO error occurs, return an error code. Otherwise, 1605 ** proceed. 1606 */ 1607 if( isHot || iHdrOff!=pPager->journalHdr ){ 1608 rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), iHdrOff); 1609 if( rc ){ 1610 return rc; 1611 } 1612 if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){ 1613 return SQLITE_DONE; 1614 } 1615 } 1616 1617 /* Read the first three 32-bit fields of the journal header: The nRec 1618 ** field, the checksum-initializer and the database size at the start 1619 ** of the transaction. Return an error code if anything goes wrong. 1620 */ 1621 if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+8, pNRec)) 1622 || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+12, &pPager->cksumInit)) 1623 || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+16, pDbSize)) 1624 ){ 1625 return rc; 1626 } 1627 1628 if( pPager->journalOff==0 ){ 1629 u32 iPageSize; /* Page-size field of journal header */ 1630 u32 iSectorSize; /* Sector-size field of journal header */ 1631 1632 /* Read the page-size and sector-size journal header fields. */ 1633 if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+20, &iSectorSize)) 1634 || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+24, &iPageSize)) 1635 ){ 1636 return rc; 1637 } 1638 1639 /* Versions of SQLite prior to 3.5.8 set the page-size field of the 1640 ** journal header to zero. In this case, assume that the Pager.pageSize 1641 ** variable is already set to the correct page size. 1642 */ 1643 if( iPageSize==0 ){ 1644 iPageSize = pPager->pageSize; 1645 } 1646 1647 /* Check that the values read from the page-size and sector-size fields 1648 ** are within range. To be 'in range', both values need to be a power 1649 ** of two greater than or equal to 512 or 32, and not greater than their 1650 ** respective compile time maximum limits. 1651 */ 1652 if( iPageSize<512 || iSectorSize<32 1653 || iPageSize>SQLITE_MAX_PAGE_SIZE || iSectorSize>MAX_SECTOR_SIZE 1654 || ((iPageSize-1)&iPageSize)!=0 || ((iSectorSize-1)&iSectorSize)!=0 1655 ){ 1656 /* If the either the page-size or sector-size in the journal-header is 1657 ** invalid, then the process that wrote the journal-header must have 1658 ** crashed before the header was synced. In this case stop reading 1659 ** the journal file here. 1660 */ 1661 return SQLITE_DONE; 1662 } 1663 1664 /* Update the page-size to match the value read from the journal. 1665 ** Use a testcase() macro to make sure that malloc failure within 1666 ** PagerSetPagesize() is tested. 1667 */ 1668 rc = sqlite3PagerSetPagesize(pPager, &iPageSize, -1); 1669 testcase( rc!=SQLITE_OK ); 1670 1671 /* Update the assumed sector-size to match the value used by 1672 ** the process that created this journal. If this journal was 1673 ** created by a process other than this one, then this routine 1674 ** is being called from within pager_playback(). The local value 1675 ** of Pager.sectorSize is restored at the end of that routine. 1676 */ 1677 pPager->sectorSize = iSectorSize; 1678 } 1679 1680 pPager->journalOff += JOURNAL_HDR_SZ(pPager); 1681 return rc; 1682 } 1683 1684 1685 /* 1686 ** Write the supplied master journal name into the journal file for pager 1687 ** pPager at the current location. The master journal name must be the last 1688 ** thing written to a journal file. If the pager is in full-sync mode, the 1689 ** journal file descriptor is advanced to the next sector boundary before 1690 ** anything is written. The format is: 1691 ** 1692 ** + 4 bytes: PAGER_MJ_PGNO. 1693 ** + N bytes: Master journal filename in utf-8. 1694 ** + 4 bytes: N (length of master journal name in bytes, no nul-terminator). 1695 ** + 4 bytes: Master journal name checksum. 1696 ** + 8 bytes: aJournalMagic[]. 1697 ** 1698 ** The master journal page checksum is the sum of the bytes in the master 1699 ** journal name, where each byte is interpreted as a signed 8-bit integer. 1700 ** 1701 ** If zMaster is a NULL pointer (occurs for a single database transaction), 1702 ** this call is a no-op. 1703 */ 1704 static int writeMasterJournal(Pager *pPager, const char *zMaster){ 1705 int rc; /* Return code */ 1706 int nMaster; /* Length of string zMaster */ 1707 i64 iHdrOff; /* Offset of header in journal file */ 1708 i64 jrnlSize; /* Size of journal file on disk */ 1709 u32 cksum = 0; /* Checksum of string zMaster */ 1710 1711 assert( pPager->setMaster==0 ); 1712 assert( !pagerUseWal(pPager) ); 1713 1714 if( !zMaster 1715 || pPager->journalMode==PAGER_JOURNALMODE_MEMORY 1716 || !isOpen(pPager->jfd) 1717 ){ 1718 return SQLITE_OK; 1719 } 1720 pPager->setMaster = 1; 1721 assert( pPager->journalHdr <= pPager->journalOff ); 1722 1723 /* Calculate the length in bytes and the checksum of zMaster */ 1724 for(nMaster=0; zMaster[nMaster]; nMaster++){ 1725 cksum += zMaster[nMaster]; 1726 } 1727 1728 /* If in full-sync mode, advance to the next disk sector before writing 1729 ** the master journal name. This is in case the previous page written to 1730 ** the journal has already been synced. 1731 */ 1732 if( pPager->fullSync ){ 1733 pPager->journalOff = journalHdrOffset(pPager); 1734 } 1735 iHdrOff = pPager->journalOff; 1736 1737 /* Write the master journal data to the end of the journal file. If 1738 ** an error occurs, return the error code to the caller. 1739 */ 1740 if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_MJ_PGNO(pPager)))) 1741 || (0 != (rc = sqlite3OsWrite(pPager->jfd, zMaster, nMaster, iHdrOff+4))) 1742 || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster, nMaster))) 1743 || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster+4, cksum))) 1744 || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8, 1745 iHdrOff+4+nMaster+8))) 1746 ){ 1747 return rc; 1748 } 1749 pPager->journalOff += (nMaster+20); 1750 1751 /* If the pager is in peristent-journal mode, then the physical 1752 ** journal-file may extend past the end of the master-journal name 1753 ** and 8 bytes of magic data just written to the file. This is 1754 ** dangerous because the code to rollback a hot-journal file 1755 ** will not be able to find the master-journal name to determine 1756 ** whether or not the journal is hot. 1757 ** 1758 ** Easiest thing to do in this scenario is to truncate the journal 1759 ** file to the required size. 1760 */ 1761 if( SQLITE_OK==(rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize)) 1762 && jrnlSize>pPager->journalOff 1763 ){ 1764 rc = sqlite3OsTruncate(pPager->jfd, pPager->journalOff); 1765 } 1766 return rc; 1767 } 1768 1769 /* 1770 ** Discard the entire contents of the in-memory page-cache. 1771 */ 1772 static void pager_reset(Pager *pPager){ 1773 pPager->iDataVersion++; 1774 sqlite3BackupRestart(pPager->pBackup); 1775 sqlite3PcacheClear(pPager->pPCache); 1776 } 1777 1778 /* 1779 ** Return the pPager->iDataVersion value 1780 */ 1781 u32 sqlite3PagerDataVersion(Pager *pPager){ 1782 return pPager->iDataVersion; 1783 } 1784 1785 /* 1786 ** Free all structures in the Pager.aSavepoint[] array and set both 1787 ** Pager.aSavepoint and Pager.nSavepoint to zero. Close the sub-journal 1788 ** if it is open and the pager is not in exclusive mode. 1789 */ 1790 static void releaseAllSavepoints(Pager *pPager){ 1791 int ii; /* Iterator for looping through Pager.aSavepoint */ 1792 for(ii=0; ii<pPager->nSavepoint; ii++){ 1793 sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); 1794 } 1795 if( !pPager->exclusiveMode || sqlite3JournalIsInMemory(pPager->sjfd) ){ 1796 sqlite3OsClose(pPager->sjfd); 1797 } 1798 sqlite3_free(pPager->aSavepoint); 1799 pPager->aSavepoint = 0; 1800 pPager->nSavepoint = 0; 1801 pPager->nSubRec = 0; 1802 } 1803 1804 /* 1805 ** Set the bit number pgno in the PagerSavepoint.pInSavepoint 1806 ** bitvecs of all open savepoints. Return SQLITE_OK if successful 1807 ** or SQLITE_NOMEM if a malloc failure occurs. 1808 */ 1809 static int addToSavepointBitvecs(Pager *pPager, Pgno pgno){ 1810 int ii; /* Loop counter */ 1811 int rc = SQLITE_OK; /* Result code */ 1812 1813 for(ii=0; ii<pPager->nSavepoint; ii++){ 1814 PagerSavepoint *p = &pPager->aSavepoint[ii]; 1815 if( pgno<=p->nOrig ){ 1816 rc |= sqlite3BitvecSet(p->pInSavepoint, pgno); 1817 testcase( rc==SQLITE_NOMEM ); 1818 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 1819 } 1820 } 1821 return rc; 1822 } 1823 1824 /* 1825 ** This function is a no-op if the pager is in exclusive mode and not 1826 ** in the ERROR state. Otherwise, it switches the pager to PAGER_OPEN 1827 ** state. 1828 ** 1829 ** If the pager is not in exclusive-access mode, the database file is 1830 ** completely unlocked. If the file is unlocked and the file-system does 1831 ** not exhibit the UNDELETABLE_WHEN_OPEN property, the journal file is 1832 ** closed (if it is open). 1833 ** 1834 ** If the pager is in ERROR state when this function is called, the 1835 ** contents of the pager cache are discarded before switching back to 1836 ** the OPEN state. Regardless of whether the pager is in exclusive-mode 1837 ** or not, any journal file left in the file-system will be treated 1838 ** as a hot-journal and rolled back the next time a read-transaction 1839 ** is opened (by this or by any other connection). 1840 */ 1841 static void pager_unlock(Pager *pPager){ 1842 1843 assert( pPager->eState==PAGER_READER 1844 || pPager->eState==PAGER_OPEN 1845 || pPager->eState==PAGER_ERROR 1846 ); 1847 1848 sqlite3BitvecDestroy(pPager->pInJournal); 1849 pPager->pInJournal = 0; 1850 releaseAllSavepoints(pPager); 1851 1852 if( pagerUseWal(pPager) ){ 1853 assert( !isOpen(pPager->jfd) ); 1854 sqlite3WalEndReadTransaction(pPager->pWal); 1855 pPager->eState = PAGER_OPEN; 1856 }else if( !pPager->exclusiveMode ){ 1857 int rc; /* Error code returned by pagerUnlockDb() */ 1858 int iDc = isOpen(pPager->fd)?sqlite3OsDeviceCharacteristics(pPager->fd):0; 1859 1860 /* If the operating system support deletion of open files, then 1861 ** close the journal file when dropping the database lock. Otherwise 1862 ** another connection with journal_mode=delete might delete the file 1863 ** out from under us. 1864 */ 1865 assert( (PAGER_JOURNALMODE_MEMORY & 5)!=1 ); 1866 assert( (PAGER_JOURNALMODE_OFF & 5)!=1 ); 1867 assert( (PAGER_JOURNALMODE_WAL & 5)!=1 ); 1868 assert( (PAGER_JOURNALMODE_DELETE & 5)!=1 ); 1869 assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); 1870 assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); 1871 if( 0==(iDc & SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN) 1872 || 1!=(pPager->journalMode & 5) 1873 ){ 1874 sqlite3OsClose(pPager->jfd); 1875 } 1876 1877 /* If the pager is in the ERROR state and the call to unlock the database 1878 ** file fails, set the current lock to UNKNOWN_LOCK. See the comment 1879 ** above the #define for UNKNOWN_LOCK for an explanation of why this 1880 ** is necessary. 1881 */ 1882 rc = pagerUnlockDb(pPager, NO_LOCK); 1883 if( rc!=SQLITE_OK && pPager->eState==PAGER_ERROR ){ 1884 pPager->eLock = UNKNOWN_LOCK; 1885 } 1886 1887 /* The pager state may be changed from PAGER_ERROR to PAGER_OPEN here 1888 ** without clearing the error code. This is intentional - the error 1889 ** code is cleared and the cache reset in the block below. 1890 */ 1891 assert( pPager->errCode || pPager->eState!=PAGER_ERROR ); 1892 pPager->changeCountDone = 0; 1893 pPager->eState = PAGER_OPEN; 1894 } 1895 1896 /* If Pager.errCode is set, the contents of the pager cache cannot be 1897 ** trusted. Now that there are no outstanding references to the pager, 1898 ** it can safely move back to PAGER_OPEN state. This happens in both 1899 ** normal and exclusive-locking mode. 1900 */ 1901 assert( pPager->errCode==SQLITE_OK || !MEMDB ); 1902 if( pPager->errCode ){ 1903 if( pPager->tempFile==0 ){ 1904 pager_reset(pPager); 1905 pPager->changeCountDone = 0; 1906 pPager->eState = PAGER_OPEN; 1907 }else{ 1908 pPager->eState = (isOpen(pPager->jfd) ? PAGER_OPEN : PAGER_READER); 1909 } 1910 if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0); 1911 pPager->errCode = SQLITE_OK; 1912 setGetterMethod(pPager); 1913 } 1914 1915 pPager->journalOff = 0; 1916 pPager->journalHdr = 0; 1917 pPager->setMaster = 0; 1918 } 1919 1920 /* 1921 ** This function is called whenever an IOERR or FULL error that requires 1922 ** the pager to transition into the ERROR state may ahve occurred. 1923 ** The first argument is a pointer to the pager structure, the second 1924 ** the error-code about to be returned by a pager API function. The 1925 ** value returned is a copy of the second argument to this function. 1926 ** 1927 ** If the second argument is SQLITE_FULL, SQLITE_IOERR or one of the 1928 ** IOERR sub-codes, the pager enters the ERROR state and the error code 1929 ** is stored in Pager.errCode. While the pager remains in the ERROR state, 1930 ** all major API calls on the Pager will immediately return Pager.errCode. 1931 ** 1932 ** The ERROR state indicates that the contents of the pager-cache 1933 ** cannot be trusted. This state can be cleared by completely discarding 1934 ** the contents of the pager-cache. If a transaction was active when 1935 ** the persistent error occurred, then the rollback journal may need 1936 ** to be replayed to restore the contents of the database file (as if 1937 ** it were a hot-journal). 1938 */ 1939 static int pager_error(Pager *pPager, int rc){ 1940 int rc2 = rc & 0xff; 1941 assert( rc==SQLITE_OK || !MEMDB ); 1942 assert( 1943 pPager->errCode==SQLITE_FULL || 1944 pPager->errCode==SQLITE_OK || 1945 (pPager->errCode & 0xff)==SQLITE_IOERR 1946 ); 1947 if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR ){ 1948 pPager->errCode = rc; 1949 pPager->eState = PAGER_ERROR; 1950 setGetterMethod(pPager); 1951 } 1952 return rc; 1953 } 1954 1955 static int pager_truncate(Pager *pPager, Pgno nPage); 1956 1957 /* 1958 ** The write transaction open on pPager is being committed (bCommit==1) 1959 ** or rolled back (bCommit==0). 1960 ** 1961 ** Return TRUE if and only if all dirty pages should be flushed to disk. 1962 ** 1963 ** Rules: 1964 ** 1965 ** * For non-TEMP databases, always sync to disk. This is necessary 1966 ** for transactions to be durable. 1967 ** 1968 ** * Sync TEMP database only on a COMMIT (not a ROLLBACK) when the backing 1969 ** file has been created already (via a spill on pagerStress()) and 1970 ** when the number of dirty pages in memory exceeds 25% of the total 1971 ** cache size. 1972 */ 1973 static int pagerFlushOnCommit(Pager *pPager, int bCommit){ 1974 if( pPager->tempFile==0 ) return 1; 1975 if( !bCommit ) return 0; 1976 if( !isOpen(pPager->fd) ) return 0; 1977 return (sqlite3PCachePercentDirty(pPager->pPCache)>=25); 1978 } 1979 1980 /* 1981 ** This routine ends a transaction. A transaction is usually ended by 1982 ** either a COMMIT or a ROLLBACK operation. This routine may be called 1983 ** after rollback of a hot-journal, or if an error occurs while opening 1984 ** the journal file or writing the very first journal-header of a 1985 ** database transaction. 1986 ** 1987 ** This routine is never called in PAGER_ERROR state. If it is called 1988 ** in PAGER_NONE or PAGER_SHARED state and the lock held is less 1989 ** exclusive than a RESERVED lock, it is a no-op. 1990 ** 1991 ** Otherwise, any active savepoints are released. 1992 ** 1993 ** If the journal file is open, then it is "finalized". Once a journal 1994 ** file has been finalized it is not possible to use it to roll back a 1995 ** transaction. Nor will it be considered to be a hot-journal by this 1996 ** or any other database connection. Exactly how a journal is finalized 1997 ** depends on whether or not the pager is running in exclusive mode and 1998 ** the current journal-mode (Pager.journalMode value), as follows: 1999 ** 2000 ** journalMode==MEMORY 2001 ** Journal file descriptor is simply closed. This destroys an 2002 ** in-memory journal. 2003 ** 2004 ** journalMode==TRUNCATE 2005 ** Journal file is truncated to zero bytes in size. 2006 ** 2007 ** journalMode==PERSIST 2008 ** The first 28 bytes of the journal file are zeroed. This invalidates 2009 ** the first journal header in the file, and hence the entire journal 2010 ** file. An invalid journal file cannot be rolled back. 2011 ** 2012 ** journalMode==DELETE 2013 ** The journal file is closed and deleted using sqlite3OsDelete(). 2014 ** 2015 ** If the pager is running in exclusive mode, this method of finalizing 2016 ** the journal file is never used. Instead, if the journalMode is 2017 ** DELETE and the pager is in exclusive mode, the method described under 2018 ** journalMode==PERSIST is used instead. 2019 ** 2020 ** After the journal is finalized, the pager moves to PAGER_READER state. 2021 ** If running in non-exclusive rollback mode, the lock on the file is 2022 ** downgraded to a SHARED_LOCK. 2023 ** 2024 ** SQLITE_OK is returned if no error occurs. If an error occurs during 2025 ** any of the IO operations to finalize the journal file or unlock the 2026 ** database then the IO error code is returned to the user. If the 2027 ** operation to finalize the journal file fails, then the code still 2028 ** tries to unlock the database file if not in exclusive mode. If the 2029 ** unlock operation fails as well, then the first error code related 2030 ** to the first error encountered (the journal finalization one) is 2031 ** returned. 2032 */ 2033 static int pager_end_transaction(Pager *pPager, int hasMaster, int bCommit){ 2034 int rc = SQLITE_OK; /* Error code from journal finalization operation */ 2035 int rc2 = SQLITE_OK; /* Error code from db file unlock operation */ 2036 2037 /* Do nothing if the pager does not have an open write transaction 2038 ** or at least a RESERVED lock. This function may be called when there 2039 ** is no write-transaction active but a RESERVED or greater lock is 2040 ** held under two circumstances: 2041 ** 2042 ** 1. After a successful hot-journal rollback, it is called with 2043 ** eState==PAGER_NONE and eLock==EXCLUSIVE_LOCK. 2044 ** 2045 ** 2. If a connection with locking_mode=exclusive holding an EXCLUSIVE 2046 ** lock switches back to locking_mode=normal and then executes a 2047 ** read-transaction, this function is called with eState==PAGER_READER 2048 ** and eLock==EXCLUSIVE_LOCK when the read-transaction is closed. 2049 */ 2050 assert( assert_pager_state(pPager) ); 2051 assert( pPager->eState!=PAGER_ERROR ); 2052 if( pPager->eState<PAGER_WRITER_LOCKED && pPager->eLock<RESERVED_LOCK ){ 2053 return SQLITE_OK; 2054 } 2055 2056 releaseAllSavepoints(pPager); 2057 assert( isOpen(pPager->jfd) || pPager->pInJournal==0 2058 || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_BATCH_ATOMIC) 2059 ); 2060 if( isOpen(pPager->jfd) ){ 2061 assert( !pagerUseWal(pPager) ); 2062 2063 /* Finalize the journal file. */ 2064 if( sqlite3JournalIsInMemory(pPager->jfd) ){ 2065 /* assert( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ); */ 2066 sqlite3OsClose(pPager->jfd); 2067 }else if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE ){ 2068 if( pPager->journalOff==0 ){ 2069 rc = SQLITE_OK; 2070 }else{ 2071 rc = sqlite3OsTruncate(pPager->jfd, 0); 2072 if( rc==SQLITE_OK && pPager->fullSync ){ 2073 /* Make sure the new file size is written into the inode right away. 2074 ** Otherwise the journal might resurrect following a power loss and 2075 ** cause the last transaction to roll back. See 2076 ** https://bugzilla.mozilla.org/show_bug.cgi?id=1072773 2077 */ 2078 rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags); 2079 } 2080 } 2081 pPager->journalOff = 0; 2082 }else if( pPager->journalMode==PAGER_JOURNALMODE_PERSIST 2083 || (pPager->exclusiveMode && pPager->journalMode!=PAGER_JOURNALMODE_WAL) 2084 ){ 2085 rc = zeroJournalHdr(pPager, hasMaster||pPager->tempFile); 2086 pPager->journalOff = 0; 2087 }else{ 2088 /* This branch may be executed with Pager.journalMode==MEMORY if 2089 ** a hot-journal was just rolled back. In this case the journal 2090 ** file should be closed and deleted. If this connection writes to 2091 ** the database file, it will do so using an in-memory journal. 2092 */ 2093 int bDelete = !pPager->tempFile; 2094 assert( sqlite3JournalIsInMemory(pPager->jfd)==0 ); 2095 assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE 2096 || pPager->journalMode==PAGER_JOURNALMODE_MEMORY 2097 || pPager->journalMode==PAGER_JOURNALMODE_WAL 2098 ); 2099 sqlite3OsClose(pPager->jfd); 2100 if( bDelete ){ 2101 rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, pPager->extraSync); 2102 } 2103 } 2104 } 2105 2106 #ifdef SQLITE_CHECK_PAGES 2107 sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash); 2108 if( pPager->dbSize==0 && sqlite3PcacheRefCount(pPager->pPCache)>0 ){ 2109 PgHdr *p = sqlite3PagerLookup(pPager, 1); 2110 if( p ){ 2111 p->pageHash = 0; 2112 sqlite3PagerUnrefNotNull(p); 2113 } 2114 } 2115 #endif 2116 2117 sqlite3BitvecDestroy(pPager->pInJournal); 2118 pPager->pInJournal = 0; 2119 pPager->nRec = 0; 2120 if( rc==SQLITE_OK ){ 2121 if( MEMDB || pagerFlushOnCommit(pPager, bCommit) ){ 2122 sqlite3PcacheCleanAll(pPager->pPCache); 2123 }else{ 2124 sqlite3PcacheClearWritable(pPager->pPCache); 2125 } 2126 sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize); 2127 } 2128 2129 if( pagerUseWal(pPager) ){ 2130 /* Drop the WAL write-lock, if any. Also, if the connection was in 2131 ** locking_mode=exclusive mode but is no longer, drop the EXCLUSIVE 2132 ** lock held on the database file. 2133 */ 2134 rc2 = sqlite3WalEndWriteTransaction(pPager->pWal); 2135 assert( rc2==SQLITE_OK ); 2136 }else if( rc==SQLITE_OK && bCommit && pPager->dbFileSize>pPager->dbSize ){ 2137 /* This branch is taken when committing a transaction in rollback-journal 2138 ** mode if the database file on disk is larger than the database image. 2139 ** At this point the journal has been finalized and the transaction 2140 ** successfully committed, but the EXCLUSIVE lock is still held on the 2141 ** file. So it is safe to truncate the database file to its minimum 2142 ** required size. */ 2143 assert( pPager->eLock==EXCLUSIVE_LOCK ); 2144 rc = pager_truncate(pPager, pPager->dbSize); 2145 } 2146 2147 if( rc==SQLITE_OK && bCommit ){ 2148 rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_COMMIT_PHASETWO, 0); 2149 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 2150 } 2151 2152 if( !pPager->exclusiveMode 2153 && (!pagerUseWal(pPager) || sqlite3WalExclusiveMode(pPager->pWal, 0)) 2154 ){ 2155 rc2 = pagerUnlockDb(pPager, SHARED_LOCK); 2156 pPager->changeCountDone = 0; 2157 } 2158 pPager->eState = PAGER_READER; 2159 pPager->setMaster = 0; 2160 2161 return (rc==SQLITE_OK?rc2:rc); 2162 } 2163 2164 /* 2165 ** Execute a rollback if a transaction is active and unlock the 2166 ** database file. 2167 ** 2168 ** If the pager has already entered the ERROR state, do not attempt 2169 ** the rollback at this time. Instead, pager_unlock() is called. The 2170 ** call to pager_unlock() will discard all in-memory pages, unlock 2171 ** the database file and move the pager back to OPEN state. If this 2172 ** means that there is a hot-journal left in the file-system, the next 2173 ** connection to obtain a shared lock on the pager (which may be this one) 2174 ** will roll it back. 2175 ** 2176 ** If the pager has not already entered the ERROR state, but an IO or 2177 ** malloc error occurs during a rollback, then this will itself cause 2178 ** the pager to enter the ERROR state. Which will be cleared by the 2179 ** call to pager_unlock(), as described above. 2180 */ 2181 static void pagerUnlockAndRollback(Pager *pPager){ 2182 if( pPager->eState!=PAGER_ERROR && pPager->eState!=PAGER_OPEN ){ 2183 assert( assert_pager_state(pPager) ); 2184 if( pPager->eState>=PAGER_WRITER_LOCKED ){ 2185 sqlite3BeginBenignMalloc(); 2186 sqlite3PagerRollback(pPager); 2187 sqlite3EndBenignMalloc(); 2188 }else if( !pPager->exclusiveMode ){ 2189 assert( pPager->eState==PAGER_READER ); 2190 pager_end_transaction(pPager, 0, 0); 2191 } 2192 } 2193 pager_unlock(pPager); 2194 } 2195 2196 /* 2197 ** Parameter aData must point to a buffer of pPager->pageSize bytes 2198 ** of data. Compute and return a checksum based ont the contents of the 2199 ** page of data and the current value of pPager->cksumInit. 2200 ** 2201 ** This is not a real checksum. It is really just the sum of the 2202 ** random initial value (pPager->cksumInit) and every 200th byte 2203 ** of the page data, starting with byte offset (pPager->pageSize%200). 2204 ** Each byte is interpreted as an 8-bit unsigned integer. 2205 ** 2206 ** Changing the formula used to compute this checksum results in an 2207 ** incompatible journal file format. 2208 ** 2209 ** If journal corruption occurs due to a power failure, the most likely 2210 ** scenario is that one end or the other of the record will be changed. 2211 ** It is much less likely that the two ends of the journal record will be 2212 ** correct and the middle be corrupt. Thus, this "checksum" scheme, 2213 ** though fast and simple, catches the mostly likely kind of corruption. 2214 */ 2215 static u32 pager_cksum(Pager *pPager, const u8 *aData){ 2216 u32 cksum = pPager->cksumInit; /* Checksum value to return */ 2217 int i = pPager->pageSize-200; /* Loop counter */ 2218 while( i>0 ){ 2219 cksum += aData[i]; 2220 i -= 200; 2221 } 2222 return cksum; 2223 } 2224 2225 /* 2226 ** Report the current page size and number of reserved bytes back 2227 ** to the codec. 2228 */ 2229 #ifdef SQLITE_HAS_CODEC 2230 static void pagerReportSize(Pager *pPager){ 2231 if( pPager->xCodecSizeChng ){ 2232 pPager->xCodecSizeChng(pPager->pCodec, pPager->pageSize, 2233 (int)pPager->nReserve); 2234 } 2235 } 2236 #else 2237 # define pagerReportSize(X) /* No-op if we do not support a codec */ 2238 #endif 2239 2240 #ifdef SQLITE_HAS_CODEC 2241 /* 2242 ** Make sure the number of reserved bits is the same in the destination 2243 ** pager as it is in the source. This comes up when a VACUUM changes the 2244 ** number of reserved bits to the "optimal" amount. 2245 */ 2246 void sqlite3PagerAlignReserve(Pager *pDest, Pager *pSrc){ 2247 if( pDest->nReserve!=pSrc->nReserve ){ 2248 pDest->nReserve = pSrc->nReserve; 2249 pagerReportSize(pDest); 2250 } 2251 } 2252 #endif 2253 2254 /* 2255 ** Read a single page from either the journal file (if isMainJrnl==1) or 2256 ** from the sub-journal (if isMainJrnl==0) and playback that page. 2257 ** The page begins at offset *pOffset into the file. The *pOffset 2258 ** value is increased to the start of the next page in the journal. 2259 ** 2260 ** The main rollback journal uses checksums - the statement journal does 2261 ** not. 2262 ** 2263 ** If the page number of the page record read from the (sub-)journal file 2264 ** is greater than the current value of Pager.dbSize, then playback is 2265 ** skipped and SQLITE_OK is returned. 2266 ** 2267 ** If pDone is not NULL, then it is a record of pages that have already 2268 ** been played back. If the page at *pOffset has already been played back 2269 ** (if the corresponding pDone bit is set) then skip the playback. 2270 ** Make sure the pDone bit corresponding to the *pOffset page is set 2271 ** prior to returning. 2272 ** 2273 ** If the page record is successfully read from the (sub-)journal file 2274 ** and played back, then SQLITE_OK is returned. If an IO error occurs 2275 ** while reading the record from the (sub-)journal file or while writing 2276 ** to the database file, then the IO error code is returned. If data 2277 ** is successfully read from the (sub-)journal file but appears to be 2278 ** corrupted, SQLITE_DONE is returned. Data is considered corrupted in 2279 ** two circumstances: 2280 ** 2281 ** * If the record page-number is illegal (0 or PAGER_MJ_PGNO), or 2282 ** * If the record is being rolled back from the main journal file 2283 ** and the checksum field does not match the record content. 2284 ** 2285 ** Neither of these two scenarios are possible during a savepoint rollback. 2286 ** 2287 ** If this is a savepoint rollback, then memory may have to be dynamically 2288 ** allocated by this function. If this is the case and an allocation fails, 2289 ** SQLITE_NOMEM is returned. 2290 */ 2291 static int pager_playback_one_page( 2292 Pager *pPager, /* The pager being played back */ 2293 i64 *pOffset, /* Offset of record to playback */ 2294 Bitvec *pDone, /* Bitvec of pages already played back */ 2295 int isMainJrnl, /* 1 -> main journal. 0 -> sub-journal. */ 2296 int isSavepnt /* True for a savepoint rollback */ 2297 ){ 2298 int rc; 2299 PgHdr *pPg; /* An existing page in the cache */ 2300 Pgno pgno; /* The page number of a page in journal */ 2301 u32 cksum; /* Checksum used for sanity checking */ 2302 char *aData; /* Temporary storage for the page */ 2303 sqlite3_file *jfd; /* The file descriptor for the journal file */ 2304 int isSynced; /* True if journal page is synced */ 2305 #ifdef SQLITE_HAS_CODEC 2306 /* The jrnlEnc flag is true if Journal pages should be passed through 2307 ** the codec. It is false for pure in-memory journals. */ 2308 const int jrnlEnc = (isMainJrnl || pPager->subjInMemory==0); 2309 #endif 2310 2311 assert( (isMainJrnl&~1)==0 ); /* isMainJrnl is 0 or 1 */ 2312 assert( (isSavepnt&~1)==0 ); /* isSavepnt is 0 or 1 */ 2313 assert( isMainJrnl || pDone ); /* pDone always used on sub-journals */ 2314 assert( isSavepnt || pDone==0 ); /* pDone never used on non-savepoint */ 2315 2316 aData = pPager->pTmpSpace; 2317 assert( aData ); /* Temp storage must have already been allocated */ 2318 assert( pagerUseWal(pPager)==0 || (!isMainJrnl && isSavepnt) ); 2319 2320 /* Either the state is greater than PAGER_WRITER_CACHEMOD (a transaction 2321 ** or savepoint rollback done at the request of the caller) or this is 2322 ** a hot-journal rollback. If it is a hot-journal rollback, the pager 2323 ** is in state OPEN and holds an EXCLUSIVE lock. Hot-journal rollback 2324 ** only reads from the main journal, not the sub-journal. 2325 */ 2326 assert( pPager->eState>=PAGER_WRITER_CACHEMOD 2327 || (pPager->eState==PAGER_OPEN && pPager->eLock==EXCLUSIVE_LOCK) 2328 ); 2329 assert( pPager->eState>=PAGER_WRITER_CACHEMOD || isMainJrnl ); 2330 2331 /* Read the page number and page data from the journal or sub-journal 2332 ** file. Return an error code to the caller if an IO error occurs. 2333 */ 2334 jfd = isMainJrnl ? pPager->jfd : pPager->sjfd; 2335 rc = read32bits(jfd, *pOffset, &pgno); 2336 if( rc!=SQLITE_OK ) return rc; 2337 rc = sqlite3OsRead(jfd, (u8*)aData, pPager->pageSize, (*pOffset)+4); 2338 if( rc!=SQLITE_OK ) return rc; 2339 *pOffset += pPager->pageSize + 4 + isMainJrnl*4; 2340 2341 /* Sanity checking on the page. This is more important that I originally 2342 ** thought. If a power failure occurs while the journal is being written, 2343 ** it could cause invalid data to be written into the journal. We need to 2344 ** detect this invalid data (with high probability) and ignore it. 2345 */ 2346 if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ 2347 assert( !isSavepnt ); 2348 return SQLITE_DONE; 2349 } 2350 if( pgno>(Pgno)pPager->dbSize || sqlite3BitvecTest(pDone, pgno) ){ 2351 return SQLITE_OK; 2352 } 2353 if( isMainJrnl ){ 2354 rc = read32bits(jfd, (*pOffset)-4, &cksum); 2355 if( rc ) return rc; 2356 if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){ 2357 return SQLITE_DONE; 2358 } 2359 } 2360 2361 /* If this page has already been played back before during the current 2362 ** rollback, then don't bother to play it back again. 2363 */ 2364 if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){ 2365 return rc; 2366 } 2367 2368 /* When playing back page 1, restore the nReserve setting 2369 */ 2370 if( pgno==1 && pPager->nReserve!=((u8*)aData)[20] ){ 2371 pPager->nReserve = ((u8*)aData)[20]; 2372 pagerReportSize(pPager); 2373 } 2374 2375 /* If the pager is in CACHEMOD state, then there must be a copy of this 2376 ** page in the pager cache. In this case just update the pager cache, 2377 ** not the database file. The page is left marked dirty in this case. 2378 ** 2379 ** An exception to the above rule: If the database is in no-sync mode 2380 ** and a page is moved during an incremental vacuum then the page may 2381 ** not be in the pager cache. Later: if a malloc() or IO error occurs 2382 ** during a Movepage() call, then the page may not be in the cache 2383 ** either. So the condition described in the above paragraph is not 2384 ** assert()able. 2385 ** 2386 ** If in WRITER_DBMOD, WRITER_FINISHED or OPEN state, then we update the 2387 ** pager cache if it exists and the main file. The page is then marked 2388 ** not dirty. Since this code is only executed in PAGER_OPEN state for 2389 ** a hot-journal rollback, it is guaranteed that the page-cache is empty 2390 ** if the pager is in OPEN state. 2391 ** 2392 ** Ticket #1171: The statement journal might contain page content that is 2393 ** different from the page content at the start of the transaction. 2394 ** This occurs when a page is changed prior to the start of a statement 2395 ** then changed again within the statement. When rolling back such a 2396 ** statement we must not write to the original database unless we know 2397 ** for certain that original page contents are synced into the main rollback 2398 ** journal. Otherwise, a power loss might leave modified data in the 2399 ** database file without an entry in the rollback journal that can 2400 ** restore the database to its original form. Two conditions must be 2401 ** met before writing to the database files. (1) the database must be 2402 ** locked. (2) we know that the original page content is fully synced 2403 ** in the main journal either because the page is not in cache or else 2404 ** the page is marked as needSync==0. 2405 ** 2406 ** 2008-04-14: When attempting to vacuum a corrupt database file, it 2407 ** is possible to fail a statement on a database that does not yet exist. 2408 ** Do not attempt to write if database file has never been opened. 2409 */ 2410 if( pagerUseWal(pPager) ){ 2411 pPg = 0; 2412 }else{ 2413 pPg = sqlite3PagerLookup(pPager, pgno); 2414 } 2415 assert( pPg || !MEMDB ); 2416 assert( pPager->eState!=PAGER_OPEN || pPg==0 || pPager->tempFile ); 2417 PAGERTRACE(("PLAYBACK %d page %d hash(%08x) %s\n", 2418 PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, (u8*)aData), 2419 (isMainJrnl?"main-journal":"sub-journal") 2420 )); 2421 if( isMainJrnl ){ 2422 isSynced = pPager->noSync || (*pOffset <= pPager->journalHdr); 2423 }else{ 2424 isSynced = (pPg==0 || 0==(pPg->flags & PGHDR_NEED_SYNC)); 2425 } 2426 if( isOpen(pPager->fd) 2427 && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) 2428 && isSynced 2429 ){ 2430 i64 ofst = (pgno-1)*(i64)pPager->pageSize; 2431 testcase( !isSavepnt && pPg!=0 && (pPg->flags&PGHDR_NEED_SYNC)!=0 ); 2432 assert( !pagerUseWal(pPager) ); 2433 2434 /* Write the data read from the journal back into the database file. 2435 ** This is usually safe even for an encrypted database - as the data 2436 ** was encrypted before it was written to the journal file. The exception 2437 ** is if the data was just read from an in-memory sub-journal. In that 2438 ** case it must be encrypted here before it is copied into the database 2439 ** file. */ 2440 #ifdef SQLITE_HAS_CODEC 2441 if( !jrnlEnc ){ 2442 CODEC2(pPager, aData, pgno, 7, rc=SQLITE_NOMEM_BKPT, aData); 2443 rc = sqlite3OsWrite(pPager->fd, (u8 *)aData, pPager->pageSize, ofst); 2444 CODEC1(pPager, aData, pgno, 3, rc=SQLITE_NOMEM_BKPT); 2445 }else 2446 #endif 2447 rc = sqlite3OsWrite(pPager->fd, (u8 *)aData, pPager->pageSize, ofst); 2448 2449 if( pgno>pPager->dbFileSize ){ 2450 pPager->dbFileSize = pgno; 2451 } 2452 if( pPager->pBackup ){ 2453 #ifdef SQLITE_HAS_CODEC 2454 if( jrnlEnc ){ 2455 CODEC1(pPager, aData, pgno, 3, rc=SQLITE_NOMEM_BKPT); 2456 sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData); 2457 CODEC2(pPager, aData, pgno, 7, rc=SQLITE_NOMEM_BKPT,aData); 2458 }else 2459 #endif 2460 sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData); 2461 } 2462 }else if( !isMainJrnl && pPg==0 ){ 2463 /* If this is a rollback of a savepoint and data was not written to 2464 ** the database and the page is not in-memory, there is a potential 2465 ** problem. When the page is next fetched by the b-tree layer, it 2466 ** will be read from the database file, which may or may not be 2467 ** current. 2468 ** 2469 ** There are a couple of different ways this can happen. All are quite 2470 ** obscure. When running in synchronous mode, this can only happen 2471 ** if the page is on the free-list at the start of the transaction, then 2472 ** populated, then moved using sqlite3PagerMovepage(). 2473 ** 2474 ** The solution is to add an in-memory page to the cache containing 2475 ** the data just read from the sub-journal. Mark the page as dirty 2476 ** and if the pager requires a journal-sync, then mark the page as 2477 ** requiring a journal-sync before it is written. 2478 */ 2479 assert( isSavepnt ); 2480 assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)==0 ); 2481 pPager->doNotSpill |= SPILLFLAG_ROLLBACK; 2482 rc = sqlite3PagerGet(pPager, pgno, &pPg, 1); 2483 assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)!=0 ); 2484 pPager->doNotSpill &= ~SPILLFLAG_ROLLBACK; 2485 if( rc!=SQLITE_OK ) return rc; 2486 sqlite3PcacheMakeDirty(pPg); 2487 } 2488 if( pPg ){ 2489 /* No page should ever be explicitly rolled back that is in use, except 2490 ** for page 1 which is held in use in order to keep the lock on the 2491 ** database active. However such a page may be rolled back as a result 2492 ** of an internal error resulting in an automatic call to 2493 ** sqlite3PagerRollback(). 2494 */ 2495 void *pData; 2496 pData = pPg->pData; 2497 memcpy(pData, (u8*)aData, pPager->pageSize); 2498 pPager->xReiniter(pPg); 2499 /* It used to be that sqlite3PcacheMakeClean(pPg) was called here. But 2500 ** that call was dangerous and had no detectable benefit since the cache 2501 ** is normally cleaned by sqlite3PcacheCleanAll() after rollback and so 2502 ** has been removed. */ 2503 pager_set_pagehash(pPg); 2504 2505 /* If this was page 1, then restore the value of Pager.dbFileVers. 2506 ** Do this before any decoding. */ 2507 if( pgno==1 ){ 2508 memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers)); 2509 } 2510 2511 /* Decode the page just read from disk */ 2512 #if SQLITE_HAS_CODEC 2513 if( jrnlEnc ){ CODEC1(pPager, pData, pPg->pgno, 3, rc=SQLITE_NOMEM_BKPT); } 2514 #endif 2515 sqlite3PcacheRelease(pPg); 2516 } 2517 return rc; 2518 } 2519 2520 /* 2521 ** Parameter zMaster is the name of a master journal file. A single journal 2522 ** file that referred to the master journal file has just been rolled back. 2523 ** This routine checks if it is possible to delete the master journal file, 2524 ** and does so if it is. 2525 ** 2526 ** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not 2527 ** available for use within this function. 2528 ** 2529 ** When a master journal file is created, it is populated with the names 2530 ** of all of its child journals, one after another, formatted as utf-8 2531 ** encoded text. The end of each child journal file is marked with a 2532 ** nul-terminator byte (0x00). i.e. the entire contents of a master journal 2533 ** file for a transaction involving two databases might be: 2534 ** 2535 ** "/home/bill/a.db-journal\x00/home/bill/b.db-journal\x00" 2536 ** 2537 ** A master journal file may only be deleted once all of its child 2538 ** journals have been rolled back. 2539 ** 2540 ** This function reads the contents of the master-journal file into 2541 ** memory and loops through each of the child journal names. For 2542 ** each child journal, it checks if: 2543 ** 2544 ** * if the child journal exists, and if so 2545 ** * if the child journal contains a reference to master journal 2546 ** file zMaster 2547 ** 2548 ** If a child journal can be found that matches both of the criteria 2549 ** above, this function returns without doing anything. Otherwise, if 2550 ** no such child journal can be found, file zMaster is deleted from 2551 ** the file-system using sqlite3OsDelete(). 2552 ** 2553 ** If an IO error within this function, an error code is returned. This 2554 ** function allocates memory by calling sqlite3Malloc(). If an allocation 2555 ** fails, SQLITE_NOMEM is returned. Otherwise, if no IO or malloc errors 2556 ** occur, SQLITE_OK is returned. 2557 ** 2558 ** TODO: This function allocates a single block of memory to load 2559 ** the entire contents of the master journal file. This could be 2560 ** a couple of kilobytes or so - potentially larger than the page 2561 ** size. 2562 */ 2563 static int pager_delmaster(Pager *pPager, const char *zMaster){ 2564 sqlite3_vfs *pVfs = pPager->pVfs; 2565 int rc; /* Return code */ 2566 sqlite3_file *pMaster; /* Malloc'd master-journal file descriptor */ 2567 sqlite3_file *pJournal; /* Malloc'd child-journal file descriptor */ 2568 char *zMasterJournal = 0; /* Contents of master journal file */ 2569 i64 nMasterJournal; /* Size of master journal file */ 2570 char *zJournal; /* Pointer to one journal within MJ file */ 2571 char *zMasterPtr; /* Space to hold MJ filename from a journal file */ 2572 int nMasterPtr; /* Amount of space allocated to zMasterPtr[] */ 2573 2574 /* Allocate space for both the pJournal and pMaster file descriptors. 2575 ** If successful, open the master journal file for reading. 2576 */ 2577 pMaster = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile * 2); 2578 pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile); 2579 if( !pMaster ){ 2580 rc = SQLITE_NOMEM_BKPT; 2581 }else{ 2582 const int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL); 2583 rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0); 2584 } 2585 if( rc!=SQLITE_OK ) goto delmaster_out; 2586 2587 /* Load the entire master journal file into space obtained from 2588 ** sqlite3_malloc() and pointed to by zMasterJournal. Also obtain 2589 ** sufficient space (in zMasterPtr) to hold the names of master 2590 ** journal files extracted from regular rollback-journals. 2591 */ 2592 rc = sqlite3OsFileSize(pMaster, &nMasterJournal); 2593 if( rc!=SQLITE_OK ) goto delmaster_out; 2594 nMasterPtr = pVfs->mxPathname+1; 2595 zMasterJournal = sqlite3Malloc(nMasterJournal + nMasterPtr + 1); 2596 if( !zMasterJournal ){ 2597 rc = SQLITE_NOMEM_BKPT; 2598 goto delmaster_out; 2599 } 2600 zMasterPtr = &zMasterJournal[nMasterJournal+1]; 2601 rc = sqlite3OsRead(pMaster, zMasterJournal, (int)nMasterJournal, 0); 2602 if( rc!=SQLITE_OK ) goto delmaster_out; 2603 zMasterJournal[nMasterJournal] = 0; 2604 2605 zJournal = zMasterJournal; 2606 while( (zJournal-zMasterJournal)<nMasterJournal ){ 2607 int exists; 2608 rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS, &exists); 2609 if( rc!=SQLITE_OK ){ 2610 goto delmaster_out; 2611 } 2612 if( exists ){ 2613 /* One of the journals pointed to by the master journal exists. 2614 ** Open it and check if it points at the master journal. If 2615 ** so, return without deleting the master journal file. 2616 */ 2617 int c; 2618 int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL); 2619 rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0); 2620 if( rc!=SQLITE_OK ){ 2621 goto delmaster_out; 2622 } 2623 2624 rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr); 2625 sqlite3OsClose(pJournal); 2626 if( rc!=SQLITE_OK ){ 2627 goto delmaster_out; 2628 } 2629 2630 c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0; 2631 if( c ){ 2632 /* We have a match. Do not delete the master journal file. */ 2633 goto delmaster_out; 2634 } 2635 } 2636 zJournal += (sqlite3Strlen30(zJournal)+1); 2637 } 2638 2639 sqlite3OsClose(pMaster); 2640 rc = sqlite3OsDelete(pVfs, zMaster, 0); 2641 2642 delmaster_out: 2643 sqlite3_free(zMasterJournal); 2644 if( pMaster ){ 2645 sqlite3OsClose(pMaster); 2646 assert( !isOpen(pJournal) ); 2647 sqlite3_free(pMaster); 2648 } 2649 return rc; 2650 } 2651 2652 2653 /* 2654 ** This function is used to change the actual size of the database 2655 ** file in the file-system. This only happens when committing a transaction, 2656 ** or rolling back a transaction (including rolling back a hot-journal). 2657 ** 2658 ** If the main database file is not open, or the pager is not in either 2659 ** DBMOD or OPEN state, this function is a no-op. Otherwise, the size 2660 ** of the file is changed to nPage pages (nPage*pPager->pageSize bytes). 2661 ** If the file on disk is currently larger than nPage pages, then use the VFS 2662 ** xTruncate() method to truncate it. 2663 ** 2664 ** Or, it might be the case that the file on disk is smaller than 2665 ** nPage pages. Some operating system implementations can get confused if 2666 ** you try to truncate a file to some size that is larger than it 2667 ** currently is, so detect this case and write a single zero byte to 2668 ** the end of the new file instead. 2669 ** 2670 ** If successful, return SQLITE_OK. If an IO error occurs while modifying 2671 ** the database file, return the error code to the caller. 2672 */ 2673 static int pager_truncate(Pager *pPager, Pgno nPage){ 2674 int rc = SQLITE_OK; 2675 assert( pPager->eState!=PAGER_ERROR ); 2676 assert( pPager->eState!=PAGER_READER ); 2677 2678 if( isOpen(pPager->fd) 2679 && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) 2680 ){ 2681 i64 currentSize, newSize; 2682 int szPage = pPager->pageSize; 2683 assert( pPager->eLock==EXCLUSIVE_LOCK ); 2684 /* TODO: Is it safe to use Pager.dbFileSize here? */ 2685 rc = sqlite3OsFileSize(pPager->fd, ¤tSize); 2686 newSize = szPage*(i64)nPage; 2687 if( rc==SQLITE_OK && currentSize!=newSize ){ 2688 if( currentSize>newSize ){ 2689 rc = sqlite3OsTruncate(pPager->fd, newSize); 2690 }else if( (currentSize+szPage)<=newSize ){ 2691 char *pTmp = pPager->pTmpSpace; 2692 memset(pTmp, 0, szPage); 2693 testcase( (newSize-szPage) == currentSize ); 2694 testcase( (newSize-szPage) > currentSize ); 2695 rc = sqlite3OsWrite(pPager->fd, pTmp, szPage, newSize-szPage); 2696 } 2697 if( rc==SQLITE_OK ){ 2698 pPager->dbFileSize = nPage; 2699 } 2700 } 2701 } 2702 return rc; 2703 } 2704 2705 /* 2706 ** Return a sanitized version of the sector-size of OS file pFile. The 2707 ** return value is guaranteed to lie between 32 and MAX_SECTOR_SIZE. 2708 */ 2709 int sqlite3SectorSize(sqlite3_file *pFile){ 2710 int iRet = sqlite3OsSectorSize(pFile); 2711 if( iRet<32 ){ 2712 iRet = 512; 2713 }else if( iRet>MAX_SECTOR_SIZE ){ 2714 assert( MAX_SECTOR_SIZE>=512 ); 2715 iRet = MAX_SECTOR_SIZE; 2716 } 2717 return iRet; 2718 } 2719 2720 /* 2721 ** Set the value of the Pager.sectorSize variable for the given 2722 ** pager based on the value returned by the xSectorSize method 2723 ** of the open database file. The sector size will be used 2724 ** to determine the size and alignment of journal header and 2725 ** master journal pointers within created journal files. 2726 ** 2727 ** For temporary files the effective sector size is always 512 bytes. 2728 ** 2729 ** Otherwise, for non-temporary files, the effective sector size is 2730 ** the value returned by the xSectorSize() method rounded up to 32 if 2731 ** it is less than 32, or rounded down to MAX_SECTOR_SIZE if it 2732 ** is greater than MAX_SECTOR_SIZE. 2733 ** 2734 ** If the file has the SQLITE_IOCAP_POWERSAFE_OVERWRITE property, then set 2735 ** the effective sector size to its minimum value (512). The purpose of 2736 ** pPager->sectorSize is to define the "blast radius" of bytes that 2737 ** might change if a crash occurs while writing to a single byte in 2738 ** that range. But with POWERSAFE_OVERWRITE, the blast radius is zero 2739 ** (that is what POWERSAFE_OVERWRITE means), so we minimize the sector 2740 ** size. For backwards compatibility of the rollback journal file format, 2741 ** we cannot reduce the effective sector size below 512. 2742 */ 2743 static void setSectorSize(Pager *pPager){ 2744 assert( isOpen(pPager->fd) || pPager->tempFile ); 2745 2746 if( pPager->tempFile 2747 || (sqlite3OsDeviceCharacteristics(pPager->fd) & 2748 SQLITE_IOCAP_POWERSAFE_OVERWRITE)!=0 2749 ){ 2750 /* Sector size doesn't matter for temporary files. Also, the file 2751 ** may not have been opened yet, in which case the OsSectorSize() 2752 ** call will segfault. */ 2753 pPager->sectorSize = 512; 2754 }else{ 2755 pPager->sectorSize = sqlite3SectorSize(pPager->fd); 2756 } 2757 } 2758 2759 /* 2760 ** Playback the journal and thus restore the database file to 2761 ** the state it was in before we started making changes. 2762 ** 2763 ** The journal file format is as follows: 2764 ** 2765 ** (1) 8 byte prefix. A copy of aJournalMagic[]. 2766 ** (2) 4 byte big-endian integer which is the number of valid page records 2767 ** in the journal. If this value is 0xffffffff, then compute the 2768 ** number of page records from the journal size. 2769 ** (3) 4 byte big-endian integer which is the initial value for the 2770 ** sanity checksum. 2771 ** (4) 4 byte integer which is the number of pages to truncate the 2772 ** database to during a rollback. 2773 ** (5) 4 byte big-endian integer which is the sector size. The header 2774 ** is this many bytes in size. 2775 ** (6) 4 byte big-endian integer which is the page size. 2776 ** (7) zero padding out to the next sector size. 2777 ** (8) Zero or more pages instances, each as follows: 2778 ** + 4 byte page number. 2779 ** + pPager->pageSize bytes of data. 2780 ** + 4 byte checksum 2781 ** 2782 ** When we speak of the journal header, we mean the first 7 items above. 2783 ** Each entry in the journal is an instance of the 8th item. 2784 ** 2785 ** Call the value from the second bullet "nRec". nRec is the number of 2786 ** valid page entries in the journal. In most cases, you can compute the 2787 ** value of nRec from the size of the journal file. But if a power 2788 ** failure occurred while the journal was being written, it could be the 2789 ** case that the size of the journal file had already been increased but 2790 ** the extra entries had not yet made it safely to disk. In such a case, 2791 ** the value of nRec computed from the file size would be too large. For 2792 ** that reason, we always use the nRec value in the header. 2793 ** 2794 ** If the nRec value is 0xffffffff it means that nRec should be computed 2795 ** from the file size. This value is used when the user selects the 2796 ** no-sync option for the journal. A power failure could lead to corruption 2797 ** in this case. But for things like temporary table (which will be 2798 ** deleted when the power is restored) we don't care. 2799 ** 2800 ** If the file opened as the journal file is not a well-formed 2801 ** journal file then all pages up to the first corrupted page are rolled 2802 ** back (or no pages if the journal header is corrupted). The journal file 2803 ** is then deleted and SQLITE_OK returned, just as if no corruption had 2804 ** been encountered. 2805 ** 2806 ** If an I/O or malloc() error occurs, the journal-file is not deleted 2807 ** and an error code is returned. 2808 ** 2809 ** The isHot parameter indicates that we are trying to rollback a journal 2810 ** that might be a hot journal. Or, it could be that the journal is 2811 ** preserved because of JOURNALMODE_PERSIST or JOURNALMODE_TRUNCATE. 2812 ** If the journal really is hot, reset the pager cache prior rolling 2813 ** back any content. If the journal is merely persistent, no reset is 2814 ** needed. 2815 */ 2816 static int pager_playback(Pager *pPager, int isHot){ 2817 sqlite3_vfs *pVfs = pPager->pVfs; 2818 i64 szJ; /* Size of the journal file in bytes */ 2819 u32 nRec; /* Number of Records in the journal */ 2820 u32 u; /* Unsigned loop counter */ 2821 Pgno mxPg = 0; /* Size of the original file in pages */ 2822 int rc; /* Result code of a subroutine */ 2823 int res = 1; /* Value returned by sqlite3OsAccess() */ 2824 char *zMaster = 0; /* Name of master journal file if any */ 2825 int needPagerReset; /* True to reset page prior to first page rollback */ 2826 int nPlayback = 0; /* Total number of pages restored from journal */ 2827 u32 savedPageSize = pPager->pageSize; 2828 2829 /* Figure out how many records are in the journal. Abort early if 2830 ** the journal is empty. 2831 */ 2832 assert( isOpen(pPager->jfd) ); 2833 rc = sqlite3OsFileSize(pPager->jfd, &szJ); 2834 if( rc!=SQLITE_OK ){ 2835 goto end_playback; 2836 } 2837 2838 /* Read the master journal name from the journal, if it is present. 2839 ** If a master journal file name is specified, but the file is not 2840 ** present on disk, then the journal is not hot and does not need to be 2841 ** played back. 2842 ** 2843 ** TODO: Technically the following is an error because it assumes that 2844 ** buffer Pager.pTmpSpace is (mxPathname+1) bytes or larger. i.e. that 2845 ** (pPager->pageSize >= pPager->pVfs->mxPathname+1). Using os_unix.c, 2846 ** mxPathname is 512, which is the same as the minimum allowable value 2847 ** for pageSize. 2848 */ 2849 zMaster = pPager->pTmpSpace; 2850 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); 2851 if( rc==SQLITE_OK && zMaster[0] ){ 2852 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2853 } 2854 zMaster = 0; 2855 if( rc!=SQLITE_OK || !res ){ 2856 goto end_playback; 2857 } 2858 pPager->journalOff = 0; 2859 needPagerReset = isHot; 2860 2861 /* This loop terminates either when a readJournalHdr() or 2862 ** pager_playback_one_page() call returns SQLITE_DONE or an IO error 2863 ** occurs. 2864 */ 2865 while( 1 ){ 2866 /* Read the next journal header from the journal file. If there are 2867 ** not enough bytes left in the journal file for a complete header, or 2868 ** it is corrupted, then a process must have failed while writing it. 2869 ** This indicates nothing more needs to be rolled back. 2870 */ 2871 rc = readJournalHdr(pPager, isHot, szJ, &nRec, &mxPg); 2872 if( rc!=SQLITE_OK ){ 2873 if( rc==SQLITE_DONE ){ 2874 rc = SQLITE_OK; 2875 } 2876 goto end_playback; 2877 } 2878 2879 /* If nRec is 0xffffffff, then this journal was created by a process 2880 ** working in no-sync mode. This means that the rest of the journal 2881 ** file consists of pages, there are no more journal headers. Compute 2882 ** the value of nRec based on this assumption. 2883 */ 2884 if( nRec==0xffffffff ){ 2885 assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ); 2886 nRec = (int)((szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager)); 2887 } 2888 2889 /* If nRec is 0 and this rollback is of a transaction created by this 2890 ** process and if this is the final header in the journal, then it means 2891 ** that this part of the journal was being filled but has not yet been 2892 ** synced to disk. Compute the number of pages based on the remaining 2893 ** size of the file. 2894 ** 2895 ** The third term of the test was added to fix ticket #2565. 2896 ** When rolling back a hot journal, nRec==0 always means that the next 2897 ** chunk of the journal contains zero pages to be rolled back. But 2898 ** when doing a ROLLBACK and the nRec==0 chunk is the last chunk in 2899 ** the journal, it means that the journal might contain additional 2900 ** pages that need to be rolled back and that the number of pages 2901 ** should be computed based on the journal file size. 2902 */ 2903 if( nRec==0 && !isHot && 2904 pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){ 2905 nRec = (int)((szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager)); 2906 } 2907 2908 /* If this is the first header read from the journal, truncate the 2909 ** database file back to its original size. 2910 */ 2911 if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){ 2912 rc = pager_truncate(pPager, mxPg); 2913 if( rc!=SQLITE_OK ){ 2914 goto end_playback; 2915 } 2916 pPager->dbSize = mxPg; 2917 } 2918 2919 /* Copy original pages out of the journal and back into the 2920 ** database file and/or page cache. 2921 */ 2922 for(u=0; u<nRec; u++){ 2923 if( needPagerReset ){ 2924 pager_reset(pPager); 2925 needPagerReset = 0; 2926 } 2927 rc = pager_playback_one_page(pPager,&pPager->journalOff,0,1,0); 2928 if( rc==SQLITE_OK ){ 2929 nPlayback++; 2930 }else{ 2931 if( rc==SQLITE_DONE ){ 2932 pPager->journalOff = szJ; 2933 break; 2934 }else if( rc==SQLITE_IOERR_SHORT_READ ){ 2935 /* If the journal has been truncated, simply stop reading and 2936 ** processing the journal. This might happen if the journal was 2937 ** not completely written and synced prior to a crash. In that 2938 ** case, the database should have never been written in the 2939 ** first place so it is OK to simply abandon the rollback. */ 2940 rc = SQLITE_OK; 2941 goto end_playback; 2942 }else{ 2943 /* If we are unable to rollback, quit and return the error 2944 ** code. This will cause the pager to enter the error state 2945 ** so that no further harm will be done. Perhaps the next 2946 ** process to come along will be able to rollback the database. 2947 */ 2948 goto end_playback; 2949 } 2950 } 2951 } 2952 } 2953 /*NOTREACHED*/ 2954 assert( 0 ); 2955 2956 end_playback: 2957 if( rc==SQLITE_OK ){ 2958 rc = sqlite3PagerSetPagesize(pPager, &savedPageSize, -1); 2959 } 2960 /* Following a rollback, the database file should be back in its original 2961 ** state prior to the start of the transaction, so invoke the 2962 ** SQLITE_FCNTL_DB_UNCHANGED file-control method to disable the 2963 ** assertion that the transaction counter was modified. 2964 */ 2965 #ifdef SQLITE_DEBUG 2966 sqlite3OsFileControlHint(pPager->fd,SQLITE_FCNTL_DB_UNCHANGED,0); 2967 #endif 2968 2969 /* If this playback is happening automatically as a result of an IO or 2970 ** malloc error that occurred after the change-counter was updated but 2971 ** before the transaction was committed, then the change-counter 2972 ** modification may just have been reverted. If this happens in exclusive 2973 ** mode, then subsequent transactions performed by the connection will not 2974 ** update the change-counter at all. This may lead to cache inconsistency 2975 ** problems for other processes at some point in the future. So, just 2976 ** in case this has happened, clear the changeCountDone flag now. 2977 */ 2978 pPager->changeCountDone = pPager->tempFile; 2979 2980 if( rc==SQLITE_OK ){ 2981 zMaster = pPager->pTmpSpace; 2982 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); 2983 testcase( rc!=SQLITE_OK ); 2984 } 2985 if( rc==SQLITE_OK 2986 && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) 2987 ){ 2988 rc = sqlite3PagerSync(pPager, 0); 2989 } 2990 if( rc==SQLITE_OK ){ 2991 rc = pager_end_transaction(pPager, zMaster[0]!='\0', 0); 2992 testcase( rc!=SQLITE_OK ); 2993 } 2994 if( rc==SQLITE_OK && zMaster[0] && res ){ 2995 /* If there was a master journal and this routine will return success, 2996 ** see if it is possible to delete the master journal. 2997 */ 2998 rc = pager_delmaster(pPager, zMaster); 2999 testcase( rc!=SQLITE_OK ); 3000 } 3001 if( isHot && nPlayback ){ 3002 sqlite3_log(SQLITE_NOTICE_RECOVER_ROLLBACK, "recovered %d pages from %s", 3003 nPlayback, pPager->zJournal); 3004 } 3005 3006 /* The Pager.sectorSize variable may have been updated while rolling 3007 ** back a journal created by a process with a different sector size 3008 ** value. Reset it to the correct value for this process. 3009 */ 3010 setSectorSize(pPager); 3011 return rc; 3012 } 3013 3014 3015 /* 3016 ** Read the content for page pPg out of the database file (or out of 3017 ** the WAL if that is where the most recent copy if found) into 3018 ** pPg->pData. A shared lock or greater must be held on the database 3019 ** file before this function is called. 3020 ** 3021 ** If page 1 is read, then the value of Pager.dbFileVers[] is set to 3022 ** the value read from the database file. 3023 ** 3024 ** If an IO error occurs, then the IO error is returned to the caller. 3025 ** Otherwise, SQLITE_OK is returned. 3026 */ 3027 static int readDbPage(PgHdr *pPg){ 3028 Pager *pPager = pPg->pPager; /* Pager object associated with page pPg */ 3029 int rc = SQLITE_OK; /* Return code */ 3030 3031 #ifndef SQLITE_OMIT_WAL 3032 u32 iFrame = 0; /* Frame of WAL containing pgno */ 3033 3034 assert( pPager->eState>=PAGER_READER && !MEMDB ); 3035 assert( isOpen(pPager->fd) ); 3036 3037 if( pagerUseWal(pPager) ){ 3038 rc = sqlite3WalFindFrame(pPager->pWal, pPg->pgno, &iFrame); 3039 if( rc ) return rc; 3040 } 3041 if( iFrame ){ 3042 rc = sqlite3WalReadFrame(pPager->pWal, iFrame,pPager->pageSize,pPg->pData); 3043 }else 3044 #endif 3045 { 3046 i64 iOffset = (pPg->pgno-1)*(i64)pPager->pageSize; 3047 rc = sqlite3OsRead(pPager->fd, pPg->pData, pPager->pageSize, iOffset); 3048 if( rc==SQLITE_IOERR_SHORT_READ ){ 3049 rc = SQLITE_OK; 3050 } 3051 } 3052 3053 if( pPg->pgno==1 ){ 3054 if( rc ){ 3055 /* If the read is unsuccessful, set the dbFileVers[] to something 3056 ** that will never be a valid file version. dbFileVers[] is a copy 3057 ** of bytes 24..39 of the database. Bytes 28..31 should always be 3058 ** zero or the size of the database in page. Bytes 32..35 and 35..39 3059 ** should be page numbers which are never 0xffffffff. So filling 3060 ** pPager->dbFileVers[] with all 0xff bytes should suffice. 3061 ** 3062 ** For an encrypted database, the situation is more complex: bytes 3063 ** 24..39 of the database are white noise. But the probability of 3064 ** white noise equaling 16 bytes of 0xff is vanishingly small so 3065 ** we should still be ok. 3066 */ 3067 memset(pPager->dbFileVers, 0xff, sizeof(pPager->dbFileVers)); 3068 }else{ 3069 u8 *dbFileVers = &((u8*)pPg->pData)[24]; 3070 memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers)); 3071 } 3072 } 3073 CODEC1(pPager, pPg->pData, pPg->pgno, 3, rc = SQLITE_NOMEM_BKPT); 3074 3075 PAGER_INCR(sqlite3_pager_readdb_count); 3076 PAGER_INCR(pPager->nRead); 3077 IOTRACE(("PGIN %p %d\n", pPager, pPg->pgno)); 3078 PAGERTRACE(("FETCH %d page %d hash(%08x)\n", 3079 PAGERID(pPager), pPg->pgno, pager_pagehash(pPg))); 3080 3081 return rc; 3082 } 3083 3084 /* 3085 ** Update the value of the change-counter at offsets 24 and 92 in 3086 ** the header and the sqlite version number at offset 96. 3087 ** 3088 ** This is an unconditional update. See also the pager_incr_changecounter() 3089 ** routine which only updates the change-counter if the update is actually 3090 ** needed, as determined by the pPager->changeCountDone state variable. 3091 */ 3092 static void pager_write_changecounter(PgHdr *pPg){ 3093 u32 change_counter; 3094 3095 /* Increment the value just read and write it back to byte 24. */ 3096 change_counter = sqlite3Get4byte((u8*)pPg->pPager->dbFileVers)+1; 3097 put32bits(((char*)pPg->pData)+24, change_counter); 3098 3099 /* Also store the SQLite version number in bytes 96..99 and in 3100 ** bytes 92..95 store the change counter for which the version number 3101 ** is valid. */ 3102 put32bits(((char*)pPg->pData)+92, change_counter); 3103 put32bits(((char*)pPg->pData)+96, SQLITE_VERSION_NUMBER); 3104 } 3105 3106 #ifndef SQLITE_OMIT_WAL 3107 /* 3108 ** This function is invoked once for each page that has already been 3109 ** written into the log file when a WAL transaction is rolled back. 3110 ** Parameter iPg is the page number of said page. The pCtx argument 3111 ** is actually a pointer to the Pager structure. 3112 ** 3113 ** If page iPg is present in the cache, and has no outstanding references, 3114 ** it is discarded. Otherwise, if there are one or more outstanding 3115 ** references, the page content is reloaded from the database. If the 3116 ** attempt to reload content from the database is required and fails, 3117 ** return an SQLite error code. Otherwise, SQLITE_OK. 3118 */ 3119 static int pagerUndoCallback(void *pCtx, Pgno iPg){ 3120 int rc = SQLITE_OK; 3121 Pager *pPager = (Pager *)pCtx; 3122 PgHdr *pPg; 3123 3124 assert( pagerUseWal(pPager) ); 3125 pPg = sqlite3PagerLookup(pPager, iPg); 3126 if( pPg ){ 3127 if( sqlite3PcachePageRefcount(pPg)==1 ){ 3128 sqlite3PcacheDrop(pPg); 3129 }else{ 3130 rc = readDbPage(pPg); 3131 if( rc==SQLITE_OK ){ 3132 pPager->xReiniter(pPg); 3133 } 3134 sqlite3PagerUnrefNotNull(pPg); 3135 } 3136 } 3137 3138 /* Normally, if a transaction is rolled back, any backup processes are 3139 ** updated as data is copied out of the rollback journal and into the 3140 ** database. This is not generally possible with a WAL database, as 3141 ** rollback involves simply truncating the log file. Therefore, if one 3142 ** or more frames have already been written to the log (and therefore 3143 ** also copied into the backup databases) as part of this transaction, 3144 ** the backups must be restarted. 3145 */ 3146 sqlite3BackupRestart(pPager->pBackup); 3147 3148 return rc; 3149 } 3150 3151 /* 3152 ** This function is called to rollback a transaction on a WAL database. 3153 */ 3154 static int pagerRollbackWal(Pager *pPager){ 3155 int rc; /* Return Code */ 3156 PgHdr *pList; /* List of dirty pages to revert */ 3157 3158 /* For all pages in the cache that are currently dirty or have already 3159 ** been written (but not committed) to the log file, do one of the 3160 ** following: 3161 ** 3162 ** + Discard the cached page (if refcount==0), or 3163 ** + Reload page content from the database (if refcount>0). 3164 */ 3165 pPager->dbSize = pPager->dbOrigSize; 3166 rc = sqlite3WalUndo(pPager->pWal, pagerUndoCallback, (void *)pPager); 3167 pList = sqlite3PcacheDirtyList(pPager->pPCache); 3168 while( pList && rc==SQLITE_OK ){ 3169 PgHdr *pNext = pList->pDirty; 3170 rc = pagerUndoCallback((void *)pPager, pList->pgno); 3171 pList = pNext; 3172 } 3173 3174 return rc; 3175 } 3176 3177 /* 3178 ** This function is a wrapper around sqlite3WalFrames(). As well as logging 3179 ** the contents of the list of pages headed by pList (connected by pDirty), 3180 ** this function notifies any active backup processes that the pages have 3181 ** changed. 3182 ** 3183 ** The list of pages passed into this routine is always sorted by page number. 3184 ** Hence, if page 1 appears anywhere on the list, it will be the first page. 3185 */ 3186 static int pagerWalFrames( 3187 Pager *pPager, /* Pager object */ 3188 PgHdr *pList, /* List of frames to log */ 3189 Pgno nTruncate, /* Database size after this commit */ 3190 int isCommit /* True if this is a commit */ 3191 ){ 3192 int rc; /* Return code */ 3193 int nList; /* Number of pages in pList */ 3194 PgHdr *p; /* For looping over pages */ 3195 3196 assert( pPager->pWal ); 3197 assert( pList ); 3198 #ifdef SQLITE_DEBUG 3199 /* Verify that the page list is in accending order */ 3200 for(p=pList; p && p->pDirty; p=p->pDirty){ 3201 assert( p->pgno < p->pDirty->pgno ); 3202 } 3203 #endif 3204 3205 assert( pList->pDirty==0 || isCommit ); 3206 if( isCommit ){ 3207 /* If a WAL transaction is being committed, there is no point in writing 3208 ** any pages with page numbers greater than nTruncate into the WAL file. 3209 ** They will never be read by any client. So remove them from the pDirty 3210 ** list here. */ 3211 PgHdr **ppNext = &pList; 3212 nList = 0; 3213 for(p=pList; (*ppNext = p)!=0; p=p->pDirty){ 3214 if( p->pgno<=nTruncate ){ 3215 ppNext = &p->pDirty; 3216 nList++; 3217 } 3218 } 3219 assert( pList ); 3220 }else{ 3221 nList = 1; 3222 } 3223 pPager->aStat[PAGER_STAT_WRITE] += nList; 3224 3225 if( pList->pgno==1 ) pager_write_changecounter(pList); 3226 rc = sqlite3WalFrames(pPager->pWal, 3227 pPager->pageSize, pList, nTruncate, isCommit, pPager->walSyncFlags 3228 ); 3229 if( rc==SQLITE_OK && pPager->pBackup ){ 3230 for(p=pList; p; p=p->pDirty){ 3231 sqlite3BackupUpdate(pPager->pBackup, p->pgno, (u8 *)p->pData); 3232 } 3233 } 3234 3235 #ifdef SQLITE_CHECK_PAGES 3236 pList = sqlite3PcacheDirtyList(pPager->pPCache); 3237 for(p=pList; p; p=p->pDirty){ 3238 pager_set_pagehash(p); 3239 } 3240 #endif 3241 3242 return rc; 3243 } 3244 3245 /* 3246 ** Begin a read transaction on the WAL. 3247 ** 3248 ** This routine used to be called "pagerOpenSnapshot()" because it essentially 3249 ** makes a snapshot of the database at the current point in time and preserves 3250 ** that snapshot for use by the reader in spite of concurrently changes by 3251 ** other writers or checkpointers. 3252 */ 3253 static int pagerBeginReadTransaction(Pager *pPager){ 3254 int rc; /* Return code */ 3255 int changed = 0; /* True if cache must be reset */ 3256 3257 assert( pagerUseWal(pPager) ); 3258 assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); 3259 3260 /* sqlite3WalEndReadTransaction() was not called for the previous 3261 ** transaction in locking_mode=EXCLUSIVE. So call it now. If we 3262 ** are in locking_mode=NORMAL and EndRead() was previously called, 3263 ** the duplicate call is harmless. 3264 */ 3265 sqlite3WalEndReadTransaction(pPager->pWal); 3266 3267 rc = sqlite3WalBeginReadTransaction(pPager->pWal, &changed); 3268 if( rc!=SQLITE_OK || changed ){ 3269 pager_reset(pPager); 3270 if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0); 3271 } 3272 3273 return rc; 3274 } 3275 #endif 3276 3277 /* 3278 ** This function is called as part of the transition from PAGER_OPEN 3279 ** to PAGER_READER state to determine the size of the database file 3280 ** in pages (assuming the page size currently stored in Pager.pageSize). 3281 ** 3282 ** If no error occurs, SQLITE_OK is returned and the size of the database 3283 ** in pages is stored in *pnPage. Otherwise, an error code (perhaps 3284 ** SQLITE_IOERR_FSTAT) is returned and *pnPage is left unmodified. 3285 */ 3286 static int pagerPagecount(Pager *pPager, Pgno *pnPage){ 3287 Pgno nPage; /* Value to return via *pnPage */ 3288 3289 /* Query the WAL sub-system for the database size. The WalDbsize() 3290 ** function returns zero if the WAL is not open (i.e. Pager.pWal==0), or 3291 ** if the database size is not available. The database size is not 3292 ** available from the WAL sub-system if the log file is empty or 3293 ** contains no valid committed transactions. 3294 */ 3295 assert( pPager->eState==PAGER_OPEN ); 3296 assert( pPager->eLock>=SHARED_LOCK ); 3297 assert( isOpen(pPager->fd) ); 3298 assert( pPager->tempFile==0 ); 3299 nPage = sqlite3WalDbsize(pPager->pWal); 3300 3301 /* If the number of pages in the database is not available from the 3302 ** WAL sub-system, determine the page count based on the size of 3303 ** the database file. If the size of the database file is not an 3304 ** integer multiple of the page-size, round up the result. 3305 */ 3306 if( nPage==0 && ALWAYS(isOpen(pPager->fd)) ){ 3307 i64 n = 0; /* Size of db file in bytes */ 3308 int rc = sqlite3OsFileSize(pPager->fd, &n); 3309 if( rc!=SQLITE_OK ){ 3310 return rc; 3311 } 3312 nPage = (Pgno)((n+pPager->pageSize-1) / pPager->pageSize); 3313 } 3314 3315 /* If the current number of pages in the file is greater than the 3316 ** configured maximum pager number, increase the allowed limit so 3317 ** that the file can be read. 3318 */ 3319 if( nPage>pPager->mxPgno ){ 3320 pPager->mxPgno = (Pgno)nPage; 3321 } 3322 3323 *pnPage = nPage; 3324 return SQLITE_OK; 3325 } 3326 3327 #ifndef SQLITE_OMIT_WAL 3328 /* 3329 ** Check if the *-wal file that corresponds to the database opened by pPager 3330 ** exists if the database is not empy, or verify that the *-wal file does 3331 ** not exist (by deleting it) if the database file is empty. 3332 ** 3333 ** If the database is not empty and the *-wal file exists, open the pager 3334 ** in WAL mode. If the database is empty or if no *-wal file exists and 3335 ** if no error occurs, make sure Pager.journalMode is not set to 3336 ** PAGER_JOURNALMODE_WAL. 3337 ** 3338 ** Return SQLITE_OK or an error code. 3339 ** 3340 ** The caller must hold a SHARED lock on the database file to call this 3341 ** function. Because an EXCLUSIVE lock on the db file is required to delete 3342 ** a WAL on a none-empty database, this ensures there is no race condition 3343 ** between the xAccess() below and an xDelete() being executed by some 3344 ** other connection. 3345 */ 3346 static int pagerOpenWalIfPresent(Pager *pPager){ 3347 int rc = SQLITE_OK; 3348 assert( pPager->eState==PAGER_OPEN ); 3349 assert( pPager->eLock>=SHARED_LOCK ); 3350 3351 if( !pPager->tempFile ){ 3352 int isWal; /* True if WAL file exists */ 3353 rc = sqlite3OsAccess( 3354 pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &isWal 3355 ); 3356 if( rc==SQLITE_OK ){ 3357 if( isWal ){ 3358 Pgno nPage; /* Size of the database file */ 3359 3360 rc = pagerPagecount(pPager, &nPage); 3361 if( rc ) return rc; 3362 if( nPage==0 ){ 3363 rc = sqlite3OsDelete(pPager->pVfs, pPager->zWal, 0); 3364 }else{ 3365 testcase( sqlite3PcachePagecount(pPager->pPCache)==0 ); 3366 rc = sqlite3PagerOpenWal(pPager, 0); 3367 } 3368 }else if( pPager->journalMode==PAGER_JOURNALMODE_WAL ){ 3369 pPager->journalMode = PAGER_JOURNALMODE_DELETE; 3370 } 3371 } 3372 } 3373 return rc; 3374 } 3375 #endif 3376 3377 /* 3378 ** Playback savepoint pSavepoint. Or, if pSavepoint==NULL, then playback 3379 ** the entire master journal file. The case pSavepoint==NULL occurs when 3380 ** a ROLLBACK TO command is invoked on a SAVEPOINT that is a transaction 3381 ** savepoint. 3382 ** 3383 ** When pSavepoint is not NULL (meaning a non-transaction savepoint is 3384 ** being rolled back), then the rollback consists of up to three stages, 3385 ** performed in the order specified: 3386 ** 3387 ** * Pages are played back from the main journal starting at byte 3388 ** offset PagerSavepoint.iOffset and continuing to 3389 ** PagerSavepoint.iHdrOffset, or to the end of the main journal 3390 ** file if PagerSavepoint.iHdrOffset is zero. 3391 ** 3392 ** * If PagerSavepoint.iHdrOffset is not zero, then pages are played 3393 ** back starting from the journal header immediately following 3394 ** PagerSavepoint.iHdrOffset to the end of the main journal file. 3395 ** 3396 ** * Pages are then played back from the sub-journal file, starting 3397 ** with the PagerSavepoint.iSubRec and continuing to the end of 3398 ** the journal file. 3399 ** 3400 ** Throughout the rollback process, each time a page is rolled back, the 3401 ** corresponding bit is set in a bitvec structure (variable pDone in the 3402 ** implementation below). This is used to ensure that a page is only 3403 ** rolled back the first time it is encountered in either journal. 3404 ** 3405 ** If pSavepoint is NULL, then pages are only played back from the main 3406 ** journal file. There is no need for a bitvec in this case. 3407 ** 3408 ** In either case, before playback commences the Pager.dbSize variable 3409 ** is reset to the value that it held at the start of the savepoint 3410 ** (or transaction). No page with a page-number greater than this value 3411 ** is played back. If one is encountered it is simply skipped. 3412 */ 3413 static int pagerPlaybackSavepoint(Pager *pPager, PagerSavepoint *pSavepoint){ 3414 i64 szJ; /* Effective size of the main journal */ 3415 i64 iHdrOff; /* End of first segment of main-journal records */ 3416 int rc = SQLITE_OK; /* Return code */ 3417 Bitvec *pDone = 0; /* Bitvec to ensure pages played back only once */ 3418 3419 assert( pPager->eState!=PAGER_ERROR ); 3420 assert( pPager->eState>=PAGER_WRITER_LOCKED ); 3421 3422 /* Allocate a bitvec to use to store the set of pages rolled back */ 3423 if( pSavepoint ){ 3424 pDone = sqlite3BitvecCreate(pSavepoint->nOrig); 3425 if( !pDone ){ 3426 return SQLITE_NOMEM_BKPT; 3427 } 3428 } 3429 3430 /* Set the database size back to the value it was before the savepoint 3431 ** being reverted was opened. 3432 */ 3433 pPager->dbSize = pSavepoint ? pSavepoint->nOrig : pPager->dbOrigSize; 3434 pPager->changeCountDone = pPager->tempFile; 3435 3436 if( !pSavepoint && pagerUseWal(pPager) ){ 3437 return pagerRollbackWal(pPager); 3438 } 3439 3440 /* Use pPager->journalOff as the effective size of the main rollback 3441 ** journal. The actual file might be larger than this in 3442 ** PAGER_JOURNALMODE_TRUNCATE or PAGER_JOURNALMODE_PERSIST. But anything 3443 ** past pPager->journalOff is off-limits to us. 3444 */ 3445 szJ = pPager->journalOff; 3446 assert( pagerUseWal(pPager)==0 || szJ==0 ); 3447 3448 /* Begin by rolling back records from the main journal starting at 3449 ** PagerSavepoint.iOffset and continuing to the next journal header. 3450 ** There might be records in the main journal that have a page number 3451 ** greater than the current database size (pPager->dbSize) but those 3452 ** will be skipped automatically. Pages are added to pDone as they 3453 ** are played back. 3454 */ 3455 if( pSavepoint && !pagerUseWal(pPager) ){ 3456 iHdrOff = pSavepoint->iHdrOffset ? pSavepoint->iHdrOffset : szJ; 3457 pPager->journalOff = pSavepoint->iOffset; 3458 while( rc==SQLITE_OK && pPager->journalOff<iHdrOff ){ 3459 rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1); 3460 } 3461 assert( rc!=SQLITE_DONE ); 3462 }else{ 3463 pPager->journalOff = 0; 3464 } 3465 3466 /* Continue rolling back records out of the main journal starting at 3467 ** the first journal header seen and continuing until the effective end 3468 ** of the main journal file. Continue to skip out-of-range pages and 3469 ** continue adding pages rolled back to pDone. 3470 */ 3471 while( rc==SQLITE_OK && pPager->journalOff<szJ ){ 3472 u32 ii; /* Loop counter */ 3473 u32 nJRec = 0; /* Number of Journal Records */ 3474 u32 dummy; 3475 rc = readJournalHdr(pPager, 0, szJ, &nJRec, &dummy); 3476 assert( rc!=SQLITE_DONE ); 3477 3478 /* 3479 ** The "pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff" 3480 ** test is related to ticket #2565. See the discussion in the 3481 ** pager_playback() function for additional information. 3482 */ 3483 if( nJRec==0 3484 && pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff 3485 ){ 3486 nJRec = (u32)((szJ - pPager->journalOff)/JOURNAL_PG_SZ(pPager)); 3487 } 3488 for(ii=0; rc==SQLITE_OK && ii<nJRec && pPager->journalOff<szJ; ii++){ 3489 rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1); 3490 } 3491 assert( rc!=SQLITE_DONE ); 3492 } 3493 assert( rc!=SQLITE_OK || pPager->journalOff>=szJ ); 3494 3495 /* Finally, rollback pages from the sub-journal. Page that were 3496 ** previously rolled back out of the main journal (and are hence in pDone) 3497 ** will be skipped. Out-of-range pages are also skipped. 3498 */ 3499 if( pSavepoint ){ 3500 u32 ii; /* Loop counter */ 3501 i64 offset = (i64)pSavepoint->iSubRec*(4+pPager->pageSize); 3502 3503 if( pagerUseWal(pPager) ){ 3504 rc = sqlite3WalSavepointUndo(pPager->pWal, pSavepoint->aWalData); 3505 } 3506 for(ii=pSavepoint->iSubRec; rc==SQLITE_OK && ii<pPager->nSubRec; ii++){ 3507 assert( offset==(i64)ii*(4+pPager->pageSize) ); 3508 rc = pager_playback_one_page(pPager, &offset, pDone, 0, 1); 3509 } 3510 assert( rc!=SQLITE_DONE ); 3511 } 3512 3513 sqlite3BitvecDestroy(pDone); 3514 if( rc==SQLITE_OK ){ 3515 pPager->journalOff = szJ; 3516 } 3517 3518 return rc; 3519 } 3520 3521 /* 3522 ** Change the maximum number of in-memory pages that are allowed 3523 ** before attempting to recycle clean and unused pages. 3524 */ 3525 void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){ 3526 sqlite3PcacheSetCachesize(pPager->pPCache, mxPage); 3527 } 3528 3529 /* 3530 ** Change the maximum number of in-memory pages that are allowed 3531 ** before attempting to spill pages to journal. 3532 */ 3533 int sqlite3PagerSetSpillsize(Pager *pPager, int mxPage){ 3534 return sqlite3PcacheSetSpillsize(pPager->pPCache, mxPage); 3535 } 3536 3537 /* 3538 ** Invoke SQLITE_FCNTL_MMAP_SIZE based on the current value of szMmap. 3539 */ 3540 static void pagerFixMaplimit(Pager *pPager){ 3541 #if SQLITE_MAX_MMAP_SIZE>0 3542 sqlite3_file *fd = pPager->fd; 3543 if( isOpen(fd) && fd->pMethods->iVersion>=3 ){ 3544 sqlite3_int64 sz; 3545 sz = pPager->szMmap; 3546 pPager->bUseFetch = (sz>0); 3547 setGetterMethod(pPager); 3548 sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_MMAP_SIZE, &sz); 3549 } 3550 #endif 3551 } 3552 3553 /* 3554 ** Change the maximum size of any memory mapping made of the database file. 3555 */ 3556 void sqlite3PagerSetMmapLimit(Pager *pPager, sqlite3_int64 szMmap){ 3557 pPager->szMmap = szMmap; 3558 pagerFixMaplimit(pPager); 3559 } 3560 3561 /* 3562 ** Free as much memory as possible from the pager. 3563 */ 3564 void sqlite3PagerShrink(Pager *pPager){ 3565 sqlite3PcacheShrink(pPager->pPCache); 3566 } 3567 3568 /* 3569 ** Adjust settings of the pager to those specified in the pgFlags parameter. 3570 ** 3571 ** The "level" in pgFlags & PAGER_SYNCHRONOUS_MASK sets the robustness 3572 ** of the database to damage due to OS crashes or power failures by 3573 ** changing the number of syncs()s when writing the journals. 3574 ** There are four levels: 3575 ** 3576 ** OFF sqlite3OsSync() is never called. This is the default 3577 ** for temporary and transient files. 3578 ** 3579 ** NORMAL The journal is synced once before writes begin on the 3580 ** database. This is normally adequate protection, but 3581 ** it is theoretically possible, though very unlikely, 3582 ** that an inopertune power failure could leave the journal 3583 ** in a state which would cause damage to the database 3584 ** when it is rolled back. 3585 ** 3586 ** FULL The journal is synced twice before writes begin on the 3587 ** database (with some additional information - the nRec field 3588 ** of the journal header - being written in between the two 3589 ** syncs). If we assume that writing a 3590 ** single disk sector is atomic, then this mode provides 3591 ** assurance that the journal will not be corrupted to the 3592 ** point of causing damage to the database during rollback. 3593 ** 3594 ** EXTRA This is like FULL except that is also syncs the directory 3595 ** that contains the rollback journal after the rollback 3596 ** journal is unlinked. 3597 ** 3598 ** The above is for a rollback-journal mode. For WAL mode, OFF continues 3599 ** to mean that no syncs ever occur. NORMAL means that the WAL is synced 3600 ** prior to the start of checkpoint and that the database file is synced 3601 ** at the conclusion of the checkpoint if the entire content of the WAL 3602 ** was written back into the database. But no sync operations occur for 3603 ** an ordinary commit in NORMAL mode with WAL. FULL means that the WAL 3604 ** file is synced following each commit operation, in addition to the 3605 ** syncs associated with NORMAL. There is no difference between FULL 3606 ** and EXTRA for WAL mode. 3607 ** 3608 ** Do not confuse synchronous=FULL with SQLITE_SYNC_FULL. The 3609 ** SQLITE_SYNC_FULL macro means to use the MacOSX-style full-fsync 3610 ** using fcntl(F_FULLFSYNC). SQLITE_SYNC_NORMAL means to do an 3611 ** ordinary fsync() call. There is no difference between SQLITE_SYNC_FULL 3612 ** and SQLITE_SYNC_NORMAL on platforms other than MacOSX. But the 3613 ** synchronous=FULL versus synchronous=NORMAL setting determines when 3614 ** the xSync primitive is called and is relevant to all platforms. 3615 ** 3616 ** Numeric values associated with these states are OFF==1, NORMAL=2, 3617 ** and FULL=3. 3618 */ 3619 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 3620 void sqlite3PagerSetFlags( 3621 Pager *pPager, /* The pager to set safety level for */ 3622 unsigned pgFlags /* Various flags */ 3623 ){ 3624 unsigned level = pgFlags & PAGER_SYNCHRONOUS_MASK; 3625 if( pPager->tempFile ){ 3626 pPager->noSync = 1; 3627 pPager->fullSync = 0; 3628 pPager->extraSync = 0; 3629 }else{ 3630 pPager->noSync = level==PAGER_SYNCHRONOUS_OFF ?1:0; 3631 pPager->fullSync = level>=PAGER_SYNCHRONOUS_FULL ?1:0; 3632 pPager->extraSync = level==PAGER_SYNCHRONOUS_EXTRA ?1:0; 3633 } 3634 if( pPager->noSync ){ 3635 pPager->syncFlags = 0; 3636 }else if( pgFlags & PAGER_FULLFSYNC ){ 3637 pPager->syncFlags = SQLITE_SYNC_FULL; 3638 }else{ 3639 pPager->syncFlags = SQLITE_SYNC_NORMAL; 3640 } 3641 pPager->walSyncFlags = (pPager->syncFlags<<2); 3642 if( pPager->fullSync ){ 3643 pPager->walSyncFlags |= pPager->syncFlags; 3644 } 3645 if( (pgFlags & PAGER_CKPT_FULLFSYNC) && !pPager->noSync ){ 3646 pPager->walSyncFlags |= (SQLITE_SYNC_FULL<<2); 3647 } 3648 if( pgFlags & PAGER_CACHESPILL ){ 3649 pPager->doNotSpill &= ~SPILLFLAG_OFF; 3650 }else{ 3651 pPager->doNotSpill |= SPILLFLAG_OFF; 3652 } 3653 } 3654 #endif 3655 3656 /* 3657 ** The following global variable is incremented whenever the library 3658 ** attempts to open a temporary file. This information is used for 3659 ** testing and analysis only. 3660 */ 3661 #ifdef SQLITE_TEST 3662 int sqlite3_opentemp_count = 0; 3663 #endif 3664 3665 /* 3666 ** Open a temporary file. 3667 ** 3668 ** Write the file descriptor into *pFile. Return SQLITE_OK on success 3669 ** or some other error code if we fail. The OS will automatically 3670 ** delete the temporary file when it is closed. 3671 ** 3672 ** The flags passed to the VFS layer xOpen() call are those specified 3673 ** by parameter vfsFlags ORed with the following: 3674 ** 3675 ** SQLITE_OPEN_READWRITE 3676 ** SQLITE_OPEN_CREATE 3677 ** SQLITE_OPEN_EXCLUSIVE 3678 ** SQLITE_OPEN_DELETEONCLOSE 3679 */ 3680 static int pagerOpentemp( 3681 Pager *pPager, /* The pager object */ 3682 sqlite3_file *pFile, /* Write the file descriptor here */ 3683 int vfsFlags /* Flags passed through to the VFS */ 3684 ){ 3685 int rc; /* Return code */ 3686 3687 #ifdef SQLITE_TEST 3688 sqlite3_opentemp_count++; /* Used for testing and analysis only */ 3689 #endif 3690 3691 vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | 3692 SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE; 3693 rc = sqlite3OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0); 3694 assert( rc!=SQLITE_OK || isOpen(pFile) ); 3695 return rc; 3696 } 3697 3698 /* 3699 ** Set the busy handler function. 3700 ** 3701 ** The pager invokes the busy-handler if sqlite3OsLock() returns 3702 ** SQLITE_BUSY when trying to upgrade from no-lock to a SHARED lock, 3703 ** or when trying to upgrade from a RESERVED lock to an EXCLUSIVE 3704 ** lock. It does *not* invoke the busy handler when upgrading from 3705 ** SHARED to RESERVED, or when upgrading from SHARED to EXCLUSIVE 3706 ** (which occurs during hot-journal rollback). Summary: 3707 ** 3708 ** Transition | Invokes xBusyHandler 3709 ** -------------------------------------------------------- 3710 ** NO_LOCK -> SHARED_LOCK | Yes 3711 ** SHARED_LOCK -> RESERVED_LOCK | No 3712 ** SHARED_LOCK -> EXCLUSIVE_LOCK | No 3713 ** RESERVED_LOCK -> EXCLUSIVE_LOCK | Yes 3714 ** 3715 ** If the busy-handler callback returns non-zero, the lock is 3716 ** retried. If it returns zero, then the SQLITE_BUSY error is 3717 ** returned to the caller of the pager API function. 3718 */ 3719 void sqlite3PagerSetBusyHandler( 3720 Pager *pPager, /* Pager object */ 3721 int (*xBusyHandler)(void *), /* Pointer to busy-handler function */ 3722 void *pBusyHandlerArg /* Argument to pass to xBusyHandler */ 3723 ){ 3724 void **ap; 3725 pPager->xBusyHandler = xBusyHandler; 3726 pPager->pBusyHandlerArg = pBusyHandlerArg; 3727 ap = (void **)&pPager->xBusyHandler; 3728 assert( ((int(*)(void *))(ap[0]))==xBusyHandler ); 3729 assert( ap[1]==pBusyHandlerArg ); 3730 sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_BUSYHANDLER, (void *)ap); 3731 } 3732 3733 /* 3734 ** Change the page size used by the Pager object. The new page size 3735 ** is passed in *pPageSize. 3736 ** 3737 ** If the pager is in the error state when this function is called, it 3738 ** is a no-op. The value returned is the error state error code (i.e. 3739 ** one of SQLITE_IOERR, an SQLITE_IOERR_xxx sub-code or SQLITE_FULL). 3740 ** 3741 ** Otherwise, if all of the following are true: 3742 ** 3743 ** * the new page size (value of *pPageSize) is valid (a power 3744 ** of two between 512 and SQLITE_MAX_PAGE_SIZE, inclusive), and 3745 ** 3746 ** * there are no outstanding page references, and 3747 ** 3748 ** * the database is either not an in-memory database or it is 3749 ** an in-memory database that currently consists of zero pages. 3750 ** 3751 ** then the pager object page size is set to *pPageSize. 3752 ** 3753 ** If the page size is changed, then this function uses sqlite3PagerMalloc() 3754 ** to obtain a new Pager.pTmpSpace buffer. If this allocation attempt 3755 ** fails, SQLITE_NOMEM is returned and the page size remains unchanged. 3756 ** In all other cases, SQLITE_OK is returned. 3757 ** 3758 ** If the page size is not changed, either because one of the enumerated 3759 ** conditions above is not true, the pager was in error state when this 3760 ** function was called, or because the memory allocation attempt failed, 3761 ** then *pPageSize is set to the old, retained page size before returning. 3762 */ 3763 int sqlite3PagerSetPagesize(Pager *pPager, u32 *pPageSize, int nReserve){ 3764 int rc = SQLITE_OK; 3765 3766 /* It is not possible to do a full assert_pager_state() here, as this 3767 ** function may be called from within PagerOpen(), before the state 3768 ** of the Pager object is internally consistent. 3769 ** 3770 ** At one point this function returned an error if the pager was in 3771 ** PAGER_ERROR state. But since PAGER_ERROR state guarantees that 3772 ** there is at least one outstanding page reference, this function 3773 ** is a no-op for that case anyhow. 3774 */ 3775 3776 u32 pageSize = *pPageSize; 3777 assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) ); 3778 if( (pPager->memDb==0 || pPager->dbSize==0) 3779 && sqlite3PcacheRefCount(pPager->pPCache)==0 3780 && pageSize && pageSize!=(u32)pPager->pageSize 3781 ){ 3782 char *pNew = NULL; /* New temp space */ 3783 i64 nByte = 0; 3784 3785 if( pPager->eState>PAGER_OPEN && isOpen(pPager->fd) ){ 3786 rc = sqlite3OsFileSize(pPager->fd, &nByte); 3787 } 3788 if( rc==SQLITE_OK ){ 3789 pNew = (char *)sqlite3PageMalloc(pageSize); 3790 if( !pNew ) rc = SQLITE_NOMEM_BKPT; 3791 } 3792 3793 if( rc==SQLITE_OK ){ 3794 pager_reset(pPager); 3795 rc = sqlite3PcacheSetPageSize(pPager->pPCache, pageSize); 3796 } 3797 if( rc==SQLITE_OK ){ 3798 sqlite3PageFree(pPager->pTmpSpace); 3799 pPager->pTmpSpace = pNew; 3800 pPager->dbSize = (Pgno)((nByte+pageSize-1)/pageSize); 3801 pPager->pageSize = pageSize; 3802 }else{ 3803 sqlite3PageFree(pNew); 3804 } 3805 } 3806 3807 *pPageSize = pPager->pageSize; 3808 if( rc==SQLITE_OK ){ 3809 if( nReserve<0 ) nReserve = pPager->nReserve; 3810 assert( nReserve>=0 && nReserve<1000 ); 3811 pPager->nReserve = (i16)nReserve; 3812 pagerReportSize(pPager); 3813 pagerFixMaplimit(pPager); 3814 } 3815 return rc; 3816 } 3817 3818 /* 3819 ** Return a pointer to the "temporary page" buffer held internally 3820 ** by the pager. This is a buffer that is big enough to hold the 3821 ** entire content of a database page. This buffer is used internally 3822 ** during rollback and will be overwritten whenever a rollback 3823 ** occurs. But other modules are free to use it too, as long as 3824 ** no rollbacks are happening. 3825 */ 3826 void *sqlite3PagerTempSpace(Pager *pPager){ 3827 return pPager->pTmpSpace; 3828 } 3829 3830 /* 3831 ** Attempt to set the maximum database page count if mxPage is positive. 3832 ** Make no changes if mxPage is zero or negative. And never reduce the 3833 ** maximum page count below the current size of the database. 3834 ** 3835 ** Regardless of mxPage, return the current maximum page count. 3836 */ 3837 int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){ 3838 if( mxPage>0 ){ 3839 pPager->mxPgno = mxPage; 3840 } 3841 assert( pPager->eState!=PAGER_OPEN ); /* Called only by OP_MaxPgcnt */ 3842 assert( pPager->mxPgno>=pPager->dbSize ); /* OP_MaxPgcnt enforces this */ 3843 return pPager->mxPgno; 3844 } 3845 3846 /* 3847 ** The following set of routines are used to disable the simulated 3848 ** I/O error mechanism. These routines are used to avoid simulated 3849 ** errors in places where we do not care about errors. 3850 ** 3851 ** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops 3852 ** and generate no code. 3853 */ 3854 #ifdef SQLITE_TEST 3855 extern int sqlite3_io_error_pending; 3856 extern int sqlite3_io_error_hit; 3857 static int saved_cnt; 3858 void disable_simulated_io_errors(void){ 3859 saved_cnt = sqlite3_io_error_pending; 3860 sqlite3_io_error_pending = -1; 3861 } 3862 void enable_simulated_io_errors(void){ 3863 sqlite3_io_error_pending = saved_cnt; 3864 } 3865 #else 3866 # define disable_simulated_io_errors() 3867 # define enable_simulated_io_errors() 3868 #endif 3869 3870 /* 3871 ** Read the first N bytes from the beginning of the file into memory 3872 ** that pDest points to. 3873 ** 3874 ** If the pager was opened on a transient file (zFilename==""), or 3875 ** opened on a file less than N bytes in size, the output buffer is 3876 ** zeroed and SQLITE_OK returned. The rationale for this is that this 3877 ** function is used to read database headers, and a new transient or 3878 ** zero sized database has a header than consists entirely of zeroes. 3879 ** 3880 ** If any IO error apart from SQLITE_IOERR_SHORT_READ is encountered, 3881 ** the error code is returned to the caller and the contents of the 3882 ** output buffer undefined. 3883 */ 3884 int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){ 3885 int rc = SQLITE_OK; 3886 memset(pDest, 0, N); 3887 assert( isOpen(pPager->fd) || pPager->tempFile ); 3888 3889 /* This routine is only called by btree immediately after creating 3890 ** the Pager object. There has not been an opportunity to transition 3891 ** to WAL mode yet. 3892 */ 3893 assert( !pagerUseWal(pPager) ); 3894 3895 if( isOpen(pPager->fd) ){ 3896 IOTRACE(("DBHDR %p 0 %d\n", pPager, N)) 3897 rc = sqlite3OsRead(pPager->fd, pDest, N, 0); 3898 if( rc==SQLITE_IOERR_SHORT_READ ){ 3899 rc = SQLITE_OK; 3900 } 3901 } 3902 return rc; 3903 } 3904 3905 /* 3906 ** This function may only be called when a read-transaction is open on 3907 ** the pager. It returns the total number of pages in the database. 3908 ** 3909 ** However, if the file is between 1 and <page-size> bytes in size, then 3910 ** this is considered a 1 page file. 3911 */ 3912 void sqlite3PagerPagecount(Pager *pPager, int *pnPage){ 3913 assert( pPager->eState>=PAGER_READER ); 3914 assert( pPager->eState!=PAGER_WRITER_FINISHED ); 3915 *pnPage = (int)pPager->dbSize; 3916 } 3917 3918 3919 /* 3920 ** Try to obtain a lock of type locktype on the database file. If 3921 ** a similar or greater lock is already held, this function is a no-op 3922 ** (returning SQLITE_OK immediately). 3923 ** 3924 ** Otherwise, attempt to obtain the lock using sqlite3OsLock(). Invoke 3925 ** the busy callback if the lock is currently not available. Repeat 3926 ** until the busy callback returns false or until the attempt to 3927 ** obtain the lock succeeds. 3928 ** 3929 ** Return SQLITE_OK on success and an error code if we cannot obtain 3930 ** the lock. If the lock is obtained successfully, set the Pager.state 3931 ** variable to locktype before returning. 3932 */ 3933 static int pager_wait_on_lock(Pager *pPager, int locktype){ 3934 int rc; /* Return code */ 3935 3936 /* Check that this is either a no-op (because the requested lock is 3937 ** already held), or one of the transitions that the busy-handler 3938 ** may be invoked during, according to the comment above 3939 ** sqlite3PagerSetBusyhandler(). 3940 */ 3941 assert( (pPager->eLock>=locktype) 3942 || (pPager->eLock==NO_LOCK && locktype==SHARED_LOCK) 3943 || (pPager->eLock==RESERVED_LOCK && locktype==EXCLUSIVE_LOCK) 3944 ); 3945 3946 do { 3947 rc = pagerLockDb(pPager, locktype); 3948 }while( rc==SQLITE_BUSY && pPager->xBusyHandler(pPager->pBusyHandlerArg) ); 3949 return rc; 3950 } 3951 3952 /* 3953 ** Function assertTruncateConstraint(pPager) checks that one of the 3954 ** following is true for all dirty pages currently in the page-cache: 3955 ** 3956 ** a) The page number is less than or equal to the size of the 3957 ** current database image, in pages, OR 3958 ** 3959 ** b) if the page content were written at this time, it would not 3960 ** be necessary to write the current content out to the sub-journal 3961 ** (as determined by function subjRequiresPage()). 3962 ** 3963 ** If the condition asserted by this function were not true, and the 3964 ** dirty page were to be discarded from the cache via the pagerStress() 3965 ** routine, pagerStress() would not write the current page content to 3966 ** the database file. If a savepoint transaction were rolled back after 3967 ** this happened, the correct behavior would be to restore the current 3968 ** content of the page. However, since this content is not present in either 3969 ** the database file or the portion of the rollback journal and 3970 ** sub-journal rolled back the content could not be restored and the 3971 ** database image would become corrupt. It is therefore fortunate that 3972 ** this circumstance cannot arise. 3973 */ 3974 #if defined(SQLITE_DEBUG) 3975 static void assertTruncateConstraintCb(PgHdr *pPg){ 3976 assert( pPg->flags&PGHDR_DIRTY ); 3977 assert( !subjRequiresPage(pPg) || pPg->pgno<=pPg->pPager->dbSize ); 3978 } 3979 static void assertTruncateConstraint(Pager *pPager){ 3980 sqlite3PcacheIterateDirty(pPager->pPCache, assertTruncateConstraintCb); 3981 } 3982 #else 3983 # define assertTruncateConstraint(pPager) 3984 #endif 3985 3986 /* 3987 ** Truncate the in-memory database file image to nPage pages. This 3988 ** function does not actually modify the database file on disk. It 3989 ** just sets the internal state of the pager object so that the 3990 ** truncation will be done when the current transaction is committed. 3991 ** 3992 ** This function is only called right before committing a transaction. 3993 ** Once this function has been called, the transaction must either be 3994 ** rolled back or committed. It is not safe to call this function and 3995 ** then continue writing to the database. 3996 */ 3997 void sqlite3PagerTruncateImage(Pager *pPager, Pgno nPage){ 3998 assert( pPager->dbSize>=nPage ); 3999 assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); 4000 pPager->dbSize = nPage; 4001 4002 /* At one point the code here called assertTruncateConstraint() to 4003 ** ensure that all pages being truncated away by this operation are, 4004 ** if one or more savepoints are open, present in the savepoint 4005 ** journal so that they can be restored if the savepoint is rolled 4006 ** back. This is no longer necessary as this function is now only 4007 ** called right before committing a transaction. So although the 4008 ** Pager object may still have open savepoints (Pager.nSavepoint!=0), 4009 ** they cannot be rolled back. So the assertTruncateConstraint() call 4010 ** is no longer correct. */ 4011 } 4012 4013 4014 /* 4015 ** This function is called before attempting a hot-journal rollback. It 4016 ** syncs the journal file to disk, then sets pPager->journalHdr to the 4017 ** size of the journal file so that the pager_playback() routine knows 4018 ** that the entire journal file has been synced. 4019 ** 4020 ** Syncing a hot-journal to disk before attempting to roll it back ensures 4021 ** that if a power-failure occurs during the rollback, the process that 4022 ** attempts rollback following system recovery sees the same journal 4023 ** content as this process. 4024 ** 4025 ** If everything goes as planned, SQLITE_OK is returned. Otherwise, 4026 ** an SQLite error code. 4027 */ 4028 static int pagerSyncHotJournal(Pager *pPager){ 4029 int rc = SQLITE_OK; 4030 if( !pPager->noSync ){ 4031 rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_NORMAL); 4032 } 4033 if( rc==SQLITE_OK ){ 4034 rc = sqlite3OsFileSize(pPager->jfd, &pPager->journalHdr); 4035 } 4036 return rc; 4037 } 4038 4039 #if SQLITE_MAX_MMAP_SIZE>0 4040 /* 4041 ** Obtain a reference to a memory mapped page object for page number pgno. 4042 ** The new object will use the pointer pData, obtained from xFetch(). 4043 ** If successful, set *ppPage to point to the new page reference 4044 ** and return SQLITE_OK. Otherwise, return an SQLite error code and set 4045 ** *ppPage to zero. 4046 ** 4047 ** Page references obtained by calling this function should be released 4048 ** by calling pagerReleaseMapPage(). 4049 */ 4050 static int pagerAcquireMapPage( 4051 Pager *pPager, /* Pager object */ 4052 Pgno pgno, /* Page number */ 4053 void *pData, /* xFetch()'d data for this page */ 4054 PgHdr **ppPage /* OUT: Acquired page object */ 4055 ){ 4056 PgHdr *p; /* Memory mapped page to return */ 4057 4058 if( pPager->pMmapFreelist ){ 4059 *ppPage = p = pPager->pMmapFreelist; 4060 pPager->pMmapFreelist = p->pDirty; 4061 p->pDirty = 0; 4062 assert( pPager->nExtra>=8 ); 4063 memset(p->pExtra, 0, 8); 4064 }else{ 4065 *ppPage = p = (PgHdr *)sqlite3MallocZero(sizeof(PgHdr) + pPager->nExtra); 4066 if( p==0 ){ 4067 sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1) * pPager->pageSize, pData); 4068 return SQLITE_NOMEM_BKPT; 4069 } 4070 p->pExtra = (void *)&p[1]; 4071 p->flags = PGHDR_MMAP; 4072 p->nRef = 1; 4073 p->pPager = pPager; 4074 } 4075 4076 assert( p->pExtra==(void *)&p[1] ); 4077 assert( p->pPage==0 ); 4078 assert( p->flags==PGHDR_MMAP ); 4079 assert( p->pPager==pPager ); 4080 assert( p->nRef==1 ); 4081 4082 p->pgno = pgno; 4083 p->pData = pData; 4084 pPager->nMmapOut++; 4085 4086 return SQLITE_OK; 4087 } 4088 #endif 4089 4090 /* 4091 ** Release a reference to page pPg. pPg must have been returned by an 4092 ** earlier call to pagerAcquireMapPage(). 4093 */ 4094 static void pagerReleaseMapPage(PgHdr *pPg){ 4095 Pager *pPager = pPg->pPager; 4096 pPager->nMmapOut--; 4097 pPg->pDirty = pPager->pMmapFreelist; 4098 pPager->pMmapFreelist = pPg; 4099 4100 assert( pPager->fd->pMethods->iVersion>=3 ); 4101 sqlite3OsUnfetch(pPager->fd, (i64)(pPg->pgno-1)*pPager->pageSize, pPg->pData); 4102 } 4103 4104 /* 4105 ** Free all PgHdr objects stored in the Pager.pMmapFreelist list. 4106 */ 4107 static void pagerFreeMapHdrs(Pager *pPager){ 4108 PgHdr *p; 4109 PgHdr *pNext; 4110 for(p=pPager->pMmapFreelist; p; p=pNext){ 4111 pNext = p->pDirty; 4112 sqlite3_free(p); 4113 } 4114 } 4115 4116 /* Verify that the database file has not be deleted or renamed out from 4117 ** under the pager. Return SQLITE_OK if the database is still where it ought 4118 ** to be on disk. Return non-zero (SQLITE_READONLY_DBMOVED or some other error 4119 ** code from sqlite3OsAccess()) if the database has gone missing. 4120 */ 4121 static int databaseIsUnmoved(Pager *pPager){ 4122 int bHasMoved = 0; 4123 int rc; 4124 4125 if( pPager->tempFile ) return SQLITE_OK; 4126 if( pPager->dbSize==0 ) return SQLITE_OK; 4127 assert( pPager->zFilename && pPager->zFilename[0] ); 4128 rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_HAS_MOVED, &bHasMoved); 4129 if( rc==SQLITE_NOTFOUND ){ 4130 /* If the HAS_MOVED file-control is unimplemented, assume that the file 4131 ** has not been moved. That is the historical behavior of SQLite: prior to 4132 ** version 3.8.3, it never checked */ 4133 rc = SQLITE_OK; 4134 }else if( rc==SQLITE_OK && bHasMoved ){ 4135 rc = SQLITE_READONLY_DBMOVED; 4136 } 4137 return rc; 4138 } 4139 4140 4141 /* 4142 ** Shutdown the page cache. Free all memory and close all files. 4143 ** 4144 ** If a transaction was in progress when this routine is called, that 4145 ** transaction is rolled back. All outstanding pages are invalidated 4146 ** and their memory is freed. Any attempt to use a page associated 4147 ** with this page cache after this function returns will likely 4148 ** result in a coredump. 4149 ** 4150 ** This function always succeeds. If a transaction is active an attempt 4151 ** is made to roll it back. If an error occurs during the rollback 4152 ** a hot journal may be left in the filesystem but no error is returned 4153 ** to the caller. 4154 */ 4155 int sqlite3PagerClose(Pager *pPager, sqlite3 *db){ 4156 u8 *pTmp = (u8*)pPager->pTmpSpace; 4157 assert( db || pagerUseWal(pPager)==0 ); 4158 assert( assert_pager_state(pPager) ); 4159 disable_simulated_io_errors(); 4160 sqlite3BeginBenignMalloc(); 4161 pagerFreeMapHdrs(pPager); 4162 /* pPager->errCode = 0; */ 4163 pPager->exclusiveMode = 0; 4164 #ifndef SQLITE_OMIT_WAL 4165 { 4166 u8 *a = 0; 4167 assert( db || pPager->pWal==0 ); 4168 if( db && 0==(db->flags & SQLITE_NoCkptOnClose) 4169 && SQLITE_OK==databaseIsUnmoved(pPager) 4170 ){ 4171 a = pTmp; 4172 } 4173 sqlite3WalClose(pPager->pWal, db, pPager->walSyncFlags, pPager->pageSize,a); 4174 pPager->pWal = 0; 4175 } 4176 #endif 4177 pager_reset(pPager); 4178 if( MEMDB ){ 4179 pager_unlock(pPager); 4180 }else{ 4181 /* If it is open, sync the journal file before calling UnlockAndRollback. 4182 ** If this is not done, then an unsynced portion of the open journal 4183 ** file may be played back into the database. If a power failure occurs 4184 ** while this is happening, the database could become corrupt. 4185 ** 4186 ** If an error occurs while trying to sync the journal, shift the pager 4187 ** into the ERROR state. This causes UnlockAndRollback to unlock the 4188 ** database and close the journal file without attempting to roll it 4189 ** back or finalize it. The next database user will have to do hot-journal 4190 ** rollback before accessing the database file. 4191 */ 4192 if( isOpen(pPager->jfd) ){ 4193 pager_error(pPager, pagerSyncHotJournal(pPager)); 4194 } 4195 pagerUnlockAndRollback(pPager); 4196 } 4197 sqlite3EndBenignMalloc(); 4198 enable_simulated_io_errors(); 4199 PAGERTRACE(("CLOSE %d\n", PAGERID(pPager))); 4200 IOTRACE(("CLOSE %p\n", pPager)) 4201 sqlite3OsClose(pPager->jfd); 4202 sqlite3OsClose(pPager->fd); 4203 sqlite3PageFree(pTmp); 4204 sqlite3PcacheClose(pPager->pPCache); 4205 4206 #ifdef SQLITE_HAS_CODEC 4207 if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec); 4208 #endif 4209 4210 assert( !pPager->aSavepoint && !pPager->pInJournal ); 4211 assert( !isOpen(pPager->jfd) && !isOpen(pPager->sjfd) ); 4212 4213 sqlite3_free(pPager); 4214 return SQLITE_OK; 4215 } 4216 4217 #if !defined(NDEBUG) || defined(SQLITE_TEST) 4218 /* 4219 ** Return the page number for page pPg. 4220 */ 4221 Pgno sqlite3PagerPagenumber(DbPage *pPg){ 4222 return pPg->pgno; 4223 } 4224 #endif 4225 4226 /* 4227 ** Increment the reference count for page pPg. 4228 */ 4229 void sqlite3PagerRef(DbPage *pPg){ 4230 sqlite3PcacheRef(pPg); 4231 } 4232 4233 /* 4234 ** Sync the journal. In other words, make sure all the pages that have 4235 ** been written to the journal have actually reached the surface of the 4236 ** disk and can be restored in the event of a hot-journal rollback. 4237 ** 4238 ** If the Pager.noSync flag is set, then this function is a no-op. 4239 ** Otherwise, the actions required depend on the journal-mode and the 4240 ** device characteristics of the file-system, as follows: 4241 ** 4242 ** * If the journal file is an in-memory journal file, no action need 4243 ** be taken. 4244 ** 4245 ** * Otherwise, if the device does not support the SAFE_APPEND property, 4246 ** then the nRec field of the most recently written journal header 4247 ** is updated to contain the number of journal records that have 4248 ** been written following it. If the pager is operating in full-sync 4249 ** mode, then the journal file is synced before this field is updated. 4250 ** 4251 ** * If the device does not support the SEQUENTIAL property, then 4252 ** journal file is synced. 4253 ** 4254 ** Or, in pseudo-code: 4255 ** 4256 ** if( NOT <in-memory journal> ){ 4257 ** if( NOT SAFE_APPEND ){ 4258 ** if( <full-sync mode> ) xSync(<journal file>); 4259 ** <update nRec field> 4260 ** } 4261 ** if( NOT SEQUENTIAL ) xSync(<journal file>); 4262 ** } 4263 ** 4264 ** If successful, this routine clears the PGHDR_NEED_SYNC flag of every 4265 ** page currently held in memory before returning SQLITE_OK. If an IO 4266 ** error is encountered, then the IO error code is returned to the caller. 4267 */ 4268 static int syncJournal(Pager *pPager, int newHdr){ 4269 int rc; /* Return code */ 4270 4271 assert( pPager->eState==PAGER_WRITER_CACHEMOD 4272 || pPager->eState==PAGER_WRITER_DBMOD 4273 ); 4274 assert( assert_pager_state(pPager) ); 4275 assert( !pagerUseWal(pPager) ); 4276 4277 rc = sqlite3PagerExclusiveLock(pPager); 4278 if( rc!=SQLITE_OK ) return rc; 4279 4280 if( !pPager->noSync ){ 4281 assert( !pPager->tempFile ); 4282 if( isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){ 4283 const int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); 4284 assert( isOpen(pPager->jfd) ); 4285 4286 if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ 4287 /* This block deals with an obscure problem. If the last connection 4288 ** that wrote to this database was operating in persistent-journal 4289 ** mode, then the journal file may at this point actually be larger 4290 ** than Pager.journalOff bytes. If the next thing in the journal 4291 ** file happens to be a journal-header (written as part of the 4292 ** previous connection's transaction), and a crash or power-failure 4293 ** occurs after nRec is updated but before this connection writes 4294 ** anything else to the journal file (or commits/rolls back its 4295 ** transaction), then SQLite may become confused when doing the 4296 ** hot-journal rollback following recovery. It may roll back all 4297 ** of this connections data, then proceed to rolling back the old, 4298 ** out-of-date data that follows it. Database corruption. 4299 ** 4300 ** To work around this, if the journal file does appear to contain 4301 ** a valid header following Pager.journalOff, then write a 0x00 4302 ** byte to the start of it to prevent it from being recognized. 4303 ** 4304 ** Variable iNextHdrOffset is set to the offset at which this 4305 ** problematic header will occur, if it exists. aMagic is used 4306 ** as a temporary buffer to inspect the first couple of bytes of 4307 ** the potential journal header. 4308 */ 4309 i64 iNextHdrOffset; 4310 u8 aMagic[8]; 4311 u8 zHeader[sizeof(aJournalMagic)+4]; 4312 4313 memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); 4314 put32bits(&zHeader[sizeof(aJournalMagic)], pPager->nRec); 4315 4316 iNextHdrOffset = journalHdrOffset(pPager); 4317 rc = sqlite3OsRead(pPager->jfd, aMagic, 8, iNextHdrOffset); 4318 if( rc==SQLITE_OK && 0==memcmp(aMagic, aJournalMagic, 8) ){ 4319 static const u8 zerobyte = 0; 4320 rc = sqlite3OsWrite(pPager->jfd, &zerobyte, 1, iNextHdrOffset); 4321 } 4322 if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){ 4323 return rc; 4324 } 4325 4326 /* Write the nRec value into the journal file header. If in 4327 ** full-synchronous mode, sync the journal first. This ensures that 4328 ** all data has really hit the disk before nRec is updated to mark 4329 ** it as a candidate for rollback. 4330 ** 4331 ** This is not required if the persistent media supports the 4332 ** SAFE_APPEND property. Because in this case it is not possible 4333 ** for garbage data to be appended to the file, the nRec field 4334 ** is populated with 0xFFFFFFFF when the journal header is written 4335 ** and never needs to be updated. 4336 */ 4337 if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ 4338 PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); 4339 IOTRACE(("JSYNC %p\n", pPager)) 4340 rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags); 4341 if( rc!=SQLITE_OK ) return rc; 4342 } 4343 IOTRACE(("JHDR %p %lld\n", pPager, pPager->journalHdr)); 4344 rc = sqlite3OsWrite( 4345 pPager->jfd, zHeader, sizeof(zHeader), pPager->journalHdr 4346 ); 4347 if( rc!=SQLITE_OK ) return rc; 4348 } 4349 if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ 4350 PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); 4351 IOTRACE(("JSYNC %p\n", pPager)) 4352 rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags| 4353 (pPager->syncFlags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0) 4354 ); 4355 if( rc!=SQLITE_OK ) return rc; 4356 } 4357 4358 pPager->journalHdr = pPager->journalOff; 4359 if( newHdr && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ 4360 pPager->nRec = 0; 4361 rc = writeJournalHdr(pPager); 4362 if( rc!=SQLITE_OK ) return rc; 4363 } 4364 }else{ 4365 pPager->journalHdr = pPager->journalOff; 4366 } 4367 } 4368 4369 /* Unless the pager is in noSync mode, the journal file was just 4370 ** successfully synced. Either way, clear the PGHDR_NEED_SYNC flag on 4371 ** all pages. 4372 */ 4373 sqlite3PcacheClearSyncFlags(pPager->pPCache); 4374 pPager->eState = PAGER_WRITER_DBMOD; 4375 assert( assert_pager_state(pPager) ); 4376 return SQLITE_OK; 4377 } 4378 4379 /* 4380 ** The argument is the first in a linked list of dirty pages connected 4381 ** by the PgHdr.pDirty pointer. This function writes each one of the 4382 ** in-memory pages in the list to the database file. The argument may 4383 ** be NULL, representing an empty list. In this case this function is 4384 ** a no-op. 4385 ** 4386 ** The pager must hold at least a RESERVED lock when this function 4387 ** is called. Before writing anything to the database file, this lock 4388 ** is upgraded to an EXCLUSIVE lock. If the lock cannot be obtained, 4389 ** SQLITE_BUSY is returned and no data is written to the database file. 4390 ** 4391 ** If the pager is a temp-file pager and the actual file-system file 4392 ** is not yet open, it is created and opened before any data is 4393 ** written out. 4394 ** 4395 ** Once the lock has been upgraded and, if necessary, the file opened, 4396 ** the pages are written out to the database file in list order. Writing 4397 ** a page is skipped if it meets either of the following criteria: 4398 ** 4399 ** * The page number is greater than Pager.dbSize, or 4400 ** * The PGHDR_DONT_WRITE flag is set on the page. 4401 ** 4402 ** If writing out a page causes the database file to grow, Pager.dbFileSize 4403 ** is updated accordingly. If page 1 is written out, then the value cached 4404 ** in Pager.dbFileVers[] is updated to match the new value stored in 4405 ** the database file. 4406 ** 4407 ** If everything is successful, SQLITE_OK is returned. If an IO error 4408 ** occurs, an IO error code is returned. Or, if the EXCLUSIVE lock cannot 4409 ** be obtained, SQLITE_BUSY is returned. 4410 */ 4411 static int pager_write_pagelist(Pager *pPager, PgHdr *pList){ 4412 int rc = SQLITE_OK; /* Return code */ 4413 4414 /* This function is only called for rollback pagers in WRITER_DBMOD state. */ 4415 assert( !pagerUseWal(pPager) ); 4416 assert( pPager->tempFile || pPager->eState==PAGER_WRITER_DBMOD ); 4417 assert( pPager->eLock==EXCLUSIVE_LOCK ); 4418 assert( isOpen(pPager->fd) || pList->pDirty==0 ); 4419 4420 /* If the file is a temp-file has not yet been opened, open it now. It 4421 ** is not possible for rc to be other than SQLITE_OK if this branch 4422 ** is taken, as pager_wait_on_lock() is a no-op for temp-files. 4423 */ 4424 if( !isOpen(pPager->fd) ){ 4425 assert( pPager->tempFile && rc==SQLITE_OK ); 4426 rc = pagerOpentemp(pPager, pPager->fd, pPager->vfsFlags); 4427 } 4428 4429 /* Before the first write, give the VFS a hint of what the final 4430 ** file size will be. 4431 */ 4432 assert( rc!=SQLITE_OK || isOpen(pPager->fd) ); 4433 if( rc==SQLITE_OK 4434 && pPager->dbHintSize<pPager->dbSize 4435 && (pList->pDirty || pList->pgno>pPager->dbHintSize) 4436 ){ 4437 sqlite3_int64 szFile = pPager->pageSize * (sqlite3_int64)pPager->dbSize; 4438 sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile); 4439 pPager->dbHintSize = pPager->dbSize; 4440 } 4441 4442 while( rc==SQLITE_OK && pList ){ 4443 Pgno pgno = pList->pgno; 4444 4445 /* If there are dirty pages in the page cache with page numbers greater 4446 ** than Pager.dbSize, this means sqlite3PagerTruncateImage() was called to 4447 ** make the file smaller (presumably by auto-vacuum code). Do not write 4448 ** any such pages to the file. 4449 ** 4450 ** Also, do not write out any page that has the PGHDR_DONT_WRITE flag 4451 ** set (set by sqlite3PagerDontWrite()). 4452 */ 4453 if( pgno<=pPager->dbSize && 0==(pList->flags&PGHDR_DONT_WRITE) ){ 4454 i64 offset = (pgno-1)*(i64)pPager->pageSize; /* Offset to write */ 4455 char *pData; /* Data to write */ 4456 4457 assert( (pList->flags&PGHDR_NEED_SYNC)==0 ); 4458 if( pList->pgno==1 ) pager_write_changecounter(pList); 4459 4460 /* Encode the database */ 4461 CODEC2(pPager, pList->pData, pgno, 6, return SQLITE_NOMEM_BKPT, pData); 4462 4463 /* Write out the page data. */ 4464 rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset); 4465 4466 /* If page 1 was just written, update Pager.dbFileVers to match 4467 ** the value now stored in the database file. If writing this 4468 ** page caused the database file to grow, update dbFileSize. 4469 */ 4470 if( pgno==1 ){ 4471 memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers)); 4472 } 4473 if( pgno>pPager->dbFileSize ){ 4474 pPager->dbFileSize = pgno; 4475 } 4476 pPager->aStat[PAGER_STAT_WRITE]++; 4477 4478 /* Update any backup objects copying the contents of this pager. */ 4479 sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)pList->pData); 4480 4481 PAGERTRACE(("STORE %d page %d hash(%08x)\n", 4482 PAGERID(pPager), pgno, pager_pagehash(pList))); 4483 IOTRACE(("PGOUT %p %d\n", pPager, pgno)); 4484 PAGER_INCR(sqlite3_pager_writedb_count); 4485 }else{ 4486 PAGERTRACE(("NOSTORE %d page %d\n", PAGERID(pPager), pgno)); 4487 } 4488 pager_set_pagehash(pList); 4489 pList = pList->pDirty; 4490 } 4491 4492 return rc; 4493 } 4494 4495 /* 4496 ** Ensure that the sub-journal file is open. If it is already open, this 4497 ** function is a no-op. 4498 ** 4499 ** SQLITE_OK is returned if everything goes according to plan. An 4500 ** SQLITE_IOERR_XXX error code is returned if a call to sqlite3OsOpen() 4501 ** fails. 4502 */ 4503 static int openSubJournal(Pager *pPager){ 4504 int rc = SQLITE_OK; 4505 if( !isOpen(pPager->sjfd) ){ 4506 const int flags = SQLITE_OPEN_SUBJOURNAL | SQLITE_OPEN_READWRITE 4507 | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE 4508 | SQLITE_OPEN_DELETEONCLOSE; 4509 int nStmtSpill = sqlite3Config.nStmtSpill; 4510 if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->subjInMemory ){ 4511 nStmtSpill = -1; 4512 } 4513 rc = sqlite3JournalOpen(pPager->pVfs, 0, pPager->sjfd, flags, nStmtSpill); 4514 } 4515 return rc; 4516 } 4517 4518 /* 4519 ** Append a record of the current state of page pPg to the sub-journal. 4520 ** 4521 ** If successful, set the bit corresponding to pPg->pgno in the bitvecs 4522 ** for all open savepoints before returning. 4523 ** 4524 ** This function returns SQLITE_OK if everything is successful, an IO 4525 ** error code if the attempt to write to the sub-journal fails, or 4526 ** SQLITE_NOMEM if a malloc fails while setting a bit in a savepoint 4527 ** bitvec. 4528 */ 4529 static int subjournalPage(PgHdr *pPg){ 4530 int rc = SQLITE_OK; 4531 Pager *pPager = pPg->pPager; 4532 if( pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ 4533 4534 /* Open the sub-journal, if it has not already been opened */ 4535 assert( pPager->useJournal ); 4536 assert( isOpen(pPager->jfd) || pagerUseWal(pPager) ); 4537 assert( isOpen(pPager->sjfd) || pPager->nSubRec==0 ); 4538 assert( pagerUseWal(pPager) 4539 || pageInJournal(pPager, pPg) 4540 || pPg->pgno>pPager->dbOrigSize 4541 ); 4542 rc = openSubJournal(pPager); 4543 4544 /* If the sub-journal was opened successfully (or was already open), 4545 ** write the journal record into the file. */ 4546 if( rc==SQLITE_OK ){ 4547 void *pData = pPg->pData; 4548 i64 offset = (i64)pPager->nSubRec*(4+pPager->pageSize); 4549 char *pData2; 4550 4551 #if SQLITE_HAS_CODEC 4552 if( !pPager->subjInMemory ){ 4553 CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM_BKPT, pData2); 4554 }else 4555 #endif 4556 pData2 = pData; 4557 PAGERTRACE(("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno)); 4558 rc = write32bits(pPager->sjfd, offset, pPg->pgno); 4559 if( rc==SQLITE_OK ){ 4560 rc = sqlite3OsWrite(pPager->sjfd, pData2, pPager->pageSize, offset+4); 4561 } 4562 } 4563 } 4564 if( rc==SQLITE_OK ){ 4565 pPager->nSubRec++; 4566 assert( pPager->nSavepoint>0 ); 4567 rc = addToSavepointBitvecs(pPager, pPg->pgno); 4568 } 4569 return rc; 4570 } 4571 static int subjournalPageIfRequired(PgHdr *pPg){ 4572 if( subjRequiresPage(pPg) ){ 4573 return subjournalPage(pPg); 4574 }else{ 4575 return SQLITE_OK; 4576 } 4577 } 4578 4579 /* 4580 ** This function is called by the pcache layer when it has reached some 4581 ** soft memory limit. The first argument is a pointer to a Pager object 4582 ** (cast as a void*). The pager is always 'purgeable' (not an in-memory 4583 ** database). The second argument is a reference to a page that is 4584 ** currently dirty but has no outstanding references. The page 4585 ** is always associated with the Pager object passed as the first 4586 ** argument. 4587 ** 4588 ** The job of this function is to make pPg clean by writing its contents 4589 ** out to the database file, if possible. This may involve syncing the 4590 ** journal file. 4591 ** 4592 ** If successful, sqlite3PcacheMakeClean() is called on the page and 4593 ** SQLITE_OK returned. If an IO error occurs while trying to make the 4594 ** page clean, the IO error code is returned. If the page cannot be 4595 ** made clean for some other reason, but no error occurs, then SQLITE_OK 4596 ** is returned by sqlite3PcacheMakeClean() is not called. 4597 */ 4598 static int pagerStress(void *p, PgHdr *pPg){ 4599 Pager *pPager = (Pager *)p; 4600 int rc = SQLITE_OK; 4601 4602 assert( pPg->pPager==pPager ); 4603 assert( pPg->flags&PGHDR_DIRTY ); 4604 4605 /* The doNotSpill NOSYNC bit is set during times when doing a sync of 4606 ** journal (and adding a new header) is not allowed. This occurs 4607 ** during calls to sqlite3PagerWrite() while trying to journal multiple 4608 ** pages belonging to the same sector. 4609 ** 4610 ** The doNotSpill ROLLBACK and OFF bits inhibits all cache spilling 4611 ** regardless of whether or not a sync is required. This is set during 4612 ** a rollback or by user request, respectively. 4613 ** 4614 ** Spilling is also prohibited when in an error state since that could 4615 ** lead to database corruption. In the current implementation it 4616 ** is impossible for sqlite3PcacheFetch() to be called with createFlag==3 4617 ** while in the error state, hence it is impossible for this routine to 4618 ** be called in the error state. Nevertheless, we include a NEVER() 4619 ** test for the error state as a safeguard against future changes. 4620 */ 4621 if( NEVER(pPager->errCode) ) return SQLITE_OK; 4622 testcase( pPager->doNotSpill & SPILLFLAG_ROLLBACK ); 4623 testcase( pPager->doNotSpill & SPILLFLAG_OFF ); 4624 testcase( pPager->doNotSpill & SPILLFLAG_NOSYNC ); 4625 if( pPager->doNotSpill 4626 && ((pPager->doNotSpill & (SPILLFLAG_ROLLBACK|SPILLFLAG_OFF))!=0 4627 || (pPg->flags & PGHDR_NEED_SYNC)!=0) 4628 ){ 4629 return SQLITE_OK; 4630 } 4631 4632 pPager->aStat[PAGER_STAT_SPILL]++; 4633 pPg->pDirty = 0; 4634 if( pagerUseWal(pPager) ){ 4635 /* Write a single frame for this page to the log. */ 4636 rc = subjournalPageIfRequired(pPg); 4637 if( rc==SQLITE_OK ){ 4638 rc = pagerWalFrames(pPager, pPg, 0, 0); 4639 } 4640 }else{ 4641 4642 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 4643 if( pPager->tempFile==0 ){ 4644 rc = sqlite3JournalCreate(pPager->jfd); 4645 if( rc!=SQLITE_OK ) return pager_error(pPager, rc); 4646 } 4647 #endif 4648 4649 /* Sync the journal file if required. */ 4650 if( pPg->flags&PGHDR_NEED_SYNC 4651 || pPager->eState==PAGER_WRITER_CACHEMOD 4652 ){ 4653 rc = syncJournal(pPager, 1); 4654 } 4655 4656 /* Write the contents of the page out to the database file. */ 4657 if( rc==SQLITE_OK ){ 4658 assert( (pPg->flags&PGHDR_NEED_SYNC)==0 ); 4659 rc = pager_write_pagelist(pPager, pPg); 4660 } 4661 } 4662 4663 /* Mark the page as clean. */ 4664 if( rc==SQLITE_OK ){ 4665 PAGERTRACE(("STRESS %d page %d\n", PAGERID(pPager), pPg->pgno)); 4666 sqlite3PcacheMakeClean(pPg); 4667 } 4668 4669 return pager_error(pPager, rc); 4670 } 4671 4672 /* 4673 ** Flush all unreferenced dirty pages to disk. 4674 */ 4675 int sqlite3PagerFlush(Pager *pPager){ 4676 int rc = pPager->errCode; 4677 if( !MEMDB ){ 4678 PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache); 4679 assert( assert_pager_state(pPager) ); 4680 while( rc==SQLITE_OK && pList ){ 4681 PgHdr *pNext = pList->pDirty; 4682 if( pList->nRef==0 ){ 4683 rc = pagerStress((void*)pPager, pList); 4684 } 4685 pList = pNext; 4686 } 4687 } 4688 4689 return rc; 4690 } 4691 4692 /* 4693 ** Allocate and initialize a new Pager object and put a pointer to it 4694 ** in *ppPager. The pager should eventually be freed by passing it 4695 ** to sqlite3PagerClose(). 4696 ** 4697 ** The zFilename argument is the path to the database file to open. 4698 ** If zFilename is NULL then a randomly-named temporary file is created 4699 ** and used as the file to be cached. Temporary files are be deleted 4700 ** automatically when they are closed. If zFilename is ":memory:" then 4701 ** all information is held in cache. It is never written to disk. 4702 ** This can be used to implement an in-memory database. 4703 ** 4704 ** The nExtra parameter specifies the number of bytes of space allocated 4705 ** along with each page reference. This space is available to the user 4706 ** via the sqlite3PagerGetExtra() API. When a new page is allocated, the 4707 ** first 8 bytes of this space are zeroed but the remainder is uninitialized. 4708 ** (The extra space is used by btree as the MemPage object.) 4709 ** 4710 ** The flags argument is used to specify properties that affect the 4711 ** operation of the pager. It should be passed some bitwise combination 4712 ** of the PAGER_* flags. 4713 ** 4714 ** The vfsFlags parameter is a bitmask to pass to the flags parameter 4715 ** of the xOpen() method of the supplied VFS when opening files. 4716 ** 4717 ** If the pager object is allocated and the specified file opened 4718 ** successfully, SQLITE_OK is returned and *ppPager set to point to 4719 ** the new pager object. If an error occurs, *ppPager is set to NULL 4720 ** and error code returned. This function may return SQLITE_NOMEM 4721 ** (sqlite3Malloc() is used to allocate memory), SQLITE_CANTOPEN or 4722 ** various SQLITE_IO_XXX errors. 4723 */ 4724 int sqlite3PagerOpen( 4725 sqlite3_vfs *pVfs, /* The virtual file system to use */ 4726 Pager **ppPager, /* OUT: Return the Pager structure here */ 4727 const char *zFilename, /* Name of the database file to open */ 4728 int nExtra, /* Extra bytes append to each in-memory page */ 4729 int flags, /* flags controlling this file */ 4730 int vfsFlags, /* flags passed through to sqlite3_vfs.xOpen() */ 4731 void (*xReinit)(DbPage*) /* Function to reinitialize pages */ 4732 ){ 4733 u8 *pPtr; 4734 Pager *pPager = 0; /* Pager object to allocate and return */ 4735 int rc = SQLITE_OK; /* Return code */ 4736 int tempFile = 0; /* True for temp files (incl. in-memory files) */ 4737 int memDb = 0; /* True if this is an in-memory file */ 4738 #ifdef SQLITE_ENABLE_DESERIALIZE 4739 int memJM = 0; /* Memory journal mode */ 4740 #else 4741 # define memJM 0 4742 #endif 4743 int readOnly = 0; /* True if this is a read-only file */ 4744 int journalFileSize; /* Bytes to allocate for each journal fd */ 4745 char *zPathname = 0; /* Full path to database file */ 4746 int nPathname = 0; /* Number of bytes in zPathname */ 4747 int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; /* False to omit journal */ 4748 int pcacheSize = sqlite3PcacheSize(); /* Bytes to allocate for PCache */ 4749 u32 szPageDflt = SQLITE_DEFAULT_PAGE_SIZE; /* Default page size */ 4750 const char *zUri = 0; /* URI args to copy */ 4751 int nUri = 0; /* Number of bytes of URI args at *zUri */ 4752 4753 /* Figure out how much space is required for each journal file-handle 4754 ** (there are two of them, the main journal and the sub-journal). */ 4755 journalFileSize = ROUND8(sqlite3JournalSize(pVfs)); 4756 4757 /* Set the output variable to NULL in case an error occurs. */ 4758 *ppPager = 0; 4759 4760 #ifndef SQLITE_OMIT_MEMORYDB 4761 if( flags & PAGER_MEMORY ){ 4762 memDb = 1; 4763 if( zFilename && zFilename[0] ){ 4764 zPathname = sqlite3DbStrDup(0, zFilename); 4765 if( zPathname==0 ) return SQLITE_NOMEM_BKPT; 4766 nPathname = sqlite3Strlen30(zPathname); 4767 zFilename = 0; 4768 } 4769 } 4770 #endif 4771 4772 /* Compute and store the full pathname in an allocated buffer pointed 4773 ** to by zPathname, length nPathname. Or, if this is a temporary file, 4774 ** leave both nPathname and zPathname set to 0. 4775 */ 4776 if( zFilename && zFilename[0] ){ 4777 const char *z; 4778 nPathname = pVfs->mxPathname+1; 4779 zPathname = sqlite3DbMallocRaw(0, nPathname*2); 4780 if( zPathname==0 ){ 4781 return SQLITE_NOMEM_BKPT; 4782 } 4783 zPathname[0] = 0; /* Make sure initialized even if FullPathname() fails */ 4784 rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname); 4785 nPathname = sqlite3Strlen30(zPathname); 4786 z = zUri = &zFilename[sqlite3Strlen30(zFilename)+1]; 4787 while( *z ){ 4788 z += sqlite3Strlen30(z)+1; 4789 z += sqlite3Strlen30(z)+1; 4790 } 4791 nUri = (int)(&z[1] - zUri); 4792 assert( nUri>=0 ); 4793 if( rc==SQLITE_OK && nPathname+8>pVfs->mxPathname ){ 4794 /* This branch is taken when the journal path required by 4795 ** the database being opened will be more than pVfs->mxPathname 4796 ** bytes in length. This means the database cannot be opened, 4797 ** as it will not be possible to open the journal file or even 4798 ** check for a hot-journal before reading. 4799 */ 4800 rc = SQLITE_CANTOPEN_BKPT; 4801 } 4802 if( rc!=SQLITE_OK ){ 4803 sqlite3DbFree(0, zPathname); 4804 return rc; 4805 } 4806 } 4807 4808 /* Allocate memory for the Pager structure, PCache object, the 4809 ** three file descriptors, the database file name and the journal 4810 ** file name. The layout in memory is as follows: 4811 ** 4812 ** Pager object (sizeof(Pager) bytes) 4813 ** PCache object (sqlite3PcacheSize() bytes) 4814 ** Database file handle (pVfs->szOsFile bytes) 4815 ** Sub-journal file handle (journalFileSize bytes) 4816 ** Main journal file handle (journalFileSize bytes) 4817 ** Database file name (nPathname+1 bytes) 4818 ** Journal file name (nPathname+8+1 bytes) 4819 */ 4820 pPtr = (u8 *)sqlite3MallocZero( 4821 ROUND8(sizeof(*pPager)) + /* Pager structure */ 4822 ROUND8(pcacheSize) + /* PCache object */ 4823 ROUND8(pVfs->szOsFile) + /* The main db file */ 4824 journalFileSize * 2 + /* The two journal files */ 4825 nPathname + 1 + nUri + /* zFilename */ 4826 nPathname + 8 + 2 /* zJournal */ 4827 #ifndef SQLITE_OMIT_WAL 4828 + nPathname + 4 + 2 /* zWal */ 4829 #endif 4830 ); 4831 assert( EIGHT_BYTE_ALIGNMENT(SQLITE_INT_TO_PTR(journalFileSize)) ); 4832 if( !pPtr ){ 4833 sqlite3DbFree(0, zPathname); 4834 return SQLITE_NOMEM_BKPT; 4835 } 4836 pPager = (Pager*)(pPtr); 4837 pPager->pPCache = (PCache*)(pPtr += ROUND8(sizeof(*pPager))); 4838 pPager->fd = (sqlite3_file*)(pPtr += ROUND8(pcacheSize)); 4839 pPager->sjfd = (sqlite3_file*)(pPtr += ROUND8(pVfs->szOsFile)); 4840 pPager->jfd = (sqlite3_file*)(pPtr += journalFileSize); 4841 pPager->zFilename = (char*)(pPtr += journalFileSize); 4842 assert( EIGHT_BYTE_ALIGNMENT(pPager->jfd) ); 4843 4844 /* Fill in the Pager.zFilename and Pager.zJournal buffers, if required. */ 4845 if( zPathname ){ 4846 assert( nPathname>0 ); 4847 pPager->zJournal = (char*)(pPtr += nPathname + 1 + nUri); 4848 memcpy(pPager->zFilename, zPathname, nPathname); 4849 if( nUri ) memcpy(&pPager->zFilename[nPathname+1], zUri, nUri); 4850 memcpy(pPager->zJournal, zPathname, nPathname); 4851 memcpy(&pPager->zJournal[nPathname], "-journal\000", 8+2); 4852 sqlite3FileSuffix3(pPager->zFilename, pPager->zJournal); 4853 #ifndef SQLITE_OMIT_WAL 4854 pPager->zWal = &pPager->zJournal[nPathname+8+1]; 4855 memcpy(pPager->zWal, zPathname, nPathname); 4856 memcpy(&pPager->zWal[nPathname], "-wal\000", 4+1); 4857 sqlite3FileSuffix3(pPager->zFilename, pPager->zWal); 4858 #endif 4859 sqlite3DbFree(0, zPathname); 4860 } 4861 pPager->pVfs = pVfs; 4862 pPager->vfsFlags = vfsFlags; 4863 4864 /* Open the pager file. 4865 */ 4866 if( zFilename && zFilename[0] ){ 4867 int fout = 0; /* VFS flags returned by xOpen() */ 4868 rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, vfsFlags, &fout); 4869 assert( !memDb ); 4870 #ifdef SQLITE_ENABLE_DESERIALIZE 4871 memJM = (fout&SQLITE_OPEN_MEMORY)!=0; 4872 #endif 4873 readOnly = (fout&SQLITE_OPEN_READONLY)!=0; 4874 4875 /* If the file was successfully opened for read/write access, 4876 ** choose a default page size in case we have to create the 4877 ** database file. The default page size is the maximum of: 4878 ** 4879 ** + SQLITE_DEFAULT_PAGE_SIZE, 4880 ** + The value returned by sqlite3OsSectorSize() 4881 ** + The largest page size that can be written atomically. 4882 */ 4883 if( rc==SQLITE_OK ){ 4884 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); 4885 if( !readOnly ){ 4886 setSectorSize(pPager); 4887 assert(SQLITE_DEFAULT_PAGE_SIZE<=SQLITE_MAX_DEFAULT_PAGE_SIZE); 4888 if( szPageDflt<pPager->sectorSize ){ 4889 if( pPager->sectorSize>SQLITE_MAX_DEFAULT_PAGE_SIZE ){ 4890 szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE; 4891 }else{ 4892 szPageDflt = (u32)pPager->sectorSize; 4893 } 4894 } 4895 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 4896 { 4897 int ii; 4898 assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); 4899 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); 4900 assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536); 4901 for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){ 4902 if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ){ 4903 szPageDflt = ii; 4904 } 4905 } 4906 } 4907 #endif 4908 } 4909 pPager->noLock = sqlite3_uri_boolean(zFilename, "nolock", 0); 4910 if( (iDc & SQLITE_IOCAP_IMMUTABLE)!=0 4911 || sqlite3_uri_boolean(zFilename, "immutable", 0) ){ 4912 vfsFlags |= SQLITE_OPEN_READONLY; 4913 goto act_like_temp_file; 4914 } 4915 } 4916 }else{ 4917 /* If a temporary file is requested, it is not opened immediately. 4918 ** In this case we accept the default page size and delay actually 4919 ** opening the file until the first call to OsWrite(). 4920 ** 4921 ** This branch is also run for an in-memory database. An in-memory 4922 ** database is the same as a temp-file that is never written out to 4923 ** disk and uses an in-memory rollback journal. 4924 ** 4925 ** This branch also runs for files marked as immutable. 4926 */ 4927 act_like_temp_file: 4928 tempFile = 1; 4929 pPager->eState = PAGER_READER; /* Pretend we already have a lock */ 4930 pPager->eLock = EXCLUSIVE_LOCK; /* Pretend we are in EXCLUSIVE mode */ 4931 pPager->noLock = 1; /* Do no locking */ 4932 readOnly = (vfsFlags&SQLITE_OPEN_READONLY); 4933 } 4934 4935 /* The following call to PagerSetPagesize() serves to set the value of 4936 ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer. 4937 */ 4938 if( rc==SQLITE_OK ){ 4939 assert( pPager->memDb==0 ); 4940 rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1); 4941 testcase( rc!=SQLITE_OK ); 4942 } 4943 4944 /* Initialize the PCache object. */ 4945 if( rc==SQLITE_OK ){ 4946 nExtra = ROUND8(nExtra); 4947 assert( nExtra>=8 && nExtra<1000 ); 4948 rc = sqlite3PcacheOpen(szPageDflt, nExtra, !memDb, 4949 !memDb?pagerStress:0, (void *)pPager, pPager->pPCache); 4950 } 4951 4952 /* If an error occurred above, free the Pager structure and close the file. 4953 */ 4954 if( rc!=SQLITE_OK ){ 4955 sqlite3OsClose(pPager->fd); 4956 sqlite3PageFree(pPager->pTmpSpace); 4957 sqlite3_free(pPager); 4958 return rc; 4959 } 4960 4961 PAGERTRACE(("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename)); 4962 IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename)) 4963 4964 pPager->useJournal = (u8)useJournal; 4965 /* pPager->stmtOpen = 0; */ 4966 /* pPager->stmtInUse = 0; */ 4967 /* pPager->nRef = 0; */ 4968 /* pPager->stmtSize = 0; */ 4969 /* pPager->stmtJSize = 0; */ 4970 /* pPager->nPage = 0; */ 4971 pPager->mxPgno = SQLITE_MAX_PAGE_COUNT; 4972 /* pPager->state = PAGER_UNLOCK; */ 4973 /* pPager->errMask = 0; */ 4974 pPager->tempFile = (u8)tempFile; 4975 assert( tempFile==PAGER_LOCKINGMODE_NORMAL 4976 || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE ); 4977 assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 ); 4978 pPager->exclusiveMode = (u8)tempFile; 4979 pPager->changeCountDone = pPager->tempFile; 4980 pPager->memDb = (u8)memDb; 4981 pPager->readOnly = (u8)readOnly; 4982 assert( useJournal || pPager->tempFile ); 4983 pPager->noSync = pPager->tempFile; 4984 if( pPager->noSync ){ 4985 assert( pPager->fullSync==0 ); 4986 assert( pPager->extraSync==0 ); 4987 assert( pPager->syncFlags==0 ); 4988 assert( pPager->walSyncFlags==0 ); 4989 }else{ 4990 pPager->fullSync = 1; 4991 pPager->extraSync = 0; 4992 pPager->syncFlags = SQLITE_SYNC_NORMAL; 4993 pPager->walSyncFlags = SQLITE_SYNC_NORMAL | (SQLITE_SYNC_NORMAL<<2); 4994 } 4995 /* pPager->pFirst = 0; */ 4996 /* pPager->pFirstSynced = 0; */ 4997 /* pPager->pLast = 0; */ 4998 pPager->nExtra = (u16)nExtra; 4999 pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT; 5000 assert( isOpen(pPager->fd) || tempFile ); 5001 setSectorSize(pPager); 5002 if( !useJournal ){ 5003 pPager->journalMode = PAGER_JOURNALMODE_OFF; 5004 }else if( memDb || memJM ){ 5005 pPager->journalMode = PAGER_JOURNALMODE_MEMORY; 5006 } 5007 /* pPager->xBusyHandler = 0; */ 5008 /* pPager->pBusyHandlerArg = 0; */ 5009 pPager->xReiniter = xReinit; 5010 setGetterMethod(pPager); 5011 /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */ 5012 /* pPager->szMmap = SQLITE_DEFAULT_MMAP_SIZE // will be set by btree.c */ 5013 5014 *ppPager = pPager; 5015 return SQLITE_OK; 5016 } 5017 5018 5019 5020 /* 5021 ** This function is called after transitioning from PAGER_UNLOCK to 5022 ** PAGER_SHARED state. It tests if there is a hot journal present in 5023 ** the file-system for the given pager. A hot journal is one that 5024 ** needs to be played back. According to this function, a hot-journal 5025 ** file exists if the following criteria are met: 5026 ** 5027 ** * The journal file exists in the file system, and 5028 ** * No process holds a RESERVED or greater lock on the database file, and 5029 ** * The database file itself is greater than 0 bytes in size, and 5030 ** * The first byte of the journal file exists and is not 0x00. 5031 ** 5032 ** If the current size of the database file is 0 but a journal file 5033 ** exists, that is probably an old journal left over from a prior 5034 ** database with the same name. In this case the journal file is 5035 ** just deleted using OsDelete, *pExists is set to 0 and SQLITE_OK 5036 ** is returned. 5037 ** 5038 ** This routine does not check if there is a master journal filename 5039 ** at the end of the file. If there is, and that master journal file 5040 ** does not exist, then the journal file is not really hot. In this 5041 ** case this routine will return a false-positive. The pager_playback() 5042 ** routine will discover that the journal file is not really hot and 5043 ** will not roll it back. 5044 ** 5045 ** If a hot-journal file is found to exist, *pExists is set to 1 and 5046 ** SQLITE_OK returned. If no hot-journal file is present, *pExists is 5047 ** set to 0 and SQLITE_OK returned. If an IO error occurs while trying 5048 ** to determine whether or not a hot-journal file exists, the IO error 5049 ** code is returned and the value of *pExists is undefined. 5050 */ 5051 static int hasHotJournal(Pager *pPager, int *pExists){ 5052 sqlite3_vfs * const pVfs = pPager->pVfs; 5053 int rc = SQLITE_OK; /* Return code */ 5054 int exists = 1; /* True if a journal file is present */ 5055 int jrnlOpen = !!isOpen(pPager->jfd); 5056 5057 assert( pPager->useJournal ); 5058 assert( isOpen(pPager->fd) ); 5059 assert( pPager->eState==PAGER_OPEN ); 5060 5061 assert( jrnlOpen==0 || ( sqlite3OsDeviceCharacteristics(pPager->jfd) & 5062 SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN 5063 )); 5064 5065 *pExists = 0; 5066 if( !jrnlOpen ){ 5067 rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists); 5068 } 5069 if( rc==SQLITE_OK && exists ){ 5070 int locked = 0; /* True if some process holds a RESERVED lock */ 5071 5072 /* Race condition here: Another process might have been holding the 5073 ** the RESERVED lock and have a journal open at the sqlite3OsAccess() 5074 ** call above, but then delete the journal and drop the lock before 5075 ** we get to the following sqlite3OsCheckReservedLock() call. If that 5076 ** is the case, this routine might think there is a hot journal when 5077 ** in fact there is none. This results in a false-positive which will 5078 ** be dealt with by the playback routine. Ticket #3883. 5079 */ 5080 rc = sqlite3OsCheckReservedLock(pPager->fd, &locked); 5081 if( rc==SQLITE_OK && !locked ){ 5082 Pgno nPage; /* Number of pages in database file */ 5083 5084 assert( pPager->tempFile==0 ); 5085 rc = pagerPagecount(pPager, &nPage); 5086 if( rc==SQLITE_OK ){ 5087 /* If the database is zero pages in size, that means that either (1) the 5088 ** journal is a remnant from a prior database with the same name where 5089 ** the database file but not the journal was deleted, or (2) the initial 5090 ** transaction that populates a new database is being rolled back. 5091 ** In either case, the journal file can be deleted. However, take care 5092 ** not to delete the journal file if it is already open due to 5093 ** journal_mode=PERSIST. 5094 */ 5095 if( nPage==0 && !jrnlOpen ){ 5096 sqlite3BeginBenignMalloc(); 5097 if( pagerLockDb(pPager, RESERVED_LOCK)==SQLITE_OK ){ 5098 sqlite3OsDelete(pVfs, pPager->zJournal, 0); 5099 if( !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK); 5100 } 5101 sqlite3EndBenignMalloc(); 5102 }else{ 5103 /* The journal file exists and no other connection has a reserved 5104 ** or greater lock on the database file. Now check that there is 5105 ** at least one non-zero bytes at the start of the journal file. 5106 ** If there is, then we consider this journal to be hot. If not, 5107 ** it can be ignored. 5108 */ 5109 if( !jrnlOpen ){ 5110 int f = SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL; 5111 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &f); 5112 } 5113 if( rc==SQLITE_OK ){ 5114 u8 first = 0; 5115 rc = sqlite3OsRead(pPager->jfd, (void *)&first, 1, 0); 5116 if( rc==SQLITE_IOERR_SHORT_READ ){ 5117 rc = SQLITE_OK; 5118 } 5119 if( !jrnlOpen ){ 5120 sqlite3OsClose(pPager->jfd); 5121 } 5122 *pExists = (first!=0); 5123 }else if( rc==SQLITE_CANTOPEN ){ 5124 /* If we cannot open the rollback journal file in order to see if 5125 ** it has a zero header, that might be due to an I/O error, or 5126 ** it might be due to the race condition described above and in 5127 ** ticket #3883. Either way, assume that the journal is hot. 5128 ** This might be a false positive. But if it is, then the 5129 ** automatic journal playback and recovery mechanism will deal 5130 ** with it under an EXCLUSIVE lock where we do not need to 5131 ** worry so much with race conditions. 5132 */ 5133 *pExists = 1; 5134 rc = SQLITE_OK; 5135 } 5136 } 5137 } 5138 } 5139 } 5140 5141 return rc; 5142 } 5143 5144 /* 5145 ** This function is called to obtain a shared lock on the database file. 5146 ** It is illegal to call sqlite3PagerGet() until after this function 5147 ** has been successfully called. If a shared-lock is already held when 5148 ** this function is called, it is a no-op. 5149 ** 5150 ** The following operations are also performed by this function. 5151 ** 5152 ** 1) If the pager is currently in PAGER_OPEN state (no lock held 5153 ** on the database file), then an attempt is made to obtain a 5154 ** SHARED lock on the database file. Immediately after obtaining 5155 ** the SHARED lock, the file-system is checked for a hot-journal, 5156 ** which is played back if present. Following any hot-journal 5157 ** rollback, the contents of the cache are validated by checking 5158 ** the 'change-counter' field of the database file header and 5159 ** discarded if they are found to be invalid. 5160 ** 5161 ** 2) If the pager is running in exclusive-mode, and there are currently 5162 ** no outstanding references to any pages, and is in the error state, 5163 ** then an attempt is made to clear the error state by discarding 5164 ** the contents of the page cache and rolling back any open journal 5165 ** file. 5166 ** 5167 ** If everything is successful, SQLITE_OK is returned. If an IO error 5168 ** occurs while locking the database, checking for a hot-journal file or 5169 ** rolling back a journal file, the IO error code is returned. 5170 */ 5171 int sqlite3PagerSharedLock(Pager *pPager){ 5172 int rc = SQLITE_OK; /* Return code */ 5173 5174 /* This routine is only called from b-tree and only when there are no 5175 ** outstanding pages. This implies that the pager state should either 5176 ** be OPEN or READER. READER is only possible if the pager is or was in 5177 ** exclusive access mode. */ 5178 assert( sqlite3PcacheRefCount(pPager->pPCache)==0 ); 5179 assert( assert_pager_state(pPager) ); 5180 assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); 5181 assert( pPager->errCode==SQLITE_OK ); 5182 5183 if( !pagerUseWal(pPager) && pPager->eState==PAGER_OPEN ){ 5184 int bHotJournal = 1; /* True if there exists a hot journal-file */ 5185 5186 assert( !MEMDB ); 5187 assert( pPager->tempFile==0 || pPager->eLock==EXCLUSIVE_LOCK ); 5188 5189 rc = pager_wait_on_lock(pPager, SHARED_LOCK); 5190 if( rc!=SQLITE_OK ){ 5191 assert( pPager->eLock==NO_LOCK || pPager->eLock==UNKNOWN_LOCK ); 5192 goto failed; 5193 } 5194 5195 /* If a journal file exists, and there is no RESERVED lock on the 5196 ** database file, then it either needs to be played back or deleted. 5197 */ 5198 if( pPager->eLock<=SHARED_LOCK ){ 5199 rc = hasHotJournal(pPager, &bHotJournal); 5200 } 5201 if( rc!=SQLITE_OK ){ 5202 goto failed; 5203 } 5204 if( bHotJournal ){ 5205 if( pPager->readOnly ){ 5206 rc = SQLITE_READONLY_ROLLBACK; 5207 goto failed; 5208 } 5209 5210 /* Get an EXCLUSIVE lock on the database file. At this point it is 5211 ** important that a RESERVED lock is not obtained on the way to the 5212 ** EXCLUSIVE lock. If it were, another process might open the 5213 ** database file, detect the RESERVED lock, and conclude that the 5214 ** database is safe to read while this process is still rolling the 5215 ** hot-journal back. 5216 ** 5217 ** Because the intermediate RESERVED lock is not requested, any 5218 ** other process attempting to access the database file will get to 5219 ** this point in the code and fail to obtain its own EXCLUSIVE lock 5220 ** on the database file. 5221 ** 5222 ** Unless the pager is in locking_mode=exclusive mode, the lock is 5223 ** downgraded to SHARED_LOCK before this function returns. 5224 */ 5225 rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); 5226 if( rc!=SQLITE_OK ){ 5227 goto failed; 5228 } 5229 5230 /* If it is not already open and the file exists on disk, open the 5231 ** journal for read/write access. Write access is required because 5232 ** in exclusive-access mode the file descriptor will be kept open 5233 ** and possibly used for a transaction later on. Also, write-access 5234 ** is usually required to finalize the journal in journal_mode=persist 5235 ** mode (and also for journal_mode=truncate on some systems). 5236 ** 5237 ** If the journal does not exist, it usually means that some 5238 ** other connection managed to get in and roll it back before 5239 ** this connection obtained the exclusive lock above. Or, it 5240 ** may mean that the pager was in the error-state when this 5241 ** function was called and the journal file does not exist. 5242 */ 5243 if( !isOpen(pPager->jfd) ){ 5244 sqlite3_vfs * const pVfs = pPager->pVfs; 5245 int bExists; /* True if journal file exists */ 5246 rc = sqlite3OsAccess( 5247 pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &bExists); 5248 if( rc==SQLITE_OK && bExists ){ 5249 int fout = 0; 5250 int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL; 5251 assert( !pPager->tempFile ); 5252 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout); 5253 assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); 5254 if( rc==SQLITE_OK && fout&SQLITE_OPEN_READONLY ){ 5255 rc = SQLITE_CANTOPEN_BKPT; 5256 sqlite3OsClose(pPager->jfd); 5257 } 5258 } 5259 } 5260 5261 /* Playback and delete the journal. Drop the database write 5262 ** lock and reacquire the read lock. Purge the cache before 5263 ** playing back the hot-journal so that we don't end up with 5264 ** an inconsistent cache. Sync the hot journal before playing 5265 ** it back since the process that crashed and left the hot journal 5266 ** probably did not sync it and we are required to always sync 5267 ** the journal before playing it back. 5268 */ 5269 if( isOpen(pPager->jfd) ){ 5270 assert( rc==SQLITE_OK ); 5271 rc = pagerSyncHotJournal(pPager); 5272 if( rc==SQLITE_OK ){ 5273 rc = pager_playback(pPager, !pPager->tempFile); 5274 pPager->eState = PAGER_OPEN; 5275 } 5276 }else if( !pPager->exclusiveMode ){ 5277 pagerUnlockDb(pPager, SHARED_LOCK); 5278 } 5279 5280 if( rc!=SQLITE_OK ){ 5281 /* This branch is taken if an error occurs while trying to open 5282 ** or roll back a hot-journal while holding an EXCLUSIVE lock. The 5283 ** pager_unlock() routine will be called before returning to unlock 5284 ** the file. If the unlock attempt fails, then Pager.eLock must be 5285 ** set to UNKNOWN_LOCK (see the comment above the #define for 5286 ** UNKNOWN_LOCK above for an explanation). 5287 ** 5288 ** In order to get pager_unlock() to do this, set Pager.eState to 5289 ** PAGER_ERROR now. This is not actually counted as a transition 5290 ** to ERROR state in the state diagram at the top of this file, 5291 ** since we know that the same call to pager_unlock() will very 5292 ** shortly transition the pager object to the OPEN state. Calling 5293 ** assert_pager_state() would fail now, as it should not be possible 5294 ** to be in ERROR state when there are zero outstanding page 5295 ** references. 5296 */ 5297 pager_error(pPager, rc); 5298 goto failed; 5299 } 5300 5301 assert( pPager->eState==PAGER_OPEN ); 5302 assert( (pPager->eLock==SHARED_LOCK) 5303 || (pPager->exclusiveMode && pPager->eLock>SHARED_LOCK) 5304 ); 5305 } 5306 5307 if( !pPager->tempFile && pPager->hasHeldSharedLock ){ 5308 /* The shared-lock has just been acquired then check to 5309 ** see if the database has been modified. If the database has changed, 5310 ** flush the cache. The hasHeldSharedLock flag prevents this from 5311 ** occurring on the very first access to a file, in order to save a 5312 ** single unnecessary sqlite3OsRead() call at the start-up. 5313 ** 5314 ** Database changes are detected by looking at 15 bytes beginning 5315 ** at offset 24 into the file. The first 4 of these 16 bytes are 5316 ** a 32-bit counter that is incremented with each change. The 5317 ** other bytes change randomly with each file change when 5318 ** a codec is in use. 5319 ** 5320 ** There is a vanishingly small chance that a change will not be 5321 ** detected. The chance of an undetected change is so small that 5322 ** it can be neglected. 5323 */ 5324 char dbFileVers[sizeof(pPager->dbFileVers)]; 5325 5326 IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers))); 5327 rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24); 5328 if( rc!=SQLITE_OK ){ 5329 if( rc!=SQLITE_IOERR_SHORT_READ ){ 5330 goto failed; 5331 } 5332 memset(dbFileVers, 0, sizeof(dbFileVers)); 5333 } 5334 5335 if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){ 5336 pager_reset(pPager); 5337 5338 /* Unmap the database file. It is possible that external processes 5339 ** may have truncated the database file and then extended it back 5340 ** to its original size while this process was not holding a lock. 5341 ** In this case there may exist a Pager.pMap mapping that appears 5342 ** to be the right size but is not actually valid. Avoid this 5343 ** possibility by unmapping the db here. */ 5344 if( USEFETCH(pPager) ){ 5345 sqlite3OsUnfetch(pPager->fd, 0, 0); 5346 } 5347 } 5348 } 5349 5350 /* If there is a WAL file in the file-system, open this database in WAL 5351 ** mode. Otherwise, the following function call is a no-op. 5352 */ 5353 rc = pagerOpenWalIfPresent(pPager); 5354 #ifndef SQLITE_OMIT_WAL 5355 assert( pPager->pWal==0 || rc==SQLITE_OK ); 5356 #endif 5357 } 5358 5359 if( pagerUseWal(pPager) ){ 5360 assert( rc==SQLITE_OK ); 5361 rc = pagerBeginReadTransaction(pPager); 5362 } 5363 5364 if( pPager->tempFile==0 && pPager->eState==PAGER_OPEN && rc==SQLITE_OK ){ 5365 rc = pagerPagecount(pPager, &pPager->dbSize); 5366 } 5367 5368 failed: 5369 if( rc!=SQLITE_OK ){ 5370 assert( !MEMDB ); 5371 pager_unlock(pPager); 5372 assert( pPager->eState==PAGER_OPEN ); 5373 }else{ 5374 pPager->eState = PAGER_READER; 5375 pPager->hasHeldSharedLock = 1; 5376 } 5377 return rc; 5378 } 5379 5380 /* 5381 ** If the reference count has reached zero, rollback any active 5382 ** transaction and unlock the pager. 5383 ** 5384 ** Except, in locking_mode=EXCLUSIVE when there is nothing to in 5385 ** the rollback journal, the unlock is not performed and there is 5386 ** nothing to rollback, so this routine is a no-op. 5387 */ 5388 static void pagerUnlockIfUnused(Pager *pPager){ 5389 if( sqlite3PcacheRefCount(pPager->pPCache)==0 ){ 5390 assert( pPager->nMmapOut==0 ); /* because page1 is never memory mapped */ 5391 pagerUnlockAndRollback(pPager); 5392 } 5393 } 5394 5395 /* 5396 ** The page getter methods each try to acquire a reference to a 5397 ** page with page number pgno. If the requested reference is 5398 ** successfully obtained, it is copied to *ppPage and SQLITE_OK returned. 5399 ** 5400 ** There are different implementations of the getter method depending 5401 ** on the current state of the pager. 5402 ** 5403 ** getPageNormal() -- The normal getter 5404 ** getPageError() -- Used if the pager is in an error state 5405 ** getPageMmap() -- Used if memory-mapped I/O is enabled 5406 ** 5407 ** If the requested page is already in the cache, it is returned. 5408 ** Otherwise, a new page object is allocated and populated with data 5409 ** read from the database file. In some cases, the pcache module may 5410 ** choose not to allocate a new page object and may reuse an existing 5411 ** object with no outstanding references. 5412 ** 5413 ** The extra data appended to a page is always initialized to zeros the 5414 ** first time a page is loaded into memory. If the page requested is 5415 ** already in the cache when this function is called, then the extra 5416 ** data is left as it was when the page object was last used. 5417 ** 5418 ** If the database image is smaller than the requested page or if 5419 ** the flags parameter contains the PAGER_GET_NOCONTENT bit and the 5420 ** requested page is not already stored in the cache, then no 5421 ** actual disk read occurs. In this case the memory image of the 5422 ** page is initialized to all zeros. 5423 ** 5424 ** If PAGER_GET_NOCONTENT is true, it means that we do not care about 5425 ** the contents of the page. This occurs in two scenarios: 5426 ** 5427 ** a) When reading a free-list leaf page from the database, and 5428 ** 5429 ** b) When a savepoint is being rolled back and we need to load 5430 ** a new page into the cache to be filled with the data read 5431 ** from the savepoint journal. 5432 ** 5433 ** If PAGER_GET_NOCONTENT is true, then the data returned is zeroed instead 5434 ** of being read from the database. Additionally, the bits corresponding 5435 ** to pgno in Pager.pInJournal (bitvec of pages already written to the 5436 ** journal file) and the PagerSavepoint.pInSavepoint bitvecs of any open 5437 ** savepoints are set. This means if the page is made writable at any 5438 ** point in the future, using a call to sqlite3PagerWrite(), its contents 5439 ** will not be journaled. This saves IO. 5440 ** 5441 ** The acquisition might fail for several reasons. In all cases, 5442 ** an appropriate error code is returned and *ppPage is set to NULL. 5443 ** 5444 ** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt 5445 ** to find a page in the in-memory cache first. If the page is not already 5446 ** in memory, this routine goes to disk to read it in whereas Lookup() 5447 ** just returns 0. This routine acquires a read-lock the first time it 5448 ** has to go to disk, and could also playback an old journal if necessary. 5449 ** Since Lookup() never goes to disk, it never has to deal with locks 5450 ** or journal files. 5451 */ 5452 static int getPageNormal( 5453 Pager *pPager, /* The pager open on the database file */ 5454 Pgno pgno, /* Page number to fetch */ 5455 DbPage **ppPage, /* Write a pointer to the page here */ 5456 int flags /* PAGER_GET_XXX flags */ 5457 ){ 5458 int rc = SQLITE_OK; 5459 PgHdr *pPg; 5460 u8 noContent; /* True if PAGER_GET_NOCONTENT is set */ 5461 sqlite3_pcache_page *pBase; 5462 5463 assert( pPager->errCode==SQLITE_OK ); 5464 assert( pPager->eState>=PAGER_READER ); 5465 assert( assert_pager_state(pPager) ); 5466 assert( pPager->hasHeldSharedLock==1 ); 5467 5468 if( pgno==0 ) return SQLITE_CORRUPT_BKPT; 5469 pBase = sqlite3PcacheFetch(pPager->pPCache, pgno, 3); 5470 if( pBase==0 ){ 5471 pPg = 0; 5472 rc = sqlite3PcacheFetchStress(pPager->pPCache, pgno, &pBase); 5473 if( rc!=SQLITE_OK ) goto pager_acquire_err; 5474 if( pBase==0 ){ 5475 rc = SQLITE_NOMEM_BKPT; 5476 goto pager_acquire_err; 5477 } 5478 } 5479 pPg = *ppPage = sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pBase); 5480 assert( pPg==(*ppPage) ); 5481 assert( pPg->pgno==pgno ); 5482 assert( pPg->pPager==pPager || pPg->pPager==0 ); 5483 5484 noContent = (flags & PAGER_GET_NOCONTENT)!=0; 5485 if( pPg->pPager && !noContent ){ 5486 /* In this case the pcache already contains an initialized copy of 5487 ** the page. Return without further ado. */ 5488 assert( pgno<=PAGER_MAX_PGNO && pgno!=PAGER_MJ_PGNO(pPager) ); 5489 pPager->aStat[PAGER_STAT_HIT]++; 5490 return SQLITE_OK; 5491 5492 }else{ 5493 /* The pager cache has created a new page. Its content needs to 5494 ** be initialized. But first some error checks: 5495 ** 5496 ** (1) The maximum page number is 2^31 5497 ** (2) Never try to fetch the locking page 5498 */ 5499 if( pgno>PAGER_MAX_PGNO || pgno==PAGER_MJ_PGNO(pPager) ){ 5500 rc = SQLITE_CORRUPT_BKPT; 5501 goto pager_acquire_err; 5502 } 5503 5504 pPg->pPager = pPager; 5505 5506 assert( !isOpen(pPager->fd) || !MEMDB ); 5507 if( !isOpen(pPager->fd) || pPager->dbSize<pgno || noContent ){ 5508 if( pgno>pPager->mxPgno ){ 5509 rc = SQLITE_FULL; 5510 goto pager_acquire_err; 5511 } 5512 if( noContent ){ 5513 /* Failure to set the bits in the InJournal bit-vectors is benign. 5514 ** It merely means that we might do some extra work to journal a 5515 ** page that does not need to be journaled. Nevertheless, be sure 5516 ** to test the case where a malloc error occurs while trying to set 5517 ** a bit in a bit vector. 5518 */ 5519 sqlite3BeginBenignMalloc(); 5520 if( pgno<=pPager->dbOrigSize ){ 5521 TESTONLY( rc = ) sqlite3BitvecSet(pPager->pInJournal, pgno); 5522 testcase( rc==SQLITE_NOMEM ); 5523 } 5524 TESTONLY( rc = ) addToSavepointBitvecs(pPager, pgno); 5525 testcase( rc==SQLITE_NOMEM ); 5526 sqlite3EndBenignMalloc(); 5527 } 5528 memset(pPg->pData, 0, pPager->pageSize); 5529 IOTRACE(("ZERO %p %d\n", pPager, pgno)); 5530 }else{ 5531 assert( pPg->pPager==pPager ); 5532 pPager->aStat[PAGER_STAT_MISS]++; 5533 rc = readDbPage(pPg); 5534 if( rc!=SQLITE_OK ){ 5535 goto pager_acquire_err; 5536 } 5537 } 5538 pager_set_pagehash(pPg); 5539 } 5540 return SQLITE_OK; 5541 5542 pager_acquire_err: 5543 assert( rc!=SQLITE_OK ); 5544 if( pPg ){ 5545 sqlite3PcacheDrop(pPg); 5546 } 5547 pagerUnlockIfUnused(pPager); 5548 *ppPage = 0; 5549 return rc; 5550 } 5551 5552 #if SQLITE_MAX_MMAP_SIZE>0 5553 /* The page getter for when memory-mapped I/O is enabled */ 5554 static int getPageMMap( 5555 Pager *pPager, /* The pager open on the database file */ 5556 Pgno pgno, /* Page number to fetch */ 5557 DbPage **ppPage, /* Write a pointer to the page here */ 5558 int flags /* PAGER_GET_XXX flags */ 5559 ){ 5560 int rc = SQLITE_OK; 5561 PgHdr *pPg = 0; 5562 u32 iFrame = 0; /* Frame to read from WAL file */ 5563 5564 /* It is acceptable to use a read-only (mmap) page for any page except 5565 ** page 1 if there is no write-transaction open or the ACQUIRE_READONLY 5566 ** flag was specified by the caller. And so long as the db is not a 5567 ** temporary or in-memory database. */ 5568 const int bMmapOk = (pgno>1 5569 && (pPager->eState==PAGER_READER || (flags & PAGER_GET_READONLY)) 5570 ); 5571 5572 assert( USEFETCH(pPager) ); 5573 #ifdef SQLITE_HAS_CODEC 5574 assert( pPager->xCodec==0 ); 5575 #endif 5576 5577 /* Optimization note: Adding the "pgno<=1" term before "pgno==0" here 5578 ** allows the compiler optimizer to reuse the results of the "pgno>1" 5579 ** test in the previous statement, and avoid testing pgno==0 in the 5580 ** common case where pgno is large. */ 5581 if( pgno<=1 && pgno==0 ){ 5582 return SQLITE_CORRUPT_BKPT; 5583 } 5584 assert( pPager->eState>=PAGER_READER ); 5585 assert( assert_pager_state(pPager) ); 5586 assert( pPager->hasHeldSharedLock==1 ); 5587 assert( pPager->errCode==SQLITE_OK ); 5588 5589 if( bMmapOk && pagerUseWal(pPager) ){ 5590 rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iFrame); 5591 if( rc!=SQLITE_OK ){ 5592 *ppPage = 0; 5593 return rc; 5594 } 5595 } 5596 if( bMmapOk && iFrame==0 ){ 5597 void *pData = 0; 5598 rc = sqlite3OsFetch(pPager->fd, 5599 (i64)(pgno-1) * pPager->pageSize, pPager->pageSize, &pData 5600 ); 5601 if( rc==SQLITE_OK && pData ){ 5602 if( pPager->eState>PAGER_READER || pPager->tempFile ){ 5603 pPg = sqlite3PagerLookup(pPager, pgno); 5604 } 5605 if( pPg==0 ){ 5606 rc = pagerAcquireMapPage(pPager, pgno, pData, &pPg); 5607 }else{ 5608 sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1)*pPager->pageSize, pData); 5609 } 5610 if( pPg ){ 5611 assert( rc==SQLITE_OK ); 5612 *ppPage = pPg; 5613 return SQLITE_OK; 5614 } 5615 } 5616 if( rc!=SQLITE_OK ){ 5617 *ppPage = 0; 5618 return rc; 5619 } 5620 } 5621 return getPageNormal(pPager, pgno, ppPage, flags); 5622 } 5623 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 5624 5625 /* The page getter method for when the pager is an error state */ 5626 static int getPageError( 5627 Pager *pPager, /* The pager open on the database file */ 5628 Pgno pgno, /* Page number to fetch */ 5629 DbPage **ppPage, /* Write a pointer to the page here */ 5630 int flags /* PAGER_GET_XXX flags */ 5631 ){ 5632 UNUSED_PARAMETER(pgno); 5633 UNUSED_PARAMETER(flags); 5634 assert( pPager->errCode!=SQLITE_OK ); 5635 *ppPage = 0; 5636 return pPager->errCode; 5637 } 5638 5639 5640 /* Dispatch all page fetch requests to the appropriate getter method. 5641 */ 5642 int sqlite3PagerGet( 5643 Pager *pPager, /* The pager open on the database file */ 5644 Pgno pgno, /* Page number to fetch */ 5645 DbPage **ppPage, /* Write a pointer to the page here */ 5646 int flags /* PAGER_GET_XXX flags */ 5647 ){ 5648 return pPager->xGet(pPager, pgno, ppPage, flags); 5649 } 5650 5651 /* 5652 ** Acquire a page if it is already in the in-memory cache. Do 5653 ** not read the page from disk. Return a pointer to the page, 5654 ** or 0 if the page is not in cache. 5655 ** 5656 ** See also sqlite3PagerGet(). The difference between this routine 5657 ** and sqlite3PagerGet() is that _get() will go to the disk and read 5658 ** in the page if the page is not already in cache. This routine 5659 ** returns NULL if the page is not in cache or if a disk I/O error 5660 ** has ever happened. 5661 */ 5662 DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ 5663 sqlite3_pcache_page *pPage; 5664 assert( pPager!=0 ); 5665 assert( pgno!=0 ); 5666 assert( pPager->pPCache!=0 ); 5667 pPage = sqlite3PcacheFetch(pPager->pPCache, pgno, 0); 5668 assert( pPage==0 || pPager->hasHeldSharedLock ); 5669 if( pPage==0 ) return 0; 5670 return sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pPage); 5671 } 5672 5673 /* 5674 ** Release a page reference. 5675 ** 5676 ** The sqlite3PagerUnref() and sqlite3PagerUnrefNotNull() may only be 5677 ** used if we know that the page being released is not the last page. 5678 ** The btree layer always holds page1 open until the end, so these first 5679 ** to routines can be used to release any page other than BtShared.pPage1. 5680 ** 5681 ** Use sqlite3PagerUnrefPageOne() to release page1. This latter routine 5682 ** checks the total number of outstanding pages and if the number of 5683 ** pages reaches zero it drops the database lock. 5684 */ 5685 void sqlite3PagerUnrefNotNull(DbPage *pPg){ 5686 TESTONLY( Pager *pPager = pPg->pPager; ) 5687 assert( pPg!=0 ); 5688 if( pPg->flags & PGHDR_MMAP ){ 5689 assert( pPg->pgno!=1 ); /* Page1 is never memory mapped */ 5690 pagerReleaseMapPage(pPg); 5691 }else{ 5692 sqlite3PcacheRelease(pPg); 5693 } 5694 /* Do not use this routine to release the last reference to page1 */ 5695 assert( sqlite3PcacheRefCount(pPager->pPCache)>0 ); 5696 } 5697 void sqlite3PagerUnref(DbPage *pPg){ 5698 if( pPg ) sqlite3PagerUnrefNotNull(pPg); 5699 } 5700 void sqlite3PagerUnrefPageOne(DbPage *pPg){ 5701 Pager *pPager; 5702 assert( pPg!=0 ); 5703 assert( pPg->pgno==1 ); 5704 assert( (pPg->flags & PGHDR_MMAP)==0 ); /* Page1 is never memory mapped */ 5705 pPager = pPg->pPager; 5706 sqlite3PagerResetLockTimeout(pPager); 5707 sqlite3PcacheRelease(pPg); 5708 pagerUnlockIfUnused(pPager); 5709 } 5710 5711 /* 5712 ** This function is called at the start of every write transaction. 5713 ** There must already be a RESERVED or EXCLUSIVE lock on the database 5714 ** file when this routine is called. 5715 ** 5716 ** Open the journal file for pager pPager and write a journal header 5717 ** to the start of it. If there are active savepoints, open the sub-journal 5718 ** as well. This function is only used when the journal file is being 5719 ** opened to write a rollback log for a transaction. It is not used 5720 ** when opening a hot journal file to roll it back. 5721 ** 5722 ** If the journal file is already open (as it may be in exclusive mode), 5723 ** then this function just writes a journal header to the start of the 5724 ** already open file. 5725 ** 5726 ** Whether or not the journal file is opened by this function, the 5727 ** Pager.pInJournal bitvec structure is allocated. 5728 ** 5729 ** Return SQLITE_OK if everything is successful. Otherwise, return 5730 ** SQLITE_NOMEM if the attempt to allocate Pager.pInJournal fails, or 5731 ** an IO error code if opening or writing the journal file fails. 5732 */ 5733 static int pager_open_journal(Pager *pPager){ 5734 int rc = SQLITE_OK; /* Return code */ 5735 sqlite3_vfs * const pVfs = pPager->pVfs; /* Local cache of vfs pointer */ 5736 5737 assert( pPager->eState==PAGER_WRITER_LOCKED ); 5738 assert( assert_pager_state(pPager) ); 5739 assert( pPager->pInJournal==0 ); 5740 5741 /* If already in the error state, this function is a no-op. But on 5742 ** the other hand, this routine is never called if we are already in 5743 ** an error state. */ 5744 if( NEVER(pPager->errCode) ) return pPager->errCode; 5745 5746 if( !pagerUseWal(pPager) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ 5747 pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize); 5748 if( pPager->pInJournal==0 ){ 5749 return SQLITE_NOMEM_BKPT; 5750 } 5751 5752 /* Open the journal file if it is not already open. */ 5753 if( !isOpen(pPager->jfd) ){ 5754 if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ){ 5755 sqlite3MemJournalOpen(pPager->jfd); 5756 }else{ 5757 int flags = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE; 5758 int nSpill; 5759 5760 if( pPager->tempFile ){ 5761 flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL); 5762 nSpill = sqlite3Config.nStmtSpill; 5763 }else{ 5764 flags |= SQLITE_OPEN_MAIN_JOURNAL; 5765 nSpill = jrnlBufferSize(pPager); 5766 } 5767 5768 /* Verify that the database still has the same name as it did when 5769 ** it was originally opened. */ 5770 rc = databaseIsUnmoved(pPager); 5771 if( rc==SQLITE_OK ){ 5772 rc = sqlite3JournalOpen ( 5773 pVfs, pPager->zJournal, pPager->jfd, flags, nSpill 5774 ); 5775 } 5776 } 5777 assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); 5778 } 5779 5780 5781 /* Write the first journal header to the journal file and open 5782 ** the sub-journal if necessary. 5783 */ 5784 if( rc==SQLITE_OK ){ 5785 /* TODO: Check if all of these are really required. */ 5786 pPager->nRec = 0; 5787 pPager->journalOff = 0; 5788 pPager->setMaster = 0; 5789 pPager->journalHdr = 0; 5790 rc = writeJournalHdr(pPager); 5791 } 5792 } 5793 5794 if( rc!=SQLITE_OK ){ 5795 sqlite3BitvecDestroy(pPager->pInJournal); 5796 pPager->pInJournal = 0; 5797 }else{ 5798 assert( pPager->eState==PAGER_WRITER_LOCKED ); 5799 pPager->eState = PAGER_WRITER_CACHEMOD; 5800 } 5801 5802 return rc; 5803 } 5804 5805 /* 5806 ** Begin a write-transaction on the specified pager object. If a 5807 ** write-transaction has already been opened, this function is a no-op. 5808 ** 5809 ** If the exFlag argument is false, then acquire at least a RESERVED 5810 ** lock on the database file. If exFlag is true, then acquire at least 5811 ** an EXCLUSIVE lock. If such a lock is already held, no locking 5812 ** functions need be called. 5813 ** 5814 ** If the subjInMemory argument is non-zero, then any sub-journal opened 5815 ** within this transaction will be opened as an in-memory file. This 5816 ** has no effect if the sub-journal is already opened (as it may be when 5817 ** running in exclusive mode) or if the transaction does not require a 5818 ** sub-journal. If the subjInMemory argument is zero, then any required 5819 ** sub-journal is implemented in-memory if pPager is an in-memory database, 5820 ** or using a temporary file otherwise. 5821 */ 5822 int sqlite3PagerBegin(Pager *pPager, int exFlag, int subjInMemory){ 5823 int rc = SQLITE_OK; 5824 5825 if( pPager->errCode ) return pPager->errCode; 5826 assert( pPager->eState>=PAGER_READER && pPager->eState<PAGER_ERROR ); 5827 pPager->subjInMemory = (u8)subjInMemory; 5828 5829 if( ALWAYS(pPager->eState==PAGER_READER) ){ 5830 assert( pPager->pInJournal==0 ); 5831 5832 if( pagerUseWal(pPager) ){ 5833 /* If the pager is configured to use locking_mode=exclusive, and an 5834 ** exclusive lock on the database is not already held, obtain it now. 5835 */ 5836 if( pPager->exclusiveMode && sqlite3WalExclusiveMode(pPager->pWal, -1) ){ 5837 rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); 5838 if( rc!=SQLITE_OK ){ 5839 return rc; 5840 } 5841 (void)sqlite3WalExclusiveMode(pPager->pWal, 1); 5842 } 5843 5844 /* Grab the write lock on the log file. If successful, upgrade to 5845 ** PAGER_RESERVED state. Otherwise, return an error code to the caller. 5846 ** The busy-handler is not invoked if another connection already 5847 ** holds the write-lock. If possible, the upper layer will call it. 5848 */ 5849 rc = sqlite3WalBeginWriteTransaction(pPager->pWal); 5850 }else{ 5851 /* Obtain a RESERVED lock on the database file. If the exFlag parameter 5852 ** is true, then immediately upgrade this to an EXCLUSIVE lock. The 5853 ** busy-handler callback can be used when upgrading to the EXCLUSIVE 5854 ** lock, but not when obtaining the RESERVED lock. 5855 */ 5856 rc = pagerLockDb(pPager, RESERVED_LOCK); 5857 if( rc==SQLITE_OK && exFlag ){ 5858 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); 5859 } 5860 } 5861 5862 if( rc==SQLITE_OK ){ 5863 /* Change to WRITER_LOCKED state. 5864 ** 5865 ** WAL mode sets Pager.eState to PAGER_WRITER_LOCKED or CACHEMOD 5866 ** when it has an open transaction, but never to DBMOD or FINISHED. 5867 ** This is because in those states the code to roll back savepoint 5868 ** transactions may copy data from the sub-journal into the database 5869 ** file as well as into the page cache. Which would be incorrect in 5870 ** WAL mode. 5871 */ 5872 pPager->eState = PAGER_WRITER_LOCKED; 5873 pPager->dbHintSize = pPager->dbSize; 5874 pPager->dbFileSize = pPager->dbSize; 5875 pPager->dbOrigSize = pPager->dbSize; 5876 pPager->journalOff = 0; 5877 } 5878 5879 assert( rc==SQLITE_OK || pPager->eState==PAGER_READER ); 5880 assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED ); 5881 assert( assert_pager_state(pPager) ); 5882 } 5883 5884 PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager))); 5885 return rc; 5886 } 5887 5888 /* 5889 ** Write page pPg onto the end of the rollback journal. 5890 */ 5891 static SQLITE_NOINLINE int pagerAddPageToRollbackJournal(PgHdr *pPg){ 5892 Pager *pPager = pPg->pPager; 5893 int rc; 5894 u32 cksum; 5895 char *pData2; 5896 i64 iOff = pPager->journalOff; 5897 5898 /* We should never write to the journal file the page that 5899 ** contains the database locks. The following assert verifies 5900 ** that we do not. */ 5901 assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) ); 5902 5903 assert( pPager->journalHdr<=pPager->journalOff ); 5904 CODEC2(pPager, pPg->pData, pPg->pgno, 7, return SQLITE_NOMEM_BKPT, pData2); 5905 cksum = pager_cksum(pPager, (u8*)pData2); 5906 5907 /* Even if an IO or diskfull error occurs while journalling the 5908 ** page in the block above, set the need-sync flag for the page. 5909 ** Otherwise, when the transaction is rolled back, the logic in 5910 ** playback_one_page() will think that the page needs to be restored 5911 ** in the database file. And if an IO error occurs while doing so, 5912 ** then corruption may follow. 5913 */ 5914 pPg->flags |= PGHDR_NEED_SYNC; 5915 5916 rc = write32bits(pPager->jfd, iOff, pPg->pgno); 5917 if( rc!=SQLITE_OK ) return rc; 5918 rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4); 5919 if( rc!=SQLITE_OK ) return rc; 5920 rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum); 5921 if( rc!=SQLITE_OK ) return rc; 5922 5923 IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, 5924 pPager->journalOff, pPager->pageSize)); 5925 PAGER_INCR(sqlite3_pager_writej_count); 5926 PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n", 5927 PAGERID(pPager), pPg->pgno, 5928 ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg))); 5929 5930 pPager->journalOff += 8 + pPager->pageSize; 5931 pPager->nRec++; 5932 assert( pPager->pInJournal!=0 ); 5933 rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno); 5934 testcase( rc==SQLITE_NOMEM ); 5935 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 5936 rc |= addToSavepointBitvecs(pPager, pPg->pgno); 5937 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 5938 return rc; 5939 } 5940 5941 /* 5942 ** Mark a single data page as writeable. The page is written into the 5943 ** main journal or sub-journal as required. If the page is written into 5944 ** one of the journals, the corresponding bit is set in the 5945 ** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs 5946 ** of any open savepoints as appropriate. 5947 */ 5948 static int pager_write(PgHdr *pPg){ 5949 Pager *pPager = pPg->pPager; 5950 int rc = SQLITE_OK; 5951 5952 /* This routine is not called unless a write-transaction has already 5953 ** been started. The journal file may or may not be open at this point. 5954 ** It is never called in the ERROR state. 5955 */ 5956 assert( pPager->eState==PAGER_WRITER_LOCKED 5957 || pPager->eState==PAGER_WRITER_CACHEMOD 5958 || pPager->eState==PAGER_WRITER_DBMOD 5959 ); 5960 assert( assert_pager_state(pPager) ); 5961 assert( pPager->errCode==0 ); 5962 assert( pPager->readOnly==0 ); 5963 CHECK_PAGE(pPg); 5964 5965 /* The journal file needs to be opened. Higher level routines have already 5966 ** obtained the necessary locks to begin the write-transaction, but the 5967 ** rollback journal might not yet be open. Open it now if this is the case. 5968 ** 5969 ** This is done before calling sqlite3PcacheMakeDirty() on the page. 5970 ** Otherwise, if it were done after calling sqlite3PcacheMakeDirty(), then 5971 ** an error might occur and the pager would end up in WRITER_LOCKED state 5972 ** with pages marked as dirty in the cache. 5973 */ 5974 if( pPager->eState==PAGER_WRITER_LOCKED ){ 5975 rc = pager_open_journal(pPager); 5976 if( rc!=SQLITE_OK ) return rc; 5977 } 5978 assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); 5979 assert( assert_pager_state(pPager) ); 5980 5981 /* Mark the page that is about to be modified as dirty. */ 5982 sqlite3PcacheMakeDirty(pPg); 5983 5984 /* If a rollback journal is in use, them make sure the page that is about 5985 ** to change is in the rollback journal, or if the page is a new page off 5986 ** then end of the file, make sure it is marked as PGHDR_NEED_SYNC. 5987 */ 5988 assert( (pPager->pInJournal!=0) == isOpen(pPager->jfd) ); 5989 if( pPager->pInJournal!=0 5990 && sqlite3BitvecTestNotNull(pPager->pInJournal, pPg->pgno)==0 5991 ){ 5992 assert( pagerUseWal(pPager)==0 ); 5993 if( pPg->pgno<=pPager->dbOrigSize ){ 5994 rc = pagerAddPageToRollbackJournal(pPg); 5995 if( rc!=SQLITE_OK ){ 5996 return rc; 5997 } 5998 }else{ 5999 if( pPager->eState!=PAGER_WRITER_DBMOD ){ 6000 pPg->flags |= PGHDR_NEED_SYNC; 6001 } 6002 PAGERTRACE(("APPEND %d page %d needSync=%d\n", 6003 PAGERID(pPager), pPg->pgno, 6004 ((pPg->flags&PGHDR_NEED_SYNC)?1:0))); 6005 } 6006 } 6007 6008 /* The PGHDR_DIRTY bit is set above when the page was added to the dirty-list 6009 ** and before writing the page into the rollback journal. Wait until now, 6010 ** after the page has been successfully journalled, before setting the 6011 ** PGHDR_WRITEABLE bit that indicates that the page can be safely modified. 6012 */ 6013 pPg->flags |= PGHDR_WRITEABLE; 6014 6015 /* If the statement journal is open and the page is not in it, 6016 ** then write the page into the statement journal. 6017 */ 6018 if( pPager->nSavepoint>0 ){ 6019 rc = subjournalPageIfRequired(pPg); 6020 } 6021 6022 /* Update the database size and return. */ 6023 if( pPager->dbSize<pPg->pgno ){ 6024 pPager->dbSize = pPg->pgno; 6025 } 6026 return rc; 6027 } 6028 6029 /* 6030 ** This is a variant of sqlite3PagerWrite() that runs when the sector size 6031 ** is larger than the page size. SQLite makes the (reasonable) assumption that 6032 ** all bytes of a sector are written together by hardware. Hence, all bytes of 6033 ** a sector need to be journalled in case of a power loss in the middle of 6034 ** a write. 6035 ** 6036 ** Usually, the sector size is less than or equal to the page size, in which 6037 ** case pages can be individually written. This routine only runs in the 6038 ** exceptional case where the page size is smaller than the sector size. 6039 */ 6040 static SQLITE_NOINLINE int pagerWriteLargeSector(PgHdr *pPg){ 6041 int rc = SQLITE_OK; /* Return code */ 6042 Pgno nPageCount; /* Total number of pages in database file */ 6043 Pgno pg1; /* First page of the sector pPg is located on. */ 6044 int nPage = 0; /* Number of pages starting at pg1 to journal */ 6045 int ii; /* Loop counter */ 6046 int needSync = 0; /* True if any page has PGHDR_NEED_SYNC */ 6047 Pager *pPager = pPg->pPager; /* The pager that owns pPg */ 6048 Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize); 6049 6050 /* Set the doNotSpill NOSYNC bit to 1. This is because we cannot allow 6051 ** a journal header to be written between the pages journaled by 6052 ** this function. 6053 */ 6054 assert( !MEMDB ); 6055 assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)==0 ); 6056 pPager->doNotSpill |= SPILLFLAG_NOSYNC; 6057 6058 /* This trick assumes that both the page-size and sector-size are 6059 ** an integer power of 2. It sets variable pg1 to the identifier 6060 ** of the first page of the sector pPg is located on. 6061 */ 6062 pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1; 6063 6064 nPageCount = pPager->dbSize; 6065 if( pPg->pgno>nPageCount ){ 6066 nPage = (pPg->pgno - pg1)+1; 6067 }else if( (pg1+nPagePerSector-1)>nPageCount ){ 6068 nPage = nPageCount+1-pg1; 6069 }else{ 6070 nPage = nPagePerSector; 6071 } 6072 assert(nPage>0); 6073 assert(pg1<=pPg->pgno); 6074 assert((pg1+nPage)>pPg->pgno); 6075 6076 for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){ 6077 Pgno pg = pg1+ii; 6078 PgHdr *pPage; 6079 if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){ 6080 if( pg!=PAGER_MJ_PGNO(pPager) ){ 6081 rc = sqlite3PagerGet(pPager, pg, &pPage, 0); 6082 if( rc==SQLITE_OK ){ 6083 rc = pager_write(pPage); 6084 if( pPage->flags&PGHDR_NEED_SYNC ){ 6085 needSync = 1; 6086 } 6087 sqlite3PagerUnrefNotNull(pPage); 6088 } 6089 } 6090 }else if( (pPage = sqlite3PagerLookup(pPager, pg))!=0 ){ 6091 if( pPage->flags&PGHDR_NEED_SYNC ){ 6092 needSync = 1; 6093 } 6094 sqlite3PagerUnrefNotNull(pPage); 6095 } 6096 } 6097 6098 /* If the PGHDR_NEED_SYNC flag is set for any of the nPage pages 6099 ** starting at pg1, then it needs to be set for all of them. Because 6100 ** writing to any of these nPage pages may damage the others, the 6101 ** journal file must contain sync()ed copies of all of them 6102 ** before any of them can be written out to the database file. 6103 */ 6104 if( rc==SQLITE_OK && needSync ){ 6105 assert( !MEMDB ); 6106 for(ii=0; ii<nPage; ii++){ 6107 PgHdr *pPage = sqlite3PagerLookup(pPager, pg1+ii); 6108 if( pPage ){ 6109 pPage->flags |= PGHDR_NEED_SYNC; 6110 sqlite3PagerUnrefNotNull(pPage); 6111 } 6112 } 6113 } 6114 6115 assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)!=0 ); 6116 pPager->doNotSpill &= ~SPILLFLAG_NOSYNC; 6117 return rc; 6118 } 6119 6120 /* 6121 ** Mark a data page as writeable. This routine must be called before 6122 ** making changes to a page. The caller must check the return value 6123 ** of this function and be careful not to change any page data unless 6124 ** this routine returns SQLITE_OK. 6125 ** 6126 ** The difference between this function and pager_write() is that this 6127 ** function also deals with the special case where 2 or more pages 6128 ** fit on a single disk sector. In this case all co-resident pages 6129 ** must have been written to the journal file before returning. 6130 ** 6131 ** If an error occurs, SQLITE_NOMEM or an IO error code is returned 6132 ** as appropriate. Otherwise, SQLITE_OK. 6133 */ 6134 int sqlite3PagerWrite(PgHdr *pPg){ 6135 Pager *pPager = pPg->pPager; 6136 assert( (pPg->flags & PGHDR_MMAP)==0 ); 6137 assert( pPager->eState>=PAGER_WRITER_LOCKED ); 6138 assert( assert_pager_state(pPager) ); 6139 if( (pPg->flags & PGHDR_WRITEABLE)!=0 && pPager->dbSize>=pPg->pgno ){ 6140 if( pPager->nSavepoint ) return subjournalPageIfRequired(pPg); 6141 return SQLITE_OK; 6142 }else if( pPager->errCode ){ 6143 return pPager->errCode; 6144 }else if( pPager->sectorSize > (u32)pPager->pageSize ){ 6145 assert( pPager->tempFile==0 ); 6146 return pagerWriteLargeSector(pPg); 6147 }else{ 6148 return pager_write(pPg); 6149 } 6150 } 6151 6152 /* 6153 ** Return TRUE if the page given in the argument was previously passed 6154 ** to sqlite3PagerWrite(). In other words, return TRUE if it is ok 6155 ** to change the content of the page. 6156 */ 6157 #ifndef NDEBUG 6158 int sqlite3PagerIswriteable(DbPage *pPg){ 6159 return pPg->flags & PGHDR_WRITEABLE; 6160 } 6161 #endif 6162 6163 /* 6164 ** A call to this routine tells the pager that it is not necessary to 6165 ** write the information on page pPg back to the disk, even though 6166 ** that page might be marked as dirty. This happens, for example, when 6167 ** the page has been added as a leaf of the freelist and so its 6168 ** content no longer matters. 6169 ** 6170 ** The overlying software layer calls this routine when all of the data 6171 ** on the given page is unused. The pager marks the page as clean so 6172 ** that it does not get written to disk. 6173 ** 6174 ** Tests show that this optimization can quadruple the speed of large 6175 ** DELETE operations. 6176 ** 6177 ** This optimization cannot be used with a temp-file, as the page may 6178 ** have been dirty at the start of the transaction. In that case, if 6179 ** memory pressure forces page pPg out of the cache, the data does need 6180 ** to be written out to disk so that it may be read back in if the 6181 ** current transaction is rolled back. 6182 */ 6183 void sqlite3PagerDontWrite(PgHdr *pPg){ 6184 Pager *pPager = pPg->pPager; 6185 if( !pPager->tempFile && (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){ 6186 PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager))); 6187 IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) 6188 pPg->flags |= PGHDR_DONT_WRITE; 6189 pPg->flags &= ~PGHDR_WRITEABLE; 6190 testcase( pPg->flags & PGHDR_NEED_SYNC ); 6191 pager_set_pagehash(pPg); 6192 } 6193 } 6194 6195 /* 6196 ** This routine is called to increment the value of the database file 6197 ** change-counter, stored as a 4-byte big-endian integer starting at 6198 ** byte offset 24 of the pager file. The secondary change counter at 6199 ** 92 is also updated, as is the SQLite version number at offset 96. 6200 ** 6201 ** But this only happens if the pPager->changeCountDone flag is false. 6202 ** To avoid excess churning of page 1, the update only happens once. 6203 ** See also the pager_write_changecounter() routine that does an 6204 ** unconditional update of the change counters. 6205 ** 6206 ** If the isDirectMode flag is zero, then this is done by calling 6207 ** sqlite3PagerWrite() on page 1, then modifying the contents of the 6208 ** page data. In this case the file will be updated when the current 6209 ** transaction is committed. 6210 ** 6211 ** The isDirectMode flag may only be non-zero if the library was compiled 6212 ** with the SQLITE_ENABLE_ATOMIC_WRITE macro defined. In this case, 6213 ** if isDirect is non-zero, then the database file is updated directly 6214 ** by writing an updated version of page 1 using a call to the 6215 ** sqlite3OsWrite() function. 6216 */ 6217 static int pager_incr_changecounter(Pager *pPager, int isDirectMode){ 6218 int rc = SQLITE_OK; 6219 6220 assert( pPager->eState==PAGER_WRITER_CACHEMOD 6221 || pPager->eState==PAGER_WRITER_DBMOD 6222 ); 6223 assert( assert_pager_state(pPager) ); 6224 6225 /* Declare and initialize constant integer 'isDirect'. If the 6226 ** atomic-write optimization is enabled in this build, then isDirect 6227 ** is initialized to the value passed as the isDirectMode parameter 6228 ** to this function. Otherwise, it is always set to zero. 6229 ** 6230 ** The idea is that if the atomic-write optimization is not 6231 ** enabled at compile time, the compiler can omit the tests of 6232 ** 'isDirect' below, as well as the block enclosed in the 6233 ** "if( isDirect )" condition. 6234 */ 6235 #ifndef SQLITE_ENABLE_ATOMIC_WRITE 6236 # define DIRECT_MODE 0 6237 assert( isDirectMode==0 ); 6238 UNUSED_PARAMETER(isDirectMode); 6239 #else 6240 # define DIRECT_MODE isDirectMode 6241 #endif 6242 6243 if( !pPager->changeCountDone && ALWAYS(pPager->dbSize>0) ){ 6244 PgHdr *pPgHdr; /* Reference to page 1 */ 6245 6246 assert( !pPager->tempFile && isOpen(pPager->fd) ); 6247 6248 /* Open page 1 of the file for writing. */ 6249 rc = sqlite3PagerGet(pPager, 1, &pPgHdr, 0); 6250 assert( pPgHdr==0 || rc==SQLITE_OK ); 6251 6252 /* If page one was fetched successfully, and this function is not 6253 ** operating in direct-mode, make page 1 writable. When not in 6254 ** direct mode, page 1 is always held in cache and hence the PagerGet() 6255 ** above is always successful - hence the ALWAYS on rc==SQLITE_OK. 6256 */ 6257 if( !DIRECT_MODE && ALWAYS(rc==SQLITE_OK) ){ 6258 rc = sqlite3PagerWrite(pPgHdr); 6259 } 6260 6261 if( rc==SQLITE_OK ){ 6262 /* Actually do the update of the change counter */ 6263 pager_write_changecounter(pPgHdr); 6264 6265 /* If running in direct mode, write the contents of page 1 to the file. */ 6266 if( DIRECT_MODE ){ 6267 const void *zBuf; 6268 assert( pPager->dbFileSize>0 ); 6269 CODEC2(pPager, pPgHdr->pData, 1, 6, rc=SQLITE_NOMEM_BKPT, zBuf); 6270 if( rc==SQLITE_OK ){ 6271 rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0); 6272 pPager->aStat[PAGER_STAT_WRITE]++; 6273 } 6274 if( rc==SQLITE_OK ){ 6275 /* Update the pager's copy of the change-counter. Otherwise, the 6276 ** next time a read transaction is opened the cache will be 6277 ** flushed (as the change-counter values will not match). */ 6278 const void *pCopy = (const void *)&((const char *)zBuf)[24]; 6279 memcpy(&pPager->dbFileVers, pCopy, sizeof(pPager->dbFileVers)); 6280 pPager->changeCountDone = 1; 6281 } 6282 }else{ 6283 pPager->changeCountDone = 1; 6284 } 6285 } 6286 6287 /* Release the page reference. */ 6288 sqlite3PagerUnref(pPgHdr); 6289 } 6290 return rc; 6291 } 6292 6293 /* 6294 ** Sync the database file to disk. This is a no-op for in-memory databases 6295 ** or pages with the Pager.noSync flag set. 6296 ** 6297 ** If successful, or if called on a pager for which it is a no-op, this 6298 ** function returns SQLITE_OK. Otherwise, an IO error code is returned. 6299 */ 6300 int sqlite3PagerSync(Pager *pPager, const char *zMaster){ 6301 int rc = SQLITE_OK; 6302 void *pArg = (void*)zMaster; 6303 rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SYNC, pArg); 6304 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 6305 if( rc==SQLITE_OK && !pPager->noSync ){ 6306 assert( !MEMDB ); 6307 rc = sqlite3OsSync(pPager->fd, pPager->syncFlags); 6308 } 6309 return rc; 6310 } 6311 6312 /* 6313 ** This function may only be called while a write-transaction is active in 6314 ** rollback. If the connection is in WAL mode, this call is a no-op. 6315 ** Otherwise, if the connection does not already have an EXCLUSIVE lock on 6316 ** the database file, an attempt is made to obtain one. 6317 ** 6318 ** If the EXCLUSIVE lock is already held or the attempt to obtain it is 6319 ** successful, or the connection is in WAL mode, SQLITE_OK is returned. 6320 ** Otherwise, either SQLITE_BUSY or an SQLITE_IOERR_XXX error code is 6321 ** returned. 6322 */ 6323 int sqlite3PagerExclusiveLock(Pager *pPager){ 6324 int rc = pPager->errCode; 6325 assert( assert_pager_state(pPager) ); 6326 if( rc==SQLITE_OK ){ 6327 assert( pPager->eState==PAGER_WRITER_CACHEMOD 6328 || pPager->eState==PAGER_WRITER_DBMOD 6329 || pPager->eState==PAGER_WRITER_LOCKED 6330 ); 6331 assert( assert_pager_state(pPager) ); 6332 if( 0==pagerUseWal(pPager) ){ 6333 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); 6334 } 6335 } 6336 return rc; 6337 } 6338 6339 /* 6340 ** Sync the database file for the pager pPager. zMaster points to the name 6341 ** of a master journal file that should be written into the individual 6342 ** journal file. zMaster may be NULL, which is interpreted as no master 6343 ** journal (a single database transaction). 6344 ** 6345 ** This routine ensures that: 6346 ** 6347 ** * The database file change-counter is updated, 6348 ** * the journal is synced (unless the atomic-write optimization is used), 6349 ** * all dirty pages are written to the database file, 6350 ** * the database file is truncated (if required), and 6351 ** * the database file synced. 6352 ** 6353 ** The only thing that remains to commit the transaction is to finalize 6354 ** (delete, truncate or zero the first part of) the journal file (or 6355 ** delete the master journal file if specified). 6356 ** 6357 ** Note that if zMaster==NULL, this does not overwrite a previous value 6358 ** passed to an sqlite3PagerCommitPhaseOne() call. 6359 ** 6360 ** If the final parameter - noSync - is true, then the database file itself 6361 ** is not synced. The caller must call sqlite3PagerSync() directly to 6362 ** sync the database file before calling CommitPhaseTwo() to delete the 6363 ** journal file in this case. 6364 */ 6365 int sqlite3PagerCommitPhaseOne( 6366 Pager *pPager, /* Pager object */ 6367 const char *zMaster, /* If not NULL, the master journal name */ 6368 int noSync /* True to omit the xSync on the db file */ 6369 ){ 6370 int rc = SQLITE_OK; /* Return code */ 6371 6372 assert( pPager->eState==PAGER_WRITER_LOCKED 6373 || pPager->eState==PAGER_WRITER_CACHEMOD 6374 || pPager->eState==PAGER_WRITER_DBMOD 6375 || pPager->eState==PAGER_ERROR 6376 ); 6377 assert( assert_pager_state(pPager) ); 6378 6379 /* If a prior error occurred, report that error again. */ 6380 if( NEVER(pPager->errCode) ) return pPager->errCode; 6381 6382 /* Provide the ability to easily simulate an I/O error during testing */ 6383 if( sqlite3FaultSim(400) ) return SQLITE_IOERR; 6384 6385 PAGERTRACE(("DATABASE SYNC: File=%s zMaster=%s nSize=%d\n", 6386 pPager->zFilename, zMaster, pPager->dbSize)); 6387 6388 /* If no database changes have been made, return early. */ 6389 if( pPager->eState<PAGER_WRITER_CACHEMOD ) return SQLITE_OK; 6390 6391 assert( MEMDB==0 || pPager->tempFile ); 6392 assert( isOpen(pPager->fd) || pPager->tempFile ); 6393 if( 0==pagerFlushOnCommit(pPager, 1) ){ 6394 /* If this is an in-memory db, or no pages have been written to, or this 6395 ** function has already been called, it is mostly a no-op. However, any 6396 ** backup in progress needs to be restarted. */ 6397 sqlite3BackupRestart(pPager->pBackup); 6398 }else{ 6399 PgHdr *pList; 6400 if( pagerUseWal(pPager) ){ 6401 PgHdr *pPageOne = 0; 6402 pList = sqlite3PcacheDirtyList(pPager->pPCache); 6403 if( pList==0 ){ 6404 /* Must have at least one page for the WAL commit flag. 6405 ** Ticket [2d1a5c67dfc2363e44f29d9bbd57f] 2011-05-18 */ 6406 rc = sqlite3PagerGet(pPager, 1, &pPageOne, 0); 6407 pList = pPageOne; 6408 pList->pDirty = 0; 6409 } 6410 assert( rc==SQLITE_OK ); 6411 if( ALWAYS(pList) ){ 6412 rc = pagerWalFrames(pPager, pList, pPager->dbSize, 1); 6413 } 6414 sqlite3PagerUnref(pPageOne); 6415 if( rc==SQLITE_OK ){ 6416 sqlite3PcacheCleanAll(pPager->pPCache); 6417 } 6418 }else{ 6419 /* The bBatch boolean is true if the batch-atomic-write commit method 6420 ** should be used. No rollback journal is created if batch-atomic-write 6421 ** is enabled. 6422 */ 6423 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 6424 sqlite3_file *fd = pPager->fd; 6425 int bBatch = zMaster==0 /* An SQLITE_IOCAP_BATCH_ATOMIC commit */ 6426 && (sqlite3OsDeviceCharacteristics(fd) & SQLITE_IOCAP_BATCH_ATOMIC) 6427 && !pPager->noSync 6428 && sqlite3JournalIsInMemory(pPager->jfd); 6429 #else 6430 # define bBatch 0 6431 #endif 6432 6433 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 6434 /* The following block updates the change-counter. Exactly how it 6435 ** does this depends on whether or not the atomic-update optimization 6436 ** was enabled at compile time, and if this transaction meets the 6437 ** runtime criteria to use the operation: 6438 ** 6439 ** * The file-system supports the atomic-write property for 6440 ** blocks of size page-size, and 6441 ** * This commit is not part of a multi-file transaction, and 6442 ** * Exactly one page has been modified and store in the journal file. 6443 ** 6444 ** If the optimization was not enabled at compile time, then the 6445 ** pager_incr_changecounter() function is called to update the change 6446 ** counter in 'indirect-mode'. If the optimization is compiled in but 6447 ** is not applicable to this transaction, call sqlite3JournalCreate() 6448 ** to make sure the journal file has actually been created, then call 6449 ** pager_incr_changecounter() to update the change-counter in indirect 6450 ** mode. 6451 ** 6452 ** Otherwise, if the optimization is both enabled and applicable, 6453 ** then call pager_incr_changecounter() to update the change-counter 6454 ** in 'direct' mode. In this case the journal file will never be 6455 ** created for this transaction. 6456 */ 6457 if( bBatch==0 ){ 6458 PgHdr *pPg; 6459 assert( isOpen(pPager->jfd) 6460 || pPager->journalMode==PAGER_JOURNALMODE_OFF 6461 || pPager->journalMode==PAGER_JOURNALMODE_WAL 6462 ); 6463 if( !zMaster && isOpen(pPager->jfd) 6464 && pPager->journalOff==jrnlBufferSize(pPager) 6465 && pPager->dbSize>=pPager->dbOrigSize 6466 && (!(pPg = sqlite3PcacheDirtyList(pPager->pPCache)) || 0==pPg->pDirty) 6467 ){ 6468 /* Update the db file change counter via the direct-write method. The 6469 ** following call will modify the in-memory representation of page 1 6470 ** to include the updated change counter and then write page 1 6471 ** directly to the database file. Because of the atomic-write 6472 ** property of the host file-system, this is safe. 6473 */ 6474 rc = pager_incr_changecounter(pPager, 1); 6475 }else{ 6476 rc = sqlite3JournalCreate(pPager->jfd); 6477 if( rc==SQLITE_OK ){ 6478 rc = pager_incr_changecounter(pPager, 0); 6479 } 6480 } 6481 } 6482 #else /* SQLITE_ENABLE_ATOMIC_WRITE */ 6483 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 6484 if( zMaster ){ 6485 rc = sqlite3JournalCreate(pPager->jfd); 6486 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6487 assert( bBatch==0 ); 6488 } 6489 #endif 6490 rc = pager_incr_changecounter(pPager, 0); 6491 #endif /* !SQLITE_ENABLE_ATOMIC_WRITE */ 6492 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6493 6494 /* Write the master journal name into the journal file. If a master 6495 ** journal file name has already been written to the journal file, 6496 ** or if zMaster is NULL (no master journal), then this call is a no-op. 6497 */ 6498 rc = writeMasterJournal(pPager, zMaster); 6499 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6500 6501 /* Sync the journal file and write all dirty pages to the database. 6502 ** If the atomic-update optimization is being used, this sync will not 6503 ** create the journal file or perform any real IO. 6504 ** 6505 ** Because the change-counter page was just modified, unless the 6506 ** atomic-update optimization is used it is almost certain that the 6507 ** journal requires a sync here. However, in locking_mode=exclusive 6508 ** on a system under memory pressure it is just possible that this is 6509 ** not the case. In this case it is likely enough that the redundant 6510 ** xSync() call will be changed to a no-op by the OS anyhow. 6511 */ 6512 rc = syncJournal(pPager, 0); 6513 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6514 6515 pList = sqlite3PcacheDirtyList(pPager->pPCache); 6516 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 6517 if( bBatch ){ 6518 rc = sqlite3OsFileControl(fd, SQLITE_FCNTL_BEGIN_ATOMIC_WRITE, 0); 6519 if( rc==SQLITE_OK ){ 6520 rc = pager_write_pagelist(pPager, pList); 6521 if( rc==SQLITE_OK ){ 6522 rc = sqlite3OsFileControl(fd, SQLITE_FCNTL_COMMIT_ATOMIC_WRITE, 0); 6523 } 6524 if( rc!=SQLITE_OK ){ 6525 sqlite3OsFileControlHint(fd, SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE, 0); 6526 } 6527 } 6528 6529 if( (rc&0xFF)==SQLITE_IOERR && rc!=SQLITE_IOERR_NOMEM ){ 6530 rc = sqlite3JournalCreate(pPager->jfd); 6531 if( rc!=SQLITE_OK ){ 6532 sqlite3OsClose(pPager->jfd); 6533 goto commit_phase_one_exit; 6534 } 6535 bBatch = 0; 6536 }else{ 6537 sqlite3OsClose(pPager->jfd); 6538 } 6539 } 6540 #endif /* SQLITE_ENABLE_BATCH_ATOMIC_WRITE */ 6541 6542 if( bBatch==0 ){ 6543 rc = pager_write_pagelist(pPager, pList); 6544 } 6545 if( rc!=SQLITE_OK ){ 6546 assert( rc!=SQLITE_IOERR_BLOCKED ); 6547 goto commit_phase_one_exit; 6548 } 6549 sqlite3PcacheCleanAll(pPager->pPCache); 6550 6551 /* If the file on disk is smaller than the database image, use 6552 ** pager_truncate to grow the file here. This can happen if the database 6553 ** image was extended as part of the current transaction and then the 6554 ** last page in the db image moved to the free-list. In this case the 6555 ** last page is never written out to disk, leaving the database file 6556 ** undersized. Fix this now if it is the case. */ 6557 if( pPager->dbSize>pPager->dbFileSize ){ 6558 Pgno nNew = pPager->dbSize - (pPager->dbSize==PAGER_MJ_PGNO(pPager)); 6559 assert( pPager->eState==PAGER_WRITER_DBMOD ); 6560 rc = pager_truncate(pPager, nNew); 6561 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6562 } 6563 6564 /* Finally, sync the database file. */ 6565 if( !noSync ){ 6566 rc = sqlite3PagerSync(pPager, zMaster); 6567 } 6568 IOTRACE(("DBSYNC %p\n", pPager)) 6569 } 6570 } 6571 6572 commit_phase_one_exit: 6573 if( rc==SQLITE_OK && !pagerUseWal(pPager) ){ 6574 pPager->eState = PAGER_WRITER_FINISHED; 6575 } 6576 return rc; 6577 } 6578 6579 6580 /* 6581 ** When this function is called, the database file has been completely 6582 ** updated to reflect the changes made by the current transaction and 6583 ** synced to disk. The journal file still exists in the file-system 6584 ** though, and if a failure occurs at this point it will eventually 6585 ** be used as a hot-journal and the current transaction rolled back. 6586 ** 6587 ** This function finalizes the journal file, either by deleting, 6588 ** truncating or partially zeroing it, so that it cannot be used 6589 ** for hot-journal rollback. Once this is done the transaction is 6590 ** irrevocably committed. 6591 ** 6592 ** If an error occurs, an IO error code is returned and the pager 6593 ** moves into the error state. Otherwise, SQLITE_OK is returned. 6594 */ 6595 int sqlite3PagerCommitPhaseTwo(Pager *pPager){ 6596 int rc = SQLITE_OK; /* Return code */ 6597 6598 /* This routine should not be called if a prior error has occurred. 6599 ** But if (due to a coding error elsewhere in the system) it does get 6600 ** called, just return the same error code without doing anything. */ 6601 if( NEVER(pPager->errCode) ) return pPager->errCode; 6602 6603 assert( pPager->eState==PAGER_WRITER_LOCKED 6604 || pPager->eState==PAGER_WRITER_FINISHED 6605 || (pagerUseWal(pPager) && pPager->eState==PAGER_WRITER_CACHEMOD) 6606 ); 6607 assert( assert_pager_state(pPager) ); 6608 6609 /* An optimization. If the database was not actually modified during 6610 ** this transaction, the pager is running in exclusive-mode and is 6611 ** using persistent journals, then this function is a no-op. 6612 ** 6613 ** The start of the journal file currently contains a single journal 6614 ** header with the nRec field set to 0. If such a journal is used as 6615 ** a hot-journal during hot-journal rollback, 0 changes will be made 6616 ** to the database file. So there is no need to zero the journal 6617 ** header. Since the pager is in exclusive mode, there is no need 6618 ** to drop any locks either. 6619 */ 6620 if( pPager->eState==PAGER_WRITER_LOCKED 6621 && pPager->exclusiveMode 6622 && pPager->journalMode==PAGER_JOURNALMODE_PERSIST 6623 ){ 6624 assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff ); 6625 pPager->eState = PAGER_READER; 6626 return SQLITE_OK; 6627 } 6628 6629 PAGERTRACE(("COMMIT %d\n", PAGERID(pPager))); 6630 pPager->iDataVersion++; 6631 rc = pager_end_transaction(pPager, pPager->setMaster, 1); 6632 return pager_error(pPager, rc); 6633 } 6634 6635 /* 6636 ** If a write transaction is open, then all changes made within the 6637 ** transaction are reverted and the current write-transaction is closed. 6638 ** The pager falls back to PAGER_READER state if successful, or PAGER_ERROR 6639 ** state if an error occurs. 6640 ** 6641 ** If the pager is already in PAGER_ERROR state when this function is called, 6642 ** it returns Pager.errCode immediately. No work is performed in this case. 6643 ** 6644 ** Otherwise, in rollback mode, this function performs two functions: 6645 ** 6646 ** 1) It rolls back the journal file, restoring all database file and 6647 ** in-memory cache pages to the state they were in when the transaction 6648 ** was opened, and 6649 ** 6650 ** 2) It finalizes the journal file, so that it is not used for hot 6651 ** rollback at any point in the future. 6652 ** 6653 ** Finalization of the journal file (task 2) is only performed if the 6654 ** rollback is successful. 6655 ** 6656 ** In WAL mode, all cache-entries containing data modified within the 6657 ** current transaction are either expelled from the cache or reverted to 6658 ** their pre-transaction state by re-reading data from the database or 6659 ** WAL files. The WAL transaction is then closed. 6660 */ 6661 int sqlite3PagerRollback(Pager *pPager){ 6662 int rc = SQLITE_OK; /* Return code */ 6663 PAGERTRACE(("ROLLBACK %d\n", PAGERID(pPager))); 6664 6665 /* PagerRollback() is a no-op if called in READER or OPEN state. If 6666 ** the pager is already in the ERROR state, the rollback is not 6667 ** attempted here. Instead, the error code is returned to the caller. 6668 */ 6669 assert( assert_pager_state(pPager) ); 6670 if( pPager->eState==PAGER_ERROR ) return pPager->errCode; 6671 if( pPager->eState<=PAGER_READER ) return SQLITE_OK; 6672 6673 if( pagerUseWal(pPager) ){ 6674 int rc2; 6675 rc = sqlite3PagerSavepoint(pPager, SAVEPOINT_ROLLBACK, -1); 6676 rc2 = pager_end_transaction(pPager, pPager->setMaster, 0); 6677 if( rc==SQLITE_OK ) rc = rc2; 6678 }else if( !isOpen(pPager->jfd) || pPager->eState==PAGER_WRITER_LOCKED ){ 6679 int eState = pPager->eState; 6680 rc = pager_end_transaction(pPager, 0, 0); 6681 if( !MEMDB && eState>PAGER_WRITER_LOCKED ){ 6682 /* This can happen using journal_mode=off. Move the pager to the error 6683 ** state to indicate that the contents of the cache may not be trusted. 6684 ** Any active readers will get SQLITE_ABORT. 6685 */ 6686 pPager->errCode = SQLITE_ABORT; 6687 pPager->eState = PAGER_ERROR; 6688 setGetterMethod(pPager); 6689 return rc; 6690 } 6691 }else{ 6692 rc = pager_playback(pPager, 0); 6693 } 6694 6695 assert( pPager->eState==PAGER_READER || rc!=SQLITE_OK ); 6696 assert( rc==SQLITE_OK || rc==SQLITE_FULL || rc==SQLITE_CORRUPT 6697 || rc==SQLITE_NOMEM || (rc&0xFF)==SQLITE_IOERR 6698 || rc==SQLITE_CANTOPEN 6699 ); 6700 6701 /* If an error occurs during a ROLLBACK, we can no longer trust the pager 6702 ** cache. So call pager_error() on the way out to make any error persistent. 6703 */ 6704 return pager_error(pPager, rc); 6705 } 6706 6707 /* 6708 ** Return TRUE if the database file is opened read-only. Return FALSE 6709 ** if the database is (in theory) writable. 6710 */ 6711 u8 sqlite3PagerIsreadonly(Pager *pPager){ 6712 return pPager->readOnly; 6713 } 6714 6715 #ifdef SQLITE_DEBUG 6716 /* 6717 ** Return the sum of the reference counts for all pages held by pPager. 6718 */ 6719 int sqlite3PagerRefcount(Pager *pPager){ 6720 return sqlite3PcacheRefCount(pPager->pPCache); 6721 } 6722 #endif 6723 6724 /* 6725 ** Return the approximate number of bytes of memory currently 6726 ** used by the pager and its associated cache. 6727 */ 6728 int sqlite3PagerMemUsed(Pager *pPager){ 6729 int perPageSize = pPager->pageSize + pPager->nExtra + sizeof(PgHdr) 6730 + 5*sizeof(void*); 6731 return perPageSize*sqlite3PcachePagecount(pPager->pPCache) 6732 + sqlite3MallocSize(pPager) 6733 + pPager->pageSize; 6734 } 6735 6736 /* 6737 ** Return the number of references to the specified page. 6738 */ 6739 int sqlite3PagerPageRefcount(DbPage *pPage){ 6740 return sqlite3PcachePageRefcount(pPage); 6741 } 6742 6743 #ifdef SQLITE_TEST 6744 /* 6745 ** This routine is used for testing and analysis only. 6746 */ 6747 int *sqlite3PagerStats(Pager *pPager){ 6748 static int a[11]; 6749 a[0] = sqlite3PcacheRefCount(pPager->pPCache); 6750 a[1] = sqlite3PcachePagecount(pPager->pPCache); 6751 a[2] = sqlite3PcacheGetCachesize(pPager->pPCache); 6752 a[3] = pPager->eState==PAGER_OPEN ? -1 : (int) pPager->dbSize; 6753 a[4] = pPager->eState; 6754 a[5] = pPager->errCode; 6755 a[6] = pPager->aStat[PAGER_STAT_HIT]; 6756 a[7] = pPager->aStat[PAGER_STAT_MISS]; 6757 a[8] = 0; /* Used to be pPager->nOvfl */ 6758 a[9] = pPager->nRead; 6759 a[10] = pPager->aStat[PAGER_STAT_WRITE]; 6760 return a; 6761 } 6762 #endif 6763 6764 /* 6765 ** Parameter eStat must be one of SQLITE_DBSTATUS_CACHE_HIT, _MISS, _WRITE, 6766 ** or _WRITE+1. The SQLITE_DBSTATUS_CACHE_WRITE+1 case is a translation 6767 ** of SQLITE_DBSTATUS_CACHE_SPILL. The _SPILL case is not contiguous because 6768 ** it was added later. 6769 ** 6770 ** Before returning, *pnVal is incremented by the 6771 ** current cache hit or miss count, according to the value of eStat. If the 6772 ** reset parameter is non-zero, the cache hit or miss count is zeroed before 6773 ** returning. 6774 */ 6775 void sqlite3PagerCacheStat(Pager *pPager, int eStat, int reset, int *pnVal){ 6776 6777 assert( eStat==SQLITE_DBSTATUS_CACHE_HIT 6778 || eStat==SQLITE_DBSTATUS_CACHE_MISS 6779 || eStat==SQLITE_DBSTATUS_CACHE_WRITE 6780 || eStat==SQLITE_DBSTATUS_CACHE_WRITE+1 6781 ); 6782 6783 assert( SQLITE_DBSTATUS_CACHE_HIT+1==SQLITE_DBSTATUS_CACHE_MISS ); 6784 assert( SQLITE_DBSTATUS_CACHE_HIT+2==SQLITE_DBSTATUS_CACHE_WRITE ); 6785 assert( PAGER_STAT_HIT==0 && PAGER_STAT_MISS==1 6786 && PAGER_STAT_WRITE==2 && PAGER_STAT_SPILL==3 ); 6787 6788 eStat -= SQLITE_DBSTATUS_CACHE_HIT; 6789 *pnVal += pPager->aStat[eStat]; 6790 if( reset ){ 6791 pPager->aStat[eStat] = 0; 6792 } 6793 } 6794 6795 /* 6796 ** Return true if this is an in-memory or temp-file backed pager. 6797 */ 6798 int sqlite3PagerIsMemdb(Pager *pPager){ 6799 return pPager->tempFile; 6800 } 6801 6802 /* 6803 ** Check that there are at least nSavepoint savepoints open. If there are 6804 ** currently less than nSavepoints open, then open one or more savepoints 6805 ** to make up the difference. If the number of savepoints is already 6806 ** equal to nSavepoint, then this function is a no-op. 6807 ** 6808 ** If a memory allocation fails, SQLITE_NOMEM is returned. If an error 6809 ** occurs while opening the sub-journal file, then an IO error code is 6810 ** returned. Otherwise, SQLITE_OK. 6811 */ 6812 static SQLITE_NOINLINE int pagerOpenSavepoint(Pager *pPager, int nSavepoint){ 6813 int rc = SQLITE_OK; /* Return code */ 6814 int nCurrent = pPager->nSavepoint; /* Current number of savepoints */ 6815 int ii; /* Iterator variable */ 6816 PagerSavepoint *aNew; /* New Pager.aSavepoint array */ 6817 6818 assert( pPager->eState>=PAGER_WRITER_LOCKED ); 6819 assert( assert_pager_state(pPager) ); 6820 assert( nSavepoint>nCurrent && pPager->useJournal ); 6821 6822 /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM 6823 ** if the allocation fails. Otherwise, zero the new portion in case a 6824 ** malloc failure occurs while populating it in the for(...) loop below. 6825 */ 6826 aNew = (PagerSavepoint *)sqlite3Realloc( 6827 pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint 6828 ); 6829 if( !aNew ){ 6830 return SQLITE_NOMEM_BKPT; 6831 } 6832 memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint)); 6833 pPager->aSavepoint = aNew; 6834 6835 /* Populate the PagerSavepoint structures just allocated. */ 6836 for(ii=nCurrent; ii<nSavepoint; ii++){ 6837 aNew[ii].nOrig = pPager->dbSize; 6838 if( isOpen(pPager->jfd) && pPager->journalOff>0 ){ 6839 aNew[ii].iOffset = pPager->journalOff; 6840 }else{ 6841 aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager); 6842 } 6843 aNew[ii].iSubRec = pPager->nSubRec; 6844 aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize); 6845 if( !aNew[ii].pInSavepoint ){ 6846 return SQLITE_NOMEM_BKPT; 6847 } 6848 if( pagerUseWal(pPager) ){ 6849 sqlite3WalSavepoint(pPager->pWal, aNew[ii].aWalData); 6850 } 6851 pPager->nSavepoint = ii+1; 6852 } 6853 assert( pPager->nSavepoint==nSavepoint ); 6854 assertTruncateConstraint(pPager); 6855 return rc; 6856 } 6857 int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){ 6858 assert( pPager->eState>=PAGER_WRITER_LOCKED ); 6859 assert( assert_pager_state(pPager) ); 6860 6861 if( nSavepoint>pPager->nSavepoint && pPager->useJournal ){ 6862 return pagerOpenSavepoint(pPager, nSavepoint); 6863 }else{ 6864 return SQLITE_OK; 6865 } 6866 } 6867 6868 6869 /* 6870 ** This function is called to rollback or release (commit) a savepoint. 6871 ** The savepoint to release or rollback need not be the most recently 6872 ** created savepoint. 6873 ** 6874 ** Parameter op is always either SAVEPOINT_ROLLBACK or SAVEPOINT_RELEASE. 6875 ** If it is SAVEPOINT_RELEASE, then release and destroy the savepoint with 6876 ** index iSavepoint. If it is SAVEPOINT_ROLLBACK, then rollback all changes 6877 ** that have occurred since the specified savepoint was created. 6878 ** 6879 ** The savepoint to rollback or release is identified by parameter 6880 ** iSavepoint. A value of 0 means to operate on the outermost savepoint 6881 ** (the first created). A value of (Pager.nSavepoint-1) means operate 6882 ** on the most recently created savepoint. If iSavepoint is greater than 6883 ** (Pager.nSavepoint-1), then this function is a no-op. 6884 ** 6885 ** If a negative value is passed to this function, then the current 6886 ** transaction is rolled back. This is different to calling 6887 ** sqlite3PagerRollback() because this function does not terminate 6888 ** the transaction or unlock the database, it just restores the 6889 ** contents of the database to its original state. 6890 ** 6891 ** In any case, all savepoints with an index greater than iSavepoint 6892 ** are destroyed. If this is a release operation (op==SAVEPOINT_RELEASE), 6893 ** then savepoint iSavepoint is also destroyed. 6894 ** 6895 ** This function may return SQLITE_NOMEM if a memory allocation fails, 6896 ** or an IO error code if an IO error occurs while rolling back a 6897 ** savepoint. If no errors occur, SQLITE_OK is returned. 6898 */ 6899 int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint){ 6900 int rc = pPager->errCode; 6901 6902 #ifdef SQLITE_ENABLE_ZIPVFS 6903 if( op==SAVEPOINT_RELEASE ) rc = SQLITE_OK; 6904 #endif 6905 6906 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 6907 assert( iSavepoint>=0 || op==SAVEPOINT_ROLLBACK ); 6908 6909 if( rc==SQLITE_OK && iSavepoint<pPager->nSavepoint ){ 6910 int ii; /* Iterator variable */ 6911 int nNew; /* Number of remaining savepoints after this op. */ 6912 6913 /* Figure out how many savepoints will still be active after this 6914 ** operation. Store this value in nNew. Then free resources associated 6915 ** with any savepoints that are destroyed by this operation. 6916 */ 6917 nNew = iSavepoint + (( op==SAVEPOINT_RELEASE ) ? 0 : 1); 6918 for(ii=nNew; ii<pPager->nSavepoint; ii++){ 6919 sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); 6920 } 6921 pPager->nSavepoint = nNew; 6922 6923 /* If this is a release of the outermost savepoint, truncate 6924 ** the sub-journal to zero bytes in size. */ 6925 if( op==SAVEPOINT_RELEASE ){ 6926 if( nNew==0 && isOpen(pPager->sjfd) ){ 6927 /* Only truncate if it is an in-memory sub-journal. */ 6928 if( sqlite3JournalIsInMemory(pPager->sjfd) ){ 6929 rc = sqlite3OsTruncate(pPager->sjfd, 0); 6930 assert( rc==SQLITE_OK ); 6931 } 6932 pPager->nSubRec = 0; 6933 } 6934 } 6935 /* Else this is a rollback operation, playback the specified savepoint. 6936 ** If this is a temp-file, it is possible that the journal file has 6937 ** not yet been opened. In this case there have been no changes to 6938 ** the database file, so the playback operation can be skipped. 6939 */ 6940 else if( pagerUseWal(pPager) || isOpen(pPager->jfd) ){ 6941 PagerSavepoint *pSavepoint = (nNew==0)?0:&pPager->aSavepoint[nNew-1]; 6942 rc = pagerPlaybackSavepoint(pPager, pSavepoint); 6943 assert(rc!=SQLITE_DONE); 6944 } 6945 6946 #ifdef SQLITE_ENABLE_ZIPVFS 6947 /* If the cache has been modified but the savepoint cannot be rolled 6948 ** back journal_mode=off, put the pager in the error state. This way, 6949 ** if the VFS used by this pager includes ZipVFS, the entire transaction 6950 ** can be rolled back at the ZipVFS level. */ 6951 else if( 6952 pPager->journalMode==PAGER_JOURNALMODE_OFF 6953 && pPager->eState>=PAGER_WRITER_CACHEMOD 6954 ){ 6955 pPager->errCode = SQLITE_ABORT; 6956 pPager->eState = PAGER_ERROR; 6957 setGetterMethod(pPager); 6958 } 6959 #endif 6960 } 6961 6962 return rc; 6963 } 6964 6965 /* 6966 ** Return the full pathname of the database file. 6967 ** 6968 ** Except, if the pager is in-memory only, then return an empty string if 6969 ** nullIfMemDb is true. This routine is called with nullIfMemDb==1 when 6970 ** used to report the filename to the user, for compatibility with legacy 6971 ** behavior. But when the Btree needs to know the filename for matching to 6972 ** shared cache, it uses nullIfMemDb==0 so that in-memory databases can 6973 ** participate in shared-cache. 6974 */ 6975 const char *sqlite3PagerFilename(Pager *pPager, int nullIfMemDb){ 6976 return (nullIfMemDb && pPager->memDb) ? "" : pPager->zFilename; 6977 } 6978 6979 /* 6980 ** Return the VFS structure for the pager. 6981 */ 6982 sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){ 6983 return pPager->pVfs; 6984 } 6985 6986 /* 6987 ** Return the file handle for the database file associated 6988 ** with the pager. This might return NULL if the file has 6989 ** not yet been opened. 6990 */ 6991 sqlite3_file *sqlite3PagerFile(Pager *pPager){ 6992 return pPager->fd; 6993 } 6994 6995 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 6996 /* 6997 ** Reset the lock timeout for pager. 6998 */ 6999 void sqlite3PagerResetLockTimeout(Pager *pPager){ 7000 int x = 0; 7001 sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_LOCK_TIMEOUT, &x); 7002 } 7003 #endif 7004 7005 /* 7006 ** Return the file handle for the journal file (if it exists). 7007 ** This will be either the rollback journal or the WAL file. 7008 */ 7009 sqlite3_file *sqlite3PagerJrnlFile(Pager *pPager){ 7010 #if SQLITE_OMIT_WAL 7011 return pPager->jfd; 7012 #else 7013 return pPager->pWal ? sqlite3WalFile(pPager->pWal) : pPager->jfd; 7014 #endif 7015 } 7016 7017 /* 7018 ** Return the full pathname of the journal file. 7019 */ 7020 const char *sqlite3PagerJournalname(Pager *pPager){ 7021 return pPager->zJournal; 7022 } 7023 7024 #ifdef SQLITE_HAS_CODEC 7025 /* 7026 ** Set or retrieve the codec for this pager 7027 */ 7028 void sqlite3PagerSetCodec( 7029 Pager *pPager, 7030 void *(*xCodec)(void*,void*,Pgno,int), 7031 void (*xCodecSizeChng)(void*,int,int), 7032 void (*xCodecFree)(void*), 7033 void *pCodec 7034 ){ 7035 if( pPager->xCodecFree ){ 7036 pPager->xCodecFree(pPager->pCodec); 7037 }else{ 7038 pager_reset(pPager); 7039 } 7040 pPager->xCodec = pPager->memDb ? 0 : xCodec; 7041 pPager->xCodecSizeChng = xCodecSizeChng; 7042 pPager->xCodecFree = xCodecFree; 7043 pPager->pCodec = pCodec; 7044 setGetterMethod(pPager); 7045 pagerReportSize(pPager); 7046 } 7047 void *sqlite3PagerGetCodec(Pager *pPager){ 7048 return pPager->pCodec; 7049 } 7050 7051 /* 7052 ** This function is called by the wal module when writing page content 7053 ** into the log file. 7054 ** 7055 ** This function returns a pointer to a buffer containing the encrypted 7056 ** page content. If a malloc fails, this function may return NULL. 7057 */ 7058 void *sqlite3PagerCodec(PgHdr *pPg){ 7059 void *aData = 0; 7060 CODEC2(pPg->pPager, pPg->pData, pPg->pgno, 6, return 0, aData); 7061 return aData; 7062 } 7063 7064 /* 7065 ** Return the current pager state 7066 */ 7067 int sqlite3PagerState(Pager *pPager){ 7068 return pPager->eState; 7069 } 7070 #endif /* SQLITE_HAS_CODEC */ 7071 7072 #ifndef SQLITE_OMIT_AUTOVACUUM 7073 /* 7074 ** Move the page pPg to location pgno in the file. 7075 ** 7076 ** There must be no references to the page previously located at 7077 ** pgno (which we call pPgOld) though that page is allowed to be 7078 ** in cache. If the page previously located at pgno is not already 7079 ** in the rollback journal, it is not put there by by this routine. 7080 ** 7081 ** References to the page pPg remain valid. Updating any 7082 ** meta-data associated with pPg (i.e. data stored in the nExtra bytes 7083 ** allocated along with the page) is the responsibility of the caller. 7084 ** 7085 ** A transaction must be active when this routine is called. It used to be 7086 ** required that a statement transaction was not active, but this restriction 7087 ** has been removed (CREATE INDEX needs to move a page when a statement 7088 ** transaction is active). 7089 ** 7090 ** If the fourth argument, isCommit, is non-zero, then this page is being 7091 ** moved as part of a database reorganization just before the transaction 7092 ** is being committed. In this case, it is guaranteed that the database page 7093 ** pPg refers to will not be written to again within this transaction. 7094 ** 7095 ** This function may return SQLITE_NOMEM or an IO error code if an error 7096 ** occurs. Otherwise, it returns SQLITE_OK. 7097 */ 7098 int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){ 7099 PgHdr *pPgOld; /* The page being overwritten. */ 7100 Pgno needSyncPgno = 0; /* Old value of pPg->pgno, if sync is required */ 7101 int rc; /* Return code */ 7102 Pgno origPgno; /* The original page number */ 7103 7104 assert( pPg->nRef>0 ); 7105 assert( pPager->eState==PAGER_WRITER_CACHEMOD 7106 || pPager->eState==PAGER_WRITER_DBMOD 7107 ); 7108 assert( assert_pager_state(pPager) ); 7109 7110 /* In order to be able to rollback, an in-memory database must journal 7111 ** the page we are moving from. 7112 */ 7113 assert( pPager->tempFile || !MEMDB ); 7114 if( pPager->tempFile ){ 7115 rc = sqlite3PagerWrite(pPg); 7116 if( rc ) return rc; 7117 } 7118 7119 /* If the page being moved is dirty and has not been saved by the latest 7120 ** savepoint, then save the current contents of the page into the 7121 ** sub-journal now. This is required to handle the following scenario: 7122 ** 7123 ** BEGIN; 7124 ** <journal page X, then modify it in memory> 7125 ** SAVEPOINT one; 7126 ** <Move page X to location Y> 7127 ** ROLLBACK TO one; 7128 ** 7129 ** If page X were not written to the sub-journal here, it would not 7130 ** be possible to restore its contents when the "ROLLBACK TO one" 7131 ** statement were is processed. 7132 ** 7133 ** subjournalPage() may need to allocate space to store pPg->pgno into 7134 ** one or more savepoint bitvecs. This is the reason this function 7135 ** may return SQLITE_NOMEM. 7136 */ 7137 if( (pPg->flags & PGHDR_DIRTY)!=0 7138 && SQLITE_OK!=(rc = subjournalPageIfRequired(pPg)) 7139 ){ 7140 return rc; 7141 } 7142 7143 PAGERTRACE(("MOVE %d page %d (needSync=%d) moves to %d\n", 7144 PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno)); 7145 IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno)) 7146 7147 /* If the journal needs to be sync()ed before page pPg->pgno can 7148 ** be written to, store pPg->pgno in local variable needSyncPgno. 7149 ** 7150 ** If the isCommit flag is set, there is no need to remember that 7151 ** the journal needs to be sync()ed before database page pPg->pgno 7152 ** can be written to. The caller has already promised not to write to it. 7153 */ 7154 if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){ 7155 needSyncPgno = pPg->pgno; 7156 assert( pPager->journalMode==PAGER_JOURNALMODE_OFF || 7157 pageInJournal(pPager, pPg) || pPg->pgno>pPager->dbOrigSize ); 7158 assert( pPg->flags&PGHDR_DIRTY ); 7159 } 7160 7161 /* If the cache contains a page with page-number pgno, remove it 7162 ** from its hash chain. Also, if the PGHDR_NEED_SYNC flag was set for 7163 ** page pgno before the 'move' operation, it needs to be retained 7164 ** for the page moved there. 7165 */ 7166 pPg->flags &= ~PGHDR_NEED_SYNC; 7167 pPgOld = sqlite3PagerLookup(pPager, pgno); 7168 assert( !pPgOld || pPgOld->nRef==1 ); 7169 if( pPgOld ){ 7170 pPg->flags |= (pPgOld->flags&PGHDR_NEED_SYNC); 7171 if( pPager->tempFile ){ 7172 /* Do not discard pages from an in-memory database since we might 7173 ** need to rollback later. Just move the page out of the way. */ 7174 sqlite3PcacheMove(pPgOld, pPager->dbSize+1); 7175 }else{ 7176 sqlite3PcacheDrop(pPgOld); 7177 } 7178 } 7179 7180 origPgno = pPg->pgno; 7181 sqlite3PcacheMove(pPg, pgno); 7182 sqlite3PcacheMakeDirty(pPg); 7183 7184 /* For an in-memory database, make sure the original page continues 7185 ** to exist, in case the transaction needs to roll back. Use pPgOld 7186 ** as the original page since it has already been allocated. 7187 */ 7188 if( pPager->tempFile && pPgOld ){ 7189 sqlite3PcacheMove(pPgOld, origPgno); 7190 sqlite3PagerUnrefNotNull(pPgOld); 7191 } 7192 7193 if( needSyncPgno ){ 7194 /* If needSyncPgno is non-zero, then the journal file needs to be 7195 ** sync()ed before any data is written to database file page needSyncPgno. 7196 ** Currently, no such page exists in the page-cache and the 7197 ** "is journaled" bitvec flag has been set. This needs to be remedied by 7198 ** loading the page into the pager-cache and setting the PGHDR_NEED_SYNC 7199 ** flag. 7200 ** 7201 ** If the attempt to load the page into the page-cache fails, (due 7202 ** to a malloc() or IO failure), clear the bit in the pInJournal[] 7203 ** array. Otherwise, if the page is loaded and written again in 7204 ** this transaction, it may be written to the database file before 7205 ** it is synced into the journal file. This way, it may end up in 7206 ** the journal file twice, but that is not a problem. 7207 */ 7208 PgHdr *pPgHdr; 7209 rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr, 0); 7210 if( rc!=SQLITE_OK ){ 7211 if( needSyncPgno<=pPager->dbOrigSize ){ 7212 assert( pPager->pTmpSpace!=0 ); 7213 sqlite3BitvecClear(pPager->pInJournal, needSyncPgno, pPager->pTmpSpace); 7214 } 7215 return rc; 7216 } 7217 pPgHdr->flags |= PGHDR_NEED_SYNC; 7218 sqlite3PcacheMakeDirty(pPgHdr); 7219 sqlite3PagerUnrefNotNull(pPgHdr); 7220 } 7221 7222 return SQLITE_OK; 7223 } 7224 #endif 7225 7226 /* 7227 ** The page handle passed as the first argument refers to a dirty page 7228 ** with a page number other than iNew. This function changes the page's 7229 ** page number to iNew and sets the value of the PgHdr.flags field to 7230 ** the value passed as the third parameter. 7231 */ 7232 void sqlite3PagerRekey(DbPage *pPg, Pgno iNew, u16 flags){ 7233 assert( pPg->pgno!=iNew ); 7234 pPg->flags = flags; 7235 sqlite3PcacheMove(pPg, iNew); 7236 } 7237 7238 /* 7239 ** Return a pointer to the data for the specified page. 7240 */ 7241 void *sqlite3PagerGetData(DbPage *pPg){ 7242 assert( pPg->nRef>0 || pPg->pPager->memDb ); 7243 return pPg->pData; 7244 } 7245 7246 /* 7247 ** Return a pointer to the Pager.nExtra bytes of "extra" space 7248 ** allocated along with the specified page. 7249 */ 7250 void *sqlite3PagerGetExtra(DbPage *pPg){ 7251 return pPg->pExtra; 7252 } 7253 7254 /* 7255 ** Get/set the locking-mode for this pager. Parameter eMode must be one 7256 ** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or 7257 ** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then 7258 ** the locking-mode is set to the value specified. 7259 ** 7260 ** The returned value is either PAGER_LOCKINGMODE_NORMAL or 7261 ** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated) 7262 ** locking-mode. 7263 */ 7264 int sqlite3PagerLockingMode(Pager *pPager, int eMode){ 7265 assert( eMode==PAGER_LOCKINGMODE_QUERY 7266 || eMode==PAGER_LOCKINGMODE_NORMAL 7267 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); 7268 assert( PAGER_LOCKINGMODE_QUERY<0 ); 7269 assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 ); 7270 assert( pPager->exclusiveMode || 0==sqlite3WalHeapMemory(pPager->pWal) ); 7271 if( eMode>=0 && !pPager->tempFile && !sqlite3WalHeapMemory(pPager->pWal) ){ 7272 pPager->exclusiveMode = (u8)eMode; 7273 } 7274 return (int)pPager->exclusiveMode; 7275 } 7276 7277 /* 7278 ** Set the journal-mode for this pager. Parameter eMode must be one of: 7279 ** 7280 ** PAGER_JOURNALMODE_DELETE 7281 ** PAGER_JOURNALMODE_TRUNCATE 7282 ** PAGER_JOURNALMODE_PERSIST 7283 ** PAGER_JOURNALMODE_OFF 7284 ** PAGER_JOURNALMODE_MEMORY 7285 ** PAGER_JOURNALMODE_WAL 7286 ** 7287 ** The journalmode is set to the value specified if the change is allowed. 7288 ** The change may be disallowed for the following reasons: 7289 ** 7290 ** * An in-memory database can only have its journal_mode set to _OFF 7291 ** or _MEMORY. 7292 ** 7293 ** * Temporary databases cannot have _WAL journalmode. 7294 ** 7295 ** The returned indicate the current (possibly updated) journal-mode. 7296 */ 7297 int sqlite3PagerSetJournalMode(Pager *pPager, int eMode){ 7298 u8 eOld = pPager->journalMode; /* Prior journalmode */ 7299 7300 /* The eMode parameter is always valid */ 7301 assert( eMode==PAGER_JOURNALMODE_DELETE 7302 || eMode==PAGER_JOURNALMODE_TRUNCATE 7303 || eMode==PAGER_JOURNALMODE_PERSIST 7304 || eMode==PAGER_JOURNALMODE_OFF 7305 || eMode==PAGER_JOURNALMODE_WAL 7306 || eMode==PAGER_JOURNALMODE_MEMORY ); 7307 7308 /* This routine is only called from the OP_JournalMode opcode, and 7309 ** the logic there will never allow a temporary file to be changed 7310 ** to WAL mode. 7311 */ 7312 assert( pPager->tempFile==0 || eMode!=PAGER_JOURNALMODE_WAL ); 7313 7314 /* Do allow the journalmode of an in-memory database to be set to 7315 ** anything other than MEMORY or OFF 7316 */ 7317 if( MEMDB ){ 7318 assert( eOld==PAGER_JOURNALMODE_MEMORY || eOld==PAGER_JOURNALMODE_OFF ); 7319 if( eMode!=PAGER_JOURNALMODE_MEMORY && eMode!=PAGER_JOURNALMODE_OFF ){ 7320 eMode = eOld; 7321 } 7322 } 7323 7324 if( eMode!=eOld ){ 7325 7326 /* Change the journal mode. */ 7327 assert( pPager->eState!=PAGER_ERROR ); 7328 pPager->journalMode = (u8)eMode; 7329 7330 /* When transistioning from TRUNCATE or PERSIST to any other journal 7331 ** mode except WAL, unless the pager is in locking_mode=exclusive mode, 7332 ** delete the journal file. 7333 */ 7334 assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); 7335 assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); 7336 assert( (PAGER_JOURNALMODE_DELETE & 5)==0 ); 7337 assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 ); 7338 assert( (PAGER_JOURNALMODE_OFF & 5)==0 ); 7339 assert( (PAGER_JOURNALMODE_WAL & 5)==5 ); 7340 7341 assert( isOpen(pPager->fd) || pPager->exclusiveMode ); 7342 if( !pPager->exclusiveMode && (eOld & 5)==1 && (eMode & 1)==0 ){ 7343 7344 /* In this case we would like to delete the journal file. If it is 7345 ** not possible, then that is not a problem. Deleting the journal file 7346 ** here is an optimization only. 7347 ** 7348 ** Before deleting the journal file, obtain a RESERVED lock on the 7349 ** database file. This ensures that the journal file is not deleted 7350 ** while it is in use by some other client. 7351 */ 7352 sqlite3OsClose(pPager->jfd); 7353 if( pPager->eLock>=RESERVED_LOCK ){ 7354 sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); 7355 }else{ 7356 int rc = SQLITE_OK; 7357 int state = pPager->eState; 7358 assert( state==PAGER_OPEN || state==PAGER_READER ); 7359 if( state==PAGER_OPEN ){ 7360 rc = sqlite3PagerSharedLock(pPager); 7361 } 7362 if( pPager->eState==PAGER_READER ){ 7363 assert( rc==SQLITE_OK ); 7364 rc = pagerLockDb(pPager, RESERVED_LOCK); 7365 } 7366 if( rc==SQLITE_OK ){ 7367 sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); 7368 } 7369 if( rc==SQLITE_OK && state==PAGER_READER ){ 7370 pagerUnlockDb(pPager, SHARED_LOCK); 7371 }else if( state==PAGER_OPEN ){ 7372 pager_unlock(pPager); 7373 } 7374 assert( state==pPager->eState ); 7375 } 7376 }else if( eMode==PAGER_JOURNALMODE_OFF ){ 7377 sqlite3OsClose(pPager->jfd); 7378 } 7379 } 7380 7381 /* Return the new journal mode */ 7382 return (int)pPager->journalMode; 7383 } 7384 7385 /* 7386 ** Return the current journal mode. 7387 */ 7388 int sqlite3PagerGetJournalMode(Pager *pPager){ 7389 return (int)pPager->journalMode; 7390 } 7391 7392 /* 7393 ** Return TRUE if the pager is in a state where it is OK to change the 7394 ** journalmode. Journalmode changes can only happen when the database 7395 ** is unmodified. 7396 */ 7397 int sqlite3PagerOkToChangeJournalMode(Pager *pPager){ 7398 assert( assert_pager_state(pPager) ); 7399 if( pPager->eState>=PAGER_WRITER_CACHEMOD ) return 0; 7400 if( NEVER(isOpen(pPager->jfd) && pPager->journalOff>0) ) return 0; 7401 return 1; 7402 } 7403 7404 /* 7405 ** Get/set the size-limit used for persistent journal files. 7406 ** 7407 ** Setting the size limit to -1 means no limit is enforced. 7408 ** An attempt to set a limit smaller than -1 is a no-op. 7409 */ 7410 i64 sqlite3PagerJournalSizeLimit(Pager *pPager, i64 iLimit){ 7411 if( iLimit>=-1 ){ 7412 pPager->journalSizeLimit = iLimit; 7413 sqlite3WalLimit(pPager->pWal, iLimit); 7414 } 7415 return pPager->journalSizeLimit; 7416 } 7417 7418 /* 7419 ** Return a pointer to the pPager->pBackup variable. The backup module 7420 ** in backup.c maintains the content of this variable. This module 7421 ** uses it opaquely as an argument to sqlite3BackupRestart() and 7422 ** sqlite3BackupUpdate() only. 7423 */ 7424 sqlite3_backup **sqlite3PagerBackupPtr(Pager *pPager){ 7425 return &pPager->pBackup; 7426 } 7427 7428 #ifndef SQLITE_OMIT_VACUUM 7429 /* 7430 ** Unless this is an in-memory or temporary database, clear the pager cache. 7431 */ 7432 void sqlite3PagerClearCache(Pager *pPager){ 7433 assert( MEMDB==0 || pPager->tempFile ); 7434 if( pPager->tempFile==0 ) pager_reset(pPager); 7435 } 7436 #endif 7437 7438 7439 #ifndef SQLITE_OMIT_WAL 7440 /* 7441 ** This function is called when the user invokes "PRAGMA wal_checkpoint", 7442 ** "PRAGMA wal_blocking_checkpoint" or calls the sqlite3_wal_checkpoint() 7443 ** or wal_blocking_checkpoint() API functions. 7444 ** 7445 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 7446 */ 7447 int sqlite3PagerCheckpoint( 7448 Pager *pPager, /* Checkpoint on this pager */ 7449 sqlite3 *db, /* Db handle used to check for interrupts */ 7450 int eMode, /* Type of checkpoint */ 7451 int *pnLog, /* OUT: Final number of frames in log */ 7452 int *pnCkpt /* OUT: Final number of checkpointed frames */ 7453 ){ 7454 int rc = SQLITE_OK; 7455 if( pPager->pWal ){ 7456 rc = sqlite3WalCheckpoint(pPager->pWal, db, eMode, 7457 (eMode==SQLITE_CHECKPOINT_PASSIVE ? 0 : pPager->xBusyHandler), 7458 pPager->pBusyHandlerArg, 7459 pPager->walSyncFlags, pPager->pageSize, (u8 *)pPager->pTmpSpace, 7460 pnLog, pnCkpt 7461 ); 7462 sqlite3PagerResetLockTimeout(pPager); 7463 } 7464 return rc; 7465 } 7466 7467 int sqlite3PagerWalCallback(Pager *pPager){ 7468 return sqlite3WalCallback(pPager->pWal); 7469 } 7470 7471 /* 7472 ** Return true if the underlying VFS for the given pager supports the 7473 ** primitives necessary for write-ahead logging. 7474 */ 7475 int sqlite3PagerWalSupported(Pager *pPager){ 7476 const sqlite3_io_methods *pMethods = pPager->fd->pMethods; 7477 if( pPager->noLock ) return 0; 7478 return pPager->exclusiveMode || (pMethods->iVersion>=2 && pMethods->xShmMap); 7479 } 7480 7481 /* 7482 ** Attempt to take an exclusive lock on the database file. If a PENDING lock 7483 ** is obtained instead, immediately release it. 7484 */ 7485 static int pagerExclusiveLock(Pager *pPager){ 7486 int rc; /* Return code */ 7487 7488 assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); 7489 rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); 7490 if( rc!=SQLITE_OK ){ 7491 /* If the attempt to grab the exclusive lock failed, release the 7492 ** pending lock that may have been obtained instead. */ 7493 pagerUnlockDb(pPager, SHARED_LOCK); 7494 } 7495 7496 return rc; 7497 } 7498 7499 /* 7500 ** Call sqlite3WalOpen() to open the WAL handle. If the pager is in 7501 ** exclusive-locking mode when this function is called, take an EXCLUSIVE 7502 ** lock on the database file and use heap-memory to store the wal-index 7503 ** in. Otherwise, use the normal shared-memory. 7504 */ 7505 static int pagerOpenWal(Pager *pPager){ 7506 int rc = SQLITE_OK; 7507 7508 assert( pPager->pWal==0 && pPager->tempFile==0 ); 7509 assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); 7510 7511 /* If the pager is already in exclusive-mode, the WAL module will use 7512 ** heap-memory for the wal-index instead of the VFS shared-memory 7513 ** implementation. Take the exclusive lock now, before opening the WAL 7514 ** file, to make sure this is safe. 7515 */ 7516 if( pPager->exclusiveMode ){ 7517 rc = pagerExclusiveLock(pPager); 7518 } 7519 7520 /* Open the connection to the log file. If this operation fails, 7521 ** (e.g. due to malloc() failure), return an error code. 7522 */ 7523 if( rc==SQLITE_OK ){ 7524 rc = sqlite3WalOpen(pPager->pVfs, 7525 pPager->fd, pPager->zWal, pPager->exclusiveMode, 7526 pPager->journalSizeLimit, &pPager->pWal 7527 ); 7528 } 7529 pagerFixMaplimit(pPager); 7530 7531 return rc; 7532 } 7533 7534 7535 /* 7536 ** The caller must be holding a SHARED lock on the database file to call 7537 ** this function. 7538 ** 7539 ** If the pager passed as the first argument is open on a real database 7540 ** file (not a temp file or an in-memory database), and the WAL file 7541 ** is not already open, make an attempt to open it now. If successful, 7542 ** return SQLITE_OK. If an error occurs or the VFS used by the pager does 7543 ** not support the xShmXXX() methods, return an error code. *pbOpen is 7544 ** not modified in either case. 7545 ** 7546 ** If the pager is open on a temp-file (or in-memory database), or if 7547 ** the WAL file is already open, set *pbOpen to 1 and return SQLITE_OK 7548 ** without doing anything. 7549 */ 7550 int sqlite3PagerOpenWal( 7551 Pager *pPager, /* Pager object */ 7552 int *pbOpen /* OUT: Set to true if call is a no-op */ 7553 ){ 7554 int rc = SQLITE_OK; /* Return code */ 7555 7556 assert( assert_pager_state(pPager) ); 7557 assert( pPager->eState==PAGER_OPEN || pbOpen ); 7558 assert( pPager->eState==PAGER_READER || !pbOpen ); 7559 assert( pbOpen==0 || *pbOpen==0 ); 7560 assert( pbOpen!=0 || (!pPager->tempFile && !pPager->pWal) ); 7561 7562 if( !pPager->tempFile && !pPager->pWal ){ 7563 if( !sqlite3PagerWalSupported(pPager) ) return SQLITE_CANTOPEN; 7564 7565 /* Close any rollback journal previously open */ 7566 sqlite3OsClose(pPager->jfd); 7567 7568 rc = pagerOpenWal(pPager); 7569 if( rc==SQLITE_OK ){ 7570 pPager->journalMode = PAGER_JOURNALMODE_WAL; 7571 pPager->eState = PAGER_OPEN; 7572 } 7573 }else{ 7574 *pbOpen = 1; 7575 } 7576 7577 return rc; 7578 } 7579 7580 /* 7581 ** This function is called to close the connection to the log file prior 7582 ** to switching from WAL to rollback mode. 7583 ** 7584 ** Before closing the log file, this function attempts to take an 7585 ** EXCLUSIVE lock on the database file. If this cannot be obtained, an 7586 ** error (SQLITE_BUSY) is returned and the log connection is not closed. 7587 ** If successful, the EXCLUSIVE lock is not released before returning. 7588 */ 7589 int sqlite3PagerCloseWal(Pager *pPager, sqlite3 *db){ 7590 int rc = SQLITE_OK; 7591 7592 assert( pPager->journalMode==PAGER_JOURNALMODE_WAL ); 7593 7594 /* If the log file is not already open, but does exist in the file-system, 7595 ** it may need to be checkpointed before the connection can switch to 7596 ** rollback mode. Open it now so this can happen. 7597 */ 7598 if( !pPager->pWal ){ 7599 int logexists = 0; 7600 rc = pagerLockDb(pPager, SHARED_LOCK); 7601 if( rc==SQLITE_OK ){ 7602 rc = sqlite3OsAccess( 7603 pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &logexists 7604 ); 7605 } 7606 if( rc==SQLITE_OK && logexists ){ 7607 rc = pagerOpenWal(pPager); 7608 } 7609 } 7610 7611 /* Checkpoint and close the log. Because an EXCLUSIVE lock is held on 7612 ** the database file, the log and log-summary files will be deleted. 7613 */ 7614 if( rc==SQLITE_OK && pPager->pWal ){ 7615 rc = pagerExclusiveLock(pPager); 7616 if( rc==SQLITE_OK ){ 7617 rc = sqlite3WalClose(pPager->pWal, db, pPager->walSyncFlags, 7618 pPager->pageSize, (u8*)pPager->pTmpSpace); 7619 pPager->pWal = 0; 7620 pagerFixMaplimit(pPager); 7621 if( rc && !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK); 7622 } 7623 } 7624 return rc; 7625 } 7626 7627 #ifdef SQLITE_ENABLE_SNAPSHOT 7628 /* 7629 ** If this is a WAL database, obtain a snapshot handle for the snapshot 7630 ** currently open. Otherwise, return an error. 7631 */ 7632 int sqlite3PagerSnapshotGet(Pager *pPager, sqlite3_snapshot **ppSnapshot){ 7633 int rc = SQLITE_ERROR; 7634 if( pPager->pWal ){ 7635 rc = sqlite3WalSnapshotGet(pPager->pWal, ppSnapshot); 7636 } 7637 return rc; 7638 } 7639 7640 /* 7641 ** If this is a WAL database, store a pointer to pSnapshot. Next time a 7642 ** read transaction is opened, attempt to read from the snapshot it 7643 ** identifies. If this is not a WAL database, return an error. 7644 */ 7645 int sqlite3PagerSnapshotOpen(Pager *pPager, sqlite3_snapshot *pSnapshot){ 7646 int rc = SQLITE_OK; 7647 if( pPager->pWal ){ 7648 sqlite3WalSnapshotOpen(pPager->pWal, pSnapshot); 7649 }else{ 7650 rc = SQLITE_ERROR; 7651 } 7652 return rc; 7653 } 7654 7655 /* 7656 ** If this is a WAL database, call sqlite3WalSnapshotRecover(). If this 7657 ** is not a WAL database, return an error. 7658 */ 7659 int sqlite3PagerSnapshotRecover(Pager *pPager){ 7660 int rc; 7661 if( pPager->pWal ){ 7662 rc = sqlite3WalSnapshotRecover(pPager->pWal); 7663 }else{ 7664 rc = SQLITE_ERROR; 7665 } 7666 return rc; 7667 } 7668 7669 /* 7670 ** The caller currently has a read transaction open on the database. 7671 ** If this is not a WAL database, SQLITE_ERROR is returned. Otherwise, 7672 ** this function takes a SHARED lock on the CHECKPOINTER slot and then 7673 ** checks if the snapshot passed as the second argument is still 7674 ** available. If so, SQLITE_OK is returned. 7675 ** 7676 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if 7677 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error 7678 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER 7679 ** lock is released before returning. 7680 */ 7681 int sqlite3PagerSnapshotCheck(Pager *pPager, sqlite3_snapshot *pSnapshot){ 7682 int rc; 7683 if( pPager->pWal ){ 7684 rc = sqlite3WalSnapshotCheck(pPager->pWal, pSnapshot); 7685 }else{ 7686 rc = SQLITE_ERROR; 7687 } 7688 return rc; 7689 } 7690 7691 /* 7692 ** Release a lock obtained by an earlier successful call to 7693 ** sqlite3PagerSnapshotCheck(). 7694 */ 7695 void sqlite3PagerSnapshotUnlock(Pager *pPager){ 7696 assert( pPager->pWal ); 7697 return sqlite3WalSnapshotUnlock(pPager->pWal); 7698 } 7699 7700 #endif /* SQLITE_ENABLE_SNAPSHOT */ 7701 #endif /* !SQLITE_OMIT_WAL */ 7702 7703 #ifdef SQLITE_ENABLE_ZIPVFS 7704 /* 7705 ** A read-lock must be held on the pager when this function is called. If 7706 ** the pager is in WAL mode and the WAL file currently contains one or more 7707 ** frames, return the size in bytes of the page images stored within the 7708 ** WAL frames. Otherwise, if this is not a WAL database or the WAL file 7709 ** is empty, return 0. 7710 */ 7711 int sqlite3PagerWalFramesize(Pager *pPager){ 7712 assert( pPager->eState>=PAGER_READER ); 7713 return sqlite3WalFramesize(pPager->pWal); 7714 } 7715 #endif 7716 7717 #endif /* SQLITE_OMIT_DISKIO */ 7718