xref: /sqlite-3.40.0/src/pager.c (revision cd7274ce)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This is the implementation of the page cache subsystem or "pager".
13 **
14 ** The pager is used to access a database disk file.  It implements
15 ** atomic commit and rollback through the use of a journal file that
16 ** is separate from the database file.  The pager also implements file
17 ** locking to prevent two processes from writing the same database
18 ** file simultaneously, or one process from reading the database while
19 ** another is writing.
20 **
21 ** @(#) $Id: pager.c,v 1.394 2007/11/05 15:30:13 danielk1977 Exp $
22 */
23 #ifndef SQLITE_OMIT_DISKIO
24 #include "sqliteInt.h"
25 #include <assert.h>
26 #include <string.h>
27 
28 /*
29 ** Macros for troubleshooting.  Normally turned off
30 */
31 #if 0
32 #define sqlite3DebugPrintf printf
33 #define PAGERTRACE1(X)       sqlite3DebugPrintf(X)
34 #define PAGERTRACE2(X,Y)     sqlite3DebugPrintf(X,Y)
35 #define PAGERTRACE3(X,Y,Z)   sqlite3DebugPrintf(X,Y,Z)
36 #define PAGERTRACE4(X,Y,Z,W) sqlite3DebugPrintf(X,Y,Z,W)
37 #define PAGERTRACE5(X,Y,Z,W,V) sqlite3DebugPrintf(X,Y,Z,W,V)
38 #else
39 #define PAGERTRACE1(X)
40 #define PAGERTRACE2(X,Y)
41 #define PAGERTRACE3(X,Y,Z)
42 #define PAGERTRACE4(X,Y,Z,W)
43 #define PAGERTRACE5(X,Y,Z,W,V)
44 #endif
45 
46 /*
47 ** The following two macros are used within the PAGERTRACEX() macros above
48 ** to print out file-descriptors.
49 **
50 ** PAGERID() takes a pointer to a Pager struct as it's argument. The
51 ** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file
52 ** struct as it's argument.
53 */
54 #define PAGERID(p) ((int)(p->fd))
55 #define FILEHANDLEID(fd) ((int)fd)
56 
57 /*
58 ** The page cache as a whole is always in one of the following
59 ** states:
60 **
61 **   PAGER_UNLOCK        The page cache is not currently reading or
62 **                       writing the database file.  There is no
63 **                       data held in memory.  This is the initial
64 **                       state.
65 **
66 **   PAGER_SHARED        The page cache is reading the database.
67 **                       Writing is not permitted.  There can be
68 **                       multiple readers accessing the same database
69 **                       file at the same time.
70 **
71 **   PAGER_RESERVED      This process has reserved the database for writing
72 **                       but has not yet made any changes.  Only one process
73 **                       at a time can reserve the database.  The original
74 **                       database file has not been modified so other
75 **                       processes may still be reading the on-disk
76 **                       database file.
77 **
78 **   PAGER_EXCLUSIVE     The page cache is writing the database.
79 **                       Access is exclusive.  No other processes or
80 **                       threads can be reading or writing while one
81 **                       process is writing.
82 **
83 **   PAGER_SYNCED        The pager moves to this state from PAGER_EXCLUSIVE
84 **                       after all dirty pages have been written to the
85 **                       database file and the file has been synced to
86 **                       disk. All that remains to do is to remove or
87 **                       truncate the journal file and the transaction
88 **                       will be committed.
89 **
90 ** The page cache comes up in PAGER_UNLOCK.  The first time a
91 ** sqlite3PagerGet() occurs, the state transitions to PAGER_SHARED.
92 ** After all pages have been released using sqlite_page_unref(),
93 ** the state transitions back to PAGER_UNLOCK.  The first time
94 ** that sqlite3PagerWrite() is called, the state transitions to
95 ** PAGER_RESERVED.  (Note that sqlite3PagerWrite() can only be
96 ** called on an outstanding page which means that the pager must
97 ** be in PAGER_SHARED before it transitions to PAGER_RESERVED.)
98 ** PAGER_RESERVED means that there is an open rollback journal.
99 ** The transition to PAGER_EXCLUSIVE occurs before any changes
100 ** are made to the database file, though writes to the rollback
101 ** journal occurs with just PAGER_RESERVED.  After an sqlite3PagerRollback()
102 ** or sqlite3PagerCommitPhaseTwo(), the state can go back to PAGER_SHARED,
103 ** or it can stay at PAGER_EXCLUSIVE if we are in exclusive access mode.
104 */
105 #define PAGER_UNLOCK      0
106 #define PAGER_SHARED      1   /* same as SHARED_LOCK */
107 #define PAGER_RESERVED    2   /* same as RESERVED_LOCK */
108 #define PAGER_EXCLUSIVE   4   /* same as EXCLUSIVE_LOCK */
109 #define PAGER_SYNCED      5
110 
111 /*
112 ** If the SQLITE_BUSY_RESERVED_LOCK macro is set to true at compile-time,
113 ** then failed attempts to get a reserved lock will invoke the busy callback.
114 ** This is off by default.  To see why, consider the following scenario:
115 **
116 ** Suppose thread A already has a shared lock and wants a reserved lock.
117 ** Thread B already has a reserved lock and wants an exclusive lock.  If
118 ** both threads are using their busy callbacks, it might be a long time
119 ** be for one of the threads give up and allows the other to proceed.
120 ** But if the thread trying to get the reserved lock gives up quickly
121 ** (if it never invokes its busy callback) then the contention will be
122 ** resolved quickly.
123 */
124 #ifndef SQLITE_BUSY_RESERVED_LOCK
125 # define SQLITE_BUSY_RESERVED_LOCK 0
126 #endif
127 
128 /*
129 ** This macro rounds values up so that if the value is an address it
130 ** is guaranteed to be an address that is aligned to an 8-byte boundary.
131 */
132 #define FORCE_ALIGNMENT(X)   (((X)+7)&~7)
133 
134 typedef struct PgHdr PgHdr;
135 
136 /*
137 ** Each pager stores all currently unreferenced pages in a list sorted
138 ** in least-recently-used (LRU) order (i.e. the first item on the list has
139 ** not been referenced in a long time, the last item has been recently
140 ** used). An instance of this structure is included as part of each
141 ** pager structure for this purpose (variable Pager.lru).
142 **
143 ** Additionally, if memory-management is enabled, all unreferenced pages
144 ** are stored in a global LRU list (global variable sqlite3LruPageList).
145 **
146 ** In both cases, the PagerLruList.pFirstSynced variable points to
147 ** the first page in the corresponding list that does not require an
148 ** fsync() operation before it's memory can be reclaimed. If no such
149 ** page exists, PagerLruList.pFirstSynced is set to NULL.
150 */
151 typedef struct PagerLruList PagerLruList;
152 struct PagerLruList {
153   PgHdr *pFirst;         /* First page in LRU list */
154   PgHdr *pLast;          /* Last page in LRU list (the most recently used) */
155   PgHdr *pFirstSynced;   /* First page in list with PgHdr.needSync==0 */
156 };
157 
158 /*
159 ** The following structure contains the next and previous pointers used
160 ** to link a PgHdr structure into a PagerLruList linked list.
161 */
162 typedef struct PagerLruLink PagerLruLink;
163 struct PagerLruLink {
164   PgHdr *pNext;
165   PgHdr *pPrev;
166 };
167 
168 /*
169 ** Each in-memory image of a page begins with the following header.
170 ** This header is only visible to this pager module.  The client
171 ** code that calls pager sees only the data that follows the header.
172 **
173 ** Client code should call sqlite3PagerWrite() on a page prior to making
174 ** any modifications to that page.  The first time sqlite3PagerWrite()
175 ** is called, the original page contents are written into the rollback
176 ** journal and PgHdr.inJournal and PgHdr.needSync are set.  Later, once
177 ** the journal page has made it onto the disk surface, PgHdr.needSync
178 ** is cleared.  The modified page cannot be written back into the original
179 ** database file until the journal pages has been synced to disk and the
180 ** PgHdr.needSync has been cleared.
181 **
182 ** The PgHdr.dirty flag is set when sqlite3PagerWrite() is called and
183 ** is cleared again when the page content is written back to the original
184 ** database file.
185 **
186 ** Details of important structure elements:
187 **
188 ** needSync
189 **
190 **     If this is true, this means that it is not safe to write the page
191 **     content to the database because the original content needed
192 **     for rollback has not by synced to the main rollback journal.
193 **     The original content may have been written to the rollback journal
194 **     but it has not yet been synced.  So we cannot write to the database
195 **     file because power failure might cause the page in the journal file
196 **     to never reach the disk.  It is as if the write to the journal file
197 **     does not occur until the journal file is synced.
198 **
199 **     This flag is false if the page content exactly matches what
200 **     currently exists in the database file.  The needSync flag is also
201 **     false if the original content has been written to the main rollback
202 **     journal and synced.  If the page represents a new page that has
203 **     been added onto the end of the database during the current
204 **     transaction, the needSync flag is true until the original database
205 **     size in the journal header has been synced to disk.
206 **
207 ** inJournal
208 **
209 **     This is true if the original page has been written into the main
210 **     rollback journal.  This is always false for new pages added to
211 **     the end of the database file during the current transaction.
212 **     And this flag says nothing about whether or not the journal
213 **     has been synced to disk.  For pages that are in the original
214 **     database file, the following expression should always be true:
215 **
216 **       inJournal = (pPager->aInJournal[(pgno-1)/8] & (1<<((pgno-1)%8))!=0
217 **
218 **     The pPager->aInJournal[] array is only valid for the original
219 **     pages of the database, not new pages that are added to the end
220 **     of the database, so obviously the above expression cannot be
221 **     valid for new pages.  For new pages inJournal is always 0.
222 **
223 ** dirty
224 **
225 **     When true, this means that the content of the page has been
226 **     modified and needs to be written back to the database file.
227 **     If false, it means that either the content of the page is
228 **     unchanged or else the content is unimportant and we do not
229 **     care whether or not it is preserved.
230 **
231 ** alwaysRollback
232 **
233 **     This means that the sqlite3PagerDontRollback() API should be
234 **     ignored for this page.  The DontRollback() API attempts to say
235 **     that the content of the page on disk is unimportant (it is an
236 **     unused page on the freelist) so that it is unnecessary to
237 **     rollback changes to this page because the content of the page
238 **     can change without changing the meaning of the database.  This
239 **     flag overrides any DontRollback() attempt.  This flag is set
240 **     when a page that originally contained valid data is added to
241 **     the freelist.  Later in the same transaction, this page might
242 **     be pulled from the freelist and reused for something different
243 **     and at that point the DontRollback() API will be called because
244 **     pages taken from the freelist do not need to be protected by
245 **     the rollback journal.  But this flag says that the page was
246 **     not originally part of the freelist so that it still needs to
247 **     be rolled back in spite of any subsequent DontRollback() calls.
248 **
249 ** needRead
250 **
251 **     This flag means (when true) that the content of the page has
252 **     not yet been loaded from disk.  The in-memory content is just
253 **     garbage.  (Actually, we zero the content, but you should not
254 **     make any assumptions about the content nevertheless.)  If the
255 **     content is needed in the future, it should be read from the
256 **     original database file.
257 */
258 struct PgHdr {
259   Pager *pPager;                 /* The pager to which this page belongs */
260   Pgno pgno;                     /* The page number for this page */
261   PgHdr *pNextHash, *pPrevHash;  /* Hash collision chain for PgHdr.pgno */
262   PagerLruLink free;             /* Next and previous free pages */
263   PgHdr *pNextAll;               /* A list of all pages */
264   u8 inJournal;                  /* TRUE if has been written to journal */
265   u8 dirty;                      /* TRUE if we need to write back changes */
266   u8 needSync;                   /* Sync journal before writing this page */
267   u8 alwaysRollback;             /* Disable DontRollback() for this page */
268   u8 needRead;                   /* Read content if PagerWrite() is called */
269   short int nRef;                /* Number of users of this page */
270   PgHdr *pDirty, *pPrevDirty;    /* Dirty pages */
271 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
272   PagerLruLink gfree;            /* Global list of nRef==0 pages */
273 #endif
274 #ifdef SQLITE_CHECK_PAGES
275   u32 pageHash;
276 #endif
277   void *pData;                   /* Page data */
278   /* Pager.nExtra bytes of local data appended to this header */
279 };
280 
281 /*
282 ** For an in-memory only database, some extra information is recorded about
283 ** each page so that changes can be rolled back.  (Journal files are not
284 ** used for in-memory databases.)  The following information is added to
285 ** the end of every EXTRA block for in-memory databases.
286 **
287 ** This information could have been added directly to the PgHdr structure.
288 ** But then it would take up an extra 8 bytes of storage on every PgHdr
289 ** even for disk-based databases.  Splitting it out saves 8 bytes.  This
290 ** is only a savings of 0.8% but those percentages add up.
291 */
292 typedef struct PgHistory PgHistory;
293 struct PgHistory {
294   u8 *pOrig;     /* Original page text.  Restore to this on a full rollback */
295   u8 *pStmt;     /* Text as it was at the beginning of the current statement */
296   PgHdr *pNextStmt, *pPrevStmt;  /* List of pages in the statement journal */
297   u8 inStmt;                     /* TRUE if in the statement subjournal */
298 };
299 
300 /*
301 ** A macro used for invoking the codec if there is one
302 */
303 #ifdef SQLITE_HAS_CODEC
304 # define CODEC1(P,D,N,X) if( P->xCodec!=0 ){ P->xCodec(P->pCodecArg,D,N,X); }
305 # define CODEC2(P,D,N,X) ((char*)(P->xCodec!=0?P->xCodec(P->pCodecArg,D,N,X):D))
306 #else
307 # define CODEC1(P,D,N,X) /* NO-OP */
308 # define CODEC2(P,D,N,X) ((char*)D)
309 #endif
310 
311 /*
312 ** Convert a pointer to a PgHdr into a pointer to its data
313 ** and back again.
314 */
315 #define PGHDR_TO_DATA(P)    ((P)->pData)
316 #define PGHDR_TO_EXTRA(G,P) ((void*)&((G)[1]))
317 #define PGHDR_TO_HIST(P,PGR)  \
318             ((PgHistory*)&((char*)(&(P)[1]))[(PGR)->nExtra])
319 
320 /*
321 ** A open page cache is an instance of the following structure.
322 **
323 ** Pager.errCode may be set to SQLITE_IOERR, SQLITE_CORRUPT, or
324 ** or SQLITE_FULL. Once one of the first three errors occurs, it persists
325 ** and is returned as the result of every major pager API call.  The
326 ** SQLITE_FULL return code is slightly different. It persists only until the
327 ** next successful rollback is performed on the pager cache. Also,
328 ** SQLITE_FULL does not affect the sqlite3PagerGet() and sqlite3PagerLookup()
329 ** APIs, they may still be used successfully.
330 */
331 struct Pager {
332   sqlite3_vfs *pVfs;          /* OS functions to use for IO */
333   u8 journalOpen;             /* True if journal file descriptors is valid */
334   u8 journalStarted;          /* True if header of journal is synced */
335   u8 useJournal;              /* Use a rollback journal on this file */
336   u8 noReadlock;              /* Do not bother to obtain readlocks */
337   u8 stmtOpen;                /* True if the statement subjournal is open */
338   u8 stmtInUse;               /* True we are in a statement subtransaction */
339   u8 stmtAutoopen;            /* Open stmt journal when main journal is opened*/
340   u8 noSync;                  /* Do not sync the journal if true */
341   u8 fullSync;                /* Do extra syncs of the journal for robustness */
342   u8 sync_flags;              /* One of SYNC_NORMAL or SYNC_FULL */
343   u8 state;                   /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */
344   u8 tempFile;                /* zFilename is a temporary file */
345   u8 readOnly;                /* True for a read-only database */
346   u8 needSync;                /* True if an fsync() is needed on the journal */
347   u8 dirtyCache;              /* True if cached pages have changed */
348   u8 alwaysRollback;          /* Disable DontRollback() for all pages */
349   u8 memDb;                   /* True to inhibit all file I/O */
350   u8 setMaster;               /* True if a m-j name has been written to jrnl */
351   u8 doNotSync;               /* Boolean. While true, do not spill the cache */
352   u8 exclusiveMode;           /* Boolean. True if locking_mode==EXCLUSIVE */
353   u8 changeCountDone;         /* Set after incrementing the change-counter */
354   u32 vfsFlags;               /* Flags for sqlite3_vfs.xOpen() */
355   int errCode;                /* One of several kinds of errors */
356   int dbSize;                 /* Number of pages in the file */
357   int origDbSize;             /* dbSize before the current change */
358   int stmtSize;               /* Size of database (in pages) at stmt_begin() */
359   int nRec;                   /* Number of pages written to the journal */
360   u32 cksumInit;              /* Quasi-random value added to every checksum */
361   int stmtNRec;               /* Number of records in stmt subjournal */
362   int nExtra;                 /* Add this many bytes to each in-memory page */
363   int pageSize;               /* Number of bytes in a page */
364   int nPage;                  /* Total number of in-memory pages */
365   int nRef;                   /* Number of in-memory pages with PgHdr.nRef>0 */
366   int mxPage;                 /* Maximum number of pages to hold in cache */
367   Pgno mxPgno;                /* Maximum allowed size of the database */
368   u8 *aInJournal;             /* One bit for each page in the database file */
369   u8 *aInStmt;                /* One bit for each page in the database */
370   char *zFilename;            /* Name of the database file */
371   char *zJournal;             /* Name of the journal file */
372   char *zDirectory;           /* Directory hold database and journal files */
373   char *zStmtJrnl;            /* Name of the statement journal file */
374   sqlite3_file *fd, *jfd;     /* File descriptors for database and journal */
375   sqlite3_file *stfd;         /* File descriptor for the statement subjournal*/
376   BusyHandler *pBusyHandler;  /* Pointer to sqlite.busyHandler */
377   PagerLruList lru;           /* LRU list of free pages */
378   PgHdr *pAll;                /* List of all pages */
379   PgHdr *pStmt;               /* List of pages in the statement subjournal */
380   PgHdr *pDirty;              /* List of all dirty pages */
381   i64 journalOff;             /* Current byte offset in the journal file */
382   i64 journalHdr;             /* Byte offset to previous journal header */
383   i64 stmtHdrOff;             /* First journal header written this statement */
384   i64 stmtCksum;              /* cksumInit when statement was started */
385   i64 stmtJSize;              /* Size of journal at stmt_begin() */
386   int sectorSize;             /* Assumed sector size during rollback */
387 #ifdef SQLITE_TEST
388   int nHit, nMiss;            /* Cache hits and missing */
389   int nRead, nWrite;          /* Database pages read/written */
390 #endif
391   void (*xDestructor)(DbPage*,int); /* Call this routine when freeing pages */
392   void (*xReiniter)(DbPage*,int);   /* Call this routine when reloading pages */
393 #ifdef SQLITE_HAS_CODEC
394   void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
395   void *pCodecArg;            /* First argument to xCodec() */
396 #endif
397   int nHash;                  /* Size of the pager hash table */
398   PgHdr **aHash;              /* Hash table to map page number to PgHdr */
399 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
400   Pager *pNext;               /* Doubly linked list of pagers on which */
401   Pager *pPrev;               /* sqlite3_release_memory() will work */
402   int iInUseMM;               /* Non-zero if unavailable to MM */
403   int iInUseDB;               /* Non-zero if in sqlite3_release_memory() */
404 #endif
405   char *pTmpSpace;            /* Pager.pageSize bytes of space for tmp use */
406   char dbFileVers[16];        /* Changes whenever database file changes */
407 };
408 
409 /*
410 ** The following global variables hold counters used for
411 ** testing purposes only.  These variables do not exist in
412 ** a non-testing build.  These variables are not thread-safe.
413 */
414 #ifdef SQLITE_TEST
415 int sqlite3_pager_readdb_count = 0;    /* Number of full pages read from DB */
416 int sqlite3_pager_writedb_count = 0;   /* Number of full pages written to DB */
417 int sqlite3_pager_writej_count = 0;    /* Number of pages written to journal */
418 int sqlite3_pager_pgfree_count = 0;    /* Number of cache pages freed */
419 # define PAGER_INCR(v)  v++
420 #else
421 # define PAGER_INCR(v)
422 #endif
423 
424 /*
425 ** The following variable points to the head of a double-linked list
426 ** of all pagers that are eligible for page stealing by the
427 ** sqlite3_release_memory() interface.  Access to this list is
428 ** protected by the SQLITE_MUTEX_STATIC_MEM2 mutex.
429 */
430 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
431 static Pager *sqlite3PagerList = 0;
432 static PagerLruList sqlite3LruPageList = {0, 0, 0};
433 #endif
434 
435 
436 /*
437 ** Journal files begin with the following magic string.  The data
438 ** was obtained from /dev/random.  It is used only as a sanity check.
439 **
440 ** Since version 2.8.0, the journal format contains additional sanity
441 ** checking information.  If the power fails while the journal is begin
442 ** written, semi-random garbage data might appear in the journal
443 ** file after power is restored.  If an attempt is then made
444 ** to roll the journal back, the database could be corrupted.  The additional
445 ** sanity checking data is an attempt to discover the garbage in the
446 ** journal and ignore it.
447 **
448 ** The sanity checking information for the new journal format consists
449 ** of a 32-bit checksum on each page of data.  The checksum covers both
450 ** the page number and the pPager->pageSize bytes of data for the page.
451 ** This cksum is initialized to a 32-bit random value that appears in the
452 ** journal file right after the header.  The random initializer is important,
453 ** because garbage data that appears at the end of a journal is likely
454 ** data that was once in other files that have now been deleted.  If the
455 ** garbage data came from an obsolete journal file, the checksums might
456 ** be correct.  But by initializing the checksum to random value which
457 ** is different for every journal, we minimize that risk.
458 */
459 static const unsigned char aJournalMagic[] = {
460   0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7,
461 };
462 
463 /*
464 ** The size of the header and of each page in the journal is determined
465 ** by the following macros.
466 */
467 #define JOURNAL_PG_SZ(pPager)  ((pPager->pageSize) + 8)
468 
469 /*
470 ** The journal header size for this pager. In the future, this could be
471 ** set to some value read from the disk controller. The important
472 ** characteristic is that it is the same size as a disk sector.
473 */
474 #define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize)
475 
476 /*
477 ** The macro MEMDB is true if we are dealing with an in-memory database.
478 ** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set,
479 ** the value of MEMDB will be a constant and the compiler will optimize
480 ** out code that would never execute.
481 */
482 #ifdef SQLITE_OMIT_MEMORYDB
483 # define MEMDB 0
484 #else
485 # define MEMDB pPager->memDb
486 #endif
487 
488 /*
489 ** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is
490 ** reserved for working around a windows/posix incompatibility). It is
491 ** used in the journal to signify that the remainder of the journal file
492 ** is devoted to storing a master journal name - there are no more pages to
493 ** roll back. See comments for function writeMasterJournal() for details.
494 */
495 /* #define PAGER_MJ_PGNO(x) (PENDING_BYTE/((x)->pageSize)) */
496 #define PAGER_MJ_PGNO(x) ((PENDING_BYTE/((x)->pageSize))+1)
497 
498 /*
499 ** The maximum legal page number is (2^31 - 1).
500 */
501 #define PAGER_MAX_PGNO 2147483647
502 
503 /*
504 ** The pagerEnter() and pagerLeave() routines acquire and release
505 ** a mutex on each pager.  The mutex is recursive.
506 **
507 ** This is a special-purpose mutex.  It only provides mutual exclusion
508 ** between the Btree and the Memory Management sqlite3_release_memory()
509 ** function.  It does not prevent, for example, two Btrees from accessing
510 ** the same pager at the same time.  Other general-purpose mutexes in
511 ** the btree layer handle that chore.
512 */
513 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
514   static void pagerEnter(Pager *p){
515     p->iInUseDB++;
516     if( p->iInUseMM && p->iInUseDB==1 ){
517       sqlite3_mutex *mutex;
518       mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
519       p->iInUseDB = 0;
520       sqlite3_mutex_enter(mutex);
521       p->iInUseDB = 1;
522       sqlite3_mutex_leave(mutex);
523     }
524     assert( p->iInUseMM==0 );
525   }
526   static void pagerLeave(Pager *p){
527     p->iInUseDB--;
528     assert( p->iInUseDB>=0 );
529   }
530 #else
531 # define pagerEnter(X)
532 # define pagerLeave(X)
533 #endif
534 
535 /*
536 ** Enable reference count tracking (for debugging) here:
537 */
538 #ifdef SQLITE_DEBUG
539   int pager3_refinfo_enable = 0;
540   static void pager_refinfo(PgHdr *p){
541     static int cnt = 0;
542     if( !pager3_refinfo_enable ) return;
543     sqlite3DebugPrintf(
544        "REFCNT: %4d addr=%p nRef=%-3d total=%d\n",
545        p->pgno, PGHDR_TO_DATA(p), p->nRef, p->pPager->nRef
546     );
547     cnt++;   /* Something to set a breakpoint on */
548   }
549 # define REFINFO(X)  pager_refinfo(X)
550 #else
551 # define REFINFO(X)
552 #endif
553 
554 /*
555 ** Add page pPg to the end of the linked list managed by structure
556 ** pList (pPg becomes the last entry in the list - the most recently
557 ** used). Argument pLink should point to either pPg->free or pPg->gfree,
558 ** depending on whether pPg is being added to the pager-specific or
559 ** global LRU list.
560 */
561 static void listAdd(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){
562   pLink->pNext = 0;
563   pLink->pPrev = pList->pLast;
564 
565 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
566   assert(pLink==&pPg->free || pLink==&pPg->gfree);
567   assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList);
568 #endif
569 
570   if( pList->pLast ){
571     int iOff = (char *)pLink - (char *)pPg;
572     PagerLruLink *pLastLink = (PagerLruLink *)(&((u8 *)pList->pLast)[iOff]);
573     pLastLink->pNext = pPg;
574   }else{
575     assert(!pList->pFirst);
576     pList->pFirst = pPg;
577   }
578 
579   pList->pLast = pPg;
580   if( !pList->pFirstSynced && pPg->needSync==0 ){
581     pList->pFirstSynced = pPg;
582   }
583 }
584 
585 /*
586 ** Remove pPg from the list managed by the structure pointed to by pList.
587 **
588 ** Argument pLink should point to either pPg->free or pPg->gfree, depending
589 ** on whether pPg is being added to the pager-specific or global LRU list.
590 */
591 static void listRemove(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){
592   int iOff = (char *)pLink - (char *)pPg;
593 
594 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
595   assert(pLink==&pPg->free || pLink==&pPg->gfree);
596   assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList);
597 #endif
598 
599   if( pPg==pList->pFirst ){
600     pList->pFirst = pLink->pNext;
601   }
602   if( pPg==pList->pLast ){
603     pList->pLast = pLink->pPrev;
604   }
605   if( pLink->pPrev ){
606     PagerLruLink *pPrevLink = (PagerLruLink *)(&((u8 *)pLink->pPrev)[iOff]);
607     pPrevLink->pNext = pLink->pNext;
608   }
609   if( pLink->pNext ){
610     PagerLruLink *pNextLink = (PagerLruLink *)(&((u8 *)pLink->pNext)[iOff]);
611     pNextLink->pPrev = pLink->pPrev;
612   }
613   if( pPg==pList->pFirstSynced ){
614     PgHdr *p = pLink->pNext;
615     while( p && p->needSync ){
616       PagerLruLink *pL = (PagerLruLink *)(&((u8 *)p)[iOff]);
617       p = pL->pNext;
618     }
619     pList->pFirstSynced = p;
620   }
621 
622   pLink->pNext = pLink->pPrev = 0;
623 }
624 
625 /*
626 ** Add page pPg to the list of free pages for the pager. If
627 ** memory-management is enabled, also add the page to the global
628 ** list of free pages.
629 */
630 static void lruListAdd(PgHdr *pPg){
631   listAdd(&pPg->pPager->lru, &pPg->free, pPg);
632 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
633   if( !pPg->pPager->memDb ){
634     sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
635     listAdd(&sqlite3LruPageList, &pPg->gfree, pPg);
636     sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
637   }
638 #endif
639 }
640 
641 /*
642 ** Remove page pPg from the list of free pages for the associated pager.
643 ** If memory-management is enabled, also remove pPg from the global list
644 ** of free pages.
645 */
646 static void lruListRemove(PgHdr *pPg){
647   listRemove(&pPg->pPager->lru, &pPg->free, pPg);
648 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
649   if( !pPg->pPager->memDb ){
650     sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
651     listRemove(&sqlite3LruPageList, &pPg->gfree, pPg);
652     sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
653   }
654 #endif
655 }
656 
657 /*
658 ** This function is called just after the needSync flag has been cleared
659 ** from all pages managed by pPager (usually because the journal file
660 ** has just been synced). It updates the pPager->lru.pFirstSynced variable
661 ** and, if memory-management is enabled, the sqlite3LruPageList.pFirstSynced
662 ** variable also.
663 */
664 static void lruListSetFirstSynced(Pager *pPager){
665   pPager->lru.pFirstSynced = pPager->lru.pFirst;
666 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
667   if( !pPager->memDb ){
668     PgHdr *p;
669     sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
670     for(p=sqlite3LruPageList.pFirst; p && p->needSync; p=p->gfree.pNext);
671     assert(p==pPager->lru.pFirstSynced || p==sqlite3LruPageList.pFirstSynced);
672     sqlite3LruPageList.pFirstSynced = p;
673     sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
674   }
675 #endif
676 }
677 
678 /*
679 ** Return true if page *pPg has already been written to the statement
680 ** journal (or statement snapshot has been created, if *pPg is part
681 ** of an in-memory database).
682 */
683 static int pageInStatement(PgHdr *pPg){
684   Pager *pPager = pPg->pPager;
685   if( MEMDB ){
686     return PGHDR_TO_HIST(pPg, pPager)->inStmt;
687   }else{
688     Pgno pgno = pPg->pgno;
689     u8 *a = pPager->aInStmt;
690     return (a && (int)pgno<=pPager->stmtSize && (a[pgno/8] & (1<<(pgno&7))));
691   }
692 }
693 
694 /*
695 ** Change the size of the pager hash table to N.  N must be a power
696 ** of two.
697 */
698 static void pager_resize_hash_table(Pager *pPager, int N){
699   PgHdr **aHash, *pPg;
700   assert( N>0 && (N&(N-1))==0 );
701   pagerLeave(pPager);
702   sqlite3MallocBenignFailure((int)pPager->aHash);
703   aHash = sqlite3MallocZero( sizeof(aHash[0])*N );
704   pagerEnter(pPager);
705   if( aHash==0 ){
706     /* Failure to rehash is not an error.  It is only a performance hit. */
707     return;
708   }
709   sqlite3_free(pPager->aHash);
710   pPager->nHash = N;
711   pPager->aHash = aHash;
712   for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
713     int h;
714     if( pPg->pgno==0 ){
715       assert( pPg->pNextHash==0 && pPg->pPrevHash==0 );
716       continue;
717     }
718     h = pPg->pgno & (N-1);
719     pPg->pNextHash = aHash[h];
720     if( aHash[h] ){
721       aHash[h]->pPrevHash = pPg;
722     }
723     aHash[h] = pPg;
724     pPg->pPrevHash = 0;
725   }
726 }
727 
728 /*
729 ** Read a 32-bit integer from the given file descriptor.  Store the integer
730 ** that is read in *pRes.  Return SQLITE_OK if everything worked, or an
731 ** error code is something goes wrong.
732 **
733 ** All values are stored on disk as big-endian.
734 */
735 static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){
736   unsigned char ac[4];
737   int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset);
738   if( rc==SQLITE_OK ){
739     *pRes = sqlite3Get4byte(ac);
740   }
741   return rc;
742 }
743 
744 /*
745 ** Write a 32-bit integer into a string buffer in big-endian byte order.
746 */
747 #define put32bits(A,B)  sqlite3Put4byte((u8*)A,B)
748 
749 /*
750 ** Write a 32-bit integer into the given file descriptor.  Return SQLITE_OK
751 ** on success or an error code is something goes wrong.
752 */
753 static int write32bits(sqlite3_file *fd, i64 offset, u32 val){
754   char ac[4];
755   put32bits(ac, val);
756   return sqlite3OsWrite(fd, ac, 4, offset);
757 }
758 
759 /*
760 ** If file pFd is open, call sqlite3OsUnlock() on it.
761 */
762 static int osUnlock(sqlite3_file *pFd, int eLock){
763   if( !pFd->pMethods ){
764     return SQLITE_OK;
765   }
766   return sqlite3OsUnlock(pFd, eLock);
767 }
768 
769 /*
770 ** This function determines whether or not the atomic-write optimization
771 ** can be used with this pager. The optimization can be used if:
772 **
773 **  (a) the value returned by OsDeviceCharacteristics() indicates that
774 **      a database page may be written atomically, and
775 **  (b) the value returned by OsSectorSize() is less than or equal
776 **      to the page size.
777 **
778 ** If the optimization cannot be used, 0 is returned. If it can be used,
779 ** then the value returned is the size of the journal file when it
780 ** contains rollback data for exactly one page.
781 */
782 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
783 static int jrnlBufferSize(Pager *pPager){
784   int dc;           /* Device characteristics */
785   int nSector;      /* Sector size */
786   int nPage;        /* Page size */
787   sqlite3_file *fd = pPager->fd;
788 
789   if( fd->pMethods ){
790     dc = sqlite3OsDeviceCharacteristics(fd);
791     nSector = sqlite3OsSectorSize(fd);
792     nPage = pPager->pageSize;
793   }
794 
795   assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
796   assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
797 
798   if( !fd->pMethods || (dc&(SQLITE_IOCAP_ATOMIC|(nPage>>8))&&nSector<=nPage) ){
799     return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager);
800   }
801   return 0;
802 }
803 #endif
804 
805 /*
806 ** This function should be called when an error occurs within the pager
807 ** code. The first argument is a pointer to the pager structure, the
808 ** second the error-code about to be returned by a pager API function.
809 ** The value returned is a copy of the second argument to this function.
810 **
811 ** If the second argument is SQLITE_IOERR, SQLITE_CORRUPT, or SQLITE_FULL
812 ** the error becomes persistent. Until the persisten error is cleared,
813 ** subsequent API calls on this Pager will immediately return the same
814 ** error code.
815 **
816 ** A persistent error indicates that the contents of the pager-cache
817 ** cannot be trusted. This state can be cleared by completely discarding
818 ** the contents of the pager-cache. If a transaction was active when
819 ** the persistent error occured, then the rollback journal may need
820 ** to be replayed.
821 */
822 static void pager_unlock(Pager *pPager);
823 static int pager_error(Pager *pPager, int rc){
824   int rc2 = rc & 0xff;
825   assert(
826        pPager->errCode==SQLITE_FULL ||
827        pPager->errCode==SQLITE_OK ||
828        (pPager->errCode & 0xff)==SQLITE_IOERR
829   );
830   if(
831     rc2==SQLITE_FULL ||
832     rc2==SQLITE_IOERR ||
833     rc2==SQLITE_CORRUPT
834   ){
835     pPager->errCode = rc;
836     if( pPager->state==PAGER_UNLOCK && pPager->nRef==0 ){
837       /* If the pager is already unlocked, call pager_unlock() now to
838       ** clear the error state and ensure that the pager-cache is
839       ** completely empty.
840       */
841       pager_unlock(pPager);
842     }
843   }
844   return rc;
845 }
846 
847 /*
848 ** If SQLITE_CHECK_PAGES is defined then we do some sanity checking
849 ** on the cache using a hash function.  This is used for testing
850 ** and debugging only.
851 */
852 #ifdef SQLITE_CHECK_PAGES
853 /*
854 ** Return a 32-bit hash of the page data for pPage.
855 */
856 static u32 pager_datahash(int nByte, unsigned char *pData){
857   u32 hash = 0;
858   int i;
859   for(i=0; i<nByte; i++){
860     hash = (hash*1039) + pData[i];
861   }
862   return hash;
863 }
864 static u32 pager_pagehash(PgHdr *pPage){
865   return pager_datahash(pPage->pPager->pageSize,
866                         (unsigned char *)PGHDR_TO_DATA(pPage));
867 }
868 
869 /*
870 ** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES
871 ** is defined, and NDEBUG is not defined, an assert() statement checks
872 ** that the page is either dirty or still matches the calculated page-hash.
873 */
874 #define CHECK_PAGE(x) checkPage(x)
875 static void checkPage(PgHdr *pPg){
876   Pager *pPager = pPg->pPager;
877   assert( !pPg->pageHash || pPager->errCode || MEMDB || pPg->dirty ||
878       pPg->pageHash==pager_pagehash(pPg) );
879 }
880 
881 #else
882 #define pager_datahash(X,Y)  0
883 #define pager_pagehash(X)  0
884 #define CHECK_PAGE(x)
885 #endif
886 
887 /*
888 ** When this is called the journal file for pager pPager must be open.
889 ** The master journal file name is read from the end of the file and
890 ** written into memory supplied by the caller.
891 **
892 ** zMaster must point to a buffer of at least nMaster bytes allocated by
893 ** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is
894 ** enough space to write the master journal name). If the master journal
895 ** name in the journal is longer than nMaster bytes (including a
896 ** nul-terminator), then this is handled as if no master journal name
897 ** were present in the journal.
898 **
899 ** If no master journal file name is present zMaster[0] is set to 0 and
900 ** SQLITE_OK returned.
901 */
902 static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, int nMaster){
903   int rc;
904   u32 len;
905   i64 szJ;
906   u32 cksum;
907   int i;
908   unsigned char aMagic[8]; /* A buffer to hold the magic header */
909 
910   zMaster[0] = '\0';
911 
912   rc = sqlite3OsFileSize(pJrnl, &szJ);
913   if( rc!=SQLITE_OK || szJ<16 ) return rc;
914 
915   rc = read32bits(pJrnl, szJ-16, &len);
916   if( rc!=SQLITE_OK ) return rc;
917 
918   if( len>=nMaster ){
919     return SQLITE_OK;
920   }
921 
922   rc = read32bits(pJrnl, szJ-12, &cksum);
923   if( rc!=SQLITE_OK ) return rc;
924 
925   rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8);
926   if( rc!=SQLITE_OK || memcmp(aMagic, aJournalMagic, 8) ) return rc;
927 
928   rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len);
929   if( rc!=SQLITE_OK ){
930     return rc;
931   }
932   zMaster[len] = '\0';
933 
934   /* See if the checksum matches the master journal name */
935   for(i=0; i<len; i++){
936     cksum -= zMaster[i];
937    }
938   if( cksum ){
939     /* If the checksum doesn't add up, then one or more of the disk sectors
940     ** containing the master journal filename is corrupted. This means
941     ** definitely roll back, so just return SQLITE_OK and report a (nul)
942     ** master-journal filename.
943     */
944     zMaster[0] = '\0';
945   }
946 
947   return SQLITE_OK;
948 }
949 
950 /*
951 ** Seek the journal file descriptor to the next sector boundary where a
952 ** journal header may be read or written. Pager.journalOff is updated with
953 ** the new seek offset.
954 **
955 ** i.e for a sector size of 512:
956 **
957 ** Input Offset              Output Offset
958 ** ---------------------------------------
959 ** 0                         0
960 ** 512                       512
961 ** 100                       512
962 ** 2000                      2048
963 **
964 */
965 static void seekJournalHdr(Pager *pPager){
966   i64 offset = 0;
967   i64 c = pPager->journalOff;
968   if( c ){
969     offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager);
970   }
971   assert( offset%JOURNAL_HDR_SZ(pPager)==0 );
972   assert( offset>=c );
973   assert( (offset-c)<JOURNAL_HDR_SZ(pPager) );
974   pPager->journalOff = offset;
975 }
976 
977 /*
978 ** The journal file must be open when this routine is called. A journal
979 ** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the
980 ** current location.
981 **
982 ** The format for the journal header is as follows:
983 ** - 8 bytes: Magic identifying journal format.
984 ** - 4 bytes: Number of records in journal, or -1 no-sync mode is on.
985 ** - 4 bytes: Random number used for page hash.
986 ** - 4 bytes: Initial database page count.
987 ** - 4 bytes: Sector size used by the process that wrote this journal.
988 **
989 ** Followed by (JOURNAL_HDR_SZ - 24) bytes of unused space.
990 */
991 static int writeJournalHdr(Pager *pPager){
992   char zHeader[sizeof(aJournalMagic)+16];
993   int rc;
994 
995   if( pPager->stmtHdrOff==0 ){
996     pPager->stmtHdrOff = pPager->journalOff;
997   }
998 
999   seekJournalHdr(pPager);
1000   pPager->journalHdr = pPager->journalOff;
1001 
1002   memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
1003 
1004   /*
1005   ** Write the nRec Field - the number of page records that follow this
1006   ** journal header. Normally, zero is written to this value at this time.
1007   ** After the records are added to the journal (and the journal synced,
1008   ** if in full-sync mode), the zero is overwritten with the true number
1009   ** of records (see syncJournal()).
1010   **
1011   ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When
1012   ** reading the journal this value tells SQLite to assume that the
1013   ** rest of the journal file contains valid page records. This assumption
1014   ** is dangerous, as if a failure occured whilst writing to the journal
1015   ** file it may contain some garbage data. There are two scenarios
1016   ** where this risk can be ignored:
1017   **
1018   **   * When the pager is in no-sync mode. Corruption can follow a
1019   **     power failure in this case anyway.
1020   **
1021   **   * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees
1022   **     that garbage data is never appended to the journal file.
1023   */
1024   assert(pPager->fd->pMethods||pPager->noSync);
1025   if( (pPager->noSync)
1026    || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND)
1027   ){
1028     put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff);
1029   }else{
1030     put32bits(&zHeader[sizeof(aJournalMagic)], 0);
1031   }
1032 
1033   /* The random check-hash initialiser */
1034   sqlite3Randomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
1035   put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit);
1036   /* The initial database size */
1037   put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbSize);
1038   /* The assumed sector size for this process */
1039   put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize);
1040   IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, sizeof(zHeader)))
1041   rc = sqlite3OsWrite(pPager->jfd, zHeader, sizeof(zHeader),pPager->journalOff);
1042   pPager->journalOff += JOURNAL_HDR_SZ(pPager);
1043 
1044   /* The journal header has been written successfully. Seek the journal
1045   ** file descriptor to the end of the journal header sector.
1046   */
1047   if( rc==SQLITE_OK ){
1048     IOTRACE(("JTAIL %p %lld\n", pPager, pPager->journalOff-1))
1049     rc = sqlite3OsWrite(pPager->jfd, "\000", 1, pPager->journalOff-1);
1050   }
1051   return rc;
1052 }
1053 
1054 /*
1055 ** The journal file must be open when this is called. A journal header file
1056 ** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal
1057 ** file. See comments above function writeJournalHdr() for a description of
1058 ** the journal header format.
1059 **
1060 ** If the header is read successfully, *nRec is set to the number of
1061 ** page records following this header and *dbSize is set to the size of the
1062 ** database before the transaction began, in pages. Also, pPager->cksumInit
1063 ** is set to the value read from the journal header. SQLITE_OK is returned
1064 ** in this case.
1065 **
1066 ** If the journal header file appears to be corrupted, SQLITE_DONE is
1067 ** returned and *nRec and *dbSize are not set.  If JOURNAL_HDR_SZ bytes
1068 ** cannot be read from the journal file an error code is returned.
1069 */
1070 static int readJournalHdr(
1071   Pager *pPager,
1072   i64 journalSize,
1073   u32 *pNRec,
1074   u32 *pDbSize
1075 ){
1076   int rc;
1077   unsigned char aMagic[8]; /* A buffer to hold the magic header */
1078   i64 jrnlOff;
1079 
1080   seekJournalHdr(pPager);
1081   if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){
1082     return SQLITE_DONE;
1083   }
1084   jrnlOff = pPager->journalOff;
1085 
1086   rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), jrnlOff);
1087   if( rc ) return rc;
1088   jrnlOff += sizeof(aMagic);
1089 
1090   if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){
1091     return SQLITE_DONE;
1092   }
1093 
1094   rc = read32bits(pPager->jfd, jrnlOff, pNRec);
1095   if( rc ) return rc;
1096 
1097   rc = read32bits(pPager->jfd, jrnlOff+4, &pPager->cksumInit);
1098   if( rc ) return rc;
1099 
1100   rc = read32bits(pPager->jfd, jrnlOff+8, pDbSize);
1101   if( rc ) return rc;
1102 
1103   /* Update the assumed sector-size to match the value used by
1104   ** the process that created this journal. If this journal was
1105   ** created by a process other than this one, then this routine
1106   ** is being called from within pager_playback(). The local value
1107   ** of Pager.sectorSize is restored at the end of that routine.
1108   */
1109   rc = read32bits(pPager->jfd, jrnlOff+12, (u32 *)&pPager->sectorSize);
1110   if( rc ) return rc;
1111 
1112   pPager->journalOff += JOURNAL_HDR_SZ(pPager);
1113   return SQLITE_OK;
1114 }
1115 
1116 
1117 /*
1118 ** Write the supplied master journal name into the journal file for pager
1119 ** pPager at the current location. The master journal name must be the last
1120 ** thing written to a journal file. If the pager is in full-sync mode, the
1121 ** journal file descriptor is advanced to the next sector boundary before
1122 ** anything is written. The format is:
1123 **
1124 ** + 4 bytes: PAGER_MJ_PGNO.
1125 ** + N bytes: length of master journal name.
1126 ** + 4 bytes: N
1127 ** + 4 bytes: Master journal name checksum.
1128 ** + 8 bytes: aJournalMagic[].
1129 **
1130 ** The master journal page checksum is the sum of the bytes in the master
1131 ** journal name.
1132 **
1133 ** If zMaster is a NULL pointer (occurs for a single database transaction),
1134 ** this call is a no-op.
1135 */
1136 static int writeMasterJournal(Pager *pPager, const char *zMaster){
1137   int rc;
1138   int len;
1139   int i;
1140   i64 jrnlOff;
1141   u32 cksum = 0;
1142   char zBuf[sizeof(aJournalMagic)+2*4];
1143 
1144   if( !zMaster || pPager->setMaster) return SQLITE_OK;
1145   pPager->setMaster = 1;
1146 
1147   len = strlen(zMaster);
1148   for(i=0; i<len; i++){
1149     cksum += zMaster[i];
1150   }
1151 
1152   /* If in full-sync mode, advance to the next disk sector before writing
1153   ** the master journal name. This is in case the previous page written to
1154   ** the journal has already been synced.
1155   */
1156   if( pPager->fullSync ){
1157     seekJournalHdr(pPager);
1158   }
1159   jrnlOff = pPager->journalOff;
1160   pPager->journalOff += (len+20);
1161 
1162   rc = write32bits(pPager->jfd, jrnlOff, PAGER_MJ_PGNO(pPager));
1163   if( rc!=SQLITE_OK ) return rc;
1164   jrnlOff += 4;
1165 
1166   rc = sqlite3OsWrite(pPager->jfd, zMaster, len, jrnlOff);
1167   if( rc!=SQLITE_OK ) return rc;
1168   jrnlOff += len;
1169 
1170   put32bits(zBuf, len);
1171   put32bits(&zBuf[4], cksum);
1172   memcpy(&zBuf[8], aJournalMagic, sizeof(aJournalMagic));
1173   rc = sqlite3OsWrite(pPager->jfd, zBuf, 8+sizeof(aJournalMagic), jrnlOff);
1174   pPager->needSync = !pPager->noSync;
1175   return rc;
1176 }
1177 
1178 /*
1179 ** Add or remove a page from the list of all pages that are in the
1180 ** statement journal.
1181 **
1182 ** The Pager keeps a separate list of pages that are currently in
1183 ** the statement journal.  This helps the sqlite3PagerStmtCommit()
1184 ** routine run MUCH faster for the common case where there are many
1185 ** pages in memory but only a few are in the statement journal.
1186 */
1187 static void page_add_to_stmt_list(PgHdr *pPg){
1188   Pager *pPager = pPg->pPager;
1189   PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
1190   assert( MEMDB );
1191   if( !pHist->inStmt ){
1192     assert( pHist->pPrevStmt==0 && pHist->pNextStmt==0 );
1193     if( pPager->pStmt ){
1194       PGHDR_TO_HIST(pPager->pStmt, pPager)->pPrevStmt = pPg;
1195     }
1196     pHist->pNextStmt = pPager->pStmt;
1197     pPager->pStmt = pPg;
1198     pHist->inStmt = 1;
1199   }
1200 }
1201 
1202 /*
1203 ** Find a page in the hash table given its page number.  Return
1204 ** a pointer to the page or NULL if not found.
1205 */
1206 static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){
1207   PgHdr *p;
1208   if( pPager->aHash==0 ) return 0;
1209   p = pPager->aHash[pgno & (pPager->nHash-1)];
1210   while( p && p->pgno!=pgno ){
1211     p = p->pNextHash;
1212   }
1213   return p;
1214 }
1215 
1216 /*
1217 ** Clear the in-memory cache.  This routine
1218 ** sets the state of the pager back to what it was when it was first
1219 ** opened.  Any outstanding pages are invalidated and subsequent attempts
1220 ** to access those pages will likely result in a coredump.
1221 */
1222 static void pager_reset(Pager *pPager){
1223   PgHdr *pPg, *pNext;
1224   if( pPager->errCode ) return;
1225   for(pPg=pPager->pAll; pPg; pPg=pNext){
1226     IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno));
1227     PAGER_INCR(sqlite3_pager_pgfree_count);
1228     pNext = pPg->pNextAll;
1229     lruListRemove(pPg);
1230     sqlite3_free(pPg);
1231   }
1232   assert(pPager->lru.pFirst==0);
1233   assert(pPager->lru.pFirstSynced==0);
1234   assert(pPager->lru.pLast==0);
1235   pPager->pStmt = 0;
1236   pPager->pAll = 0;
1237   pPager->pDirty = 0;
1238   pPager->nHash = 0;
1239   sqlite3_free(pPager->aHash);
1240   pPager->nPage = 0;
1241   pPager->aHash = 0;
1242   pPager->nRef = 0;
1243 }
1244 
1245 /*
1246 ** Unlock the database file.
1247 **
1248 ** If the pager is currently in error state, discard the contents of
1249 ** the cache and reset the Pager structure internal state. If there is
1250 ** an open journal-file, then the next time a shared-lock is obtained
1251 ** on the pager file (by this or any other process), it will be
1252 ** treated as a hot-journal and rolled back.
1253 */
1254 static void pager_unlock(Pager *pPager){
1255   if( !pPager->exclusiveMode ){
1256     if( !MEMDB ){
1257       if( pPager->fd->pMethods ){
1258         osUnlock(pPager->fd, NO_LOCK);
1259       }
1260       pPager->dbSize = -1;
1261       IOTRACE(("UNLOCK %p\n", pPager))
1262 
1263       /* If Pager.errCode is set, the contents of the pager cache cannot be
1264       ** trusted. Now that the pager file is unlocked, the contents of the
1265       ** cache can be discarded and the error code safely cleared.
1266       */
1267       if( pPager->errCode ){
1268         pPager->errCode = SQLITE_OK;
1269         pager_reset(pPager);
1270         if( pPager->stmtOpen ){
1271           sqlite3OsClose(pPager->stfd);
1272           sqlite3_free(pPager->aInStmt);
1273           pPager->aInStmt = 0;
1274         }
1275         if( pPager->journalOpen ){
1276           sqlite3OsClose(pPager->jfd);
1277           pPager->journalOpen = 0;
1278           sqlite3_free(pPager->aInJournal);
1279           pPager->aInJournal = 0;
1280         }
1281         pPager->stmtOpen = 0;
1282         pPager->stmtInUse = 0;
1283         pPager->journalOff = 0;
1284         pPager->journalStarted = 0;
1285         pPager->stmtAutoopen = 0;
1286         pPager->origDbSize = 0;
1287       }
1288     }
1289 
1290     if( !MEMDB || pPager->errCode==SQLITE_OK ){
1291       pPager->state = PAGER_UNLOCK;
1292       pPager->changeCountDone = 0;
1293     }
1294   }
1295 }
1296 
1297 /*
1298 ** Execute a rollback if a transaction is active and unlock the
1299 ** database file. If the pager has already entered the error state,
1300 ** do not attempt the rollback.
1301 */
1302 static void pagerUnlockAndRollback(Pager *p){
1303   assert( p->state>=PAGER_RESERVED || p->journalOpen==0 );
1304   if( p->errCode==SQLITE_OK && p->state>=PAGER_RESERVED ){
1305     sqlite3PagerRollback(p);
1306   }
1307   pager_unlock(p);
1308   assert( p->errCode || !p->journalOpen || (p->exclusiveMode&&!p->journalOff) );
1309   assert( p->errCode || !p->stmtOpen || p->exclusiveMode );
1310 }
1311 
1312 /*
1313 ** This routine ends a transaction.  A transaction is ended by either
1314 ** a COMMIT or a ROLLBACK.
1315 **
1316 ** When this routine is called, the pager has the journal file open and
1317 ** a RESERVED or EXCLUSIVE lock on the database.  This routine will release
1318 ** the database lock and acquires a SHARED lock in its place if that is
1319 ** the appropriate thing to do.  Release locks usually is appropriate,
1320 ** unless we are in exclusive access mode or unless this is a
1321 ** COMMIT AND BEGIN or ROLLBACK AND BEGIN operation.
1322 **
1323 ** The journal file is either deleted or truncated.
1324 **
1325 ** TODO: Consider keeping the journal file open for temporary databases.
1326 ** This might give a performance improvement on windows where opening
1327 ** a file is an expensive operation.
1328 */
1329 static int pager_end_transaction(Pager *pPager){
1330   PgHdr *pPg;
1331   int rc = SQLITE_OK;
1332   int rc2 = SQLITE_OK;
1333   assert( !MEMDB );
1334   if( pPager->state<PAGER_RESERVED ){
1335     return SQLITE_OK;
1336   }
1337   sqlite3PagerStmtCommit(pPager);
1338   if( pPager->stmtOpen && !pPager->exclusiveMode ){
1339     sqlite3OsClose(pPager->stfd);
1340     pPager->stmtOpen = 0;
1341   }
1342   if( pPager->journalOpen ){
1343     if( pPager->exclusiveMode
1344           && (rc = sqlite3OsTruncate(pPager->jfd, 0))==SQLITE_OK ){;
1345       pPager->journalOff = 0;
1346       pPager->journalStarted = 0;
1347     }else{
1348       sqlite3OsClose(pPager->jfd);
1349       pPager->journalOpen = 0;
1350       if( rc==SQLITE_OK ){
1351         rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
1352       }
1353     }
1354     sqlite3_free( pPager->aInJournal );
1355     pPager->aInJournal = 0;
1356     for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
1357       pPg->inJournal = 0;
1358       pPg->dirty = 0;
1359       pPg->needSync = 0;
1360       pPg->alwaysRollback = 0;
1361 #ifdef SQLITE_CHECK_PAGES
1362       pPg->pageHash = pager_pagehash(pPg);
1363 #endif
1364     }
1365     pPager->pDirty = 0;
1366     pPager->dirtyCache = 0;
1367     pPager->nRec = 0;
1368   }else{
1369     assert( pPager->aInJournal==0 );
1370     assert( pPager->dirtyCache==0 || pPager->useJournal==0 );
1371   }
1372 
1373   if( !pPager->exclusiveMode ){
1374     rc2 = osUnlock(pPager->fd, SHARED_LOCK);
1375     pPager->state = PAGER_SHARED;
1376   }else if( pPager->state==PAGER_SYNCED ){
1377     pPager->state = PAGER_EXCLUSIVE;
1378   }
1379   pPager->origDbSize = 0;
1380   pPager->setMaster = 0;
1381   pPager->needSync = 0;
1382   lruListSetFirstSynced(pPager);
1383   pPager->dbSize = -1;
1384 
1385   return (rc==SQLITE_OK?rc2:rc);
1386 }
1387 
1388 /*
1389 ** Compute and return a checksum for the page of data.
1390 **
1391 ** This is not a real checksum.  It is really just the sum of the
1392 ** random initial value and the page number.  We experimented with
1393 ** a checksum of the entire data, but that was found to be too slow.
1394 **
1395 ** Note that the page number is stored at the beginning of data and
1396 ** the checksum is stored at the end.  This is important.  If journal
1397 ** corruption occurs due to a power failure, the most likely scenario
1398 ** is that one end or the other of the record will be changed.  It is
1399 ** much less likely that the two ends of the journal record will be
1400 ** correct and the middle be corrupt.  Thus, this "checksum" scheme,
1401 ** though fast and simple, catches the mostly likely kind of corruption.
1402 **
1403 ** FIX ME:  Consider adding every 200th (or so) byte of the data to the
1404 ** checksum.  That way if a single page spans 3 or more disk sectors and
1405 ** only the middle sector is corrupt, we will still have a reasonable
1406 ** chance of failing the checksum and thus detecting the problem.
1407 */
1408 static u32 pager_cksum(Pager *pPager, const u8 *aData){
1409   u32 cksum = pPager->cksumInit;
1410   int i = pPager->pageSize-200;
1411   while( i>0 ){
1412     cksum += aData[i];
1413     i -= 200;
1414   }
1415   return cksum;
1416 }
1417 
1418 /* Forward declaration */
1419 static void makeClean(PgHdr*);
1420 
1421 /*
1422 ** Read a single page from the journal file opened on file descriptor
1423 ** jfd.  Playback this one page.
1424 **
1425 ** If useCksum==0 it means this journal does not use checksums.  Checksums
1426 ** are not used in statement journals because statement journals do not
1427 ** need to survive power failures.
1428 */
1429 static int pager_playback_one_page(
1430   Pager *pPager,
1431   sqlite3_file *jfd,
1432   i64 offset,
1433   int useCksum
1434 ){
1435   int rc;
1436   PgHdr *pPg;                   /* An existing page in the cache */
1437   Pgno pgno;                    /* The page number of a page in journal */
1438   u32 cksum;                    /* Checksum used for sanity checking */
1439   u8 *aData = (u8 *)pPager->pTmpSpace;   /* Temp storage for a page */
1440 
1441   /* useCksum should be true for the main journal and false for
1442   ** statement journals.  Verify that this is always the case
1443   */
1444   assert( jfd == (useCksum ? pPager->jfd : pPager->stfd) );
1445   assert( aData );
1446 
1447   rc = read32bits(jfd, offset, &pgno);
1448   if( rc!=SQLITE_OK ) return rc;
1449   rc = sqlite3OsRead(jfd, aData, pPager->pageSize, offset+4);
1450   if( rc!=SQLITE_OK ) return rc;
1451   pPager->journalOff += pPager->pageSize + 4;
1452 
1453   /* Sanity checking on the page.  This is more important that I originally
1454   ** thought.  If a power failure occurs while the journal is being written,
1455   ** it could cause invalid data to be written into the journal.  We need to
1456   ** detect this invalid data (with high probability) and ignore it.
1457   */
1458   if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
1459     return SQLITE_DONE;
1460   }
1461   if( pgno>(unsigned)pPager->dbSize ){
1462     return SQLITE_OK;
1463   }
1464   if( useCksum ){
1465     rc = read32bits(jfd, offset+pPager->pageSize+4, &cksum);
1466     if( rc ) return rc;
1467     pPager->journalOff += 4;
1468     if( pager_cksum(pPager, aData)!=cksum ){
1469       return SQLITE_DONE;
1470     }
1471   }
1472 
1473   assert( pPager->state==PAGER_RESERVED || pPager->state>=PAGER_EXCLUSIVE );
1474 
1475   /* If the pager is in RESERVED state, then there must be a copy of this
1476   ** page in the pager cache. In this case just update the pager cache,
1477   ** not the database file. The page is left marked dirty in this case.
1478   **
1479   ** An exception to the above rule: If the database is in no-sync mode
1480   ** and a page is moved during an incremental vacuum then the page may
1481   ** not be in the pager cache. Later: if a malloc() or IO error occurs
1482   ** during a Movepage() call, then the page may not be in the cache
1483   ** either. So the condition described in the above paragraph is not
1484   ** assert()able.
1485   **
1486   ** If in EXCLUSIVE state, then we update the pager cache if it exists
1487   ** and the main file. The page is then marked not dirty.
1488   **
1489   ** Ticket #1171:  The statement journal might contain page content that is
1490   ** different from the page content at the start of the transaction.
1491   ** This occurs when a page is changed prior to the start of a statement
1492   ** then changed again within the statement.  When rolling back such a
1493   ** statement we must not write to the original database unless we know
1494   ** for certain that original page contents are synced into the main rollback
1495   ** journal.  Otherwise, a power loss might leave modified data in the
1496   ** database file without an entry in the rollback journal that can
1497   ** restore the database to its original form.  Two conditions must be
1498   ** met before writing to the database files. (1) the database must be
1499   ** locked.  (2) we know that the original page content is fully synced
1500   ** in the main journal either because the page is not in cache or else
1501   ** the page is marked as needSync==0.
1502   */
1503   pPg = pager_lookup(pPager, pgno);
1504   PAGERTRACE4("PLAYBACK %d page %d hash(%08x)\n",
1505                PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, aData));
1506   if( pPager->state>=PAGER_EXCLUSIVE && (pPg==0 || pPg->needSync==0) ){
1507     i64 offset = (pgno-1)*(i64)pPager->pageSize;
1508     rc = sqlite3OsWrite(pPager->fd, aData, pPager->pageSize, offset);
1509     if( pPg ){
1510       makeClean(pPg);
1511     }
1512   }
1513   if( pPg ){
1514     /* No page should ever be explicitly rolled back that is in use, except
1515     ** for page 1 which is held in use in order to keep the lock on the
1516     ** database active. However such a page may be rolled back as a result
1517     ** of an internal error resulting in an automatic call to
1518     ** sqlite3PagerRollback().
1519     */
1520     void *pData;
1521     /* assert( pPg->nRef==0 || pPg->pgno==1 ); */
1522     pData = PGHDR_TO_DATA(pPg);
1523     memcpy(pData, aData, pPager->pageSize);
1524     if( pPager->xReiniter ){
1525       pPager->xReiniter(pPg, pPager->pageSize);
1526     }
1527 #ifdef SQLITE_CHECK_PAGES
1528     pPg->pageHash = pager_pagehash(pPg);
1529 #endif
1530     /* If this was page 1, then restore the value of Pager.dbFileVers.
1531     ** Do this before any decoding. */
1532     if( pgno==1 ){
1533       memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers));
1534     }
1535 
1536     /* Decode the page just read from disk */
1537     CODEC1(pPager, pData, pPg->pgno, 3);
1538   }
1539   return rc;
1540 }
1541 
1542 /*
1543 ** Parameter zMaster is the name of a master journal file. A single journal
1544 ** file that referred to the master journal file has just been rolled back.
1545 ** This routine checks if it is possible to delete the master journal file,
1546 ** and does so if it is.
1547 **
1548 ** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not
1549 ** available for use within this function.
1550 **
1551 **
1552 ** The master journal file contains the names of all child journals.
1553 ** To tell if a master journal can be deleted, check to each of the
1554 ** children.  If all children are either missing or do not refer to
1555 ** a different master journal, then this master journal can be deleted.
1556 */
1557 static int pager_delmaster(Pager *pPager, const char *zMaster){
1558   sqlite3_vfs *pVfs = pPager->pVfs;
1559   int rc;
1560   int master_open = 0;
1561   sqlite3_file *pMaster;
1562   sqlite3_file *pJournal;
1563   char *zMasterJournal = 0; /* Contents of master journal file */
1564   i64 nMasterJournal;       /* Size of master journal file */
1565 
1566   /* Open the master journal file exclusively in case some other process
1567   ** is running this routine also. Not that it makes too much difference.
1568   */
1569   pMaster = (sqlite3_file *)sqlite3_malloc(pVfs->szOsFile * 2);
1570   pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile);
1571   if( !pMaster ){
1572     rc = SQLITE_NOMEM;
1573   }else{
1574     int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL);
1575     rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0);
1576   }
1577   if( rc!=SQLITE_OK ) goto delmaster_out;
1578   master_open = 1;
1579 
1580   rc = sqlite3OsFileSize(pMaster, &nMasterJournal);
1581   if( rc!=SQLITE_OK ) goto delmaster_out;
1582 
1583   if( nMasterJournal>0 ){
1584     char *zJournal;
1585     char *zMasterPtr = 0;
1586     int nMasterPtr = pPager->pVfs->mxPathname+1;
1587 
1588     /* Load the entire master journal file into space obtained from
1589     ** sqlite3_malloc() and pointed to by zMasterJournal.
1590     */
1591     zMasterJournal = (char *)sqlite3_malloc(nMasterJournal + nMasterPtr);
1592     if( !zMasterJournal ){
1593       rc = SQLITE_NOMEM;
1594       goto delmaster_out;
1595     }
1596     zMasterPtr = &zMasterJournal[nMasterJournal];
1597     rc = sqlite3OsRead(pMaster, zMasterJournal, nMasterJournal, 0);
1598     if( rc!=SQLITE_OK ) goto delmaster_out;
1599 
1600     zJournal = zMasterJournal;
1601     while( (zJournal-zMasterJournal)<nMasterJournal ){
1602       if( sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS) ){
1603         /* One of the journals pointed to by the master journal exists.
1604         ** Open it and check if it points at the master journal. If
1605         ** so, return without deleting the master journal file.
1606         */
1607         int c;
1608         int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL);
1609         rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0);
1610         if( rc!=SQLITE_OK ){
1611           goto delmaster_out;
1612         }
1613 
1614         rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr);
1615         sqlite3OsClose(pJournal);
1616         if( rc!=SQLITE_OK ){
1617           goto delmaster_out;
1618         }
1619 
1620         c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0;
1621         if( c ){
1622           /* We have a match. Do not delete the master journal file. */
1623           goto delmaster_out;
1624         }
1625       }
1626       zJournal += (strlen(zJournal)+1);
1627     }
1628   }
1629 
1630   rc = sqlite3OsDelete(pVfs, zMaster, 0);
1631 
1632 delmaster_out:
1633   if( zMasterJournal ){
1634     sqlite3_free(zMasterJournal);
1635   }
1636   if( master_open ){
1637     sqlite3OsClose(pMaster);
1638   }
1639   sqlite3_free(pMaster);
1640   return rc;
1641 }
1642 
1643 
1644 static void pager_truncate_cache(Pager *pPager);
1645 
1646 /*
1647 ** Truncate the main file of the given pager to the number of pages
1648 ** indicated. Also truncate the cached representation of the file.
1649 */
1650 static int pager_truncate(Pager *pPager, int nPage){
1651   int rc = SQLITE_OK;
1652   if( pPager->state>=PAGER_EXCLUSIVE && pPager->fd->pMethods ){
1653     rc = sqlite3OsTruncate(pPager->fd, pPager->pageSize*(i64)nPage);
1654   }
1655   if( rc==SQLITE_OK ){
1656     pPager->dbSize = nPage;
1657     pager_truncate_cache(pPager);
1658   }
1659   return rc;
1660 }
1661 
1662 /*
1663 ** Set the sectorSize for the given pager.
1664 **
1665 ** The sector size is the larger of the sector size reported
1666 ** by sqlite3OsSectorSize() and the pageSize.
1667 */
1668 static void setSectorSize(Pager *pPager){
1669   assert(pPager->fd->pMethods||pPager->tempFile);
1670   if( !pPager->tempFile ){
1671     /* Sector size doesn't matter for temporary files. Also, the file
1672     ** may not have been opened yet, in whcih case the OsSectorSize()
1673     ** call will segfault.
1674     */
1675     pPager->sectorSize = sqlite3OsSectorSize(pPager->fd);
1676   }
1677   if( pPager->sectorSize<pPager->pageSize ){
1678     pPager->sectorSize = pPager->pageSize;
1679   }
1680 }
1681 
1682 /*
1683 ** Playback the journal and thus restore the database file to
1684 ** the state it was in before we started making changes.
1685 **
1686 ** The journal file format is as follows:
1687 **
1688 **  (1)  8 byte prefix.  A copy of aJournalMagic[].
1689 **  (2)  4 byte big-endian integer which is the number of valid page records
1690 **       in the journal.  If this value is 0xffffffff, then compute the
1691 **       number of page records from the journal size.
1692 **  (3)  4 byte big-endian integer which is the initial value for the
1693 **       sanity checksum.
1694 **  (4)  4 byte integer which is the number of pages to truncate the
1695 **       database to during a rollback.
1696 **  (5)  4 byte integer which is the number of bytes in the master journal
1697 **       name.  The value may be zero (indicate that there is no master
1698 **       journal.)
1699 **  (6)  N bytes of the master journal name.  The name will be nul-terminated
1700 **       and might be shorter than the value read from (5).  If the first byte
1701 **       of the name is \000 then there is no master journal.  The master
1702 **       journal name is stored in UTF-8.
1703 **  (7)  Zero or more pages instances, each as follows:
1704 **        +  4 byte page number.
1705 **        +  pPager->pageSize bytes of data.
1706 **        +  4 byte checksum
1707 **
1708 ** When we speak of the journal header, we mean the first 6 items above.
1709 ** Each entry in the journal is an instance of the 7th item.
1710 **
1711 ** Call the value from the second bullet "nRec".  nRec is the number of
1712 ** valid page entries in the journal.  In most cases, you can compute the
1713 ** value of nRec from the size of the journal file.  But if a power
1714 ** failure occurred while the journal was being written, it could be the
1715 ** case that the size of the journal file had already been increased but
1716 ** the extra entries had not yet made it safely to disk.  In such a case,
1717 ** the value of nRec computed from the file size would be too large.  For
1718 ** that reason, we always use the nRec value in the header.
1719 **
1720 ** If the nRec value is 0xffffffff it means that nRec should be computed
1721 ** from the file size.  This value is used when the user selects the
1722 ** no-sync option for the journal.  A power failure could lead to corruption
1723 ** in this case.  But for things like temporary table (which will be
1724 ** deleted when the power is restored) we don't care.
1725 **
1726 ** If the file opened as the journal file is not a well-formed
1727 ** journal file then all pages up to the first corrupted page are rolled
1728 ** back (or no pages if the journal header is corrupted). The journal file
1729 ** is then deleted and SQLITE_OK returned, just as if no corruption had
1730 ** been encountered.
1731 **
1732 ** If an I/O or malloc() error occurs, the journal-file is not deleted
1733 ** and an error code is returned.
1734 */
1735 static int pager_playback(Pager *pPager, int isHot){
1736   sqlite3_vfs *pVfs = pPager->pVfs;
1737   i64 szJ;                 /* Size of the journal file in bytes */
1738   u32 nRec;                /* Number of Records in the journal */
1739   int i;                   /* Loop counter */
1740   Pgno mxPg = 0;           /* Size of the original file in pages */
1741   int rc;                  /* Result code of a subroutine */
1742   char *zMaster = 0;       /* Name of master journal file if any */
1743 
1744   /* Figure out how many records are in the journal.  Abort early if
1745   ** the journal is empty.
1746   */
1747   assert( pPager->journalOpen );
1748   rc = sqlite3OsFileSize(pPager->jfd, &szJ);
1749   if( rc!=SQLITE_OK || szJ==0 ){
1750     goto end_playback;
1751   }
1752 
1753   /* Read the master journal name from the journal, if it is present.
1754   ** If a master journal file name is specified, but the file is not
1755   ** present on disk, then the journal is not hot and does not need to be
1756   ** played back.
1757   */
1758   zMaster = pPager->pTmpSpace;
1759   rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
1760   assert( rc!=SQLITE_DONE );
1761   if( rc!=SQLITE_OK
1762    || (zMaster[0] && !sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS))
1763   ){
1764     zMaster = 0;
1765     if( rc==SQLITE_DONE ) rc = SQLITE_OK;
1766     goto end_playback;
1767   }
1768   pPager->journalOff = 0;
1769   zMaster = 0;
1770 
1771   /* This loop terminates either when the readJournalHdr() call returns
1772   ** SQLITE_DONE or an IO error occurs. */
1773   while( 1 ){
1774 
1775     /* Read the next journal header from the journal file.  If there are
1776     ** not enough bytes left in the journal file for a complete header, or
1777     ** it is corrupted, then a process must of failed while writing it.
1778     ** This indicates nothing more needs to be rolled back.
1779     */
1780     rc = readJournalHdr(pPager, szJ, &nRec, &mxPg);
1781     if( rc!=SQLITE_OK ){
1782       if( rc==SQLITE_DONE ){
1783         rc = SQLITE_OK;
1784       }
1785       goto end_playback;
1786     }
1787 
1788     /* If nRec is 0xffffffff, then this journal was created by a process
1789     ** working in no-sync mode. This means that the rest of the journal
1790     ** file consists of pages, there are no more journal headers. Compute
1791     ** the value of nRec based on this assumption.
1792     */
1793     if( nRec==0xffffffff ){
1794       assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) );
1795       nRec = (szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager);
1796     }
1797 
1798     /* If nRec is 0 and this rollback is of a transaction created by this
1799     ** process and if this is the final header in the journal, then it means
1800     ** that this part of the journal was being filled but has not yet been
1801     ** synced to disk.  Compute the number of pages based on the remaining
1802     ** size of the file.
1803     **
1804     ** The third term of the test was added to fix ticket #2565.
1805     */
1806     if( nRec==0 && !isHot &&
1807         pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){
1808       nRec = (szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager);
1809     }
1810 
1811     /* If this is the first header read from the journal, truncate the
1812     ** database file back to it's original size.
1813     */
1814     if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){
1815       rc = pager_truncate(pPager, mxPg);
1816       if( rc!=SQLITE_OK ){
1817         goto end_playback;
1818       }
1819     }
1820 
1821     /* Copy original pages out of the journal and back into the database file.
1822     */
1823     for(i=0; i<nRec; i++){
1824       rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
1825       if( rc!=SQLITE_OK ){
1826         if( rc==SQLITE_DONE ){
1827           rc = SQLITE_OK;
1828           pPager->journalOff = szJ;
1829           break;
1830         }else{
1831           goto end_playback;
1832         }
1833       }
1834     }
1835   }
1836   /*NOTREACHED*/
1837   assert( 0 );
1838 
1839 end_playback:
1840   if( rc==SQLITE_OK ){
1841     zMaster = pPager->pTmpSpace;
1842     rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
1843   }
1844   if( rc==SQLITE_OK ){
1845     rc = pager_end_transaction(pPager);
1846   }
1847   if( rc==SQLITE_OK && zMaster[0] ){
1848     /* If there was a master journal and this routine will return success,
1849     ** see if it is possible to delete the master journal.
1850     */
1851     rc = pager_delmaster(pPager, zMaster);
1852   }
1853 
1854   /* The Pager.sectorSize variable may have been updated while rolling
1855   ** back a journal created by a process with a different sector size
1856   ** value. Reset it to the correct value for this process.
1857   */
1858   setSectorSize(pPager);
1859   return rc;
1860 }
1861 
1862 /*
1863 ** Playback the statement journal.
1864 **
1865 ** This is similar to playing back the transaction journal but with
1866 ** a few extra twists.
1867 **
1868 **    (1)  The number of pages in the database file at the start of
1869 **         the statement is stored in pPager->stmtSize, not in the
1870 **         journal file itself.
1871 **
1872 **    (2)  In addition to playing back the statement journal, also
1873 **         playback all pages of the transaction journal beginning
1874 **         at offset pPager->stmtJSize.
1875 */
1876 static int pager_stmt_playback(Pager *pPager){
1877   i64 szJ;                 /* Size of the full journal */
1878   i64 hdrOff;
1879   int nRec;                /* Number of Records */
1880   int i;                   /* Loop counter */
1881   int rc;
1882 
1883   szJ = pPager->journalOff;
1884 #ifndef NDEBUG
1885   {
1886     i64 os_szJ;
1887     rc = sqlite3OsFileSize(pPager->jfd, &os_szJ);
1888     if( rc!=SQLITE_OK ) return rc;
1889     assert( szJ==os_szJ );
1890   }
1891 #endif
1892 
1893   /* Set hdrOff to be the offset just after the end of the last journal
1894   ** page written before the first journal-header for this statement
1895   ** transaction was written, or the end of the file if no journal
1896   ** header was written.
1897   */
1898   hdrOff = pPager->stmtHdrOff;
1899   assert( pPager->fullSync || !hdrOff );
1900   if( !hdrOff ){
1901     hdrOff = szJ;
1902   }
1903 
1904   /* Truncate the database back to its original size.
1905   */
1906   rc = pager_truncate(pPager, pPager->stmtSize);
1907   assert( pPager->state>=PAGER_SHARED );
1908 
1909   /* Figure out how many records are in the statement journal.
1910   */
1911   assert( pPager->stmtInUse && pPager->journalOpen );
1912   nRec = pPager->stmtNRec;
1913 
1914   /* Copy original pages out of the statement journal and back into the
1915   ** database file.  Note that the statement journal omits checksums from
1916   ** each record since power-failure recovery is not important to statement
1917   ** journals.
1918   */
1919   for(i=0; i<nRec; i++){
1920     i64 offset = i*(4+pPager->pageSize);
1921     rc = pager_playback_one_page(pPager, pPager->stfd, offset, 0);
1922     assert( rc!=SQLITE_DONE );
1923     if( rc!=SQLITE_OK ) goto end_stmt_playback;
1924   }
1925 
1926   /* Now roll some pages back from the transaction journal. Pager.stmtJSize
1927   ** was the size of the journal file when this statement was started, so
1928   ** everything after that needs to be rolled back, either into the
1929   ** database, the memory cache, or both.
1930   **
1931   ** If it is not zero, then Pager.stmtHdrOff is the offset to the start
1932   ** of the first journal header written during this statement transaction.
1933   */
1934   pPager->journalOff = pPager->stmtJSize;
1935   pPager->cksumInit = pPager->stmtCksum;
1936   while( pPager->journalOff < hdrOff ){
1937     rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
1938     assert( rc!=SQLITE_DONE );
1939     if( rc!=SQLITE_OK ) goto end_stmt_playback;
1940   }
1941 
1942   while( pPager->journalOff < szJ ){
1943     u32 nJRec;         /* Number of Journal Records */
1944     u32 dummy;
1945     rc = readJournalHdr(pPager, szJ, &nJRec, &dummy);
1946     if( rc!=SQLITE_OK ){
1947       assert( rc!=SQLITE_DONE );
1948       goto end_stmt_playback;
1949     }
1950     if( nJRec==0 ){
1951       nJRec = (szJ - pPager->journalOff) / (pPager->pageSize+8);
1952     }
1953     for(i=nJRec-1; i>=0 && pPager->journalOff < szJ; i--){
1954       rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1);
1955       assert( rc!=SQLITE_DONE );
1956       if( rc!=SQLITE_OK ) goto end_stmt_playback;
1957     }
1958   }
1959 
1960   pPager->journalOff = szJ;
1961 
1962 end_stmt_playback:
1963   if( rc==SQLITE_OK) {
1964     pPager->journalOff = szJ;
1965     /* pager_reload_cache(pPager); */
1966   }
1967   return rc;
1968 }
1969 
1970 /*
1971 ** Change the maximum number of in-memory pages that are allowed.
1972 */
1973 void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){
1974   if( mxPage>10 ){
1975     pPager->mxPage = mxPage;
1976   }else{
1977     pPager->mxPage = 10;
1978   }
1979 }
1980 
1981 /*
1982 ** Adjust the robustness of the database to damage due to OS crashes
1983 ** or power failures by changing the number of syncs()s when writing
1984 ** the rollback journal.  There are three levels:
1985 **
1986 **    OFF       sqlite3OsSync() is never called.  This is the default
1987 **              for temporary and transient files.
1988 **
1989 **    NORMAL    The journal is synced once before writes begin on the
1990 **              database.  This is normally adequate protection, but
1991 **              it is theoretically possible, though very unlikely,
1992 **              that an inopertune power failure could leave the journal
1993 **              in a state which would cause damage to the database
1994 **              when it is rolled back.
1995 **
1996 **    FULL      The journal is synced twice before writes begin on the
1997 **              database (with some additional information - the nRec field
1998 **              of the journal header - being written in between the two
1999 **              syncs).  If we assume that writing a
2000 **              single disk sector is atomic, then this mode provides
2001 **              assurance that the journal will not be corrupted to the
2002 **              point of causing damage to the database during rollback.
2003 **
2004 ** Numeric values associated with these states are OFF==1, NORMAL=2,
2005 ** and FULL=3.
2006 */
2007 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2008 void sqlite3PagerSetSafetyLevel(Pager *pPager, int level, int full_fsync){
2009   pPager->noSync =  level==1 || pPager->tempFile;
2010   pPager->fullSync = level==3 && !pPager->tempFile;
2011   pPager->sync_flags = (full_fsync?SQLITE_SYNC_FULL:SQLITE_SYNC_NORMAL);
2012   if( pPager->noSync ) pPager->needSync = 0;
2013 }
2014 #endif
2015 
2016 /*
2017 ** The following global variable is incremented whenever the library
2018 ** attempts to open a temporary file.  This information is used for
2019 ** testing and analysis only.
2020 */
2021 #ifdef SQLITE_TEST
2022 int sqlite3_opentemp_count = 0;
2023 #endif
2024 
2025 /*
2026 ** Open a temporary file.
2027 **
2028 ** Write the file descriptor into *fd.  Return SQLITE_OK on success or some
2029 ** other error code if we fail. The OS will automatically delete the temporary
2030 ** file when it is closed.
2031 */
2032 static int sqlite3PagerOpentemp(
2033   sqlite3_vfs *pVfs,    /* The virtual file system layer */
2034   sqlite3_file *pFile,  /* Write the file descriptor here */
2035   char *zFilename,      /* Name of the file.  Might be NULL */
2036   int vfsFlags          /* Flags passed through to the VFS */
2037 ){
2038   int rc;
2039   assert( zFilename!=0 );
2040 
2041 #ifdef SQLITE_TEST
2042   sqlite3_opentemp_count++;  /* Used for testing and analysis only */
2043 #endif
2044 
2045   vfsFlags |=  SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
2046             SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE;
2047   rc = sqlite3OsOpen(pVfs, zFilename, pFile, vfsFlags, 0);
2048   assert( rc!=SQLITE_OK || pFile->pMethods );
2049   return rc;
2050 }
2051 
2052 /*
2053 ** Create a new page cache and put a pointer to the page cache in *ppPager.
2054 ** The file to be cached need not exist.  The file is not locked until
2055 ** the first call to sqlite3PagerGet() and is only held open until the
2056 ** last page is released using sqlite3PagerUnref().
2057 **
2058 ** If zFilename is NULL then a randomly-named temporary file is created
2059 ** and used as the file to be cached.  The file will be deleted
2060 ** automatically when it is closed.
2061 **
2062 ** If zFilename is ":memory:" then all information is held in cache.
2063 ** It is never written to disk.  This can be used to implement an
2064 ** in-memory database.
2065 */
2066 int sqlite3PagerOpen(
2067   sqlite3_vfs *pVfs,       /* The virtual file system to use */
2068   Pager **ppPager,         /* Return the Pager structure here */
2069   const char *zFilename,   /* Name of the database file to open */
2070   int nExtra,              /* Extra bytes append to each in-memory page */
2071   int flags,               /* flags controlling this file */
2072   int vfsFlags             /* flags passed through to sqlite3_vfs.xOpen() */
2073 ){
2074   u8 *pPtr;
2075   Pager *pPager = 0;
2076   int rc = SQLITE_OK;
2077   int i;
2078   int tempFile = 0;
2079   int memDb = 0;
2080   int readOnly = 0;
2081   int useJournal = (flags & PAGER_OMIT_JOURNAL)==0;
2082   int noReadlock = (flags & PAGER_NO_READLOCK)!=0;
2083   int journalFileSize = sqlite3JournalSize(pVfs);
2084   int nDefaultPage = SQLITE_DEFAULT_PAGE_SIZE;
2085   char *zPathname;
2086   int nPathname;
2087 
2088   /* The default return is a NULL pointer */
2089   *ppPager = 0;
2090 
2091   /* Compute the full pathname */
2092   nPathname = pVfs->mxPathname+1;
2093   zPathname = sqlite3_malloc(nPathname);
2094   if( zPathname==0 ){
2095     return SQLITE_NOMEM;
2096   }
2097   if( zFilename && zFilename[0] ){
2098 #ifndef SQLITE_OMIT_MEMORYDB
2099     if( strcmp(zFilename,":memory:")==0 ){
2100       memDb = 1;
2101       zPathname[0] = 0;
2102     }else
2103 #endif
2104     {
2105       rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname);
2106     }
2107   }else{
2108     rc = sqlite3OsGetTempname(pVfs, nPathname, zPathname);
2109   }
2110   if( rc!=SQLITE_OK ){
2111     sqlite3_free(zPathname);
2112     return rc;
2113   }
2114   nPathname = strlen(zPathname);
2115 
2116   /* Allocate memory for the pager structure */
2117   pPager = sqlite3MallocZero(
2118     sizeof(*pPager) +           /* Pager structure */
2119     journalFileSize +           /* The journal file structure */
2120     pVfs->szOsFile * 2 +        /* The db and stmt journal files */
2121     4*nPathname + 40            /* zFilename, zDirectory, zJournal, zStmtJrnl */
2122   );
2123   if( !pPager ){
2124     sqlite3_free(zPathname);
2125     return SQLITE_NOMEM;
2126   }
2127   pPtr = (u8 *)&pPager[1];
2128   pPager->vfsFlags = vfsFlags;
2129   pPager->fd = (sqlite3_file*)&pPtr[pVfs->szOsFile*0];
2130   pPager->stfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*1];
2131   pPager->jfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*2];
2132   pPager->zFilename = (char*)&pPtr[pVfs->szOsFile*2+journalFileSize];
2133   pPager->zDirectory = &pPager->zFilename[nPathname+1];
2134   pPager->zJournal = &pPager->zDirectory[nPathname+1];
2135   pPager->zStmtJrnl = &pPager->zJournal[nPathname+10];
2136   pPager->pVfs = pVfs;
2137   memcpy(pPager->zFilename, zPathname, nPathname+1);
2138   sqlite3_free(zPathname);
2139 
2140   /* Open the pager file.
2141   */
2142   if( zFilename && zFilename[0] && !memDb ){
2143     if( nPathname>(pVfs->mxPathname - sizeof("-journal")) ){
2144       rc = SQLITE_CANTOPEN;
2145     }else{
2146       int fout = 0;
2147       rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd,
2148                          pPager->vfsFlags, &fout);
2149       readOnly = (fout&SQLITE_OPEN_READONLY);
2150 
2151       /* If the file was successfully opened for read/write access,
2152       ** choose a default page size in case we have to create the
2153       ** database file. The default page size is the maximum of:
2154       **
2155       **    + SQLITE_DEFAULT_PAGE_SIZE,
2156       **    + The value returned by sqlite3OsSectorSize()
2157       **    + The largest page size that can be written atomically.
2158       */
2159       if( rc==SQLITE_OK && !readOnly ){
2160         int iSectorSize = sqlite3OsSectorSize(pPager->fd);
2161         if( nDefaultPage<iSectorSize ){
2162           nDefaultPage = iSectorSize;
2163         }
2164 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
2165         {
2166           int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
2167           int ii;
2168           assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
2169           assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
2170           assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536);
2171           for(ii=nDefaultPage; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){
2172             if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ) nDefaultPage = ii;
2173           }
2174         }
2175 #endif
2176         if( nDefaultPage>SQLITE_MAX_DEFAULT_PAGE_SIZE ){
2177           nDefaultPage = SQLITE_MAX_DEFAULT_PAGE_SIZE;
2178         }
2179       }
2180     }
2181   }else if( !memDb ){
2182     /* If a temporary file is requested, it is not opened immediately.
2183     ** In this case we accept the default page size and delay actually
2184     ** opening the file until the first call to OsWrite().
2185     */
2186     tempFile = 1;
2187     pPager->state = PAGER_EXCLUSIVE;
2188   }
2189 
2190   if( pPager && rc==SQLITE_OK ){
2191     pPager->pTmpSpace = (char *)sqlite3_malloc(nDefaultPage);
2192   }
2193 
2194   /* If an error occured in either of the blocks above.
2195   ** Free the Pager structure and close the file.
2196   ** Since the pager is not allocated there is no need to set
2197   ** any Pager.errMask variables.
2198   */
2199   if( !pPager || !pPager->pTmpSpace ){
2200     sqlite3OsClose(pPager->fd);
2201     sqlite3_free(pPager);
2202     return ((rc==SQLITE_OK)?SQLITE_NOMEM:rc);
2203   }
2204 
2205   PAGERTRACE3("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename);
2206   IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename))
2207 
2208   /* Fill in Pager.zDirectory[] */
2209   memcpy(pPager->zDirectory, pPager->zFilename, nPathname+1);
2210   for(i=strlen(pPager->zDirectory); i>0 && pPager->zDirectory[i-1]!='/'; i--){}
2211   if( i>0 ) pPager->zDirectory[i-1] = 0;
2212 
2213   /* Fill in Pager.zJournal[] and Pager.zStmtJrnl[] */
2214   memcpy(pPager->zJournal, pPager->zFilename, nPathname);
2215   memcpy(&pPager->zJournal[nPathname], "-journal", 9);
2216   memcpy(pPager->zStmtJrnl, pPager->zFilename, nPathname);
2217   memcpy(&pPager->zStmtJrnl[nPathname], "-stmtjrnl", 10);
2218 
2219   /* pPager->journalOpen = 0; */
2220   pPager->useJournal = useJournal && !memDb;
2221   pPager->noReadlock = noReadlock && readOnly;
2222   /* pPager->stmtOpen = 0; */
2223   /* pPager->stmtInUse = 0; */
2224   /* pPager->nRef = 0; */
2225   pPager->dbSize = memDb-1;
2226   pPager->pageSize = nDefaultPage;
2227   /* pPager->stmtSize = 0; */
2228   /* pPager->stmtJSize = 0; */
2229   /* pPager->nPage = 0; */
2230   pPager->mxPage = 100;
2231   pPager->mxPgno = SQLITE_MAX_PAGE_COUNT;
2232   /* pPager->state = PAGER_UNLOCK; */
2233   assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) );
2234   /* pPager->errMask = 0; */
2235   pPager->tempFile = tempFile;
2236   assert( tempFile==PAGER_LOCKINGMODE_NORMAL
2237           || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE );
2238   assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 );
2239   pPager->exclusiveMode = tempFile;
2240   pPager->memDb = memDb;
2241   pPager->readOnly = readOnly;
2242   /* pPager->needSync = 0; */
2243   pPager->noSync = pPager->tempFile || !useJournal;
2244   pPager->fullSync = (pPager->noSync?0:1);
2245   pPager->sync_flags = SQLITE_SYNC_NORMAL;
2246   /* pPager->pFirst = 0; */
2247   /* pPager->pFirstSynced = 0; */
2248   /* pPager->pLast = 0; */
2249   pPager->nExtra = FORCE_ALIGNMENT(nExtra);
2250   assert(pPager->fd->pMethods||memDb||tempFile);
2251   if( !memDb ){
2252     setSectorSize(pPager);
2253   }
2254   /* pPager->pBusyHandler = 0; */
2255   /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */
2256   *ppPager = pPager;
2257 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
2258   pPager->iInUseMM = 0;
2259   pPager->iInUseDB = 0;
2260   if( !memDb ){
2261     sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
2262     sqlite3_mutex_enter(mutex);
2263     pPager->pNext = sqlite3PagerList;
2264     if( sqlite3PagerList ){
2265       assert( sqlite3PagerList->pPrev==0 );
2266       sqlite3PagerList->pPrev = pPager;
2267     }
2268     pPager->pPrev = 0;
2269     sqlite3PagerList = pPager;
2270     sqlite3_mutex_leave(mutex);
2271   }
2272 #endif
2273   return SQLITE_OK;
2274 }
2275 
2276 /*
2277 ** Set the busy handler function.
2278 */
2279 void sqlite3PagerSetBusyhandler(Pager *pPager, BusyHandler *pBusyHandler){
2280   pPager->pBusyHandler = pBusyHandler;
2281 }
2282 
2283 /*
2284 ** Set the destructor for this pager.  If not NULL, the destructor is called
2285 ** when the reference count on each page reaches zero.  The destructor can
2286 ** be used to clean up information in the extra segment appended to each page.
2287 **
2288 ** The destructor is not called as a result sqlite3PagerClose().
2289 ** Destructors are only called by sqlite3PagerUnref().
2290 */
2291 void sqlite3PagerSetDestructor(Pager *pPager, void (*xDesc)(DbPage*,int)){
2292   pPager->xDestructor = xDesc;
2293 }
2294 
2295 /*
2296 ** Set the reinitializer for this pager.  If not NULL, the reinitializer
2297 ** is called when the content of a page in cache is restored to its original
2298 ** value as a result of a rollback.  The callback gives higher-level code
2299 ** an opportunity to restore the EXTRA section to agree with the restored
2300 ** page data.
2301 */
2302 void sqlite3PagerSetReiniter(Pager *pPager, void (*xReinit)(DbPage*,int)){
2303   pPager->xReiniter = xReinit;
2304 }
2305 
2306 /*
2307 ** Set the page size to *pPageSize. If the suggest new page size is
2308 ** inappropriate, then an alternative page size is set to that
2309 ** value before returning.
2310 */
2311 int sqlite3PagerSetPagesize(Pager *pPager, u16 *pPageSize){
2312   int rc = SQLITE_OK;
2313   u16 pageSize = *pPageSize;
2314   assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) );
2315   if( pageSize && pageSize!=pPager->pageSize
2316    && !pPager->memDb && pPager->nRef==0
2317   ){
2318     char *pNew = (char *)sqlite3_malloc(pageSize);
2319     if( !pNew ){
2320       rc = SQLITE_NOMEM;
2321     }else{
2322       pagerEnter(pPager);
2323       pager_reset(pPager);
2324       pPager->pageSize = pageSize;
2325       setSectorSize(pPager);
2326       sqlite3_free(pPager->pTmpSpace);
2327       pPager->pTmpSpace = pNew;
2328       pagerLeave(pPager);
2329     }
2330   }
2331   *pPageSize = pPager->pageSize;
2332   return rc;
2333 }
2334 
2335 /*
2336 ** Attempt to set the maximum database page count if mxPage is positive.
2337 ** Make no changes if mxPage is zero or negative.  And never reduce the
2338 ** maximum page count below the current size of the database.
2339 **
2340 ** Regardless of mxPage, return the current maximum page count.
2341 */
2342 int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){
2343   if( mxPage>0 ){
2344     pPager->mxPgno = mxPage;
2345   }
2346   sqlite3PagerPagecount(pPager);
2347   return pPager->mxPgno;
2348 }
2349 
2350 /*
2351 ** The following set of routines are used to disable the simulated
2352 ** I/O error mechanism.  These routines are used to avoid simulated
2353 ** errors in places where we do not care about errors.
2354 **
2355 ** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops
2356 ** and generate no code.
2357 */
2358 #ifdef SQLITE_TEST
2359 extern int sqlite3_io_error_pending;
2360 extern int sqlite3_io_error_hit;
2361 static int saved_cnt;
2362 void disable_simulated_io_errors(void){
2363   saved_cnt = sqlite3_io_error_pending;
2364   sqlite3_io_error_pending = -1;
2365 }
2366 void enable_simulated_io_errors(void){
2367   sqlite3_io_error_pending = saved_cnt;
2368 }
2369 #else
2370 # define disable_simulated_io_errors()
2371 # define enable_simulated_io_errors()
2372 #endif
2373 
2374 /*
2375 ** Read the first N bytes from the beginning of the file into memory
2376 ** that pDest points to.
2377 **
2378 ** No error checking is done. The rational for this is that this function
2379 ** may be called even if the file does not exist or contain a header. In
2380 ** these cases sqlite3OsRead() will return an error, to which the correct
2381 ** response is to zero the memory at pDest and continue.  A real IO error
2382 ** will presumably recur and be picked up later (Todo: Think about this).
2383 */
2384 int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){
2385   int rc = SQLITE_OK;
2386   memset(pDest, 0, N);
2387   assert(MEMDB||pPager->fd->pMethods||pPager->tempFile);
2388   if( pPager->fd->pMethods ){
2389     IOTRACE(("DBHDR %p 0 %d\n", pPager, N))
2390     rc = sqlite3OsRead(pPager->fd, pDest, N, 0);
2391     if( rc==SQLITE_IOERR_SHORT_READ ){
2392       rc = SQLITE_OK;
2393     }
2394   }
2395   return rc;
2396 }
2397 
2398 /*
2399 ** Return the total number of pages in the disk file associated with
2400 ** pPager.
2401 **
2402 ** If the PENDING_BYTE lies on the page directly after the end of the
2403 ** file, then consider this page part of the file too. For example, if
2404 ** PENDING_BYTE is byte 4096 (the first byte of page 5) and the size of the
2405 ** file is 4096 bytes, 5 is returned instead of 4.
2406 */
2407 int sqlite3PagerPagecount(Pager *pPager){
2408   i64 n = 0;
2409   int rc;
2410   assert( pPager!=0 );
2411   if( pPager->errCode ){
2412     return 0;
2413   }
2414   if( pPager->dbSize>=0 ){
2415     n = pPager->dbSize;
2416   } else {
2417     assert(pPager->fd->pMethods||pPager->tempFile);
2418     if( (pPager->fd->pMethods)
2419      && (rc = sqlite3OsFileSize(pPager->fd, &n))!=SQLITE_OK ){
2420       pPager->nRef++;
2421       pager_error(pPager, rc);
2422       pPager->nRef--;
2423       return 0;
2424     }
2425     if( n>0 && n<pPager->pageSize ){
2426       n = 1;
2427     }else{
2428       n /= pPager->pageSize;
2429     }
2430     if( pPager->state!=PAGER_UNLOCK ){
2431       pPager->dbSize = n;
2432     }
2433   }
2434   if( n==(PENDING_BYTE/pPager->pageSize) ){
2435     n++;
2436   }
2437   if( n>pPager->mxPgno ){
2438     pPager->mxPgno = n;
2439   }
2440   return n;
2441 }
2442 
2443 
2444 #ifndef SQLITE_OMIT_MEMORYDB
2445 /*
2446 ** Clear a PgHistory block
2447 */
2448 static void clearHistory(PgHistory *pHist){
2449   sqlite3_free(pHist->pOrig);
2450   sqlite3_free(pHist->pStmt);
2451   pHist->pOrig = 0;
2452   pHist->pStmt = 0;
2453 }
2454 #else
2455 #define clearHistory(x)
2456 #endif
2457 
2458 /*
2459 ** Forward declaration
2460 */
2461 static int syncJournal(Pager*);
2462 
2463 /*
2464 ** Unlink pPg from it's hash chain. Also set the page number to 0 to indicate
2465 ** that the page is not part of any hash chain. This is required because the
2466 ** sqlite3PagerMovepage() routine can leave a page in the
2467 ** pNextFree/pPrevFree list that is not a part of any hash-chain.
2468 */
2469 static void unlinkHashChain(Pager *pPager, PgHdr *pPg){
2470   if( pPg->pgno==0 ){
2471     assert( pPg->pNextHash==0 && pPg->pPrevHash==0 );
2472     return;
2473   }
2474   if( pPg->pNextHash ){
2475     pPg->pNextHash->pPrevHash = pPg->pPrevHash;
2476   }
2477   if( pPg->pPrevHash ){
2478     assert( pPager->aHash[pPg->pgno & (pPager->nHash-1)]!=pPg );
2479     pPg->pPrevHash->pNextHash = pPg->pNextHash;
2480   }else{
2481     int h = pPg->pgno & (pPager->nHash-1);
2482     pPager->aHash[h] = pPg->pNextHash;
2483   }
2484   if( MEMDB ){
2485     clearHistory(PGHDR_TO_HIST(pPg, pPager));
2486   }
2487   pPg->pgno = 0;
2488   pPg->pNextHash = pPg->pPrevHash = 0;
2489 }
2490 
2491 /*
2492 ** Unlink a page from the free list (the list of all pages where nRef==0)
2493 ** and from its hash collision chain.
2494 */
2495 static void unlinkPage(PgHdr *pPg){
2496   Pager *pPager = pPg->pPager;
2497 
2498   /* Unlink from free page list */
2499   lruListRemove(pPg);
2500 
2501   /* Unlink from the pgno hash table */
2502   unlinkHashChain(pPager, pPg);
2503 }
2504 
2505 /*
2506 ** This routine is used to truncate the cache when a database
2507 ** is truncated.  Drop from the cache all pages whose pgno is
2508 ** larger than pPager->dbSize and is unreferenced.
2509 **
2510 ** Referenced pages larger than pPager->dbSize are zeroed.
2511 **
2512 ** Actually, at the point this routine is called, it would be
2513 ** an error to have a referenced page.  But rather than delete
2514 ** that page and guarantee a subsequent segfault, it seems better
2515 ** to zero it and hope that we error out sanely.
2516 */
2517 static void pager_truncate_cache(Pager *pPager){
2518   PgHdr *pPg;
2519   PgHdr **ppPg;
2520   int dbSize = pPager->dbSize;
2521 
2522   ppPg = &pPager->pAll;
2523   while( (pPg = *ppPg)!=0 ){
2524     if( pPg->pgno<=dbSize ){
2525       ppPg = &pPg->pNextAll;
2526     }else if( pPg->nRef>0 ){
2527       memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize);
2528       ppPg = &pPg->pNextAll;
2529     }else{
2530       *ppPg = pPg->pNextAll;
2531       IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno));
2532       PAGER_INCR(sqlite3_pager_pgfree_count);
2533       unlinkPage(pPg);
2534       makeClean(pPg);
2535       sqlite3_free(pPg);
2536       pPager->nPage--;
2537     }
2538   }
2539 }
2540 
2541 /*
2542 ** Try to obtain a lock on a file.  Invoke the busy callback if the lock
2543 ** is currently not available.  Repeat until the busy callback returns
2544 ** false or until the lock succeeds.
2545 **
2546 ** Return SQLITE_OK on success and an error code if we cannot obtain
2547 ** the lock.
2548 */
2549 static int pager_wait_on_lock(Pager *pPager, int locktype){
2550   int rc;
2551 
2552   /* The OS lock values must be the same as the Pager lock values */
2553   assert( PAGER_SHARED==SHARED_LOCK );
2554   assert( PAGER_RESERVED==RESERVED_LOCK );
2555   assert( PAGER_EXCLUSIVE==EXCLUSIVE_LOCK );
2556 
2557   /* If the file is currently unlocked then the size must be unknown */
2558   assert( pPager->state>=PAGER_SHARED || pPager->dbSize<0 || MEMDB );
2559 
2560   if( pPager->state>=locktype ){
2561     rc = SQLITE_OK;
2562   }else{
2563     do {
2564       rc = sqlite3OsLock(pPager->fd, locktype);
2565     }while( rc==SQLITE_BUSY && sqlite3InvokeBusyHandler(pPager->pBusyHandler) );
2566     if( rc==SQLITE_OK ){
2567       pPager->state = locktype;
2568       IOTRACE(("LOCK %p %d\n", pPager, locktype))
2569     }
2570   }
2571   return rc;
2572 }
2573 
2574 /*
2575 ** Truncate the file to the number of pages specified.
2576 */
2577 int sqlite3PagerTruncate(Pager *pPager, Pgno nPage){
2578   int rc;
2579   assert( pPager->state>=PAGER_SHARED || MEMDB );
2580   sqlite3PagerPagecount(pPager);
2581   if( pPager->errCode ){
2582     rc = pPager->errCode;
2583     return rc;
2584   }
2585   if( nPage>=(unsigned)pPager->dbSize ){
2586     return SQLITE_OK;
2587   }
2588   if( MEMDB ){
2589     pPager->dbSize = nPage;
2590     pager_truncate_cache(pPager);
2591     return SQLITE_OK;
2592   }
2593   pagerEnter(pPager);
2594   rc = syncJournal(pPager);
2595   pagerLeave(pPager);
2596   if( rc!=SQLITE_OK ){
2597     return rc;
2598   }
2599 
2600   /* Get an exclusive lock on the database before truncating. */
2601   pagerEnter(pPager);
2602   rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
2603   pagerLeave(pPager);
2604   if( rc!=SQLITE_OK ){
2605     return rc;
2606   }
2607 
2608   rc = pager_truncate(pPager, nPage);
2609   return rc;
2610 }
2611 
2612 /*
2613 ** Shutdown the page cache.  Free all memory and close all files.
2614 **
2615 ** If a transaction was in progress when this routine is called, that
2616 ** transaction is rolled back.  All outstanding pages are invalidated
2617 ** and their memory is freed.  Any attempt to use a page associated
2618 ** with this page cache after this function returns will likely
2619 ** result in a coredump.
2620 **
2621 ** This function always succeeds. If a transaction is active an attempt
2622 ** is made to roll it back. If an error occurs during the rollback
2623 ** a hot journal may be left in the filesystem but no error is returned
2624 ** to the caller.
2625 */
2626 int sqlite3PagerClose(Pager *pPager){
2627 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
2628   if( !MEMDB ){
2629     sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
2630     sqlite3_mutex_enter(mutex);
2631     if( pPager->pPrev ){
2632       pPager->pPrev->pNext = pPager->pNext;
2633     }else{
2634       sqlite3PagerList = pPager->pNext;
2635     }
2636     if( pPager->pNext ){
2637       pPager->pNext->pPrev = pPager->pPrev;
2638     }
2639     sqlite3_mutex_leave(mutex);
2640   }
2641 #endif
2642 
2643   disable_simulated_io_errors();
2644   pPager->errCode = 0;
2645   pPager->exclusiveMode = 0;
2646   pager_reset(pPager);
2647   pagerUnlockAndRollback(pPager);
2648   enable_simulated_io_errors();
2649   PAGERTRACE2("CLOSE %d\n", PAGERID(pPager));
2650   IOTRACE(("CLOSE %p\n", pPager))
2651   assert( pPager->errCode || (pPager->journalOpen==0 && pPager->stmtOpen==0) );
2652   if( pPager->journalOpen ){
2653     sqlite3OsClose(pPager->jfd);
2654   }
2655   sqlite3_free(pPager->aInJournal);
2656   if( pPager->stmtOpen ){
2657     sqlite3OsClose(pPager->stfd);
2658   }
2659   sqlite3OsClose(pPager->fd);
2660   /* Temp files are automatically deleted by the OS
2661   ** if( pPager->tempFile ){
2662   **   sqlite3OsDelete(pPager->zFilename);
2663   ** }
2664   */
2665 
2666   sqlite3_free(pPager->aHash);
2667   sqlite3_free(pPager->pTmpSpace);
2668   sqlite3_free(pPager);
2669   return SQLITE_OK;
2670 }
2671 
2672 #if !defined(NDEBUG) || defined(SQLITE_TEST)
2673 /*
2674 ** Return the page number for the given page data.
2675 */
2676 Pgno sqlite3PagerPagenumber(DbPage *p){
2677   return p->pgno;
2678 }
2679 #endif
2680 
2681 /*
2682 ** The page_ref() function increments the reference count for a page.
2683 ** If the page is currently on the freelist (the reference count is zero) then
2684 ** remove it from the freelist.
2685 **
2686 ** For non-test systems, page_ref() is a macro that calls _page_ref()
2687 ** online of the reference count is zero.  For test systems, page_ref()
2688 ** is a real function so that we can set breakpoints and trace it.
2689 */
2690 static void _page_ref(PgHdr *pPg){
2691   if( pPg->nRef==0 ){
2692     /* The page is currently on the freelist.  Remove it. */
2693     lruListRemove(pPg);
2694     pPg->pPager->nRef++;
2695   }
2696   pPg->nRef++;
2697   REFINFO(pPg);
2698 }
2699 #ifdef SQLITE_DEBUG
2700   static void page_ref(PgHdr *pPg){
2701     if( pPg->nRef==0 ){
2702       _page_ref(pPg);
2703     }else{
2704       pPg->nRef++;
2705       REFINFO(pPg);
2706     }
2707   }
2708 #else
2709 # define page_ref(P)   ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++)
2710 #endif
2711 
2712 /*
2713 ** Increment the reference count for a page.  The input pointer is
2714 ** a reference to the page data.
2715 */
2716 int sqlite3PagerRef(DbPage *pPg){
2717   pagerEnter(pPg->pPager);
2718   page_ref(pPg);
2719   pagerLeave(pPg->pPager);
2720   return SQLITE_OK;
2721 }
2722 
2723 /*
2724 ** Sync the journal.  In other words, make sure all the pages that have
2725 ** been written to the journal have actually reached the surface of the
2726 ** disk.  It is not safe to modify the original database file until after
2727 ** the journal has been synced.  If the original database is modified before
2728 ** the journal is synced and a power failure occurs, the unsynced journal
2729 ** data would be lost and we would be unable to completely rollback the
2730 ** database changes.  Database corruption would occur.
2731 **
2732 ** This routine also updates the nRec field in the header of the journal.
2733 ** (See comments on the pager_playback() routine for additional information.)
2734 ** If the sync mode is FULL, two syncs will occur.  First the whole journal
2735 ** is synced, then the nRec field is updated, then a second sync occurs.
2736 **
2737 ** For temporary databases, we do not care if we are able to rollback
2738 ** after a power failure, so no sync occurs.
2739 **
2740 ** If the IOCAP_SEQUENTIAL flag is set for the persistent media on which
2741 ** the database is stored, then OsSync() is never called on the journal
2742 ** file. In this case all that is required is to update the nRec field in
2743 ** the journal header.
2744 **
2745 ** This routine clears the needSync field of every page current held in
2746 ** memory.
2747 */
2748 static int syncJournal(Pager *pPager){
2749   PgHdr *pPg;
2750   int rc = SQLITE_OK;
2751 
2752 
2753   /* Sync the journal before modifying the main database
2754   ** (assuming there is a journal and it needs to be synced.)
2755   */
2756   if( pPager->needSync ){
2757     if( !pPager->tempFile ){
2758       int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
2759       assert( pPager->journalOpen );
2760 
2761       /* assert( !pPager->noSync ); // noSync might be set if synchronous
2762       ** was turned off after the transaction was started.  Ticket #615 */
2763 #ifndef NDEBUG
2764       {
2765         /* Make sure the pPager->nRec counter we are keeping agrees
2766         ** with the nRec computed from the size of the journal file.
2767         */
2768         i64 jSz;
2769         rc = sqlite3OsFileSize(pPager->jfd, &jSz);
2770         if( rc!=0 ) return rc;
2771         assert( pPager->journalOff==jSz );
2772       }
2773 #endif
2774       if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
2775         /* Write the nRec value into the journal file header. If in
2776         ** full-synchronous mode, sync the journal first. This ensures that
2777         ** all data has really hit the disk before nRec is updated to mark
2778         ** it as a candidate for rollback.
2779         **
2780         ** This is not required if the persistent media supports the
2781         ** SAFE_APPEND property. Because in this case it is not possible
2782         ** for garbage data to be appended to the file, the nRec field
2783         ** is populated with 0xFFFFFFFF when the journal header is written
2784         ** and never needs to be updated.
2785         */
2786         i64 jrnlOff;
2787         if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
2788           PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
2789           IOTRACE(("JSYNC %p\n", pPager))
2790           rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags);
2791           if( rc!=0 ) return rc;
2792         }
2793 
2794         jrnlOff = pPager->journalHdr + sizeof(aJournalMagic);
2795         IOTRACE(("JHDR %p %lld %d\n", pPager, jrnlOff, 4));
2796         rc = write32bits(pPager->jfd, jrnlOff, pPager->nRec);
2797         if( rc ) return rc;
2798       }
2799       if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
2800         PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager));
2801         IOTRACE(("JSYNC %p\n", pPager))
2802         rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags|
2803           (pPager->sync_flags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0)
2804         );
2805         if( rc!=0 ) return rc;
2806       }
2807       pPager->journalStarted = 1;
2808     }
2809     pPager->needSync = 0;
2810 
2811     /* Erase the needSync flag from every page.
2812     */
2813     for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
2814       pPg->needSync = 0;
2815     }
2816     lruListSetFirstSynced(pPager);
2817   }
2818 
2819 #ifndef NDEBUG
2820   /* If the Pager.needSync flag is clear then the PgHdr.needSync
2821   ** flag must also be clear for all pages.  Verify that this
2822   ** invariant is true.
2823   */
2824   else{
2825     for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
2826       assert( pPg->needSync==0 );
2827     }
2828     assert( pPager->lru.pFirstSynced==pPager->lru.pFirst );
2829   }
2830 #endif
2831 
2832   return rc;
2833 }
2834 
2835 /*
2836 ** Merge two lists of pages connected by pDirty and in pgno order.
2837 ** Do not both fixing the pPrevDirty pointers.
2838 */
2839 static PgHdr *merge_pagelist(PgHdr *pA, PgHdr *pB){
2840   PgHdr result, *pTail;
2841   pTail = &result;
2842   while( pA && pB ){
2843     if( pA->pgno<pB->pgno ){
2844       pTail->pDirty = pA;
2845       pTail = pA;
2846       pA = pA->pDirty;
2847     }else{
2848       pTail->pDirty = pB;
2849       pTail = pB;
2850       pB = pB->pDirty;
2851     }
2852   }
2853   if( pA ){
2854     pTail->pDirty = pA;
2855   }else if( pB ){
2856     pTail->pDirty = pB;
2857   }else{
2858     pTail->pDirty = 0;
2859   }
2860   return result.pDirty;
2861 }
2862 
2863 /*
2864 ** Sort the list of pages in accending order by pgno.  Pages are
2865 ** connected by pDirty pointers.  The pPrevDirty pointers are
2866 ** corrupted by this sort.
2867 */
2868 #define N_SORT_BUCKET_ALLOC 25
2869 #define N_SORT_BUCKET       25
2870 #ifdef SQLITE_TEST
2871   int sqlite3_pager_n_sort_bucket = 0;
2872   #undef N_SORT_BUCKET
2873   #define N_SORT_BUCKET \
2874    (sqlite3_pager_n_sort_bucket?sqlite3_pager_n_sort_bucket:N_SORT_BUCKET_ALLOC)
2875 #endif
2876 static PgHdr *sort_pagelist(PgHdr *pIn){
2877   PgHdr *a[N_SORT_BUCKET_ALLOC], *p;
2878   int i;
2879   memset(a, 0, sizeof(a));
2880   while( pIn ){
2881     p = pIn;
2882     pIn = p->pDirty;
2883     p->pDirty = 0;
2884     for(i=0; i<N_SORT_BUCKET-1; i++){
2885       if( a[i]==0 ){
2886         a[i] = p;
2887         break;
2888       }else{
2889         p = merge_pagelist(a[i], p);
2890         a[i] = 0;
2891       }
2892     }
2893     if( i==N_SORT_BUCKET-1 ){
2894       /* Coverage: To get here, there need to be 2^(N_SORT_BUCKET)
2895       ** elements in the input list. This is possible, but impractical.
2896       ** Testing this line is the point of global variable
2897       ** sqlite3_pager_n_sort_bucket.
2898       */
2899       a[i] = merge_pagelist(a[i], p);
2900     }
2901   }
2902   p = a[0];
2903   for(i=1; i<N_SORT_BUCKET; i++){
2904     p = merge_pagelist(p, a[i]);
2905   }
2906   return p;
2907 }
2908 
2909 /*
2910 ** Given a list of pages (connected by the PgHdr.pDirty pointer) write
2911 ** every one of those pages out to the database file and mark them all
2912 ** as clean.
2913 */
2914 static int pager_write_pagelist(PgHdr *pList){
2915   Pager *pPager;
2916   PgHdr *p;
2917   int rc;
2918 
2919   if( pList==0 ) return SQLITE_OK;
2920   pPager = pList->pPager;
2921 
2922   /* At this point there may be either a RESERVED or EXCLUSIVE lock on the
2923   ** database file. If there is already an EXCLUSIVE lock, the following
2924   ** calls to sqlite3OsLock() are no-ops.
2925   **
2926   ** Moving the lock from RESERVED to EXCLUSIVE actually involves going
2927   ** through an intermediate state PENDING.   A PENDING lock prevents new
2928   ** readers from attaching to the database but is unsufficient for us to
2929   ** write.  The idea of a PENDING lock is to prevent new readers from
2930   ** coming in while we wait for existing readers to clear.
2931   **
2932   ** While the pager is in the RESERVED state, the original database file
2933   ** is unchanged and we can rollback without having to playback the
2934   ** journal into the original database file.  Once we transition to
2935   ** EXCLUSIVE, it means the database file has been changed and any rollback
2936   ** will require a journal playback.
2937   */
2938   rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
2939   if( rc!=SQLITE_OK ){
2940     return rc;
2941   }
2942 
2943   pList = sort_pagelist(pList);
2944   for(p=pList; p; p=p->pDirty){
2945     assert( p->dirty );
2946     p->dirty = 0;
2947   }
2948   while( pList ){
2949 
2950     /* If the file has not yet been opened, open it now. */
2951     if( !pPager->fd->pMethods ){
2952       assert(pPager->tempFile);
2953       rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->fd, pPager->zFilename,
2954                                 pPager->vfsFlags);
2955       if( rc ) return rc;
2956     }
2957 
2958     /* If there are dirty pages in the page cache with page numbers greater
2959     ** than Pager.dbSize, this means sqlite3PagerTruncate() was called to
2960     ** make the file smaller (presumably by auto-vacuum code). Do not write
2961     ** any such pages to the file.
2962     */
2963     if( pList->pgno<=pPager->dbSize ){
2964       i64 offset = (pList->pgno-1)*(i64)pPager->pageSize;
2965       char *pData = CODEC2(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6);
2966       PAGERTRACE4("STORE %d page %d hash(%08x)\n",
2967                    PAGERID(pPager), pList->pgno, pager_pagehash(pList));
2968       IOTRACE(("PGOUT %p %d\n", pPager, pList->pgno));
2969       rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset);
2970       PAGER_INCR(sqlite3_pager_writedb_count);
2971       PAGER_INCR(pPager->nWrite);
2972       if( pList->pgno==1 ){
2973         memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers));
2974       }
2975     }
2976 #ifndef NDEBUG
2977     else{
2978       PAGERTRACE3("NOSTORE %d page %d\n", PAGERID(pPager), pList->pgno);
2979     }
2980 #endif
2981     if( rc ) return rc;
2982 #ifdef SQLITE_CHECK_PAGES
2983     pList->pageHash = pager_pagehash(pList);
2984 #endif
2985     pList = pList->pDirty;
2986   }
2987   return SQLITE_OK;
2988 }
2989 
2990 /*
2991 ** Collect every dirty page into a dirty list and
2992 ** return a pointer to the head of that list.  All pages are
2993 ** collected even if they are still in use.
2994 */
2995 static PgHdr *pager_get_all_dirty_pages(Pager *pPager){
2996   return pPager->pDirty;
2997 }
2998 
2999 /*
3000 ** Return TRUE if there is a hot journal on the given pager.
3001 ** A hot journal is one that needs to be played back.
3002 **
3003 ** If the current size of the database file is 0 but a journal file
3004 ** exists, that is probably an old journal left over from a prior
3005 ** database with the same name.  Just delete the journal.
3006 */
3007 static int hasHotJournal(Pager *pPager){
3008   sqlite3_vfs *pVfs = pPager->pVfs;
3009   if( !pPager->useJournal ) return 0;
3010   if( !sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS) ){
3011     return 0;
3012   }
3013   if( sqlite3OsCheckReservedLock(pPager->fd) ){
3014     return 0;
3015   }
3016   if( sqlite3PagerPagecount(pPager)==0 ){
3017     sqlite3OsDelete(pVfs, pPager->zJournal, 0);
3018     return 0;
3019   }else{
3020     return 1;
3021   }
3022 }
3023 
3024 /*
3025 ** Try to find a page in the cache that can be recycled.
3026 **
3027 ** This routine may return SQLITE_IOERR, SQLITE_FULL or SQLITE_OK. It
3028 ** does not set the pPager->errCode variable.
3029 */
3030 static int pager_recycle(Pager *pPager, PgHdr **ppPg){
3031   PgHdr *pPg;
3032   *ppPg = 0;
3033 
3034   /* It is illegal to call this function unless the pager object
3035   ** pointed to by pPager has at least one free page (page with nRef==0).
3036   */
3037   assert(!MEMDB);
3038   assert(pPager->lru.pFirst);
3039 
3040   /* Find a page to recycle.  Try to locate a page that does not
3041   ** require us to do an fsync() on the journal.
3042   */
3043   pPg = pPager->lru.pFirstSynced;
3044 
3045   /* If we could not find a page that does not require an fsync()
3046   ** on the journal file then fsync the journal file.  This is a
3047   ** very slow operation, so we work hard to avoid it.  But sometimes
3048   ** it can't be helped.
3049   */
3050   if( pPg==0 && pPager->lru.pFirst){
3051     int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
3052     int rc = syncJournal(pPager);
3053     if( rc!=0 ){
3054       return rc;
3055     }
3056     if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
3057       /* If in full-sync mode, write a new journal header into the
3058       ** journal file. This is done to avoid ever modifying a journal
3059       ** header that is involved in the rollback of pages that have
3060       ** already been written to the database (in case the header is
3061       ** trashed when the nRec field is updated).
3062       */
3063       pPager->nRec = 0;
3064       assert( pPager->journalOff > 0 );
3065       assert( pPager->doNotSync==0 );
3066       rc = writeJournalHdr(pPager);
3067       if( rc!=0 ){
3068         return rc;
3069       }
3070     }
3071     pPg = pPager->lru.pFirst;
3072   }
3073 
3074   assert( pPg->nRef==0 );
3075 
3076   /* Write the page to the database file if it is dirty.
3077   */
3078   if( pPg->dirty ){
3079     int rc;
3080     assert( pPg->needSync==0 );
3081     makeClean(pPg);
3082     pPg->dirty = 1;
3083     pPg->pDirty = 0;
3084     rc = pager_write_pagelist( pPg );
3085     pPg->dirty = 0;
3086     if( rc!=SQLITE_OK ){
3087       return rc;
3088     }
3089   }
3090   assert( pPg->dirty==0 );
3091 
3092   /* If the page we are recycling is marked as alwaysRollback, then
3093   ** set the global alwaysRollback flag, thus disabling the
3094   ** sqlite3PagerDontRollback() optimization for the rest of this transaction.
3095   ** It is necessary to do this because the page marked alwaysRollback
3096   ** might be reloaded at a later time but at that point we won't remember
3097   ** that is was marked alwaysRollback.  This means that all pages must
3098   ** be marked as alwaysRollback from here on out.
3099   */
3100   if( pPg->alwaysRollback ){
3101     IOTRACE(("ALWAYS_ROLLBACK %p\n", pPager))
3102     pPager->alwaysRollback = 1;
3103   }
3104 
3105   /* Unlink the old page from the free list and the hash table
3106   */
3107   unlinkPage(pPg);
3108   assert( pPg->pgno==0 );
3109 
3110   *ppPg = pPg;
3111   return SQLITE_OK;
3112 }
3113 
3114 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
3115 /*
3116 ** This function is called to free superfluous dynamically allocated memory
3117 ** held by the pager system. Memory in use by any SQLite pager allocated
3118 ** by the current thread may be sqlite3_free()ed.
3119 **
3120 ** nReq is the number of bytes of memory required. Once this much has
3121 ** been released, the function returns. The return value is the total number
3122 ** of bytes of memory released.
3123 */
3124 int sqlite3PagerReleaseMemory(int nReq){
3125   int nReleased = 0;          /* Bytes of memory released so far */
3126   sqlite3_mutex *mutex;       /* The MEM2 mutex */
3127   Pager *pPager;              /* For looping over pagers */
3128   int rc = SQLITE_OK;
3129 
3130   /* Acquire the memory-management mutex
3131   */
3132   mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2);
3133   sqlite3_mutex_enter(mutex);
3134 
3135   /* Signal all database connections that memory management wants
3136   ** to have access to the pagers.
3137   */
3138   for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){
3139      pPager->iInUseMM = 1;
3140   }
3141 
3142   while( rc==SQLITE_OK && (nReq<0 || nReleased<nReq) ){
3143     PgHdr *pPg;
3144     PgHdr *pRecycled;
3145 
3146     /* Try to find a page to recycle that does not require a sync(). If
3147     ** this is not possible, find one that does require a sync().
3148     */
3149     sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
3150     pPg = sqlite3LruPageList.pFirstSynced;
3151     while( pPg && (pPg->needSync || pPg->pPager->iInUseDB) ){
3152       pPg = pPg->gfree.pNext;
3153     }
3154     if( !pPg ){
3155       pPg = sqlite3LruPageList.pFirst;
3156       while( pPg && pPg->pPager->iInUseDB ){
3157         pPg = pPg->gfree.pNext;
3158       }
3159     }
3160     sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU));
3161 
3162     /* If pPg==0, then the block above has failed to find a page to
3163     ** recycle. In this case return early - no further memory will
3164     ** be released.
3165     */
3166     if( !pPg ) break;
3167 
3168     pPager = pPg->pPager;
3169     assert(!pPg->needSync || pPg==pPager->lru.pFirst);
3170     assert(pPg->needSync || pPg==pPager->lru.pFirstSynced);
3171 
3172     rc = pager_recycle(pPager, &pRecycled);
3173     assert(pRecycled==pPg || rc!=SQLITE_OK);
3174     if( rc==SQLITE_OK ){
3175       /* We've found a page to free. At this point the page has been
3176       ** removed from the page hash-table, free-list and synced-list
3177       ** (pFirstSynced). It is still in the all pages (pAll) list.
3178       ** Remove it from this list before freeing.
3179       **
3180       ** Todo: Check the Pager.pStmt list to make sure this is Ok. It
3181       ** probably is though.
3182       */
3183       PgHdr *pTmp;
3184       assert( pPg );
3185       if( pPg==pPager->pAll ){
3186          pPager->pAll = pPg->pNextAll;
3187       }else{
3188         for( pTmp=pPager->pAll; pTmp->pNextAll!=pPg; pTmp=pTmp->pNextAll ){}
3189         pTmp->pNextAll = pPg->pNextAll;
3190       }
3191       nReleased += (
3192           sizeof(*pPg) + pPager->pageSize
3193           + sizeof(u32) + pPager->nExtra
3194           + MEMDB*sizeof(PgHistory)
3195       );
3196       IOTRACE(("PGFREE %p %d *\n", pPager, pPg->pgno));
3197       PAGER_INCR(sqlite3_pager_pgfree_count);
3198       sqlite3_free(pPg);
3199       pPager->nPage--;
3200     }else{
3201       /* An error occured whilst writing to the database file or
3202       ** journal in pager_recycle(). The error is not returned to the
3203       ** caller of this function. Instead, set the Pager.errCode variable.
3204       ** The error will be returned to the user (or users, in the case
3205       ** of a shared pager cache) of the pager for which the error occured.
3206       */
3207       assert(
3208           (rc&0xff)==SQLITE_IOERR ||
3209           rc==SQLITE_FULL ||
3210           rc==SQLITE_BUSY
3211       );
3212       assert( pPager->state>=PAGER_RESERVED );
3213       pager_error(pPager, rc);
3214     }
3215   }
3216 
3217   /* Clear the memory management flags and release the mutex
3218   */
3219   for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){
3220      pPager->iInUseMM = 0;
3221   }
3222   sqlite3_mutex_leave(mutex);
3223 
3224   /* Return the number of bytes released
3225   */
3226   return nReleased;
3227 }
3228 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
3229 
3230 /*
3231 ** Read the content of page pPg out of the database file.
3232 */
3233 static int readDbPage(Pager *pPager, PgHdr *pPg, Pgno pgno){
3234   int rc;
3235   i64 offset;
3236   assert( MEMDB==0 );
3237   assert(pPager->fd->pMethods||pPager->tempFile);
3238   if( !pPager->fd->pMethods ){
3239     return SQLITE_IOERR_SHORT_READ;
3240   }
3241   offset = (pgno-1)*(i64)pPager->pageSize;
3242   rc = sqlite3OsRead(pPager->fd, PGHDR_TO_DATA(pPg), pPager->pageSize, offset);
3243   PAGER_INCR(sqlite3_pager_readdb_count);
3244   PAGER_INCR(pPager->nRead);
3245   IOTRACE(("PGIN %p %d\n", pPager, pgno));
3246   if( pgno==1 ){
3247     memcpy(&pPager->dbFileVers, &((u8*)PGHDR_TO_DATA(pPg))[24],
3248                                               sizeof(pPager->dbFileVers));
3249   }
3250   CODEC1(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3);
3251   PAGERTRACE4("FETCH %d page %d hash(%08x)\n",
3252                PAGERID(pPager), pPg->pgno, pager_pagehash(pPg));
3253   return rc;
3254 }
3255 
3256 
3257 /*
3258 ** This function is called to obtain the shared lock required before
3259 ** data may be read from the pager cache. If the shared lock has already
3260 ** been obtained, this function is a no-op.
3261 **
3262 ** Immediately after obtaining the shared lock (if required), this function
3263 ** checks for a hot-journal file. If one is found, an emergency rollback
3264 ** is performed immediately.
3265 */
3266 static int pagerSharedLock(Pager *pPager){
3267   int rc = SQLITE_OK;
3268   int isHot = 0;
3269 
3270   /* If this database is opened for exclusive access, has no outstanding
3271   ** page references and is in an error-state, now is the chance to clear
3272   ** the error. Discard the contents of the pager-cache and treat any
3273   ** open journal file as a hot-journal.
3274   */
3275   if( !MEMDB && pPager->exclusiveMode && pPager->nRef==0 && pPager->errCode ){
3276     if( pPager->journalOpen ){
3277       isHot = 1;
3278     }
3279     pager_reset(pPager);
3280     pPager->errCode = SQLITE_OK;
3281   }
3282 
3283   /* If the pager is still in an error state, do not proceed. The error
3284   ** state will be cleared at some point in the future when all page
3285   ** references are dropped and the cache can be discarded.
3286   */
3287   if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
3288     return pPager->errCode;
3289   }
3290 
3291   if( pPager->state==PAGER_UNLOCK || isHot ){
3292     sqlite3_vfs *pVfs = pPager->pVfs;
3293     if( !MEMDB ){
3294       assert( pPager->nRef==0 );
3295       if( !pPager->noReadlock ){
3296         rc = pager_wait_on_lock(pPager, SHARED_LOCK);
3297         if( rc!=SQLITE_OK ){
3298           return pager_error(pPager, rc);
3299         }
3300         assert( pPager->state>=SHARED_LOCK );
3301       }
3302 
3303       /* If a journal file exists, and there is no RESERVED lock on the
3304       ** database file, then it either needs to be played back or deleted.
3305       */
3306       if( hasHotJournal(pPager) || isHot ){
3307         /* Get an EXCLUSIVE lock on the database file. At this point it is
3308         ** important that a RESERVED lock is not obtained on the way to the
3309         ** EXCLUSIVE lock. If it were, another process might open the
3310         ** database file, detect the RESERVED lock, and conclude that the
3311         ** database is safe to read while this process is still rolling it
3312         ** back.
3313         **
3314         ** Because the intermediate RESERVED lock is not requested, the
3315         ** second process will get to this point in the code and fail to
3316         ** obtain it's own EXCLUSIVE lock on the database file.
3317         */
3318         if( pPager->state<EXCLUSIVE_LOCK ){
3319           rc = sqlite3OsLock(pPager->fd, EXCLUSIVE_LOCK);
3320           if( rc!=SQLITE_OK ){
3321             pager_unlock(pPager);
3322             return pager_error(pPager, rc);
3323           }
3324           pPager->state = PAGER_EXCLUSIVE;
3325         }
3326 
3327         /* Open the journal for reading only.  Return SQLITE_BUSY if
3328         ** we are unable to open the journal file.
3329         **
3330         ** The journal file does not need to be locked itself.  The
3331         ** journal file is never open unless the main database file holds
3332         ** a write lock, so there is never any chance of two or more
3333         ** processes opening the journal at the same time.
3334         **
3335         ** Open the journal for read/write access. This is because in
3336         ** exclusive-access mode the file descriptor will be kept open and
3337         ** possibly used for a transaction later on. On some systems, the
3338         ** OsTruncate() call used in exclusive-access mode also requires
3339         ** a read/write file handle.
3340         */
3341         if( !isHot ){
3342           rc = SQLITE_BUSY;
3343           if( sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS) ){
3344             int fout = 0;
3345             int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL;
3346             assert( !pPager->tempFile );
3347             rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout);
3348             assert( rc!=SQLITE_OK || pPager->jfd->pMethods );
3349             if( fout&SQLITE_OPEN_READONLY ){
3350               rc = SQLITE_BUSY;
3351               sqlite3OsClose(pPager->jfd);
3352             }
3353           }
3354         }
3355         if( rc!=SQLITE_OK ){
3356           pager_unlock(pPager);
3357           return ((rc==SQLITE_NOMEM||rc==SQLITE_IOERR_NOMEM)?rc:SQLITE_BUSY);
3358         }
3359         pPager->journalOpen = 1;
3360         pPager->journalStarted = 0;
3361         pPager->journalOff = 0;
3362         pPager->setMaster = 0;
3363         pPager->journalHdr = 0;
3364 
3365         /* Playback and delete the journal.  Drop the database write
3366         ** lock and reacquire the read lock.
3367         */
3368         rc = pager_playback(pPager, 1);
3369         if( rc!=SQLITE_OK ){
3370           return pager_error(pPager, rc);
3371         }
3372         assert(pPager->state==PAGER_SHARED ||
3373             (pPager->exclusiveMode && pPager->state>PAGER_SHARED)
3374         );
3375       }
3376 
3377       if( pPager->pAll ){
3378         /* The shared-lock has just been acquired on the database file
3379         ** and there are already pages in the cache (from a previous
3380         ** read or write transaction).  Check to see if the database
3381         ** has been modified.  If the database has changed, flush the
3382         ** cache.
3383         **
3384         ** Database changes is detected by looking at 15 bytes beginning
3385         ** at offset 24 into the file.  The first 4 of these 16 bytes are
3386         ** a 32-bit counter that is incremented with each change.  The
3387         ** other bytes change randomly with each file change when
3388         ** a codec is in use.
3389         **
3390         ** There is a vanishingly small chance that a change will not be
3391         ** detected.  The chance of an undetected change is so small that
3392         ** it can be neglected.
3393         */
3394         char dbFileVers[sizeof(pPager->dbFileVers)];
3395         sqlite3PagerPagecount(pPager);
3396 
3397         if( pPager->errCode ){
3398           return pPager->errCode;
3399         }
3400 
3401         if( pPager->dbSize>0 ){
3402           IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers)));
3403           rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24);
3404           if( rc!=SQLITE_OK ){
3405             return rc;
3406           }
3407         }else{
3408           memset(dbFileVers, 0, sizeof(dbFileVers));
3409         }
3410 
3411         if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){
3412           pager_reset(pPager);
3413         }
3414       }
3415     }
3416     assert( pPager->exclusiveMode || pPager->state<=PAGER_SHARED );
3417     if( pPager->state==PAGER_UNLOCK ){
3418       pPager->state = PAGER_SHARED;
3419     }
3420   }
3421 
3422   return rc;
3423 }
3424 
3425 /*
3426 ** Allocate a PgHdr object.   Either create a new one or reuse
3427 ** an existing one that is not otherwise in use.
3428 **
3429 ** A new PgHdr structure is created if any of the following are
3430 ** true:
3431 **
3432 **     (1)  We have not exceeded our maximum allocated cache size
3433 **          as set by the "PRAGMA cache_size" command.
3434 **
3435 **     (2)  There are no unused PgHdr objects available at this time.
3436 **
3437 **     (3)  This is an in-memory database.
3438 **
3439 **     (4)  There are no PgHdr objects that do not require a journal
3440 **          file sync and a sync of the journal file is currently
3441 **          prohibited.
3442 **
3443 ** Otherwise, reuse an existing PgHdr.  In other words, reuse an
3444 ** existing PgHdr if all of the following are true:
3445 **
3446 **     (1)  We have reached or exceeded the maximum cache size
3447 **          allowed by "PRAGMA cache_size".
3448 **
3449 **     (2)  There is a PgHdr available with PgHdr->nRef==0
3450 **
3451 **     (3)  We are not in an in-memory database
3452 **
3453 **     (4)  Either there is an available PgHdr that does not need
3454 **          to be synced to disk or else disk syncing is currently
3455 **          allowed.
3456 */
3457 static int pagerAllocatePage(Pager *pPager, PgHdr **ppPg){
3458   int rc = SQLITE_OK;
3459   PgHdr *pPg;
3460   int nByteHdr;
3461 
3462   /* Create a new PgHdr if any of the four conditions defined
3463   ** above are met: */
3464   if( pPager->nPage<pPager->mxPage
3465    || pPager->lru.pFirst==0
3466    || MEMDB
3467    || (pPager->lru.pFirstSynced==0 && pPager->doNotSync)
3468   ){
3469     if( pPager->nPage>=pPager->nHash ){
3470       pager_resize_hash_table(pPager,
3471          pPager->nHash<256 ? 256 : pPager->nHash*2);
3472       if( pPager->nHash==0 ){
3473         rc = SQLITE_NOMEM;
3474         goto pager_allocate_out;
3475       }
3476     }
3477     pagerLeave(pPager);
3478     nByteHdr = sizeof(*pPg) + sizeof(u32) + pPager->nExtra
3479               + MEMDB*sizeof(PgHistory);
3480     pPg = sqlite3_malloc( nByteHdr + pPager->pageSize );
3481     pagerEnter(pPager);
3482     if( pPg==0 ){
3483       rc = SQLITE_NOMEM;
3484       goto pager_allocate_out;
3485     }
3486     memset(pPg, 0, nByteHdr);
3487     pPg->pData = (void*)(nByteHdr + (char*)pPg);
3488     pPg->pPager = pPager;
3489     pPg->pNextAll = pPager->pAll;
3490     pPager->pAll = pPg;
3491     pPager->nPage++;
3492   }else{
3493     /* Recycle an existing page with a zero ref-count. */
3494     rc = pager_recycle(pPager, &pPg);
3495     if( rc==SQLITE_BUSY ){
3496       rc = SQLITE_IOERR_BLOCKED;
3497     }
3498     if( rc!=SQLITE_OK ){
3499       goto pager_allocate_out;
3500     }
3501     assert( pPager->state>=SHARED_LOCK );
3502     assert(pPg);
3503   }
3504   *ppPg = pPg;
3505 
3506 pager_allocate_out:
3507   return rc;
3508 }
3509 
3510 /*
3511 ** Make sure we have the content for a page.  If the page was
3512 ** previously acquired with noContent==1, then the content was
3513 ** just initialized to zeros instead of being read from disk.
3514 ** But now we need the real data off of disk.  So make sure we
3515 ** have it.  Read it in if we do not have it already.
3516 */
3517 static int pager_get_content(PgHdr *pPg){
3518   if( pPg->needRead ){
3519     int rc = readDbPage(pPg->pPager, pPg, pPg->pgno);
3520     if( rc==SQLITE_OK ){
3521       pPg->needRead = 0;
3522     }else{
3523       return rc;
3524     }
3525   }
3526   return SQLITE_OK;
3527 }
3528 
3529 /*
3530 ** Acquire a page.
3531 **
3532 ** A read lock on the disk file is obtained when the first page is acquired.
3533 ** This read lock is dropped when the last page is released.
3534 **
3535 ** This routine works for any page number greater than 0.  If the database
3536 ** file is smaller than the requested page, then no actual disk
3537 ** read occurs and the memory image of the page is initialized to
3538 ** all zeros.  The extra data appended to a page is always initialized
3539 ** to zeros the first time a page is loaded into memory.
3540 **
3541 ** The acquisition might fail for several reasons.  In all cases,
3542 ** an appropriate error code is returned and *ppPage is set to NULL.
3543 **
3544 ** See also sqlite3PagerLookup().  Both this routine and Lookup() attempt
3545 ** to find a page in the in-memory cache first.  If the page is not already
3546 ** in memory, this routine goes to disk to read it in whereas Lookup()
3547 ** just returns 0.  This routine acquires a read-lock the first time it
3548 ** has to go to disk, and could also playback an old journal if necessary.
3549 ** Since Lookup() never goes to disk, it never has to deal with locks
3550 ** or journal files.
3551 **
3552 ** If noContent is false, the page contents are actually read from disk.
3553 ** If noContent is true, it means that we do not care about the contents
3554 ** of the page at this time, so do not do a disk read.  Just fill in the
3555 ** page content with zeros.  But mark the fact that we have not read the
3556 ** content by setting the PgHdr.needRead flag.  Later on, if
3557 ** sqlite3PagerWrite() is called on this page or if this routine is
3558 ** called again with noContent==0, that means that the content is needed
3559 ** and the disk read should occur at that point.
3560 */
3561 static int pagerAcquire(
3562   Pager *pPager,      /* The pager open on the database file */
3563   Pgno pgno,          /* Page number to fetch */
3564   DbPage **ppPage,    /* Write a pointer to the page here */
3565   int noContent       /* Do not bother reading content from disk if true */
3566 ){
3567   PgHdr *pPg;
3568   int rc;
3569 
3570   assert( pPager->state==PAGER_UNLOCK || pPager->nRef>0 || pgno==1 );
3571 
3572   /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page
3573   ** number greater than this, or zero, is requested.
3574   */
3575   if( pgno>PAGER_MAX_PGNO || pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
3576     return SQLITE_CORRUPT_BKPT;
3577   }
3578 
3579   /* Make sure we have not hit any critical errors.
3580   */
3581   assert( pPager!=0 );
3582   *ppPage = 0;
3583 
3584   /* If this is the first page accessed, then get a SHARED lock
3585   ** on the database file. pagerSharedLock() is a no-op if
3586   ** a database lock is already held.
3587   */
3588   rc = pagerSharedLock(pPager);
3589   if( rc!=SQLITE_OK ){
3590     return rc;
3591   }
3592   assert( pPager->state!=PAGER_UNLOCK );
3593 
3594   pPg = pager_lookup(pPager, pgno);
3595   if( pPg==0 ){
3596     /* The requested page is not in the page cache. */
3597     int nMax;
3598     int h;
3599     PAGER_INCR(pPager->nMiss);
3600     rc = pagerAllocatePage(pPager, &pPg);
3601     if( rc!=SQLITE_OK ){
3602       return rc;
3603     }
3604 
3605     pPg->pgno = pgno;
3606     assert( !MEMDB || pgno>pPager->stmtSize );
3607     if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){
3608 #if 0
3609       sqlite3CheckMemory(pPager->aInJournal, pgno/8);
3610 #endif
3611       assert( pPager->journalOpen );
3612       pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0;
3613       pPg->needSync = 0;
3614     }else{
3615       pPg->inJournal = 0;
3616       pPg->needSync = 0;
3617     }
3618 
3619     makeClean(pPg);
3620     pPg->nRef = 1;
3621     REFINFO(pPg);
3622 
3623     pPager->nRef++;
3624     if( pPager->nExtra>0 ){
3625       memset(PGHDR_TO_EXTRA(pPg, pPager), 0, pPager->nExtra);
3626     }
3627     nMax = sqlite3PagerPagecount(pPager);
3628     if( pPager->errCode ){
3629       rc = pPager->errCode;
3630       sqlite3PagerUnref(pPg);
3631       return rc;
3632     }
3633 
3634     /* Populate the page with data, either by reading from the database
3635     ** file, or by setting the entire page to zero.
3636     */
3637     if( nMax<(int)pgno || MEMDB || (noContent && !pPager->alwaysRollback) ){
3638       if( pgno>pPager->mxPgno ){
3639         sqlite3PagerUnref(pPg);
3640         return SQLITE_FULL;
3641       }
3642       memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize);
3643       pPg->needRead = noContent && !pPager->alwaysRollback;
3644       IOTRACE(("ZERO %p %d\n", pPager, pgno));
3645     }else{
3646       rc = readDbPage(pPager, pPg, pgno);
3647       if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){
3648         pPg->pgno = 0;
3649         sqlite3PagerUnref(pPg);
3650         return rc;
3651       }
3652       pPg->needRead = 0;
3653     }
3654 
3655     /* Link the page into the page hash table */
3656     h = pgno & (pPager->nHash-1);
3657     assert( pgno!=0 );
3658     pPg->pNextHash = pPager->aHash[h];
3659     pPager->aHash[h] = pPg;
3660     if( pPg->pNextHash ){
3661       assert( pPg->pNextHash->pPrevHash==0 );
3662       pPg->pNextHash->pPrevHash = pPg;
3663     }
3664 
3665 #ifdef SQLITE_CHECK_PAGES
3666     pPg->pageHash = pager_pagehash(pPg);
3667 #endif
3668   }else{
3669     /* The requested page is in the page cache. */
3670     assert(pPager->nRef>0 || pgno==1);
3671     PAGER_INCR(pPager->nHit);
3672     if( !noContent ){
3673       rc = pager_get_content(pPg);
3674       if( rc ){
3675         return rc;
3676       }
3677     }
3678     page_ref(pPg);
3679   }
3680   *ppPage = pPg;
3681   return SQLITE_OK;
3682 }
3683 int sqlite3PagerAcquire(
3684   Pager *pPager,      /* The pager open on the database file */
3685   Pgno pgno,          /* Page number to fetch */
3686   DbPage **ppPage,    /* Write a pointer to the page here */
3687   int noContent       /* Do not bother reading content from disk if true */
3688 ){
3689   int rc;
3690   pagerEnter(pPager);
3691   rc = pagerAcquire(pPager, pgno, ppPage, noContent);
3692   pagerLeave(pPager);
3693   return rc;
3694 }
3695 
3696 
3697 /*
3698 ** Acquire a page if it is already in the in-memory cache.  Do
3699 ** not read the page from disk.  Return a pointer to the page,
3700 ** or 0 if the page is not in cache.
3701 **
3702 ** See also sqlite3PagerGet().  The difference between this routine
3703 ** and sqlite3PagerGet() is that _get() will go to the disk and read
3704 ** in the page if the page is not already in cache.  This routine
3705 ** returns NULL if the page is not in cache or if a disk I/O error
3706 ** has ever happened.
3707 */
3708 DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){
3709   PgHdr *pPg = 0;
3710 
3711   assert( pPager!=0 );
3712   assert( pgno!=0 );
3713 
3714   pagerEnter(pPager);
3715   if( pPager->state==PAGER_UNLOCK ){
3716     assert( !pPager->pAll || pPager->exclusiveMode );
3717   }else if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
3718     /* Do nothing */
3719   }else if( (pPg = pager_lookup(pPager, pgno))!=0 ){
3720     page_ref(pPg);
3721   }
3722   pagerLeave(pPager);
3723   return pPg;
3724 }
3725 
3726 /*
3727 ** Release a page.
3728 **
3729 ** If the number of references to the page drop to zero, then the
3730 ** page is added to the LRU list.  When all references to all pages
3731 ** are released, a rollback occurs and the lock on the database is
3732 ** removed.
3733 */
3734 int sqlite3PagerUnref(DbPage *pPg){
3735   Pager *pPager = pPg->pPager;
3736 
3737   /* Decrement the reference count for this page
3738   */
3739   assert( pPg->nRef>0 );
3740   pagerEnter(pPg->pPager);
3741   pPg->nRef--;
3742   REFINFO(pPg);
3743 
3744   CHECK_PAGE(pPg);
3745 
3746   /* When the number of references to a page reach 0, call the
3747   ** destructor and add the page to the freelist.
3748   */
3749   if( pPg->nRef==0 ){
3750 
3751     lruListAdd(pPg);
3752     if( pPager->xDestructor ){
3753       pPager->xDestructor(pPg, pPager->pageSize);
3754     }
3755 
3756     /* When all pages reach the freelist, drop the read lock from
3757     ** the database file.
3758     */
3759     pPager->nRef--;
3760     assert( pPager->nRef>=0 );
3761     if( pPager->nRef==0 && (!pPager->exclusiveMode || pPager->journalOff>0) ){
3762       pagerUnlockAndRollback(pPager);
3763     }
3764   }
3765   pagerLeave(pPager);
3766   return SQLITE_OK;
3767 }
3768 
3769 /*
3770 ** Create a journal file for pPager.  There should already be a RESERVED
3771 ** or EXCLUSIVE lock on the database file when this routine is called.
3772 **
3773 ** Return SQLITE_OK if everything.  Return an error code and release the
3774 ** write lock if anything goes wrong.
3775 */
3776 static int pager_open_journal(Pager *pPager){
3777   sqlite3_vfs *pVfs = pPager->pVfs;
3778   int flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_CREATE);
3779 
3780   int rc;
3781   assert( !MEMDB );
3782   assert( pPager->state>=PAGER_RESERVED );
3783   assert( pPager->journalOpen==0 );
3784   assert( pPager->useJournal );
3785   assert( pPager->aInJournal==0 );
3786   sqlite3PagerPagecount(pPager);
3787   pagerLeave(pPager);
3788   pPager->aInJournal = sqlite3MallocZero( pPager->dbSize/8 + 1 );
3789   pagerEnter(pPager);
3790   if( pPager->aInJournal==0 ){
3791     rc = SQLITE_NOMEM;
3792     goto failed_to_open_journal;
3793   }
3794 
3795   if( pPager->tempFile ){
3796     flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL);
3797   }else{
3798     flags |= (SQLITE_OPEN_MAIN_JOURNAL);
3799   }
3800 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
3801   rc = sqlite3JournalOpen(
3802       pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager)
3803   );
3804 #else
3805   rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0);
3806 #endif
3807   assert( rc!=SQLITE_OK || pPager->jfd->pMethods );
3808   pPager->journalOff = 0;
3809   pPager->setMaster = 0;
3810   pPager->journalHdr = 0;
3811   if( rc!=SQLITE_OK ){
3812     if( rc==SQLITE_NOMEM ){
3813       sqlite3OsDelete(pVfs, pPager->zJournal, 0);
3814     }
3815     goto failed_to_open_journal;
3816   }
3817   pPager->journalOpen = 1;
3818   pPager->journalStarted = 0;
3819   pPager->needSync = 0;
3820   pPager->alwaysRollback = 0;
3821   pPager->nRec = 0;
3822   if( pPager->errCode ){
3823     rc = pPager->errCode;
3824     goto failed_to_open_journal;
3825   }
3826   pPager->origDbSize = pPager->dbSize;
3827 
3828   rc = writeJournalHdr(pPager);
3829 
3830   if( pPager->stmtAutoopen && rc==SQLITE_OK ){
3831     rc = sqlite3PagerStmtBegin(pPager);
3832   }
3833   if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && rc!=SQLITE_IOERR_NOMEM ){
3834     rc = pager_end_transaction(pPager);
3835     if( rc==SQLITE_OK ){
3836       rc = SQLITE_FULL;
3837     }
3838   }
3839   return rc;
3840 
3841 failed_to_open_journal:
3842   sqlite3_free(pPager->aInJournal);
3843   pPager->aInJournal = 0;
3844   return rc;
3845 }
3846 
3847 /*
3848 ** Acquire a write-lock on the database.  The lock is removed when
3849 ** the any of the following happen:
3850 **
3851 **   *  sqlite3PagerCommitPhaseTwo() is called.
3852 **   *  sqlite3PagerRollback() is called.
3853 **   *  sqlite3PagerClose() is called.
3854 **   *  sqlite3PagerUnref() is called to on every outstanding page.
3855 **
3856 ** The first parameter to this routine is a pointer to any open page of the
3857 ** database file.  Nothing changes about the page - it is used merely to
3858 ** acquire a pointer to the Pager structure and as proof that there is
3859 ** already a read-lock on the database.
3860 **
3861 ** The second parameter indicates how much space in bytes to reserve for a
3862 ** master journal file-name at the start of the journal when it is created.
3863 **
3864 ** A journal file is opened if this is not a temporary file.  For temporary
3865 ** files, the opening of the journal file is deferred until there is an
3866 ** actual need to write to the journal.
3867 **
3868 ** If the database is already reserved for writing, this routine is a no-op.
3869 **
3870 ** If exFlag is true, go ahead and get an EXCLUSIVE lock on the file
3871 ** immediately instead of waiting until we try to flush the cache.  The
3872 ** exFlag is ignored if a transaction is already active.
3873 */
3874 int sqlite3PagerBegin(DbPage *pPg, int exFlag){
3875   Pager *pPager = pPg->pPager;
3876   int rc = SQLITE_OK;
3877   pagerEnter(pPager);
3878   assert( pPg->nRef>0 );
3879   assert( pPager->state!=PAGER_UNLOCK );
3880   if( pPager->state==PAGER_SHARED ){
3881     assert( pPager->aInJournal==0 );
3882     if( MEMDB ){
3883       pPager->state = PAGER_EXCLUSIVE;
3884       pPager->origDbSize = pPager->dbSize;
3885     }else{
3886       rc = sqlite3OsLock(pPager->fd, RESERVED_LOCK);
3887       if( rc==SQLITE_OK ){
3888         pPager->state = PAGER_RESERVED;
3889         if( exFlag ){
3890           rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
3891         }
3892       }
3893       if( rc!=SQLITE_OK ){
3894         pagerLeave(pPager);
3895         return rc;
3896       }
3897       pPager->dirtyCache = 0;
3898       PAGERTRACE2("TRANSACTION %d\n", PAGERID(pPager));
3899       if( pPager->useJournal && !pPager->tempFile ){
3900         rc = pager_open_journal(pPager);
3901       }
3902     }
3903   }else if( pPager->journalOpen && pPager->journalOff==0 ){
3904     /* This happens when the pager was in exclusive-access mode last
3905     ** time a (read or write) transaction was successfully concluded
3906     ** by this connection. Instead of deleting the journal file it was
3907     ** kept open and truncated to 0 bytes.
3908     */
3909     assert( pPager->nRec==0 );
3910     assert( pPager->origDbSize==0 );
3911     assert( pPager->aInJournal==0 );
3912     sqlite3PagerPagecount(pPager);
3913     pagerLeave(pPager);
3914     pPager->aInJournal = sqlite3MallocZero( pPager->dbSize/8 + 1 );
3915     pagerEnter(pPager);
3916     if( !pPager->aInJournal ){
3917       rc = SQLITE_NOMEM;
3918     }else{
3919       pPager->origDbSize = pPager->dbSize;
3920       rc = writeJournalHdr(pPager);
3921     }
3922   }
3923   assert( !pPager->journalOpen || pPager->journalOff>0 || rc!=SQLITE_OK );
3924   pagerLeave(pPager);
3925   return rc;
3926 }
3927 
3928 /*
3929 ** Make a page dirty.  Set its dirty flag and add it to the dirty
3930 ** page list.
3931 */
3932 static void makeDirty(PgHdr *pPg){
3933   if( pPg->dirty==0 ){
3934     Pager *pPager = pPg->pPager;
3935     pPg->dirty = 1;
3936     pPg->pDirty = pPager->pDirty;
3937     if( pPager->pDirty ){
3938       pPager->pDirty->pPrevDirty = pPg;
3939     }
3940     pPg->pPrevDirty = 0;
3941     pPager->pDirty = pPg;
3942   }
3943 }
3944 
3945 /*
3946 ** Make a page clean.  Clear its dirty bit and remove it from the
3947 ** dirty page list.
3948 */
3949 static void makeClean(PgHdr *pPg){
3950   if( pPg->dirty ){
3951     pPg->dirty = 0;
3952     if( pPg->pDirty ){
3953       assert( pPg->pDirty->pPrevDirty==pPg );
3954       pPg->pDirty->pPrevDirty = pPg->pPrevDirty;
3955     }
3956     if( pPg->pPrevDirty ){
3957       assert( pPg->pPrevDirty->pDirty==pPg );
3958       pPg->pPrevDirty->pDirty = pPg->pDirty;
3959     }else{
3960       assert( pPg->pPager->pDirty==pPg );
3961       pPg->pPager->pDirty = pPg->pDirty;
3962     }
3963   }
3964 }
3965 
3966 
3967 /*
3968 ** Mark a data page as writeable.  The page is written into the journal
3969 ** if it is not there already.  This routine must be called before making
3970 ** changes to a page.
3971 **
3972 ** The first time this routine is called, the pager creates a new
3973 ** journal and acquires a RESERVED lock on the database.  If the RESERVED
3974 ** lock could not be acquired, this routine returns SQLITE_BUSY.  The
3975 ** calling routine must check for that return value and be careful not to
3976 ** change any page data until this routine returns SQLITE_OK.
3977 **
3978 ** If the journal file could not be written because the disk is full,
3979 ** then this routine returns SQLITE_FULL and does an immediate rollback.
3980 ** All subsequent write attempts also return SQLITE_FULL until there
3981 ** is a call to sqlite3PagerCommit() or sqlite3PagerRollback() to
3982 ** reset.
3983 */
3984 static int pager_write(PgHdr *pPg){
3985   void *pData = PGHDR_TO_DATA(pPg);
3986   Pager *pPager = pPg->pPager;
3987   int rc = SQLITE_OK;
3988 
3989   /* Check for errors
3990   */
3991   if( pPager->errCode ){
3992     return pPager->errCode;
3993   }
3994   if( pPager->readOnly ){
3995     return SQLITE_PERM;
3996   }
3997 
3998   assert( !pPager->setMaster );
3999 
4000   CHECK_PAGE(pPg);
4001 
4002   /* If this page was previously acquired with noContent==1, that means
4003   ** we didn't really read in the content of the page.  This can happen
4004   ** (for example) when the page is being moved to the freelist.  But
4005   ** now we are (perhaps) moving the page off of the freelist for
4006   ** reuse and we need to know its original content so that content
4007   ** can be stored in the rollback journal.  So do the read at this
4008   ** time.
4009   */
4010   rc = pager_get_content(pPg);
4011   if( rc ){
4012     return rc;
4013   }
4014 
4015   /* Mark the page as dirty.  If the page has already been written
4016   ** to the journal then we can return right away.
4017   */
4018   makeDirty(pPg);
4019   if( pPg->inJournal && (pageInStatement(pPg) || pPager->stmtInUse==0) ){
4020     pPager->dirtyCache = 1;
4021   }else{
4022 
4023     /* If we get this far, it means that the page needs to be
4024     ** written to the transaction journal or the ckeckpoint journal
4025     ** or both.
4026     **
4027     ** First check to see that the transaction journal exists and
4028     ** create it if it does not.
4029     */
4030     assert( pPager->state!=PAGER_UNLOCK );
4031     rc = sqlite3PagerBegin(pPg, 0);
4032     if( rc!=SQLITE_OK ){
4033       return rc;
4034     }
4035     assert( pPager->state>=PAGER_RESERVED );
4036     if( !pPager->journalOpen && pPager->useJournal ){
4037       rc = pager_open_journal(pPager);
4038       if( rc!=SQLITE_OK ) return rc;
4039     }
4040     assert( pPager->journalOpen || !pPager->useJournal );
4041     pPager->dirtyCache = 1;
4042 
4043     /* The transaction journal now exists and we have a RESERVED or an
4044     ** EXCLUSIVE lock on the main database file.  Write the current page to
4045     ** the transaction journal if it is not there already.
4046     */
4047     if( !pPg->inJournal && (pPager->useJournal || MEMDB) ){
4048       if( (int)pPg->pgno <= pPager->origDbSize ){
4049         if( MEMDB ){
4050           PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
4051           PAGERTRACE3("JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
4052           assert( pHist->pOrig==0 );
4053           pHist->pOrig = sqlite3_malloc( pPager->pageSize );
4054           if( !pHist->pOrig ){
4055             return SQLITE_NOMEM;
4056           }
4057           memcpy(pHist->pOrig, PGHDR_TO_DATA(pPg), pPager->pageSize);
4058         }else{
4059           u32 cksum;
4060           char *pData2;
4061 
4062           /* We should never write to the journal file the page that
4063           ** contains the database locks.  The following assert verifies
4064           ** that we do not. */
4065           assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) );
4066           pData2 = CODEC2(pPager, pData, pPg->pgno, 7);
4067           cksum = pager_cksum(pPager, (u8*)pData2);
4068           rc = write32bits(pPager->jfd, pPager->journalOff, pPg->pgno);
4069           if( rc==SQLITE_OK ){
4070             rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize,
4071                                 pPager->journalOff + 4);
4072             pPager->journalOff += pPager->pageSize+4;
4073           }
4074           if( rc==SQLITE_OK ){
4075             rc = write32bits(pPager->jfd, pPager->journalOff, cksum);
4076             pPager->journalOff += 4;
4077           }
4078           IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno,
4079                    pPager->journalOff, pPager->pageSize));
4080           PAGER_INCR(sqlite3_pager_writej_count);
4081           PAGERTRACE5("JOURNAL %d page %d needSync=%d hash(%08x)\n",
4082                PAGERID(pPager), pPg->pgno, pPg->needSync, pager_pagehash(pPg));
4083 
4084           /* An error has occured writing to the journal file. The
4085           ** transaction will be rolled back by the layer above.
4086           */
4087           if( rc!=SQLITE_OK ){
4088             return rc;
4089           }
4090 
4091           pPager->nRec++;
4092           assert( pPager->aInJournal!=0 );
4093           pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
4094           pPg->needSync = !pPager->noSync;
4095           if( pPager->stmtInUse ){
4096             pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
4097           }
4098         }
4099       }else{
4100         pPg->needSync = !pPager->journalStarted && !pPager->noSync;
4101         PAGERTRACE4("APPEND %d page %d needSync=%d\n",
4102                 PAGERID(pPager), pPg->pgno, pPg->needSync);
4103       }
4104       if( pPg->needSync ){
4105         pPager->needSync = 1;
4106       }
4107       pPg->inJournal = 1;
4108     }
4109 
4110     /* If the statement journal is open and the page is not in it,
4111     ** then write the current page to the statement journal.  Note that
4112     ** the statement journal format differs from the standard journal format
4113     ** in that it omits the checksums and the header.
4114     */
4115     if( pPager->stmtInUse
4116      && !pageInStatement(pPg)
4117      && (int)pPg->pgno<=pPager->stmtSize
4118     ){
4119       assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
4120       if( MEMDB ){
4121         PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
4122         assert( pHist->pStmt==0 );
4123         pHist->pStmt = sqlite3_malloc( pPager->pageSize );
4124         if( pHist->pStmt ){
4125           memcpy(pHist->pStmt, PGHDR_TO_DATA(pPg), pPager->pageSize);
4126         }
4127         PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
4128         page_add_to_stmt_list(pPg);
4129       }else{
4130         i64 offset = pPager->stmtNRec*(4+pPager->pageSize);
4131         char *pData2 = CODEC2(pPager, pData, pPg->pgno, 7);
4132         rc = write32bits(pPager->stfd, offset, pPg->pgno);
4133         if( rc==SQLITE_OK ){
4134           rc = sqlite3OsWrite(pPager->stfd, pData2, pPager->pageSize, offset+4);
4135         }
4136         PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno);
4137         if( rc!=SQLITE_OK ){
4138           return rc;
4139         }
4140         pPager->stmtNRec++;
4141         assert( pPager->aInStmt!=0 );
4142         pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
4143       }
4144     }
4145   }
4146 
4147   /* Update the database size and return.
4148   */
4149   assert( pPager->state>=PAGER_SHARED );
4150   if( pPager->dbSize<(int)pPg->pgno ){
4151     pPager->dbSize = pPg->pgno;
4152     if( !MEMDB && pPager->dbSize==PENDING_BYTE/pPager->pageSize ){
4153       pPager->dbSize++;
4154     }
4155   }
4156   return rc;
4157 }
4158 
4159 /*
4160 ** This function is used to mark a data-page as writable. It uses
4161 ** pager_write() to open a journal file (if it is not already open)
4162 ** and write the page *pData to the journal.
4163 **
4164 ** The difference between this function and pager_write() is that this
4165 ** function also deals with the special case where 2 or more pages
4166 ** fit on a single disk sector. In this case all co-resident pages
4167 ** must have been written to the journal file before returning.
4168 */
4169 int sqlite3PagerWrite(DbPage *pDbPage){
4170   int rc = SQLITE_OK;
4171 
4172   PgHdr *pPg = pDbPage;
4173   Pager *pPager = pPg->pPager;
4174   Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize);
4175 
4176   pagerEnter(pPager);
4177   if( !MEMDB && nPagePerSector>1 ){
4178     Pgno nPageCount;          /* Total number of pages in database file */
4179     Pgno pg1;                 /* First page of the sector pPg is located on. */
4180     int nPage;                /* Number of pages starting at pg1 to journal */
4181     int ii;
4182     int needSync = 0;
4183 
4184     /* Set the doNotSync flag to 1. This is because we cannot allow a journal
4185     ** header to be written between the pages journaled by this function.
4186     */
4187     assert( pPager->doNotSync==0 );
4188     pPager->doNotSync = 1;
4189 
4190     /* This trick assumes that both the page-size and sector-size are
4191     ** an integer power of 2. It sets variable pg1 to the identifier
4192     ** of the first page of the sector pPg is located on.
4193     */
4194     pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1;
4195 
4196     nPageCount = sqlite3PagerPagecount(pPager);
4197     if( pPg->pgno>nPageCount ){
4198       nPage = (pPg->pgno - pg1)+1;
4199     }else if( (pg1+nPagePerSector-1)>nPageCount ){
4200       nPage = nPageCount+1-pg1;
4201     }else{
4202       nPage = nPagePerSector;
4203     }
4204     assert(nPage>0);
4205     assert(pg1<=pPg->pgno);
4206     assert((pg1+nPage)>pPg->pgno);
4207 
4208     for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){
4209       Pgno pg = pg1+ii;
4210       PgHdr *pPage;
4211       if( !pPager->aInJournal || pg==pPg->pgno ||
4212           pg>pPager->origDbSize || !(pPager->aInJournal[pg/8]&(1<<(pg&7)))
4213       ) {
4214         if( pg!=PAGER_MJ_PGNO(pPager) ){
4215           rc = sqlite3PagerGet(pPager, pg, &pPage);
4216           if( rc==SQLITE_OK ){
4217             rc = pager_write(pPage);
4218             if( pPage->needSync ){
4219               needSync = 1;
4220             }
4221             sqlite3PagerUnref(pPage);
4222           }
4223         }
4224       }else if( (pPage = pager_lookup(pPager, pg)) ){
4225         if( pPage->needSync ){
4226           needSync = 1;
4227         }
4228       }
4229     }
4230 
4231     /* If the PgHdr.needSync flag is set for any of the nPage pages
4232     ** starting at pg1, then it needs to be set for all of them. Because
4233     ** writing to any of these nPage pages may damage the others, the
4234     ** journal file must contain sync()ed copies of all of them
4235     ** before any of them can be written out to the database file.
4236     */
4237     if( needSync ){
4238       for(ii=0; ii<nPage && needSync; ii++){
4239         PgHdr *pPage = pager_lookup(pPager, pg1+ii);
4240         if( pPage ) pPage->needSync = 1;
4241       }
4242       assert(pPager->needSync);
4243     }
4244 
4245     assert( pPager->doNotSync==1 );
4246     pPager->doNotSync = 0;
4247   }else{
4248     rc = pager_write(pDbPage);
4249   }
4250   pagerLeave(pPager);
4251   return rc;
4252 }
4253 
4254 /*
4255 ** Return TRUE if the page given in the argument was previously passed
4256 ** to sqlite3PagerWrite().  In other words, return TRUE if it is ok
4257 ** to change the content of the page.
4258 */
4259 #ifndef NDEBUG
4260 int sqlite3PagerIswriteable(DbPage *pPg){
4261   return pPg->dirty;
4262 }
4263 #endif
4264 
4265 #ifndef SQLITE_OMIT_VACUUM
4266 /*
4267 ** Replace the content of a single page with the information in the third
4268 ** argument.
4269 */
4270 int sqlite3PagerOverwrite(Pager *pPager, Pgno pgno, void *pData){
4271   PgHdr *pPg;
4272   int rc;
4273 
4274   pagerEnter(pPager);
4275   rc = sqlite3PagerGet(pPager, pgno, &pPg);
4276   if( rc==SQLITE_OK ){
4277     rc = sqlite3PagerWrite(pPg);
4278     if( rc==SQLITE_OK ){
4279       memcpy(sqlite3PagerGetData(pPg), pData, pPager->pageSize);
4280     }
4281     sqlite3PagerUnref(pPg);
4282   }
4283   pagerLeave(pPager);
4284   return rc;
4285 }
4286 #endif
4287 
4288 /*
4289 ** A call to this routine tells the pager that it is not necessary to
4290 ** write the information on page pPg back to the disk, even though
4291 ** that page might be marked as dirty.
4292 **
4293 ** The overlying software layer calls this routine when all of the data
4294 ** on the given page is unused.  The pager marks the page as clean so
4295 ** that it does not get written to disk.
4296 **
4297 ** Tests show that this optimization, together with the
4298 ** sqlite3PagerDontRollback() below, more than double the speed
4299 ** of large INSERT operations and quadruple the speed of large DELETEs.
4300 **
4301 ** When this routine is called, set the alwaysRollback flag to true.
4302 ** Subsequent calls to sqlite3PagerDontRollback() for the same page
4303 ** will thereafter be ignored.  This is necessary to avoid a problem
4304 ** where a page with data is added to the freelist during one part of
4305 ** a transaction then removed from the freelist during a later part
4306 ** of the same transaction and reused for some other purpose.  When it
4307 ** is first added to the freelist, this routine is called.  When reused,
4308 ** the sqlite3PagerDontRollback() routine is called.  But because the
4309 ** page contains critical data, we still need to be sure it gets
4310 ** rolled back in spite of the sqlite3PagerDontRollback() call.
4311 */
4312 void sqlite3PagerDontWrite(DbPage *pDbPage){
4313   PgHdr *pPg = pDbPage;
4314   Pager *pPager = pPg->pPager;
4315 
4316   if( MEMDB ) return;
4317   pagerEnter(pPager);
4318   pPg->alwaysRollback = 1;
4319   if( pPg->dirty && !pPager->stmtInUse ){
4320     assert( pPager->state>=PAGER_SHARED );
4321     if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){
4322       /* If this pages is the last page in the file and the file has grown
4323       ** during the current transaction, then do NOT mark the page as clean.
4324       ** When the database file grows, we must make sure that the last page
4325       ** gets written at least once so that the disk file will be the correct
4326       ** size. If you do not write this page and the size of the file
4327       ** on the disk ends up being too small, that can lead to database
4328       ** corruption during the next transaction.
4329       */
4330     }else{
4331       PAGERTRACE3("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager));
4332       IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno))
4333       makeClean(pPg);
4334 #ifdef SQLITE_CHECK_PAGES
4335       pPg->pageHash = pager_pagehash(pPg);
4336 #endif
4337     }
4338   }
4339   pagerLeave(pPager);
4340 }
4341 
4342 /*
4343 ** A call to this routine tells the pager that if a rollback occurs,
4344 ** it is not necessary to restore the data on the given page.  This
4345 ** means that the pager does not have to record the given page in the
4346 ** rollback journal.
4347 **
4348 ** If we have not yet actually read the content of this page (if
4349 ** the PgHdr.needRead flag is set) then this routine acts as a promise
4350 ** that we will never need to read the page content in the future.
4351 ** so the needRead flag can be cleared at this point.
4352 */
4353 void sqlite3PagerDontRollback(DbPage *pPg){
4354   Pager *pPager = pPg->pPager;
4355 
4356   pagerEnter(pPager);
4357   assert( pPager->state>=PAGER_RESERVED );
4358   if( pPager->journalOpen==0 ) return;
4359   if( pPg->alwaysRollback || pPager->alwaysRollback || MEMDB ) return;
4360   if( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ){
4361     assert( pPager->aInJournal!=0 );
4362     pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
4363     pPg->inJournal = 1;
4364     pPg->needRead = 0;
4365     if( pPager->stmtInUse ){
4366       pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
4367     }
4368     PAGERTRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, PAGERID(pPager));
4369     IOTRACE(("GARBAGE %p %d\n", pPager, pPg->pgno))
4370   }
4371   if( pPager->stmtInUse
4372    && !pageInStatement(pPg)
4373    && (int)pPg->pgno<=pPager->stmtSize
4374   ){
4375     assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
4376     assert( pPager->aInStmt!=0 );
4377     pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
4378   }
4379   pagerLeave(pPager);
4380 }
4381 
4382 
4383 /*
4384 ** This routine is called to increment the database file change-counter,
4385 ** stored at byte 24 of the pager file.
4386 */
4387 static int pager_incr_changecounter(Pager *pPager, int isDirect){
4388   PgHdr *pPgHdr;
4389   u32 change_counter;
4390   int rc = SQLITE_OK;
4391 
4392   if( !pPager->changeCountDone ){
4393     /* Open page 1 of the file for writing. */
4394     rc = sqlite3PagerGet(pPager, 1, &pPgHdr);
4395     if( rc!=SQLITE_OK ) return rc;
4396 
4397     if( !isDirect ){
4398       rc = sqlite3PagerWrite(pPgHdr);
4399       if( rc!=SQLITE_OK ){
4400         sqlite3PagerUnref(pPgHdr);
4401         return rc;
4402       }
4403     }
4404 
4405     /* Increment the value just read and write it back to byte 24. */
4406     change_counter = sqlite3Get4byte((u8*)pPager->dbFileVers);
4407     change_counter++;
4408     put32bits(((char*)PGHDR_TO_DATA(pPgHdr))+24, change_counter);
4409 
4410     if( isDirect && pPager->fd->pMethods ){
4411       const void *zBuf = PGHDR_TO_DATA(pPgHdr);
4412       rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0);
4413     }
4414 
4415     /* Release the page reference. */
4416     sqlite3PagerUnref(pPgHdr);
4417     pPager->changeCountDone = 1;
4418   }
4419   return rc;
4420 }
4421 
4422 /*
4423 ** Sync the database file for the pager pPager. zMaster points to the name
4424 ** of a master journal file that should be written into the individual
4425 ** journal file. zMaster may be NULL, which is interpreted as no master
4426 ** journal (a single database transaction).
4427 **
4428 ** This routine ensures that the journal is synced, all dirty pages written
4429 ** to the database file and the database file synced. The only thing that
4430 ** remains to commit the transaction is to delete the journal file (or
4431 ** master journal file if specified).
4432 **
4433 ** Note that if zMaster==NULL, this does not overwrite a previous value
4434 ** passed to an sqlite3PagerCommitPhaseOne() call.
4435 **
4436 ** If parameter nTrunc is non-zero, then the pager file is truncated to
4437 ** nTrunc pages (this is used by auto-vacuum databases).
4438 */
4439 int sqlite3PagerCommitPhaseOne(Pager *pPager, const char *zMaster, Pgno nTrunc){
4440   int rc = SQLITE_OK;
4441 
4442   PAGERTRACE4("DATABASE SYNC: File=%s zMaster=%s nTrunc=%d\n",
4443       pPager->zFilename, zMaster, nTrunc);
4444   pagerEnter(pPager);
4445 
4446   /* If this is an in-memory db, or no pages have been written to, or this
4447   ** function has already been called, it is a no-op.
4448   */
4449   if( pPager->state!=PAGER_SYNCED && !MEMDB && pPager->dirtyCache ){
4450     PgHdr *pPg;
4451 
4452 #ifdef SQLITE_ENABLE_ATOMIC_WRITE
4453     /* The atomic-write optimization can be used if all of the
4454     ** following are true:
4455     **
4456     **    + The file-system supports the atomic-write property for
4457     **      blocks of size page-size, and
4458     **    + This commit is not part of a multi-file transaction, and
4459     **    + Exactly one page has been modified and store in the journal file.
4460     **
4461     ** If the optimization can be used, then the journal file will never
4462     ** be created for this transaction.
4463     */
4464     int useAtomicWrite = (
4465         !zMaster &&
4466         pPager->journalOff==jrnlBufferSize(pPager) &&
4467         nTrunc==0 &&
4468         (0==pPager->pDirty || 0==pPager->pDirty->pDirty)
4469     );
4470     if( useAtomicWrite ){
4471       /* Update the nRec field in the journal file. */
4472       int offset = pPager->journalHdr + sizeof(aJournalMagic);
4473       assert(pPager->nRec==1);
4474       rc = write32bits(pPager->jfd, offset, pPager->nRec);
4475 
4476       /* Update the db file change counter. The following call will modify
4477       ** the in-memory representation of page 1 to include the updated
4478       ** change counter and then write page 1 directly to the database
4479       ** file. Because of the atomic-write property of the host file-system,
4480       ** this is safe.
4481       */
4482       if( rc==SQLITE_OK ){
4483         rc = pager_incr_changecounter(pPager, 1);
4484       }
4485     }else{
4486       rc = sqlite3JournalCreate(pPager->jfd);
4487     }
4488 
4489     if( !useAtomicWrite && rc==SQLITE_OK )
4490 #endif
4491 
4492     /* If a master journal file name has already been written to the
4493     ** journal file, then no sync is required. This happens when it is
4494     ** written, then the process fails to upgrade from a RESERVED to an
4495     ** EXCLUSIVE lock. The next time the process tries to commit the
4496     ** transaction the m-j name will have already been written.
4497     */
4498     if( !pPager->setMaster ){
4499       assert( pPager->journalOpen );
4500       rc = pager_incr_changecounter(pPager, 0);
4501       if( rc!=SQLITE_OK ) goto sync_exit;
4502 #ifndef SQLITE_OMIT_AUTOVACUUM
4503       if( nTrunc!=0 ){
4504         /* If this transaction has made the database smaller, then all pages
4505         ** being discarded by the truncation must be written to the journal
4506         ** file.
4507         */
4508         Pgno i;
4509         int iSkip = PAGER_MJ_PGNO(pPager);
4510         for( i=nTrunc+1; i<=pPager->origDbSize; i++ ){
4511           if( !(pPager->aInJournal[i/8] & (1<<(i&7))) && i!=iSkip ){
4512             rc = sqlite3PagerGet(pPager, i, &pPg);
4513             if( rc!=SQLITE_OK ) goto sync_exit;
4514             rc = sqlite3PagerWrite(pPg);
4515             sqlite3PagerUnref(pPg);
4516             if( rc!=SQLITE_OK ) goto sync_exit;
4517           }
4518         }
4519       }
4520 #endif
4521       rc = writeMasterJournal(pPager, zMaster);
4522       if( rc!=SQLITE_OK ) goto sync_exit;
4523       rc = syncJournal(pPager);
4524     }
4525     if( rc!=SQLITE_OK ) goto sync_exit;
4526 
4527 #ifndef SQLITE_OMIT_AUTOVACUUM
4528     if( nTrunc!=0 ){
4529       rc = sqlite3PagerTruncate(pPager, nTrunc);
4530       if( rc!=SQLITE_OK ) goto sync_exit;
4531     }
4532 #endif
4533 
4534     /* Write all dirty pages to the database file */
4535     pPg = pager_get_all_dirty_pages(pPager);
4536     rc = pager_write_pagelist(pPg);
4537     if( rc!=SQLITE_OK ){
4538       while( pPg && !pPg->dirty ){ pPg = pPg->pDirty; }
4539       pPager->pDirty = pPg;
4540       goto sync_exit;
4541     }
4542     pPager->pDirty = 0;
4543 
4544     /* Sync the database file. */
4545     if( !pPager->noSync ){
4546       rc = sqlite3OsSync(pPager->fd, pPager->sync_flags);
4547     }
4548     IOTRACE(("DBSYNC %p\n", pPager))
4549 
4550     pPager->state = PAGER_SYNCED;
4551   }else if( MEMDB && nTrunc!=0 ){
4552     rc = sqlite3PagerTruncate(pPager, nTrunc);
4553   }
4554 
4555 sync_exit:
4556   if( rc==SQLITE_IOERR_BLOCKED ){
4557     /* pager_incr_changecounter() may attempt to obtain an exclusive
4558      * lock to spill the cache and return IOERR_BLOCKED. But since
4559      * there is no chance the cache is inconsistent, it's
4560      * better to return SQLITE_BUSY.
4561      */
4562     rc = SQLITE_BUSY;
4563   }
4564   pagerLeave(pPager);
4565   return rc;
4566 }
4567 
4568 
4569 /*
4570 ** Commit all changes to the database and release the write lock.
4571 **
4572 ** If the commit fails for any reason, a rollback attempt is made
4573 ** and an error code is returned.  If the commit worked, SQLITE_OK
4574 ** is returned.
4575 */
4576 int sqlite3PagerCommitPhaseTwo(Pager *pPager){
4577   int rc;
4578   PgHdr *pPg;
4579 
4580   if( pPager->errCode ){
4581     return pPager->errCode;
4582   }
4583   if( pPager->state<PAGER_RESERVED ){
4584     return SQLITE_ERROR;
4585   }
4586   pagerEnter(pPager);
4587   PAGERTRACE2("COMMIT %d\n", PAGERID(pPager));
4588   if( MEMDB ){
4589     pPg = pager_get_all_dirty_pages(pPager);
4590     while( pPg ){
4591       PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
4592       clearHistory(pHist);
4593       pPg->dirty = 0;
4594       pPg->inJournal = 0;
4595       pHist->inStmt = 0;
4596       pPg->needSync = 0;
4597       pHist->pPrevStmt = pHist->pNextStmt = 0;
4598       pPg = pPg->pDirty;
4599     }
4600     pPager->pDirty = 0;
4601 #ifndef NDEBUG
4602     for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
4603       PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
4604       assert( !pPg->alwaysRollback );
4605       assert( !pHist->pOrig );
4606       assert( !pHist->pStmt );
4607     }
4608 #endif
4609     pPager->pStmt = 0;
4610     pPager->state = PAGER_SHARED;
4611     return SQLITE_OK;
4612   }
4613   assert( pPager->journalOpen || !pPager->dirtyCache );
4614   assert( pPager->state==PAGER_SYNCED || !pPager->dirtyCache );
4615   rc = pager_end_transaction(pPager);
4616   rc = pager_error(pPager, rc);
4617   pagerLeave(pPager);
4618   return rc;
4619 }
4620 
4621 /*
4622 ** Rollback all changes.  The database falls back to PAGER_SHARED mode.
4623 ** All in-memory cache pages revert to their original data contents.
4624 ** The journal is deleted.
4625 **
4626 ** This routine cannot fail unless some other process is not following
4627 ** the correct locking protocol or unless some other
4628 ** process is writing trash into the journal file (SQLITE_CORRUPT) or
4629 ** unless a prior malloc() failed (SQLITE_NOMEM).  Appropriate error
4630 ** codes are returned for all these occasions.  Otherwise,
4631 ** SQLITE_OK is returned.
4632 */
4633 int sqlite3PagerRollback(Pager *pPager){
4634   int rc;
4635   PAGERTRACE2("ROLLBACK %d\n", PAGERID(pPager));
4636   if( MEMDB ){
4637     PgHdr *p;
4638     for(p=pPager->pAll; p; p=p->pNextAll){
4639       PgHistory *pHist;
4640       assert( !p->alwaysRollback );
4641       if( !p->dirty ){
4642         assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pOrig );
4643         assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pStmt );
4644         continue;
4645       }
4646 
4647       pHist = PGHDR_TO_HIST(p, pPager);
4648       if( pHist->pOrig ){
4649         memcpy(PGHDR_TO_DATA(p), pHist->pOrig, pPager->pageSize);
4650         PAGERTRACE3("ROLLBACK-PAGE %d of %d\n", p->pgno, PAGERID(pPager));
4651       }else{
4652         PAGERTRACE3("PAGE %d is clean on %d\n", p->pgno, PAGERID(pPager));
4653       }
4654       clearHistory(pHist);
4655       p->dirty = 0;
4656       p->inJournal = 0;
4657       pHist->inStmt = 0;
4658       pHist->pPrevStmt = pHist->pNextStmt = 0;
4659       if( pPager->xReiniter ){
4660         pPager->xReiniter(p, pPager->pageSize);
4661       }
4662     }
4663     pPager->pDirty = 0;
4664     pPager->pStmt = 0;
4665     pPager->dbSize = pPager->origDbSize;
4666     pager_truncate_cache(pPager);
4667     pPager->stmtInUse = 0;
4668     pPager->state = PAGER_SHARED;
4669     return SQLITE_OK;
4670   }
4671 
4672   pagerEnter(pPager);
4673   if( !pPager->dirtyCache || !pPager->journalOpen ){
4674     rc = pager_end_transaction(pPager);
4675     pagerLeave(pPager);
4676     return rc;
4677   }
4678 
4679   if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){
4680     if( pPager->state>=PAGER_EXCLUSIVE ){
4681       pager_playback(pPager, 0);
4682     }
4683     pagerLeave(pPager);
4684     return pPager->errCode;
4685   }
4686   if( pPager->state==PAGER_RESERVED ){
4687     int rc2;
4688     rc = pager_playback(pPager, 0);
4689     rc2 = pager_end_transaction(pPager);
4690     if( rc==SQLITE_OK ){
4691       rc = rc2;
4692     }
4693   }else{
4694     rc = pager_playback(pPager, 0);
4695   }
4696   /* pager_reset(pPager); */
4697   pPager->dbSize = -1;
4698 
4699   /* If an error occurs during a ROLLBACK, we can no longer trust the pager
4700   ** cache. So call pager_error() on the way out to make any error
4701   ** persistent.
4702   */
4703   rc = pager_error(pPager, rc);
4704   pagerLeave(pPager);
4705   return rc;
4706 }
4707 
4708 /*
4709 ** Return TRUE if the database file is opened read-only.  Return FALSE
4710 ** if the database is (in theory) writable.
4711 */
4712 int sqlite3PagerIsreadonly(Pager *pPager){
4713   return pPager->readOnly;
4714 }
4715 
4716 /*
4717 ** Return the number of references to the pager.
4718 */
4719 int sqlite3PagerRefcount(Pager *pPager){
4720   return pPager->nRef;
4721 }
4722 
4723 #ifdef SQLITE_TEST
4724 /*
4725 ** This routine is used for testing and analysis only.
4726 */
4727 int *sqlite3PagerStats(Pager *pPager){
4728   static int a[11];
4729   a[0] = pPager->nRef;
4730   a[1] = pPager->nPage;
4731   a[2] = pPager->mxPage;
4732   a[3] = pPager->dbSize;
4733   a[4] = pPager->state;
4734   a[5] = pPager->errCode;
4735   a[6] = pPager->nHit;
4736   a[7] = pPager->nMiss;
4737   a[8] = 0;  /* Used to be pPager->nOvfl */
4738   a[9] = pPager->nRead;
4739   a[10] = pPager->nWrite;
4740   return a;
4741 }
4742 #endif
4743 
4744 /*
4745 ** Set the statement rollback point.
4746 **
4747 ** This routine should be called with the transaction journal already
4748 ** open.  A new statement journal is created that can be used to rollback
4749 ** changes of a single SQL command within a larger transaction.
4750 */
4751 static int pagerStmtBegin(Pager *pPager){
4752   int rc;
4753   assert( !pPager->stmtInUse );
4754   assert( pPager->state>=PAGER_SHARED );
4755   assert( pPager->dbSize>=0 );
4756   PAGERTRACE2("STMT-BEGIN %d\n", PAGERID(pPager));
4757   if( MEMDB ){
4758     pPager->stmtInUse = 1;
4759     pPager->stmtSize = pPager->dbSize;
4760     return SQLITE_OK;
4761   }
4762   if( !pPager->journalOpen ){
4763     pPager->stmtAutoopen = 1;
4764     return SQLITE_OK;
4765   }
4766   assert( pPager->journalOpen );
4767   pagerLeave(pPager);
4768   assert( pPager->aInStmt==0 );
4769   pPager->aInStmt = sqlite3MallocZero( pPager->dbSize/8 + 1 );
4770   pagerEnter(pPager);
4771   if( pPager->aInStmt==0 ){
4772     /* sqlite3OsLock(pPager->fd, SHARED_LOCK); */
4773     return SQLITE_NOMEM;
4774   }
4775 #ifndef NDEBUG
4776   rc = sqlite3OsFileSize(pPager->jfd, &pPager->stmtJSize);
4777   if( rc ) goto stmt_begin_failed;
4778   assert( pPager->stmtJSize == pPager->journalOff );
4779 #endif
4780   pPager->stmtJSize = pPager->journalOff;
4781   pPager->stmtSize = pPager->dbSize;
4782   pPager->stmtHdrOff = 0;
4783   pPager->stmtCksum = pPager->cksumInit;
4784   if( !pPager->stmtOpen ){
4785     rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->stfd, pPager->zStmtJrnl,
4786                               SQLITE_OPEN_SUBJOURNAL);
4787     if( rc ){
4788       goto stmt_begin_failed;
4789     }
4790     pPager->stmtOpen = 1;
4791     pPager->stmtNRec = 0;
4792   }
4793   pPager->stmtInUse = 1;
4794   return SQLITE_OK;
4795 
4796 stmt_begin_failed:
4797   if( pPager->aInStmt ){
4798     sqlite3_free(pPager->aInStmt);
4799     pPager->aInStmt = 0;
4800   }
4801   return rc;
4802 }
4803 int sqlite3PagerStmtBegin(Pager *pPager){
4804   int rc;
4805   pagerEnter(pPager);
4806   rc = pagerStmtBegin(pPager);
4807   pagerLeave(pPager);
4808   return rc;
4809 }
4810 
4811 /*
4812 ** Commit a statement.
4813 */
4814 int sqlite3PagerStmtCommit(Pager *pPager){
4815   pagerEnter(pPager);
4816   if( pPager->stmtInUse ){
4817     PgHdr *pPg, *pNext;
4818     PAGERTRACE2("STMT-COMMIT %d\n", PAGERID(pPager));
4819     if( !MEMDB ){
4820       /* sqlite3OsTruncate(pPager->stfd, 0); */
4821       sqlite3_free( pPager->aInStmt );
4822       pPager->aInStmt = 0;
4823     }else{
4824       for(pPg=pPager->pStmt; pPg; pPg=pNext){
4825         PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
4826         pNext = pHist->pNextStmt;
4827         assert( pHist->inStmt );
4828         pHist->inStmt = 0;
4829         pHist->pPrevStmt = pHist->pNextStmt = 0;
4830         sqlite3_free(pHist->pStmt);
4831         pHist->pStmt = 0;
4832       }
4833     }
4834     pPager->stmtNRec = 0;
4835     pPager->stmtInUse = 0;
4836     pPager->pStmt = 0;
4837   }
4838   pPager->stmtAutoopen = 0;
4839   pagerLeave(pPager);
4840   return SQLITE_OK;
4841 }
4842 
4843 /*
4844 ** Rollback a statement.
4845 */
4846 int sqlite3PagerStmtRollback(Pager *pPager){
4847   int rc;
4848   pagerEnter(pPager);
4849   if( pPager->stmtInUse ){
4850     PAGERTRACE2("STMT-ROLLBACK %d\n", PAGERID(pPager));
4851     if( MEMDB ){
4852       PgHdr *pPg;
4853       PgHistory *pHist;
4854       for(pPg=pPager->pStmt; pPg; pPg=pHist->pNextStmt){
4855         pHist = PGHDR_TO_HIST(pPg, pPager);
4856         if( pHist->pStmt ){
4857           memcpy(PGHDR_TO_DATA(pPg), pHist->pStmt, pPager->pageSize);
4858           sqlite3_free(pHist->pStmt);
4859           pHist->pStmt = 0;
4860         }
4861       }
4862       pPager->dbSize = pPager->stmtSize;
4863       pager_truncate_cache(pPager);
4864       rc = SQLITE_OK;
4865     }else{
4866       rc = pager_stmt_playback(pPager);
4867     }
4868     sqlite3PagerStmtCommit(pPager);
4869   }else{
4870     rc = SQLITE_OK;
4871   }
4872   pPager->stmtAutoopen = 0;
4873   pagerLeave(pPager);
4874   return rc;
4875 }
4876 
4877 /*
4878 ** Return the full pathname of the database file.
4879 */
4880 const char *sqlite3PagerFilename(Pager *pPager){
4881   return pPager->zFilename;
4882 }
4883 
4884 /*
4885 ** Return the VFS structure for the pager.
4886 */
4887 const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){
4888   return pPager->pVfs;
4889 }
4890 
4891 /*
4892 ** Return the file handle for the database file associated
4893 ** with the pager.  This might return NULL if the file has
4894 ** not yet been opened.
4895 */
4896 sqlite3_file *sqlite3PagerFile(Pager *pPager){
4897   return pPager->fd;
4898 }
4899 
4900 /*
4901 ** Return the directory of the database file.
4902 */
4903 const char *sqlite3PagerDirname(Pager *pPager){
4904   return pPager->zDirectory;
4905 }
4906 
4907 /*
4908 ** Return the full pathname of the journal file.
4909 */
4910 const char *sqlite3PagerJournalname(Pager *pPager){
4911   return pPager->zJournal;
4912 }
4913 
4914 /*
4915 ** Return true if fsync() calls are disabled for this pager.  Return FALSE
4916 ** if fsync()s are executed normally.
4917 */
4918 int sqlite3PagerNosync(Pager *pPager){
4919   return pPager->noSync;
4920 }
4921 
4922 #ifdef SQLITE_HAS_CODEC
4923 /*
4924 ** Set the codec for this pager
4925 */
4926 void sqlite3PagerSetCodec(
4927   Pager *pPager,
4928   void *(*xCodec)(void*,void*,Pgno,int),
4929   void *pCodecArg
4930 ){
4931   pPager->xCodec = xCodec;
4932   pPager->pCodecArg = pCodecArg;
4933 }
4934 #endif
4935 
4936 #ifndef SQLITE_OMIT_AUTOVACUUM
4937 /*
4938 ** Move the page pPg to location pgno in the file.
4939 **
4940 ** There must be no references to the page previously located at
4941 ** pgno (which we call pPgOld) though that page is allowed to be
4942 ** in cache.  If the page previous located at pgno is not already
4943 ** in the rollback journal, it is not put there by by this routine.
4944 **
4945 ** References to the page pPg remain valid. Updating any
4946 ** meta-data associated with pPg (i.e. data stored in the nExtra bytes
4947 ** allocated along with the page) is the responsibility of the caller.
4948 **
4949 ** A transaction must be active when this routine is called. It used to be
4950 ** required that a statement transaction was not active, but this restriction
4951 ** has been removed (CREATE INDEX needs to move a page when a statement
4952 ** transaction is active).
4953 */
4954 int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno){
4955   PgHdr *pPgOld;  /* The page being overwritten. */
4956   int h;
4957   Pgno needSyncPgno = 0;
4958 
4959   pagerEnter(pPager);
4960   assert( pPg->nRef>0 );
4961 
4962   PAGERTRACE5("MOVE %d page %d (needSync=%d) moves to %d\n",
4963       PAGERID(pPager), pPg->pgno, pPg->needSync, pgno);
4964   IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno))
4965 
4966   pager_get_content(pPg);
4967   if( pPg->needSync ){
4968     needSyncPgno = pPg->pgno;
4969     assert( pPg->inJournal || (int)pgno>pPager->origDbSize );
4970     assert( pPg->dirty );
4971     assert( pPager->needSync );
4972   }
4973 
4974   /* Unlink pPg from it's hash-chain */
4975   unlinkHashChain(pPager, pPg);
4976 
4977   /* If the cache contains a page with page-number pgno, remove it
4978   ** from it's hash chain. Also, if the PgHdr.needSync was set for
4979   ** page pgno before the 'move' operation, it needs to be retained
4980   ** for the page moved there.
4981   */
4982   pPg->needSync = 0;
4983   pPgOld = pager_lookup(pPager, pgno);
4984   if( pPgOld ){
4985     assert( pPgOld->nRef==0 );
4986     unlinkHashChain(pPager, pPgOld);
4987     makeClean(pPgOld);
4988     pPg->needSync = pPgOld->needSync;
4989   }else{
4990     pPg->needSync = 0;
4991   }
4992   if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){
4993     pPg->inJournal =  (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0;
4994   }else{
4995     pPg->inJournal = 0;
4996     assert( pPg->needSync==0 || (int)pgno>pPager->origDbSize );
4997   }
4998 
4999   /* Change the page number for pPg and insert it into the new hash-chain. */
5000   assert( pgno!=0 );
5001   pPg->pgno = pgno;
5002   h = pgno & (pPager->nHash-1);
5003   if( pPager->aHash[h] ){
5004     assert( pPager->aHash[h]->pPrevHash==0 );
5005     pPager->aHash[h]->pPrevHash = pPg;
5006   }
5007   pPg->pNextHash = pPager->aHash[h];
5008   pPager->aHash[h] = pPg;
5009   pPg->pPrevHash = 0;
5010 
5011   makeDirty(pPg);
5012   pPager->dirtyCache = 1;
5013 
5014   if( needSyncPgno ){
5015     /* If needSyncPgno is non-zero, then the journal file needs to be
5016     ** sync()ed before any data is written to database file page needSyncPgno.
5017     ** Currently, no such page exists in the page-cache and the
5018     ** Pager.aInJournal bit has been set. This needs to be remedied by loading
5019     ** the page into the pager-cache and setting the PgHdr.needSync flag.
5020     **
5021     ** The sqlite3PagerGet() call may cause the journal to sync. So make
5022     ** sure the Pager.needSync flag is set too.
5023     */
5024     int rc;
5025     PgHdr *pPgHdr;
5026     assert( pPager->needSync );
5027     rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr);
5028     if( rc!=SQLITE_OK ) return rc;
5029     pPager->needSync = 1;
5030     pPgHdr->needSync = 1;
5031     pPgHdr->inJournal = 1;
5032     makeDirty(pPgHdr);
5033     sqlite3PagerUnref(pPgHdr);
5034   }
5035 
5036   pagerLeave(pPager);
5037   return SQLITE_OK;
5038 }
5039 #endif
5040 
5041 /*
5042 ** Return a pointer to the data for the specified page.
5043 */
5044 void *sqlite3PagerGetData(DbPage *pPg){
5045   return PGHDR_TO_DATA(pPg);
5046 }
5047 
5048 /*
5049 ** Return a pointer to the Pager.nExtra bytes of "extra" space
5050 ** allocated along with the specified page.
5051 */
5052 void *sqlite3PagerGetExtra(DbPage *pPg){
5053   Pager *pPager = pPg->pPager;
5054   return (pPager?PGHDR_TO_EXTRA(pPg, pPager):0);
5055 }
5056 
5057 /*
5058 ** Get/set the locking-mode for this pager. Parameter eMode must be one
5059 ** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or
5060 ** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then
5061 ** the locking-mode is set to the value specified.
5062 **
5063 ** The returned value is either PAGER_LOCKINGMODE_NORMAL or
5064 ** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated)
5065 ** locking-mode.
5066 */
5067 int sqlite3PagerLockingMode(Pager *pPager, int eMode){
5068   assert( eMode==PAGER_LOCKINGMODE_QUERY
5069             || eMode==PAGER_LOCKINGMODE_NORMAL
5070             || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
5071   assert( PAGER_LOCKINGMODE_QUERY<0 );
5072   assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 );
5073   if( eMode>=0 && !pPager->tempFile ){
5074     pPager->exclusiveMode = eMode;
5075   }
5076   return (int)pPager->exclusiveMode;
5077 }
5078 
5079 #ifdef SQLITE_DEBUG
5080 /*
5081 ** Print a listing of all referenced pages and their ref count.
5082 */
5083 void sqlite3PagerRefdump(Pager *pPager){
5084   PgHdr *pPg;
5085   for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
5086     if( pPg->nRef<=0 ) continue;
5087     sqlite3DebugPrintf("PAGE %3d addr=%p nRef=%d\n",
5088        pPg->pgno, PGHDR_TO_DATA(pPg), pPg->nRef);
5089   }
5090 }
5091 #endif
5092 
5093 #endif /* SQLITE_OMIT_DISKIO */
5094