1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This is the implementation of the page cache subsystem or "pager". 13 ** 14 ** The pager is used to access a database disk file. It implements 15 ** atomic commit and rollback through the use of a journal file that 16 ** is separate from the database file. The pager also implements file 17 ** locking to prevent two processes from writing the same database 18 ** file simultaneously, or one process from reading the database while 19 ** another is writing. 20 ** 21 ** @(#) $Id: pager.c,v 1.394 2007/11/05 15:30:13 danielk1977 Exp $ 22 */ 23 #ifndef SQLITE_OMIT_DISKIO 24 #include "sqliteInt.h" 25 #include <assert.h> 26 #include <string.h> 27 28 /* 29 ** Macros for troubleshooting. Normally turned off 30 */ 31 #if 0 32 #define sqlite3DebugPrintf printf 33 #define PAGERTRACE1(X) sqlite3DebugPrintf(X) 34 #define PAGERTRACE2(X,Y) sqlite3DebugPrintf(X,Y) 35 #define PAGERTRACE3(X,Y,Z) sqlite3DebugPrintf(X,Y,Z) 36 #define PAGERTRACE4(X,Y,Z,W) sqlite3DebugPrintf(X,Y,Z,W) 37 #define PAGERTRACE5(X,Y,Z,W,V) sqlite3DebugPrintf(X,Y,Z,W,V) 38 #else 39 #define PAGERTRACE1(X) 40 #define PAGERTRACE2(X,Y) 41 #define PAGERTRACE3(X,Y,Z) 42 #define PAGERTRACE4(X,Y,Z,W) 43 #define PAGERTRACE5(X,Y,Z,W,V) 44 #endif 45 46 /* 47 ** The following two macros are used within the PAGERTRACEX() macros above 48 ** to print out file-descriptors. 49 ** 50 ** PAGERID() takes a pointer to a Pager struct as it's argument. The 51 ** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file 52 ** struct as it's argument. 53 */ 54 #define PAGERID(p) ((int)(p->fd)) 55 #define FILEHANDLEID(fd) ((int)fd) 56 57 /* 58 ** The page cache as a whole is always in one of the following 59 ** states: 60 ** 61 ** PAGER_UNLOCK The page cache is not currently reading or 62 ** writing the database file. There is no 63 ** data held in memory. This is the initial 64 ** state. 65 ** 66 ** PAGER_SHARED The page cache is reading the database. 67 ** Writing is not permitted. There can be 68 ** multiple readers accessing the same database 69 ** file at the same time. 70 ** 71 ** PAGER_RESERVED This process has reserved the database for writing 72 ** but has not yet made any changes. Only one process 73 ** at a time can reserve the database. The original 74 ** database file has not been modified so other 75 ** processes may still be reading the on-disk 76 ** database file. 77 ** 78 ** PAGER_EXCLUSIVE The page cache is writing the database. 79 ** Access is exclusive. No other processes or 80 ** threads can be reading or writing while one 81 ** process is writing. 82 ** 83 ** PAGER_SYNCED The pager moves to this state from PAGER_EXCLUSIVE 84 ** after all dirty pages have been written to the 85 ** database file and the file has been synced to 86 ** disk. All that remains to do is to remove or 87 ** truncate the journal file and the transaction 88 ** will be committed. 89 ** 90 ** The page cache comes up in PAGER_UNLOCK. The first time a 91 ** sqlite3PagerGet() occurs, the state transitions to PAGER_SHARED. 92 ** After all pages have been released using sqlite_page_unref(), 93 ** the state transitions back to PAGER_UNLOCK. The first time 94 ** that sqlite3PagerWrite() is called, the state transitions to 95 ** PAGER_RESERVED. (Note that sqlite3PagerWrite() can only be 96 ** called on an outstanding page which means that the pager must 97 ** be in PAGER_SHARED before it transitions to PAGER_RESERVED.) 98 ** PAGER_RESERVED means that there is an open rollback journal. 99 ** The transition to PAGER_EXCLUSIVE occurs before any changes 100 ** are made to the database file, though writes to the rollback 101 ** journal occurs with just PAGER_RESERVED. After an sqlite3PagerRollback() 102 ** or sqlite3PagerCommitPhaseTwo(), the state can go back to PAGER_SHARED, 103 ** or it can stay at PAGER_EXCLUSIVE if we are in exclusive access mode. 104 */ 105 #define PAGER_UNLOCK 0 106 #define PAGER_SHARED 1 /* same as SHARED_LOCK */ 107 #define PAGER_RESERVED 2 /* same as RESERVED_LOCK */ 108 #define PAGER_EXCLUSIVE 4 /* same as EXCLUSIVE_LOCK */ 109 #define PAGER_SYNCED 5 110 111 /* 112 ** If the SQLITE_BUSY_RESERVED_LOCK macro is set to true at compile-time, 113 ** then failed attempts to get a reserved lock will invoke the busy callback. 114 ** This is off by default. To see why, consider the following scenario: 115 ** 116 ** Suppose thread A already has a shared lock and wants a reserved lock. 117 ** Thread B already has a reserved lock and wants an exclusive lock. If 118 ** both threads are using their busy callbacks, it might be a long time 119 ** be for one of the threads give up and allows the other to proceed. 120 ** But if the thread trying to get the reserved lock gives up quickly 121 ** (if it never invokes its busy callback) then the contention will be 122 ** resolved quickly. 123 */ 124 #ifndef SQLITE_BUSY_RESERVED_LOCK 125 # define SQLITE_BUSY_RESERVED_LOCK 0 126 #endif 127 128 /* 129 ** This macro rounds values up so that if the value is an address it 130 ** is guaranteed to be an address that is aligned to an 8-byte boundary. 131 */ 132 #define FORCE_ALIGNMENT(X) (((X)+7)&~7) 133 134 typedef struct PgHdr PgHdr; 135 136 /* 137 ** Each pager stores all currently unreferenced pages in a list sorted 138 ** in least-recently-used (LRU) order (i.e. the first item on the list has 139 ** not been referenced in a long time, the last item has been recently 140 ** used). An instance of this structure is included as part of each 141 ** pager structure for this purpose (variable Pager.lru). 142 ** 143 ** Additionally, if memory-management is enabled, all unreferenced pages 144 ** are stored in a global LRU list (global variable sqlite3LruPageList). 145 ** 146 ** In both cases, the PagerLruList.pFirstSynced variable points to 147 ** the first page in the corresponding list that does not require an 148 ** fsync() operation before it's memory can be reclaimed. If no such 149 ** page exists, PagerLruList.pFirstSynced is set to NULL. 150 */ 151 typedef struct PagerLruList PagerLruList; 152 struct PagerLruList { 153 PgHdr *pFirst; /* First page in LRU list */ 154 PgHdr *pLast; /* Last page in LRU list (the most recently used) */ 155 PgHdr *pFirstSynced; /* First page in list with PgHdr.needSync==0 */ 156 }; 157 158 /* 159 ** The following structure contains the next and previous pointers used 160 ** to link a PgHdr structure into a PagerLruList linked list. 161 */ 162 typedef struct PagerLruLink PagerLruLink; 163 struct PagerLruLink { 164 PgHdr *pNext; 165 PgHdr *pPrev; 166 }; 167 168 /* 169 ** Each in-memory image of a page begins with the following header. 170 ** This header is only visible to this pager module. The client 171 ** code that calls pager sees only the data that follows the header. 172 ** 173 ** Client code should call sqlite3PagerWrite() on a page prior to making 174 ** any modifications to that page. The first time sqlite3PagerWrite() 175 ** is called, the original page contents are written into the rollback 176 ** journal and PgHdr.inJournal and PgHdr.needSync are set. Later, once 177 ** the journal page has made it onto the disk surface, PgHdr.needSync 178 ** is cleared. The modified page cannot be written back into the original 179 ** database file until the journal pages has been synced to disk and the 180 ** PgHdr.needSync has been cleared. 181 ** 182 ** The PgHdr.dirty flag is set when sqlite3PagerWrite() is called and 183 ** is cleared again when the page content is written back to the original 184 ** database file. 185 ** 186 ** Details of important structure elements: 187 ** 188 ** needSync 189 ** 190 ** If this is true, this means that it is not safe to write the page 191 ** content to the database because the original content needed 192 ** for rollback has not by synced to the main rollback journal. 193 ** The original content may have been written to the rollback journal 194 ** but it has not yet been synced. So we cannot write to the database 195 ** file because power failure might cause the page in the journal file 196 ** to never reach the disk. It is as if the write to the journal file 197 ** does not occur until the journal file is synced. 198 ** 199 ** This flag is false if the page content exactly matches what 200 ** currently exists in the database file. The needSync flag is also 201 ** false if the original content has been written to the main rollback 202 ** journal and synced. If the page represents a new page that has 203 ** been added onto the end of the database during the current 204 ** transaction, the needSync flag is true until the original database 205 ** size in the journal header has been synced to disk. 206 ** 207 ** inJournal 208 ** 209 ** This is true if the original page has been written into the main 210 ** rollback journal. This is always false for new pages added to 211 ** the end of the database file during the current transaction. 212 ** And this flag says nothing about whether or not the journal 213 ** has been synced to disk. For pages that are in the original 214 ** database file, the following expression should always be true: 215 ** 216 ** inJournal = (pPager->aInJournal[(pgno-1)/8] & (1<<((pgno-1)%8))!=0 217 ** 218 ** The pPager->aInJournal[] array is only valid for the original 219 ** pages of the database, not new pages that are added to the end 220 ** of the database, so obviously the above expression cannot be 221 ** valid for new pages. For new pages inJournal is always 0. 222 ** 223 ** dirty 224 ** 225 ** When true, this means that the content of the page has been 226 ** modified and needs to be written back to the database file. 227 ** If false, it means that either the content of the page is 228 ** unchanged or else the content is unimportant and we do not 229 ** care whether or not it is preserved. 230 ** 231 ** alwaysRollback 232 ** 233 ** This means that the sqlite3PagerDontRollback() API should be 234 ** ignored for this page. The DontRollback() API attempts to say 235 ** that the content of the page on disk is unimportant (it is an 236 ** unused page on the freelist) so that it is unnecessary to 237 ** rollback changes to this page because the content of the page 238 ** can change without changing the meaning of the database. This 239 ** flag overrides any DontRollback() attempt. This flag is set 240 ** when a page that originally contained valid data is added to 241 ** the freelist. Later in the same transaction, this page might 242 ** be pulled from the freelist and reused for something different 243 ** and at that point the DontRollback() API will be called because 244 ** pages taken from the freelist do not need to be protected by 245 ** the rollback journal. But this flag says that the page was 246 ** not originally part of the freelist so that it still needs to 247 ** be rolled back in spite of any subsequent DontRollback() calls. 248 ** 249 ** needRead 250 ** 251 ** This flag means (when true) that the content of the page has 252 ** not yet been loaded from disk. The in-memory content is just 253 ** garbage. (Actually, we zero the content, but you should not 254 ** make any assumptions about the content nevertheless.) If the 255 ** content is needed in the future, it should be read from the 256 ** original database file. 257 */ 258 struct PgHdr { 259 Pager *pPager; /* The pager to which this page belongs */ 260 Pgno pgno; /* The page number for this page */ 261 PgHdr *pNextHash, *pPrevHash; /* Hash collision chain for PgHdr.pgno */ 262 PagerLruLink free; /* Next and previous free pages */ 263 PgHdr *pNextAll; /* A list of all pages */ 264 u8 inJournal; /* TRUE if has been written to journal */ 265 u8 dirty; /* TRUE if we need to write back changes */ 266 u8 needSync; /* Sync journal before writing this page */ 267 u8 alwaysRollback; /* Disable DontRollback() for this page */ 268 u8 needRead; /* Read content if PagerWrite() is called */ 269 short int nRef; /* Number of users of this page */ 270 PgHdr *pDirty, *pPrevDirty; /* Dirty pages */ 271 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 272 PagerLruLink gfree; /* Global list of nRef==0 pages */ 273 #endif 274 #ifdef SQLITE_CHECK_PAGES 275 u32 pageHash; 276 #endif 277 void *pData; /* Page data */ 278 /* Pager.nExtra bytes of local data appended to this header */ 279 }; 280 281 /* 282 ** For an in-memory only database, some extra information is recorded about 283 ** each page so that changes can be rolled back. (Journal files are not 284 ** used for in-memory databases.) The following information is added to 285 ** the end of every EXTRA block for in-memory databases. 286 ** 287 ** This information could have been added directly to the PgHdr structure. 288 ** But then it would take up an extra 8 bytes of storage on every PgHdr 289 ** even for disk-based databases. Splitting it out saves 8 bytes. This 290 ** is only a savings of 0.8% but those percentages add up. 291 */ 292 typedef struct PgHistory PgHistory; 293 struct PgHistory { 294 u8 *pOrig; /* Original page text. Restore to this on a full rollback */ 295 u8 *pStmt; /* Text as it was at the beginning of the current statement */ 296 PgHdr *pNextStmt, *pPrevStmt; /* List of pages in the statement journal */ 297 u8 inStmt; /* TRUE if in the statement subjournal */ 298 }; 299 300 /* 301 ** A macro used for invoking the codec if there is one 302 */ 303 #ifdef SQLITE_HAS_CODEC 304 # define CODEC1(P,D,N,X) if( P->xCodec!=0 ){ P->xCodec(P->pCodecArg,D,N,X); } 305 # define CODEC2(P,D,N,X) ((char*)(P->xCodec!=0?P->xCodec(P->pCodecArg,D,N,X):D)) 306 #else 307 # define CODEC1(P,D,N,X) /* NO-OP */ 308 # define CODEC2(P,D,N,X) ((char*)D) 309 #endif 310 311 /* 312 ** Convert a pointer to a PgHdr into a pointer to its data 313 ** and back again. 314 */ 315 #define PGHDR_TO_DATA(P) ((P)->pData) 316 #define PGHDR_TO_EXTRA(G,P) ((void*)&((G)[1])) 317 #define PGHDR_TO_HIST(P,PGR) \ 318 ((PgHistory*)&((char*)(&(P)[1]))[(PGR)->nExtra]) 319 320 /* 321 ** A open page cache is an instance of the following structure. 322 ** 323 ** Pager.errCode may be set to SQLITE_IOERR, SQLITE_CORRUPT, or 324 ** or SQLITE_FULL. Once one of the first three errors occurs, it persists 325 ** and is returned as the result of every major pager API call. The 326 ** SQLITE_FULL return code is slightly different. It persists only until the 327 ** next successful rollback is performed on the pager cache. Also, 328 ** SQLITE_FULL does not affect the sqlite3PagerGet() and sqlite3PagerLookup() 329 ** APIs, they may still be used successfully. 330 */ 331 struct Pager { 332 sqlite3_vfs *pVfs; /* OS functions to use for IO */ 333 u8 journalOpen; /* True if journal file descriptors is valid */ 334 u8 journalStarted; /* True if header of journal is synced */ 335 u8 useJournal; /* Use a rollback journal on this file */ 336 u8 noReadlock; /* Do not bother to obtain readlocks */ 337 u8 stmtOpen; /* True if the statement subjournal is open */ 338 u8 stmtInUse; /* True we are in a statement subtransaction */ 339 u8 stmtAutoopen; /* Open stmt journal when main journal is opened*/ 340 u8 noSync; /* Do not sync the journal if true */ 341 u8 fullSync; /* Do extra syncs of the journal for robustness */ 342 u8 sync_flags; /* One of SYNC_NORMAL or SYNC_FULL */ 343 u8 state; /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */ 344 u8 tempFile; /* zFilename is a temporary file */ 345 u8 readOnly; /* True for a read-only database */ 346 u8 needSync; /* True if an fsync() is needed on the journal */ 347 u8 dirtyCache; /* True if cached pages have changed */ 348 u8 alwaysRollback; /* Disable DontRollback() for all pages */ 349 u8 memDb; /* True to inhibit all file I/O */ 350 u8 setMaster; /* True if a m-j name has been written to jrnl */ 351 u8 doNotSync; /* Boolean. While true, do not spill the cache */ 352 u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */ 353 u8 changeCountDone; /* Set after incrementing the change-counter */ 354 u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */ 355 int errCode; /* One of several kinds of errors */ 356 int dbSize; /* Number of pages in the file */ 357 int origDbSize; /* dbSize before the current change */ 358 int stmtSize; /* Size of database (in pages) at stmt_begin() */ 359 int nRec; /* Number of pages written to the journal */ 360 u32 cksumInit; /* Quasi-random value added to every checksum */ 361 int stmtNRec; /* Number of records in stmt subjournal */ 362 int nExtra; /* Add this many bytes to each in-memory page */ 363 int pageSize; /* Number of bytes in a page */ 364 int nPage; /* Total number of in-memory pages */ 365 int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */ 366 int mxPage; /* Maximum number of pages to hold in cache */ 367 Pgno mxPgno; /* Maximum allowed size of the database */ 368 u8 *aInJournal; /* One bit for each page in the database file */ 369 u8 *aInStmt; /* One bit for each page in the database */ 370 char *zFilename; /* Name of the database file */ 371 char *zJournal; /* Name of the journal file */ 372 char *zDirectory; /* Directory hold database and journal files */ 373 char *zStmtJrnl; /* Name of the statement journal file */ 374 sqlite3_file *fd, *jfd; /* File descriptors for database and journal */ 375 sqlite3_file *stfd; /* File descriptor for the statement subjournal*/ 376 BusyHandler *pBusyHandler; /* Pointer to sqlite.busyHandler */ 377 PagerLruList lru; /* LRU list of free pages */ 378 PgHdr *pAll; /* List of all pages */ 379 PgHdr *pStmt; /* List of pages in the statement subjournal */ 380 PgHdr *pDirty; /* List of all dirty pages */ 381 i64 journalOff; /* Current byte offset in the journal file */ 382 i64 journalHdr; /* Byte offset to previous journal header */ 383 i64 stmtHdrOff; /* First journal header written this statement */ 384 i64 stmtCksum; /* cksumInit when statement was started */ 385 i64 stmtJSize; /* Size of journal at stmt_begin() */ 386 int sectorSize; /* Assumed sector size during rollback */ 387 #ifdef SQLITE_TEST 388 int nHit, nMiss; /* Cache hits and missing */ 389 int nRead, nWrite; /* Database pages read/written */ 390 #endif 391 void (*xDestructor)(DbPage*,int); /* Call this routine when freeing pages */ 392 void (*xReiniter)(DbPage*,int); /* Call this routine when reloading pages */ 393 #ifdef SQLITE_HAS_CODEC 394 void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */ 395 void *pCodecArg; /* First argument to xCodec() */ 396 #endif 397 int nHash; /* Size of the pager hash table */ 398 PgHdr **aHash; /* Hash table to map page number to PgHdr */ 399 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 400 Pager *pNext; /* Doubly linked list of pagers on which */ 401 Pager *pPrev; /* sqlite3_release_memory() will work */ 402 int iInUseMM; /* Non-zero if unavailable to MM */ 403 int iInUseDB; /* Non-zero if in sqlite3_release_memory() */ 404 #endif 405 char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */ 406 char dbFileVers[16]; /* Changes whenever database file changes */ 407 }; 408 409 /* 410 ** The following global variables hold counters used for 411 ** testing purposes only. These variables do not exist in 412 ** a non-testing build. These variables are not thread-safe. 413 */ 414 #ifdef SQLITE_TEST 415 int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */ 416 int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */ 417 int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */ 418 int sqlite3_pager_pgfree_count = 0; /* Number of cache pages freed */ 419 # define PAGER_INCR(v) v++ 420 #else 421 # define PAGER_INCR(v) 422 #endif 423 424 /* 425 ** The following variable points to the head of a double-linked list 426 ** of all pagers that are eligible for page stealing by the 427 ** sqlite3_release_memory() interface. Access to this list is 428 ** protected by the SQLITE_MUTEX_STATIC_MEM2 mutex. 429 */ 430 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 431 static Pager *sqlite3PagerList = 0; 432 static PagerLruList sqlite3LruPageList = {0, 0, 0}; 433 #endif 434 435 436 /* 437 ** Journal files begin with the following magic string. The data 438 ** was obtained from /dev/random. It is used only as a sanity check. 439 ** 440 ** Since version 2.8.0, the journal format contains additional sanity 441 ** checking information. If the power fails while the journal is begin 442 ** written, semi-random garbage data might appear in the journal 443 ** file after power is restored. If an attempt is then made 444 ** to roll the journal back, the database could be corrupted. The additional 445 ** sanity checking data is an attempt to discover the garbage in the 446 ** journal and ignore it. 447 ** 448 ** The sanity checking information for the new journal format consists 449 ** of a 32-bit checksum on each page of data. The checksum covers both 450 ** the page number and the pPager->pageSize bytes of data for the page. 451 ** This cksum is initialized to a 32-bit random value that appears in the 452 ** journal file right after the header. The random initializer is important, 453 ** because garbage data that appears at the end of a journal is likely 454 ** data that was once in other files that have now been deleted. If the 455 ** garbage data came from an obsolete journal file, the checksums might 456 ** be correct. But by initializing the checksum to random value which 457 ** is different for every journal, we minimize that risk. 458 */ 459 static const unsigned char aJournalMagic[] = { 460 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7, 461 }; 462 463 /* 464 ** The size of the header and of each page in the journal is determined 465 ** by the following macros. 466 */ 467 #define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8) 468 469 /* 470 ** The journal header size for this pager. In the future, this could be 471 ** set to some value read from the disk controller. The important 472 ** characteristic is that it is the same size as a disk sector. 473 */ 474 #define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize) 475 476 /* 477 ** The macro MEMDB is true if we are dealing with an in-memory database. 478 ** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set, 479 ** the value of MEMDB will be a constant and the compiler will optimize 480 ** out code that would never execute. 481 */ 482 #ifdef SQLITE_OMIT_MEMORYDB 483 # define MEMDB 0 484 #else 485 # define MEMDB pPager->memDb 486 #endif 487 488 /* 489 ** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is 490 ** reserved for working around a windows/posix incompatibility). It is 491 ** used in the journal to signify that the remainder of the journal file 492 ** is devoted to storing a master journal name - there are no more pages to 493 ** roll back. See comments for function writeMasterJournal() for details. 494 */ 495 /* #define PAGER_MJ_PGNO(x) (PENDING_BYTE/((x)->pageSize)) */ 496 #define PAGER_MJ_PGNO(x) ((PENDING_BYTE/((x)->pageSize))+1) 497 498 /* 499 ** The maximum legal page number is (2^31 - 1). 500 */ 501 #define PAGER_MAX_PGNO 2147483647 502 503 /* 504 ** The pagerEnter() and pagerLeave() routines acquire and release 505 ** a mutex on each pager. The mutex is recursive. 506 ** 507 ** This is a special-purpose mutex. It only provides mutual exclusion 508 ** between the Btree and the Memory Management sqlite3_release_memory() 509 ** function. It does not prevent, for example, two Btrees from accessing 510 ** the same pager at the same time. Other general-purpose mutexes in 511 ** the btree layer handle that chore. 512 */ 513 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 514 static void pagerEnter(Pager *p){ 515 p->iInUseDB++; 516 if( p->iInUseMM && p->iInUseDB==1 ){ 517 sqlite3_mutex *mutex; 518 mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); 519 p->iInUseDB = 0; 520 sqlite3_mutex_enter(mutex); 521 p->iInUseDB = 1; 522 sqlite3_mutex_leave(mutex); 523 } 524 assert( p->iInUseMM==0 ); 525 } 526 static void pagerLeave(Pager *p){ 527 p->iInUseDB--; 528 assert( p->iInUseDB>=0 ); 529 } 530 #else 531 # define pagerEnter(X) 532 # define pagerLeave(X) 533 #endif 534 535 /* 536 ** Enable reference count tracking (for debugging) here: 537 */ 538 #ifdef SQLITE_DEBUG 539 int pager3_refinfo_enable = 0; 540 static void pager_refinfo(PgHdr *p){ 541 static int cnt = 0; 542 if( !pager3_refinfo_enable ) return; 543 sqlite3DebugPrintf( 544 "REFCNT: %4d addr=%p nRef=%-3d total=%d\n", 545 p->pgno, PGHDR_TO_DATA(p), p->nRef, p->pPager->nRef 546 ); 547 cnt++; /* Something to set a breakpoint on */ 548 } 549 # define REFINFO(X) pager_refinfo(X) 550 #else 551 # define REFINFO(X) 552 #endif 553 554 /* 555 ** Add page pPg to the end of the linked list managed by structure 556 ** pList (pPg becomes the last entry in the list - the most recently 557 ** used). Argument pLink should point to either pPg->free or pPg->gfree, 558 ** depending on whether pPg is being added to the pager-specific or 559 ** global LRU list. 560 */ 561 static void listAdd(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){ 562 pLink->pNext = 0; 563 pLink->pPrev = pList->pLast; 564 565 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 566 assert(pLink==&pPg->free || pLink==&pPg->gfree); 567 assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList); 568 #endif 569 570 if( pList->pLast ){ 571 int iOff = (char *)pLink - (char *)pPg; 572 PagerLruLink *pLastLink = (PagerLruLink *)(&((u8 *)pList->pLast)[iOff]); 573 pLastLink->pNext = pPg; 574 }else{ 575 assert(!pList->pFirst); 576 pList->pFirst = pPg; 577 } 578 579 pList->pLast = pPg; 580 if( !pList->pFirstSynced && pPg->needSync==0 ){ 581 pList->pFirstSynced = pPg; 582 } 583 } 584 585 /* 586 ** Remove pPg from the list managed by the structure pointed to by pList. 587 ** 588 ** Argument pLink should point to either pPg->free or pPg->gfree, depending 589 ** on whether pPg is being added to the pager-specific or global LRU list. 590 */ 591 static void listRemove(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){ 592 int iOff = (char *)pLink - (char *)pPg; 593 594 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 595 assert(pLink==&pPg->free || pLink==&pPg->gfree); 596 assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList); 597 #endif 598 599 if( pPg==pList->pFirst ){ 600 pList->pFirst = pLink->pNext; 601 } 602 if( pPg==pList->pLast ){ 603 pList->pLast = pLink->pPrev; 604 } 605 if( pLink->pPrev ){ 606 PagerLruLink *pPrevLink = (PagerLruLink *)(&((u8 *)pLink->pPrev)[iOff]); 607 pPrevLink->pNext = pLink->pNext; 608 } 609 if( pLink->pNext ){ 610 PagerLruLink *pNextLink = (PagerLruLink *)(&((u8 *)pLink->pNext)[iOff]); 611 pNextLink->pPrev = pLink->pPrev; 612 } 613 if( pPg==pList->pFirstSynced ){ 614 PgHdr *p = pLink->pNext; 615 while( p && p->needSync ){ 616 PagerLruLink *pL = (PagerLruLink *)(&((u8 *)p)[iOff]); 617 p = pL->pNext; 618 } 619 pList->pFirstSynced = p; 620 } 621 622 pLink->pNext = pLink->pPrev = 0; 623 } 624 625 /* 626 ** Add page pPg to the list of free pages for the pager. If 627 ** memory-management is enabled, also add the page to the global 628 ** list of free pages. 629 */ 630 static void lruListAdd(PgHdr *pPg){ 631 listAdd(&pPg->pPager->lru, &pPg->free, pPg); 632 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 633 if( !pPg->pPager->memDb ){ 634 sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 635 listAdd(&sqlite3LruPageList, &pPg->gfree, pPg); 636 sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 637 } 638 #endif 639 } 640 641 /* 642 ** Remove page pPg from the list of free pages for the associated pager. 643 ** If memory-management is enabled, also remove pPg from the global list 644 ** of free pages. 645 */ 646 static void lruListRemove(PgHdr *pPg){ 647 listRemove(&pPg->pPager->lru, &pPg->free, pPg); 648 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 649 if( !pPg->pPager->memDb ){ 650 sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 651 listRemove(&sqlite3LruPageList, &pPg->gfree, pPg); 652 sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 653 } 654 #endif 655 } 656 657 /* 658 ** This function is called just after the needSync flag has been cleared 659 ** from all pages managed by pPager (usually because the journal file 660 ** has just been synced). It updates the pPager->lru.pFirstSynced variable 661 ** and, if memory-management is enabled, the sqlite3LruPageList.pFirstSynced 662 ** variable also. 663 */ 664 static void lruListSetFirstSynced(Pager *pPager){ 665 pPager->lru.pFirstSynced = pPager->lru.pFirst; 666 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 667 if( !pPager->memDb ){ 668 PgHdr *p; 669 sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 670 for(p=sqlite3LruPageList.pFirst; p && p->needSync; p=p->gfree.pNext); 671 assert(p==pPager->lru.pFirstSynced || p==sqlite3LruPageList.pFirstSynced); 672 sqlite3LruPageList.pFirstSynced = p; 673 sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 674 } 675 #endif 676 } 677 678 /* 679 ** Return true if page *pPg has already been written to the statement 680 ** journal (or statement snapshot has been created, if *pPg is part 681 ** of an in-memory database). 682 */ 683 static int pageInStatement(PgHdr *pPg){ 684 Pager *pPager = pPg->pPager; 685 if( MEMDB ){ 686 return PGHDR_TO_HIST(pPg, pPager)->inStmt; 687 }else{ 688 Pgno pgno = pPg->pgno; 689 u8 *a = pPager->aInStmt; 690 return (a && (int)pgno<=pPager->stmtSize && (a[pgno/8] & (1<<(pgno&7)))); 691 } 692 } 693 694 /* 695 ** Change the size of the pager hash table to N. N must be a power 696 ** of two. 697 */ 698 static void pager_resize_hash_table(Pager *pPager, int N){ 699 PgHdr **aHash, *pPg; 700 assert( N>0 && (N&(N-1))==0 ); 701 pagerLeave(pPager); 702 sqlite3MallocBenignFailure((int)pPager->aHash); 703 aHash = sqlite3MallocZero( sizeof(aHash[0])*N ); 704 pagerEnter(pPager); 705 if( aHash==0 ){ 706 /* Failure to rehash is not an error. It is only a performance hit. */ 707 return; 708 } 709 sqlite3_free(pPager->aHash); 710 pPager->nHash = N; 711 pPager->aHash = aHash; 712 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ 713 int h; 714 if( pPg->pgno==0 ){ 715 assert( pPg->pNextHash==0 && pPg->pPrevHash==0 ); 716 continue; 717 } 718 h = pPg->pgno & (N-1); 719 pPg->pNextHash = aHash[h]; 720 if( aHash[h] ){ 721 aHash[h]->pPrevHash = pPg; 722 } 723 aHash[h] = pPg; 724 pPg->pPrevHash = 0; 725 } 726 } 727 728 /* 729 ** Read a 32-bit integer from the given file descriptor. Store the integer 730 ** that is read in *pRes. Return SQLITE_OK if everything worked, or an 731 ** error code is something goes wrong. 732 ** 733 ** All values are stored on disk as big-endian. 734 */ 735 static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){ 736 unsigned char ac[4]; 737 int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset); 738 if( rc==SQLITE_OK ){ 739 *pRes = sqlite3Get4byte(ac); 740 } 741 return rc; 742 } 743 744 /* 745 ** Write a 32-bit integer into a string buffer in big-endian byte order. 746 */ 747 #define put32bits(A,B) sqlite3Put4byte((u8*)A,B) 748 749 /* 750 ** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK 751 ** on success or an error code is something goes wrong. 752 */ 753 static int write32bits(sqlite3_file *fd, i64 offset, u32 val){ 754 char ac[4]; 755 put32bits(ac, val); 756 return sqlite3OsWrite(fd, ac, 4, offset); 757 } 758 759 /* 760 ** If file pFd is open, call sqlite3OsUnlock() on it. 761 */ 762 static int osUnlock(sqlite3_file *pFd, int eLock){ 763 if( !pFd->pMethods ){ 764 return SQLITE_OK; 765 } 766 return sqlite3OsUnlock(pFd, eLock); 767 } 768 769 /* 770 ** This function determines whether or not the atomic-write optimization 771 ** can be used with this pager. The optimization can be used if: 772 ** 773 ** (a) the value returned by OsDeviceCharacteristics() indicates that 774 ** a database page may be written atomically, and 775 ** (b) the value returned by OsSectorSize() is less than or equal 776 ** to the page size. 777 ** 778 ** If the optimization cannot be used, 0 is returned. If it can be used, 779 ** then the value returned is the size of the journal file when it 780 ** contains rollback data for exactly one page. 781 */ 782 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 783 static int jrnlBufferSize(Pager *pPager){ 784 int dc; /* Device characteristics */ 785 int nSector; /* Sector size */ 786 int nPage; /* Page size */ 787 sqlite3_file *fd = pPager->fd; 788 789 if( fd->pMethods ){ 790 dc = sqlite3OsDeviceCharacteristics(fd); 791 nSector = sqlite3OsSectorSize(fd); 792 nPage = pPager->pageSize; 793 } 794 795 assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); 796 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); 797 798 if( !fd->pMethods || (dc&(SQLITE_IOCAP_ATOMIC|(nPage>>8))&&nSector<=nPage) ){ 799 return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager); 800 } 801 return 0; 802 } 803 #endif 804 805 /* 806 ** This function should be called when an error occurs within the pager 807 ** code. The first argument is a pointer to the pager structure, the 808 ** second the error-code about to be returned by a pager API function. 809 ** The value returned is a copy of the second argument to this function. 810 ** 811 ** If the second argument is SQLITE_IOERR, SQLITE_CORRUPT, or SQLITE_FULL 812 ** the error becomes persistent. Until the persisten error is cleared, 813 ** subsequent API calls on this Pager will immediately return the same 814 ** error code. 815 ** 816 ** A persistent error indicates that the contents of the pager-cache 817 ** cannot be trusted. This state can be cleared by completely discarding 818 ** the contents of the pager-cache. If a transaction was active when 819 ** the persistent error occured, then the rollback journal may need 820 ** to be replayed. 821 */ 822 static void pager_unlock(Pager *pPager); 823 static int pager_error(Pager *pPager, int rc){ 824 int rc2 = rc & 0xff; 825 assert( 826 pPager->errCode==SQLITE_FULL || 827 pPager->errCode==SQLITE_OK || 828 (pPager->errCode & 0xff)==SQLITE_IOERR 829 ); 830 if( 831 rc2==SQLITE_FULL || 832 rc2==SQLITE_IOERR || 833 rc2==SQLITE_CORRUPT 834 ){ 835 pPager->errCode = rc; 836 if( pPager->state==PAGER_UNLOCK && pPager->nRef==0 ){ 837 /* If the pager is already unlocked, call pager_unlock() now to 838 ** clear the error state and ensure that the pager-cache is 839 ** completely empty. 840 */ 841 pager_unlock(pPager); 842 } 843 } 844 return rc; 845 } 846 847 /* 848 ** If SQLITE_CHECK_PAGES is defined then we do some sanity checking 849 ** on the cache using a hash function. This is used for testing 850 ** and debugging only. 851 */ 852 #ifdef SQLITE_CHECK_PAGES 853 /* 854 ** Return a 32-bit hash of the page data for pPage. 855 */ 856 static u32 pager_datahash(int nByte, unsigned char *pData){ 857 u32 hash = 0; 858 int i; 859 for(i=0; i<nByte; i++){ 860 hash = (hash*1039) + pData[i]; 861 } 862 return hash; 863 } 864 static u32 pager_pagehash(PgHdr *pPage){ 865 return pager_datahash(pPage->pPager->pageSize, 866 (unsigned char *)PGHDR_TO_DATA(pPage)); 867 } 868 869 /* 870 ** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES 871 ** is defined, and NDEBUG is not defined, an assert() statement checks 872 ** that the page is either dirty or still matches the calculated page-hash. 873 */ 874 #define CHECK_PAGE(x) checkPage(x) 875 static void checkPage(PgHdr *pPg){ 876 Pager *pPager = pPg->pPager; 877 assert( !pPg->pageHash || pPager->errCode || MEMDB || pPg->dirty || 878 pPg->pageHash==pager_pagehash(pPg) ); 879 } 880 881 #else 882 #define pager_datahash(X,Y) 0 883 #define pager_pagehash(X) 0 884 #define CHECK_PAGE(x) 885 #endif 886 887 /* 888 ** When this is called the journal file for pager pPager must be open. 889 ** The master journal file name is read from the end of the file and 890 ** written into memory supplied by the caller. 891 ** 892 ** zMaster must point to a buffer of at least nMaster bytes allocated by 893 ** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is 894 ** enough space to write the master journal name). If the master journal 895 ** name in the journal is longer than nMaster bytes (including a 896 ** nul-terminator), then this is handled as if no master journal name 897 ** were present in the journal. 898 ** 899 ** If no master journal file name is present zMaster[0] is set to 0 and 900 ** SQLITE_OK returned. 901 */ 902 static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, int nMaster){ 903 int rc; 904 u32 len; 905 i64 szJ; 906 u32 cksum; 907 int i; 908 unsigned char aMagic[8]; /* A buffer to hold the magic header */ 909 910 zMaster[0] = '\0'; 911 912 rc = sqlite3OsFileSize(pJrnl, &szJ); 913 if( rc!=SQLITE_OK || szJ<16 ) return rc; 914 915 rc = read32bits(pJrnl, szJ-16, &len); 916 if( rc!=SQLITE_OK ) return rc; 917 918 if( len>=nMaster ){ 919 return SQLITE_OK; 920 } 921 922 rc = read32bits(pJrnl, szJ-12, &cksum); 923 if( rc!=SQLITE_OK ) return rc; 924 925 rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8); 926 if( rc!=SQLITE_OK || memcmp(aMagic, aJournalMagic, 8) ) return rc; 927 928 rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len); 929 if( rc!=SQLITE_OK ){ 930 return rc; 931 } 932 zMaster[len] = '\0'; 933 934 /* See if the checksum matches the master journal name */ 935 for(i=0; i<len; i++){ 936 cksum -= zMaster[i]; 937 } 938 if( cksum ){ 939 /* If the checksum doesn't add up, then one or more of the disk sectors 940 ** containing the master journal filename is corrupted. This means 941 ** definitely roll back, so just return SQLITE_OK and report a (nul) 942 ** master-journal filename. 943 */ 944 zMaster[0] = '\0'; 945 } 946 947 return SQLITE_OK; 948 } 949 950 /* 951 ** Seek the journal file descriptor to the next sector boundary where a 952 ** journal header may be read or written. Pager.journalOff is updated with 953 ** the new seek offset. 954 ** 955 ** i.e for a sector size of 512: 956 ** 957 ** Input Offset Output Offset 958 ** --------------------------------------- 959 ** 0 0 960 ** 512 512 961 ** 100 512 962 ** 2000 2048 963 ** 964 */ 965 static void seekJournalHdr(Pager *pPager){ 966 i64 offset = 0; 967 i64 c = pPager->journalOff; 968 if( c ){ 969 offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager); 970 } 971 assert( offset%JOURNAL_HDR_SZ(pPager)==0 ); 972 assert( offset>=c ); 973 assert( (offset-c)<JOURNAL_HDR_SZ(pPager) ); 974 pPager->journalOff = offset; 975 } 976 977 /* 978 ** The journal file must be open when this routine is called. A journal 979 ** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the 980 ** current location. 981 ** 982 ** The format for the journal header is as follows: 983 ** - 8 bytes: Magic identifying journal format. 984 ** - 4 bytes: Number of records in journal, or -1 no-sync mode is on. 985 ** - 4 bytes: Random number used for page hash. 986 ** - 4 bytes: Initial database page count. 987 ** - 4 bytes: Sector size used by the process that wrote this journal. 988 ** 989 ** Followed by (JOURNAL_HDR_SZ - 24) bytes of unused space. 990 */ 991 static int writeJournalHdr(Pager *pPager){ 992 char zHeader[sizeof(aJournalMagic)+16]; 993 int rc; 994 995 if( pPager->stmtHdrOff==0 ){ 996 pPager->stmtHdrOff = pPager->journalOff; 997 } 998 999 seekJournalHdr(pPager); 1000 pPager->journalHdr = pPager->journalOff; 1001 1002 memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); 1003 1004 /* 1005 ** Write the nRec Field - the number of page records that follow this 1006 ** journal header. Normally, zero is written to this value at this time. 1007 ** After the records are added to the journal (and the journal synced, 1008 ** if in full-sync mode), the zero is overwritten with the true number 1009 ** of records (see syncJournal()). 1010 ** 1011 ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When 1012 ** reading the journal this value tells SQLite to assume that the 1013 ** rest of the journal file contains valid page records. This assumption 1014 ** is dangerous, as if a failure occured whilst writing to the journal 1015 ** file it may contain some garbage data. There are two scenarios 1016 ** where this risk can be ignored: 1017 ** 1018 ** * When the pager is in no-sync mode. Corruption can follow a 1019 ** power failure in this case anyway. 1020 ** 1021 ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees 1022 ** that garbage data is never appended to the journal file. 1023 */ 1024 assert(pPager->fd->pMethods||pPager->noSync); 1025 if( (pPager->noSync) 1026 || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) 1027 ){ 1028 put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff); 1029 }else{ 1030 put32bits(&zHeader[sizeof(aJournalMagic)], 0); 1031 } 1032 1033 /* The random check-hash initialiser */ 1034 sqlite3Randomness(sizeof(pPager->cksumInit), &pPager->cksumInit); 1035 put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit); 1036 /* The initial database size */ 1037 put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbSize); 1038 /* The assumed sector size for this process */ 1039 put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize); 1040 IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, sizeof(zHeader))) 1041 rc = sqlite3OsWrite(pPager->jfd, zHeader, sizeof(zHeader),pPager->journalOff); 1042 pPager->journalOff += JOURNAL_HDR_SZ(pPager); 1043 1044 /* The journal header has been written successfully. Seek the journal 1045 ** file descriptor to the end of the journal header sector. 1046 */ 1047 if( rc==SQLITE_OK ){ 1048 IOTRACE(("JTAIL %p %lld\n", pPager, pPager->journalOff-1)) 1049 rc = sqlite3OsWrite(pPager->jfd, "\000", 1, pPager->journalOff-1); 1050 } 1051 return rc; 1052 } 1053 1054 /* 1055 ** The journal file must be open when this is called. A journal header file 1056 ** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal 1057 ** file. See comments above function writeJournalHdr() for a description of 1058 ** the journal header format. 1059 ** 1060 ** If the header is read successfully, *nRec is set to the number of 1061 ** page records following this header and *dbSize is set to the size of the 1062 ** database before the transaction began, in pages. Also, pPager->cksumInit 1063 ** is set to the value read from the journal header. SQLITE_OK is returned 1064 ** in this case. 1065 ** 1066 ** If the journal header file appears to be corrupted, SQLITE_DONE is 1067 ** returned and *nRec and *dbSize are not set. If JOURNAL_HDR_SZ bytes 1068 ** cannot be read from the journal file an error code is returned. 1069 */ 1070 static int readJournalHdr( 1071 Pager *pPager, 1072 i64 journalSize, 1073 u32 *pNRec, 1074 u32 *pDbSize 1075 ){ 1076 int rc; 1077 unsigned char aMagic[8]; /* A buffer to hold the magic header */ 1078 i64 jrnlOff; 1079 1080 seekJournalHdr(pPager); 1081 if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){ 1082 return SQLITE_DONE; 1083 } 1084 jrnlOff = pPager->journalOff; 1085 1086 rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), jrnlOff); 1087 if( rc ) return rc; 1088 jrnlOff += sizeof(aMagic); 1089 1090 if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){ 1091 return SQLITE_DONE; 1092 } 1093 1094 rc = read32bits(pPager->jfd, jrnlOff, pNRec); 1095 if( rc ) return rc; 1096 1097 rc = read32bits(pPager->jfd, jrnlOff+4, &pPager->cksumInit); 1098 if( rc ) return rc; 1099 1100 rc = read32bits(pPager->jfd, jrnlOff+8, pDbSize); 1101 if( rc ) return rc; 1102 1103 /* Update the assumed sector-size to match the value used by 1104 ** the process that created this journal. If this journal was 1105 ** created by a process other than this one, then this routine 1106 ** is being called from within pager_playback(). The local value 1107 ** of Pager.sectorSize is restored at the end of that routine. 1108 */ 1109 rc = read32bits(pPager->jfd, jrnlOff+12, (u32 *)&pPager->sectorSize); 1110 if( rc ) return rc; 1111 1112 pPager->journalOff += JOURNAL_HDR_SZ(pPager); 1113 return SQLITE_OK; 1114 } 1115 1116 1117 /* 1118 ** Write the supplied master journal name into the journal file for pager 1119 ** pPager at the current location. The master journal name must be the last 1120 ** thing written to a journal file. If the pager is in full-sync mode, the 1121 ** journal file descriptor is advanced to the next sector boundary before 1122 ** anything is written. The format is: 1123 ** 1124 ** + 4 bytes: PAGER_MJ_PGNO. 1125 ** + N bytes: length of master journal name. 1126 ** + 4 bytes: N 1127 ** + 4 bytes: Master journal name checksum. 1128 ** + 8 bytes: aJournalMagic[]. 1129 ** 1130 ** The master journal page checksum is the sum of the bytes in the master 1131 ** journal name. 1132 ** 1133 ** If zMaster is a NULL pointer (occurs for a single database transaction), 1134 ** this call is a no-op. 1135 */ 1136 static int writeMasterJournal(Pager *pPager, const char *zMaster){ 1137 int rc; 1138 int len; 1139 int i; 1140 i64 jrnlOff; 1141 u32 cksum = 0; 1142 char zBuf[sizeof(aJournalMagic)+2*4]; 1143 1144 if( !zMaster || pPager->setMaster) return SQLITE_OK; 1145 pPager->setMaster = 1; 1146 1147 len = strlen(zMaster); 1148 for(i=0; i<len; i++){ 1149 cksum += zMaster[i]; 1150 } 1151 1152 /* If in full-sync mode, advance to the next disk sector before writing 1153 ** the master journal name. This is in case the previous page written to 1154 ** the journal has already been synced. 1155 */ 1156 if( pPager->fullSync ){ 1157 seekJournalHdr(pPager); 1158 } 1159 jrnlOff = pPager->journalOff; 1160 pPager->journalOff += (len+20); 1161 1162 rc = write32bits(pPager->jfd, jrnlOff, PAGER_MJ_PGNO(pPager)); 1163 if( rc!=SQLITE_OK ) return rc; 1164 jrnlOff += 4; 1165 1166 rc = sqlite3OsWrite(pPager->jfd, zMaster, len, jrnlOff); 1167 if( rc!=SQLITE_OK ) return rc; 1168 jrnlOff += len; 1169 1170 put32bits(zBuf, len); 1171 put32bits(&zBuf[4], cksum); 1172 memcpy(&zBuf[8], aJournalMagic, sizeof(aJournalMagic)); 1173 rc = sqlite3OsWrite(pPager->jfd, zBuf, 8+sizeof(aJournalMagic), jrnlOff); 1174 pPager->needSync = !pPager->noSync; 1175 return rc; 1176 } 1177 1178 /* 1179 ** Add or remove a page from the list of all pages that are in the 1180 ** statement journal. 1181 ** 1182 ** The Pager keeps a separate list of pages that are currently in 1183 ** the statement journal. This helps the sqlite3PagerStmtCommit() 1184 ** routine run MUCH faster for the common case where there are many 1185 ** pages in memory but only a few are in the statement journal. 1186 */ 1187 static void page_add_to_stmt_list(PgHdr *pPg){ 1188 Pager *pPager = pPg->pPager; 1189 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); 1190 assert( MEMDB ); 1191 if( !pHist->inStmt ){ 1192 assert( pHist->pPrevStmt==0 && pHist->pNextStmt==0 ); 1193 if( pPager->pStmt ){ 1194 PGHDR_TO_HIST(pPager->pStmt, pPager)->pPrevStmt = pPg; 1195 } 1196 pHist->pNextStmt = pPager->pStmt; 1197 pPager->pStmt = pPg; 1198 pHist->inStmt = 1; 1199 } 1200 } 1201 1202 /* 1203 ** Find a page in the hash table given its page number. Return 1204 ** a pointer to the page or NULL if not found. 1205 */ 1206 static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){ 1207 PgHdr *p; 1208 if( pPager->aHash==0 ) return 0; 1209 p = pPager->aHash[pgno & (pPager->nHash-1)]; 1210 while( p && p->pgno!=pgno ){ 1211 p = p->pNextHash; 1212 } 1213 return p; 1214 } 1215 1216 /* 1217 ** Clear the in-memory cache. This routine 1218 ** sets the state of the pager back to what it was when it was first 1219 ** opened. Any outstanding pages are invalidated and subsequent attempts 1220 ** to access those pages will likely result in a coredump. 1221 */ 1222 static void pager_reset(Pager *pPager){ 1223 PgHdr *pPg, *pNext; 1224 if( pPager->errCode ) return; 1225 for(pPg=pPager->pAll; pPg; pPg=pNext){ 1226 IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno)); 1227 PAGER_INCR(sqlite3_pager_pgfree_count); 1228 pNext = pPg->pNextAll; 1229 lruListRemove(pPg); 1230 sqlite3_free(pPg); 1231 } 1232 assert(pPager->lru.pFirst==0); 1233 assert(pPager->lru.pFirstSynced==0); 1234 assert(pPager->lru.pLast==0); 1235 pPager->pStmt = 0; 1236 pPager->pAll = 0; 1237 pPager->pDirty = 0; 1238 pPager->nHash = 0; 1239 sqlite3_free(pPager->aHash); 1240 pPager->nPage = 0; 1241 pPager->aHash = 0; 1242 pPager->nRef = 0; 1243 } 1244 1245 /* 1246 ** Unlock the database file. 1247 ** 1248 ** If the pager is currently in error state, discard the contents of 1249 ** the cache and reset the Pager structure internal state. If there is 1250 ** an open journal-file, then the next time a shared-lock is obtained 1251 ** on the pager file (by this or any other process), it will be 1252 ** treated as a hot-journal and rolled back. 1253 */ 1254 static void pager_unlock(Pager *pPager){ 1255 if( !pPager->exclusiveMode ){ 1256 if( !MEMDB ){ 1257 if( pPager->fd->pMethods ){ 1258 osUnlock(pPager->fd, NO_LOCK); 1259 } 1260 pPager->dbSize = -1; 1261 IOTRACE(("UNLOCK %p\n", pPager)) 1262 1263 /* If Pager.errCode is set, the contents of the pager cache cannot be 1264 ** trusted. Now that the pager file is unlocked, the contents of the 1265 ** cache can be discarded and the error code safely cleared. 1266 */ 1267 if( pPager->errCode ){ 1268 pPager->errCode = SQLITE_OK; 1269 pager_reset(pPager); 1270 if( pPager->stmtOpen ){ 1271 sqlite3OsClose(pPager->stfd); 1272 sqlite3_free(pPager->aInStmt); 1273 pPager->aInStmt = 0; 1274 } 1275 if( pPager->journalOpen ){ 1276 sqlite3OsClose(pPager->jfd); 1277 pPager->journalOpen = 0; 1278 sqlite3_free(pPager->aInJournal); 1279 pPager->aInJournal = 0; 1280 } 1281 pPager->stmtOpen = 0; 1282 pPager->stmtInUse = 0; 1283 pPager->journalOff = 0; 1284 pPager->journalStarted = 0; 1285 pPager->stmtAutoopen = 0; 1286 pPager->origDbSize = 0; 1287 } 1288 } 1289 1290 if( !MEMDB || pPager->errCode==SQLITE_OK ){ 1291 pPager->state = PAGER_UNLOCK; 1292 pPager->changeCountDone = 0; 1293 } 1294 } 1295 } 1296 1297 /* 1298 ** Execute a rollback if a transaction is active and unlock the 1299 ** database file. If the pager has already entered the error state, 1300 ** do not attempt the rollback. 1301 */ 1302 static void pagerUnlockAndRollback(Pager *p){ 1303 assert( p->state>=PAGER_RESERVED || p->journalOpen==0 ); 1304 if( p->errCode==SQLITE_OK && p->state>=PAGER_RESERVED ){ 1305 sqlite3PagerRollback(p); 1306 } 1307 pager_unlock(p); 1308 assert( p->errCode || !p->journalOpen || (p->exclusiveMode&&!p->journalOff) ); 1309 assert( p->errCode || !p->stmtOpen || p->exclusiveMode ); 1310 } 1311 1312 /* 1313 ** This routine ends a transaction. A transaction is ended by either 1314 ** a COMMIT or a ROLLBACK. 1315 ** 1316 ** When this routine is called, the pager has the journal file open and 1317 ** a RESERVED or EXCLUSIVE lock on the database. This routine will release 1318 ** the database lock and acquires a SHARED lock in its place if that is 1319 ** the appropriate thing to do. Release locks usually is appropriate, 1320 ** unless we are in exclusive access mode or unless this is a 1321 ** COMMIT AND BEGIN or ROLLBACK AND BEGIN operation. 1322 ** 1323 ** The journal file is either deleted or truncated. 1324 ** 1325 ** TODO: Consider keeping the journal file open for temporary databases. 1326 ** This might give a performance improvement on windows where opening 1327 ** a file is an expensive operation. 1328 */ 1329 static int pager_end_transaction(Pager *pPager){ 1330 PgHdr *pPg; 1331 int rc = SQLITE_OK; 1332 int rc2 = SQLITE_OK; 1333 assert( !MEMDB ); 1334 if( pPager->state<PAGER_RESERVED ){ 1335 return SQLITE_OK; 1336 } 1337 sqlite3PagerStmtCommit(pPager); 1338 if( pPager->stmtOpen && !pPager->exclusiveMode ){ 1339 sqlite3OsClose(pPager->stfd); 1340 pPager->stmtOpen = 0; 1341 } 1342 if( pPager->journalOpen ){ 1343 if( pPager->exclusiveMode 1344 && (rc = sqlite3OsTruncate(pPager->jfd, 0))==SQLITE_OK ){; 1345 pPager->journalOff = 0; 1346 pPager->journalStarted = 0; 1347 }else{ 1348 sqlite3OsClose(pPager->jfd); 1349 pPager->journalOpen = 0; 1350 if( rc==SQLITE_OK ){ 1351 rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); 1352 } 1353 } 1354 sqlite3_free( pPager->aInJournal ); 1355 pPager->aInJournal = 0; 1356 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ 1357 pPg->inJournal = 0; 1358 pPg->dirty = 0; 1359 pPg->needSync = 0; 1360 pPg->alwaysRollback = 0; 1361 #ifdef SQLITE_CHECK_PAGES 1362 pPg->pageHash = pager_pagehash(pPg); 1363 #endif 1364 } 1365 pPager->pDirty = 0; 1366 pPager->dirtyCache = 0; 1367 pPager->nRec = 0; 1368 }else{ 1369 assert( pPager->aInJournal==0 ); 1370 assert( pPager->dirtyCache==0 || pPager->useJournal==0 ); 1371 } 1372 1373 if( !pPager->exclusiveMode ){ 1374 rc2 = osUnlock(pPager->fd, SHARED_LOCK); 1375 pPager->state = PAGER_SHARED; 1376 }else if( pPager->state==PAGER_SYNCED ){ 1377 pPager->state = PAGER_EXCLUSIVE; 1378 } 1379 pPager->origDbSize = 0; 1380 pPager->setMaster = 0; 1381 pPager->needSync = 0; 1382 lruListSetFirstSynced(pPager); 1383 pPager->dbSize = -1; 1384 1385 return (rc==SQLITE_OK?rc2:rc); 1386 } 1387 1388 /* 1389 ** Compute and return a checksum for the page of data. 1390 ** 1391 ** This is not a real checksum. It is really just the sum of the 1392 ** random initial value and the page number. We experimented with 1393 ** a checksum of the entire data, but that was found to be too slow. 1394 ** 1395 ** Note that the page number is stored at the beginning of data and 1396 ** the checksum is stored at the end. This is important. If journal 1397 ** corruption occurs due to a power failure, the most likely scenario 1398 ** is that one end or the other of the record will be changed. It is 1399 ** much less likely that the two ends of the journal record will be 1400 ** correct and the middle be corrupt. Thus, this "checksum" scheme, 1401 ** though fast and simple, catches the mostly likely kind of corruption. 1402 ** 1403 ** FIX ME: Consider adding every 200th (or so) byte of the data to the 1404 ** checksum. That way if a single page spans 3 or more disk sectors and 1405 ** only the middle sector is corrupt, we will still have a reasonable 1406 ** chance of failing the checksum and thus detecting the problem. 1407 */ 1408 static u32 pager_cksum(Pager *pPager, const u8 *aData){ 1409 u32 cksum = pPager->cksumInit; 1410 int i = pPager->pageSize-200; 1411 while( i>0 ){ 1412 cksum += aData[i]; 1413 i -= 200; 1414 } 1415 return cksum; 1416 } 1417 1418 /* Forward declaration */ 1419 static void makeClean(PgHdr*); 1420 1421 /* 1422 ** Read a single page from the journal file opened on file descriptor 1423 ** jfd. Playback this one page. 1424 ** 1425 ** If useCksum==0 it means this journal does not use checksums. Checksums 1426 ** are not used in statement journals because statement journals do not 1427 ** need to survive power failures. 1428 */ 1429 static int pager_playback_one_page( 1430 Pager *pPager, 1431 sqlite3_file *jfd, 1432 i64 offset, 1433 int useCksum 1434 ){ 1435 int rc; 1436 PgHdr *pPg; /* An existing page in the cache */ 1437 Pgno pgno; /* The page number of a page in journal */ 1438 u32 cksum; /* Checksum used for sanity checking */ 1439 u8 *aData = (u8 *)pPager->pTmpSpace; /* Temp storage for a page */ 1440 1441 /* useCksum should be true for the main journal and false for 1442 ** statement journals. Verify that this is always the case 1443 */ 1444 assert( jfd == (useCksum ? pPager->jfd : pPager->stfd) ); 1445 assert( aData ); 1446 1447 rc = read32bits(jfd, offset, &pgno); 1448 if( rc!=SQLITE_OK ) return rc; 1449 rc = sqlite3OsRead(jfd, aData, pPager->pageSize, offset+4); 1450 if( rc!=SQLITE_OK ) return rc; 1451 pPager->journalOff += pPager->pageSize + 4; 1452 1453 /* Sanity checking on the page. This is more important that I originally 1454 ** thought. If a power failure occurs while the journal is being written, 1455 ** it could cause invalid data to be written into the journal. We need to 1456 ** detect this invalid data (with high probability) and ignore it. 1457 */ 1458 if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ 1459 return SQLITE_DONE; 1460 } 1461 if( pgno>(unsigned)pPager->dbSize ){ 1462 return SQLITE_OK; 1463 } 1464 if( useCksum ){ 1465 rc = read32bits(jfd, offset+pPager->pageSize+4, &cksum); 1466 if( rc ) return rc; 1467 pPager->journalOff += 4; 1468 if( pager_cksum(pPager, aData)!=cksum ){ 1469 return SQLITE_DONE; 1470 } 1471 } 1472 1473 assert( pPager->state==PAGER_RESERVED || pPager->state>=PAGER_EXCLUSIVE ); 1474 1475 /* If the pager is in RESERVED state, then there must be a copy of this 1476 ** page in the pager cache. In this case just update the pager cache, 1477 ** not the database file. The page is left marked dirty in this case. 1478 ** 1479 ** An exception to the above rule: If the database is in no-sync mode 1480 ** and a page is moved during an incremental vacuum then the page may 1481 ** not be in the pager cache. Later: if a malloc() or IO error occurs 1482 ** during a Movepage() call, then the page may not be in the cache 1483 ** either. So the condition described in the above paragraph is not 1484 ** assert()able. 1485 ** 1486 ** If in EXCLUSIVE state, then we update the pager cache if it exists 1487 ** and the main file. The page is then marked not dirty. 1488 ** 1489 ** Ticket #1171: The statement journal might contain page content that is 1490 ** different from the page content at the start of the transaction. 1491 ** This occurs when a page is changed prior to the start of a statement 1492 ** then changed again within the statement. When rolling back such a 1493 ** statement we must not write to the original database unless we know 1494 ** for certain that original page contents are synced into the main rollback 1495 ** journal. Otherwise, a power loss might leave modified data in the 1496 ** database file without an entry in the rollback journal that can 1497 ** restore the database to its original form. Two conditions must be 1498 ** met before writing to the database files. (1) the database must be 1499 ** locked. (2) we know that the original page content is fully synced 1500 ** in the main journal either because the page is not in cache or else 1501 ** the page is marked as needSync==0. 1502 */ 1503 pPg = pager_lookup(pPager, pgno); 1504 PAGERTRACE4("PLAYBACK %d page %d hash(%08x)\n", 1505 PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, aData)); 1506 if( pPager->state>=PAGER_EXCLUSIVE && (pPg==0 || pPg->needSync==0) ){ 1507 i64 offset = (pgno-1)*(i64)pPager->pageSize; 1508 rc = sqlite3OsWrite(pPager->fd, aData, pPager->pageSize, offset); 1509 if( pPg ){ 1510 makeClean(pPg); 1511 } 1512 } 1513 if( pPg ){ 1514 /* No page should ever be explicitly rolled back that is in use, except 1515 ** for page 1 which is held in use in order to keep the lock on the 1516 ** database active. However such a page may be rolled back as a result 1517 ** of an internal error resulting in an automatic call to 1518 ** sqlite3PagerRollback(). 1519 */ 1520 void *pData; 1521 /* assert( pPg->nRef==0 || pPg->pgno==1 ); */ 1522 pData = PGHDR_TO_DATA(pPg); 1523 memcpy(pData, aData, pPager->pageSize); 1524 if( pPager->xReiniter ){ 1525 pPager->xReiniter(pPg, pPager->pageSize); 1526 } 1527 #ifdef SQLITE_CHECK_PAGES 1528 pPg->pageHash = pager_pagehash(pPg); 1529 #endif 1530 /* If this was page 1, then restore the value of Pager.dbFileVers. 1531 ** Do this before any decoding. */ 1532 if( pgno==1 ){ 1533 memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers)); 1534 } 1535 1536 /* Decode the page just read from disk */ 1537 CODEC1(pPager, pData, pPg->pgno, 3); 1538 } 1539 return rc; 1540 } 1541 1542 /* 1543 ** Parameter zMaster is the name of a master journal file. A single journal 1544 ** file that referred to the master journal file has just been rolled back. 1545 ** This routine checks if it is possible to delete the master journal file, 1546 ** and does so if it is. 1547 ** 1548 ** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not 1549 ** available for use within this function. 1550 ** 1551 ** 1552 ** The master journal file contains the names of all child journals. 1553 ** To tell if a master journal can be deleted, check to each of the 1554 ** children. If all children are either missing or do not refer to 1555 ** a different master journal, then this master journal can be deleted. 1556 */ 1557 static int pager_delmaster(Pager *pPager, const char *zMaster){ 1558 sqlite3_vfs *pVfs = pPager->pVfs; 1559 int rc; 1560 int master_open = 0; 1561 sqlite3_file *pMaster; 1562 sqlite3_file *pJournal; 1563 char *zMasterJournal = 0; /* Contents of master journal file */ 1564 i64 nMasterJournal; /* Size of master journal file */ 1565 1566 /* Open the master journal file exclusively in case some other process 1567 ** is running this routine also. Not that it makes too much difference. 1568 */ 1569 pMaster = (sqlite3_file *)sqlite3_malloc(pVfs->szOsFile * 2); 1570 pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile); 1571 if( !pMaster ){ 1572 rc = SQLITE_NOMEM; 1573 }else{ 1574 int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL); 1575 rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0); 1576 } 1577 if( rc!=SQLITE_OK ) goto delmaster_out; 1578 master_open = 1; 1579 1580 rc = sqlite3OsFileSize(pMaster, &nMasterJournal); 1581 if( rc!=SQLITE_OK ) goto delmaster_out; 1582 1583 if( nMasterJournal>0 ){ 1584 char *zJournal; 1585 char *zMasterPtr = 0; 1586 int nMasterPtr = pPager->pVfs->mxPathname+1; 1587 1588 /* Load the entire master journal file into space obtained from 1589 ** sqlite3_malloc() and pointed to by zMasterJournal. 1590 */ 1591 zMasterJournal = (char *)sqlite3_malloc(nMasterJournal + nMasterPtr); 1592 if( !zMasterJournal ){ 1593 rc = SQLITE_NOMEM; 1594 goto delmaster_out; 1595 } 1596 zMasterPtr = &zMasterJournal[nMasterJournal]; 1597 rc = sqlite3OsRead(pMaster, zMasterJournal, nMasterJournal, 0); 1598 if( rc!=SQLITE_OK ) goto delmaster_out; 1599 1600 zJournal = zMasterJournal; 1601 while( (zJournal-zMasterJournal)<nMasterJournal ){ 1602 if( sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS) ){ 1603 /* One of the journals pointed to by the master journal exists. 1604 ** Open it and check if it points at the master journal. If 1605 ** so, return without deleting the master journal file. 1606 */ 1607 int c; 1608 int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL); 1609 rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0); 1610 if( rc!=SQLITE_OK ){ 1611 goto delmaster_out; 1612 } 1613 1614 rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr); 1615 sqlite3OsClose(pJournal); 1616 if( rc!=SQLITE_OK ){ 1617 goto delmaster_out; 1618 } 1619 1620 c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0; 1621 if( c ){ 1622 /* We have a match. Do not delete the master journal file. */ 1623 goto delmaster_out; 1624 } 1625 } 1626 zJournal += (strlen(zJournal)+1); 1627 } 1628 } 1629 1630 rc = sqlite3OsDelete(pVfs, zMaster, 0); 1631 1632 delmaster_out: 1633 if( zMasterJournal ){ 1634 sqlite3_free(zMasterJournal); 1635 } 1636 if( master_open ){ 1637 sqlite3OsClose(pMaster); 1638 } 1639 sqlite3_free(pMaster); 1640 return rc; 1641 } 1642 1643 1644 static void pager_truncate_cache(Pager *pPager); 1645 1646 /* 1647 ** Truncate the main file of the given pager to the number of pages 1648 ** indicated. Also truncate the cached representation of the file. 1649 */ 1650 static int pager_truncate(Pager *pPager, int nPage){ 1651 int rc = SQLITE_OK; 1652 if( pPager->state>=PAGER_EXCLUSIVE && pPager->fd->pMethods ){ 1653 rc = sqlite3OsTruncate(pPager->fd, pPager->pageSize*(i64)nPage); 1654 } 1655 if( rc==SQLITE_OK ){ 1656 pPager->dbSize = nPage; 1657 pager_truncate_cache(pPager); 1658 } 1659 return rc; 1660 } 1661 1662 /* 1663 ** Set the sectorSize for the given pager. 1664 ** 1665 ** The sector size is the larger of the sector size reported 1666 ** by sqlite3OsSectorSize() and the pageSize. 1667 */ 1668 static void setSectorSize(Pager *pPager){ 1669 assert(pPager->fd->pMethods||pPager->tempFile); 1670 if( !pPager->tempFile ){ 1671 /* Sector size doesn't matter for temporary files. Also, the file 1672 ** may not have been opened yet, in whcih case the OsSectorSize() 1673 ** call will segfault. 1674 */ 1675 pPager->sectorSize = sqlite3OsSectorSize(pPager->fd); 1676 } 1677 if( pPager->sectorSize<pPager->pageSize ){ 1678 pPager->sectorSize = pPager->pageSize; 1679 } 1680 } 1681 1682 /* 1683 ** Playback the journal and thus restore the database file to 1684 ** the state it was in before we started making changes. 1685 ** 1686 ** The journal file format is as follows: 1687 ** 1688 ** (1) 8 byte prefix. A copy of aJournalMagic[]. 1689 ** (2) 4 byte big-endian integer which is the number of valid page records 1690 ** in the journal. If this value is 0xffffffff, then compute the 1691 ** number of page records from the journal size. 1692 ** (3) 4 byte big-endian integer which is the initial value for the 1693 ** sanity checksum. 1694 ** (4) 4 byte integer which is the number of pages to truncate the 1695 ** database to during a rollback. 1696 ** (5) 4 byte integer which is the number of bytes in the master journal 1697 ** name. The value may be zero (indicate that there is no master 1698 ** journal.) 1699 ** (6) N bytes of the master journal name. The name will be nul-terminated 1700 ** and might be shorter than the value read from (5). If the first byte 1701 ** of the name is \000 then there is no master journal. The master 1702 ** journal name is stored in UTF-8. 1703 ** (7) Zero or more pages instances, each as follows: 1704 ** + 4 byte page number. 1705 ** + pPager->pageSize bytes of data. 1706 ** + 4 byte checksum 1707 ** 1708 ** When we speak of the journal header, we mean the first 6 items above. 1709 ** Each entry in the journal is an instance of the 7th item. 1710 ** 1711 ** Call the value from the second bullet "nRec". nRec is the number of 1712 ** valid page entries in the journal. In most cases, you can compute the 1713 ** value of nRec from the size of the journal file. But if a power 1714 ** failure occurred while the journal was being written, it could be the 1715 ** case that the size of the journal file had already been increased but 1716 ** the extra entries had not yet made it safely to disk. In such a case, 1717 ** the value of nRec computed from the file size would be too large. For 1718 ** that reason, we always use the nRec value in the header. 1719 ** 1720 ** If the nRec value is 0xffffffff it means that nRec should be computed 1721 ** from the file size. This value is used when the user selects the 1722 ** no-sync option for the journal. A power failure could lead to corruption 1723 ** in this case. But for things like temporary table (which will be 1724 ** deleted when the power is restored) we don't care. 1725 ** 1726 ** If the file opened as the journal file is not a well-formed 1727 ** journal file then all pages up to the first corrupted page are rolled 1728 ** back (or no pages if the journal header is corrupted). The journal file 1729 ** is then deleted and SQLITE_OK returned, just as if no corruption had 1730 ** been encountered. 1731 ** 1732 ** If an I/O or malloc() error occurs, the journal-file is not deleted 1733 ** and an error code is returned. 1734 */ 1735 static int pager_playback(Pager *pPager, int isHot){ 1736 sqlite3_vfs *pVfs = pPager->pVfs; 1737 i64 szJ; /* Size of the journal file in bytes */ 1738 u32 nRec; /* Number of Records in the journal */ 1739 int i; /* Loop counter */ 1740 Pgno mxPg = 0; /* Size of the original file in pages */ 1741 int rc; /* Result code of a subroutine */ 1742 char *zMaster = 0; /* Name of master journal file if any */ 1743 1744 /* Figure out how many records are in the journal. Abort early if 1745 ** the journal is empty. 1746 */ 1747 assert( pPager->journalOpen ); 1748 rc = sqlite3OsFileSize(pPager->jfd, &szJ); 1749 if( rc!=SQLITE_OK || szJ==0 ){ 1750 goto end_playback; 1751 } 1752 1753 /* Read the master journal name from the journal, if it is present. 1754 ** If a master journal file name is specified, but the file is not 1755 ** present on disk, then the journal is not hot and does not need to be 1756 ** played back. 1757 */ 1758 zMaster = pPager->pTmpSpace; 1759 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); 1760 assert( rc!=SQLITE_DONE ); 1761 if( rc!=SQLITE_OK 1762 || (zMaster[0] && !sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS)) 1763 ){ 1764 zMaster = 0; 1765 if( rc==SQLITE_DONE ) rc = SQLITE_OK; 1766 goto end_playback; 1767 } 1768 pPager->journalOff = 0; 1769 zMaster = 0; 1770 1771 /* This loop terminates either when the readJournalHdr() call returns 1772 ** SQLITE_DONE or an IO error occurs. */ 1773 while( 1 ){ 1774 1775 /* Read the next journal header from the journal file. If there are 1776 ** not enough bytes left in the journal file for a complete header, or 1777 ** it is corrupted, then a process must of failed while writing it. 1778 ** This indicates nothing more needs to be rolled back. 1779 */ 1780 rc = readJournalHdr(pPager, szJ, &nRec, &mxPg); 1781 if( rc!=SQLITE_OK ){ 1782 if( rc==SQLITE_DONE ){ 1783 rc = SQLITE_OK; 1784 } 1785 goto end_playback; 1786 } 1787 1788 /* If nRec is 0xffffffff, then this journal was created by a process 1789 ** working in no-sync mode. This means that the rest of the journal 1790 ** file consists of pages, there are no more journal headers. Compute 1791 ** the value of nRec based on this assumption. 1792 */ 1793 if( nRec==0xffffffff ){ 1794 assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ); 1795 nRec = (szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager); 1796 } 1797 1798 /* If nRec is 0 and this rollback is of a transaction created by this 1799 ** process and if this is the final header in the journal, then it means 1800 ** that this part of the journal was being filled but has not yet been 1801 ** synced to disk. Compute the number of pages based on the remaining 1802 ** size of the file. 1803 ** 1804 ** The third term of the test was added to fix ticket #2565. 1805 */ 1806 if( nRec==0 && !isHot && 1807 pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){ 1808 nRec = (szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager); 1809 } 1810 1811 /* If this is the first header read from the journal, truncate the 1812 ** database file back to it's original size. 1813 */ 1814 if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){ 1815 rc = pager_truncate(pPager, mxPg); 1816 if( rc!=SQLITE_OK ){ 1817 goto end_playback; 1818 } 1819 } 1820 1821 /* Copy original pages out of the journal and back into the database file. 1822 */ 1823 for(i=0; i<nRec; i++){ 1824 rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1); 1825 if( rc!=SQLITE_OK ){ 1826 if( rc==SQLITE_DONE ){ 1827 rc = SQLITE_OK; 1828 pPager->journalOff = szJ; 1829 break; 1830 }else{ 1831 goto end_playback; 1832 } 1833 } 1834 } 1835 } 1836 /*NOTREACHED*/ 1837 assert( 0 ); 1838 1839 end_playback: 1840 if( rc==SQLITE_OK ){ 1841 zMaster = pPager->pTmpSpace; 1842 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); 1843 } 1844 if( rc==SQLITE_OK ){ 1845 rc = pager_end_transaction(pPager); 1846 } 1847 if( rc==SQLITE_OK && zMaster[0] ){ 1848 /* If there was a master journal and this routine will return success, 1849 ** see if it is possible to delete the master journal. 1850 */ 1851 rc = pager_delmaster(pPager, zMaster); 1852 } 1853 1854 /* The Pager.sectorSize variable may have been updated while rolling 1855 ** back a journal created by a process with a different sector size 1856 ** value. Reset it to the correct value for this process. 1857 */ 1858 setSectorSize(pPager); 1859 return rc; 1860 } 1861 1862 /* 1863 ** Playback the statement journal. 1864 ** 1865 ** This is similar to playing back the transaction journal but with 1866 ** a few extra twists. 1867 ** 1868 ** (1) The number of pages in the database file at the start of 1869 ** the statement is stored in pPager->stmtSize, not in the 1870 ** journal file itself. 1871 ** 1872 ** (2) In addition to playing back the statement journal, also 1873 ** playback all pages of the transaction journal beginning 1874 ** at offset pPager->stmtJSize. 1875 */ 1876 static int pager_stmt_playback(Pager *pPager){ 1877 i64 szJ; /* Size of the full journal */ 1878 i64 hdrOff; 1879 int nRec; /* Number of Records */ 1880 int i; /* Loop counter */ 1881 int rc; 1882 1883 szJ = pPager->journalOff; 1884 #ifndef NDEBUG 1885 { 1886 i64 os_szJ; 1887 rc = sqlite3OsFileSize(pPager->jfd, &os_szJ); 1888 if( rc!=SQLITE_OK ) return rc; 1889 assert( szJ==os_szJ ); 1890 } 1891 #endif 1892 1893 /* Set hdrOff to be the offset just after the end of the last journal 1894 ** page written before the first journal-header for this statement 1895 ** transaction was written, or the end of the file if no journal 1896 ** header was written. 1897 */ 1898 hdrOff = pPager->stmtHdrOff; 1899 assert( pPager->fullSync || !hdrOff ); 1900 if( !hdrOff ){ 1901 hdrOff = szJ; 1902 } 1903 1904 /* Truncate the database back to its original size. 1905 */ 1906 rc = pager_truncate(pPager, pPager->stmtSize); 1907 assert( pPager->state>=PAGER_SHARED ); 1908 1909 /* Figure out how many records are in the statement journal. 1910 */ 1911 assert( pPager->stmtInUse && pPager->journalOpen ); 1912 nRec = pPager->stmtNRec; 1913 1914 /* Copy original pages out of the statement journal and back into the 1915 ** database file. Note that the statement journal omits checksums from 1916 ** each record since power-failure recovery is not important to statement 1917 ** journals. 1918 */ 1919 for(i=0; i<nRec; i++){ 1920 i64 offset = i*(4+pPager->pageSize); 1921 rc = pager_playback_one_page(pPager, pPager->stfd, offset, 0); 1922 assert( rc!=SQLITE_DONE ); 1923 if( rc!=SQLITE_OK ) goto end_stmt_playback; 1924 } 1925 1926 /* Now roll some pages back from the transaction journal. Pager.stmtJSize 1927 ** was the size of the journal file when this statement was started, so 1928 ** everything after that needs to be rolled back, either into the 1929 ** database, the memory cache, or both. 1930 ** 1931 ** If it is not zero, then Pager.stmtHdrOff is the offset to the start 1932 ** of the first journal header written during this statement transaction. 1933 */ 1934 pPager->journalOff = pPager->stmtJSize; 1935 pPager->cksumInit = pPager->stmtCksum; 1936 while( pPager->journalOff < hdrOff ){ 1937 rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1); 1938 assert( rc!=SQLITE_DONE ); 1939 if( rc!=SQLITE_OK ) goto end_stmt_playback; 1940 } 1941 1942 while( pPager->journalOff < szJ ){ 1943 u32 nJRec; /* Number of Journal Records */ 1944 u32 dummy; 1945 rc = readJournalHdr(pPager, szJ, &nJRec, &dummy); 1946 if( rc!=SQLITE_OK ){ 1947 assert( rc!=SQLITE_DONE ); 1948 goto end_stmt_playback; 1949 } 1950 if( nJRec==0 ){ 1951 nJRec = (szJ - pPager->journalOff) / (pPager->pageSize+8); 1952 } 1953 for(i=nJRec-1; i>=0 && pPager->journalOff < szJ; i--){ 1954 rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1); 1955 assert( rc!=SQLITE_DONE ); 1956 if( rc!=SQLITE_OK ) goto end_stmt_playback; 1957 } 1958 } 1959 1960 pPager->journalOff = szJ; 1961 1962 end_stmt_playback: 1963 if( rc==SQLITE_OK) { 1964 pPager->journalOff = szJ; 1965 /* pager_reload_cache(pPager); */ 1966 } 1967 return rc; 1968 } 1969 1970 /* 1971 ** Change the maximum number of in-memory pages that are allowed. 1972 */ 1973 void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){ 1974 if( mxPage>10 ){ 1975 pPager->mxPage = mxPage; 1976 }else{ 1977 pPager->mxPage = 10; 1978 } 1979 } 1980 1981 /* 1982 ** Adjust the robustness of the database to damage due to OS crashes 1983 ** or power failures by changing the number of syncs()s when writing 1984 ** the rollback journal. There are three levels: 1985 ** 1986 ** OFF sqlite3OsSync() is never called. This is the default 1987 ** for temporary and transient files. 1988 ** 1989 ** NORMAL The journal is synced once before writes begin on the 1990 ** database. This is normally adequate protection, but 1991 ** it is theoretically possible, though very unlikely, 1992 ** that an inopertune power failure could leave the journal 1993 ** in a state which would cause damage to the database 1994 ** when it is rolled back. 1995 ** 1996 ** FULL The journal is synced twice before writes begin on the 1997 ** database (with some additional information - the nRec field 1998 ** of the journal header - being written in between the two 1999 ** syncs). If we assume that writing a 2000 ** single disk sector is atomic, then this mode provides 2001 ** assurance that the journal will not be corrupted to the 2002 ** point of causing damage to the database during rollback. 2003 ** 2004 ** Numeric values associated with these states are OFF==1, NORMAL=2, 2005 ** and FULL=3. 2006 */ 2007 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 2008 void sqlite3PagerSetSafetyLevel(Pager *pPager, int level, int full_fsync){ 2009 pPager->noSync = level==1 || pPager->tempFile; 2010 pPager->fullSync = level==3 && !pPager->tempFile; 2011 pPager->sync_flags = (full_fsync?SQLITE_SYNC_FULL:SQLITE_SYNC_NORMAL); 2012 if( pPager->noSync ) pPager->needSync = 0; 2013 } 2014 #endif 2015 2016 /* 2017 ** The following global variable is incremented whenever the library 2018 ** attempts to open a temporary file. This information is used for 2019 ** testing and analysis only. 2020 */ 2021 #ifdef SQLITE_TEST 2022 int sqlite3_opentemp_count = 0; 2023 #endif 2024 2025 /* 2026 ** Open a temporary file. 2027 ** 2028 ** Write the file descriptor into *fd. Return SQLITE_OK on success or some 2029 ** other error code if we fail. The OS will automatically delete the temporary 2030 ** file when it is closed. 2031 */ 2032 static int sqlite3PagerOpentemp( 2033 sqlite3_vfs *pVfs, /* The virtual file system layer */ 2034 sqlite3_file *pFile, /* Write the file descriptor here */ 2035 char *zFilename, /* Name of the file. Might be NULL */ 2036 int vfsFlags /* Flags passed through to the VFS */ 2037 ){ 2038 int rc; 2039 assert( zFilename!=0 ); 2040 2041 #ifdef SQLITE_TEST 2042 sqlite3_opentemp_count++; /* Used for testing and analysis only */ 2043 #endif 2044 2045 vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | 2046 SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE; 2047 rc = sqlite3OsOpen(pVfs, zFilename, pFile, vfsFlags, 0); 2048 assert( rc!=SQLITE_OK || pFile->pMethods ); 2049 return rc; 2050 } 2051 2052 /* 2053 ** Create a new page cache and put a pointer to the page cache in *ppPager. 2054 ** The file to be cached need not exist. The file is not locked until 2055 ** the first call to sqlite3PagerGet() and is only held open until the 2056 ** last page is released using sqlite3PagerUnref(). 2057 ** 2058 ** If zFilename is NULL then a randomly-named temporary file is created 2059 ** and used as the file to be cached. The file will be deleted 2060 ** automatically when it is closed. 2061 ** 2062 ** If zFilename is ":memory:" then all information is held in cache. 2063 ** It is never written to disk. This can be used to implement an 2064 ** in-memory database. 2065 */ 2066 int sqlite3PagerOpen( 2067 sqlite3_vfs *pVfs, /* The virtual file system to use */ 2068 Pager **ppPager, /* Return the Pager structure here */ 2069 const char *zFilename, /* Name of the database file to open */ 2070 int nExtra, /* Extra bytes append to each in-memory page */ 2071 int flags, /* flags controlling this file */ 2072 int vfsFlags /* flags passed through to sqlite3_vfs.xOpen() */ 2073 ){ 2074 u8 *pPtr; 2075 Pager *pPager = 0; 2076 int rc = SQLITE_OK; 2077 int i; 2078 int tempFile = 0; 2079 int memDb = 0; 2080 int readOnly = 0; 2081 int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; 2082 int noReadlock = (flags & PAGER_NO_READLOCK)!=0; 2083 int journalFileSize = sqlite3JournalSize(pVfs); 2084 int nDefaultPage = SQLITE_DEFAULT_PAGE_SIZE; 2085 char *zPathname; 2086 int nPathname; 2087 2088 /* The default return is a NULL pointer */ 2089 *ppPager = 0; 2090 2091 /* Compute the full pathname */ 2092 nPathname = pVfs->mxPathname+1; 2093 zPathname = sqlite3_malloc(nPathname); 2094 if( zPathname==0 ){ 2095 return SQLITE_NOMEM; 2096 } 2097 if( zFilename && zFilename[0] ){ 2098 #ifndef SQLITE_OMIT_MEMORYDB 2099 if( strcmp(zFilename,":memory:")==0 ){ 2100 memDb = 1; 2101 zPathname[0] = 0; 2102 }else 2103 #endif 2104 { 2105 rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname); 2106 } 2107 }else{ 2108 rc = sqlite3OsGetTempname(pVfs, nPathname, zPathname); 2109 } 2110 if( rc!=SQLITE_OK ){ 2111 sqlite3_free(zPathname); 2112 return rc; 2113 } 2114 nPathname = strlen(zPathname); 2115 2116 /* Allocate memory for the pager structure */ 2117 pPager = sqlite3MallocZero( 2118 sizeof(*pPager) + /* Pager structure */ 2119 journalFileSize + /* The journal file structure */ 2120 pVfs->szOsFile * 2 + /* The db and stmt journal files */ 2121 4*nPathname + 40 /* zFilename, zDirectory, zJournal, zStmtJrnl */ 2122 ); 2123 if( !pPager ){ 2124 sqlite3_free(zPathname); 2125 return SQLITE_NOMEM; 2126 } 2127 pPtr = (u8 *)&pPager[1]; 2128 pPager->vfsFlags = vfsFlags; 2129 pPager->fd = (sqlite3_file*)&pPtr[pVfs->szOsFile*0]; 2130 pPager->stfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*1]; 2131 pPager->jfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*2]; 2132 pPager->zFilename = (char*)&pPtr[pVfs->szOsFile*2+journalFileSize]; 2133 pPager->zDirectory = &pPager->zFilename[nPathname+1]; 2134 pPager->zJournal = &pPager->zDirectory[nPathname+1]; 2135 pPager->zStmtJrnl = &pPager->zJournal[nPathname+10]; 2136 pPager->pVfs = pVfs; 2137 memcpy(pPager->zFilename, zPathname, nPathname+1); 2138 sqlite3_free(zPathname); 2139 2140 /* Open the pager file. 2141 */ 2142 if( zFilename && zFilename[0] && !memDb ){ 2143 if( nPathname>(pVfs->mxPathname - sizeof("-journal")) ){ 2144 rc = SQLITE_CANTOPEN; 2145 }else{ 2146 int fout = 0; 2147 rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, 2148 pPager->vfsFlags, &fout); 2149 readOnly = (fout&SQLITE_OPEN_READONLY); 2150 2151 /* If the file was successfully opened for read/write access, 2152 ** choose a default page size in case we have to create the 2153 ** database file. The default page size is the maximum of: 2154 ** 2155 ** + SQLITE_DEFAULT_PAGE_SIZE, 2156 ** + The value returned by sqlite3OsSectorSize() 2157 ** + The largest page size that can be written atomically. 2158 */ 2159 if( rc==SQLITE_OK && !readOnly ){ 2160 int iSectorSize = sqlite3OsSectorSize(pPager->fd); 2161 if( nDefaultPage<iSectorSize ){ 2162 nDefaultPage = iSectorSize; 2163 } 2164 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 2165 { 2166 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); 2167 int ii; 2168 assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); 2169 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); 2170 assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536); 2171 for(ii=nDefaultPage; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){ 2172 if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ) nDefaultPage = ii; 2173 } 2174 } 2175 #endif 2176 if( nDefaultPage>SQLITE_MAX_DEFAULT_PAGE_SIZE ){ 2177 nDefaultPage = SQLITE_MAX_DEFAULT_PAGE_SIZE; 2178 } 2179 } 2180 } 2181 }else if( !memDb ){ 2182 /* If a temporary file is requested, it is not opened immediately. 2183 ** In this case we accept the default page size and delay actually 2184 ** opening the file until the first call to OsWrite(). 2185 */ 2186 tempFile = 1; 2187 pPager->state = PAGER_EXCLUSIVE; 2188 } 2189 2190 if( pPager && rc==SQLITE_OK ){ 2191 pPager->pTmpSpace = (char *)sqlite3_malloc(nDefaultPage); 2192 } 2193 2194 /* If an error occured in either of the blocks above. 2195 ** Free the Pager structure and close the file. 2196 ** Since the pager is not allocated there is no need to set 2197 ** any Pager.errMask variables. 2198 */ 2199 if( !pPager || !pPager->pTmpSpace ){ 2200 sqlite3OsClose(pPager->fd); 2201 sqlite3_free(pPager); 2202 return ((rc==SQLITE_OK)?SQLITE_NOMEM:rc); 2203 } 2204 2205 PAGERTRACE3("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename); 2206 IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename)) 2207 2208 /* Fill in Pager.zDirectory[] */ 2209 memcpy(pPager->zDirectory, pPager->zFilename, nPathname+1); 2210 for(i=strlen(pPager->zDirectory); i>0 && pPager->zDirectory[i-1]!='/'; i--){} 2211 if( i>0 ) pPager->zDirectory[i-1] = 0; 2212 2213 /* Fill in Pager.zJournal[] and Pager.zStmtJrnl[] */ 2214 memcpy(pPager->zJournal, pPager->zFilename, nPathname); 2215 memcpy(&pPager->zJournal[nPathname], "-journal", 9); 2216 memcpy(pPager->zStmtJrnl, pPager->zFilename, nPathname); 2217 memcpy(&pPager->zStmtJrnl[nPathname], "-stmtjrnl", 10); 2218 2219 /* pPager->journalOpen = 0; */ 2220 pPager->useJournal = useJournal && !memDb; 2221 pPager->noReadlock = noReadlock && readOnly; 2222 /* pPager->stmtOpen = 0; */ 2223 /* pPager->stmtInUse = 0; */ 2224 /* pPager->nRef = 0; */ 2225 pPager->dbSize = memDb-1; 2226 pPager->pageSize = nDefaultPage; 2227 /* pPager->stmtSize = 0; */ 2228 /* pPager->stmtJSize = 0; */ 2229 /* pPager->nPage = 0; */ 2230 pPager->mxPage = 100; 2231 pPager->mxPgno = SQLITE_MAX_PAGE_COUNT; 2232 /* pPager->state = PAGER_UNLOCK; */ 2233 assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) ); 2234 /* pPager->errMask = 0; */ 2235 pPager->tempFile = tempFile; 2236 assert( tempFile==PAGER_LOCKINGMODE_NORMAL 2237 || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE ); 2238 assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 ); 2239 pPager->exclusiveMode = tempFile; 2240 pPager->memDb = memDb; 2241 pPager->readOnly = readOnly; 2242 /* pPager->needSync = 0; */ 2243 pPager->noSync = pPager->tempFile || !useJournal; 2244 pPager->fullSync = (pPager->noSync?0:1); 2245 pPager->sync_flags = SQLITE_SYNC_NORMAL; 2246 /* pPager->pFirst = 0; */ 2247 /* pPager->pFirstSynced = 0; */ 2248 /* pPager->pLast = 0; */ 2249 pPager->nExtra = FORCE_ALIGNMENT(nExtra); 2250 assert(pPager->fd->pMethods||memDb||tempFile); 2251 if( !memDb ){ 2252 setSectorSize(pPager); 2253 } 2254 /* pPager->pBusyHandler = 0; */ 2255 /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */ 2256 *ppPager = pPager; 2257 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 2258 pPager->iInUseMM = 0; 2259 pPager->iInUseDB = 0; 2260 if( !memDb ){ 2261 sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); 2262 sqlite3_mutex_enter(mutex); 2263 pPager->pNext = sqlite3PagerList; 2264 if( sqlite3PagerList ){ 2265 assert( sqlite3PagerList->pPrev==0 ); 2266 sqlite3PagerList->pPrev = pPager; 2267 } 2268 pPager->pPrev = 0; 2269 sqlite3PagerList = pPager; 2270 sqlite3_mutex_leave(mutex); 2271 } 2272 #endif 2273 return SQLITE_OK; 2274 } 2275 2276 /* 2277 ** Set the busy handler function. 2278 */ 2279 void sqlite3PagerSetBusyhandler(Pager *pPager, BusyHandler *pBusyHandler){ 2280 pPager->pBusyHandler = pBusyHandler; 2281 } 2282 2283 /* 2284 ** Set the destructor for this pager. If not NULL, the destructor is called 2285 ** when the reference count on each page reaches zero. The destructor can 2286 ** be used to clean up information in the extra segment appended to each page. 2287 ** 2288 ** The destructor is not called as a result sqlite3PagerClose(). 2289 ** Destructors are only called by sqlite3PagerUnref(). 2290 */ 2291 void sqlite3PagerSetDestructor(Pager *pPager, void (*xDesc)(DbPage*,int)){ 2292 pPager->xDestructor = xDesc; 2293 } 2294 2295 /* 2296 ** Set the reinitializer for this pager. If not NULL, the reinitializer 2297 ** is called when the content of a page in cache is restored to its original 2298 ** value as a result of a rollback. The callback gives higher-level code 2299 ** an opportunity to restore the EXTRA section to agree with the restored 2300 ** page data. 2301 */ 2302 void sqlite3PagerSetReiniter(Pager *pPager, void (*xReinit)(DbPage*,int)){ 2303 pPager->xReiniter = xReinit; 2304 } 2305 2306 /* 2307 ** Set the page size to *pPageSize. If the suggest new page size is 2308 ** inappropriate, then an alternative page size is set to that 2309 ** value before returning. 2310 */ 2311 int sqlite3PagerSetPagesize(Pager *pPager, u16 *pPageSize){ 2312 int rc = SQLITE_OK; 2313 u16 pageSize = *pPageSize; 2314 assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) ); 2315 if( pageSize && pageSize!=pPager->pageSize 2316 && !pPager->memDb && pPager->nRef==0 2317 ){ 2318 char *pNew = (char *)sqlite3_malloc(pageSize); 2319 if( !pNew ){ 2320 rc = SQLITE_NOMEM; 2321 }else{ 2322 pagerEnter(pPager); 2323 pager_reset(pPager); 2324 pPager->pageSize = pageSize; 2325 setSectorSize(pPager); 2326 sqlite3_free(pPager->pTmpSpace); 2327 pPager->pTmpSpace = pNew; 2328 pagerLeave(pPager); 2329 } 2330 } 2331 *pPageSize = pPager->pageSize; 2332 return rc; 2333 } 2334 2335 /* 2336 ** Attempt to set the maximum database page count if mxPage is positive. 2337 ** Make no changes if mxPage is zero or negative. And never reduce the 2338 ** maximum page count below the current size of the database. 2339 ** 2340 ** Regardless of mxPage, return the current maximum page count. 2341 */ 2342 int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){ 2343 if( mxPage>0 ){ 2344 pPager->mxPgno = mxPage; 2345 } 2346 sqlite3PagerPagecount(pPager); 2347 return pPager->mxPgno; 2348 } 2349 2350 /* 2351 ** The following set of routines are used to disable the simulated 2352 ** I/O error mechanism. These routines are used to avoid simulated 2353 ** errors in places where we do not care about errors. 2354 ** 2355 ** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops 2356 ** and generate no code. 2357 */ 2358 #ifdef SQLITE_TEST 2359 extern int sqlite3_io_error_pending; 2360 extern int sqlite3_io_error_hit; 2361 static int saved_cnt; 2362 void disable_simulated_io_errors(void){ 2363 saved_cnt = sqlite3_io_error_pending; 2364 sqlite3_io_error_pending = -1; 2365 } 2366 void enable_simulated_io_errors(void){ 2367 sqlite3_io_error_pending = saved_cnt; 2368 } 2369 #else 2370 # define disable_simulated_io_errors() 2371 # define enable_simulated_io_errors() 2372 #endif 2373 2374 /* 2375 ** Read the first N bytes from the beginning of the file into memory 2376 ** that pDest points to. 2377 ** 2378 ** No error checking is done. The rational for this is that this function 2379 ** may be called even if the file does not exist or contain a header. In 2380 ** these cases sqlite3OsRead() will return an error, to which the correct 2381 ** response is to zero the memory at pDest and continue. A real IO error 2382 ** will presumably recur and be picked up later (Todo: Think about this). 2383 */ 2384 int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){ 2385 int rc = SQLITE_OK; 2386 memset(pDest, 0, N); 2387 assert(MEMDB||pPager->fd->pMethods||pPager->tempFile); 2388 if( pPager->fd->pMethods ){ 2389 IOTRACE(("DBHDR %p 0 %d\n", pPager, N)) 2390 rc = sqlite3OsRead(pPager->fd, pDest, N, 0); 2391 if( rc==SQLITE_IOERR_SHORT_READ ){ 2392 rc = SQLITE_OK; 2393 } 2394 } 2395 return rc; 2396 } 2397 2398 /* 2399 ** Return the total number of pages in the disk file associated with 2400 ** pPager. 2401 ** 2402 ** If the PENDING_BYTE lies on the page directly after the end of the 2403 ** file, then consider this page part of the file too. For example, if 2404 ** PENDING_BYTE is byte 4096 (the first byte of page 5) and the size of the 2405 ** file is 4096 bytes, 5 is returned instead of 4. 2406 */ 2407 int sqlite3PagerPagecount(Pager *pPager){ 2408 i64 n = 0; 2409 int rc; 2410 assert( pPager!=0 ); 2411 if( pPager->errCode ){ 2412 return 0; 2413 } 2414 if( pPager->dbSize>=0 ){ 2415 n = pPager->dbSize; 2416 } else { 2417 assert(pPager->fd->pMethods||pPager->tempFile); 2418 if( (pPager->fd->pMethods) 2419 && (rc = sqlite3OsFileSize(pPager->fd, &n))!=SQLITE_OK ){ 2420 pPager->nRef++; 2421 pager_error(pPager, rc); 2422 pPager->nRef--; 2423 return 0; 2424 } 2425 if( n>0 && n<pPager->pageSize ){ 2426 n = 1; 2427 }else{ 2428 n /= pPager->pageSize; 2429 } 2430 if( pPager->state!=PAGER_UNLOCK ){ 2431 pPager->dbSize = n; 2432 } 2433 } 2434 if( n==(PENDING_BYTE/pPager->pageSize) ){ 2435 n++; 2436 } 2437 if( n>pPager->mxPgno ){ 2438 pPager->mxPgno = n; 2439 } 2440 return n; 2441 } 2442 2443 2444 #ifndef SQLITE_OMIT_MEMORYDB 2445 /* 2446 ** Clear a PgHistory block 2447 */ 2448 static void clearHistory(PgHistory *pHist){ 2449 sqlite3_free(pHist->pOrig); 2450 sqlite3_free(pHist->pStmt); 2451 pHist->pOrig = 0; 2452 pHist->pStmt = 0; 2453 } 2454 #else 2455 #define clearHistory(x) 2456 #endif 2457 2458 /* 2459 ** Forward declaration 2460 */ 2461 static int syncJournal(Pager*); 2462 2463 /* 2464 ** Unlink pPg from it's hash chain. Also set the page number to 0 to indicate 2465 ** that the page is not part of any hash chain. This is required because the 2466 ** sqlite3PagerMovepage() routine can leave a page in the 2467 ** pNextFree/pPrevFree list that is not a part of any hash-chain. 2468 */ 2469 static void unlinkHashChain(Pager *pPager, PgHdr *pPg){ 2470 if( pPg->pgno==0 ){ 2471 assert( pPg->pNextHash==0 && pPg->pPrevHash==0 ); 2472 return; 2473 } 2474 if( pPg->pNextHash ){ 2475 pPg->pNextHash->pPrevHash = pPg->pPrevHash; 2476 } 2477 if( pPg->pPrevHash ){ 2478 assert( pPager->aHash[pPg->pgno & (pPager->nHash-1)]!=pPg ); 2479 pPg->pPrevHash->pNextHash = pPg->pNextHash; 2480 }else{ 2481 int h = pPg->pgno & (pPager->nHash-1); 2482 pPager->aHash[h] = pPg->pNextHash; 2483 } 2484 if( MEMDB ){ 2485 clearHistory(PGHDR_TO_HIST(pPg, pPager)); 2486 } 2487 pPg->pgno = 0; 2488 pPg->pNextHash = pPg->pPrevHash = 0; 2489 } 2490 2491 /* 2492 ** Unlink a page from the free list (the list of all pages where nRef==0) 2493 ** and from its hash collision chain. 2494 */ 2495 static void unlinkPage(PgHdr *pPg){ 2496 Pager *pPager = pPg->pPager; 2497 2498 /* Unlink from free page list */ 2499 lruListRemove(pPg); 2500 2501 /* Unlink from the pgno hash table */ 2502 unlinkHashChain(pPager, pPg); 2503 } 2504 2505 /* 2506 ** This routine is used to truncate the cache when a database 2507 ** is truncated. Drop from the cache all pages whose pgno is 2508 ** larger than pPager->dbSize and is unreferenced. 2509 ** 2510 ** Referenced pages larger than pPager->dbSize are zeroed. 2511 ** 2512 ** Actually, at the point this routine is called, it would be 2513 ** an error to have a referenced page. But rather than delete 2514 ** that page and guarantee a subsequent segfault, it seems better 2515 ** to zero it and hope that we error out sanely. 2516 */ 2517 static void pager_truncate_cache(Pager *pPager){ 2518 PgHdr *pPg; 2519 PgHdr **ppPg; 2520 int dbSize = pPager->dbSize; 2521 2522 ppPg = &pPager->pAll; 2523 while( (pPg = *ppPg)!=0 ){ 2524 if( pPg->pgno<=dbSize ){ 2525 ppPg = &pPg->pNextAll; 2526 }else if( pPg->nRef>0 ){ 2527 memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize); 2528 ppPg = &pPg->pNextAll; 2529 }else{ 2530 *ppPg = pPg->pNextAll; 2531 IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno)); 2532 PAGER_INCR(sqlite3_pager_pgfree_count); 2533 unlinkPage(pPg); 2534 makeClean(pPg); 2535 sqlite3_free(pPg); 2536 pPager->nPage--; 2537 } 2538 } 2539 } 2540 2541 /* 2542 ** Try to obtain a lock on a file. Invoke the busy callback if the lock 2543 ** is currently not available. Repeat until the busy callback returns 2544 ** false or until the lock succeeds. 2545 ** 2546 ** Return SQLITE_OK on success and an error code if we cannot obtain 2547 ** the lock. 2548 */ 2549 static int pager_wait_on_lock(Pager *pPager, int locktype){ 2550 int rc; 2551 2552 /* The OS lock values must be the same as the Pager lock values */ 2553 assert( PAGER_SHARED==SHARED_LOCK ); 2554 assert( PAGER_RESERVED==RESERVED_LOCK ); 2555 assert( PAGER_EXCLUSIVE==EXCLUSIVE_LOCK ); 2556 2557 /* If the file is currently unlocked then the size must be unknown */ 2558 assert( pPager->state>=PAGER_SHARED || pPager->dbSize<0 || MEMDB ); 2559 2560 if( pPager->state>=locktype ){ 2561 rc = SQLITE_OK; 2562 }else{ 2563 do { 2564 rc = sqlite3OsLock(pPager->fd, locktype); 2565 }while( rc==SQLITE_BUSY && sqlite3InvokeBusyHandler(pPager->pBusyHandler) ); 2566 if( rc==SQLITE_OK ){ 2567 pPager->state = locktype; 2568 IOTRACE(("LOCK %p %d\n", pPager, locktype)) 2569 } 2570 } 2571 return rc; 2572 } 2573 2574 /* 2575 ** Truncate the file to the number of pages specified. 2576 */ 2577 int sqlite3PagerTruncate(Pager *pPager, Pgno nPage){ 2578 int rc; 2579 assert( pPager->state>=PAGER_SHARED || MEMDB ); 2580 sqlite3PagerPagecount(pPager); 2581 if( pPager->errCode ){ 2582 rc = pPager->errCode; 2583 return rc; 2584 } 2585 if( nPage>=(unsigned)pPager->dbSize ){ 2586 return SQLITE_OK; 2587 } 2588 if( MEMDB ){ 2589 pPager->dbSize = nPage; 2590 pager_truncate_cache(pPager); 2591 return SQLITE_OK; 2592 } 2593 pagerEnter(pPager); 2594 rc = syncJournal(pPager); 2595 pagerLeave(pPager); 2596 if( rc!=SQLITE_OK ){ 2597 return rc; 2598 } 2599 2600 /* Get an exclusive lock on the database before truncating. */ 2601 pagerEnter(pPager); 2602 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); 2603 pagerLeave(pPager); 2604 if( rc!=SQLITE_OK ){ 2605 return rc; 2606 } 2607 2608 rc = pager_truncate(pPager, nPage); 2609 return rc; 2610 } 2611 2612 /* 2613 ** Shutdown the page cache. Free all memory and close all files. 2614 ** 2615 ** If a transaction was in progress when this routine is called, that 2616 ** transaction is rolled back. All outstanding pages are invalidated 2617 ** and their memory is freed. Any attempt to use a page associated 2618 ** with this page cache after this function returns will likely 2619 ** result in a coredump. 2620 ** 2621 ** This function always succeeds. If a transaction is active an attempt 2622 ** is made to roll it back. If an error occurs during the rollback 2623 ** a hot journal may be left in the filesystem but no error is returned 2624 ** to the caller. 2625 */ 2626 int sqlite3PagerClose(Pager *pPager){ 2627 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 2628 if( !MEMDB ){ 2629 sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); 2630 sqlite3_mutex_enter(mutex); 2631 if( pPager->pPrev ){ 2632 pPager->pPrev->pNext = pPager->pNext; 2633 }else{ 2634 sqlite3PagerList = pPager->pNext; 2635 } 2636 if( pPager->pNext ){ 2637 pPager->pNext->pPrev = pPager->pPrev; 2638 } 2639 sqlite3_mutex_leave(mutex); 2640 } 2641 #endif 2642 2643 disable_simulated_io_errors(); 2644 pPager->errCode = 0; 2645 pPager->exclusiveMode = 0; 2646 pager_reset(pPager); 2647 pagerUnlockAndRollback(pPager); 2648 enable_simulated_io_errors(); 2649 PAGERTRACE2("CLOSE %d\n", PAGERID(pPager)); 2650 IOTRACE(("CLOSE %p\n", pPager)) 2651 assert( pPager->errCode || (pPager->journalOpen==0 && pPager->stmtOpen==0) ); 2652 if( pPager->journalOpen ){ 2653 sqlite3OsClose(pPager->jfd); 2654 } 2655 sqlite3_free(pPager->aInJournal); 2656 if( pPager->stmtOpen ){ 2657 sqlite3OsClose(pPager->stfd); 2658 } 2659 sqlite3OsClose(pPager->fd); 2660 /* Temp files are automatically deleted by the OS 2661 ** if( pPager->tempFile ){ 2662 ** sqlite3OsDelete(pPager->zFilename); 2663 ** } 2664 */ 2665 2666 sqlite3_free(pPager->aHash); 2667 sqlite3_free(pPager->pTmpSpace); 2668 sqlite3_free(pPager); 2669 return SQLITE_OK; 2670 } 2671 2672 #if !defined(NDEBUG) || defined(SQLITE_TEST) 2673 /* 2674 ** Return the page number for the given page data. 2675 */ 2676 Pgno sqlite3PagerPagenumber(DbPage *p){ 2677 return p->pgno; 2678 } 2679 #endif 2680 2681 /* 2682 ** The page_ref() function increments the reference count for a page. 2683 ** If the page is currently on the freelist (the reference count is zero) then 2684 ** remove it from the freelist. 2685 ** 2686 ** For non-test systems, page_ref() is a macro that calls _page_ref() 2687 ** online of the reference count is zero. For test systems, page_ref() 2688 ** is a real function so that we can set breakpoints and trace it. 2689 */ 2690 static void _page_ref(PgHdr *pPg){ 2691 if( pPg->nRef==0 ){ 2692 /* The page is currently on the freelist. Remove it. */ 2693 lruListRemove(pPg); 2694 pPg->pPager->nRef++; 2695 } 2696 pPg->nRef++; 2697 REFINFO(pPg); 2698 } 2699 #ifdef SQLITE_DEBUG 2700 static void page_ref(PgHdr *pPg){ 2701 if( pPg->nRef==0 ){ 2702 _page_ref(pPg); 2703 }else{ 2704 pPg->nRef++; 2705 REFINFO(pPg); 2706 } 2707 } 2708 #else 2709 # define page_ref(P) ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++) 2710 #endif 2711 2712 /* 2713 ** Increment the reference count for a page. The input pointer is 2714 ** a reference to the page data. 2715 */ 2716 int sqlite3PagerRef(DbPage *pPg){ 2717 pagerEnter(pPg->pPager); 2718 page_ref(pPg); 2719 pagerLeave(pPg->pPager); 2720 return SQLITE_OK; 2721 } 2722 2723 /* 2724 ** Sync the journal. In other words, make sure all the pages that have 2725 ** been written to the journal have actually reached the surface of the 2726 ** disk. It is not safe to modify the original database file until after 2727 ** the journal has been synced. If the original database is modified before 2728 ** the journal is synced and a power failure occurs, the unsynced journal 2729 ** data would be lost and we would be unable to completely rollback the 2730 ** database changes. Database corruption would occur. 2731 ** 2732 ** This routine also updates the nRec field in the header of the journal. 2733 ** (See comments on the pager_playback() routine for additional information.) 2734 ** If the sync mode is FULL, two syncs will occur. First the whole journal 2735 ** is synced, then the nRec field is updated, then a second sync occurs. 2736 ** 2737 ** For temporary databases, we do not care if we are able to rollback 2738 ** after a power failure, so no sync occurs. 2739 ** 2740 ** If the IOCAP_SEQUENTIAL flag is set for the persistent media on which 2741 ** the database is stored, then OsSync() is never called on the journal 2742 ** file. In this case all that is required is to update the nRec field in 2743 ** the journal header. 2744 ** 2745 ** This routine clears the needSync field of every page current held in 2746 ** memory. 2747 */ 2748 static int syncJournal(Pager *pPager){ 2749 PgHdr *pPg; 2750 int rc = SQLITE_OK; 2751 2752 2753 /* Sync the journal before modifying the main database 2754 ** (assuming there is a journal and it needs to be synced.) 2755 */ 2756 if( pPager->needSync ){ 2757 if( !pPager->tempFile ){ 2758 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); 2759 assert( pPager->journalOpen ); 2760 2761 /* assert( !pPager->noSync ); // noSync might be set if synchronous 2762 ** was turned off after the transaction was started. Ticket #615 */ 2763 #ifndef NDEBUG 2764 { 2765 /* Make sure the pPager->nRec counter we are keeping agrees 2766 ** with the nRec computed from the size of the journal file. 2767 */ 2768 i64 jSz; 2769 rc = sqlite3OsFileSize(pPager->jfd, &jSz); 2770 if( rc!=0 ) return rc; 2771 assert( pPager->journalOff==jSz ); 2772 } 2773 #endif 2774 if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ 2775 /* Write the nRec value into the journal file header. If in 2776 ** full-synchronous mode, sync the journal first. This ensures that 2777 ** all data has really hit the disk before nRec is updated to mark 2778 ** it as a candidate for rollback. 2779 ** 2780 ** This is not required if the persistent media supports the 2781 ** SAFE_APPEND property. Because in this case it is not possible 2782 ** for garbage data to be appended to the file, the nRec field 2783 ** is populated with 0xFFFFFFFF when the journal header is written 2784 ** and never needs to be updated. 2785 */ 2786 i64 jrnlOff; 2787 if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ 2788 PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager)); 2789 IOTRACE(("JSYNC %p\n", pPager)) 2790 rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags); 2791 if( rc!=0 ) return rc; 2792 } 2793 2794 jrnlOff = pPager->journalHdr + sizeof(aJournalMagic); 2795 IOTRACE(("JHDR %p %lld %d\n", pPager, jrnlOff, 4)); 2796 rc = write32bits(pPager->jfd, jrnlOff, pPager->nRec); 2797 if( rc ) return rc; 2798 } 2799 if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ 2800 PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager)); 2801 IOTRACE(("JSYNC %p\n", pPager)) 2802 rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags| 2803 (pPager->sync_flags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0) 2804 ); 2805 if( rc!=0 ) return rc; 2806 } 2807 pPager->journalStarted = 1; 2808 } 2809 pPager->needSync = 0; 2810 2811 /* Erase the needSync flag from every page. 2812 */ 2813 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ 2814 pPg->needSync = 0; 2815 } 2816 lruListSetFirstSynced(pPager); 2817 } 2818 2819 #ifndef NDEBUG 2820 /* If the Pager.needSync flag is clear then the PgHdr.needSync 2821 ** flag must also be clear for all pages. Verify that this 2822 ** invariant is true. 2823 */ 2824 else{ 2825 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ 2826 assert( pPg->needSync==0 ); 2827 } 2828 assert( pPager->lru.pFirstSynced==pPager->lru.pFirst ); 2829 } 2830 #endif 2831 2832 return rc; 2833 } 2834 2835 /* 2836 ** Merge two lists of pages connected by pDirty and in pgno order. 2837 ** Do not both fixing the pPrevDirty pointers. 2838 */ 2839 static PgHdr *merge_pagelist(PgHdr *pA, PgHdr *pB){ 2840 PgHdr result, *pTail; 2841 pTail = &result; 2842 while( pA && pB ){ 2843 if( pA->pgno<pB->pgno ){ 2844 pTail->pDirty = pA; 2845 pTail = pA; 2846 pA = pA->pDirty; 2847 }else{ 2848 pTail->pDirty = pB; 2849 pTail = pB; 2850 pB = pB->pDirty; 2851 } 2852 } 2853 if( pA ){ 2854 pTail->pDirty = pA; 2855 }else if( pB ){ 2856 pTail->pDirty = pB; 2857 }else{ 2858 pTail->pDirty = 0; 2859 } 2860 return result.pDirty; 2861 } 2862 2863 /* 2864 ** Sort the list of pages in accending order by pgno. Pages are 2865 ** connected by pDirty pointers. The pPrevDirty pointers are 2866 ** corrupted by this sort. 2867 */ 2868 #define N_SORT_BUCKET_ALLOC 25 2869 #define N_SORT_BUCKET 25 2870 #ifdef SQLITE_TEST 2871 int sqlite3_pager_n_sort_bucket = 0; 2872 #undef N_SORT_BUCKET 2873 #define N_SORT_BUCKET \ 2874 (sqlite3_pager_n_sort_bucket?sqlite3_pager_n_sort_bucket:N_SORT_BUCKET_ALLOC) 2875 #endif 2876 static PgHdr *sort_pagelist(PgHdr *pIn){ 2877 PgHdr *a[N_SORT_BUCKET_ALLOC], *p; 2878 int i; 2879 memset(a, 0, sizeof(a)); 2880 while( pIn ){ 2881 p = pIn; 2882 pIn = p->pDirty; 2883 p->pDirty = 0; 2884 for(i=0; i<N_SORT_BUCKET-1; i++){ 2885 if( a[i]==0 ){ 2886 a[i] = p; 2887 break; 2888 }else{ 2889 p = merge_pagelist(a[i], p); 2890 a[i] = 0; 2891 } 2892 } 2893 if( i==N_SORT_BUCKET-1 ){ 2894 /* Coverage: To get here, there need to be 2^(N_SORT_BUCKET) 2895 ** elements in the input list. This is possible, but impractical. 2896 ** Testing this line is the point of global variable 2897 ** sqlite3_pager_n_sort_bucket. 2898 */ 2899 a[i] = merge_pagelist(a[i], p); 2900 } 2901 } 2902 p = a[0]; 2903 for(i=1; i<N_SORT_BUCKET; i++){ 2904 p = merge_pagelist(p, a[i]); 2905 } 2906 return p; 2907 } 2908 2909 /* 2910 ** Given a list of pages (connected by the PgHdr.pDirty pointer) write 2911 ** every one of those pages out to the database file and mark them all 2912 ** as clean. 2913 */ 2914 static int pager_write_pagelist(PgHdr *pList){ 2915 Pager *pPager; 2916 PgHdr *p; 2917 int rc; 2918 2919 if( pList==0 ) return SQLITE_OK; 2920 pPager = pList->pPager; 2921 2922 /* At this point there may be either a RESERVED or EXCLUSIVE lock on the 2923 ** database file. If there is already an EXCLUSIVE lock, the following 2924 ** calls to sqlite3OsLock() are no-ops. 2925 ** 2926 ** Moving the lock from RESERVED to EXCLUSIVE actually involves going 2927 ** through an intermediate state PENDING. A PENDING lock prevents new 2928 ** readers from attaching to the database but is unsufficient for us to 2929 ** write. The idea of a PENDING lock is to prevent new readers from 2930 ** coming in while we wait for existing readers to clear. 2931 ** 2932 ** While the pager is in the RESERVED state, the original database file 2933 ** is unchanged and we can rollback without having to playback the 2934 ** journal into the original database file. Once we transition to 2935 ** EXCLUSIVE, it means the database file has been changed and any rollback 2936 ** will require a journal playback. 2937 */ 2938 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); 2939 if( rc!=SQLITE_OK ){ 2940 return rc; 2941 } 2942 2943 pList = sort_pagelist(pList); 2944 for(p=pList; p; p=p->pDirty){ 2945 assert( p->dirty ); 2946 p->dirty = 0; 2947 } 2948 while( pList ){ 2949 2950 /* If the file has not yet been opened, open it now. */ 2951 if( !pPager->fd->pMethods ){ 2952 assert(pPager->tempFile); 2953 rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->fd, pPager->zFilename, 2954 pPager->vfsFlags); 2955 if( rc ) return rc; 2956 } 2957 2958 /* If there are dirty pages in the page cache with page numbers greater 2959 ** than Pager.dbSize, this means sqlite3PagerTruncate() was called to 2960 ** make the file smaller (presumably by auto-vacuum code). Do not write 2961 ** any such pages to the file. 2962 */ 2963 if( pList->pgno<=pPager->dbSize ){ 2964 i64 offset = (pList->pgno-1)*(i64)pPager->pageSize; 2965 char *pData = CODEC2(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6); 2966 PAGERTRACE4("STORE %d page %d hash(%08x)\n", 2967 PAGERID(pPager), pList->pgno, pager_pagehash(pList)); 2968 IOTRACE(("PGOUT %p %d\n", pPager, pList->pgno)); 2969 rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset); 2970 PAGER_INCR(sqlite3_pager_writedb_count); 2971 PAGER_INCR(pPager->nWrite); 2972 if( pList->pgno==1 ){ 2973 memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers)); 2974 } 2975 } 2976 #ifndef NDEBUG 2977 else{ 2978 PAGERTRACE3("NOSTORE %d page %d\n", PAGERID(pPager), pList->pgno); 2979 } 2980 #endif 2981 if( rc ) return rc; 2982 #ifdef SQLITE_CHECK_PAGES 2983 pList->pageHash = pager_pagehash(pList); 2984 #endif 2985 pList = pList->pDirty; 2986 } 2987 return SQLITE_OK; 2988 } 2989 2990 /* 2991 ** Collect every dirty page into a dirty list and 2992 ** return a pointer to the head of that list. All pages are 2993 ** collected even if they are still in use. 2994 */ 2995 static PgHdr *pager_get_all_dirty_pages(Pager *pPager){ 2996 return pPager->pDirty; 2997 } 2998 2999 /* 3000 ** Return TRUE if there is a hot journal on the given pager. 3001 ** A hot journal is one that needs to be played back. 3002 ** 3003 ** If the current size of the database file is 0 but a journal file 3004 ** exists, that is probably an old journal left over from a prior 3005 ** database with the same name. Just delete the journal. 3006 */ 3007 static int hasHotJournal(Pager *pPager){ 3008 sqlite3_vfs *pVfs = pPager->pVfs; 3009 if( !pPager->useJournal ) return 0; 3010 if( !sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS) ){ 3011 return 0; 3012 } 3013 if( sqlite3OsCheckReservedLock(pPager->fd) ){ 3014 return 0; 3015 } 3016 if( sqlite3PagerPagecount(pPager)==0 ){ 3017 sqlite3OsDelete(pVfs, pPager->zJournal, 0); 3018 return 0; 3019 }else{ 3020 return 1; 3021 } 3022 } 3023 3024 /* 3025 ** Try to find a page in the cache that can be recycled. 3026 ** 3027 ** This routine may return SQLITE_IOERR, SQLITE_FULL or SQLITE_OK. It 3028 ** does not set the pPager->errCode variable. 3029 */ 3030 static int pager_recycle(Pager *pPager, PgHdr **ppPg){ 3031 PgHdr *pPg; 3032 *ppPg = 0; 3033 3034 /* It is illegal to call this function unless the pager object 3035 ** pointed to by pPager has at least one free page (page with nRef==0). 3036 */ 3037 assert(!MEMDB); 3038 assert(pPager->lru.pFirst); 3039 3040 /* Find a page to recycle. Try to locate a page that does not 3041 ** require us to do an fsync() on the journal. 3042 */ 3043 pPg = pPager->lru.pFirstSynced; 3044 3045 /* If we could not find a page that does not require an fsync() 3046 ** on the journal file then fsync the journal file. This is a 3047 ** very slow operation, so we work hard to avoid it. But sometimes 3048 ** it can't be helped. 3049 */ 3050 if( pPg==0 && pPager->lru.pFirst){ 3051 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); 3052 int rc = syncJournal(pPager); 3053 if( rc!=0 ){ 3054 return rc; 3055 } 3056 if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ 3057 /* If in full-sync mode, write a new journal header into the 3058 ** journal file. This is done to avoid ever modifying a journal 3059 ** header that is involved in the rollback of pages that have 3060 ** already been written to the database (in case the header is 3061 ** trashed when the nRec field is updated). 3062 */ 3063 pPager->nRec = 0; 3064 assert( pPager->journalOff > 0 ); 3065 assert( pPager->doNotSync==0 ); 3066 rc = writeJournalHdr(pPager); 3067 if( rc!=0 ){ 3068 return rc; 3069 } 3070 } 3071 pPg = pPager->lru.pFirst; 3072 } 3073 3074 assert( pPg->nRef==0 ); 3075 3076 /* Write the page to the database file if it is dirty. 3077 */ 3078 if( pPg->dirty ){ 3079 int rc; 3080 assert( pPg->needSync==0 ); 3081 makeClean(pPg); 3082 pPg->dirty = 1; 3083 pPg->pDirty = 0; 3084 rc = pager_write_pagelist( pPg ); 3085 pPg->dirty = 0; 3086 if( rc!=SQLITE_OK ){ 3087 return rc; 3088 } 3089 } 3090 assert( pPg->dirty==0 ); 3091 3092 /* If the page we are recycling is marked as alwaysRollback, then 3093 ** set the global alwaysRollback flag, thus disabling the 3094 ** sqlite3PagerDontRollback() optimization for the rest of this transaction. 3095 ** It is necessary to do this because the page marked alwaysRollback 3096 ** might be reloaded at a later time but at that point we won't remember 3097 ** that is was marked alwaysRollback. This means that all pages must 3098 ** be marked as alwaysRollback from here on out. 3099 */ 3100 if( pPg->alwaysRollback ){ 3101 IOTRACE(("ALWAYS_ROLLBACK %p\n", pPager)) 3102 pPager->alwaysRollback = 1; 3103 } 3104 3105 /* Unlink the old page from the free list and the hash table 3106 */ 3107 unlinkPage(pPg); 3108 assert( pPg->pgno==0 ); 3109 3110 *ppPg = pPg; 3111 return SQLITE_OK; 3112 } 3113 3114 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 3115 /* 3116 ** This function is called to free superfluous dynamically allocated memory 3117 ** held by the pager system. Memory in use by any SQLite pager allocated 3118 ** by the current thread may be sqlite3_free()ed. 3119 ** 3120 ** nReq is the number of bytes of memory required. Once this much has 3121 ** been released, the function returns. The return value is the total number 3122 ** of bytes of memory released. 3123 */ 3124 int sqlite3PagerReleaseMemory(int nReq){ 3125 int nReleased = 0; /* Bytes of memory released so far */ 3126 sqlite3_mutex *mutex; /* The MEM2 mutex */ 3127 Pager *pPager; /* For looping over pagers */ 3128 int rc = SQLITE_OK; 3129 3130 /* Acquire the memory-management mutex 3131 */ 3132 mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); 3133 sqlite3_mutex_enter(mutex); 3134 3135 /* Signal all database connections that memory management wants 3136 ** to have access to the pagers. 3137 */ 3138 for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){ 3139 pPager->iInUseMM = 1; 3140 } 3141 3142 while( rc==SQLITE_OK && (nReq<0 || nReleased<nReq) ){ 3143 PgHdr *pPg; 3144 PgHdr *pRecycled; 3145 3146 /* Try to find a page to recycle that does not require a sync(). If 3147 ** this is not possible, find one that does require a sync(). 3148 */ 3149 sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 3150 pPg = sqlite3LruPageList.pFirstSynced; 3151 while( pPg && (pPg->needSync || pPg->pPager->iInUseDB) ){ 3152 pPg = pPg->gfree.pNext; 3153 } 3154 if( !pPg ){ 3155 pPg = sqlite3LruPageList.pFirst; 3156 while( pPg && pPg->pPager->iInUseDB ){ 3157 pPg = pPg->gfree.pNext; 3158 } 3159 } 3160 sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 3161 3162 /* If pPg==0, then the block above has failed to find a page to 3163 ** recycle. In this case return early - no further memory will 3164 ** be released. 3165 */ 3166 if( !pPg ) break; 3167 3168 pPager = pPg->pPager; 3169 assert(!pPg->needSync || pPg==pPager->lru.pFirst); 3170 assert(pPg->needSync || pPg==pPager->lru.pFirstSynced); 3171 3172 rc = pager_recycle(pPager, &pRecycled); 3173 assert(pRecycled==pPg || rc!=SQLITE_OK); 3174 if( rc==SQLITE_OK ){ 3175 /* We've found a page to free. At this point the page has been 3176 ** removed from the page hash-table, free-list and synced-list 3177 ** (pFirstSynced). It is still in the all pages (pAll) list. 3178 ** Remove it from this list before freeing. 3179 ** 3180 ** Todo: Check the Pager.pStmt list to make sure this is Ok. It 3181 ** probably is though. 3182 */ 3183 PgHdr *pTmp; 3184 assert( pPg ); 3185 if( pPg==pPager->pAll ){ 3186 pPager->pAll = pPg->pNextAll; 3187 }else{ 3188 for( pTmp=pPager->pAll; pTmp->pNextAll!=pPg; pTmp=pTmp->pNextAll ){} 3189 pTmp->pNextAll = pPg->pNextAll; 3190 } 3191 nReleased += ( 3192 sizeof(*pPg) + pPager->pageSize 3193 + sizeof(u32) + pPager->nExtra 3194 + MEMDB*sizeof(PgHistory) 3195 ); 3196 IOTRACE(("PGFREE %p %d *\n", pPager, pPg->pgno)); 3197 PAGER_INCR(sqlite3_pager_pgfree_count); 3198 sqlite3_free(pPg); 3199 pPager->nPage--; 3200 }else{ 3201 /* An error occured whilst writing to the database file or 3202 ** journal in pager_recycle(). The error is not returned to the 3203 ** caller of this function. Instead, set the Pager.errCode variable. 3204 ** The error will be returned to the user (or users, in the case 3205 ** of a shared pager cache) of the pager for which the error occured. 3206 */ 3207 assert( 3208 (rc&0xff)==SQLITE_IOERR || 3209 rc==SQLITE_FULL || 3210 rc==SQLITE_BUSY 3211 ); 3212 assert( pPager->state>=PAGER_RESERVED ); 3213 pager_error(pPager, rc); 3214 } 3215 } 3216 3217 /* Clear the memory management flags and release the mutex 3218 */ 3219 for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){ 3220 pPager->iInUseMM = 0; 3221 } 3222 sqlite3_mutex_leave(mutex); 3223 3224 /* Return the number of bytes released 3225 */ 3226 return nReleased; 3227 } 3228 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 3229 3230 /* 3231 ** Read the content of page pPg out of the database file. 3232 */ 3233 static int readDbPage(Pager *pPager, PgHdr *pPg, Pgno pgno){ 3234 int rc; 3235 i64 offset; 3236 assert( MEMDB==0 ); 3237 assert(pPager->fd->pMethods||pPager->tempFile); 3238 if( !pPager->fd->pMethods ){ 3239 return SQLITE_IOERR_SHORT_READ; 3240 } 3241 offset = (pgno-1)*(i64)pPager->pageSize; 3242 rc = sqlite3OsRead(pPager->fd, PGHDR_TO_DATA(pPg), pPager->pageSize, offset); 3243 PAGER_INCR(sqlite3_pager_readdb_count); 3244 PAGER_INCR(pPager->nRead); 3245 IOTRACE(("PGIN %p %d\n", pPager, pgno)); 3246 if( pgno==1 ){ 3247 memcpy(&pPager->dbFileVers, &((u8*)PGHDR_TO_DATA(pPg))[24], 3248 sizeof(pPager->dbFileVers)); 3249 } 3250 CODEC1(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3); 3251 PAGERTRACE4("FETCH %d page %d hash(%08x)\n", 3252 PAGERID(pPager), pPg->pgno, pager_pagehash(pPg)); 3253 return rc; 3254 } 3255 3256 3257 /* 3258 ** This function is called to obtain the shared lock required before 3259 ** data may be read from the pager cache. If the shared lock has already 3260 ** been obtained, this function is a no-op. 3261 ** 3262 ** Immediately after obtaining the shared lock (if required), this function 3263 ** checks for a hot-journal file. If one is found, an emergency rollback 3264 ** is performed immediately. 3265 */ 3266 static int pagerSharedLock(Pager *pPager){ 3267 int rc = SQLITE_OK; 3268 int isHot = 0; 3269 3270 /* If this database is opened for exclusive access, has no outstanding 3271 ** page references and is in an error-state, now is the chance to clear 3272 ** the error. Discard the contents of the pager-cache and treat any 3273 ** open journal file as a hot-journal. 3274 */ 3275 if( !MEMDB && pPager->exclusiveMode && pPager->nRef==0 && pPager->errCode ){ 3276 if( pPager->journalOpen ){ 3277 isHot = 1; 3278 } 3279 pager_reset(pPager); 3280 pPager->errCode = SQLITE_OK; 3281 } 3282 3283 /* If the pager is still in an error state, do not proceed. The error 3284 ** state will be cleared at some point in the future when all page 3285 ** references are dropped and the cache can be discarded. 3286 */ 3287 if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){ 3288 return pPager->errCode; 3289 } 3290 3291 if( pPager->state==PAGER_UNLOCK || isHot ){ 3292 sqlite3_vfs *pVfs = pPager->pVfs; 3293 if( !MEMDB ){ 3294 assert( pPager->nRef==0 ); 3295 if( !pPager->noReadlock ){ 3296 rc = pager_wait_on_lock(pPager, SHARED_LOCK); 3297 if( rc!=SQLITE_OK ){ 3298 return pager_error(pPager, rc); 3299 } 3300 assert( pPager->state>=SHARED_LOCK ); 3301 } 3302 3303 /* If a journal file exists, and there is no RESERVED lock on the 3304 ** database file, then it either needs to be played back or deleted. 3305 */ 3306 if( hasHotJournal(pPager) || isHot ){ 3307 /* Get an EXCLUSIVE lock on the database file. At this point it is 3308 ** important that a RESERVED lock is not obtained on the way to the 3309 ** EXCLUSIVE lock. If it were, another process might open the 3310 ** database file, detect the RESERVED lock, and conclude that the 3311 ** database is safe to read while this process is still rolling it 3312 ** back. 3313 ** 3314 ** Because the intermediate RESERVED lock is not requested, the 3315 ** second process will get to this point in the code and fail to 3316 ** obtain it's own EXCLUSIVE lock on the database file. 3317 */ 3318 if( pPager->state<EXCLUSIVE_LOCK ){ 3319 rc = sqlite3OsLock(pPager->fd, EXCLUSIVE_LOCK); 3320 if( rc!=SQLITE_OK ){ 3321 pager_unlock(pPager); 3322 return pager_error(pPager, rc); 3323 } 3324 pPager->state = PAGER_EXCLUSIVE; 3325 } 3326 3327 /* Open the journal for reading only. Return SQLITE_BUSY if 3328 ** we are unable to open the journal file. 3329 ** 3330 ** The journal file does not need to be locked itself. The 3331 ** journal file is never open unless the main database file holds 3332 ** a write lock, so there is never any chance of two or more 3333 ** processes opening the journal at the same time. 3334 ** 3335 ** Open the journal for read/write access. This is because in 3336 ** exclusive-access mode the file descriptor will be kept open and 3337 ** possibly used for a transaction later on. On some systems, the 3338 ** OsTruncate() call used in exclusive-access mode also requires 3339 ** a read/write file handle. 3340 */ 3341 if( !isHot ){ 3342 rc = SQLITE_BUSY; 3343 if( sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS) ){ 3344 int fout = 0; 3345 int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL; 3346 assert( !pPager->tempFile ); 3347 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout); 3348 assert( rc!=SQLITE_OK || pPager->jfd->pMethods ); 3349 if( fout&SQLITE_OPEN_READONLY ){ 3350 rc = SQLITE_BUSY; 3351 sqlite3OsClose(pPager->jfd); 3352 } 3353 } 3354 } 3355 if( rc!=SQLITE_OK ){ 3356 pager_unlock(pPager); 3357 return ((rc==SQLITE_NOMEM||rc==SQLITE_IOERR_NOMEM)?rc:SQLITE_BUSY); 3358 } 3359 pPager->journalOpen = 1; 3360 pPager->journalStarted = 0; 3361 pPager->journalOff = 0; 3362 pPager->setMaster = 0; 3363 pPager->journalHdr = 0; 3364 3365 /* Playback and delete the journal. Drop the database write 3366 ** lock and reacquire the read lock. 3367 */ 3368 rc = pager_playback(pPager, 1); 3369 if( rc!=SQLITE_OK ){ 3370 return pager_error(pPager, rc); 3371 } 3372 assert(pPager->state==PAGER_SHARED || 3373 (pPager->exclusiveMode && pPager->state>PAGER_SHARED) 3374 ); 3375 } 3376 3377 if( pPager->pAll ){ 3378 /* The shared-lock has just been acquired on the database file 3379 ** and there are already pages in the cache (from a previous 3380 ** read or write transaction). Check to see if the database 3381 ** has been modified. If the database has changed, flush the 3382 ** cache. 3383 ** 3384 ** Database changes is detected by looking at 15 bytes beginning 3385 ** at offset 24 into the file. The first 4 of these 16 bytes are 3386 ** a 32-bit counter that is incremented with each change. The 3387 ** other bytes change randomly with each file change when 3388 ** a codec is in use. 3389 ** 3390 ** There is a vanishingly small chance that a change will not be 3391 ** detected. The chance of an undetected change is so small that 3392 ** it can be neglected. 3393 */ 3394 char dbFileVers[sizeof(pPager->dbFileVers)]; 3395 sqlite3PagerPagecount(pPager); 3396 3397 if( pPager->errCode ){ 3398 return pPager->errCode; 3399 } 3400 3401 if( pPager->dbSize>0 ){ 3402 IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers))); 3403 rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24); 3404 if( rc!=SQLITE_OK ){ 3405 return rc; 3406 } 3407 }else{ 3408 memset(dbFileVers, 0, sizeof(dbFileVers)); 3409 } 3410 3411 if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){ 3412 pager_reset(pPager); 3413 } 3414 } 3415 } 3416 assert( pPager->exclusiveMode || pPager->state<=PAGER_SHARED ); 3417 if( pPager->state==PAGER_UNLOCK ){ 3418 pPager->state = PAGER_SHARED; 3419 } 3420 } 3421 3422 return rc; 3423 } 3424 3425 /* 3426 ** Allocate a PgHdr object. Either create a new one or reuse 3427 ** an existing one that is not otherwise in use. 3428 ** 3429 ** A new PgHdr structure is created if any of the following are 3430 ** true: 3431 ** 3432 ** (1) We have not exceeded our maximum allocated cache size 3433 ** as set by the "PRAGMA cache_size" command. 3434 ** 3435 ** (2) There are no unused PgHdr objects available at this time. 3436 ** 3437 ** (3) This is an in-memory database. 3438 ** 3439 ** (4) There are no PgHdr objects that do not require a journal 3440 ** file sync and a sync of the journal file is currently 3441 ** prohibited. 3442 ** 3443 ** Otherwise, reuse an existing PgHdr. In other words, reuse an 3444 ** existing PgHdr if all of the following are true: 3445 ** 3446 ** (1) We have reached or exceeded the maximum cache size 3447 ** allowed by "PRAGMA cache_size". 3448 ** 3449 ** (2) There is a PgHdr available with PgHdr->nRef==0 3450 ** 3451 ** (3) We are not in an in-memory database 3452 ** 3453 ** (4) Either there is an available PgHdr that does not need 3454 ** to be synced to disk or else disk syncing is currently 3455 ** allowed. 3456 */ 3457 static int pagerAllocatePage(Pager *pPager, PgHdr **ppPg){ 3458 int rc = SQLITE_OK; 3459 PgHdr *pPg; 3460 int nByteHdr; 3461 3462 /* Create a new PgHdr if any of the four conditions defined 3463 ** above are met: */ 3464 if( pPager->nPage<pPager->mxPage 3465 || pPager->lru.pFirst==0 3466 || MEMDB 3467 || (pPager->lru.pFirstSynced==0 && pPager->doNotSync) 3468 ){ 3469 if( pPager->nPage>=pPager->nHash ){ 3470 pager_resize_hash_table(pPager, 3471 pPager->nHash<256 ? 256 : pPager->nHash*2); 3472 if( pPager->nHash==0 ){ 3473 rc = SQLITE_NOMEM; 3474 goto pager_allocate_out; 3475 } 3476 } 3477 pagerLeave(pPager); 3478 nByteHdr = sizeof(*pPg) + sizeof(u32) + pPager->nExtra 3479 + MEMDB*sizeof(PgHistory); 3480 pPg = sqlite3_malloc( nByteHdr + pPager->pageSize ); 3481 pagerEnter(pPager); 3482 if( pPg==0 ){ 3483 rc = SQLITE_NOMEM; 3484 goto pager_allocate_out; 3485 } 3486 memset(pPg, 0, nByteHdr); 3487 pPg->pData = (void*)(nByteHdr + (char*)pPg); 3488 pPg->pPager = pPager; 3489 pPg->pNextAll = pPager->pAll; 3490 pPager->pAll = pPg; 3491 pPager->nPage++; 3492 }else{ 3493 /* Recycle an existing page with a zero ref-count. */ 3494 rc = pager_recycle(pPager, &pPg); 3495 if( rc==SQLITE_BUSY ){ 3496 rc = SQLITE_IOERR_BLOCKED; 3497 } 3498 if( rc!=SQLITE_OK ){ 3499 goto pager_allocate_out; 3500 } 3501 assert( pPager->state>=SHARED_LOCK ); 3502 assert(pPg); 3503 } 3504 *ppPg = pPg; 3505 3506 pager_allocate_out: 3507 return rc; 3508 } 3509 3510 /* 3511 ** Make sure we have the content for a page. If the page was 3512 ** previously acquired with noContent==1, then the content was 3513 ** just initialized to zeros instead of being read from disk. 3514 ** But now we need the real data off of disk. So make sure we 3515 ** have it. Read it in if we do not have it already. 3516 */ 3517 static int pager_get_content(PgHdr *pPg){ 3518 if( pPg->needRead ){ 3519 int rc = readDbPage(pPg->pPager, pPg, pPg->pgno); 3520 if( rc==SQLITE_OK ){ 3521 pPg->needRead = 0; 3522 }else{ 3523 return rc; 3524 } 3525 } 3526 return SQLITE_OK; 3527 } 3528 3529 /* 3530 ** Acquire a page. 3531 ** 3532 ** A read lock on the disk file is obtained when the first page is acquired. 3533 ** This read lock is dropped when the last page is released. 3534 ** 3535 ** This routine works for any page number greater than 0. If the database 3536 ** file is smaller than the requested page, then no actual disk 3537 ** read occurs and the memory image of the page is initialized to 3538 ** all zeros. The extra data appended to a page is always initialized 3539 ** to zeros the first time a page is loaded into memory. 3540 ** 3541 ** The acquisition might fail for several reasons. In all cases, 3542 ** an appropriate error code is returned and *ppPage is set to NULL. 3543 ** 3544 ** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt 3545 ** to find a page in the in-memory cache first. If the page is not already 3546 ** in memory, this routine goes to disk to read it in whereas Lookup() 3547 ** just returns 0. This routine acquires a read-lock the first time it 3548 ** has to go to disk, and could also playback an old journal if necessary. 3549 ** Since Lookup() never goes to disk, it never has to deal with locks 3550 ** or journal files. 3551 ** 3552 ** If noContent is false, the page contents are actually read from disk. 3553 ** If noContent is true, it means that we do not care about the contents 3554 ** of the page at this time, so do not do a disk read. Just fill in the 3555 ** page content with zeros. But mark the fact that we have not read the 3556 ** content by setting the PgHdr.needRead flag. Later on, if 3557 ** sqlite3PagerWrite() is called on this page or if this routine is 3558 ** called again with noContent==0, that means that the content is needed 3559 ** and the disk read should occur at that point. 3560 */ 3561 static int pagerAcquire( 3562 Pager *pPager, /* The pager open on the database file */ 3563 Pgno pgno, /* Page number to fetch */ 3564 DbPage **ppPage, /* Write a pointer to the page here */ 3565 int noContent /* Do not bother reading content from disk if true */ 3566 ){ 3567 PgHdr *pPg; 3568 int rc; 3569 3570 assert( pPager->state==PAGER_UNLOCK || pPager->nRef>0 || pgno==1 ); 3571 3572 /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page 3573 ** number greater than this, or zero, is requested. 3574 */ 3575 if( pgno>PAGER_MAX_PGNO || pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ 3576 return SQLITE_CORRUPT_BKPT; 3577 } 3578 3579 /* Make sure we have not hit any critical errors. 3580 */ 3581 assert( pPager!=0 ); 3582 *ppPage = 0; 3583 3584 /* If this is the first page accessed, then get a SHARED lock 3585 ** on the database file. pagerSharedLock() is a no-op if 3586 ** a database lock is already held. 3587 */ 3588 rc = pagerSharedLock(pPager); 3589 if( rc!=SQLITE_OK ){ 3590 return rc; 3591 } 3592 assert( pPager->state!=PAGER_UNLOCK ); 3593 3594 pPg = pager_lookup(pPager, pgno); 3595 if( pPg==0 ){ 3596 /* The requested page is not in the page cache. */ 3597 int nMax; 3598 int h; 3599 PAGER_INCR(pPager->nMiss); 3600 rc = pagerAllocatePage(pPager, &pPg); 3601 if( rc!=SQLITE_OK ){ 3602 return rc; 3603 } 3604 3605 pPg->pgno = pgno; 3606 assert( !MEMDB || pgno>pPager->stmtSize ); 3607 if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){ 3608 #if 0 3609 sqlite3CheckMemory(pPager->aInJournal, pgno/8); 3610 #endif 3611 assert( pPager->journalOpen ); 3612 pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0; 3613 pPg->needSync = 0; 3614 }else{ 3615 pPg->inJournal = 0; 3616 pPg->needSync = 0; 3617 } 3618 3619 makeClean(pPg); 3620 pPg->nRef = 1; 3621 REFINFO(pPg); 3622 3623 pPager->nRef++; 3624 if( pPager->nExtra>0 ){ 3625 memset(PGHDR_TO_EXTRA(pPg, pPager), 0, pPager->nExtra); 3626 } 3627 nMax = sqlite3PagerPagecount(pPager); 3628 if( pPager->errCode ){ 3629 rc = pPager->errCode; 3630 sqlite3PagerUnref(pPg); 3631 return rc; 3632 } 3633 3634 /* Populate the page with data, either by reading from the database 3635 ** file, or by setting the entire page to zero. 3636 */ 3637 if( nMax<(int)pgno || MEMDB || (noContent && !pPager->alwaysRollback) ){ 3638 if( pgno>pPager->mxPgno ){ 3639 sqlite3PagerUnref(pPg); 3640 return SQLITE_FULL; 3641 } 3642 memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize); 3643 pPg->needRead = noContent && !pPager->alwaysRollback; 3644 IOTRACE(("ZERO %p %d\n", pPager, pgno)); 3645 }else{ 3646 rc = readDbPage(pPager, pPg, pgno); 3647 if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){ 3648 pPg->pgno = 0; 3649 sqlite3PagerUnref(pPg); 3650 return rc; 3651 } 3652 pPg->needRead = 0; 3653 } 3654 3655 /* Link the page into the page hash table */ 3656 h = pgno & (pPager->nHash-1); 3657 assert( pgno!=0 ); 3658 pPg->pNextHash = pPager->aHash[h]; 3659 pPager->aHash[h] = pPg; 3660 if( pPg->pNextHash ){ 3661 assert( pPg->pNextHash->pPrevHash==0 ); 3662 pPg->pNextHash->pPrevHash = pPg; 3663 } 3664 3665 #ifdef SQLITE_CHECK_PAGES 3666 pPg->pageHash = pager_pagehash(pPg); 3667 #endif 3668 }else{ 3669 /* The requested page is in the page cache. */ 3670 assert(pPager->nRef>0 || pgno==1); 3671 PAGER_INCR(pPager->nHit); 3672 if( !noContent ){ 3673 rc = pager_get_content(pPg); 3674 if( rc ){ 3675 return rc; 3676 } 3677 } 3678 page_ref(pPg); 3679 } 3680 *ppPage = pPg; 3681 return SQLITE_OK; 3682 } 3683 int sqlite3PagerAcquire( 3684 Pager *pPager, /* The pager open on the database file */ 3685 Pgno pgno, /* Page number to fetch */ 3686 DbPage **ppPage, /* Write a pointer to the page here */ 3687 int noContent /* Do not bother reading content from disk if true */ 3688 ){ 3689 int rc; 3690 pagerEnter(pPager); 3691 rc = pagerAcquire(pPager, pgno, ppPage, noContent); 3692 pagerLeave(pPager); 3693 return rc; 3694 } 3695 3696 3697 /* 3698 ** Acquire a page if it is already in the in-memory cache. Do 3699 ** not read the page from disk. Return a pointer to the page, 3700 ** or 0 if the page is not in cache. 3701 ** 3702 ** See also sqlite3PagerGet(). The difference between this routine 3703 ** and sqlite3PagerGet() is that _get() will go to the disk and read 3704 ** in the page if the page is not already in cache. This routine 3705 ** returns NULL if the page is not in cache or if a disk I/O error 3706 ** has ever happened. 3707 */ 3708 DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ 3709 PgHdr *pPg = 0; 3710 3711 assert( pPager!=0 ); 3712 assert( pgno!=0 ); 3713 3714 pagerEnter(pPager); 3715 if( pPager->state==PAGER_UNLOCK ){ 3716 assert( !pPager->pAll || pPager->exclusiveMode ); 3717 }else if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){ 3718 /* Do nothing */ 3719 }else if( (pPg = pager_lookup(pPager, pgno))!=0 ){ 3720 page_ref(pPg); 3721 } 3722 pagerLeave(pPager); 3723 return pPg; 3724 } 3725 3726 /* 3727 ** Release a page. 3728 ** 3729 ** If the number of references to the page drop to zero, then the 3730 ** page is added to the LRU list. When all references to all pages 3731 ** are released, a rollback occurs and the lock on the database is 3732 ** removed. 3733 */ 3734 int sqlite3PagerUnref(DbPage *pPg){ 3735 Pager *pPager = pPg->pPager; 3736 3737 /* Decrement the reference count for this page 3738 */ 3739 assert( pPg->nRef>0 ); 3740 pagerEnter(pPg->pPager); 3741 pPg->nRef--; 3742 REFINFO(pPg); 3743 3744 CHECK_PAGE(pPg); 3745 3746 /* When the number of references to a page reach 0, call the 3747 ** destructor and add the page to the freelist. 3748 */ 3749 if( pPg->nRef==0 ){ 3750 3751 lruListAdd(pPg); 3752 if( pPager->xDestructor ){ 3753 pPager->xDestructor(pPg, pPager->pageSize); 3754 } 3755 3756 /* When all pages reach the freelist, drop the read lock from 3757 ** the database file. 3758 */ 3759 pPager->nRef--; 3760 assert( pPager->nRef>=0 ); 3761 if( pPager->nRef==0 && (!pPager->exclusiveMode || pPager->journalOff>0) ){ 3762 pagerUnlockAndRollback(pPager); 3763 } 3764 } 3765 pagerLeave(pPager); 3766 return SQLITE_OK; 3767 } 3768 3769 /* 3770 ** Create a journal file for pPager. There should already be a RESERVED 3771 ** or EXCLUSIVE lock on the database file when this routine is called. 3772 ** 3773 ** Return SQLITE_OK if everything. Return an error code and release the 3774 ** write lock if anything goes wrong. 3775 */ 3776 static int pager_open_journal(Pager *pPager){ 3777 sqlite3_vfs *pVfs = pPager->pVfs; 3778 int flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_CREATE); 3779 3780 int rc; 3781 assert( !MEMDB ); 3782 assert( pPager->state>=PAGER_RESERVED ); 3783 assert( pPager->journalOpen==0 ); 3784 assert( pPager->useJournal ); 3785 assert( pPager->aInJournal==0 ); 3786 sqlite3PagerPagecount(pPager); 3787 pagerLeave(pPager); 3788 pPager->aInJournal = sqlite3MallocZero( pPager->dbSize/8 + 1 ); 3789 pagerEnter(pPager); 3790 if( pPager->aInJournal==0 ){ 3791 rc = SQLITE_NOMEM; 3792 goto failed_to_open_journal; 3793 } 3794 3795 if( pPager->tempFile ){ 3796 flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL); 3797 }else{ 3798 flags |= (SQLITE_OPEN_MAIN_JOURNAL); 3799 } 3800 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3801 rc = sqlite3JournalOpen( 3802 pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager) 3803 ); 3804 #else 3805 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0); 3806 #endif 3807 assert( rc!=SQLITE_OK || pPager->jfd->pMethods ); 3808 pPager->journalOff = 0; 3809 pPager->setMaster = 0; 3810 pPager->journalHdr = 0; 3811 if( rc!=SQLITE_OK ){ 3812 if( rc==SQLITE_NOMEM ){ 3813 sqlite3OsDelete(pVfs, pPager->zJournal, 0); 3814 } 3815 goto failed_to_open_journal; 3816 } 3817 pPager->journalOpen = 1; 3818 pPager->journalStarted = 0; 3819 pPager->needSync = 0; 3820 pPager->alwaysRollback = 0; 3821 pPager->nRec = 0; 3822 if( pPager->errCode ){ 3823 rc = pPager->errCode; 3824 goto failed_to_open_journal; 3825 } 3826 pPager->origDbSize = pPager->dbSize; 3827 3828 rc = writeJournalHdr(pPager); 3829 3830 if( pPager->stmtAutoopen && rc==SQLITE_OK ){ 3831 rc = sqlite3PagerStmtBegin(pPager); 3832 } 3833 if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && rc!=SQLITE_IOERR_NOMEM ){ 3834 rc = pager_end_transaction(pPager); 3835 if( rc==SQLITE_OK ){ 3836 rc = SQLITE_FULL; 3837 } 3838 } 3839 return rc; 3840 3841 failed_to_open_journal: 3842 sqlite3_free(pPager->aInJournal); 3843 pPager->aInJournal = 0; 3844 return rc; 3845 } 3846 3847 /* 3848 ** Acquire a write-lock on the database. The lock is removed when 3849 ** the any of the following happen: 3850 ** 3851 ** * sqlite3PagerCommitPhaseTwo() is called. 3852 ** * sqlite3PagerRollback() is called. 3853 ** * sqlite3PagerClose() is called. 3854 ** * sqlite3PagerUnref() is called to on every outstanding page. 3855 ** 3856 ** The first parameter to this routine is a pointer to any open page of the 3857 ** database file. Nothing changes about the page - it is used merely to 3858 ** acquire a pointer to the Pager structure and as proof that there is 3859 ** already a read-lock on the database. 3860 ** 3861 ** The second parameter indicates how much space in bytes to reserve for a 3862 ** master journal file-name at the start of the journal when it is created. 3863 ** 3864 ** A journal file is opened if this is not a temporary file. For temporary 3865 ** files, the opening of the journal file is deferred until there is an 3866 ** actual need to write to the journal. 3867 ** 3868 ** If the database is already reserved for writing, this routine is a no-op. 3869 ** 3870 ** If exFlag is true, go ahead and get an EXCLUSIVE lock on the file 3871 ** immediately instead of waiting until we try to flush the cache. The 3872 ** exFlag is ignored if a transaction is already active. 3873 */ 3874 int sqlite3PagerBegin(DbPage *pPg, int exFlag){ 3875 Pager *pPager = pPg->pPager; 3876 int rc = SQLITE_OK; 3877 pagerEnter(pPager); 3878 assert( pPg->nRef>0 ); 3879 assert( pPager->state!=PAGER_UNLOCK ); 3880 if( pPager->state==PAGER_SHARED ){ 3881 assert( pPager->aInJournal==0 ); 3882 if( MEMDB ){ 3883 pPager->state = PAGER_EXCLUSIVE; 3884 pPager->origDbSize = pPager->dbSize; 3885 }else{ 3886 rc = sqlite3OsLock(pPager->fd, RESERVED_LOCK); 3887 if( rc==SQLITE_OK ){ 3888 pPager->state = PAGER_RESERVED; 3889 if( exFlag ){ 3890 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); 3891 } 3892 } 3893 if( rc!=SQLITE_OK ){ 3894 pagerLeave(pPager); 3895 return rc; 3896 } 3897 pPager->dirtyCache = 0; 3898 PAGERTRACE2("TRANSACTION %d\n", PAGERID(pPager)); 3899 if( pPager->useJournal && !pPager->tempFile ){ 3900 rc = pager_open_journal(pPager); 3901 } 3902 } 3903 }else if( pPager->journalOpen && pPager->journalOff==0 ){ 3904 /* This happens when the pager was in exclusive-access mode last 3905 ** time a (read or write) transaction was successfully concluded 3906 ** by this connection. Instead of deleting the journal file it was 3907 ** kept open and truncated to 0 bytes. 3908 */ 3909 assert( pPager->nRec==0 ); 3910 assert( pPager->origDbSize==0 ); 3911 assert( pPager->aInJournal==0 ); 3912 sqlite3PagerPagecount(pPager); 3913 pagerLeave(pPager); 3914 pPager->aInJournal = sqlite3MallocZero( pPager->dbSize/8 + 1 ); 3915 pagerEnter(pPager); 3916 if( !pPager->aInJournal ){ 3917 rc = SQLITE_NOMEM; 3918 }else{ 3919 pPager->origDbSize = pPager->dbSize; 3920 rc = writeJournalHdr(pPager); 3921 } 3922 } 3923 assert( !pPager->journalOpen || pPager->journalOff>0 || rc!=SQLITE_OK ); 3924 pagerLeave(pPager); 3925 return rc; 3926 } 3927 3928 /* 3929 ** Make a page dirty. Set its dirty flag and add it to the dirty 3930 ** page list. 3931 */ 3932 static void makeDirty(PgHdr *pPg){ 3933 if( pPg->dirty==0 ){ 3934 Pager *pPager = pPg->pPager; 3935 pPg->dirty = 1; 3936 pPg->pDirty = pPager->pDirty; 3937 if( pPager->pDirty ){ 3938 pPager->pDirty->pPrevDirty = pPg; 3939 } 3940 pPg->pPrevDirty = 0; 3941 pPager->pDirty = pPg; 3942 } 3943 } 3944 3945 /* 3946 ** Make a page clean. Clear its dirty bit and remove it from the 3947 ** dirty page list. 3948 */ 3949 static void makeClean(PgHdr *pPg){ 3950 if( pPg->dirty ){ 3951 pPg->dirty = 0; 3952 if( pPg->pDirty ){ 3953 assert( pPg->pDirty->pPrevDirty==pPg ); 3954 pPg->pDirty->pPrevDirty = pPg->pPrevDirty; 3955 } 3956 if( pPg->pPrevDirty ){ 3957 assert( pPg->pPrevDirty->pDirty==pPg ); 3958 pPg->pPrevDirty->pDirty = pPg->pDirty; 3959 }else{ 3960 assert( pPg->pPager->pDirty==pPg ); 3961 pPg->pPager->pDirty = pPg->pDirty; 3962 } 3963 } 3964 } 3965 3966 3967 /* 3968 ** Mark a data page as writeable. The page is written into the journal 3969 ** if it is not there already. This routine must be called before making 3970 ** changes to a page. 3971 ** 3972 ** The first time this routine is called, the pager creates a new 3973 ** journal and acquires a RESERVED lock on the database. If the RESERVED 3974 ** lock could not be acquired, this routine returns SQLITE_BUSY. The 3975 ** calling routine must check for that return value and be careful not to 3976 ** change any page data until this routine returns SQLITE_OK. 3977 ** 3978 ** If the journal file could not be written because the disk is full, 3979 ** then this routine returns SQLITE_FULL and does an immediate rollback. 3980 ** All subsequent write attempts also return SQLITE_FULL until there 3981 ** is a call to sqlite3PagerCommit() or sqlite3PagerRollback() to 3982 ** reset. 3983 */ 3984 static int pager_write(PgHdr *pPg){ 3985 void *pData = PGHDR_TO_DATA(pPg); 3986 Pager *pPager = pPg->pPager; 3987 int rc = SQLITE_OK; 3988 3989 /* Check for errors 3990 */ 3991 if( pPager->errCode ){ 3992 return pPager->errCode; 3993 } 3994 if( pPager->readOnly ){ 3995 return SQLITE_PERM; 3996 } 3997 3998 assert( !pPager->setMaster ); 3999 4000 CHECK_PAGE(pPg); 4001 4002 /* If this page was previously acquired with noContent==1, that means 4003 ** we didn't really read in the content of the page. This can happen 4004 ** (for example) when the page is being moved to the freelist. But 4005 ** now we are (perhaps) moving the page off of the freelist for 4006 ** reuse and we need to know its original content so that content 4007 ** can be stored in the rollback journal. So do the read at this 4008 ** time. 4009 */ 4010 rc = pager_get_content(pPg); 4011 if( rc ){ 4012 return rc; 4013 } 4014 4015 /* Mark the page as dirty. If the page has already been written 4016 ** to the journal then we can return right away. 4017 */ 4018 makeDirty(pPg); 4019 if( pPg->inJournal && (pageInStatement(pPg) || pPager->stmtInUse==0) ){ 4020 pPager->dirtyCache = 1; 4021 }else{ 4022 4023 /* If we get this far, it means that the page needs to be 4024 ** written to the transaction journal or the ckeckpoint journal 4025 ** or both. 4026 ** 4027 ** First check to see that the transaction journal exists and 4028 ** create it if it does not. 4029 */ 4030 assert( pPager->state!=PAGER_UNLOCK ); 4031 rc = sqlite3PagerBegin(pPg, 0); 4032 if( rc!=SQLITE_OK ){ 4033 return rc; 4034 } 4035 assert( pPager->state>=PAGER_RESERVED ); 4036 if( !pPager->journalOpen && pPager->useJournal ){ 4037 rc = pager_open_journal(pPager); 4038 if( rc!=SQLITE_OK ) return rc; 4039 } 4040 assert( pPager->journalOpen || !pPager->useJournal ); 4041 pPager->dirtyCache = 1; 4042 4043 /* The transaction journal now exists and we have a RESERVED or an 4044 ** EXCLUSIVE lock on the main database file. Write the current page to 4045 ** the transaction journal if it is not there already. 4046 */ 4047 if( !pPg->inJournal && (pPager->useJournal || MEMDB) ){ 4048 if( (int)pPg->pgno <= pPager->origDbSize ){ 4049 if( MEMDB ){ 4050 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); 4051 PAGERTRACE3("JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); 4052 assert( pHist->pOrig==0 ); 4053 pHist->pOrig = sqlite3_malloc( pPager->pageSize ); 4054 if( !pHist->pOrig ){ 4055 return SQLITE_NOMEM; 4056 } 4057 memcpy(pHist->pOrig, PGHDR_TO_DATA(pPg), pPager->pageSize); 4058 }else{ 4059 u32 cksum; 4060 char *pData2; 4061 4062 /* We should never write to the journal file the page that 4063 ** contains the database locks. The following assert verifies 4064 ** that we do not. */ 4065 assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) ); 4066 pData2 = CODEC2(pPager, pData, pPg->pgno, 7); 4067 cksum = pager_cksum(pPager, (u8*)pData2); 4068 rc = write32bits(pPager->jfd, pPager->journalOff, pPg->pgno); 4069 if( rc==SQLITE_OK ){ 4070 rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, 4071 pPager->journalOff + 4); 4072 pPager->journalOff += pPager->pageSize+4; 4073 } 4074 if( rc==SQLITE_OK ){ 4075 rc = write32bits(pPager->jfd, pPager->journalOff, cksum); 4076 pPager->journalOff += 4; 4077 } 4078 IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, 4079 pPager->journalOff, pPager->pageSize)); 4080 PAGER_INCR(sqlite3_pager_writej_count); 4081 PAGERTRACE5("JOURNAL %d page %d needSync=%d hash(%08x)\n", 4082 PAGERID(pPager), pPg->pgno, pPg->needSync, pager_pagehash(pPg)); 4083 4084 /* An error has occured writing to the journal file. The 4085 ** transaction will be rolled back by the layer above. 4086 */ 4087 if( rc!=SQLITE_OK ){ 4088 return rc; 4089 } 4090 4091 pPager->nRec++; 4092 assert( pPager->aInJournal!=0 ); 4093 pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7); 4094 pPg->needSync = !pPager->noSync; 4095 if( pPager->stmtInUse ){ 4096 pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); 4097 } 4098 } 4099 }else{ 4100 pPg->needSync = !pPager->journalStarted && !pPager->noSync; 4101 PAGERTRACE4("APPEND %d page %d needSync=%d\n", 4102 PAGERID(pPager), pPg->pgno, pPg->needSync); 4103 } 4104 if( pPg->needSync ){ 4105 pPager->needSync = 1; 4106 } 4107 pPg->inJournal = 1; 4108 } 4109 4110 /* If the statement journal is open and the page is not in it, 4111 ** then write the current page to the statement journal. Note that 4112 ** the statement journal format differs from the standard journal format 4113 ** in that it omits the checksums and the header. 4114 */ 4115 if( pPager->stmtInUse 4116 && !pageInStatement(pPg) 4117 && (int)pPg->pgno<=pPager->stmtSize 4118 ){ 4119 assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize ); 4120 if( MEMDB ){ 4121 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); 4122 assert( pHist->pStmt==0 ); 4123 pHist->pStmt = sqlite3_malloc( pPager->pageSize ); 4124 if( pHist->pStmt ){ 4125 memcpy(pHist->pStmt, PGHDR_TO_DATA(pPg), pPager->pageSize); 4126 } 4127 PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); 4128 page_add_to_stmt_list(pPg); 4129 }else{ 4130 i64 offset = pPager->stmtNRec*(4+pPager->pageSize); 4131 char *pData2 = CODEC2(pPager, pData, pPg->pgno, 7); 4132 rc = write32bits(pPager->stfd, offset, pPg->pgno); 4133 if( rc==SQLITE_OK ){ 4134 rc = sqlite3OsWrite(pPager->stfd, pData2, pPager->pageSize, offset+4); 4135 } 4136 PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); 4137 if( rc!=SQLITE_OK ){ 4138 return rc; 4139 } 4140 pPager->stmtNRec++; 4141 assert( pPager->aInStmt!=0 ); 4142 pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); 4143 } 4144 } 4145 } 4146 4147 /* Update the database size and return. 4148 */ 4149 assert( pPager->state>=PAGER_SHARED ); 4150 if( pPager->dbSize<(int)pPg->pgno ){ 4151 pPager->dbSize = pPg->pgno; 4152 if( !MEMDB && pPager->dbSize==PENDING_BYTE/pPager->pageSize ){ 4153 pPager->dbSize++; 4154 } 4155 } 4156 return rc; 4157 } 4158 4159 /* 4160 ** This function is used to mark a data-page as writable. It uses 4161 ** pager_write() to open a journal file (if it is not already open) 4162 ** and write the page *pData to the journal. 4163 ** 4164 ** The difference between this function and pager_write() is that this 4165 ** function also deals with the special case where 2 or more pages 4166 ** fit on a single disk sector. In this case all co-resident pages 4167 ** must have been written to the journal file before returning. 4168 */ 4169 int sqlite3PagerWrite(DbPage *pDbPage){ 4170 int rc = SQLITE_OK; 4171 4172 PgHdr *pPg = pDbPage; 4173 Pager *pPager = pPg->pPager; 4174 Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize); 4175 4176 pagerEnter(pPager); 4177 if( !MEMDB && nPagePerSector>1 ){ 4178 Pgno nPageCount; /* Total number of pages in database file */ 4179 Pgno pg1; /* First page of the sector pPg is located on. */ 4180 int nPage; /* Number of pages starting at pg1 to journal */ 4181 int ii; 4182 int needSync = 0; 4183 4184 /* Set the doNotSync flag to 1. This is because we cannot allow a journal 4185 ** header to be written between the pages journaled by this function. 4186 */ 4187 assert( pPager->doNotSync==0 ); 4188 pPager->doNotSync = 1; 4189 4190 /* This trick assumes that both the page-size and sector-size are 4191 ** an integer power of 2. It sets variable pg1 to the identifier 4192 ** of the first page of the sector pPg is located on. 4193 */ 4194 pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1; 4195 4196 nPageCount = sqlite3PagerPagecount(pPager); 4197 if( pPg->pgno>nPageCount ){ 4198 nPage = (pPg->pgno - pg1)+1; 4199 }else if( (pg1+nPagePerSector-1)>nPageCount ){ 4200 nPage = nPageCount+1-pg1; 4201 }else{ 4202 nPage = nPagePerSector; 4203 } 4204 assert(nPage>0); 4205 assert(pg1<=pPg->pgno); 4206 assert((pg1+nPage)>pPg->pgno); 4207 4208 for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){ 4209 Pgno pg = pg1+ii; 4210 PgHdr *pPage; 4211 if( !pPager->aInJournal || pg==pPg->pgno || 4212 pg>pPager->origDbSize || !(pPager->aInJournal[pg/8]&(1<<(pg&7))) 4213 ) { 4214 if( pg!=PAGER_MJ_PGNO(pPager) ){ 4215 rc = sqlite3PagerGet(pPager, pg, &pPage); 4216 if( rc==SQLITE_OK ){ 4217 rc = pager_write(pPage); 4218 if( pPage->needSync ){ 4219 needSync = 1; 4220 } 4221 sqlite3PagerUnref(pPage); 4222 } 4223 } 4224 }else if( (pPage = pager_lookup(pPager, pg)) ){ 4225 if( pPage->needSync ){ 4226 needSync = 1; 4227 } 4228 } 4229 } 4230 4231 /* If the PgHdr.needSync flag is set for any of the nPage pages 4232 ** starting at pg1, then it needs to be set for all of them. Because 4233 ** writing to any of these nPage pages may damage the others, the 4234 ** journal file must contain sync()ed copies of all of them 4235 ** before any of them can be written out to the database file. 4236 */ 4237 if( needSync ){ 4238 for(ii=0; ii<nPage && needSync; ii++){ 4239 PgHdr *pPage = pager_lookup(pPager, pg1+ii); 4240 if( pPage ) pPage->needSync = 1; 4241 } 4242 assert(pPager->needSync); 4243 } 4244 4245 assert( pPager->doNotSync==1 ); 4246 pPager->doNotSync = 0; 4247 }else{ 4248 rc = pager_write(pDbPage); 4249 } 4250 pagerLeave(pPager); 4251 return rc; 4252 } 4253 4254 /* 4255 ** Return TRUE if the page given in the argument was previously passed 4256 ** to sqlite3PagerWrite(). In other words, return TRUE if it is ok 4257 ** to change the content of the page. 4258 */ 4259 #ifndef NDEBUG 4260 int sqlite3PagerIswriteable(DbPage *pPg){ 4261 return pPg->dirty; 4262 } 4263 #endif 4264 4265 #ifndef SQLITE_OMIT_VACUUM 4266 /* 4267 ** Replace the content of a single page with the information in the third 4268 ** argument. 4269 */ 4270 int sqlite3PagerOverwrite(Pager *pPager, Pgno pgno, void *pData){ 4271 PgHdr *pPg; 4272 int rc; 4273 4274 pagerEnter(pPager); 4275 rc = sqlite3PagerGet(pPager, pgno, &pPg); 4276 if( rc==SQLITE_OK ){ 4277 rc = sqlite3PagerWrite(pPg); 4278 if( rc==SQLITE_OK ){ 4279 memcpy(sqlite3PagerGetData(pPg), pData, pPager->pageSize); 4280 } 4281 sqlite3PagerUnref(pPg); 4282 } 4283 pagerLeave(pPager); 4284 return rc; 4285 } 4286 #endif 4287 4288 /* 4289 ** A call to this routine tells the pager that it is not necessary to 4290 ** write the information on page pPg back to the disk, even though 4291 ** that page might be marked as dirty. 4292 ** 4293 ** The overlying software layer calls this routine when all of the data 4294 ** on the given page is unused. The pager marks the page as clean so 4295 ** that it does not get written to disk. 4296 ** 4297 ** Tests show that this optimization, together with the 4298 ** sqlite3PagerDontRollback() below, more than double the speed 4299 ** of large INSERT operations and quadruple the speed of large DELETEs. 4300 ** 4301 ** When this routine is called, set the alwaysRollback flag to true. 4302 ** Subsequent calls to sqlite3PagerDontRollback() for the same page 4303 ** will thereafter be ignored. This is necessary to avoid a problem 4304 ** where a page with data is added to the freelist during one part of 4305 ** a transaction then removed from the freelist during a later part 4306 ** of the same transaction and reused for some other purpose. When it 4307 ** is first added to the freelist, this routine is called. When reused, 4308 ** the sqlite3PagerDontRollback() routine is called. But because the 4309 ** page contains critical data, we still need to be sure it gets 4310 ** rolled back in spite of the sqlite3PagerDontRollback() call. 4311 */ 4312 void sqlite3PagerDontWrite(DbPage *pDbPage){ 4313 PgHdr *pPg = pDbPage; 4314 Pager *pPager = pPg->pPager; 4315 4316 if( MEMDB ) return; 4317 pagerEnter(pPager); 4318 pPg->alwaysRollback = 1; 4319 if( pPg->dirty && !pPager->stmtInUse ){ 4320 assert( pPager->state>=PAGER_SHARED ); 4321 if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){ 4322 /* If this pages is the last page in the file and the file has grown 4323 ** during the current transaction, then do NOT mark the page as clean. 4324 ** When the database file grows, we must make sure that the last page 4325 ** gets written at least once so that the disk file will be the correct 4326 ** size. If you do not write this page and the size of the file 4327 ** on the disk ends up being too small, that can lead to database 4328 ** corruption during the next transaction. 4329 */ 4330 }else{ 4331 PAGERTRACE3("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager)); 4332 IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) 4333 makeClean(pPg); 4334 #ifdef SQLITE_CHECK_PAGES 4335 pPg->pageHash = pager_pagehash(pPg); 4336 #endif 4337 } 4338 } 4339 pagerLeave(pPager); 4340 } 4341 4342 /* 4343 ** A call to this routine tells the pager that if a rollback occurs, 4344 ** it is not necessary to restore the data on the given page. This 4345 ** means that the pager does not have to record the given page in the 4346 ** rollback journal. 4347 ** 4348 ** If we have not yet actually read the content of this page (if 4349 ** the PgHdr.needRead flag is set) then this routine acts as a promise 4350 ** that we will never need to read the page content in the future. 4351 ** so the needRead flag can be cleared at this point. 4352 */ 4353 void sqlite3PagerDontRollback(DbPage *pPg){ 4354 Pager *pPager = pPg->pPager; 4355 4356 pagerEnter(pPager); 4357 assert( pPager->state>=PAGER_RESERVED ); 4358 if( pPager->journalOpen==0 ) return; 4359 if( pPg->alwaysRollback || pPager->alwaysRollback || MEMDB ) return; 4360 if( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ){ 4361 assert( pPager->aInJournal!=0 ); 4362 pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7); 4363 pPg->inJournal = 1; 4364 pPg->needRead = 0; 4365 if( pPager->stmtInUse ){ 4366 pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); 4367 } 4368 PAGERTRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, PAGERID(pPager)); 4369 IOTRACE(("GARBAGE %p %d\n", pPager, pPg->pgno)) 4370 } 4371 if( pPager->stmtInUse 4372 && !pageInStatement(pPg) 4373 && (int)pPg->pgno<=pPager->stmtSize 4374 ){ 4375 assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize ); 4376 assert( pPager->aInStmt!=0 ); 4377 pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); 4378 } 4379 pagerLeave(pPager); 4380 } 4381 4382 4383 /* 4384 ** This routine is called to increment the database file change-counter, 4385 ** stored at byte 24 of the pager file. 4386 */ 4387 static int pager_incr_changecounter(Pager *pPager, int isDirect){ 4388 PgHdr *pPgHdr; 4389 u32 change_counter; 4390 int rc = SQLITE_OK; 4391 4392 if( !pPager->changeCountDone ){ 4393 /* Open page 1 of the file for writing. */ 4394 rc = sqlite3PagerGet(pPager, 1, &pPgHdr); 4395 if( rc!=SQLITE_OK ) return rc; 4396 4397 if( !isDirect ){ 4398 rc = sqlite3PagerWrite(pPgHdr); 4399 if( rc!=SQLITE_OK ){ 4400 sqlite3PagerUnref(pPgHdr); 4401 return rc; 4402 } 4403 } 4404 4405 /* Increment the value just read and write it back to byte 24. */ 4406 change_counter = sqlite3Get4byte((u8*)pPager->dbFileVers); 4407 change_counter++; 4408 put32bits(((char*)PGHDR_TO_DATA(pPgHdr))+24, change_counter); 4409 4410 if( isDirect && pPager->fd->pMethods ){ 4411 const void *zBuf = PGHDR_TO_DATA(pPgHdr); 4412 rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0); 4413 } 4414 4415 /* Release the page reference. */ 4416 sqlite3PagerUnref(pPgHdr); 4417 pPager->changeCountDone = 1; 4418 } 4419 return rc; 4420 } 4421 4422 /* 4423 ** Sync the database file for the pager pPager. zMaster points to the name 4424 ** of a master journal file that should be written into the individual 4425 ** journal file. zMaster may be NULL, which is interpreted as no master 4426 ** journal (a single database transaction). 4427 ** 4428 ** This routine ensures that the journal is synced, all dirty pages written 4429 ** to the database file and the database file synced. The only thing that 4430 ** remains to commit the transaction is to delete the journal file (or 4431 ** master journal file if specified). 4432 ** 4433 ** Note that if zMaster==NULL, this does not overwrite a previous value 4434 ** passed to an sqlite3PagerCommitPhaseOne() call. 4435 ** 4436 ** If parameter nTrunc is non-zero, then the pager file is truncated to 4437 ** nTrunc pages (this is used by auto-vacuum databases). 4438 */ 4439 int sqlite3PagerCommitPhaseOne(Pager *pPager, const char *zMaster, Pgno nTrunc){ 4440 int rc = SQLITE_OK; 4441 4442 PAGERTRACE4("DATABASE SYNC: File=%s zMaster=%s nTrunc=%d\n", 4443 pPager->zFilename, zMaster, nTrunc); 4444 pagerEnter(pPager); 4445 4446 /* If this is an in-memory db, or no pages have been written to, or this 4447 ** function has already been called, it is a no-op. 4448 */ 4449 if( pPager->state!=PAGER_SYNCED && !MEMDB && pPager->dirtyCache ){ 4450 PgHdr *pPg; 4451 4452 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 4453 /* The atomic-write optimization can be used if all of the 4454 ** following are true: 4455 ** 4456 ** + The file-system supports the atomic-write property for 4457 ** blocks of size page-size, and 4458 ** + This commit is not part of a multi-file transaction, and 4459 ** + Exactly one page has been modified and store in the journal file. 4460 ** 4461 ** If the optimization can be used, then the journal file will never 4462 ** be created for this transaction. 4463 */ 4464 int useAtomicWrite = ( 4465 !zMaster && 4466 pPager->journalOff==jrnlBufferSize(pPager) && 4467 nTrunc==0 && 4468 (0==pPager->pDirty || 0==pPager->pDirty->pDirty) 4469 ); 4470 if( useAtomicWrite ){ 4471 /* Update the nRec field in the journal file. */ 4472 int offset = pPager->journalHdr + sizeof(aJournalMagic); 4473 assert(pPager->nRec==1); 4474 rc = write32bits(pPager->jfd, offset, pPager->nRec); 4475 4476 /* Update the db file change counter. The following call will modify 4477 ** the in-memory representation of page 1 to include the updated 4478 ** change counter and then write page 1 directly to the database 4479 ** file. Because of the atomic-write property of the host file-system, 4480 ** this is safe. 4481 */ 4482 if( rc==SQLITE_OK ){ 4483 rc = pager_incr_changecounter(pPager, 1); 4484 } 4485 }else{ 4486 rc = sqlite3JournalCreate(pPager->jfd); 4487 } 4488 4489 if( !useAtomicWrite && rc==SQLITE_OK ) 4490 #endif 4491 4492 /* If a master journal file name has already been written to the 4493 ** journal file, then no sync is required. This happens when it is 4494 ** written, then the process fails to upgrade from a RESERVED to an 4495 ** EXCLUSIVE lock. The next time the process tries to commit the 4496 ** transaction the m-j name will have already been written. 4497 */ 4498 if( !pPager->setMaster ){ 4499 assert( pPager->journalOpen ); 4500 rc = pager_incr_changecounter(pPager, 0); 4501 if( rc!=SQLITE_OK ) goto sync_exit; 4502 #ifndef SQLITE_OMIT_AUTOVACUUM 4503 if( nTrunc!=0 ){ 4504 /* If this transaction has made the database smaller, then all pages 4505 ** being discarded by the truncation must be written to the journal 4506 ** file. 4507 */ 4508 Pgno i; 4509 int iSkip = PAGER_MJ_PGNO(pPager); 4510 for( i=nTrunc+1; i<=pPager->origDbSize; i++ ){ 4511 if( !(pPager->aInJournal[i/8] & (1<<(i&7))) && i!=iSkip ){ 4512 rc = sqlite3PagerGet(pPager, i, &pPg); 4513 if( rc!=SQLITE_OK ) goto sync_exit; 4514 rc = sqlite3PagerWrite(pPg); 4515 sqlite3PagerUnref(pPg); 4516 if( rc!=SQLITE_OK ) goto sync_exit; 4517 } 4518 } 4519 } 4520 #endif 4521 rc = writeMasterJournal(pPager, zMaster); 4522 if( rc!=SQLITE_OK ) goto sync_exit; 4523 rc = syncJournal(pPager); 4524 } 4525 if( rc!=SQLITE_OK ) goto sync_exit; 4526 4527 #ifndef SQLITE_OMIT_AUTOVACUUM 4528 if( nTrunc!=0 ){ 4529 rc = sqlite3PagerTruncate(pPager, nTrunc); 4530 if( rc!=SQLITE_OK ) goto sync_exit; 4531 } 4532 #endif 4533 4534 /* Write all dirty pages to the database file */ 4535 pPg = pager_get_all_dirty_pages(pPager); 4536 rc = pager_write_pagelist(pPg); 4537 if( rc!=SQLITE_OK ){ 4538 while( pPg && !pPg->dirty ){ pPg = pPg->pDirty; } 4539 pPager->pDirty = pPg; 4540 goto sync_exit; 4541 } 4542 pPager->pDirty = 0; 4543 4544 /* Sync the database file. */ 4545 if( !pPager->noSync ){ 4546 rc = sqlite3OsSync(pPager->fd, pPager->sync_flags); 4547 } 4548 IOTRACE(("DBSYNC %p\n", pPager)) 4549 4550 pPager->state = PAGER_SYNCED; 4551 }else if( MEMDB && nTrunc!=0 ){ 4552 rc = sqlite3PagerTruncate(pPager, nTrunc); 4553 } 4554 4555 sync_exit: 4556 if( rc==SQLITE_IOERR_BLOCKED ){ 4557 /* pager_incr_changecounter() may attempt to obtain an exclusive 4558 * lock to spill the cache and return IOERR_BLOCKED. But since 4559 * there is no chance the cache is inconsistent, it's 4560 * better to return SQLITE_BUSY. 4561 */ 4562 rc = SQLITE_BUSY; 4563 } 4564 pagerLeave(pPager); 4565 return rc; 4566 } 4567 4568 4569 /* 4570 ** Commit all changes to the database and release the write lock. 4571 ** 4572 ** If the commit fails for any reason, a rollback attempt is made 4573 ** and an error code is returned. If the commit worked, SQLITE_OK 4574 ** is returned. 4575 */ 4576 int sqlite3PagerCommitPhaseTwo(Pager *pPager){ 4577 int rc; 4578 PgHdr *pPg; 4579 4580 if( pPager->errCode ){ 4581 return pPager->errCode; 4582 } 4583 if( pPager->state<PAGER_RESERVED ){ 4584 return SQLITE_ERROR; 4585 } 4586 pagerEnter(pPager); 4587 PAGERTRACE2("COMMIT %d\n", PAGERID(pPager)); 4588 if( MEMDB ){ 4589 pPg = pager_get_all_dirty_pages(pPager); 4590 while( pPg ){ 4591 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); 4592 clearHistory(pHist); 4593 pPg->dirty = 0; 4594 pPg->inJournal = 0; 4595 pHist->inStmt = 0; 4596 pPg->needSync = 0; 4597 pHist->pPrevStmt = pHist->pNextStmt = 0; 4598 pPg = pPg->pDirty; 4599 } 4600 pPager->pDirty = 0; 4601 #ifndef NDEBUG 4602 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ 4603 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); 4604 assert( !pPg->alwaysRollback ); 4605 assert( !pHist->pOrig ); 4606 assert( !pHist->pStmt ); 4607 } 4608 #endif 4609 pPager->pStmt = 0; 4610 pPager->state = PAGER_SHARED; 4611 return SQLITE_OK; 4612 } 4613 assert( pPager->journalOpen || !pPager->dirtyCache ); 4614 assert( pPager->state==PAGER_SYNCED || !pPager->dirtyCache ); 4615 rc = pager_end_transaction(pPager); 4616 rc = pager_error(pPager, rc); 4617 pagerLeave(pPager); 4618 return rc; 4619 } 4620 4621 /* 4622 ** Rollback all changes. The database falls back to PAGER_SHARED mode. 4623 ** All in-memory cache pages revert to their original data contents. 4624 ** The journal is deleted. 4625 ** 4626 ** This routine cannot fail unless some other process is not following 4627 ** the correct locking protocol or unless some other 4628 ** process is writing trash into the journal file (SQLITE_CORRUPT) or 4629 ** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error 4630 ** codes are returned for all these occasions. Otherwise, 4631 ** SQLITE_OK is returned. 4632 */ 4633 int sqlite3PagerRollback(Pager *pPager){ 4634 int rc; 4635 PAGERTRACE2("ROLLBACK %d\n", PAGERID(pPager)); 4636 if( MEMDB ){ 4637 PgHdr *p; 4638 for(p=pPager->pAll; p; p=p->pNextAll){ 4639 PgHistory *pHist; 4640 assert( !p->alwaysRollback ); 4641 if( !p->dirty ){ 4642 assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pOrig ); 4643 assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pStmt ); 4644 continue; 4645 } 4646 4647 pHist = PGHDR_TO_HIST(p, pPager); 4648 if( pHist->pOrig ){ 4649 memcpy(PGHDR_TO_DATA(p), pHist->pOrig, pPager->pageSize); 4650 PAGERTRACE3("ROLLBACK-PAGE %d of %d\n", p->pgno, PAGERID(pPager)); 4651 }else{ 4652 PAGERTRACE3("PAGE %d is clean on %d\n", p->pgno, PAGERID(pPager)); 4653 } 4654 clearHistory(pHist); 4655 p->dirty = 0; 4656 p->inJournal = 0; 4657 pHist->inStmt = 0; 4658 pHist->pPrevStmt = pHist->pNextStmt = 0; 4659 if( pPager->xReiniter ){ 4660 pPager->xReiniter(p, pPager->pageSize); 4661 } 4662 } 4663 pPager->pDirty = 0; 4664 pPager->pStmt = 0; 4665 pPager->dbSize = pPager->origDbSize; 4666 pager_truncate_cache(pPager); 4667 pPager->stmtInUse = 0; 4668 pPager->state = PAGER_SHARED; 4669 return SQLITE_OK; 4670 } 4671 4672 pagerEnter(pPager); 4673 if( !pPager->dirtyCache || !pPager->journalOpen ){ 4674 rc = pager_end_transaction(pPager); 4675 pagerLeave(pPager); 4676 return rc; 4677 } 4678 4679 if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){ 4680 if( pPager->state>=PAGER_EXCLUSIVE ){ 4681 pager_playback(pPager, 0); 4682 } 4683 pagerLeave(pPager); 4684 return pPager->errCode; 4685 } 4686 if( pPager->state==PAGER_RESERVED ){ 4687 int rc2; 4688 rc = pager_playback(pPager, 0); 4689 rc2 = pager_end_transaction(pPager); 4690 if( rc==SQLITE_OK ){ 4691 rc = rc2; 4692 } 4693 }else{ 4694 rc = pager_playback(pPager, 0); 4695 } 4696 /* pager_reset(pPager); */ 4697 pPager->dbSize = -1; 4698 4699 /* If an error occurs during a ROLLBACK, we can no longer trust the pager 4700 ** cache. So call pager_error() on the way out to make any error 4701 ** persistent. 4702 */ 4703 rc = pager_error(pPager, rc); 4704 pagerLeave(pPager); 4705 return rc; 4706 } 4707 4708 /* 4709 ** Return TRUE if the database file is opened read-only. Return FALSE 4710 ** if the database is (in theory) writable. 4711 */ 4712 int sqlite3PagerIsreadonly(Pager *pPager){ 4713 return pPager->readOnly; 4714 } 4715 4716 /* 4717 ** Return the number of references to the pager. 4718 */ 4719 int sqlite3PagerRefcount(Pager *pPager){ 4720 return pPager->nRef; 4721 } 4722 4723 #ifdef SQLITE_TEST 4724 /* 4725 ** This routine is used for testing and analysis only. 4726 */ 4727 int *sqlite3PagerStats(Pager *pPager){ 4728 static int a[11]; 4729 a[0] = pPager->nRef; 4730 a[1] = pPager->nPage; 4731 a[2] = pPager->mxPage; 4732 a[3] = pPager->dbSize; 4733 a[4] = pPager->state; 4734 a[5] = pPager->errCode; 4735 a[6] = pPager->nHit; 4736 a[7] = pPager->nMiss; 4737 a[8] = 0; /* Used to be pPager->nOvfl */ 4738 a[9] = pPager->nRead; 4739 a[10] = pPager->nWrite; 4740 return a; 4741 } 4742 #endif 4743 4744 /* 4745 ** Set the statement rollback point. 4746 ** 4747 ** This routine should be called with the transaction journal already 4748 ** open. A new statement journal is created that can be used to rollback 4749 ** changes of a single SQL command within a larger transaction. 4750 */ 4751 static int pagerStmtBegin(Pager *pPager){ 4752 int rc; 4753 assert( !pPager->stmtInUse ); 4754 assert( pPager->state>=PAGER_SHARED ); 4755 assert( pPager->dbSize>=0 ); 4756 PAGERTRACE2("STMT-BEGIN %d\n", PAGERID(pPager)); 4757 if( MEMDB ){ 4758 pPager->stmtInUse = 1; 4759 pPager->stmtSize = pPager->dbSize; 4760 return SQLITE_OK; 4761 } 4762 if( !pPager->journalOpen ){ 4763 pPager->stmtAutoopen = 1; 4764 return SQLITE_OK; 4765 } 4766 assert( pPager->journalOpen ); 4767 pagerLeave(pPager); 4768 assert( pPager->aInStmt==0 ); 4769 pPager->aInStmt = sqlite3MallocZero( pPager->dbSize/8 + 1 ); 4770 pagerEnter(pPager); 4771 if( pPager->aInStmt==0 ){ 4772 /* sqlite3OsLock(pPager->fd, SHARED_LOCK); */ 4773 return SQLITE_NOMEM; 4774 } 4775 #ifndef NDEBUG 4776 rc = sqlite3OsFileSize(pPager->jfd, &pPager->stmtJSize); 4777 if( rc ) goto stmt_begin_failed; 4778 assert( pPager->stmtJSize == pPager->journalOff ); 4779 #endif 4780 pPager->stmtJSize = pPager->journalOff; 4781 pPager->stmtSize = pPager->dbSize; 4782 pPager->stmtHdrOff = 0; 4783 pPager->stmtCksum = pPager->cksumInit; 4784 if( !pPager->stmtOpen ){ 4785 rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->stfd, pPager->zStmtJrnl, 4786 SQLITE_OPEN_SUBJOURNAL); 4787 if( rc ){ 4788 goto stmt_begin_failed; 4789 } 4790 pPager->stmtOpen = 1; 4791 pPager->stmtNRec = 0; 4792 } 4793 pPager->stmtInUse = 1; 4794 return SQLITE_OK; 4795 4796 stmt_begin_failed: 4797 if( pPager->aInStmt ){ 4798 sqlite3_free(pPager->aInStmt); 4799 pPager->aInStmt = 0; 4800 } 4801 return rc; 4802 } 4803 int sqlite3PagerStmtBegin(Pager *pPager){ 4804 int rc; 4805 pagerEnter(pPager); 4806 rc = pagerStmtBegin(pPager); 4807 pagerLeave(pPager); 4808 return rc; 4809 } 4810 4811 /* 4812 ** Commit a statement. 4813 */ 4814 int sqlite3PagerStmtCommit(Pager *pPager){ 4815 pagerEnter(pPager); 4816 if( pPager->stmtInUse ){ 4817 PgHdr *pPg, *pNext; 4818 PAGERTRACE2("STMT-COMMIT %d\n", PAGERID(pPager)); 4819 if( !MEMDB ){ 4820 /* sqlite3OsTruncate(pPager->stfd, 0); */ 4821 sqlite3_free( pPager->aInStmt ); 4822 pPager->aInStmt = 0; 4823 }else{ 4824 for(pPg=pPager->pStmt; pPg; pPg=pNext){ 4825 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); 4826 pNext = pHist->pNextStmt; 4827 assert( pHist->inStmt ); 4828 pHist->inStmt = 0; 4829 pHist->pPrevStmt = pHist->pNextStmt = 0; 4830 sqlite3_free(pHist->pStmt); 4831 pHist->pStmt = 0; 4832 } 4833 } 4834 pPager->stmtNRec = 0; 4835 pPager->stmtInUse = 0; 4836 pPager->pStmt = 0; 4837 } 4838 pPager->stmtAutoopen = 0; 4839 pagerLeave(pPager); 4840 return SQLITE_OK; 4841 } 4842 4843 /* 4844 ** Rollback a statement. 4845 */ 4846 int sqlite3PagerStmtRollback(Pager *pPager){ 4847 int rc; 4848 pagerEnter(pPager); 4849 if( pPager->stmtInUse ){ 4850 PAGERTRACE2("STMT-ROLLBACK %d\n", PAGERID(pPager)); 4851 if( MEMDB ){ 4852 PgHdr *pPg; 4853 PgHistory *pHist; 4854 for(pPg=pPager->pStmt; pPg; pPg=pHist->pNextStmt){ 4855 pHist = PGHDR_TO_HIST(pPg, pPager); 4856 if( pHist->pStmt ){ 4857 memcpy(PGHDR_TO_DATA(pPg), pHist->pStmt, pPager->pageSize); 4858 sqlite3_free(pHist->pStmt); 4859 pHist->pStmt = 0; 4860 } 4861 } 4862 pPager->dbSize = pPager->stmtSize; 4863 pager_truncate_cache(pPager); 4864 rc = SQLITE_OK; 4865 }else{ 4866 rc = pager_stmt_playback(pPager); 4867 } 4868 sqlite3PagerStmtCommit(pPager); 4869 }else{ 4870 rc = SQLITE_OK; 4871 } 4872 pPager->stmtAutoopen = 0; 4873 pagerLeave(pPager); 4874 return rc; 4875 } 4876 4877 /* 4878 ** Return the full pathname of the database file. 4879 */ 4880 const char *sqlite3PagerFilename(Pager *pPager){ 4881 return pPager->zFilename; 4882 } 4883 4884 /* 4885 ** Return the VFS structure for the pager. 4886 */ 4887 const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){ 4888 return pPager->pVfs; 4889 } 4890 4891 /* 4892 ** Return the file handle for the database file associated 4893 ** with the pager. This might return NULL if the file has 4894 ** not yet been opened. 4895 */ 4896 sqlite3_file *sqlite3PagerFile(Pager *pPager){ 4897 return pPager->fd; 4898 } 4899 4900 /* 4901 ** Return the directory of the database file. 4902 */ 4903 const char *sqlite3PagerDirname(Pager *pPager){ 4904 return pPager->zDirectory; 4905 } 4906 4907 /* 4908 ** Return the full pathname of the journal file. 4909 */ 4910 const char *sqlite3PagerJournalname(Pager *pPager){ 4911 return pPager->zJournal; 4912 } 4913 4914 /* 4915 ** Return true if fsync() calls are disabled for this pager. Return FALSE 4916 ** if fsync()s are executed normally. 4917 */ 4918 int sqlite3PagerNosync(Pager *pPager){ 4919 return pPager->noSync; 4920 } 4921 4922 #ifdef SQLITE_HAS_CODEC 4923 /* 4924 ** Set the codec for this pager 4925 */ 4926 void sqlite3PagerSetCodec( 4927 Pager *pPager, 4928 void *(*xCodec)(void*,void*,Pgno,int), 4929 void *pCodecArg 4930 ){ 4931 pPager->xCodec = xCodec; 4932 pPager->pCodecArg = pCodecArg; 4933 } 4934 #endif 4935 4936 #ifndef SQLITE_OMIT_AUTOVACUUM 4937 /* 4938 ** Move the page pPg to location pgno in the file. 4939 ** 4940 ** There must be no references to the page previously located at 4941 ** pgno (which we call pPgOld) though that page is allowed to be 4942 ** in cache. If the page previous located at pgno is not already 4943 ** in the rollback journal, it is not put there by by this routine. 4944 ** 4945 ** References to the page pPg remain valid. Updating any 4946 ** meta-data associated with pPg (i.e. data stored in the nExtra bytes 4947 ** allocated along with the page) is the responsibility of the caller. 4948 ** 4949 ** A transaction must be active when this routine is called. It used to be 4950 ** required that a statement transaction was not active, but this restriction 4951 ** has been removed (CREATE INDEX needs to move a page when a statement 4952 ** transaction is active). 4953 */ 4954 int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno){ 4955 PgHdr *pPgOld; /* The page being overwritten. */ 4956 int h; 4957 Pgno needSyncPgno = 0; 4958 4959 pagerEnter(pPager); 4960 assert( pPg->nRef>0 ); 4961 4962 PAGERTRACE5("MOVE %d page %d (needSync=%d) moves to %d\n", 4963 PAGERID(pPager), pPg->pgno, pPg->needSync, pgno); 4964 IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno)) 4965 4966 pager_get_content(pPg); 4967 if( pPg->needSync ){ 4968 needSyncPgno = pPg->pgno; 4969 assert( pPg->inJournal || (int)pgno>pPager->origDbSize ); 4970 assert( pPg->dirty ); 4971 assert( pPager->needSync ); 4972 } 4973 4974 /* Unlink pPg from it's hash-chain */ 4975 unlinkHashChain(pPager, pPg); 4976 4977 /* If the cache contains a page with page-number pgno, remove it 4978 ** from it's hash chain. Also, if the PgHdr.needSync was set for 4979 ** page pgno before the 'move' operation, it needs to be retained 4980 ** for the page moved there. 4981 */ 4982 pPg->needSync = 0; 4983 pPgOld = pager_lookup(pPager, pgno); 4984 if( pPgOld ){ 4985 assert( pPgOld->nRef==0 ); 4986 unlinkHashChain(pPager, pPgOld); 4987 makeClean(pPgOld); 4988 pPg->needSync = pPgOld->needSync; 4989 }else{ 4990 pPg->needSync = 0; 4991 } 4992 if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){ 4993 pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0; 4994 }else{ 4995 pPg->inJournal = 0; 4996 assert( pPg->needSync==0 || (int)pgno>pPager->origDbSize ); 4997 } 4998 4999 /* Change the page number for pPg and insert it into the new hash-chain. */ 5000 assert( pgno!=0 ); 5001 pPg->pgno = pgno; 5002 h = pgno & (pPager->nHash-1); 5003 if( pPager->aHash[h] ){ 5004 assert( pPager->aHash[h]->pPrevHash==0 ); 5005 pPager->aHash[h]->pPrevHash = pPg; 5006 } 5007 pPg->pNextHash = pPager->aHash[h]; 5008 pPager->aHash[h] = pPg; 5009 pPg->pPrevHash = 0; 5010 5011 makeDirty(pPg); 5012 pPager->dirtyCache = 1; 5013 5014 if( needSyncPgno ){ 5015 /* If needSyncPgno is non-zero, then the journal file needs to be 5016 ** sync()ed before any data is written to database file page needSyncPgno. 5017 ** Currently, no such page exists in the page-cache and the 5018 ** Pager.aInJournal bit has been set. This needs to be remedied by loading 5019 ** the page into the pager-cache and setting the PgHdr.needSync flag. 5020 ** 5021 ** The sqlite3PagerGet() call may cause the journal to sync. So make 5022 ** sure the Pager.needSync flag is set too. 5023 */ 5024 int rc; 5025 PgHdr *pPgHdr; 5026 assert( pPager->needSync ); 5027 rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr); 5028 if( rc!=SQLITE_OK ) return rc; 5029 pPager->needSync = 1; 5030 pPgHdr->needSync = 1; 5031 pPgHdr->inJournal = 1; 5032 makeDirty(pPgHdr); 5033 sqlite3PagerUnref(pPgHdr); 5034 } 5035 5036 pagerLeave(pPager); 5037 return SQLITE_OK; 5038 } 5039 #endif 5040 5041 /* 5042 ** Return a pointer to the data for the specified page. 5043 */ 5044 void *sqlite3PagerGetData(DbPage *pPg){ 5045 return PGHDR_TO_DATA(pPg); 5046 } 5047 5048 /* 5049 ** Return a pointer to the Pager.nExtra bytes of "extra" space 5050 ** allocated along with the specified page. 5051 */ 5052 void *sqlite3PagerGetExtra(DbPage *pPg){ 5053 Pager *pPager = pPg->pPager; 5054 return (pPager?PGHDR_TO_EXTRA(pPg, pPager):0); 5055 } 5056 5057 /* 5058 ** Get/set the locking-mode for this pager. Parameter eMode must be one 5059 ** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or 5060 ** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then 5061 ** the locking-mode is set to the value specified. 5062 ** 5063 ** The returned value is either PAGER_LOCKINGMODE_NORMAL or 5064 ** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated) 5065 ** locking-mode. 5066 */ 5067 int sqlite3PagerLockingMode(Pager *pPager, int eMode){ 5068 assert( eMode==PAGER_LOCKINGMODE_QUERY 5069 || eMode==PAGER_LOCKINGMODE_NORMAL 5070 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); 5071 assert( PAGER_LOCKINGMODE_QUERY<0 ); 5072 assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 ); 5073 if( eMode>=0 && !pPager->tempFile ){ 5074 pPager->exclusiveMode = eMode; 5075 } 5076 return (int)pPager->exclusiveMode; 5077 } 5078 5079 #ifdef SQLITE_DEBUG 5080 /* 5081 ** Print a listing of all referenced pages and their ref count. 5082 */ 5083 void sqlite3PagerRefdump(Pager *pPager){ 5084 PgHdr *pPg; 5085 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ 5086 if( pPg->nRef<=0 ) continue; 5087 sqlite3DebugPrintf("PAGE %3d addr=%p nRef=%d\n", 5088 pPg->pgno, PGHDR_TO_DATA(pPg), pPg->nRef); 5089 } 5090 } 5091 #endif 5092 5093 #endif /* SQLITE_OMIT_DISKIO */ 5094