1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This is the implementation of the page cache subsystem or "pager". 13 ** 14 ** The pager is used to access a database disk file. It implements 15 ** atomic commit and rollback through the use of a journal file that 16 ** is separate from the database file. The pager also implements file 17 ** locking to prevent two processes from writing the same database 18 ** file simultaneously, or one process from reading the database while 19 ** another is writing. 20 */ 21 #ifndef SQLITE_OMIT_DISKIO 22 #include "sqliteInt.h" 23 #include "wal.h" 24 25 26 /******************* NOTES ON THE DESIGN OF THE PAGER ************************ 27 ** 28 ** This comment block describes invariants that hold when using a rollback 29 ** journal. These invariants do not apply for journal_mode=WAL, 30 ** journal_mode=MEMORY, or journal_mode=OFF. 31 ** 32 ** Within this comment block, a page is deemed to have been synced 33 ** automatically as soon as it is written when PRAGMA synchronous=OFF. 34 ** Otherwise, the page is not synced until the xSync method of the VFS 35 ** is called successfully on the file containing the page. 36 ** 37 ** Definition: A page of the database file is said to be "overwriteable" if 38 ** one or more of the following are true about the page: 39 ** 40 ** (a) The original content of the page as it was at the beginning of 41 ** the transaction has been written into the rollback journal and 42 ** synced. 43 ** 44 ** (b) The page was a freelist leaf page at the start of the transaction. 45 ** 46 ** (c) The page number is greater than the largest page that existed in 47 ** the database file at the start of the transaction. 48 ** 49 ** (1) A page of the database file is never overwritten unless one of the 50 ** following are true: 51 ** 52 ** (a) The page and all other pages on the same sector are overwriteable. 53 ** 54 ** (b) The atomic page write optimization is enabled, and the entire 55 ** transaction other than the update of the transaction sequence 56 ** number consists of a single page change. 57 ** 58 ** (2) The content of a page written into the rollback journal exactly matches 59 ** both the content in the database when the rollback journal was written 60 ** and the content in the database at the beginning of the current 61 ** transaction. 62 ** 63 ** (3) Writes to the database file are an integer multiple of the page size 64 ** in length and are aligned on a page boundary. 65 ** 66 ** (4) Reads from the database file are either aligned on a page boundary and 67 ** an integer multiple of the page size in length or are taken from the 68 ** first 100 bytes of the database file. 69 ** 70 ** (5) All writes to the database file are synced prior to the rollback journal 71 ** being deleted, truncated, or zeroed. 72 ** 73 ** (6) If a super-journal file is used, then all writes to the database file 74 ** are synced prior to the super-journal being deleted. 75 ** 76 ** Definition: Two databases (or the same database at two points it time) 77 ** are said to be "logically equivalent" if they give the same answer to 78 ** all queries. Note in particular the content of freelist leaf 79 ** pages can be changed arbitrarily without affecting the logical equivalence 80 ** of the database. 81 ** 82 ** (7) At any time, if any subset, including the empty set and the total set, 83 ** of the unsynced changes to a rollback journal are removed and the 84 ** journal is rolled back, the resulting database file will be logically 85 ** equivalent to the database file at the beginning of the transaction. 86 ** 87 ** (8) When a transaction is rolled back, the xTruncate method of the VFS 88 ** is called to restore the database file to the same size it was at 89 ** the beginning of the transaction. (In some VFSes, the xTruncate 90 ** method is a no-op, but that does not change the fact the SQLite will 91 ** invoke it.) 92 ** 93 ** (9) Whenever the database file is modified, at least one bit in the range 94 ** of bytes from 24 through 39 inclusive will be changed prior to releasing 95 ** the EXCLUSIVE lock, thus signaling other connections on the same 96 ** database to flush their caches. 97 ** 98 ** (10) The pattern of bits in bytes 24 through 39 shall not repeat in less 99 ** than one billion transactions. 100 ** 101 ** (11) A database file is well-formed at the beginning and at the conclusion 102 ** of every transaction. 103 ** 104 ** (12) An EXCLUSIVE lock is held on the database file when writing to 105 ** the database file. 106 ** 107 ** (13) A SHARED lock is held on the database file while reading any 108 ** content out of the database file. 109 ** 110 ******************************************************************************/ 111 112 /* 113 ** Macros for troubleshooting. Normally turned off 114 */ 115 #if 0 116 int sqlite3PagerTrace=1; /* True to enable tracing */ 117 #define sqlite3DebugPrintf printf 118 #define PAGERTRACE(X) if( sqlite3PagerTrace ){ sqlite3DebugPrintf X; } 119 #else 120 #define PAGERTRACE(X) 121 #endif 122 123 /* 124 ** The following two macros are used within the PAGERTRACE() macros above 125 ** to print out file-descriptors. 126 ** 127 ** PAGERID() takes a pointer to a Pager struct as its argument. The 128 ** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file 129 ** struct as its argument. 130 */ 131 #define PAGERID(p) (SQLITE_PTR_TO_INT(p->fd)) 132 #define FILEHANDLEID(fd) (SQLITE_PTR_TO_INT(fd)) 133 134 /* 135 ** The Pager.eState variable stores the current 'state' of a pager. A 136 ** pager may be in any one of the seven states shown in the following 137 ** state diagram. 138 ** 139 ** OPEN <------+------+ 140 ** | | | 141 ** V | | 142 ** +---------> READER-------+ | 143 ** | | | 144 ** | V | 145 ** |<-------WRITER_LOCKED------> ERROR 146 ** | | ^ 147 ** | V | 148 ** |<------WRITER_CACHEMOD-------->| 149 ** | | | 150 ** | V | 151 ** |<-------WRITER_DBMOD---------->| 152 ** | | | 153 ** | V | 154 ** +<------WRITER_FINISHED-------->+ 155 ** 156 ** 157 ** List of state transitions and the C [function] that performs each: 158 ** 159 ** OPEN -> READER [sqlite3PagerSharedLock] 160 ** READER -> OPEN [pager_unlock] 161 ** 162 ** READER -> WRITER_LOCKED [sqlite3PagerBegin] 163 ** WRITER_LOCKED -> WRITER_CACHEMOD [pager_open_journal] 164 ** WRITER_CACHEMOD -> WRITER_DBMOD [syncJournal] 165 ** WRITER_DBMOD -> WRITER_FINISHED [sqlite3PagerCommitPhaseOne] 166 ** WRITER_*** -> READER [pager_end_transaction] 167 ** 168 ** WRITER_*** -> ERROR [pager_error] 169 ** ERROR -> OPEN [pager_unlock] 170 ** 171 ** 172 ** OPEN: 173 ** 174 ** The pager starts up in this state. Nothing is guaranteed in this 175 ** state - the file may or may not be locked and the database size is 176 ** unknown. The database may not be read or written. 177 ** 178 ** * No read or write transaction is active. 179 ** * Any lock, or no lock at all, may be held on the database file. 180 ** * The dbSize, dbOrigSize and dbFileSize variables may not be trusted. 181 ** 182 ** READER: 183 ** 184 ** In this state all the requirements for reading the database in 185 ** rollback (non-WAL) mode are met. Unless the pager is (or recently 186 ** was) in exclusive-locking mode, a user-level read transaction is 187 ** open. The database size is known in this state. 188 ** 189 ** A connection running with locking_mode=normal enters this state when 190 ** it opens a read-transaction on the database and returns to state 191 ** OPEN after the read-transaction is completed. However a connection 192 ** running in locking_mode=exclusive (including temp databases) remains in 193 ** this state even after the read-transaction is closed. The only way 194 ** a locking_mode=exclusive connection can transition from READER to OPEN 195 ** is via the ERROR state (see below). 196 ** 197 ** * A read transaction may be active (but a write-transaction cannot). 198 ** * A SHARED or greater lock is held on the database file. 199 ** * The dbSize variable may be trusted (even if a user-level read 200 ** transaction is not active). The dbOrigSize and dbFileSize variables 201 ** may not be trusted at this point. 202 ** * If the database is a WAL database, then the WAL connection is open. 203 ** * Even if a read-transaction is not open, it is guaranteed that 204 ** there is no hot-journal in the file-system. 205 ** 206 ** WRITER_LOCKED: 207 ** 208 ** The pager moves to this state from READER when a write-transaction 209 ** is first opened on the database. In WRITER_LOCKED state, all locks 210 ** required to start a write-transaction are held, but no actual 211 ** modifications to the cache or database have taken place. 212 ** 213 ** In rollback mode, a RESERVED or (if the transaction was opened with 214 ** BEGIN EXCLUSIVE) EXCLUSIVE lock is obtained on the database file when 215 ** moving to this state, but the journal file is not written to or opened 216 ** to in this state. If the transaction is committed or rolled back while 217 ** in WRITER_LOCKED state, all that is required is to unlock the database 218 ** file. 219 ** 220 ** IN WAL mode, WalBeginWriteTransaction() is called to lock the log file. 221 ** If the connection is running with locking_mode=exclusive, an attempt 222 ** is made to obtain an EXCLUSIVE lock on the database file. 223 ** 224 ** * A write transaction is active. 225 ** * If the connection is open in rollback-mode, a RESERVED or greater 226 ** lock is held on the database file. 227 ** * If the connection is open in WAL-mode, a WAL write transaction 228 ** is open (i.e. sqlite3WalBeginWriteTransaction() has been successfully 229 ** called). 230 ** * The dbSize, dbOrigSize and dbFileSize variables are all valid. 231 ** * The contents of the pager cache have not been modified. 232 ** * The journal file may or may not be open. 233 ** * Nothing (not even the first header) has been written to the journal. 234 ** 235 ** WRITER_CACHEMOD: 236 ** 237 ** A pager moves from WRITER_LOCKED state to this state when a page is 238 ** first modified by the upper layer. In rollback mode the journal file 239 ** is opened (if it is not already open) and a header written to the 240 ** start of it. The database file on disk has not been modified. 241 ** 242 ** * A write transaction is active. 243 ** * A RESERVED or greater lock is held on the database file. 244 ** * The journal file is open and the first header has been written 245 ** to it, but the header has not been synced to disk. 246 ** * The contents of the page cache have been modified. 247 ** 248 ** WRITER_DBMOD: 249 ** 250 ** The pager transitions from WRITER_CACHEMOD into WRITER_DBMOD state 251 ** when it modifies the contents of the database file. WAL connections 252 ** never enter this state (since they do not modify the database file, 253 ** just the log file). 254 ** 255 ** * A write transaction is active. 256 ** * An EXCLUSIVE or greater lock is held on the database file. 257 ** * The journal file is open and the first header has been written 258 ** and synced to disk. 259 ** * The contents of the page cache have been modified (and possibly 260 ** written to disk). 261 ** 262 ** WRITER_FINISHED: 263 ** 264 ** It is not possible for a WAL connection to enter this state. 265 ** 266 ** A rollback-mode pager changes to WRITER_FINISHED state from WRITER_DBMOD 267 ** state after the entire transaction has been successfully written into the 268 ** database file. In this state the transaction may be committed simply 269 ** by finalizing the journal file. Once in WRITER_FINISHED state, it is 270 ** not possible to modify the database further. At this point, the upper 271 ** layer must either commit or rollback the transaction. 272 ** 273 ** * A write transaction is active. 274 ** * An EXCLUSIVE or greater lock is held on the database file. 275 ** * All writing and syncing of journal and database data has finished. 276 ** If no error occurred, all that remains is to finalize the journal to 277 ** commit the transaction. If an error did occur, the caller will need 278 ** to rollback the transaction. 279 ** 280 ** ERROR: 281 ** 282 ** The ERROR state is entered when an IO or disk-full error (including 283 ** SQLITE_IOERR_NOMEM) occurs at a point in the code that makes it 284 ** difficult to be sure that the in-memory pager state (cache contents, 285 ** db size etc.) are consistent with the contents of the file-system. 286 ** 287 ** Temporary pager files may enter the ERROR state, but in-memory pagers 288 ** cannot. 289 ** 290 ** For example, if an IO error occurs while performing a rollback, 291 ** the contents of the page-cache may be left in an inconsistent state. 292 ** At this point it would be dangerous to change back to READER state 293 ** (as usually happens after a rollback). Any subsequent readers might 294 ** report database corruption (due to the inconsistent cache), and if 295 ** they upgrade to writers, they may inadvertently corrupt the database 296 ** file. To avoid this hazard, the pager switches into the ERROR state 297 ** instead of READER following such an error. 298 ** 299 ** Once it has entered the ERROR state, any attempt to use the pager 300 ** to read or write data returns an error. Eventually, once all 301 ** outstanding transactions have been abandoned, the pager is able to 302 ** transition back to OPEN state, discarding the contents of the 303 ** page-cache and any other in-memory state at the same time. Everything 304 ** is reloaded from disk (and, if necessary, hot-journal rollback peformed) 305 ** when a read-transaction is next opened on the pager (transitioning 306 ** the pager into READER state). At that point the system has recovered 307 ** from the error. 308 ** 309 ** Specifically, the pager jumps into the ERROR state if: 310 ** 311 ** 1. An error occurs while attempting a rollback. This happens in 312 ** function sqlite3PagerRollback(). 313 ** 314 ** 2. An error occurs while attempting to finalize a journal file 315 ** following a commit in function sqlite3PagerCommitPhaseTwo(). 316 ** 317 ** 3. An error occurs while attempting to write to the journal or 318 ** database file in function pagerStress() in order to free up 319 ** memory. 320 ** 321 ** In other cases, the error is returned to the b-tree layer. The b-tree 322 ** layer then attempts a rollback operation. If the error condition 323 ** persists, the pager enters the ERROR state via condition (1) above. 324 ** 325 ** Condition (3) is necessary because it can be triggered by a read-only 326 ** statement executed within a transaction. In this case, if the error 327 ** code were simply returned to the user, the b-tree layer would not 328 ** automatically attempt a rollback, as it assumes that an error in a 329 ** read-only statement cannot leave the pager in an internally inconsistent 330 ** state. 331 ** 332 ** * The Pager.errCode variable is set to something other than SQLITE_OK. 333 ** * There are one or more outstanding references to pages (after the 334 ** last reference is dropped the pager should move back to OPEN state). 335 ** * The pager is not an in-memory pager. 336 ** 337 ** 338 ** Notes: 339 ** 340 ** * A pager is never in WRITER_DBMOD or WRITER_FINISHED state if the 341 ** connection is open in WAL mode. A WAL connection is always in one 342 ** of the first four states. 343 ** 344 ** * Normally, a connection open in exclusive mode is never in PAGER_OPEN 345 ** state. There are two exceptions: immediately after exclusive-mode has 346 ** been turned on (and before any read or write transactions are 347 ** executed), and when the pager is leaving the "error state". 348 ** 349 ** * See also: assert_pager_state(). 350 */ 351 #define PAGER_OPEN 0 352 #define PAGER_READER 1 353 #define PAGER_WRITER_LOCKED 2 354 #define PAGER_WRITER_CACHEMOD 3 355 #define PAGER_WRITER_DBMOD 4 356 #define PAGER_WRITER_FINISHED 5 357 #define PAGER_ERROR 6 358 359 /* 360 ** The Pager.eLock variable is almost always set to one of the 361 ** following locking-states, according to the lock currently held on 362 ** the database file: NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. 363 ** This variable is kept up to date as locks are taken and released by 364 ** the pagerLockDb() and pagerUnlockDb() wrappers. 365 ** 366 ** If the VFS xLock() or xUnlock() returns an error other than SQLITE_BUSY 367 ** (i.e. one of the SQLITE_IOERR subtypes), it is not clear whether or not 368 ** the operation was successful. In these circumstances pagerLockDb() and 369 ** pagerUnlockDb() take a conservative approach - eLock is always updated 370 ** when unlocking the file, and only updated when locking the file if the 371 ** VFS call is successful. This way, the Pager.eLock variable may be set 372 ** to a less exclusive (lower) value than the lock that is actually held 373 ** at the system level, but it is never set to a more exclusive value. 374 ** 375 ** This is usually safe. If an xUnlock fails or appears to fail, there may 376 ** be a few redundant xLock() calls or a lock may be held for longer than 377 ** required, but nothing really goes wrong. 378 ** 379 ** The exception is when the database file is unlocked as the pager moves 380 ** from ERROR to OPEN state. At this point there may be a hot-journal file 381 ** in the file-system that needs to be rolled back (as part of an OPEN->SHARED 382 ** transition, by the same pager or any other). If the call to xUnlock() 383 ** fails at this point and the pager is left holding an EXCLUSIVE lock, this 384 ** can confuse the call to xCheckReservedLock() call made later as part 385 ** of hot-journal detection. 386 ** 387 ** xCheckReservedLock() is defined as returning true "if there is a RESERVED 388 ** lock held by this process or any others". So xCheckReservedLock may 389 ** return true because the caller itself is holding an EXCLUSIVE lock (but 390 ** doesn't know it because of a previous error in xUnlock). If this happens 391 ** a hot-journal may be mistaken for a journal being created by an active 392 ** transaction in another process, causing SQLite to read from the database 393 ** without rolling it back. 394 ** 395 ** To work around this, if a call to xUnlock() fails when unlocking the 396 ** database in the ERROR state, Pager.eLock is set to UNKNOWN_LOCK. It 397 ** is only changed back to a real locking state after a successful call 398 ** to xLock(EXCLUSIVE). Also, the code to do the OPEN->SHARED state transition 399 ** omits the check for a hot-journal if Pager.eLock is set to UNKNOWN_LOCK 400 ** lock. Instead, it assumes a hot-journal exists and obtains an EXCLUSIVE 401 ** lock on the database file before attempting to roll it back. See function 402 ** PagerSharedLock() for more detail. 403 ** 404 ** Pager.eLock may only be set to UNKNOWN_LOCK when the pager is in 405 ** PAGER_OPEN state. 406 */ 407 #define UNKNOWN_LOCK (EXCLUSIVE_LOCK+1) 408 409 /* 410 ** The maximum allowed sector size. 64KiB. If the xSectorsize() method 411 ** returns a value larger than this, then MAX_SECTOR_SIZE is used instead. 412 ** This could conceivably cause corruption following a power failure on 413 ** such a system. This is currently an undocumented limit. 414 */ 415 #define MAX_SECTOR_SIZE 0x10000 416 417 418 /* 419 ** An instance of the following structure is allocated for each active 420 ** savepoint and statement transaction in the system. All such structures 421 ** are stored in the Pager.aSavepoint[] array, which is allocated and 422 ** resized using sqlite3Realloc(). 423 ** 424 ** When a savepoint is created, the PagerSavepoint.iHdrOffset field is 425 ** set to 0. If a journal-header is written into the main journal while 426 ** the savepoint is active, then iHdrOffset is set to the byte offset 427 ** immediately following the last journal record written into the main 428 ** journal before the journal-header. This is required during savepoint 429 ** rollback (see pagerPlaybackSavepoint()). 430 */ 431 typedef struct PagerSavepoint PagerSavepoint; 432 struct PagerSavepoint { 433 i64 iOffset; /* Starting offset in main journal */ 434 i64 iHdrOffset; /* See above */ 435 Bitvec *pInSavepoint; /* Set of pages in this savepoint */ 436 Pgno nOrig; /* Original number of pages in file */ 437 Pgno iSubRec; /* Index of first record in sub-journal */ 438 int bTruncateOnRelease; /* If stmt journal may be truncated on RELEASE */ 439 #ifndef SQLITE_OMIT_WAL 440 u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */ 441 #endif 442 }; 443 444 /* 445 ** Bits of the Pager.doNotSpill flag. See further description below. 446 */ 447 #define SPILLFLAG_OFF 0x01 /* Never spill cache. Set via pragma */ 448 #define SPILLFLAG_ROLLBACK 0x02 /* Current rolling back, so do not spill */ 449 #define SPILLFLAG_NOSYNC 0x04 /* Spill is ok, but do not sync */ 450 451 /* 452 ** An open page cache is an instance of struct Pager. A description of 453 ** some of the more important member variables follows: 454 ** 455 ** eState 456 ** 457 ** The current 'state' of the pager object. See the comment and state 458 ** diagram above for a description of the pager state. 459 ** 460 ** eLock 461 ** 462 ** For a real on-disk database, the current lock held on the database file - 463 ** NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. 464 ** 465 ** For a temporary or in-memory database (neither of which require any 466 ** locks), this variable is always set to EXCLUSIVE_LOCK. Since such 467 ** databases always have Pager.exclusiveMode==1, this tricks the pager 468 ** logic into thinking that it already has all the locks it will ever 469 ** need (and no reason to release them). 470 ** 471 ** In some (obscure) circumstances, this variable may also be set to 472 ** UNKNOWN_LOCK. See the comment above the #define of UNKNOWN_LOCK for 473 ** details. 474 ** 475 ** changeCountDone 476 ** 477 ** This boolean variable is used to make sure that the change-counter 478 ** (the 4-byte header field at byte offset 24 of the database file) is 479 ** not updated more often than necessary. 480 ** 481 ** It is set to true when the change-counter field is updated, which 482 ** can only happen if an exclusive lock is held on the database file. 483 ** It is cleared (set to false) whenever an exclusive lock is 484 ** relinquished on the database file. Each time a transaction is committed, 485 ** The changeCountDone flag is inspected. If it is true, the work of 486 ** updating the change-counter is omitted for the current transaction. 487 ** 488 ** This mechanism means that when running in exclusive mode, a connection 489 ** need only update the change-counter once, for the first transaction 490 ** committed. 491 ** 492 ** setSuper 493 ** 494 ** When PagerCommitPhaseOne() is called to commit a transaction, it may 495 ** (or may not) specify a super-journal name to be written into the 496 ** journal file before it is synced to disk. 497 ** 498 ** Whether or not a journal file contains a super-journal pointer affects 499 ** the way in which the journal file is finalized after the transaction is 500 ** committed or rolled back when running in "journal_mode=PERSIST" mode. 501 ** If a journal file does not contain a super-journal pointer, it is 502 ** finalized by overwriting the first journal header with zeroes. If 503 ** it does contain a super-journal pointer the journal file is finalized 504 ** by truncating it to zero bytes, just as if the connection were 505 ** running in "journal_mode=truncate" mode. 506 ** 507 ** Journal files that contain super-journal pointers cannot be finalized 508 ** simply by overwriting the first journal-header with zeroes, as the 509 ** super-journal pointer could interfere with hot-journal rollback of any 510 ** subsequently interrupted transaction that reuses the journal file. 511 ** 512 ** The flag is cleared as soon as the journal file is finalized (either 513 ** by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the 514 ** journal file from being successfully finalized, the setSuper flag 515 ** is cleared anyway (and the pager will move to ERROR state). 516 ** 517 ** doNotSpill 518 ** 519 ** This variables control the behavior of cache-spills (calls made by 520 ** the pcache module to the pagerStress() routine to write cached data 521 ** to the file-system in order to free up memory). 522 ** 523 ** When bits SPILLFLAG_OFF or SPILLFLAG_ROLLBACK of doNotSpill are set, 524 ** writing to the database from pagerStress() is disabled altogether. 525 ** The SPILLFLAG_ROLLBACK case is done in a very obscure case that 526 ** comes up during savepoint rollback that requires the pcache module 527 ** to allocate a new page to prevent the journal file from being written 528 ** while it is being traversed by code in pager_playback(). The SPILLFLAG_OFF 529 ** case is a user preference. 530 ** 531 ** If the SPILLFLAG_NOSYNC bit is set, writing to the database from 532 ** pagerStress() is permitted, but syncing the journal file is not. 533 ** This flag is set by sqlite3PagerWrite() when the file-system sector-size 534 ** is larger than the database page-size in order to prevent a journal sync 535 ** from happening in between the journalling of two pages on the same sector. 536 ** 537 ** subjInMemory 538 ** 539 ** This is a boolean variable. If true, then any required sub-journal 540 ** is opened as an in-memory journal file. If false, then in-memory 541 ** sub-journals are only used for in-memory pager files. 542 ** 543 ** This variable is updated by the upper layer each time a new 544 ** write-transaction is opened. 545 ** 546 ** dbSize, dbOrigSize, dbFileSize 547 ** 548 ** Variable dbSize is set to the number of pages in the database file. 549 ** It is valid in PAGER_READER and higher states (all states except for 550 ** OPEN and ERROR). 551 ** 552 ** dbSize is set based on the size of the database file, which may be 553 ** larger than the size of the database (the value stored at offset 554 ** 28 of the database header by the btree). If the size of the file 555 ** is not an integer multiple of the page-size, the value stored in 556 ** dbSize is rounded down (i.e. a 5KB file with 2K page-size has dbSize==2). 557 ** Except, any file that is greater than 0 bytes in size is considered 558 ** to have at least one page. (i.e. a 1KB file with 2K page-size leads 559 ** to dbSize==1). 560 ** 561 ** During a write-transaction, if pages with page-numbers greater than 562 ** dbSize are modified in the cache, dbSize is updated accordingly. 563 ** Similarly, if the database is truncated using PagerTruncateImage(), 564 ** dbSize is updated. 565 ** 566 ** Variables dbOrigSize and dbFileSize are valid in states 567 ** PAGER_WRITER_LOCKED and higher. dbOrigSize is a copy of the dbSize 568 ** variable at the start of the transaction. It is used during rollback, 569 ** and to determine whether or not pages need to be journalled before 570 ** being modified. 571 ** 572 ** Throughout a write-transaction, dbFileSize contains the size of 573 ** the file on disk in pages. It is set to a copy of dbSize when the 574 ** write-transaction is first opened, and updated when VFS calls are made 575 ** to write or truncate the database file on disk. 576 ** 577 ** The only reason the dbFileSize variable is required is to suppress 578 ** unnecessary calls to xTruncate() after committing a transaction. If, 579 ** when a transaction is committed, the dbFileSize variable indicates 580 ** that the database file is larger than the database image (Pager.dbSize), 581 ** pager_truncate() is called. The pager_truncate() call uses xFilesize() 582 ** to measure the database file on disk, and then truncates it if required. 583 ** dbFileSize is not used when rolling back a transaction. In this case 584 ** pager_truncate() is called unconditionally (which means there may be 585 ** a call to xFilesize() that is not strictly required). In either case, 586 ** pager_truncate() may cause the file to become smaller or larger. 587 ** 588 ** dbHintSize 589 ** 590 ** The dbHintSize variable is used to limit the number of calls made to 591 ** the VFS xFileControl(FCNTL_SIZE_HINT) method. 592 ** 593 ** dbHintSize is set to a copy of the dbSize variable when a 594 ** write-transaction is opened (at the same time as dbFileSize and 595 ** dbOrigSize). If the xFileControl(FCNTL_SIZE_HINT) method is called, 596 ** dbHintSize is increased to the number of pages that correspond to the 597 ** size-hint passed to the method call. See pager_write_pagelist() for 598 ** details. 599 ** 600 ** errCode 601 ** 602 ** The Pager.errCode variable is only ever used in PAGER_ERROR state. It 603 ** is set to zero in all other states. In PAGER_ERROR state, Pager.errCode 604 ** is always set to SQLITE_FULL, SQLITE_IOERR or one of the SQLITE_IOERR_XXX 605 ** sub-codes. 606 ** 607 ** syncFlags, walSyncFlags 608 ** 609 ** syncFlags is either SQLITE_SYNC_NORMAL (0x02) or SQLITE_SYNC_FULL (0x03). 610 ** syncFlags is used for rollback mode. walSyncFlags is used for WAL mode 611 ** and contains the flags used to sync the checkpoint operations in the 612 ** lower two bits, and sync flags used for transaction commits in the WAL 613 ** file in bits 0x04 and 0x08. In other words, to get the correct sync flags 614 ** for checkpoint operations, use (walSyncFlags&0x03) and to get the correct 615 ** sync flags for transaction commit, use ((walSyncFlags>>2)&0x03). Note 616 ** that with synchronous=NORMAL in WAL mode, transaction commit is not synced 617 ** meaning that the 0x04 and 0x08 bits are both zero. 618 */ 619 struct Pager { 620 sqlite3_vfs *pVfs; /* OS functions to use for IO */ 621 u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */ 622 u8 journalMode; /* One of the PAGER_JOURNALMODE_* values */ 623 u8 useJournal; /* Use a rollback journal on this file */ 624 u8 noSync; /* Do not sync the journal if true */ 625 u8 fullSync; /* Do extra syncs of the journal for robustness */ 626 u8 extraSync; /* sync directory after journal delete */ 627 u8 syncFlags; /* SYNC_NORMAL or SYNC_FULL otherwise */ 628 u8 walSyncFlags; /* See description above */ 629 u8 tempFile; /* zFilename is a temporary or immutable file */ 630 u8 noLock; /* Do not lock (except in WAL mode) */ 631 u8 readOnly; /* True for a read-only database */ 632 u8 memDb; /* True to inhibit all file I/O */ 633 634 /************************************************************************** 635 ** The following block contains those class members that change during 636 ** routine operation. Class members not in this block are either fixed 637 ** when the pager is first created or else only change when there is a 638 ** significant mode change (such as changing the page_size, locking_mode, 639 ** or the journal_mode). From another view, these class members describe 640 ** the "state" of the pager, while other class members describe the 641 ** "configuration" of the pager. 642 */ 643 u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */ 644 u8 eLock; /* Current lock held on database file */ 645 u8 changeCountDone; /* Set after incrementing the change-counter */ 646 u8 setSuper; /* Super-jrnl name is written into jrnl */ 647 u8 doNotSpill; /* Do not spill the cache when non-zero */ 648 u8 subjInMemory; /* True to use in-memory sub-journals */ 649 u8 bUseFetch; /* True to use xFetch() */ 650 u8 hasHeldSharedLock; /* True if a shared lock has ever been held */ 651 Pgno dbSize; /* Number of pages in the database */ 652 Pgno dbOrigSize; /* dbSize before the current transaction */ 653 Pgno dbFileSize; /* Number of pages in the database file */ 654 Pgno dbHintSize; /* Value passed to FCNTL_SIZE_HINT call */ 655 int errCode; /* One of several kinds of errors */ 656 int nRec; /* Pages journalled since last j-header written */ 657 u32 cksumInit; /* Quasi-random value added to every checksum */ 658 u32 nSubRec; /* Number of records written to sub-journal */ 659 Bitvec *pInJournal; /* One bit for each page in the database file */ 660 sqlite3_file *fd; /* File descriptor for database */ 661 sqlite3_file *jfd; /* File descriptor for main journal */ 662 sqlite3_file *sjfd; /* File descriptor for sub-journal */ 663 i64 journalOff; /* Current write offset in the journal file */ 664 i64 journalHdr; /* Byte offset to previous journal header */ 665 sqlite3_backup *pBackup; /* Pointer to list of ongoing backup processes */ 666 PagerSavepoint *aSavepoint; /* Array of active savepoints */ 667 int nSavepoint; /* Number of elements in aSavepoint[] */ 668 u32 iDataVersion; /* Changes whenever database content changes */ 669 char dbFileVers[16]; /* Changes whenever database file changes */ 670 671 int nMmapOut; /* Number of mmap pages currently outstanding */ 672 sqlite3_int64 szMmap; /* Desired maximum mmap size */ 673 PgHdr *pMmapFreelist; /* List of free mmap page headers (pDirty) */ 674 /* 675 ** End of the routinely-changing class members 676 ***************************************************************************/ 677 678 u16 nExtra; /* Add this many bytes to each in-memory page */ 679 i16 nReserve; /* Number of unused bytes at end of each page */ 680 u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */ 681 u32 sectorSize; /* Assumed sector size during rollback */ 682 int pageSize; /* Number of bytes in a page */ 683 Pgno mxPgno; /* Maximum allowed size of the database */ 684 i64 journalSizeLimit; /* Size limit for persistent journal files */ 685 char *zFilename; /* Name of the database file */ 686 char *zJournal; /* Name of the journal file */ 687 int (*xBusyHandler)(void*); /* Function to call when busy */ 688 void *pBusyHandlerArg; /* Context argument for xBusyHandler */ 689 int aStat[4]; /* Total cache hits, misses, writes, spills */ 690 #ifdef SQLITE_TEST 691 int nRead; /* Database pages read */ 692 #endif 693 void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */ 694 int (*xGet)(Pager*,Pgno,DbPage**,int); /* Routine to fetch a patch */ 695 char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */ 696 PCache *pPCache; /* Pointer to page cache object */ 697 #ifndef SQLITE_OMIT_WAL 698 Wal *pWal; /* Write-ahead log used by "journal_mode=wal" */ 699 char *zWal; /* File name for write-ahead log */ 700 #endif 701 }; 702 703 /* 704 ** Indexes for use with Pager.aStat[]. The Pager.aStat[] array contains 705 ** the values accessed by passing SQLITE_DBSTATUS_CACHE_HIT, CACHE_MISS 706 ** or CACHE_WRITE to sqlite3_db_status(). 707 */ 708 #define PAGER_STAT_HIT 0 709 #define PAGER_STAT_MISS 1 710 #define PAGER_STAT_WRITE 2 711 #define PAGER_STAT_SPILL 3 712 713 /* 714 ** The following global variables hold counters used for 715 ** testing purposes only. These variables do not exist in 716 ** a non-testing build. These variables are not thread-safe. 717 */ 718 #ifdef SQLITE_TEST 719 int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */ 720 int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */ 721 int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */ 722 # define PAGER_INCR(v) v++ 723 #else 724 # define PAGER_INCR(v) 725 #endif 726 727 728 729 /* 730 ** Journal files begin with the following magic string. The data 731 ** was obtained from /dev/random. It is used only as a sanity check. 732 ** 733 ** Since version 2.8.0, the journal format contains additional sanity 734 ** checking information. If the power fails while the journal is being 735 ** written, semi-random garbage data might appear in the journal 736 ** file after power is restored. If an attempt is then made 737 ** to roll the journal back, the database could be corrupted. The additional 738 ** sanity checking data is an attempt to discover the garbage in the 739 ** journal and ignore it. 740 ** 741 ** The sanity checking information for the new journal format consists 742 ** of a 32-bit checksum on each page of data. The checksum covers both 743 ** the page number and the pPager->pageSize bytes of data for the page. 744 ** This cksum is initialized to a 32-bit random value that appears in the 745 ** journal file right after the header. The random initializer is important, 746 ** because garbage data that appears at the end of a journal is likely 747 ** data that was once in other files that have now been deleted. If the 748 ** garbage data came from an obsolete journal file, the checksums might 749 ** be correct. But by initializing the checksum to random value which 750 ** is different for every journal, we minimize that risk. 751 */ 752 static const unsigned char aJournalMagic[] = { 753 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7, 754 }; 755 756 /* 757 ** The size of the of each page record in the journal is given by 758 ** the following macro. 759 */ 760 #define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8) 761 762 /* 763 ** The journal header size for this pager. This is usually the same 764 ** size as a single disk sector. See also setSectorSize(). 765 */ 766 #define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize) 767 768 /* 769 ** The macro MEMDB is true if we are dealing with an in-memory database. 770 ** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set, 771 ** the value of MEMDB will be a constant and the compiler will optimize 772 ** out code that would never execute. 773 */ 774 #ifdef SQLITE_OMIT_MEMORYDB 775 # define MEMDB 0 776 #else 777 # define MEMDB pPager->memDb 778 #endif 779 780 /* 781 ** The macro USEFETCH is true if we are allowed to use the xFetch and xUnfetch 782 ** interfaces to access the database using memory-mapped I/O. 783 */ 784 #if SQLITE_MAX_MMAP_SIZE>0 785 # define USEFETCH(x) ((x)->bUseFetch) 786 #else 787 # define USEFETCH(x) 0 788 #endif 789 790 /* 791 ** The argument to this macro is a file descriptor (type sqlite3_file*). 792 ** Return 0 if it is not open, or non-zero (but not 1) if it is. 793 ** 794 ** This is so that expressions can be written as: 795 ** 796 ** if( isOpen(pPager->jfd) ){ ... 797 ** 798 ** instead of 799 ** 800 ** if( pPager->jfd->pMethods ){ ... 801 */ 802 #define isOpen(pFd) ((pFd)->pMethods!=0) 803 804 #ifdef SQLITE_DIRECT_OVERFLOW_READ 805 /* 806 ** Return true if page pgno can be read directly from the database file 807 ** by the b-tree layer. This is the case if: 808 ** 809 ** * the database file is open, 810 ** * there are no dirty pages in the cache, and 811 ** * the desired page is not currently in the wal file. 812 */ 813 int sqlite3PagerDirectReadOk(Pager *pPager, Pgno pgno){ 814 if( pPager->fd->pMethods==0 ) return 0; 815 if( sqlite3PCacheIsDirty(pPager->pPCache) ) return 0; 816 #ifndef SQLITE_OMIT_WAL 817 if( pPager->pWal ){ 818 u32 iRead = 0; 819 int rc; 820 rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iRead); 821 return (rc==SQLITE_OK && iRead==0); 822 } 823 #endif 824 return 1; 825 } 826 #endif 827 828 #ifndef SQLITE_OMIT_WAL 829 # define pagerUseWal(x) ((x)->pWal!=0) 830 #else 831 # define pagerUseWal(x) 0 832 # define pagerRollbackWal(x) 0 833 # define pagerWalFrames(v,w,x,y) 0 834 # define pagerOpenWalIfPresent(z) SQLITE_OK 835 # define pagerBeginReadTransaction(z) SQLITE_OK 836 #endif 837 838 #ifndef NDEBUG 839 /* 840 ** Usage: 841 ** 842 ** assert( assert_pager_state(pPager) ); 843 ** 844 ** This function runs many asserts to try to find inconsistencies in 845 ** the internal state of the Pager object. 846 */ 847 static int assert_pager_state(Pager *p){ 848 Pager *pPager = p; 849 850 /* State must be valid. */ 851 assert( p->eState==PAGER_OPEN 852 || p->eState==PAGER_READER 853 || p->eState==PAGER_WRITER_LOCKED 854 || p->eState==PAGER_WRITER_CACHEMOD 855 || p->eState==PAGER_WRITER_DBMOD 856 || p->eState==PAGER_WRITER_FINISHED 857 || p->eState==PAGER_ERROR 858 ); 859 860 /* Regardless of the current state, a temp-file connection always behaves 861 ** as if it has an exclusive lock on the database file. It never updates 862 ** the change-counter field, so the changeCountDone flag is always set. 863 */ 864 assert( p->tempFile==0 || p->eLock==EXCLUSIVE_LOCK ); 865 assert( p->tempFile==0 || pPager->changeCountDone ); 866 867 /* If the useJournal flag is clear, the journal-mode must be "OFF". 868 ** And if the journal-mode is "OFF", the journal file must not be open. 869 */ 870 assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->useJournal ); 871 assert( p->journalMode!=PAGER_JOURNALMODE_OFF || !isOpen(p->jfd) ); 872 873 /* Check that MEMDB implies noSync. And an in-memory journal. Since 874 ** this means an in-memory pager performs no IO at all, it cannot encounter 875 ** either SQLITE_IOERR or SQLITE_FULL during rollback or while finalizing 876 ** a journal file. (although the in-memory journal implementation may 877 ** return SQLITE_IOERR_NOMEM while the journal file is being written). It 878 ** is therefore not possible for an in-memory pager to enter the ERROR 879 ** state. 880 */ 881 if( MEMDB ){ 882 assert( !isOpen(p->fd) ); 883 assert( p->noSync ); 884 assert( p->journalMode==PAGER_JOURNALMODE_OFF 885 || p->journalMode==PAGER_JOURNALMODE_MEMORY 886 ); 887 assert( p->eState!=PAGER_ERROR && p->eState!=PAGER_OPEN ); 888 assert( pagerUseWal(p)==0 ); 889 } 890 891 /* If changeCountDone is set, a RESERVED lock or greater must be held 892 ** on the file. 893 */ 894 assert( pPager->changeCountDone==0 || pPager->eLock>=RESERVED_LOCK ); 895 assert( p->eLock!=PENDING_LOCK ); 896 897 switch( p->eState ){ 898 case PAGER_OPEN: 899 assert( !MEMDB ); 900 assert( pPager->errCode==SQLITE_OK ); 901 assert( sqlite3PcacheRefCount(pPager->pPCache)==0 || pPager->tempFile ); 902 break; 903 904 case PAGER_READER: 905 assert( pPager->errCode==SQLITE_OK ); 906 assert( p->eLock!=UNKNOWN_LOCK ); 907 assert( p->eLock>=SHARED_LOCK ); 908 break; 909 910 case PAGER_WRITER_LOCKED: 911 assert( p->eLock!=UNKNOWN_LOCK ); 912 assert( pPager->errCode==SQLITE_OK ); 913 if( !pagerUseWal(pPager) ){ 914 assert( p->eLock>=RESERVED_LOCK ); 915 } 916 assert( pPager->dbSize==pPager->dbOrigSize ); 917 assert( pPager->dbOrigSize==pPager->dbFileSize ); 918 assert( pPager->dbOrigSize==pPager->dbHintSize ); 919 assert( pPager->setSuper==0 ); 920 break; 921 922 case PAGER_WRITER_CACHEMOD: 923 assert( p->eLock!=UNKNOWN_LOCK ); 924 assert( pPager->errCode==SQLITE_OK ); 925 if( !pagerUseWal(pPager) ){ 926 /* It is possible that if journal_mode=wal here that neither the 927 ** journal file nor the WAL file are open. This happens during 928 ** a rollback transaction that switches from journal_mode=off 929 ** to journal_mode=wal. 930 */ 931 assert( p->eLock>=RESERVED_LOCK ); 932 assert( isOpen(p->jfd) 933 || p->journalMode==PAGER_JOURNALMODE_OFF 934 || p->journalMode==PAGER_JOURNALMODE_WAL 935 ); 936 } 937 assert( pPager->dbOrigSize==pPager->dbFileSize ); 938 assert( pPager->dbOrigSize==pPager->dbHintSize ); 939 break; 940 941 case PAGER_WRITER_DBMOD: 942 assert( p->eLock==EXCLUSIVE_LOCK ); 943 assert( pPager->errCode==SQLITE_OK ); 944 assert( !pagerUseWal(pPager) ); 945 assert( p->eLock>=EXCLUSIVE_LOCK ); 946 assert( isOpen(p->jfd) 947 || p->journalMode==PAGER_JOURNALMODE_OFF 948 || p->journalMode==PAGER_JOURNALMODE_WAL 949 || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC) 950 ); 951 assert( pPager->dbOrigSize<=pPager->dbHintSize ); 952 break; 953 954 case PAGER_WRITER_FINISHED: 955 assert( p->eLock==EXCLUSIVE_LOCK ); 956 assert( pPager->errCode==SQLITE_OK ); 957 assert( !pagerUseWal(pPager) ); 958 assert( isOpen(p->jfd) 959 || p->journalMode==PAGER_JOURNALMODE_OFF 960 || p->journalMode==PAGER_JOURNALMODE_WAL 961 || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC) 962 ); 963 break; 964 965 case PAGER_ERROR: 966 /* There must be at least one outstanding reference to the pager if 967 ** in ERROR state. Otherwise the pager should have already dropped 968 ** back to OPEN state. 969 */ 970 assert( pPager->errCode!=SQLITE_OK ); 971 assert( sqlite3PcacheRefCount(pPager->pPCache)>0 || pPager->tempFile ); 972 break; 973 } 974 975 return 1; 976 } 977 #endif /* ifndef NDEBUG */ 978 979 #ifdef SQLITE_DEBUG 980 /* 981 ** Return a pointer to a human readable string in a static buffer 982 ** containing the state of the Pager object passed as an argument. This 983 ** is intended to be used within debuggers. For example, as an alternative 984 ** to "print *pPager" in gdb: 985 ** 986 ** (gdb) printf "%s", print_pager_state(pPager) 987 ** 988 ** This routine has external linkage in order to suppress compiler warnings 989 ** about an unused function. It is enclosed within SQLITE_DEBUG and so does 990 ** not appear in normal builds. 991 */ 992 char *print_pager_state(Pager *p){ 993 static char zRet[1024]; 994 995 sqlite3_snprintf(1024, zRet, 996 "Filename: %s\n" 997 "State: %s errCode=%d\n" 998 "Lock: %s\n" 999 "Locking mode: locking_mode=%s\n" 1000 "Journal mode: journal_mode=%s\n" 1001 "Backing store: tempFile=%d memDb=%d useJournal=%d\n" 1002 "Journal: journalOff=%lld journalHdr=%lld\n" 1003 "Size: dbsize=%d dbOrigSize=%d dbFileSize=%d\n" 1004 , p->zFilename 1005 , p->eState==PAGER_OPEN ? "OPEN" : 1006 p->eState==PAGER_READER ? "READER" : 1007 p->eState==PAGER_WRITER_LOCKED ? "WRITER_LOCKED" : 1008 p->eState==PAGER_WRITER_CACHEMOD ? "WRITER_CACHEMOD" : 1009 p->eState==PAGER_WRITER_DBMOD ? "WRITER_DBMOD" : 1010 p->eState==PAGER_WRITER_FINISHED ? "WRITER_FINISHED" : 1011 p->eState==PAGER_ERROR ? "ERROR" : "?error?" 1012 , (int)p->errCode 1013 , p->eLock==NO_LOCK ? "NO_LOCK" : 1014 p->eLock==RESERVED_LOCK ? "RESERVED" : 1015 p->eLock==EXCLUSIVE_LOCK ? "EXCLUSIVE" : 1016 p->eLock==SHARED_LOCK ? "SHARED" : 1017 p->eLock==UNKNOWN_LOCK ? "UNKNOWN" : "?error?" 1018 , p->exclusiveMode ? "exclusive" : "normal" 1019 , p->journalMode==PAGER_JOURNALMODE_MEMORY ? "memory" : 1020 p->journalMode==PAGER_JOURNALMODE_OFF ? "off" : 1021 p->journalMode==PAGER_JOURNALMODE_DELETE ? "delete" : 1022 p->journalMode==PAGER_JOURNALMODE_PERSIST ? "persist" : 1023 p->journalMode==PAGER_JOURNALMODE_TRUNCATE ? "truncate" : 1024 p->journalMode==PAGER_JOURNALMODE_WAL ? "wal" : "?error?" 1025 , (int)p->tempFile, (int)p->memDb, (int)p->useJournal 1026 , p->journalOff, p->journalHdr 1027 , (int)p->dbSize, (int)p->dbOrigSize, (int)p->dbFileSize 1028 ); 1029 1030 return zRet; 1031 } 1032 #endif 1033 1034 /* Forward references to the various page getters */ 1035 static int getPageNormal(Pager*,Pgno,DbPage**,int); 1036 static int getPageError(Pager*,Pgno,DbPage**,int); 1037 #if SQLITE_MAX_MMAP_SIZE>0 1038 static int getPageMMap(Pager*,Pgno,DbPage**,int); 1039 #endif 1040 1041 /* 1042 ** Set the Pager.xGet method for the appropriate routine used to fetch 1043 ** content from the pager. 1044 */ 1045 static void setGetterMethod(Pager *pPager){ 1046 if( pPager->errCode ){ 1047 pPager->xGet = getPageError; 1048 #if SQLITE_MAX_MMAP_SIZE>0 1049 }else if( USEFETCH(pPager) ){ 1050 pPager->xGet = getPageMMap; 1051 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 1052 }else{ 1053 pPager->xGet = getPageNormal; 1054 } 1055 } 1056 1057 /* 1058 ** Return true if it is necessary to write page *pPg into the sub-journal. 1059 ** A page needs to be written into the sub-journal if there exists one 1060 ** or more open savepoints for which: 1061 ** 1062 ** * The page-number is less than or equal to PagerSavepoint.nOrig, and 1063 ** * The bit corresponding to the page-number is not set in 1064 ** PagerSavepoint.pInSavepoint. 1065 */ 1066 static int subjRequiresPage(PgHdr *pPg){ 1067 Pager *pPager = pPg->pPager; 1068 PagerSavepoint *p; 1069 Pgno pgno = pPg->pgno; 1070 int i; 1071 for(i=0; i<pPager->nSavepoint; i++){ 1072 p = &pPager->aSavepoint[i]; 1073 if( p->nOrig>=pgno && 0==sqlite3BitvecTestNotNull(p->pInSavepoint, pgno) ){ 1074 for(i=i+1; i<pPager->nSavepoint; i++){ 1075 pPager->aSavepoint[i].bTruncateOnRelease = 0; 1076 } 1077 return 1; 1078 } 1079 } 1080 return 0; 1081 } 1082 1083 #ifdef SQLITE_DEBUG 1084 /* 1085 ** Return true if the page is already in the journal file. 1086 */ 1087 static int pageInJournal(Pager *pPager, PgHdr *pPg){ 1088 return sqlite3BitvecTest(pPager->pInJournal, pPg->pgno); 1089 } 1090 #endif 1091 1092 /* 1093 ** Read a 32-bit integer from the given file descriptor. Store the integer 1094 ** that is read in *pRes. Return SQLITE_OK if everything worked, or an 1095 ** error code is something goes wrong. 1096 ** 1097 ** All values are stored on disk as big-endian. 1098 */ 1099 static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){ 1100 unsigned char ac[4]; 1101 int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset); 1102 if( rc==SQLITE_OK ){ 1103 *pRes = sqlite3Get4byte(ac); 1104 } 1105 return rc; 1106 } 1107 1108 /* 1109 ** Write a 32-bit integer into a string buffer in big-endian byte order. 1110 */ 1111 #define put32bits(A,B) sqlite3Put4byte((u8*)A,B) 1112 1113 1114 /* 1115 ** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK 1116 ** on success or an error code is something goes wrong. 1117 */ 1118 static int write32bits(sqlite3_file *fd, i64 offset, u32 val){ 1119 char ac[4]; 1120 put32bits(ac, val); 1121 return sqlite3OsWrite(fd, ac, 4, offset); 1122 } 1123 1124 /* 1125 ** Unlock the database file to level eLock, which must be either NO_LOCK 1126 ** or SHARED_LOCK. Regardless of whether or not the call to xUnlock() 1127 ** succeeds, set the Pager.eLock variable to match the (attempted) new lock. 1128 ** 1129 ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is 1130 ** called, do not modify it. See the comment above the #define of 1131 ** UNKNOWN_LOCK for an explanation of this. 1132 */ 1133 static int pagerUnlockDb(Pager *pPager, int eLock){ 1134 int rc = SQLITE_OK; 1135 1136 assert( !pPager->exclusiveMode || pPager->eLock==eLock ); 1137 assert( eLock==NO_LOCK || eLock==SHARED_LOCK ); 1138 assert( eLock!=NO_LOCK || pagerUseWal(pPager)==0 ); 1139 if( isOpen(pPager->fd) ){ 1140 assert( pPager->eLock>=eLock ); 1141 rc = pPager->noLock ? SQLITE_OK : sqlite3OsUnlock(pPager->fd, eLock); 1142 if( pPager->eLock!=UNKNOWN_LOCK ){ 1143 pPager->eLock = (u8)eLock; 1144 } 1145 IOTRACE(("UNLOCK %p %d\n", pPager, eLock)) 1146 } 1147 pPager->changeCountDone = pPager->tempFile; /* ticket fb3b3024ea238d5c */ 1148 return rc; 1149 } 1150 1151 /* 1152 ** Lock the database file to level eLock, which must be either SHARED_LOCK, 1153 ** RESERVED_LOCK or EXCLUSIVE_LOCK. If the caller is successful, set the 1154 ** Pager.eLock variable to the new locking state. 1155 ** 1156 ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is 1157 ** called, do not modify it unless the new locking state is EXCLUSIVE_LOCK. 1158 ** See the comment above the #define of UNKNOWN_LOCK for an explanation 1159 ** of this. 1160 */ 1161 static int pagerLockDb(Pager *pPager, int eLock){ 1162 int rc = SQLITE_OK; 1163 1164 assert( eLock==SHARED_LOCK || eLock==RESERVED_LOCK || eLock==EXCLUSIVE_LOCK ); 1165 if( pPager->eLock<eLock || pPager->eLock==UNKNOWN_LOCK ){ 1166 rc = pPager->noLock ? SQLITE_OK : sqlite3OsLock(pPager->fd, eLock); 1167 if( rc==SQLITE_OK && (pPager->eLock!=UNKNOWN_LOCK||eLock==EXCLUSIVE_LOCK) ){ 1168 pPager->eLock = (u8)eLock; 1169 IOTRACE(("LOCK %p %d\n", pPager, eLock)) 1170 } 1171 } 1172 return rc; 1173 } 1174 1175 /* 1176 ** This function determines whether or not the atomic-write or 1177 ** atomic-batch-write optimizations can be used with this pager. The 1178 ** atomic-write optimization can be used if: 1179 ** 1180 ** (a) the value returned by OsDeviceCharacteristics() indicates that 1181 ** a database page may be written atomically, and 1182 ** (b) the value returned by OsSectorSize() is less than or equal 1183 ** to the page size. 1184 ** 1185 ** If it can be used, then the value returned is the size of the journal 1186 ** file when it contains rollback data for exactly one page. 1187 ** 1188 ** The atomic-batch-write optimization can be used if OsDeviceCharacteristics() 1189 ** returns a value with the SQLITE_IOCAP_BATCH_ATOMIC bit set. -1 is 1190 ** returned in this case. 1191 ** 1192 ** If neither optimization can be used, 0 is returned. 1193 */ 1194 static int jrnlBufferSize(Pager *pPager){ 1195 assert( !MEMDB ); 1196 1197 #if defined(SQLITE_ENABLE_ATOMIC_WRITE) \ 1198 || defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) 1199 int dc; /* Device characteristics */ 1200 1201 assert( isOpen(pPager->fd) ); 1202 dc = sqlite3OsDeviceCharacteristics(pPager->fd); 1203 #else 1204 UNUSED_PARAMETER(pPager); 1205 #endif 1206 1207 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 1208 if( pPager->dbSize>0 && (dc&SQLITE_IOCAP_BATCH_ATOMIC) ){ 1209 return -1; 1210 } 1211 #endif 1212 1213 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 1214 { 1215 int nSector = pPager->sectorSize; 1216 int szPage = pPager->pageSize; 1217 1218 assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); 1219 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); 1220 if( 0==(dc&(SQLITE_IOCAP_ATOMIC|(szPage>>8)) || nSector>szPage) ){ 1221 return 0; 1222 } 1223 } 1224 1225 return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager); 1226 #endif 1227 1228 return 0; 1229 } 1230 1231 /* 1232 ** If SQLITE_CHECK_PAGES is defined then we do some sanity checking 1233 ** on the cache using a hash function. This is used for testing 1234 ** and debugging only. 1235 */ 1236 #ifdef SQLITE_CHECK_PAGES 1237 /* 1238 ** Return a 32-bit hash of the page data for pPage. 1239 */ 1240 static u32 pager_datahash(int nByte, unsigned char *pData){ 1241 u32 hash = 0; 1242 int i; 1243 for(i=0; i<nByte; i++){ 1244 hash = (hash*1039) + pData[i]; 1245 } 1246 return hash; 1247 } 1248 static u32 pager_pagehash(PgHdr *pPage){ 1249 return pager_datahash(pPage->pPager->pageSize, (unsigned char *)pPage->pData); 1250 } 1251 static void pager_set_pagehash(PgHdr *pPage){ 1252 pPage->pageHash = pager_pagehash(pPage); 1253 } 1254 1255 /* 1256 ** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES 1257 ** is defined, and NDEBUG is not defined, an assert() statement checks 1258 ** that the page is either dirty or still matches the calculated page-hash. 1259 */ 1260 #define CHECK_PAGE(x) checkPage(x) 1261 static void checkPage(PgHdr *pPg){ 1262 Pager *pPager = pPg->pPager; 1263 assert( pPager->eState!=PAGER_ERROR ); 1264 assert( (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) ); 1265 } 1266 1267 #else 1268 #define pager_datahash(X,Y) 0 1269 #define pager_pagehash(X) 0 1270 #define pager_set_pagehash(X) 1271 #define CHECK_PAGE(x) 1272 #endif /* SQLITE_CHECK_PAGES */ 1273 1274 /* 1275 ** When this is called the journal file for pager pPager must be open. 1276 ** This function attempts to read a super-journal file name from the 1277 ** end of the file and, if successful, copies it into memory supplied 1278 ** by the caller. See comments above writeSuperJournal() for the format 1279 ** used to store a super-journal file name at the end of a journal file. 1280 ** 1281 ** zSuper must point to a buffer of at least nSuper bytes allocated by 1282 ** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is 1283 ** enough space to write the super-journal name). If the super-journal 1284 ** name in the journal is longer than nSuper bytes (including a 1285 ** nul-terminator), then this is handled as if no super-journal name 1286 ** were present in the journal. 1287 ** 1288 ** If a super-journal file name is present at the end of the journal 1289 ** file, then it is copied into the buffer pointed to by zSuper. A 1290 ** nul-terminator byte is appended to the buffer following the 1291 ** super-journal file name. 1292 ** 1293 ** If it is determined that no super-journal file name is present 1294 ** zSuper[0] is set to 0 and SQLITE_OK returned. 1295 ** 1296 ** If an error occurs while reading from the journal file, an SQLite 1297 ** error code is returned. 1298 */ 1299 static int readSuperJournal(sqlite3_file *pJrnl, char *zSuper, u32 nSuper){ 1300 int rc; /* Return code */ 1301 u32 len; /* Length in bytes of super-journal name */ 1302 i64 szJ; /* Total size in bytes of journal file pJrnl */ 1303 u32 cksum; /* MJ checksum value read from journal */ 1304 u32 u; /* Unsigned loop counter */ 1305 unsigned char aMagic[8]; /* A buffer to hold the magic header */ 1306 zSuper[0] = '\0'; 1307 1308 if( SQLITE_OK!=(rc = sqlite3OsFileSize(pJrnl, &szJ)) 1309 || szJ<16 1310 || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-16, &len)) 1311 || len>=nSuper 1312 || len>szJ-16 1313 || len==0 1314 || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-12, &cksum)) 1315 || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8)) 1316 || memcmp(aMagic, aJournalMagic, 8) 1317 || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, zSuper, len, szJ-16-len)) 1318 ){ 1319 return rc; 1320 } 1321 1322 /* See if the checksum matches the super-journal name */ 1323 for(u=0; u<len; u++){ 1324 cksum -= zSuper[u]; 1325 } 1326 if( cksum ){ 1327 /* If the checksum doesn't add up, then one or more of the disk sectors 1328 ** containing the super-journal filename is corrupted. This means 1329 ** definitely roll back, so just return SQLITE_OK and report a (nul) 1330 ** super-journal filename. 1331 */ 1332 len = 0; 1333 } 1334 zSuper[len] = '\0'; 1335 zSuper[len+1] = '\0'; 1336 1337 return SQLITE_OK; 1338 } 1339 1340 /* 1341 ** Return the offset of the sector boundary at or immediately 1342 ** following the value in pPager->journalOff, assuming a sector 1343 ** size of pPager->sectorSize bytes. 1344 ** 1345 ** i.e for a sector size of 512: 1346 ** 1347 ** Pager.journalOff Return value 1348 ** --------------------------------------- 1349 ** 0 0 1350 ** 512 512 1351 ** 100 512 1352 ** 2000 2048 1353 ** 1354 */ 1355 static i64 journalHdrOffset(Pager *pPager){ 1356 i64 offset = 0; 1357 i64 c = pPager->journalOff; 1358 if( c ){ 1359 offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager); 1360 } 1361 assert( offset%JOURNAL_HDR_SZ(pPager)==0 ); 1362 assert( offset>=c ); 1363 assert( (offset-c)<JOURNAL_HDR_SZ(pPager) ); 1364 return offset; 1365 } 1366 1367 /* 1368 ** The journal file must be open when this function is called. 1369 ** 1370 ** This function is a no-op if the journal file has not been written to 1371 ** within the current transaction (i.e. if Pager.journalOff==0). 1372 ** 1373 ** If doTruncate is non-zero or the Pager.journalSizeLimit variable is 1374 ** set to 0, then truncate the journal file to zero bytes in size. Otherwise, 1375 ** zero the 28-byte header at the start of the journal file. In either case, 1376 ** if the pager is not in no-sync mode, sync the journal file immediately 1377 ** after writing or truncating it. 1378 ** 1379 ** If Pager.journalSizeLimit is set to a positive, non-zero value, and 1380 ** following the truncation or zeroing described above the size of the 1381 ** journal file in bytes is larger than this value, then truncate the 1382 ** journal file to Pager.journalSizeLimit bytes. The journal file does 1383 ** not need to be synced following this operation. 1384 ** 1385 ** If an IO error occurs, abandon processing and return the IO error code. 1386 ** Otherwise, return SQLITE_OK. 1387 */ 1388 static int zeroJournalHdr(Pager *pPager, int doTruncate){ 1389 int rc = SQLITE_OK; /* Return code */ 1390 assert( isOpen(pPager->jfd) ); 1391 assert( !sqlite3JournalIsInMemory(pPager->jfd) ); 1392 if( pPager->journalOff ){ 1393 const i64 iLimit = pPager->journalSizeLimit; /* Local cache of jsl */ 1394 1395 IOTRACE(("JZEROHDR %p\n", pPager)) 1396 if( doTruncate || iLimit==0 ){ 1397 rc = sqlite3OsTruncate(pPager->jfd, 0); 1398 }else{ 1399 static const char zeroHdr[28] = {0}; 1400 rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0); 1401 } 1402 if( rc==SQLITE_OK && !pPager->noSync ){ 1403 rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->syncFlags); 1404 } 1405 1406 /* At this point the transaction is committed but the write lock 1407 ** is still held on the file. If there is a size limit configured for 1408 ** the persistent journal and the journal file currently consumes more 1409 ** space than that limit allows for, truncate it now. There is no need 1410 ** to sync the file following this operation. 1411 */ 1412 if( rc==SQLITE_OK && iLimit>0 ){ 1413 i64 sz; 1414 rc = sqlite3OsFileSize(pPager->jfd, &sz); 1415 if( rc==SQLITE_OK && sz>iLimit ){ 1416 rc = sqlite3OsTruncate(pPager->jfd, iLimit); 1417 } 1418 } 1419 } 1420 return rc; 1421 } 1422 1423 /* 1424 ** The journal file must be open when this routine is called. A journal 1425 ** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the 1426 ** current location. 1427 ** 1428 ** The format for the journal header is as follows: 1429 ** - 8 bytes: Magic identifying journal format. 1430 ** - 4 bytes: Number of records in journal, or -1 no-sync mode is on. 1431 ** - 4 bytes: Random number used for page hash. 1432 ** - 4 bytes: Initial database page count. 1433 ** - 4 bytes: Sector size used by the process that wrote this journal. 1434 ** - 4 bytes: Database page size. 1435 ** 1436 ** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space. 1437 */ 1438 static int writeJournalHdr(Pager *pPager){ 1439 int rc = SQLITE_OK; /* Return code */ 1440 char *zHeader = pPager->pTmpSpace; /* Temporary space used to build header */ 1441 u32 nHeader = (u32)pPager->pageSize;/* Size of buffer pointed to by zHeader */ 1442 u32 nWrite; /* Bytes of header sector written */ 1443 int ii; /* Loop counter */ 1444 1445 assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ 1446 1447 if( nHeader>JOURNAL_HDR_SZ(pPager) ){ 1448 nHeader = JOURNAL_HDR_SZ(pPager); 1449 } 1450 1451 /* If there are active savepoints and any of them were created 1452 ** since the most recent journal header was written, update the 1453 ** PagerSavepoint.iHdrOffset fields now. 1454 */ 1455 for(ii=0; ii<pPager->nSavepoint; ii++){ 1456 if( pPager->aSavepoint[ii].iHdrOffset==0 ){ 1457 pPager->aSavepoint[ii].iHdrOffset = pPager->journalOff; 1458 } 1459 } 1460 1461 pPager->journalHdr = pPager->journalOff = journalHdrOffset(pPager); 1462 1463 /* 1464 ** Write the nRec Field - the number of page records that follow this 1465 ** journal header. Normally, zero is written to this value at this time. 1466 ** After the records are added to the journal (and the journal synced, 1467 ** if in full-sync mode), the zero is overwritten with the true number 1468 ** of records (see syncJournal()). 1469 ** 1470 ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When 1471 ** reading the journal this value tells SQLite to assume that the 1472 ** rest of the journal file contains valid page records. This assumption 1473 ** is dangerous, as if a failure occurred whilst writing to the journal 1474 ** file it may contain some garbage data. There are two scenarios 1475 ** where this risk can be ignored: 1476 ** 1477 ** * When the pager is in no-sync mode. Corruption can follow a 1478 ** power failure in this case anyway. 1479 ** 1480 ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees 1481 ** that garbage data is never appended to the journal file. 1482 */ 1483 assert( isOpen(pPager->fd) || pPager->noSync ); 1484 if( pPager->noSync || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY) 1485 || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) 1486 ){ 1487 memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); 1488 put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff); 1489 }else{ 1490 memset(zHeader, 0, sizeof(aJournalMagic)+4); 1491 } 1492 1493 /* The random check-hash initializer */ 1494 sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit); 1495 put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit); 1496 /* The initial database size */ 1497 put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbOrigSize); 1498 /* The assumed sector size for this process */ 1499 put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize); 1500 1501 /* The page size */ 1502 put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize); 1503 1504 /* Initializing the tail of the buffer is not necessary. Everything 1505 ** works find if the following memset() is omitted. But initializing 1506 ** the memory prevents valgrind from complaining, so we are willing to 1507 ** take the performance hit. 1508 */ 1509 memset(&zHeader[sizeof(aJournalMagic)+20], 0, 1510 nHeader-(sizeof(aJournalMagic)+20)); 1511 1512 /* In theory, it is only necessary to write the 28 bytes that the 1513 ** journal header consumes to the journal file here. Then increment the 1514 ** Pager.journalOff variable by JOURNAL_HDR_SZ so that the next 1515 ** record is written to the following sector (leaving a gap in the file 1516 ** that will be implicitly filled in by the OS). 1517 ** 1518 ** However it has been discovered that on some systems this pattern can 1519 ** be significantly slower than contiguously writing data to the file, 1520 ** even if that means explicitly writing data to the block of 1521 ** (JOURNAL_HDR_SZ - 28) bytes that will not be used. So that is what 1522 ** is done. 1523 ** 1524 ** The loop is required here in case the sector-size is larger than the 1525 ** database page size. Since the zHeader buffer is only Pager.pageSize 1526 ** bytes in size, more than one call to sqlite3OsWrite() may be required 1527 ** to populate the entire journal header sector. 1528 */ 1529 for(nWrite=0; rc==SQLITE_OK&&nWrite<JOURNAL_HDR_SZ(pPager); nWrite+=nHeader){ 1530 IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, nHeader)) 1531 rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff); 1532 assert( pPager->journalHdr <= pPager->journalOff ); 1533 pPager->journalOff += nHeader; 1534 } 1535 1536 return rc; 1537 } 1538 1539 /* 1540 ** The journal file must be open when this is called. A journal header file 1541 ** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal 1542 ** file. The current location in the journal file is given by 1543 ** pPager->journalOff. See comments above function writeJournalHdr() for 1544 ** a description of the journal header format. 1545 ** 1546 ** If the header is read successfully, *pNRec is set to the number of 1547 ** page records following this header and *pDbSize is set to the size of the 1548 ** database before the transaction began, in pages. Also, pPager->cksumInit 1549 ** is set to the value read from the journal header. SQLITE_OK is returned 1550 ** in this case. 1551 ** 1552 ** If the journal header file appears to be corrupted, SQLITE_DONE is 1553 ** returned and *pNRec and *PDbSize are undefined. If JOURNAL_HDR_SZ bytes 1554 ** cannot be read from the journal file an error code is returned. 1555 */ 1556 static int readJournalHdr( 1557 Pager *pPager, /* Pager object */ 1558 int isHot, 1559 i64 journalSize, /* Size of the open journal file in bytes */ 1560 u32 *pNRec, /* OUT: Value read from the nRec field */ 1561 u32 *pDbSize /* OUT: Value of original database size field */ 1562 ){ 1563 int rc; /* Return code */ 1564 unsigned char aMagic[8]; /* A buffer to hold the magic header */ 1565 i64 iHdrOff; /* Offset of journal header being read */ 1566 1567 assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ 1568 1569 /* Advance Pager.journalOff to the start of the next sector. If the 1570 ** journal file is too small for there to be a header stored at this 1571 ** point, return SQLITE_DONE. 1572 */ 1573 pPager->journalOff = journalHdrOffset(pPager); 1574 if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){ 1575 return SQLITE_DONE; 1576 } 1577 iHdrOff = pPager->journalOff; 1578 1579 /* Read in the first 8 bytes of the journal header. If they do not match 1580 ** the magic string found at the start of each journal header, return 1581 ** SQLITE_DONE. If an IO error occurs, return an error code. Otherwise, 1582 ** proceed. 1583 */ 1584 if( isHot || iHdrOff!=pPager->journalHdr ){ 1585 rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), iHdrOff); 1586 if( rc ){ 1587 return rc; 1588 } 1589 if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){ 1590 return SQLITE_DONE; 1591 } 1592 } 1593 1594 /* Read the first three 32-bit fields of the journal header: The nRec 1595 ** field, the checksum-initializer and the database size at the start 1596 ** of the transaction. Return an error code if anything goes wrong. 1597 */ 1598 if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+8, pNRec)) 1599 || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+12, &pPager->cksumInit)) 1600 || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+16, pDbSize)) 1601 ){ 1602 return rc; 1603 } 1604 1605 if( pPager->journalOff==0 ){ 1606 u32 iPageSize; /* Page-size field of journal header */ 1607 u32 iSectorSize; /* Sector-size field of journal header */ 1608 1609 /* Read the page-size and sector-size journal header fields. */ 1610 if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+20, &iSectorSize)) 1611 || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+24, &iPageSize)) 1612 ){ 1613 return rc; 1614 } 1615 1616 /* Versions of SQLite prior to 3.5.8 set the page-size field of the 1617 ** journal header to zero. In this case, assume that the Pager.pageSize 1618 ** variable is already set to the correct page size. 1619 */ 1620 if( iPageSize==0 ){ 1621 iPageSize = pPager->pageSize; 1622 } 1623 1624 /* Check that the values read from the page-size and sector-size fields 1625 ** are within range. To be 'in range', both values need to be a power 1626 ** of two greater than or equal to 512 or 32, and not greater than their 1627 ** respective compile time maximum limits. 1628 */ 1629 if( iPageSize<512 || iSectorSize<32 1630 || iPageSize>SQLITE_MAX_PAGE_SIZE || iSectorSize>MAX_SECTOR_SIZE 1631 || ((iPageSize-1)&iPageSize)!=0 || ((iSectorSize-1)&iSectorSize)!=0 1632 ){ 1633 /* If the either the page-size or sector-size in the journal-header is 1634 ** invalid, then the process that wrote the journal-header must have 1635 ** crashed before the header was synced. In this case stop reading 1636 ** the journal file here. 1637 */ 1638 return SQLITE_DONE; 1639 } 1640 1641 /* Update the page-size to match the value read from the journal. 1642 ** Use a testcase() macro to make sure that malloc failure within 1643 ** PagerSetPagesize() is tested. 1644 */ 1645 rc = sqlite3PagerSetPagesize(pPager, &iPageSize, -1); 1646 testcase( rc!=SQLITE_OK ); 1647 1648 /* Update the assumed sector-size to match the value used by 1649 ** the process that created this journal. If this journal was 1650 ** created by a process other than this one, then this routine 1651 ** is being called from within pager_playback(). The local value 1652 ** of Pager.sectorSize is restored at the end of that routine. 1653 */ 1654 pPager->sectorSize = iSectorSize; 1655 } 1656 1657 pPager->journalOff += JOURNAL_HDR_SZ(pPager); 1658 return rc; 1659 } 1660 1661 1662 /* 1663 ** Write the supplied super-journal name into the journal file for pager 1664 ** pPager at the current location. The super-journal name must be the last 1665 ** thing written to a journal file. If the pager is in full-sync mode, the 1666 ** journal file descriptor is advanced to the next sector boundary before 1667 ** anything is written. The format is: 1668 ** 1669 ** + 4 bytes: PAGER_MJ_PGNO. 1670 ** + N bytes: super-journal filename in utf-8. 1671 ** + 4 bytes: N (length of super-journal name in bytes, no nul-terminator). 1672 ** + 4 bytes: super-journal name checksum. 1673 ** + 8 bytes: aJournalMagic[]. 1674 ** 1675 ** The super-journal page checksum is the sum of the bytes in thesuper-journal 1676 ** name, where each byte is interpreted as a signed 8-bit integer. 1677 ** 1678 ** If zSuper is a NULL pointer (occurs for a single database transaction), 1679 ** this call is a no-op. 1680 */ 1681 static int writeSuperJournal(Pager *pPager, const char *zSuper){ 1682 int rc; /* Return code */ 1683 int nSuper; /* Length of string zSuper */ 1684 i64 iHdrOff; /* Offset of header in journal file */ 1685 i64 jrnlSize; /* Size of journal file on disk */ 1686 u32 cksum = 0; /* Checksum of string zSuper */ 1687 1688 assert( pPager->setSuper==0 ); 1689 assert( !pagerUseWal(pPager) ); 1690 1691 if( !zSuper 1692 || pPager->journalMode==PAGER_JOURNALMODE_MEMORY 1693 || !isOpen(pPager->jfd) 1694 ){ 1695 return SQLITE_OK; 1696 } 1697 pPager->setSuper = 1; 1698 assert( pPager->journalHdr <= pPager->journalOff ); 1699 1700 /* Calculate the length in bytes and the checksum of zSuper */ 1701 for(nSuper=0; zSuper[nSuper]; nSuper++){ 1702 cksum += zSuper[nSuper]; 1703 } 1704 1705 /* If in full-sync mode, advance to the next disk sector before writing 1706 ** the super-journal name. This is in case the previous page written to 1707 ** the journal has already been synced. 1708 */ 1709 if( pPager->fullSync ){ 1710 pPager->journalOff = journalHdrOffset(pPager); 1711 } 1712 iHdrOff = pPager->journalOff; 1713 1714 /* Write the super-journal data to the end of the journal file. If 1715 ** an error occurs, return the error code to the caller. 1716 */ 1717 if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_MJ_PGNO(pPager)))) 1718 || (0 != (rc = sqlite3OsWrite(pPager->jfd, zSuper, nSuper, iHdrOff+4))) 1719 || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nSuper, nSuper))) 1720 || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nSuper+4, cksum))) 1721 || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8, 1722 iHdrOff+4+nSuper+8))) 1723 ){ 1724 return rc; 1725 } 1726 pPager->journalOff += (nSuper+20); 1727 1728 /* If the pager is in peristent-journal mode, then the physical 1729 ** journal-file may extend past the end of the super-journal name 1730 ** and 8 bytes of magic data just written to the file. This is 1731 ** dangerous because the code to rollback a hot-journal file 1732 ** will not be able to find the super-journal name to determine 1733 ** whether or not the journal is hot. 1734 ** 1735 ** Easiest thing to do in this scenario is to truncate the journal 1736 ** file to the required size. 1737 */ 1738 if( SQLITE_OK==(rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize)) 1739 && jrnlSize>pPager->journalOff 1740 ){ 1741 rc = sqlite3OsTruncate(pPager->jfd, pPager->journalOff); 1742 } 1743 return rc; 1744 } 1745 1746 /* 1747 ** Discard the entire contents of the in-memory page-cache. 1748 */ 1749 static void pager_reset(Pager *pPager){ 1750 pPager->iDataVersion++; 1751 sqlite3BackupRestart(pPager->pBackup); 1752 sqlite3PcacheClear(pPager->pPCache); 1753 } 1754 1755 /* 1756 ** Return the pPager->iDataVersion value 1757 */ 1758 u32 sqlite3PagerDataVersion(Pager *pPager){ 1759 return pPager->iDataVersion; 1760 } 1761 1762 /* 1763 ** Free all structures in the Pager.aSavepoint[] array and set both 1764 ** Pager.aSavepoint and Pager.nSavepoint to zero. Close the sub-journal 1765 ** if it is open and the pager is not in exclusive mode. 1766 */ 1767 static void releaseAllSavepoints(Pager *pPager){ 1768 int ii; /* Iterator for looping through Pager.aSavepoint */ 1769 for(ii=0; ii<pPager->nSavepoint; ii++){ 1770 sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); 1771 } 1772 if( !pPager->exclusiveMode || sqlite3JournalIsInMemory(pPager->sjfd) ){ 1773 sqlite3OsClose(pPager->sjfd); 1774 } 1775 sqlite3_free(pPager->aSavepoint); 1776 pPager->aSavepoint = 0; 1777 pPager->nSavepoint = 0; 1778 pPager->nSubRec = 0; 1779 } 1780 1781 /* 1782 ** Set the bit number pgno in the PagerSavepoint.pInSavepoint 1783 ** bitvecs of all open savepoints. Return SQLITE_OK if successful 1784 ** or SQLITE_NOMEM if a malloc failure occurs. 1785 */ 1786 static int addToSavepointBitvecs(Pager *pPager, Pgno pgno){ 1787 int ii; /* Loop counter */ 1788 int rc = SQLITE_OK; /* Result code */ 1789 1790 for(ii=0; ii<pPager->nSavepoint; ii++){ 1791 PagerSavepoint *p = &pPager->aSavepoint[ii]; 1792 if( pgno<=p->nOrig ){ 1793 rc |= sqlite3BitvecSet(p->pInSavepoint, pgno); 1794 testcase( rc==SQLITE_NOMEM ); 1795 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 1796 } 1797 } 1798 return rc; 1799 } 1800 1801 /* 1802 ** This function is a no-op if the pager is in exclusive mode and not 1803 ** in the ERROR state. Otherwise, it switches the pager to PAGER_OPEN 1804 ** state. 1805 ** 1806 ** If the pager is not in exclusive-access mode, the database file is 1807 ** completely unlocked. If the file is unlocked and the file-system does 1808 ** not exhibit the UNDELETABLE_WHEN_OPEN property, the journal file is 1809 ** closed (if it is open). 1810 ** 1811 ** If the pager is in ERROR state when this function is called, the 1812 ** contents of the pager cache are discarded before switching back to 1813 ** the OPEN state. Regardless of whether the pager is in exclusive-mode 1814 ** or not, any journal file left in the file-system will be treated 1815 ** as a hot-journal and rolled back the next time a read-transaction 1816 ** is opened (by this or by any other connection). 1817 */ 1818 static void pager_unlock(Pager *pPager){ 1819 1820 assert( pPager->eState==PAGER_READER 1821 || pPager->eState==PAGER_OPEN 1822 || pPager->eState==PAGER_ERROR 1823 ); 1824 1825 sqlite3BitvecDestroy(pPager->pInJournal); 1826 pPager->pInJournal = 0; 1827 releaseAllSavepoints(pPager); 1828 1829 if( pagerUseWal(pPager) ){ 1830 assert( !isOpen(pPager->jfd) ); 1831 sqlite3WalEndReadTransaction(pPager->pWal); 1832 pPager->eState = PAGER_OPEN; 1833 }else if( !pPager->exclusiveMode ){ 1834 int rc; /* Error code returned by pagerUnlockDb() */ 1835 int iDc = isOpen(pPager->fd)?sqlite3OsDeviceCharacteristics(pPager->fd):0; 1836 1837 /* If the operating system support deletion of open files, then 1838 ** close the journal file when dropping the database lock. Otherwise 1839 ** another connection with journal_mode=delete might delete the file 1840 ** out from under us. 1841 */ 1842 assert( (PAGER_JOURNALMODE_MEMORY & 5)!=1 ); 1843 assert( (PAGER_JOURNALMODE_OFF & 5)!=1 ); 1844 assert( (PAGER_JOURNALMODE_WAL & 5)!=1 ); 1845 assert( (PAGER_JOURNALMODE_DELETE & 5)!=1 ); 1846 assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); 1847 assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); 1848 if( 0==(iDc & SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN) 1849 || 1!=(pPager->journalMode & 5) 1850 ){ 1851 sqlite3OsClose(pPager->jfd); 1852 } 1853 1854 /* If the pager is in the ERROR state and the call to unlock the database 1855 ** file fails, set the current lock to UNKNOWN_LOCK. See the comment 1856 ** above the #define for UNKNOWN_LOCK for an explanation of why this 1857 ** is necessary. 1858 */ 1859 rc = pagerUnlockDb(pPager, NO_LOCK); 1860 if( rc!=SQLITE_OK && pPager->eState==PAGER_ERROR ){ 1861 pPager->eLock = UNKNOWN_LOCK; 1862 } 1863 1864 /* The pager state may be changed from PAGER_ERROR to PAGER_OPEN here 1865 ** without clearing the error code. This is intentional - the error 1866 ** code is cleared and the cache reset in the block below. 1867 */ 1868 assert( pPager->errCode || pPager->eState!=PAGER_ERROR ); 1869 pPager->eState = PAGER_OPEN; 1870 } 1871 1872 /* If Pager.errCode is set, the contents of the pager cache cannot be 1873 ** trusted. Now that there are no outstanding references to the pager, 1874 ** it can safely move back to PAGER_OPEN state. This happens in both 1875 ** normal and exclusive-locking mode. 1876 */ 1877 assert( pPager->errCode==SQLITE_OK || !MEMDB ); 1878 if( pPager->errCode ){ 1879 if( pPager->tempFile==0 ){ 1880 pager_reset(pPager); 1881 pPager->changeCountDone = 0; 1882 pPager->eState = PAGER_OPEN; 1883 }else{ 1884 pPager->eState = (isOpen(pPager->jfd) ? PAGER_OPEN : PAGER_READER); 1885 } 1886 if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0); 1887 pPager->errCode = SQLITE_OK; 1888 setGetterMethod(pPager); 1889 } 1890 1891 pPager->journalOff = 0; 1892 pPager->journalHdr = 0; 1893 pPager->setSuper = 0; 1894 } 1895 1896 /* 1897 ** This function is called whenever an IOERR or FULL error that requires 1898 ** the pager to transition into the ERROR state may ahve occurred. 1899 ** The first argument is a pointer to the pager structure, the second 1900 ** the error-code about to be returned by a pager API function. The 1901 ** value returned is a copy of the second argument to this function. 1902 ** 1903 ** If the second argument is SQLITE_FULL, SQLITE_IOERR or one of the 1904 ** IOERR sub-codes, the pager enters the ERROR state and the error code 1905 ** is stored in Pager.errCode. While the pager remains in the ERROR state, 1906 ** all major API calls on the Pager will immediately return Pager.errCode. 1907 ** 1908 ** The ERROR state indicates that the contents of the pager-cache 1909 ** cannot be trusted. This state can be cleared by completely discarding 1910 ** the contents of the pager-cache. If a transaction was active when 1911 ** the persistent error occurred, then the rollback journal may need 1912 ** to be replayed to restore the contents of the database file (as if 1913 ** it were a hot-journal). 1914 */ 1915 static int pager_error(Pager *pPager, int rc){ 1916 int rc2 = rc & 0xff; 1917 assert( rc==SQLITE_OK || !MEMDB ); 1918 assert( 1919 pPager->errCode==SQLITE_FULL || 1920 pPager->errCode==SQLITE_OK || 1921 (pPager->errCode & 0xff)==SQLITE_IOERR 1922 ); 1923 if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR ){ 1924 pPager->errCode = rc; 1925 pPager->eState = PAGER_ERROR; 1926 setGetterMethod(pPager); 1927 } 1928 return rc; 1929 } 1930 1931 static int pager_truncate(Pager *pPager, Pgno nPage); 1932 1933 /* 1934 ** The write transaction open on pPager is being committed (bCommit==1) 1935 ** or rolled back (bCommit==0). 1936 ** 1937 ** Return TRUE if and only if all dirty pages should be flushed to disk. 1938 ** 1939 ** Rules: 1940 ** 1941 ** * For non-TEMP databases, always sync to disk. This is necessary 1942 ** for transactions to be durable. 1943 ** 1944 ** * Sync TEMP database only on a COMMIT (not a ROLLBACK) when the backing 1945 ** file has been created already (via a spill on pagerStress()) and 1946 ** when the number of dirty pages in memory exceeds 25% of the total 1947 ** cache size. 1948 */ 1949 static int pagerFlushOnCommit(Pager *pPager, int bCommit){ 1950 if( pPager->tempFile==0 ) return 1; 1951 if( !bCommit ) return 0; 1952 if( !isOpen(pPager->fd) ) return 0; 1953 return (sqlite3PCachePercentDirty(pPager->pPCache)>=25); 1954 } 1955 1956 /* 1957 ** This routine ends a transaction. A transaction is usually ended by 1958 ** either a COMMIT or a ROLLBACK operation. This routine may be called 1959 ** after rollback of a hot-journal, or if an error occurs while opening 1960 ** the journal file or writing the very first journal-header of a 1961 ** database transaction. 1962 ** 1963 ** This routine is never called in PAGER_ERROR state. If it is called 1964 ** in PAGER_NONE or PAGER_SHARED state and the lock held is less 1965 ** exclusive than a RESERVED lock, it is a no-op. 1966 ** 1967 ** Otherwise, any active savepoints are released. 1968 ** 1969 ** If the journal file is open, then it is "finalized". Once a journal 1970 ** file has been finalized it is not possible to use it to roll back a 1971 ** transaction. Nor will it be considered to be a hot-journal by this 1972 ** or any other database connection. Exactly how a journal is finalized 1973 ** depends on whether or not the pager is running in exclusive mode and 1974 ** the current journal-mode (Pager.journalMode value), as follows: 1975 ** 1976 ** journalMode==MEMORY 1977 ** Journal file descriptor is simply closed. This destroys an 1978 ** in-memory journal. 1979 ** 1980 ** journalMode==TRUNCATE 1981 ** Journal file is truncated to zero bytes in size. 1982 ** 1983 ** journalMode==PERSIST 1984 ** The first 28 bytes of the journal file are zeroed. This invalidates 1985 ** the first journal header in the file, and hence the entire journal 1986 ** file. An invalid journal file cannot be rolled back. 1987 ** 1988 ** journalMode==DELETE 1989 ** The journal file is closed and deleted using sqlite3OsDelete(). 1990 ** 1991 ** If the pager is running in exclusive mode, this method of finalizing 1992 ** the journal file is never used. Instead, if the journalMode is 1993 ** DELETE and the pager is in exclusive mode, the method described under 1994 ** journalMode==PERSIST is used instead. 1995 ** 1996 ** After the journal is finalized, the pager moves to PAGER_READER state. 1997 ** If running in non-exclusive rollback mode, the lock on the file is 1998 ** downgraded to a SHARED_LOCK. 1999 ** 2000 ** SQLITE_OK is returned if no error occurs. If an error occurs during 2001 ** any of the IO operations to finalize the journal file or unlock the 2002 ** database then the IO error code is returned to the user. If the 2003 ** operation to finalize the journal file fails, then the code still 2004 ** tries to unlock the database file if not in exclusive mode. If the 2005 ** unlock operation fails as well, then the first error code related 2006 ** to the first error encountered (the journal finalization one) is 2007 ** returned. 2008 */ 2009 static int pager_end_transaction(Pager *pPager, int hasSuper, int bCommit){ 2010 int rc = SQLITE_OK; /* Error code from journal finalization operation */ 2011 int rc2 = SQLITE_OK; /* Error code from db file unlock operation */ 2012 2013 /* Do nothing if the pager does not have an open write transaction 2014 ** or at least a RESERVED lock. This function may be called when there 2015 ** is no write-transaction active but a RESERVED or greater lock is 2016 ** held under two circumstances: 2017 ** 2018 ** 1. After a successful hot-journal rollback, it is called with 2019 ** eState==PAGER_NONE and eLock==EXCLUSIVE_LOCK. 2020 ** 2021 ** 2. If a connection with locking_mode=exclusive holding an EXCLUSIVE 2022 ** lock switches back to locking_mode=normal and then executes a 2023 ** read-transaction, this function is called with eState==PAGER_READER 2024 ** and eLock==EXCLUSIVE_LOCK when the read-transaction is closed. 2025 */ 2026 assert( assert_pager_state(pPager) ); 2027 assert( pPager->eState!=PAGER_ERROR ); 2028 if( pPager->eState<PAGER_WRITER_LOCKED && pPager->eLock<RESERVED_LOCK ){ 2029 return SQLITE_OK; 2030 } 2031 2032 releaseAllSavepoints(pPager); 2033 assert( isOpen(pPager->jfd) || pPager->pInJournal==0 2034 || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_BATCH_ATOMIC) 2035 ); 2036 if( isOpen(pPager->jfd) ){ 2037 assert( !pagerUseWal(pPager) ); 2038 2039 /* Finalize the journal file. */ 2040 if( sqlite3JournalIsInMemory(pPager->jfd) ){ 2041 /* assert( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ); */ 2042 sqlite3OsClose(pPager->jfd); 2043 }else if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE ){ 2044 if( pPager->journalOff==0 ){ 2045 rc = SQLITE_OK; 2046 }else{ 2047 rc = sqlite3OsTruncate(pPager->jfd, 0); 2048 if( rc==SQLITE_OK && pPager->fullSync ){ 2049 /* Make sure the new file size is written into the inode right away. 2050 ** Otherwise the journal might resurrect following a power loss and 2051 ** cause the last transaction to roll back. See 2052 ** https://bugzilla.mozilla.org/show_bug.cgi?id=1072773 2053 */ 2054 rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags); 2055 } 2056 } 2057 pPager->journalOff = 0; 2058 }else if( pPager->journalMode==PAGER_JOURNALMODE_PERSIST 2059 || (pPager->exclusiveMode && pPager->journalMode!=PAGER_JOURNALMODE_WAL) 2060 ){ 2061 rc = zeroJournalHdr(pPager, hasSuper||pPager->tempFile); 2062 pPager->journalOff = 0; 2063 }else{ 2064 /* This branch may be executed with Pager.journalMode==MEMORY if 2065 ** a hot-journal was just rolled back. In this case the journal 2066 ** file should be closed and deleted. If this connection writes to 2067 ** the database file, it will do so using an in-memory journal. 2068 */ 2069 int bDelete = !pPager->tempFile; 2070 assert( sqlite3JournalIsInMemory(pPager->jfd)==0 ); 2071 assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE 2072 || pPager->journalMode==PAGER_JOURNALMODE_MEMORY 2073 || pPager->journalMode==PAGER_JOURNALMODE_WAL 2074 ); 2075 sqlite3OsClose(pPager->jfd); 2076 if( bDelete ){ 2077 rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, pPager->extraSync); 2078 } 2079 } 2080 } 2081 2082 #ifdef SQLITE_CHECK_PAGES 2083 sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash); 2084 if( pPager->dbSize==0 && sqlite3PcacheRefCount(pPager->pPCache)>0 ){ 2085 PgHdr *p = sqlite3PagerLookup(pPager, 1); 2086 if( p ){ 2087 p->pageHash = 0; 2088 sqlite3PagerUnrefNotNull(p); 2089 } 2090 } 2091 #endif 2092 2093 sqlite3BitvecDestroy(pPager->pInJournal); 2094 pPager->pInJournal = 0; 2095 pPager->nRec = 0; 2096 if( rc==SQLITE_OK ){ 2097 if( MEMDB || pagerFlushOnCommit(pPager, bCommit) ){ 2098 sqlite3PcacheCleanAll(pPager->pPCache); 2099 }else{ 2100 sqlite3PcacheClearWritable(pPager->pPCache); 2101 } 2102 sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize); 2103 } 2104 2105 if( pagerUseWal(pPager) ){ 2106 /* Drop the WAL write-lock, if any. Also, if the connection was in 2107 ** locking_mode=exclusive mode but is no longer, drop the EXCLUSIVE 2108 ** lock held on the database file. 2109 */ 2110 rc2 = sqlite3WalEndWriteTransaction(pPager->pWal); 2111 assert( rc2==SQLITE_OK ); 2112 }else if( rc==SQLITE_OK && bCommit && pPager->dbFileSize>pPager->dbSize ){ 2113 /* This branch is taken when committing a transaction in rollback-journal 2114 ** mode if the database file on disk is larger than the database image. 2115 ** At this point the journal has been finalized and the transaction 2116 ** successfully committed, but the EXCLUSIVE lock is still held on the 2117 ** file. So it is safe to truncate the database file to its minimum 2118 ** required size. */ 2119 assert( pPager->eLock==EXCLUSIVE_LOCK ); 2120 rc = pager_truncate(pPager, pPager->dbSize); 2121 } 2122 2123 if( rc==SQLITE_OK && bCommit ){ 2124 rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_COMMIT_PHASETWO, 0); 2125 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 2126 } 2127 2128 if( !pPager->exclusiveMode 2129 && (!pagerUseWal(pPager) || sqlite3WalExclusiveMode(pPager->pWal, 0)) 2130 ){ 2131 rc2 = pagerUnlockDb(pPager, SHARED_LOCK); 2132 } 2133 pPager->eState = PAGER_READER; 2134 pPager->setSuper = 0; 2135 2136 return (rc==SQLITE_OK?rc2:rc); 2137 } 2138 2139 /* 2140 ** Execute a rollback if a transaction is active and unlock the 2141 ** database file. 2142 ** 2143 ** If the pager has already entered the ERROR state, do not attempt 2144 ** the rollback at this time. Instead, pager_unlock() is called. The 2145 ** call to pager_unlock() will discard all in-memory pages, unlock 2146 ** the database file and move the pager back to OPEN state. If this 2147 ** means that there is a hot-journal left in the file-system, the next 2148 ** connection to obtain a shared lock on the pager (which may be this one) 2149 ** will roll it back. 2150 ** 2151 ** If the pager has not already entered the ERROR state, but an IO or 2152 ** malloc error occurs during a rollback, then this will itself cause 2153 ** the pager to enter the ERROR state. Which will be cleared by the 2154 ** call to pager_unlock(), as described above. 2155 */ 2156 static void pagerUnlockAndRollback(Pager *pPager){ 2157 if( pPager->eState!=PAGER_ERROR && pPager->eState!=PAGER_OPEN ){ 2158 assert( assert_pager_state(pPager) ); 2159 if( pPager->eState>=PAGER_WRITER_LOCKED ){ 2160 sqlite3BeginBenignMalloc(); 2161 sqlite3PagerRollback(pPager); 2162 sqlite3EndBenignMalloc(); 2163 }else if( !pPager->exclusiveMode ){ 2164 assert( pPager->eState==PAGER_READER ); 2165 pager_end_transaction(pPager, 0, 0); 2166 } 2167 } 2168 pager_unlock(pPager); 2169 } 2170 2171 /* 2172 ** Parameter aData must point to a buffer of pPager->pageSize bytes 2173 ** of data. Compute and return a checksum based ont the contents of the 2174 ** page of data and the current value of pPager->cksumInit. 2175 ** 2176 ** This is not a real checksum. It is really just the sum of the 2177 ** random initial value (pPager->cksumInit) and every 200th byte 2178 ** of the page data, starting with byte offset (pPager->pageSize%200). 2179 ** Each byte is interpreted as an 8-bit unsigned integer. 2180 ** 2181 ** Changing the formula used to compute this checksum results in an 2182 ** incompatible journal file format. 2183 ** 2184 ** If journal corruption occurs due to a power failure, the most likely 2185 ** scenario is that one end or the other of the record will be changed. 2186 ** It is much less likely that the two ends of the journal record will be 2187 ** correct and the middle be corrupt. Thus, this "checksum" scheme, 2188 ** though fast and simple, catches the mostly likely kind of corruption. 2189 */ 2190 static u32 pager_cksum(Pager *pPager, const u8 *aData){ 2191 u32 cksum = pPager->cksumInit; /* Checksum value to return */ 2192 int i = pPager->pageSize-200; /* Loop counter */ 2193 while( i>0 ){ 2194 cksum += aData[i]; 2195 i -= 200; 2196 } 2197 return cksum; 2198 } 2199 2200 /* 2201 ** Read a single page from either the journal file (if isMainJrnl==1) or 2202 ** from the sub-journal (if isMainJrnl==0) and playback that page. 2203 ** The page begins at offset *pOffset into the file. The *pOffset 2204 ** value is increased to the start of the next page in the journal. 2205 ** 2206 ** The main rollback journal uses checksums - the statement journal does 2207 ** not. 2208 ** 2209 ** If the page number of the page record read from the (sub-)journal file 2210 ** is greater than the current value of Pager.dbSize, then playback is 2211 ** skipped and SQLITE_OK is returned. 2212 ** 2213 ** If pDone is not NULL, then it is a record of pages that have already 2214 ** been played back. If the page at *pOffset has already been played back 2215 ** (if the corresponding pDone bit is set) then skip the playback. 2216 ** Make sure the pDone bit corresponding to the *pOffset page is set 2217 ** prior to returning. 2218 ** 2219 ** If the page record is successfully read from the (sub-)journal file 2220 ** and played back, then SQLITE_OK is returned. If an IO error occurs 2221 ** while reading the record from the (sub-)journal file or while writing 2222 ** to the database file, then the IO error code is returned. If data 2223 ** is successfully read from the (sub-)journal file but appears to be 2224 ** corrupted, SQLITE_DONE is returned. Data is considered corrupted in 2225 ** two circumstances: 2226 ** 2227 ** * If the record page-number is illegal (0 or PAGER_MJ_PGNO), or 2228 ** * If the record is being rolled back from the main journal file 2229 ** and the checksum field does not match the record content. 2230 ** 2231 ** Neither of these two scenarios are possible during a savepoint rollback. 2232 ** 2233 ** If this is a savepoint rollback, then memory may have to be dynamically 2234 ** allocated by this function. If this is the case and an allocation fails, 2235 ** SQLITE_NOMEM is returned. 2236 */ 2237 static int pager_playback_one_page( 2238 Pager *pPager, /* The pager being played back */ 2239 i64 *pOffset, /* Offset of record to playback */ 2240 Bitvec *pDone, /* Bitvec of pages already played back */ 2241 int isMainJrnl, /* 1 -> main journal. 0 -> sub-journal. */ 2242 int isSavepnt /* True for a savepoint rollback */ 2243 ){ 2244 int rc; 2245 PgHdr *pPg; /* An existing page in the cache */ 2246 Pgno pgno; /* The page number of a page in journal */ 2247 u32 cksum; /* Checksum used for sanity checking */ 2248 char *aData; /* Temporary storage for the page */ 2249 sqlite3_file *jfd; /* The file descriptor for the journal file */ 2250 int isSynced; /* True if journal page is synced */ 2251 2252 assert( (isMainJrnl&~1)==0 ); /* isMainJrnl is 0 or 1 */ 2253 assert( (isSavepnt&~1)==0 ); /* isSavepnt is 0 or 1 */ 2254 assert( isMainJrnl || pDone ); /* pDone always used on sub-journals */ 2255 assert( isSavepnt || pDone==0 ); /* pDone never used on non-savepoint */ 2256 2257 aData = pPager->pTmpSpace; 2258 assert( aData ); /* Temp storage must have already been allocated */ 2259 assert( pagerUseWal(pPager)==0 || (!isMainJrnl && isSavepnt) ); 2260 2261 /* Either the state is greater than PAGER_WRITER_CACHEMOD (a transaction 2262 ** or savepoint rollback done at the request of the caller) or this is 2263 ** a hot-journal rollback. If it is a hot-journal rollback, the pager 2264 ** is in state OPEN and holds an EXCLUSIVE lock. Hot-journal rollback 2265 ** only reads from the main journal, not the sub-journal. 2266 */ 2267 assert( pPager->eState>=PAGER_WRITER_CACHEMOD 2268 || (pPager->eState==PAGER_OPEN && pPager->eLock==EXCLUSIVE_LOCK) 2269 ); 2270 assert( pPager->eState>=PAGER_WRITER_CACHEMOD || isMainJrnl ); 2271 2272 /* Read the page number and page data from the journal or sub-journal 2273 ** file. Return an error code to the caller if an IO error occurs. 2274 */ 2275 jfd = isMainJrnl ? pPager->jfd : pPager->sjfd; 2276 rc = read32bits(jfd, *pOffset, &pgno); 2277 if( rc!=SQLITE_OK ) return rc; 2278 rc = sqlite3OsRead(jfd, (u8*)aData, pPager->pageSize, (*pOffset)+4); 2279 if( rc!=SQLITE_OK ) return rc; 2280 *pOffset += pPager->pageSize + 4 + isMainJrnl*4; 2281 2282 /* Sanity checking on the page. This is more important that I originally 2283 ** thought. If a power failure occurs while the journal is being written, 2284 ** it could cause invalid data to be written into the journal. We need to 2285 ** detect this invalid data (with high probability) and ignore it. 2286 */ 2287 if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ 2288 assert( !isSavepnt ); 2289 return SQLITE_DONE; 2290 } 2291 if( pgno>(Pgno)pPager->dbSize || sqlite3BitvecTest(pDone, pgno) ){ 2292 return SQLITE_OK; 2293 } 2294 if( isMainJrnl ){ 2295 rc = read32bits(jfd, (*pOffset)-4, &cksum); 2296 if( rc ) return rc; 2297 if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){ 2298 return SQLITE_DONE; 2299 } 2300 } 2301 2302 /* If this page has already been played back before during the current 2303 ** rollback, then don't bother to play it back again. 2304 */ 2305 if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){ 2306 return rc; 2307 } 2308 2309 /* When playing back page 1, restore the nReserve setting 2310 */ 2311 if( pgno==1 && pPager->nReserve!=((u8*)aData)[20] ){ 2312 pPager->nReserve = ((u8*)aData)[20]; 2313 } 2314 2315 /* If the pager is in CACHEMOD state, then there must be a copy of this 2316 ** page in the pager cache. In this case just update the pager cache, 2317 ** not the database file. The page is left marked dirty in this case. 2318 ** 2319 ** An exception to the above rule: If the database is in no-sync mode 2320 ** and a page is moved during an incremental vacuum then the page may 2321 ** not be in the pager cache. Later: if a malloc() or IO error occurs 2322 ** during a Movepage() call, then the page may not be in the cache 2323 ** either. So the condition described in the above paragraph is not 2324 ** assert()able. 2325 ** 2326 ** If in WRITER_DBMOD, WRITER_FINISHED or OPEN state, then we update the 2327 ** pager cache if it exists and the main file. The page is then marked 2328 ** not dirty. Since this code is only executed in PAGER_OPEN state for 2329 ** a hot-journal rollback, it is guaranteed that the page-cache is empty 2330 ** if the pager is in OPEN state. 2331 ** 2332 ** Ticket #1171: The statement journal might contain page content that is 2333 ** different from the page content at the start of the transaction. 2334 ** This occurs when a page is changed prior to the start of a statement 2335 ** then changed again within the statement. When rolling back such a 2336 ** statement we must not write to the original database unless we know 2337 ** for certain that original page contents are synced into the main rollback 2338 ** journal. Otherwise, a power loss might leave modified data in the 2339 ** database file without an entry in the rollback journal that can 2340 ** restore the database to its original form. Two conditions must be 2341 ** met before writing to the database files. (1) the database must be 2342 ** locked. (2) we know that the original page content is fully synced 2343 ** in the main journal either because the page is not in cache or else 2344 ** the page is marked as needSync==0. 2345 ** 2346 ** 2008-04-14: When attempting to vacuum a corrupt database file, it 2347 ** is possible to fail a statement on a database that does not yet exist. 2348 ** Do not attempt to write if database file has never been opened. 2349 */ 2350 if( pagerUseWal(pPager) ){ 2351 pPg = 0; 2352 }else{ 2353 pPg = sqlite3PagerLookup(pPager, pgno); 2354 } 2355 assert( pPg || !MEMDB ); 2356 assert( pPager->eState!=PAGER_OPEN || pPg==0 || pPager->tempFile ); 2357 PAGERTRACE(("PLAYBACK %d page %d hash(%08x) %s\n", 2358 PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, (u8*)aData), 2359 (isMainJrnl?"main-journal":"sub-journal") 2360 )); 2361 if( isMainJrnl ){ 2362 isSynced = pPager->noSync || (*pOffset <= pPager->journalHdr); 2363 }else{ 2364 isSynced = (pPg==0 || 0==(pPg->flags & PGHDR_NEED_SYNC)); 2365 } 2366 if( isOpen(pPager->fd) 2367 && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) 2368 && isSynced 2369 ){ 2370 i64 ofst = (pgno-1)*(i64)pPager->pageSize; 2371 testcase( !isSavepnt && pPg!=0 && (pPg->flags&PGHDR_NEED_SYNC)!=0 ); 2372 assert( !pagerUseWal(pPager) ); 2373 2374 /* Write the data read from the journal back into the database file. 2375 ** This is usually safe even for an encrypted database - as the data 2376 ** was encrypted before it was written to the journal file. The exception 2377 ** is if the data was just read from an in-memory sub-journal. In that 2378 ** case it must be encrypted here before it is copied into the database 2379 ** file. */ 2380 rc = sqlite3OsWrite(pPager->fd, (u8 *)aData, pPager->pageSize, ofst); 2381 2382 if( pgno>pPager->dbFileSize ){ 2383 pPager->dbFileSize = pgno; 2384 } 2385 if( pPager->pBackup ){ 2386 sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData); 2387 } 2388 }else if( !isMainJrnl && pPg==0 ){ 2389 /* If this is a rollback of a savepoint and data was not written to 2390 ** the database and the page is not in-memory, there is a potential 2391 ** problem. When the page is next fetched by the b-tree layer, it 2392 ** will be read from the database file, which may or may not be 2393 ** current. 2394 ** 2395 ** There are a couple of different ways this can happen. All are quite 2396 ** obscure. When running in synchronous mode, this can only happen 2397 ** if the page is on the free-list at the start of the transaction, then 2398 ** populated, then moved using sqlite3PagerMovepage(). 2399 ** 2400 ** The solution is to add an in-memory page to the cache containing 2401 ** the data just read from the sub-journal. Mark the page as dirty 2402 ** and if the pager requires a journal-sync, then mark the page as 2403 ** requiring a journal-sync before it is written. 2404 */ 2405 assert( isSavepnt ); 2406 assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)==0 ); 2407 pPager->doNotSpill |= SPILLFLAG_ROLLBACK; 2408 rc = sqlite3PagerGet(pPager, pgno, &pPg, 1); 2409 assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)!=0 ); 2410 pPager->doNotSpill &= ~SPILLFLAG_ROLLBACK; 2411 if( rc!=SQLITE_OK ) return rc; 2412 sqlite3PcacheMakeDirty(pPg); 2413 } 2414 if( pPg ){ 2415 /* No page should ever be explicitly rolled back that is in use, except 2416 ** for page 1 which is held in use in order to keep the lock on the 2417 ** database active. However such a page may be rolled back as a result 2418 ** of an internal error resulting in an automatic call to 2419 ** sqlite3PagerRollback(). 2420 */ 2421 void *pData; 2422 pData = pPg->pData; 2423 memcpy(pData, (u8*)aData, pPager->pageSize); 2424 pPager->xReiniter(pPg); 2425 /* It used to be that sqlite3PcacheMakeClean(pPg) was called here. But 2426 ** that call was dangerous and had no detectable benefit since the cache 2427 ** is normally cleaned by sqlite3PcacheCleanAll() after rollback and so 2428 ** has been removed. */ 2429 pager_set_pagehash(pPg); 2430 2431 /* If this was page 1, then restore the value of Pager.dbFileVers. 2432 ** Do this before any decoding. */ 2433 if( pgno==1 ){ 2434 memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers)); 2435 } 2436 sqlite3PcacheRelease(pPg); 2437 } 2438 return rc; 2439 } 2440 2441 /* 2442 ** Parameter zSuper is the name of a super-journal file. A single journal 2443 ** file that referred to the super-journal file has just been rolled back. 2444 ** This routine checks if it is possible to delete the super-journal file, 2445 ** and does so if it is. 2446 ** 2447 ** Argument zSuper may point to Pager.pTmpSpace. So that buffer is not 2448 ** available for use within this function. 2449 ** 2450 ** When a super-journal file is created, it is populated with the names 2451 ** of all of its child journals, one after another, formatted as utf-8 2452 ** encoded text. The end of each child journal file is marked with a 2453 ** nul-terminator byte (0x00). i.e. the entire contents of a super-journal 2454 ** file for a transaction involving two databases might be: 2455 ** 2456 ** "/home/bill/a.db-journal\x00/home/bill/b.db-journal\x00" 2457 ** 2458 ** A super-journal file may only be deleted once all of its child 2459 ** journals have been rolled back. 2460 ** 2461 ** This function reads the contents of the super-journal file into 2462 ** memory and loops through each of the child journal names. For 2463 ** each child journal, it checks if: 2464 ** 2465 ** * if the child journal exists, and if so 2466 ** * if the child journal contains a reference to super-journal 2467 ** file zSuper 2468 ** 2469 ** If a child journal can be found that matches both of the criteria 2470 ** above, this function returns without doing anything. Otherwise, if 2471 ** no such child journal can be found, file zSuper is deleted from 2472 ** the file-system using sqlite3OsDelete(). 2473 ** 2474 ** If an IO error within this function, an error code is returned. This 2475 ** function allocates memory by calling sqlite3Malloc(). If an allocation 2476 ** fails, SQLITE_NOMEM is returned. Otherwise, if no IO or malloc errors 2477 ** occur, SQLITE_OK is returned. 2478 ** 2479 ** TODO: This function allocates a single block of memory to load 2480 ** the entire contents of the super-journal file. This could be 2481 ** a couple of kilobytes or so - potentially larger than the page 2482 ** size. 2483 */ 2484 static int pager_delsuper(Pager *pPager, const char *zSuper){ 2485 sqlite3_vfs *pVfs = pPager->pVfs; 2486 int rc; /* Return code */ 2487 sqlite3_file *pSuper; /* Malloc'd super-journal file descriptor */ 2488 sqlite3_file *pJournal; /* Malloc'd child-journal file descriptor */ 2489 char *zSuperJournal = 0; /* Contents of super-journal file */ 2490 i64 nSuperJournal; /* Size of super-journal file */ 2491 char *zJournal; /* Pointer to one journal within MJ file */ 2492 char *zSuperPtr; /* Space to hold super-journal filename */ 2493 char *zFree = 0; /* Free this buffer */ 2494 int nSuperPtr; /* Amount of space allocated to zSuperPtr[] */ 2495 2496 /* Allocate space for both the pJournal and pSuper file descriptors. 2497 ** If successful, open the super-journal file for reading. 2498 */ 2499 pSuper = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile * 2); 2500 if( !pSuper ){ 2501 rc = SQLITE_NOMEM_BKPT; 2502 pJournal = 0; 2503 }else{ 2504 const int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_SUPER_JOURNAL); 2505 rc = sqlite3OsOpen(pVfs, zSuper, pSuper, flags, 0); 2506 pJournal = (sqlite3_file *)(((u8 *)pSuper) + pVfs->szOsFile); 2507 } 2508 if( rc!=SQLITE_OK ) goto delsuper_out; 2509 2510 /* Load the entire super-journal file into space obtained from 2511 ** sqlite3_malloc() and pointed to by zSuperJournal. Also obtain 2512 ** sufficient space (in zSuperPtr) to hold the names of super-journal 2513 ** files extracted from regular rollback-journals. 2514 */ 2515 rc = sqlite3OsFileSize(pSuper, &nSuperJournal); 2516 if( rc!=SQLITE_OK ) goto delsuper_out; 2517 nSuperPtr = pVfs->mxPathname+1; 2518 zFree = sqlite3Malloc(4 + nSuperJournal + nSuperPtr + 2); 2519 if( !zFree ){ 2520 rc = SQLITE_NOMEM_BKPT; 2521 goto delsuper_out; 2522 } 2523 zFree[0] = zFree[1] = zFree[2] = zFree[3] = 0; 2524 zSuperJournal = &zFree[4]; 2525 zSuperPtr = &zSuperJournal[nSuperJournal+2]; 2526 rc = sqlite3OsRead(pSuper, zSuperJournal, (int)nSuperJournal, 0); 2527 if( rc!=SQLITE_OK ) goto delsuper_out; 2528 zSuperJournal[nSuperJournal] = 0; 2529 zSuperJournal[nSuperJournal+1] = 0; 2530 2531 zJournal = zSuperJournal; 2532 while( (zJournal-zSuperJournal)<nSuperJournal ){ 2533 int exists; 2534 rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS, &exists); 2535 if( rc!=SQLITE_OK ){ 2536 goto delsuper_out; 2537 } 2538 if( exists ){ 2539 /* One of the journals pointed to by the super-journal exists. 2540 ** Open it and check if it points at the super-journal. If 2541 ** so, return without deleting the super-journal file. 2542 ** NB: zJournal is really a MAIN_JOURNAL. But call it a 2543 ** SUPER_JOURNAL here so that the VFS will not send the zJournal 2544 ** name into sqlite3_database_file_object(). 2545 */ 2546 int c; 2547 int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_SUPER_JOURNAL); 2548 rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0); 2549 if( rc!=SQLITE_OK ){ 2550 goto delsuper_out; 2551 } 2552 2553 rc = readSuperJournal(pJournal, zSuperPtr, nSuperPtr); 2554 sqlite3OsClose(pJournal); 2555 if( rc!=SQLITE_OK ){ 2556 goto delsuper_out; 2557 } 2558 2559 c = zSuperPtr[0]!=0 && strcmp(zSuperPtr, zSuper)==0; 2560 if( c ){ 2561 /* We have a match. Do not delete the super-journal file. */ 2562 goto delsuper_out; 2563 } 2564 } 2565 zJournal += (sqlite3Strlen30(zJournal)+1); 2566 } 2567 2568 sqlite3OsClose(pSuper); 2569 rc = sqlite3OsDelete(pVfs, zSuper, 0); 2570 2571 delsuper_out: 2572 sqlite3_free(zFree); 2573 if( pSuper ){ 2574 sqlite3OsClose(pSuper); 2575 assert( !isOpen(pJournal) ); 2576 sqlite3_free(pSuper); 2577 } 2578 return rc; 2579 } 2580 2581 2582 /* 2583 ** This function is used to change the actual size of the database 2584 ** file in the file-system. This only happens when committing a transaction, 2585 ** or rolling back a transaction (including rolling back a hot-journal). 2586 ** 2587 ** If the main database file is not open, or the pager is not in either 2588 ** DBMOD or OPEN state, this function is a no-op. Otherwise, the size 2589 ** of the file is changed to nPage pages (nPage*pPager->pageSize bytes). 2590 ** If the file on disk is currently larger than nPage pages, then use the VFS 2591 ** xTruncate() method to truncate it. 2592 ** 2593 ** Or, it might be the case that the file on disk is smaller than 2594 ** nPage pages. Some operating system implementations can get confused if 2595 ** you try to truncate a file to some size that is larger than it 2596 ** currently is, so detect this case and write a single zero byte to 2597 ** the end of the new file instead. 2598 ** 2599 ** If successful, return SQLITE_OK. If an IO error occurs while modifying 2600 ** the database file, return the error code to the caller. 2601 */ 2602 static int pager_truncate(Pager *pPager, Pgno nPage){ 2603 int rc = SQLITE_OK; 2604 assert( pPager->eState!=PAGER_ERROR ); 2605 assert( pPager->eState!=PAGER_READER ); 2606 2607 if( isOpen(pPager->fd) 2608 && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) 2609 ){ 2610 i64 currentSize, newSize; 2611 int szPage = pPager->pageSize; 2612 assert( pPager->eLock==EXCLUSIVE_LOCK ); 2613 /* TODO: Is it safe to use Pager.dbFileSize here? */ 2614 rc = sqlite3OsFileSize(pPager->fd, ¤tSize); 2615 newSize = szPage*(i64)nPage; 2616 if( rc==SQLITE_OK && currentSize!=newSize ){ 2617 if( currentSize>newSize ){ 2618 rc = sqlite3OsTruncate(pPager->fd, newSize); 2619 }else if( (currentSize+szPage)<=newSize ){ 2620 char *pTmp = pPager->pTmpSpace; 2621 memset(pTmp, 0, szPage); 2622 testcase( (newSize-szPage) == currentSize ); 2623 testcase( (newSize-szPage) > currentSize ); 2624 rc = sqlite3OsWrite(pPager->fd, pTmp, szPage, newSize-szPage); 2625 } 2626 if( rc==SQLITE_OK ){ 2627 pPager->dbFileSize = nPage; 2628 } 2629 } 2630 } 2631 return rc; 2632 } 2633 2634 /* 2635 ** Return a sanitized version of the sector-size of OS file pFile. The 2636 ** return value is guaranteed to lie between 32 and MAX_SECTOR_SIZE. 2637 */ 2638 int sqlite3SectorSize(sqlite3_file *pFile){ 2639 int iRet = sqlite3OsSectorSize(pFile); 2640 if( iRet<32 ){ 2641 iRet = 512; 2642 }else if( iRet>MAX_SECTOR_SIZE ){ 2643 assert( MAX_SECTOR_SIZE>=512 ); 2644 iRet = MAX_SECTOR_SIZE; 2645 } 2646 return iRet; 2647 } 2648 2649 /* 2650 ** Set the value of the Pager.sectorSize variable for the given 2651 ** pager based on the value returned by the xSectorSize method 2652 ** of the open database file. The sector size will be used 2653 ** to determine the size and alignment of journal header and 2654 ** super-journal pointers within created journal files. 2655 ** 2656 ** For temporary files the effective sector size is always 512 bytes. 2657 ** 2658 ** Otherwise, for non-temporary files, the effective sector size is 2659 ** the value returned by the xSectorSize() method rounded up to 32 if 2660 ** it is less than 32, or rounded down to MAX_SECTOR_SIZE if it 2661 ** is greater than MAX_SECTOR_SIZE. 2662 ** 2663 ** If the file has the SQLITE_IOCAP_POWERSAFE_OVERWRITE property, then set 2664 ** the effective sector size to its minimum value (512). The purpose of 2665 ** pPager->sectorSize is to define the "blast radius" of bytes that 2666 ** might change if a crash occurs while writing to a single byte in 2667 ** that range. But with POWERSAFE_OVERWRITE, the blast radius is zero 2668 ** (that is what POWERSAFE_OVERWRITE means), so we minimize the sector 2669 ** size. For backwards compatibility of the rollback journal file format, 2670 ** we cannot reduce the effective sector size below 512. 2671 */ 2672 static void setSectorSize(Pager *pPager){ 2673 assert( isOpen(pPager->fd) || pPager->tempFile ); 2674 2675 if( pPager->tempFile 2676 || (sqlite3OsDeviceCharacteristics(pPager->fd) & 2677 SQLITE_IOCAP_POWERSAFE_OVERWRITE)!=0 2678 ){ 2679 /* Sector size doesn't matter for temporary files. Also, the file 2680 ** may not have been opened yet, in which case the OsSectorSize() 2681 ** call will segfault. */ 2682 pPager->sectorSize = 512; 2683 }else{ 2684 pPager->sectorSize = sqlite3SectorSize(pPager->fd); 2685 } 2686 } 2687 2688 /* 2689 ** Playback the journal and thus restore the database file to 2690 ** the state it was in before we started making changes. 2691 ** 2692 ** The journal file format is as follows: 2693 ** 2694 ** (1) 8 byte prefix. A copy of aJournalMagic[]. 2695 ** (2) 4 byte big-endian integer which is the number of valid page records 2696 ** in the journal. If this value is 0xffffffff, then compute the 2697 ** number of page records from the journal size. 2698 ** (3) 4 byte big-endian integer which is the initial value for the 2699 ** sanity checksum. 2700 ** (4) 4 byte integer which is the number of pages to truncate the 2701 ** database to during a rollback. 2702 ** (5) 4 byte big-endian integer which is the sector size. The header 2703 ** is this many bytes in size. 2704 ** (6) 4 byte big-endian integer which is the page size. 2705 ** (7) zero padding out to the next sector size. 2706 ** (8) Zero or more pages instances, each as follows: 2707 ** + 4 byte page number. 2708 ** + pPager->pageSize bytes of data. 2709 ** + 4 byte checksum 2710 ** 2711 ** When we speak of the journal header, we mean the first 7 items above. 2712 ** Each entry in the journal is an instance of the 8th item. 2713 ** 2714 ** Call the value from the second bullet "nRec". nRec is the number of 2715 ** valid page entries in the journal. In most cases, you can compute the 2716 ** value of nRec from the size of the journal file. But if a power 2717 ** failure occurred while the journal was being written, it could be the 2718 ** case that the size of the journal file had already been increased but 2719 ** the extra entries had not yet made it safely to disk. In such a case, 2720 ** the value of nRec computed from the file size would be too large. For 2721 ** that reason, we always use the nRec value in the header. 2722 ** 2723 ** If the nRec value is 0xffffffff it means that nRec should be computed 2724 ** from the file size. This value is used when the user selects the 2725 ** no-sync option for the journal. A power failure could lead to corruption 2726 ** in this case. But for things like temporary table (which will be 2727 ** deleted when the power is restored) we don't care. 2728 ** 2729 ** If the file opened as the journal file is not a well-formed 2730 ** journal file then all pages up to the first corrupted page are rolled 2731 ** back (or no pages if the journal header is corrupted). The journal file 2732 ** is then deleted and SQLITE_OK returned, just as if no corruption had 2733 ** been encountered. 2734 ** 2735 ** If an I/O or malloc() error occurs, the journal-file is not deleted 2736 ** and an error code is returned. 2737 ** 2738 ** The isHot parameter indicates that we are trying to rollback a journal 2739 ** that might be a hot journal. Or, it could be that the journal is 2740 ** preserved because of JOURNALMODE_PERSIST or JOURNALMODE_TRUNCATE. 2741 ** If the journal really is hot, reset the pager cache prior rolling 2742 ** back any content. If the journal is merely persistent, no reset is 2743 ** needed. 2744 */ 2745 static int pager_playback(Pager *pPager, int isHot){ 2746 sqlite3_vfs *pVfs = pPager->pVfs; 2747 i64 szJ; /* Size of the journal file in bytes */ 2748 u32 nRec; /* Number of Records in the journal */ 2749 u32 u; /* Unsigned loop counter */ 2750 Pgno mxPg = 0; /* Size of the original file in pages */ 2751 int rc; /* Result code of a subroutine */ 2752 int res = 1; /* Value returned by sqlite3OsAccess() */ 2753 char *zSuper = 0; /* Name of super-journal file if any */ 2754 int needPagerReset; /* True to reset page prior to first page rollback */ 2755 int nPlayback = 0; /* Total number of pages restored from journal */ 2756 u32 savedPageSize = pPager->pageSize; 2757 2758 /* Figure out how many records are in the journal. Abort early if 2759 ** the journal is empty. 2760 */ 2761 assert( isOpen(pPager->jfd) ); 2762 rc = sqlite3OsFileSize(pPager->jfd, &szJ); 2763 if( rc!=SQLITE_OK ){ 2764 goto end_playback; 2765 } 2766 2767 /* Read the super-journal name from the journal, if it is present. 2768 ** If a super-journal file name is specified, but the file is not 2769 ** present on disk, then the journal is not hot and does not need to be 2770 ** played back. 2771 ** 2772 ** TODO: Technically the following is an error because it assumes that 2773 ** buffer Pager.pTmpSpace is (mxPathname+1) bytes or larger. i.e. that 2774 ** (pPager->pageSize >= pPager->pVfs->mxPathname+1). Using os_unix.c, 2775 ** mxPathname is 512, which is the same as the minimum allowable value 2776 ** for pageSize. 2777 */ 2778 zSuper = pPager->pTmpSpace; 2779 rc = readSuperJournal(pPager->jfd, zSuper, pPager->pVfs->mxPathname+1); 2780 if( rc==SQLITE_OK && zSuper[0] ){ 2781 rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res); 2782 } 2783 zSuper = 0; 2784 if( rc!=SQLITE_OK || !res ){ 2785 goto end_playback; 2786 } 2787 pPager->journalOff = 0; 2788 needPagerReset = isHot; 2789 2790 /* This loop terminates either when a readJournalHdr() or 2791 ** pager_playback_one_page() call returns SQLITE_DONE or an IO error 2792 ** occurs. 2793 */ 2794 while( 1 ){ 2795 /* Read the next journal header from the journal file. If there are 2796 ** not enough bytes left in the journal file for a complete header, or 2797 ** it is corrupted, then a process must have failed while writing it. 2798 ** This indicates nothing more needs to be rolled back. 2799 */ 2800 rc = readJournalHdr(pPager, isHot, szJ, &nRec, &mxPg); 2801 if( rc!=SQLITE_OK ){ 2802 if( rc==SQLITE_DONE ){ 2803 rc = SQLITE_OK; 2804 } 2805 goto end_playback; 2806 } 2807 2808 /* If nRec is 0xffffffff, then this journal was created by a process 2809 ** working in no-sync mode. This means that the rest of the journal 2810 ** file consists of pages, there are no more journal headers. Compute 2811 ** the value of nRec based on this assumption. 2812 */ 2813 if( nRec==0xffffffff ){ 2814 assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ); 2815 nRec = (int)((szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager)); 2816 } 2817 2818 /* If nRec is 0 and this rollback is of a transaction created by this 2819 ** process and if this is the final header in the journal, then it means 2820 ** that this part of the journal was being filled but has not yet been 2821 ** synced to disk. Compute the number of pages based on the remaining 2822 ** size of the file. 2823 ** 2824 ** The third term of the test was added to fix ticket #2565. 2825 ** When rolling back a hot journal, nRec==0 always means that the next 2826 ** chunk of the journal contains zero pages to be rolled back. But 2827 ** when doing a ROLLBACK and the nRec==0 chunk is the last chunk in 2828 ** the journal, it means that the journal might contain additional 2829 ** pages that need to be rolled back and that the number of pages 2830 ** should be computed based on the journal file size. 2831 */ 2832 if( nRec==0 && !isHot && 2833 pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){ 2834 nRec = (int)((szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager)); 2835 } 2836 2837 /* If this is the first header read from the journal, truncate the 2838 ** database file back to its original size. 2839 */ 2840 if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){ 2841 rc = pager_truncate(pPager, mxPg); 2842 if( rc!=SQLITE_OK ){ 2843 goto end_playback; 2844 } 2845 pPager->dbSize = mxPg; 2846 } 2847 2848 /* Copy original pages out of the journal and back into the 2849 ** database file and/or page cache. 2850 */ 2851 for(u=0; u<nRec; u++){ 2852 if( needPagerReset ){ 2853 pager_reset(pPager); 2854 needPagerReset = 0; 2855 } 2856 rc = pager_playback_one_page(pPager,&pPager->journalOff,0,1,0); 2857 if( rc==SQLITE_OK ){ 2858 nPlayback++; 2859 }else{ 2860 if( rc==SQLITE_DONE ){ 2861 pPager->journalOff = szJ; 2862 break; 2863 }else if( rc==SQLITE_IOERR_SHORT_READ ){ 2864 /* If the journal has been truncated, simply stop reading and 2865 ** processing the journal. This might happen if the journal was 2866 ** not completely written and synced prior to a crash. In that 2867 ** case, the database should have never been written in the 2868 ** first place so it is OK to simply abandon the rollback. */ 2869 rc = SQLITE_OK; 2870 goto end_playback; 2871 }else{ 2872 /* If we are unable to rollback, quit and return the error 2873 ** code. This will cause the pager to enter the error state 2874 ** so that no further harm will be done. Perhaps the next 2875 ** process to come along will be able to rollback the database. 2876 */ 2877 goto end_playback; 2878 } 2879 } 2880 } 2881 } 2882 /*NOTREACHED*/ 2883 assert( 0 ); 2884 2885 end_playback: 2886 if( rc==SQLITE_OK ){ 2887 rc = sqlite3PagerSetPagesize(pPager, &savedPageSize, -1); 2888 } 2889 /* Following a rollback, the database file should be back in its original 2890 ** state prior to the start of the transaction, so invoke the 2891 ** SQLITE_FCNTL_DB_UNCHANGED file-control method to disable the 2892 ** assertion that the transaction counter was modified. 2893 */ 2894 #ifdef SQLITE_DEBUG 2895 sqlite3OsFileControlHint(pPager->fd,SQLITE_FCNTL_DB_UNCHANGED,0); 2896 #endif 2897 2898 /* If this playback is happening automatically as a result of an IO or 2899 ** malloc error that occurred after the change-counter was updated but 2900 ** before the transaction was committed, then the change-counter 2901 ** modification may just have been reverted. If this happens in exclusive 2902 ** mode, then subsequent transactions performed by the connection will not 2903 ** update the change-counter at all. This may lead to cache inconsistency 2904 ** problems for other processes at some point in the future. So, just 2905 ** in case this has happened, clear the changeCountDone flag now. 2906 */ 2907 pPager->changeCountDone = pPager->tempFile; 2908 2909 if( rc==SQLITE_OK ){ 2910 /* Leave 4 bytes of space before the super-journal filename in memory. 2911 ** This is because it may end up being passed to sqlite3OsOpen(), in 2912 ** which case it requires 4 0x00 bytes in memory immediately before 2913 ** the filename. */ 2914 zSuper = &pPager->pTmpSpace[4]; 2915 rc = readSuperJournal(pPager->jfd, zSuper, pPager->pVfs->mxPathname+1); 2916 testcase( rc!=SQLITE_OK ); 2917 } 2918 if( rc==SQLITE_OK 2919 && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) 2920 ){ 2921 rc = sqlite3PagerSync(pPager, 0); 2922 } 2923 if( rc==SQLITE_OK ){ 2924 rc = pager_end_transaction(pPager, zSuper[0]!='\0', 0); 2925 testcase( rc!=SQLITE_OK ); 2926 } 2927 if( rc==SQLITE_OK && zSuper[0] && res ){ 2928 /* If there was a super-journal and this routine will return success, 2929 ** see if it is possible to delete the super-journal. 2930 */ 2931 assert( zSuper==&pPager->pTmpSpace[4] ); 2932 memset(&zSuper[-4], 0, 4); 2933 rc = pager_delsuper(pPager, zSuper); 2934 testcase( rc!=SQLITE_OK ); 2935 } 2936 if( isHot && nPlayback ){ 2937 sqlite3_log(SQLITE_NOTICE_RECOVER_ROLLBACK, "recovered %d pages from %s", 2938 nPlayback, pPager->zJournal); 2939 } 2940 2941 /* The Pager.sectorSize variable may have been updated while rolling 2942 ** back a journal created by a process with a different sector size 2943 ** value. Reset it to the correct value for this process. 2944 */ 2945 setSectorSize(pPager); 2946 return rc; 2947 } 2948 2949 2950 /* 2951 ** Read the content for page pPg out of the database file (or out of 2952 ** the WAL if that is where the most recent copy if found) into 2953 ** pPg->pData. A shared lock or greater must be held on the database 2954 ** file before this function is called. 2955 ** 2956 ** If page 1 is read, then the value of Pager.dbFileVers[] is set to 2957 ** the value read from the database file. 2958 ** 2959 ** If an IO error occurs, then the IO error is returned to the caller. 2960 ** Otherwise, SQLITE_OK is returned. 2961 */ 2962 static int readDbPage(PgHdr *pPg){ 2963 Pager *pPager = pPg->pPager; /* Pager object associated with page pPg */ 2964 int rc = SQLITE_OK; /* Return code */ 2965 2966 #ifndef SQLITE_OMIT_WAL 2967 u32 iFrame = 0; /* Frame of WAL containing pgno */ 2968 2969 assert( pPager->eState>=PAGER_READER && !MEMDB ); 2970 assert( isOpen(pPager->fd) ); 2971 2972 if( pagerUseWal(pPager) ){ 2973 rc = sqlite3WalFindFrame(pPager->pWal, pPg->pgno, &iFrame); 2974 if( rc ) return rc; 2975 } 2976 if( iFrame ){ 2977 rc = sqlite3WalReadFrame(pPager->pWal, iFrame,pPager->pageSize,pPg->pData); 2978 }else 2979 #endif 2980 { 2981 i64 iOffset = (pPg->pgno-1)*(i64)pPager->pageSize; 2982 rc = sqlite3OsRead(pPager->fd, pPg->pData, pPager->pageSize, iOffset); 2983 if( rc==SQLITE_IOERR_SHORT_READ ){ 2984 rc = SQLITE_OK; 2985 } 2986 } 2987 2988 if( pPg->pgno==1 ){ 2989 if( rc ){ 2990 /* If the read is unsuccessful, set the dbFileVers[] to something 2991 ** that will never be a valid file version. dbFileVers[] is a copy 2992 ** of bytes 24..39 of the database. Bytes 28..31 should always be 2993 ** zero or the size of the database in page. Bytes 32..35 and 35..39 2994 ** should be page numbers which are never 0xffffffff. So filling 2995 ** pPager->dbFileVers[] with all 0xff bytes should suffice. 2996 ** 2997 ** For an encrypted database, the situation is more complex: bytes 2998 ** 24..39 of the database are white noise. But the probability of 2999 ** white noise equaling 16 bytes of 0xff is vanishingly small so 3000 ** we should still be ok. 3001 */ 3002 memset(pPager->dbFileVers, 0xff, sizeof(pPager->dbFileVers)); 3003 }else{ 3004 u8 *dbFileVers = &((u8*)pPg->pData)[24]; 3005 memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers)); 3006 } 3007 } 3008 PAGER_INCR(sqlite3_pager_readdb_count); 3009 PAGER_INCR(pPager->nRead); 3010 IOTRACE(("PGIN %p %d\n", pPager, pPg->pgno)); 3011 PAGERTRACE(("FETCH %d page %d hash(%08x)\n", 3012 PAGERID(pPager), pPg->pgno, pager_pagehash(pPg))); 3013 3014 return rc; 3015 } 3016 3017 /* 3018 ** Update the value of the change-counter at offsets 24 and 92 in 3019 ** the header and the sqlite version number at offset 96. 3020 ** 3021 ** This is an unconditional update. See also the pager_incr_changecounter() 3022 ** routine which only updates the change-counter if the update is actually 3023 ** needed, as determined by the pPager->changeCountDone state variable. 3024 */ 3025 static void pager_write_changecounter(PgHdr *pPg){ 3026 u32 change_counter; 3027 3028 /* Increment the value just read and write it back to byte 24. */ 3029 change_counter = sqlite3Get4byte((u8*)pPg->pPager->dbFileVers)+1; 3030 put32bits(((char*)pPg->pData)+24, change_counter); 3031 3032 /* Also store the SQLite version number in bytes 96..99 and in 3033 ** bytes 92..95 store the change counter for which the version number 3034 ** is valid. */ 3035 put32bits(((char*)pPg->pData)+92, change_counter); 3036 put32bits(((char*)pPg->pData)+96, SQLITE_VERSION_NUMBER); 3037 } 3038 3039 #ifndef SQLITE_OMIT_WAL 3040 /* 3041 ** This function is invoked once for each page that has already been 3042 ** written into the log file when a WAL transaction is rolled back. 3043 ** Parameter iPg is the page number of said page. The pCtx argument 3044 ** is actually a pointer to the Pager structure. 3045 ** 3046 ** If page iPg is present in the cache, and has no outstanding references, 3047 ** it is discarded. Otherwise, if there are one or more outstanding 3048 ** references, the page content is reloaded from the database. If the 3049 ** attempt to reload content from the database is required and fails, 3050 ** return an SQLite error code. Otherwise, SQLITE_OK. 3051 */ 3052 static int pagerUndoCallback(void *pCtx, Pgno iPg){ 3053 int rc = SQLITE_OK; 3054 Pager *pPager = (Pager *)pCtx; 3055 PgHdr *pPg; 3056 3057 assert( pagerUseWal(pPager) ); 3058 pPg = sqlite3PagerLookup(pPager, iPg); 3059 if( pPg ){ 3060 if( sqlite3PcachePageRefcount(pPg)==1 ){ 3061 sqlite3PcacheDrop(pPg); 3062 }else{ 3063 rc = readDbPage(pPg); 3064 if( rc==SQLITE_OK ){ 3065 pPager->xReiniter(pPg); 3066 } 3067 sqlite3PagerUnrefNotNull(pPg); 3068 } 3069 } 3070 3071 /* Normally, if a transaction is rolled back, any backup processes are 3072 ** updated as data is copied out of the rollback journal and into the 3073 ** database. This is not generally possible with a WAL database, as 3074 ** rollback involves simply truncating the log file. Therefore, if one 3075 ** or more frames have already been written to the log (and therefore 3076 ** also copied into the backup databases) as part of this transaction, 3077 ** the backups must be restarted. 3078 */ 3079 sqlite3BackupRestart(pPager->pBackup); 3080 3081 return rc; 3082 } 3083 3084 /* 3085 ** This function is called to rollback a transaction on a WAL database. 3086 */ 3087 static int pagerRollbackWal(Pager *pPager){ 3088 int rc; /* Return Code */ 3089 PgHdr *pList; /* List of dirty pages to revert */ 3090 3091 /* For all pages in the cache that are currently dirty or have already 3092 ** been written (but not committed) to the log file, do one of the 3093 ** following: 3094 ** 3095 ** + Discard the cached page (if refcount==0), or 3096 ** + Reload page content from the database (if refcount>0). 3097 */ 3098 pPager->dbSize = pPager->dbOrigSize; 3099 rc = sqlite3WalUndo(pPager->pWal, pagerUndoCallback, (void *)pPager); 3100 pList = sqlite3PcacheDirtyList(pPager->pPCache); 3101 while( pList && rc==SQLITE_OK ){ 3102 PgHdr *pNext = pList->pDirty; 3103 rc = pagerUndoCallback((void *)pPager, pList->pgno); 3104 pList = pNext; 3105 } 3106 3107 return rc; 3108 } 3109 3110 /* 3111 ** This function is a wrapper around sqlite3WalFrames(). As well as logging 3112 ** the contents of the list of pages headed by pList (connected by pDirty), 3113 ** this function notifies any active backup processes that the pages have 3114 ** changed. 3115 ** 3116 ** The list of pages passed into this routine is always sorted by page number. 3117 ** Hence, if page 1 appears anywhere on the list, it will be the first page. 3118 */ 3119 static int pagerWalFrames( 3120 Pager *pPager, /* Pager object */ 3121 PgHdr *pList, /* List of frames to log */ 3122 Pgno nTruncate, /* Database size after this commit */ 3123 int isCommit /* True if this is a commit */ 3124 ){ 3125 int rc; /* Return code */ 3126 int nList; /* Number of pages in pList */ 3127 PgHdr *p; /* For looping over pages */ 3128 3129 assert( pPager->pWal ); 3130 assert( pList ); 3131 #ifdef SQLITE_DEBUG 3132 /* Verify that the page list is in accending order */ 3133 for(p=pList; p && p->pDirty; p=p->pDirty){ 3134 assert( p->pgno < p->pDirty->pgno ); 3135 } 3136 #endif 3137 3138 assert( pList->pDirty==0 || isCommit ); 3139 if( isCommit ){ 3140 /* If a WAL transaction is being committed, there is no point in writing 3141 ** any pages with page numbers greater than nTruncate into the WAL file. 3142 ** They will never be read by any client. So remove them from the pDirty 3143 ** list here. */ 3144 PgHdr **ppNext = &pList; 3145 nList = 0; 3146 for(p=pList; (*ppNext = p)!=0; p=p->pDirty){ 3147 if( p->pgno<=nTruncate ){ 3148 ppNext = &p->pDirty; 3149 nList++; 3150 } 3151 } 3152 assert( pList ); 3153 }else{ 3154 nList = 1; 3155 } 3156 pPager->aStat[PAGER_STAT_WRITE] += nList; 3157 3158 if( pList->pgno==1 ) pager_write_changecounter(pList); 3159 rc = sqlite3WalFrames(pPager->pWal, 3160 pPager->pageSize, pList, nTruncate, isCommit, pPager->walSyncFlags 3161 ); 3162 if( rc==SQLITE_OK && pPager->pBackup ){ 3163 for(p=pList; p; p=p->pDirty){ 3164 sqlite3BackupUpdate(pPager->pBackup, p->pgno, (u8 *)p->pData); 3165 } 3166 } 3167 3168 #ifdef SQLITE_CHECK_PAGES 3169 pList = sqlite3PcacheDirtyList(pPager->pPCache); 3170 for(p=pList; p; p=p->pDirty){ 3171 pager_set_pagehash(p); 3172 } 3173 #endif 3174 3175 return rc; 3176 } 3177 3178 /* 3179 ** Begin a read transaction on the WAL. 3180 ** 3181 ** This routine used to be called "pagerOpenSnapshot()" because it essentially 3182 ** makes a snapshot of the database at the current point in time and preserves 3183 ** that snapshot for use by the reader in spite of concurrently changes by 3184 ** other writers or checkpointers. 3185 */ 3186 static int pagerBeginReadTransaction(Pager *pPager){ 3187 int rc; /* Return code */ 3188 int changed = 0; /* True if cache must be reset */ 3189 3190 assert( pagerUseWal(pPager) ); 3191 assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); 3192 3193 /* sqlite3WalEndReadTransaction() was not called for the previous 3194 ** transaction in locking_mode=EXCLUSIVE. So call it now. If we 3195 ** are in locking_mode=NORMAL and EndRead() was previously called, 3196 ** the duplicate call is harmless. 3197 */ 3198 sqlite3WalEndReadTransaction(pPager->pWal); 3199 3200 rc = sqlite3WalBeginReadTransaction(pPager->pWal, &changed); 3201 if( rc!=SQLITE_OK || changed ){ 3202 pager_reset(pPager); 3203 if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0); 3204 } 3205 3206 return rc; 3207 } 3208 #endif 3209 3210 /* 3211 ** This function is called as part of the transition from PAGER_OPEN 3212 ** to PAGER_READER state to determine the size of the database file 3213 ** in pages (assuming the page size currently stored in Pager.pageSize). 3214 ** 3215 ** If no error occurs, SQLITE_OK is returned and the size of the database 3216 ** in pages is stored in *pnPage. Otherwise, an error code (perhaps 3217 ** SQLITE_IOERR_FSTAT) is returned and *pnPage is left unmodified. 3218 */ 3219 static int pagerPagecount(Pager *pPager, Pgno *pnPage){ 3220 Pgno nPage; /* Value to return via *pnPage */ 3221 3222 /* Query the WAL sub-system for the database size. The WalDbsize() 3223 ** function returns zero if the WAL is not open (i.e. Pager.pWal==0), or 3224 ** if the database size is not available. The database size is not 3225 ** available from the WAL sub-system if the log file is empty or 3226 ** contains no valid committed transactions. 3227 */ 3228 assert( pPager->eState==PAGER_OPEN ); 3229 assert( pPager->eLock>=SHARED_LOCK ); 3230 assert( isOpen(pPager->fd) ); 3231 assert( pPager->tempFile==0 ); 3232 nPage = sqlite3WalDbsize(pPager->pWal); 3233 3234 /* If the number of pages in the database is not available from the 3235 ** WAL sub-system, determine the page count based on the size of 3236 ** the database file. If the size of the database file is not an 3237 ** integer multiple of the page-size, round up the result. 3238 */ 3239 if( nPage==0 && ALWAYS(isOpen(pPager->fd)) ){ 3240 i64 n = 0; /* Size of db file in bytes */ 3241 int rc = sqlite3OsFileSize(pPager->fd, &n); 3242 if( rc!=SQLITE_OK ){ 3243 return rc; 3244 } 3245 nPage = (Pgno)((n+pPager->pageSize-1) / pPager->pageSize); 3246 } 3247 3248 /* If the current number of pages in the file is greater than the 3249 ** configured maximum pager number, increase the allowed limit so 3250 ** that the file can be read. 3251 */ 3252 if( nPage>pPager->mxPgno ){ 3253 pPager->mxPgno = (Pgno)nPage; 3254 } 3255 3256 *pnPage = nPage; 3257 return SQLITE_OK; 3258 } 3259 3260 #ifndef SQLITE_OMIT_WAL 3261 /* 3262 ** Check if the *-wal file that corresponds to the database opened by pPager 3263 ** exists if the database is not empy, or verify that the *-wal file does 3264 ** not exist (by deleting it) if the database file is empty. 3265 ** 3266 ** If the database is not empty and the *-wal file exists, open the pager 3267 ** in WAL mode. If the database is empty or if no *-wal file exists and 3268 ** if no error occurs, make sure Pager.journalMode is not set to 3269 ** PAGER_JOURNALMODE_WAL. 3270 ** 3271 ** Return SQLITE_OK or an error code. 3272 ** 3273 ** The caller must hold a SHARED lock on the database file to call this 3274 ** function. Because an EXCLUSIVE lock on the db file is required to delete 3275 ** a WAL on a none-empty database, this ensures there is no race condition 3276 ** between the xAccess() below and an xDelete() being executed by some 3277 ** other connection. 3278 */ 3279 static int pagerOpenWalIfPresent(Pager *pPager){ 3280 int rc = SQLITE_OK; 3281 assert( pPager->eState==PAGER_OPEN ); 3282 assert( pPager->eLock>=SHARED_LOCK ); 3283 3284 if( !pPager->tempFile ){ 3285 int isWal; /* True if WAL file exists */ 3286 rc = sqlite3OsAccess( 3287 pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &isWal 3288 ); 3289 if( rc==SQLITE_OK ){ 3290 if( isWal ){ 3291 Pgno nPage; /* Size of the database file */ 3292 3293 rc = pagerPagecount(pPager, &nPage); 3294 if( rc ) return rc; 3295 if( nPage==0 ){ 3296 rc = sqlite3OsDelete(pPager->pVfs, pPager->zWal, 0); 3297 }else{ 3298 testcase( sqlite3PcachePagecount(pPager->pPCache)==0 ); 3299 rc = sqlite3PagerOpenWal(pPager, 0); 3300 } 3301 }else if( pPager->journalMode==PAGER_JOURNALMODE_WAL ){ 3302 pPager->journalMode = PAGER_JOURNALMODE_DELETE; 3303 } 3304 } 3305 } 3306 return rc; 3307 } 3308 #endif 3309 3310 /* 3311 ** Playback savepoint pSavepoint. Or, if pSavepoint==NULL, then playback 3312 ** the entire super-journal file. The case pSavepoint==NULL occurs when 3313 ** a ROLLBACK TO command is invoked on a SAVEPOINT that is a transaction 3314 ** savepoint. 3315 ** 3316 ** When pSavepoint is not NULL (meaning a non-transaction savepoint is 3317 ** being rolled back), then the rollback consists of up to three stages, 3318 ** performed in the order specified: 3319 ** 3320 ** * Pages are played back from the main journal starting at byte 3321 ** offset PagerSavepoint.iOffset and continuing to 3322 ** PagerSavepoint.iHdrOffset, or to the end of the main journal 3323 ** file if PagerSavepoint.iHdrOffset is zero. 3324 ** 3325 ** * If PagerSavepoint.iHdrOffset is not zero, then pages are played 3326 ** back starting from the journal header immediately following 3327 ** PagerSavepoint.iHdrOffset to the end of the main journal file. 3328 ** 3329 ** * Pages are then played back from the sub-journal file, starting 3330 ** with the PagerSavepoint.iSubRec and continuing to the end of 3331 ** the journal file. 3332 ** 3333 ** Throughout the rollback process, each time a page is rolled back, the 3334 ** corresponding bit is set in a bitvec structure (variable pDone in the 3335 ** implementation below). This is used to ensure that a page is only 3336 ** rolled back the first time it is encountered in either journal. 3337 ** 3338 ** If pSavepoint is NULL, then pages are only played back from the main 3339 ** journal file. There is no need for a bitvec in this case. 3340 ** 3341 ** In either case, before playback commences the Pager.dbSize variable 3342 ** is reset to the value that it held at the start of the savepoint 3343 ** (or transaction). No page with a page-number greater than this value 3344 ** is played back. If one is encountered it is simply skipped. 3345 */ 3346 static int pagerPlaybackSavepoint(Pager *pPager, PagerSavepoint *pSavepoint){ 3347 i64 szJ; /* Effective size of the main journal */ 3348 i64 iHdrOff; /* End of first segment of main-journal records */ 3349 int rc = SQLITE_OK; /* Return code */ 3350 Bitvec *pDone = 0; /* Bitvec to ensure pages played back only once */ 3351 3352 assert( pPager->eState!=PAGER_ERROR ); 3353 assert( pPager->eState>=PAGER_WRITER_LOCKED ); 3354 3355 /* Allocate a bitvec to use to store the set of pages rolled back */ 3356 if( pSavepoint ){ 3357 pDone = sqlite3BitvecCreate(pSavepoint->nOrig); 3358 if( !pDone ){ 3359 return SQLITE_NOMEM_BKPT; 3360 } 3361 } 3362 3363 /* Set the database size back to the value it was before the savepoint 3364 ** being reverted was opened. 3365 */ 3366 pPager->dbSize = pSavepoint ? pSavepoint->nOrig : pPager->dbOrigSize; 3367 pPager->changeCountDone = pPager->tempFile; 3368 3369 if( !pSavepoint && pagerUseWal(pPager) ){ 3370 return pagerRollbackWal(pPager); 3371 } 3372 3373 /* Use pPager->journalOff as the effective size of the main rollback 3374 ** journal. The actual file might be larger than this in 3375 ** PAGER_JOURNALMODE_TRUNCATE or PAGER_JOURNALMODE_PERSIST. But anything 3376 ** past pPager->journalOff is off-limits to us. 3377 */ 3378 szJ = pPager->journalOff; 3379 assert( pagerUseWal(pPager)==0 || szJ==0 ); 3380 3381 /* Begin by rolling back records from the main journal starting at 3382 ** PagerSavepoint.iOffset and continuing to the next journal header. 3383 ** There might be records in the main journal that have a page number 3384 ** greater than the current database size (pPager->dbSize) but those 3385 ** will be skipped automatically. Pages are added to pDone as they 3386 ** are played back. 3387 */ 3388 if( pSavepoint && !pagerUseWal(pPager) ){ 3389 iHdrOff = pSavepoint->iHdrOffset ? pSavepoint->iHdrOffset : szJ; 3390 pPager->journalOff = pSavepoint->iOffset; 3391 while( rc==SQLITE_OK && pPager->journalOff<iHdrOff ){ 3392 rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1); 3393 } 3394 assert( rc!=SQLITE_DONE ); 3395 }else{ 3396 pPager->journalOff = 0; 3397 } 3398 3399 /* Continue rolling back records out of the main journal starting at 3400 ** the first journal header seen and continuing until the effective end 3401 ** of the main journal file. Continue to skip out-of-range pages and 3402 ** continue adding pages rolled back to pDone. 3403 */ 3404 while( rc==SQLITE_OK && pPager->journalOff<szJ ){ 3405 u32 ii; /* Loop counter */ 3406 u32 nJRec = 0; /* Number of Journal Records */ 3407 u32 dummy; 3408 rc = readJournalHdr(pPager, 0, szJ, &nJRec, &dummy); 3409 assert( rc!=SQLITE_DONE ); 3410 3411 /* 3412 ** The "pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff" 3413 ** test is related to ticket #2565. See the discussion in the 3414 ** pager_playback() function for additional information. 3415 */ 3416 if( nJRec==0 3417 && pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff 3418 ){ 3419 nJRec = (u32)((szJ - pPager->journalOff)/JOURNAL_PG_SZ(pPager)); 3420 } 3421 for(ii=0; rc==SQLITE_OK && ii<nJRec && pPager->journalOff<szJ; ii++){ 3422 rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1); 3423 } 3424 assert( rc!=SQLITE_DONE ); 3425 } 3426 assert( rc!=SQLITE_OK || pPager->journalOff>=szJ ); 3427 3428 /* Finally, rollback pages from the sub-journal. Page that were 3429 ** previously rolled back out of the main journal (and are hence in pDone) 3430 ** will be skipped. Out-of-range pages are also skipped. 3431 */ 3432 if( pSavepoint ){ 3433 u32 ii; /* Loop counter */ 3434 i64 offset = (i64)pSavepoint->iSubRec*(4+pPager->pageSize); 3435 3436 if( pagerUseWal(pPager) ){ 3437 rc = sqlite3WalSavepointUndo(pPager->pWal, pSavepoint->aWalData); 3438 } 3439 for(ii=pSavepoint->iSubRec; rc==SQLITE_OK && ii<pPager->nSubRec; ii++){ 3440 assert( offset==(i64)ii*(4+pPager->pageSize) ); 3441 rc = pager_playback_one_page(pPager, &offset, pDone, 0, 1); 3442 } 3443 assert( rc!=SQLITE_DONE ); 3444 } 3445 3446 sqlite3BitvecDestroy(pDone); 3447 if( rc==SQLITE_OK ){ 3448 pPager->journalOff = szJ; 3449 } 3450 3451 return rc; 3452 } 3453 3454 /* 3455 ** Change the maximum number of in-memory pages that are allowed 3456 ** before attempting to recycle clean and unused pages. 3457 */ 3458 void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){ 3459 sqlite3PcacheSetCachesize(pPager->pPCache, mxPage); 3460 } 3461 3462 /* 3463 ** Change the maximum number of in-memory pages that are allowed 3464 ** before attempting to spill pages to journal. 3465 */ 3466 int sqlite3PagerSetSpillsize(Pager *pPager, int mxPage){ 3467 return sqlite3PcacheSetSpillsize(pPager->pPCache, mxPage); 3468 } 3469 3470 /* 3471 ** Invoke SQLITE_FCNTL_MMAP_SIZE based on the current value of szMmap. 3472 */ 3473 static void pagerFixMaplimit(Pager *pPager){ 3474 #if SQLITE_MAX_MMAP_SIZE>0 3475 sqlite3_file *fd = pPager->fd; 3476 if( isOpen(fd) && fd->pMethods->iVersion>=3 ){ 3477 sqlite3_int64 sz; 3478 sz = pPager->szMmap; 3479 pPager->bUseFetch = (sz>0); 3480 setGetterMethod(pPager); 3481 sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_MMAP_SIZE, &sz); 3482 } 3483 #endif 3484 } 3485 3486 /* 3487 ** Change the maximum size of any memory mapping made of the database file. 3488 */ 3489 void sqlite3PagerSetMmapLimit(Pager *pPager, sqlite3_int64 szMmap){ 3490 pPager->szMmap = szMmap; 3491 pagerFixMaplimit(pPager); 3492 } 3493 3494 /* 3495 ** Free as much memory as possible from the pager. 3496 */ 3497 void sqlite3PagerShrink(Pager *pPager){ 3498 sqlite3PcacheShrink(pPager->pPCache); 3499 } 3500 3501 /* 3502 ** Adjust settings of the pager to those specified in the pgFlags parameter. 3503 ** 3504 ** The "level" in pgFlags & PAGER_SYNCHRONOUS_MASK sets the robustness 3505 ** of the database to damage due to OS crashes or power failures by 3506 ** changing the number of syncs()s when writing the journals. 3507 ** There are four levels: 3508 ** 3509 ** OFF sqlite3OsSync() is never called. This is the default 3510 ** for temporary and transient files. 3511 ** 3512 ** NORMAL The journal is synced once before writes begin on the 3513 ** database. This is normally adequate protection, but 3514 ** it is theoretically possible, though very unlikely, 3515 ** that an inopertune power failure could leave the journal 3516 ** in a state which would cause damage to the database 3517 ** when it is rolled back. 3518 ** 3519 ** FULL The journal is synced twice before writes begin on the 3520 ** database (with some additional information - the nRec field 3521 ** of the journal header - being written in between the two 3522 ** syncs). If we assume that writing a 3523 ** single disk sector is atomic, then this mode provides 3524 ** assurance that the journal will not be corrupted to the 3525 ** point of causing damage to the database during rollback. 3526 ** 3527 ** EXTRA This is like FULL except that is also syncs the directory 3528 ** that contains the rollback journal after the rollback 3529 ** journal is unlinked. 3530 ** 3531 ** The above is for a rollback-journal mode. For WAL mode, OFF continues 3532 ** to mean that no syncs ever occur. NORMAL means that the WAL is synced 3533 ** prior to the start of checkpoint and that the database file is synced 3534 ** at the conclusion of the checkpoint if the entire content of the WAL 3535 ** was written back into the database. But no sync operations occur for 3536 ** an ordinary commit in NORMAL mode with WAL. FULL means that the WAL 3537 ** file is synced following each commit operation, in addition to the 3538 ** syncs associated with NORMAL. There is no difference between FULL 3539 ** and EXTRA for WAL mode. 3540 ** 3541 ** Do not confuse synchronous=FULL with SQLITE_SYNC_FULL. The 3542 ** SQLITE_SYNC_FULL macro means to use the MacOSX-style full-fsync 3543 ** using fcntl(F_FULLFSYNC). SQLITE_SYNC_NORMAL means to do an 3544 ** ordinary fsync() call. There is no difference between SQLITE_SYNC_FULL 3545 ** and SQLITE_SYNC_NORMAL on platforms other than MacOSX. But the 3546 ** synchronous=FULL versus synchronous=NORMAL setting determines when 3547 ** the xSync primitive is called and is relevant to all platforms. 3548 ** 3549 ** Numeric values associated with these states are OFF==1, NORMAL=2, 3550 ** and FULL=3. 3551 */ 3552 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 3553 void sqlite3PagerSetFlags( 3554 Pager *pPager, /* The pager to set safety level for */ 3555 unsigned pgFlags /* Various flags */ 3556 ){ 3557 unsigned level = pgFlags & PAGER_SYNCHRONOUS_MASK; 3558 if( pPager->tempFile ){ 3559 pPager->noSync = 1; 3560 pPager->fullSync = 0; 3561 pPager->extraSync = 0; 3562 }else{ 3563 pPager->noSync = level==PAGER_SYNCHRONOUS_OFF ?1:0; 3564 pPager->fullSync = level>=PAGER_SYNCHRONOUS_FULL ?1:0; 3565 pPager->extraSync = level==PAGER_SYNCHRONOUS_EXTRA ?1:0; 3566 } 3567 if( pPager->noSync ){ 3568 pPager->syncFlags = 0; 3569 }else if( pgFlags & PAGER_FULLFSYNC ){ 3570 pPager->syncFlags = SQLITE_SYNC_FULL; 3571 }else{ 3572 pPager->syncFlags = SQLITE_SYNC_NORMAL; 3573 } 3574 pPager->walSyncFlags = (pPager->syncFlags<<2); 3575 if( pPager->fullSync ){ 3576 pPager->walSyncFlags |= pPager->syncFlags; 3577 } 3578 if( (pgFlags & PAGER_CKPT_FULLFSYNC) && !pPager->noSync ){ 3579 pPager->walSyncFlags |= (SQLITE_SYNC_FULL<<2); 3580 } 3581 if( pgFlags & PAGER_CACHESPILL ){ 3582 pPager->doNotSpill &= ~SPILLFLAG_OFF; 3583 }else{ 3584 pPager->doNotSpill |= SPILLFLAG_OFF; 3585 } 3586 } 3587 #endif 3588 3589 /* 3590 ** The following global variable is incremented whenever the library 3591 ** attempts to open a temporary file. This information is used for 3592 ** testing and analysis only. 3593 */ 3594 #ifdef SQLITE_TEST 3595 int sqlite3_opentemp_count = 0; 3596 #endif 3597 3598 /* 3599 ** Open a temporary file. 3600 ** 3601 ** Write the file descriptor into *pFile. Return SQLITE_OK on success 3602 ** or some other error code if we fail. The OS will automatically 3603 ** delete the temporary file when it is closed. 3604 ** 3605 ** The flags passed to the VFS layer xOpen() call are those specified 3606 ** by parameter vfsFlags ORed with the following: 3607 ** 3608 ** SQLITE_OPEN_READWRITE 3609 ** SQLITE_OPEN_CREATE 3610 ** SQLITE_OPEN_EXCLUSIVE 3611 ** SQLITE_OPEN_DELETEONCLOSE 3612 */ 3613 static int pagerOpentemp( 3614 Pager *pPager, /* The pager object */ 3615 sqlite3_file *pFile, /* Write the file descriptor here */ 3616 int vfsFlags /* Flags passed through to the VFS */ 3617 ){ 3618 int rc; /* Return code */ 3619 3620 #ifdef SQLITE_TEST 3621 sqlite3_opentemp_count++; /* Used for testing and analysis only */ 3622 #endif 3623 3624 vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | 3625 SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE; 3626 rc = sqlite3OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0); 3627 assert( rc!=SQLITE_OK || isOpen(pFile) ); 3628 return rc; 3629 } 3630 3631 /* 3632 ** Set the busy handler function. 3633 ** 3634 ** The pager invokes the busy-handler if sqlite3OsLock() returns 3635 ** SQLITE_BUSY when trying to upgrade from no-lock to a SHARED lock, 3636 ** or when trying to upgrade from a RESERVED lock to an EXCLUSIVE 3637 ** lock. It does *not* invoke the busy handler when upgrading from 3638 ** SHARED to RESERVED, or when upgrading from SHARED to EXCLUSIVE 3639 ** (which occurs during hot-journal rollback). Summary: 3640 ** 3641 ** Transition | Invokes xBusyHandler 3642 ** -------------------------------------------------------- 3643 ** NO_LOCK -> SHARED_LOCK | Yes 3644 ** SHARED_LOCK -> RESERVED_LOCK | No 3645 ** SHARED_LOCK -> EXCLUSIVE_LOCK | No 3646 ** RESERVED_LOCK -> EXCLUSIVE_LOCK | Yes 3647 ** 3648 ** If the busy-handler callback returns non-zero, the lock is 3649 ** retried. If it returns zero, then the SQLITE_BUSY error is 3650 ** returned to the caller of the pager API function. 3651 */ 3652 void sqlite3PagerSetBusyHandler( 3653 Pager *pPager, /* Pager object */ 3654 int (*xBusyHandler)(void *), /* Pointer to busy-handler function */ 3655 void *pBusyHandlerArg /* Argument to pass to xBusyHandler */ 3656 ){ 3657 void **ap; 3658 pPager->xBusyHandler = xBusyHandler; 3659 pPager->pBusyHandlerArg = pBusyHandlerArg; 3660 ap = (void **)&pPager->xBusyHandler; 3661 assert( ((int(*)(void *))(ap[0]))==xBusyHandler ); 3662 assert( ap[1]==pBusyHandlerArg ); 3663 sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_BUSYHANDLER, (void *)ap); 3664 } 3665 3666 /* 3667 ** Change the page size used by the Pager object. The new page size 3668 ** is passed in *pPageSize. 3669 ** 3670 ** If the pager is in the error state when this function is called, it 3671 ** is a no-op. The value returned is the error state error code (i.e. 3672 ** one of SQLITE_IOERR, an SQLITE_IOERR_xxx sub-code or SQLITE_FULL). 3673 ** 3674 ** Otherwise, if all of the following are true: 3675 ** 3676 ** * the new page size (value of *pPageSize) is valid (a power 3677 ** of two between 512 and SQLITE_MAX_PAGE_SIZE, inclusive), and 3678 ** 3679 ** * there are no outstanding page references, and 3680 ** 3681 ** * the database is either not an in-memory database or it is 3682 ** an in-memory database that currently consists of zero pages. 3683 ** 3684 ** then the pager object page size is set to *pPageSize. 3685 ** 3686 ** If the page size is changed, then this function uses sqlite3PagerMalloc() 3687 ** to obtain a new Pager.pTmpSpace buffer. If this allocation attempt 3688 ** fails, SQLITE_NOMEM is returned and the page size remains unchanged. 3689 ** In all other cases, SQLITE_OK is returned. 3690 ** 3691 ** If the page size is not changed, either because one of the enumerated 3692 ** conditions above is not true, the pager was in error state when this 3693 ** function was called, or because the memory allocation attempt failed, 3694 ** then *pPageSize is set to the old, retained page size before returning. 3695 */ 3696 int sqlite3PagerSetPagesize(Pager *pPager, u32 *pPageSize, int nReserve){ 3697 int rc = SQLITE_OK; 3698 3699 /* It is not possible to do a full assert_pager_state() here, as this 3700 ** function may be called from within PagerOpen(), before the state 3701 ** of the Pager object is internally consistent. 3702 ** 3703 ** At one point this function returned an error if the pager was in 3704 ** PAGER_ERROR state. But since PAGER_ERROR state guarantees that 3705 ** there is at least one outstanding page reference, this function 3706 ** is a no-op for that case anyhow. 3707 */ 3708 3709 u32 pageSize = *pPageSize; 3710 assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) ); 3711 if( (pPager->memDb==0 || pPager->dbSize==0) 3712 && sqlite3PcacheRefCount(pPager->pPCache)==0 3713 && pageSize && pageSize!=(u32)pPager->pageSize 3714 ){ 3715 char *pNew = NULL; /* New temp space */ 3716 i64 nByte = 0; 3717 3718 if( pPager->eState>PAGER_OPEN && isOpen(pPager->fd) ){ 3719 rc = sqlite3OsFileSize(pPager->fd, &nByte); 3720 } 3721 if( rc==SQLITE_OK ){ 3722 /* 8 bytes of zeroed overrun space is sufficient so that the b-tree 3723 * cell header parser will never run off the end of the allocation */ 3724 pNew = (char *)sqlite3PageMalloc(pageSize+8); 3725 if( !pNew ){ 3726 rc = SQLITE_NOMEM_BKPT; 3727 }else{ 3728 memset(pNew+pageSize, 0, 8); 3729 } 3730 } 3731 3732 if( rc==SQLITE_OK ){ 3733 pager_reset(pPager); 3734 rc = sqlite3PcacheSetPageSize(pPager->pPCache, pageSize); 3735 } 3736 if( rc==SQLITE_OK ){ 3737 sqlite3PageFree(pPager->pTmpSpace); 3738 pPager->pTmpSpace = pNew; 3739 pPager->dbSize = (Pgno)((nByte+pageSize-1)/pageSize); 3740 pPager->pageSize = pageSize; 3741 }else{ 3742 sqlite3PageFree(pNew); 3743 } 3744 } 3745 3746 *pPageSize = pPager->pageSize; 3747 if( rc==SQLITE_OK ){ 3748 if( nReserve<0 ) nReserve = pPager->nReserve; 3749 assert( nReserve>=0 && nReserve<1000 ); 3750 pPager->nReserve = (i16)nReserve; 3751 pagerFixMaplimit(pPager); 3752 } 3753 return rc; 3754 } 3755 3756 /* 3757 ** Return a pointer to the "temporary page" buffer held internally 3758 ** by the pager. This is a buffer that is big enough to hold the 3759 ** entire content of a database page. This buffer is used internally 3760 ** during rollback and will be overwritten whenever a rollback 3761 ** occurs. But other modules are free to use it too, as long as 3762 ** no rollbacks are happening. 3763 */ 3764 void *sqlite3PagerTempSpace(Pager *pPager){ 3765 return pPager->pTmpSpace; 3766 } 3767 3768 /* 3769 ** Attempt to set the maximum database page count if mxPage is positive. 3770 ** Make no changes if mxPage is zero or negative. And never reduce the 3771 ** maximum page count below the current size of the database. 3772 ** 3773 ** Regardless of mxPage, return the current maximum page count. 3774 */ 3775 Pgno sqlite3PagerMaxPageCount(Pager *pPager, Pgno mxPage){ 3776 if( mxPage>0 ){ 3777 pPager->mxPgno = mxPage; 3778 } 3779 assert( pPager->eState!=PAGER_OPEN ); /* Called only by OP_MaxPgcnt */ 3780 /* assert( pPager->mxPgno>=pPager->dbSize ); */ 3781 /* OP_MaxPgcnt ensures that the parameter passed to this function is not 3782 ** less than the total number of valid pages in the database. But this 3783 ** may be less than Pager.dbSize, and so the assert() above is not valid */ 3784 return pPager->mxPgno; 3785 } 3786 3787 /* 3788 ** The following set of routines are used to disable the simulated 3789 ** I/O error mechanism. These routines are used to avoid simulated 3790 ** errors in places where we do not care about errors. 3791 ** 3792 ** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops 3793 ** and generate no code. 3794 */ 3795 #ifdef SQLITE_TEST 3796 extern int sqlite3_io_error_pending; 3797 extern int sqlite3_io_error_hit; 3798 static int saved_cnt; 3799 void disable_simulated_io_errors(void){ 3800 saved_cnt = sqlite3_io_error_pending; 3801 sqlite3_io_error_pending = -1; 3802 } 3803 void enable_simulated_io_errors(void){ 3804 sqlite3_io_error_pending = saved_cnt; 3805 } 3806 #else 3807 # define disable_simulated_io_errors() 3808 # define enable_simulated_io_errors() 3809 #endif 3810 3811 /* 3812 ** Read the first N bytes from the beginning of the file into memory 3813 ** that pDest points to. 3814 ** 3815 ** If the pager was opened on a transient file (zFilename==""), or 3816 ** opened on a file less than N bytes in size, the output buffer is 3817 ** zeroed and SQLITE_OK returned. The rationale for this is that this 3818 ** function is used to read database headers, and a new transient or 3819 ** zero sized database has a header than consists entirely of zeroes. 3820 ** 3821 ** If any IO error apart from SQLITE_IOERR_SHORT_READ is encountered, 3822 ** the error code is returned to the caller and the contents of the 3823 ** output buffer undefined. 3824 */ 3825 int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){ 3826 int rc = SQLITE_OK; 3827 memset(pDest, 0, N); 3828 assert( isOpen(pPager->fd) || pPager->tempFile ); 3829 3830 /* This routine is only called by btree immediately after creating 3831 ** the Pager object. There has not been an opportunity to transition 3832 ** to WAL mode yet. 3833 */ 3834 assert( !pagerUseWal(pPager) ); 3835 3836 if( isOpen(pPager->fd) ){ 3837 IOTRACE(("DBHDR %p 0 %d\n", pPager, N)) 3838 rc = sqlite3OsRead(pPager->fd, pDest, N, 0); 3839 if( rc==SQLITE_IOERR_SHORT_READ ){ 3840 rc = SQLITE_OK; 3841 } 3842 } 3843 return rc; 3844 } 3845 3846 /* 3847 ** This function may only be called when a read-transaction is open on 3848 ** the pager. It returns the total number of pages in the database. 3849 ** 3850 ** However, if the file is between 1 and <page-size> bytes in size, then 3851 ** this is considered a 1 page file. 3852 */ 3853 void sqlite3PagerPagecount(Pager *pPager, int *pnPage){ 3854 assert( pPager->eState>=PAGER_READER ); 3855 assert( pPager->eState!=PAGER_WRITER_FINISHED ); 3856 *pnPage = (int)pPager->dbSize; 3857 } 3858 3859 3860 /* 3861 ** Try to obtain a lock of type locktype on the database file. If 3862 ** a similar or greater lock is already held, this function is a no-op 3863 ** (returning SQLITE_OK immediately). 3864 ** 3865 ** Otherwise, attempt to obtain the lock using sqlite3OsLock(). Invoke 3866 ** the busy callback if the lock is currently not available. Repeat 3867 ** until the busy callback returns false or until the attempt to 3868 ** obtain the lock succeeds. 3869 ** 3870 ** Return SQLITE_OK on success and an error code if we cannot obtain 3871 ** the lock. If the lock is obtained successfully, set the Pager.state 3872 ** variable to locktype before returning. 3873 */ 3874 static int pager_wait_on_lock(Pager *pPager, int locktype){ 3875 int rc; /* Return code */ 3876 3877 /* Check that this is either a no-op (because the requested lock is 3878 ** already held), or one of the transitions that the busy-handler 3879 ** may be invoked during, according to the comment above 3880 ** sqlite3PagerSetBusyhandler(). 3881 */ 3882 assert( (pPager->eLock>=locktype) 3883 || (pPager->eLock==NO_LOCK && locktype==SHARED_LOCK) 3884 || (pPager->eLock==RESERVED_LOCK && locktype==EXCLUSIVE_LOCK) 3885 ); 3886 3887 do { 3888 rc = pagerLockDb(pPager, locktype); 3889 }while( rc==SQLITE_BUSY && pPager->xBusyHandler(pPager->pBusyHandlerArg) ); 3890 return rc; 3891 } 3892 3893 /* 3894 ** Function assertTruncateConstraint(pPager) checks that one of the 3895 ** following is true for all dirty pages currently in the page-cache: 3896 ** 3897 ** a) The page number is less than or equal to the size of the 3898 ** current database image, in pages, OR 3899 ** 3900 ** b) if the page content were written at this time, it would not 3901 ** be necessary to write the current content out to the sub-journal 3902 ** (as determined by function subjRequiresPage()). 3903 ** 3904 ** If the condition asserted by this function were not true, and the 3905 ** dirty page were to be discarded from the cache via the pagerStress() 3906 ** routine, pagerStress() would not write the current page content to 3907 ** the database file. If a savepoint transaction were rolled back after 3908 ** this happened, the correct behavior would be to restore the current 3909 ** content of the page. However, since this content is not present in either 3910 ** the database file or the portion of the rollback journal and 3911 ** sub-journal rolled back the content could not be restored and the 3912 ** database image would become corrupt. It is therefore fortunate that 3913 ** this circumstance cannot arise. 3914 */ 3915 #if defined(SQLITE_DEBUG) 3916 static void assertTruncateConstraintCb(PgHdr *pPg){ 3917 assert( pPg->flags&PGHDR_DIRTY ); 3918 assert( !subjRequiresPage(pPg) || pPg->pgno<=pPg->pPager->dbSize ); 3919 } 3920 static void assertTruncateConstraint(Pager *pPager){ 3921 sqlite3PcacheIterateDirty(pPager->pPCache, assertTruncateConstraintCb); 3922 } 3923 #else 3924 # define assertTruncateConstraint(pPager) 3925 #endif 3926 3927 /* 3928 ** Truncate the in-memory database file image to nPage pages. This 3929 ** function does not actually modify the database file on disk. It 3930 ** just sets the internal state of the pager object so that the 3931 ** truncation will be done when the current transaction is committed. 3932 ** 3933 ** This function is only called right before committing a transaction. 3934 ** Once this function has been called, the transaction must either be 3935 ** rolled back or committed. It is not safe to call this function and 3936 ** then continue writing to the database. 3937 */ 3938 void sqlite3PagerTruncateImage(Pager *pPager, Pgno nPage){ 3939 assert( pPager->dbSize>=nPage || CORRUPT_DB ); 3940 testcase( pPager->dbSize<nPage ); 3941 assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); 3942 pPager->dbSize = nPage; 3943 3944 /* At one point the code here called assertTruncateConstraint() to 3945 ** ensure that all pages being truncated away by this operation are, 3946 ** if one or more savepoints are open, present in the savepoint 3947 ** journal so that they can be restored if the savepoint is rolled 3948 ** back. This is no longer necessary as this function is now only 3949 ** called right before committing a transaction. So although the 3950 ** Pager object may still have open savepoints (Pager.nSavepoint!=0), 3951 ** they cannot be rolled back. So the assertTruncateConstraint() call 3952 ** is no longer correct. */ 3953 } 3954 3955 3956 /* 3957 ** This function is called before attempting a hot-journal rollback. It 3958 ** syncs the journal file to disk, then sets pPager->journalHdr to the 3959 ** size of the journal file so that the pager_playback() routine knows 3960 ** that the entire journal file has been synced. 3961 ** 3962 ** Syncing a hot-journal to disk before attempting to roll it back ensures 3963 ** that if a power-failure occurs during the rollback, the process that 3964 ** attempts rollback following system recovery sees the same journal 3965 ** content as this process. 3966 ** 3967 ** If everything goes as planned, SQLITE_OK is returned. Otherwise, 3968 ** an SQLite error code. 3969 */ 3970 static int pagerSyncHotJournal(Pager *pPager){ 3971 int rc = SQLITE_OK; 3972 if( !pPager->noSync ){ 3973 rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_NORMAL); 3974 } 3975 if( rc==SQLITE_OK ){ 3976 rc = sqlite3OsFileSize(pPager->jfd, &pPager->journalHdr); 3977 } 3978 return rc; 3979 } 3980 3981 #if SQLITE_MAX_MMAP_SIZE>0 3982 /* 3983 ** Obtain a reference to a memory mapped page object for page number pgno. 3984 ** The new object will use the pointer pData, obtained from xFetch(). 3985 ** If successful, set *ppPage to point to the new page reference 3986 ** and return SQLITE_OK. Otherwise, return an SQLite error code and set 3987 ** *ppPage to zero. 3988 ** 3989 ** Page references obtained by calling this function should be released 3990 ** by calling pagerReleaseMapPage(). 3991 */ 3992 static int pagerAcquireMapPage( 3993 Pager *pPager, /* Pager object */ 3994 Pgno pgno, /* Page number */ 3995 void *pData, /* xFetch()'d data for this page */ 3996 PgHdr **ppPage /* OUT: Acquired page object */ 3997 ){ 3998 PgHdr *p; /* Memory mapped page to return */ 3999 4000 if( pPager->pMmapFreelist ){ 4001 *ppPage = p = pPager->pMmapFreelist; 4002 pPager->pMmapFreelist = p->pDirty; 4003 p->pDirty = 0; 4004 assert( pPager->nExtra>=8 ); 4005 memset(p->pExtra, 0, 8); 4006 }else{ 4007 *ppPage = p = (PgHdr *)sqlite3MallocZero(sizeof(PgHdr) + pPager->nExtra); 4008 if( p==0 ){ 4009 sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1) * pPager->pageSize, pData); 4010 return SQLITE_NOMEM_BKPT; 4011 } 4012 p->pExtra = (void *)&p[1]; 4013 p->flags = PGHDR_MMAP; 4014 p->nRef = 1; 4015 p->pPager = pPager; 4016 } 4017 4018 assert( p->pExtra==(void *)&p[1] ); 4019 assert( p->pPage==0 ); 4020 assert( p->flags==PGHDR_MMAP ); 4021 assert( p->pPager==pPager ); 4022 assert( p->nRef==1 ); 4023 4024 p->pgno = pgno; 4025 p->pData = pData; 4026 pPager->nMmapOut++; 4027 4028 return SQLITE_OK; 4029 } 4030 #endif 4031 4032 /* 4033 ** Release a reference to page pPg. pPg must have been returned by an 4034 ** earlier call to pagerAcquireMapPage(). 4035 */ 4036 static void pagerReleaseMapPage(PgHdr *pPg){ 4037 Pager *pPager = pPg->pPager; 4038 pPager->nMmapOut--; 4039 pPg->pDirty = pPager->pMmapFreelist; 4040 pPager->pMmapFreelist = pPg; 4041 4042 assert( pPager->fd->pMethods->iVersion>=3 ); 4043 sqlite3OsUnfetch(pPager->fd, (i64)(pPg->pgno-1)*pPager->pageSize, pPg->pData); 4044 } 4045 4046 /* 4047 ** Free all PgHdr objects stored in the Pager.pMmapFreelist list. 4048 */ 4049 static void pagerFreeMapHdrs(Pager *pPager){ 4050 PgHdr *p; 4051 PgHdr *pNext; 4052 for(p=pPager->pMmapFreelist; p; p=pNext){ 4053 pNext = p->pDirty; 4054 sqlite3_free(p); 4055 } 4056 } 4057 4058 /* Verify that the database file has not be deleted or renamed out from 4059 ** under the pager. Return SQLITE_OK if the database is still where it ought 4060 ** to be on disk. Return non-zero (SQLITE_READONLY_DBMOVED or some other error 4061 ** code from sqlite3OsAccess()) if the database has gone missing. 4062 */ 4063 static int databaseIsUnmoved(Pager *pPager){ 4064 int bHasMoved = 0; 4065 int rc; 4066 4067 if( pPager->tempFile ) return SQLITE_OK; 4068 if( pPager->dbSize==0 ) return SQLITE_OK; 4069 assert( pPager->zFilename && pPager->zFilename[0] ); 4070 rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_HAS_MOVED, &bHasMoved); 4071 if( rc==SQLITE_NOTFOUND ){ 4072 /* If the HAS_MOVED file-control is unimplemented, assume that the file 4073 ** has not been moved. That is the historical behavior of SQLite: prior to 4074 ** version 3.8.3, it never checked */ 4075 rc = SQLITE_OK; 4076 }else if( rc==SQLITE_OK && bHasMoved ){ 4077 rc = SQLITE_READONLY_DBMOVED; 4078 } 4079 return rc; 4080 } 4081 4082 4083 /* 4084 ** Shutdown the page cache. Free all memory and close all files. 4085 ** 4086 ** If a transaction was in progress when this routine is called, that 4087 ** transaction is rolled back. All outstanding pages are invalidated 4088 ** and their memory is freed. Any attempt to use a page associated 4089 ** with this page cache after this function returns will likely 4090 ** result in a coredump. 4091 ** 4092 ** This function always succeeds. If a transaction is active an attempt 4093 ** is made to roll it back. If an error occurs during the rollback 4094 ** a hot journal may be left in the filesystem but no error is returned 4095 ** to the caller. 4096 */ 4097 int sqlite3PagerClose(Pager *pPager, sqlite3 *db){ 4098 u8 *pTmp = (u8*)pPager->pTmpSpace; 4099 assert( db || pagerUseWal(pPager)==0 ); 4100 assert( assert_pager_state(pPager) ); 4101 disable_simulated_io_errors(); 4102 sqlite3BeginBenignMalloc(); 4103 pagerFreeMapHdrs(pPager); 4104 /* pPager->errCode = 0; */ 4105 pPager->exclusiveMode = 0; 4106 #ifndef SQLITE_OMIT_WAL 4107 { 4108 u8 *a = 0; 4109 assert( db || pPager->pWal==0 ); 4110 if( db && 0==(db->flags & SQLITE_NoCkptOnClose) 4111 && SQLITE_OK==databaseIsUnmoved(pPager) 4112 ){ 4113 a = pTmp; 4114 } 4115 sqlite3WalClose(pPager->pWal, db, pPager->walSyncFlags, pPager->pageSize,a); 4116 pPager->pWal = 0; 4117 } 4118 #endif 4119 pager_reset(pPager); 4120 if( MEMDB ){ 4121 pager_unlock(pPager); 4122 }else{ 4123 /* If it is open, sync the journal file before calling UnlockAndRollback. 4124 ** If this is not done, then an unsynced portion of the open journal 4125 ** file may be played back into the database. If a power failure occurs 4126 ** while this is happening, the database could become corrupt. 4127 ** 4128 ** If an error occurs while trying to sync the journal, shift the pager 4129 ** into the ERROR state. This causes UnlockAndRollback to unlock the 4130 ** database and close the journal file without attempting to roll it 4131 ** back or finalize it. The next database user will have to do hot-journal 4132 ** rollback before accessing the database file. 4133 */ 4134 if( isOpen(pPager->jfd) ){ 4135 pager_error(pPager, pagerSyncHotJournal(pPager)); 4136 } 4137 pagerUnlockAndRollback(pPager); 4138 } 4139 sqlite3EndBenignMalloc(); 4140 enable_simulated_io_errors(); 4141 PAGERTRACE(("CLOSE %d\n", PAGERID(pPager))); 4142 IOTRACE(("CLOSE %p\n", pPager)) 4143 sqlite3OsClose(pPager->jfd); 4144 sqlite3OsClose(pPager->fd); 4145 sqlite3PageFree(pTmp); 4146 sqlite3PcacheClose(pPager->pPCache); 4147 assert( !pPager->aSavepoint && !pPager->pInJournal ); 4148 assert( !isOpen(pPager->jfd) && !isOpen(pPager->sjfd) ); 4149 4150 sqlite3_free(pPager); 4151 return SQLITE_OK; 4152 } 4153 4154 #if !defined(NDEBUG) || defined(SQLITE_TEST) 4155 /* 4156 ** Return the page number for page pPg. 4157 */ 4158 Pgno sqlite3PagerPagenumber(DbPage *pPg){ 4159 return pPg->pgno; 4160 } 4161 #endif 4162 4163 /* 4164 ** Increment the reference count for page pPg. 4165 */ 4166 void sqlite3PagerRef(DbPage *pPg){ 4167 sqlite3PcacheRef(pPg); 4168 } 4169 4170 /* 4171 ** Sync the journal. In other words, make sure all the pages that have 4172 ** been written to the journal have actually reached the surface of the 4173 ** disk and can be restored in the event of a hot-journal rollback. 4174 ** 4175 ** If the Pager.noSync flag is set, then this function is a no-op. 4176 ** Otherwise, the actions required depend on the journal-mode and the 4177 ** device characteristics of the file-system, as follows: 4178 ** 4179 ** * If the journal file is an in-memory journal file, no action need 4180 ** be taken. 4181 ** 4182 ** * Otherwise, if the device does not support the SAFE_APPEND property, 4183 ** then the nRec field of the most recently written journal header 4184 ** is updated to contain the number of journal records that have 4185 ** been written following it. If the pager is operating in full-sync 4186 ** mode, then the journal file is synced before this field is updated. 4187 ** 4188 ** * If the device does not support the SEQUENTIAL property, then 4189 ** journal file is synced. 4190 ** 4191 ** Or, in pseudo-code: 4192 ** 4193 ** if( NOT <in-memory journal> ){ 4194 ** if( NOT SAFE_APPEND ){ 4195 ** if( <full-sync mode> ) xSync(<journal file>); 4196 ** <update nRec field> 4197 ** } 4198 ** if( NOT SEQUENTIAL ) xSync(<journal file>); 4199 ** } 4200 ** 4201 ** If successful, this routine clears the PGHDR_NEED_SYNC flag of every 4202 ** page currently held in memory before returning SQLITE_OK. If an IO 4203 ** error is encountered, then the IO error code is returned to the caller. 4204 */ 4205 static int syncJournal(Pager *pPager, int newHdr){ 4206 int rc; /* Return code */ 4207 4208 assert( pPager->eState==PAGER_WRITER_CACHEMOD 4209 || pPager->eState==PAGER_WRITER_DBMOD 4210 ); 4211 assert( assert_pager_state(pPager) ); 4212 assert( !pagerUseWal(pPager) ); 4213 4214 rc = sqlite3PagerExclusiveLock(pPager); 4215 if( rc!=SQLITE_OK ) return rc; 4216 4217 if( !pPager->noSync ){ 4218 assert( !pPager->tempFile ); 4219 if( isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){ 4220 const int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); 4221 assert( isOpen(pPager->jfd) ); 4222 4223 if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ 4224 /* This block deals with an obscure problem. If the last connection 4225 ** that wrote to this database was operating in persistent-journal 4226 ** mode, then the journal file may at this point actually be larger 4227 ** than Pager.journalOff bytes. If the next thing in the journal 4228 ** file happens to be a journal-header (written as part of the 4229 ** previous connection's transaction), and a crash or power-failure 4230 ** occurs after nRec is updated but before this connection writes 4231 ** anything else to the journal file (or commits/rolls back its 4232 ** transaction), then SQLite may become confused when doing the 4233 ** hot-journal rollback following recovery. It may roll back all 4234 ** of this connections data, then proceed to rolling back the old, 4235 ** out-of-date data that follows it. Database corruption. 4236 ** 4237 ** To work around this, if the journal file does appear to contain 4238 ** a valid header following Pager.journalOff, then write a 0x00 4239 ** byte to the start of it to prevent it from being recognized. 4240 ** 4241 ** Variable iNextHdrOffset is set to the offset at which this 4242 ** problematic header will occur, if it exists. aMagic is used 4243 ** as a temporary buffer to inspect the first couple of bytes of 4244 ** the potential journal header. 4245 */ 4246 i64 iNextHdrOffset; 4247 u8 aMagic[8]; 4248 u8 zHeader[sizeof(aJournalMagic)+4]; 4249 4250 memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); 4251 put32bits(&zHeader[sizeof(aJournalMagic)], pPager->nRec); 4252 4253 iNextHdrOffset = journalHdrOffset(pPager); 4254 rc = sqlite3OsRead(pPager->jfd, aMagic, 8, iNextHdrOffset); 4255 if( rc==SQLITE_OK && 0==memcmp(aMagic, aJournalMagic, 8) ){ 4256 static const u8 zerobyte = 0; 4257 rc = sqlite3OsWrite(pPager->jfd, &zerobyte, 1, iNextHdrOffset); 4258 } 4259 if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){ 4260 return rc; 4261 } 4262 4263 /* Write the nRec value into the journal file header. If in 4264 ** full-synchronous mode, sync the journal first. This ensures that 4265 ** all data has really hit the disk before nRec is updated to mark 4266 ** it as a candidate for rollback. 4267 ** 4268 ** This is not required if the persistent media supports the 4269 ** SAFE_APPEND property. Because in this case it is not possible 4270 ** for garbage data to be appended to the file, the nRec field 4271 ** is populated with 0xFFFFFFFF when the journal header is written 4272 ** and never needs to be updated. 4273 */ 4274 if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ 4275 PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); 4276 IOTRACE(("JSYNC %p\n", pPager)) 4277 rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags); 4278 if( rc!=SQLITE_OK ) return rc; 4279 } 4280 IOTRACE(("JHDR %p %lld\n", pPager, pPager->journalHdr)); 4281 rc = sqlite3OsWrite( 4282 pPager->jfd, zHeader, sizeof(zHeader), pPager->journalHdr 4283 ); 4284 if( rc!=SQLITE_OK ) return rc; 4285 } 4286 if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ 4287 PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); 4288 IOTRACE(("JSYNC %p\n", pPager)) 4289 rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags| 4290 (pPager->syncFlags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0) 4291 ); 4292 if( rc!=SQLITE_OK ) return rc; 4293 } 4294 4295 pPager->journalHdr = pPager->journalOff; 4296 if( newHdr && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ 4297 pPager->nRec = 0; 4298 rc = writeJournalHdr(pPager); 4299 if( rc!=SQLITE_OK ) return rc; 4300 } 4301 }else{ 4302 pPager->journalHdr = pPager->journalOff; 4303 } 4304 } 4305 4306 /* Unless the pager is in noSync mode, the journal file was just 4307 ** successfully synced. Either way, clear the PGHDR_NEED_SYNC flag on 4308 ** all pages. 4309 */ 4310 sqlite3PcacheClearSyncFlags(pPager->pPCache); 4311 pPager->eState = PAGER_WRITER_DBMOD; 4312 assert( assert_pager_state(pPager) ); 4313 return SQLITE_OK; 4314 } 4315 4316 /* 4317 ** The argument is the first in a linked list of dirty pages connected 4318 ** by the PgHdr.pDirty pointer. This function writes each one of the 4319 ** in-memory pages in the list to the database file. The argument may 4320 ** be NULL, representing an empty list. In this case this function is 4321 ** a no-op. 4322 ** 4323 ** The pager must hold at least a RESERVED lock when this function 4324 ** is called. Before writing anything to the database file, this lock 4325 ** is upgraded to an EXCLUSIVE lock. If the lock cannot be obtained, 4326 ** SQLITE_BUSY is returned and no data is written to the database file. 4327 ** 4328 ** If the pager is a temp-file pager and the actual file-system file 4329 ** is not yet open, it is created and opened before any data is 4330 ** written out. 4331 ** 4332 ** Once the lock has been upgraded and, if necessary, the file opened, 4333 ** the pages are written out to the database file in list order. Writing 4334 ** a page is skipped if it meets either of the following criteria: 4335 ** 4336 ** * The page number is greater than Pager.dbSize, or 4337 ** * The PGHDR_DONT_WRITE flag is set on the page. 4338 ** 4339 ** If writing out a page causes the database file to grow, Pager.dbFileSize 4340 ** is updated accordingly. If page 1 is written out, then the value cached 4341 ** in Pager.dbFileVers[] is updated to match the new value stored in 4342 ** the database file. 4343 ** 4344 ** If everything is successful, SQLITE_OK is returned. If an IO error 4345 ** occurs, an IO error code is returned. Or, if the EXCLUSIVE lock cannot 4346 ** be obtained, SQLITE_BUSY is returned. 4347 */ 4348 static int pager_write_pagelist(Pager *pPager, PgHdr *pList){ 4349 int rc = SQLITE_OK; /* Return code */ 4350 4351 /* This function is only called for rollback pagers in WRITER_DBMOD state. */ 4352 assert( !pagerUseWal(pPager) ); 4353 assert( pPager->tempFile || pPager->eState==PAGER_WRITER_DBMOD ); 4354 assert( pPager->eLock==EXCLUSIVE_LOCK ); 4355 assert( isOpen(pPager->fd) || pList->pDirty==0 ); 4356 4357 /* If the file is a temp-file has not yet been opened, open it now. It 4358 ** is not possible for rc to be other than SQLITE_OK if this branch 4359 ** is taken, as pager_wait_on_lock() is a no-op for temp-files. 4360 */ 4361 if( !isOpen(pPager->fd) ){ 4362 assert( pPager->tempFile && rc==SQLITE_OK ); 4363 rc = pagerOpentemp(pPager, pPager->fd, pPager->vfsFlags); 4364 } 4365 4366 /* Before the first write, give the VFS a hint of what the final 4367 ** file size will be. 4368 */ 4369 assert( rc!=SQLITE_OK || isOpen(pPager->fd) ); 4370 if( rc==SQLITE_OK 4371 && pPager->dbHintSize<pPager->dbSize 4372 && (pList->pDirty || pList->pgno>pPager->dbHintSize) 4373 ){ 4374 sqlite3_int64 szFile = pPager->pageSize * (sqlite3_int64)pPager->dbSize; 4375 sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile); 4376 pPager->dbHintSize = pPager->dbSize; 4377 } 4378 4379 while( rc==SQLITE_OK && pList ){ 4380 Pgno pgno = pList->pgno; 4381 4382 /* If there are dirty pages in the page cache with page numbers greater 4383 ** than Pager.dbSize, this means sqlite3PagerTruncateImage() was called to 4384 ** make the file smaller (presumably by auto-vacuum code). Do not write 4385 ** any such pages to the file. 4386 ** 4387 ** Also, do not write out any page that has the PGHDR_DONT_WRITE flag 4388 ** set (set by sqlite3PagerDontWrite()). 4389 */ 4390 if( pgno<=pPager->dbSize && 0==(pList->flags&PGHDR_DONT_WRITE) ){ 4391 i64 offset = (pgno-1)*(i64)pPager->pageSize; /* Offset to write */ 4392 char *pData; /* Data to write */ 4393 4394 assert( (pList->flags&PGHDR_NEED_SYNC)==0 ); 4395 if( pList->pgno==1 ) pager_write_changecounter(pList); 4396 4397 pData = pList->pData; 4398 4399 /* Write out the page data. */ 4400 rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset); 4401 4402 /* If page 1 was just written, update Pager.dbFileVers to match 4403 ** the value now stored in the database file. If writing this 4404 ** page caused the database file to grow, update dbFileSize. 4405 */ 4406 if( pgno==1 ){ 4407 memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers)); 4408 } 4409 if( pgno>pPager->dbFileSize ){ 4410 pPager->dbFileSize = pgno; 4411 } 4412 pPager->aStat[PAGER_STAT_WRITE]++; 4413 4414 /* Update any backup objects copying the contents of this pager. */ 4415 sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)pList->pData); 4416 4417 PAGERTRACE(("STORE %d page %d hash(%08x)\n", 4418 PAGERID(pPager), pgno, pager_pagehash(pList))); 4419 IOTRACE(("PGOUT %p %d\n", pPager, pgno)); 4420 PAGER_INCR(sqlite3_pager_writedb_count); 4421 }else{ 4422 PAGERTRACE(("NOSTORE %d page %d\n", PAGERID(pPager), pgno)); 4423 } 4424 pager_set_pagehash(pList); 4425 pList = pList->pDirty; 4426 } 4427 4428 return rc; 4429 } 4430 4431 /* 4432 ** Ensure that the sub-journal file is open. If it is already open, this 4433 ** function is a no-op. 4434 ** 4435 ** SQLITE_OK is returned if everything goes according to plan. An 4436 ** SQLITE_IOERR_XXX error code is returned if a call to sqlite3OsOpen() 4437 ** fails. 4438 */ 4439 static int openSubJournal(Pager *pPager){ 4440 int rc = SQLITE_OK; 4441 if( !isOpen(pPager->sjfd) ){ 4442 const int flags = SQLITE_OPEN_SUBJOURNAL | SQLITE_OPEN_READWRITE 4443 | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE 4444 | SQLITE_OPEN_DELETEONCLOSE; 4445 int nStmtSpill = sqlite3Config.nStmtSpill; 4446 if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->subjInMemory ){ 4447 nStmtSpill = -1; 4448 } 4449 rc = sqlite3JournalOpen(pPager->pVfs, 0, pPager->sjfd, flags, nStmtSpill); 4450 } 4451 return rc; 4452 } 4453 4454 /* 4455 ** Append a record of the current state of page pPg to the sub-journal. 4456 ** 4457 ** If successful, set the bit corresponding to pPg->pgno in the bitvecs 4458 ** for all open savepoints before returning. 4459 ** 4460 ** This function returns SQLITE_OK if everything is successful, an IO 4461 ** error code if the attempt to write to the sub-journal fails, or 4462 ** SQLITE_NOMEM if a malloc fails while setting a bit in a savepoint 4463 ** bitvec. 4464 */ 4465 static int subjournalPage(PgHdr *pPg){ 4466 int rc = SQLITE_OK; 4467 Pager *pPager = pPg->pPager; 4468 if( pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ 4469 4470 /* Open the sub-journal, if it has not already been opened */ 4471 assert( pPager->useJournal ); 4472 assert( isOpen(pPager->jfd) || pagerUseWal(pPager) ); 4473 assert( isOpen(pPager->sjfd) || pPager->nSubRec==0 ); 4474 assert( pagerUseWal(pPager) 4475 || pageInJournal(pPager, pPg) 4476 || pPg->pgno>pPager->dbOrigSize 4477 ); 4478 rc = openSubJournal(pPager); 4479 4480 /* If the sub-journal was opened successfully (or was already open), 4481 ** write the journal record into the file. */ 4482 if( rc==SQLITE_OK ){ 4483 void *pData = pPg->pData; 4484 i64 offset = (i64)pPager->nSubRec*(4+pPager->pageSize); 4485 char *pData2; 4486 pData2 = pData; 4487 PAGERTRACE(("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno)); 4488 rc = write32bits(pPager->sjfd, offset, pPg->pgno); 4489 if( rc==SQLITE_OK ){ 4490 rc = sqlite3OsWrite(pPager->sjfd, pData2, pPager->pageSize, offset+4); 4491 } 4492 } 4493 } 4494 if( rc==SQLITE_OK ){ 4495 pPager->nSubRec++; 4496 assert( pPager->nSavepoint>0 ); 4497 rc = addToSavepointBitvecs(pPager, pPg->pgno); 4498 } 4499 return rc; 4500 } 4501 static int subjournalPageIfRequired(PgHdr *pPg){ 4502 if( subjRequiresPage(pPg) ){ 4503 return subjournalPage(pPg); 4504 }else{ 4505 return SQLITE_OK; 4506 } 4507 } 4508 4509 /* 4510 ** This function is called by the pcache layer when it has reached some 4511 ** soft memory limit. The first argument is a pointer to a Pager object 4512 ** (cast as a void*). The pager is always 'purgeable' (not an in-memory 4513 ** database). The second argument is a reference to a page that is 4514 ** currently dirty but has no outstanding references. The page 4515 ** is always associated with the Pager object passed as the first 4516 ** argument. 4517 ** 4518 ** The job of this function is to make pPg clean by writing its contents 4519 ** out to the database file, if possible. This may involve syncing the 4520 ** journal file. 4521 ** 4522 ** If successful, sqlite3PcacheMakeClean() is called on the page and 4523 ** SQLITE_OK returned. If an IO error occurs while trying to make the 4524 ** page clean, the IO error code is returned. If the page cannot be 4525 ** made clean for some other reason, but no error occurs, then SQLITE_OK 4526 ** is returned by sqlite3PcacheMakeClean() is not called. 4527 */ 4528 static int pagerStress(void *p, PgHdr *pPg){ 4529 Pager *pPager = (Pager *)p; 4530 int rc = SQLITE_OK; 4531 4532 assert( pPg->pPager==pPager ); 4533 assert( pPg->flags&PGHDR_DIRTY ); 4534 4535 /* The doNotSpill NOSYNC bit is set during times when doing a sync of 4536 ** journal (and adding a new header) is not allowed. This occurs 4537 ** during calls to sqlite3PagerWrite() while trying to journal multiple 4538 ** pages belonging to the same sector. 4539 ** 4540 ** The doNotSpill ROLLBACK and OFF bits inhibits all cache spilling 4541 ** regardless of whether or not a sync is required. This is set during 4542 ** a rollback or by user request, respectively. 4543 ** 4544 ** Spilling is also prohibited when in an error state since that could 4545 ** lead to database corruption. In the current implementation it 4546 ** is impossible for sqlite3PcacheFetch() to be called with createFlag==3 4547 ** while in the error state, hence it is impossible for this routine to 4548 ** be called in the error state. Nevertheless, we include a NEVER() 4549 ** test for the error state as a safeguard against future changes. 4550 */ 4551 if( NEVER(pPager->errCode) ) return SQLITE_OK; 4552 testcase( pPager->doNotSpill & SPILLFLAG_ROLLBACK ); 4553 testcase( pPager->doNotSpill & SPILLFLAG_OFF ); 4554 testcase( pPager->doNotSpill & SPILLFLAG_NOSYNC ); 4555 if( pPager->doNotSpill 4556 && ((pPager->doNotSpill & (SPILLFLAG_ROLLBACK|SPILLFLAG_OFF))!=0 4557 || (pPg->flags & PGHDR_NEED_SYNC)!=0) 4558 ){ 4559 return SQLITE_OK; 4560 } 4561 4562 pPager->aStat[PAGER_STAT_SPILL]++; 4563 pPg->pDirty = 0; 4564 if( pagerUseWal(pPager) ){ 4565 /* Write a single frame for this page to the log. */ 4566 rc = subjournalPageIfRequired(pPg); 4567 if( rc==SQLITE_OK ){ 4568 rc = pagerWalFrames(pPager, pPg, 0, 0); 4569 } 4570 }else{ 4571 4572 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 4573 if( pPager->tempFile==0 ){ 4574 rc = sqlite3JournalCreate(pPager->jfd); 4575 if( rc!=SQLITE_OK ) return pager_error(pPager, rc); 4576 } 4577 #endif 4578 4579 /* Sync the journal file if required. */ 4580 if( pPg->flags&PGHDR_NEED_SYNC 4581 || pPager->eState==PAGER_WRITER_CACHEMOD 4582 ){ 4583 rc = syncJournal(pPager, 1); 4584 } 4585 4586 /* Write the contents of the page out to the database file. */ 4587 if( rc==SQLITE_OK ){ 4588 assert( (pPg->flags&PGHDR_NEED_SYNC)==0 ); 4589 rc = pager_write_pagelist(pPager, pPg); 4590 } 4591 } 4592 4593 /* Mark the page as clean. */ 4594 if( rc==SQLITE_OK ){ 4595 PAGERTRACE(("STRESS %d page %d\n", PAGERID(pPager), pPg->pgno)); 4596 sqlite3PcacheMakeClean(pPg); 4597 } 4598 4599 return pager_error(pPager, rc); 4600 } 4601 4602 /* 4603 ** Flush all unreferenced dirty pages to disk. 4604 */ 4605 int sqlite3PagerFlush(Pager *pPager){ 4606 int rc = pPager->errCode; 4607 if( !MEMDB ){ 4608 PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache); 4609 assert( assert_pager_state(pPager) ); 4610 while( rc==SQLITE_OK && pList ){ 4611 PgHdr *pNext = pList->pDirty; 4612 if( pList->nRef==0 ){ 4613 rc = pagerStress((void*)pPager, pList); 4614 } 4615 pList = pNext; 4616 } 4617 } 4618 4619 return rc; 4620 } 4621 4622 /* 4623 ** Allocate and initialize a new Pager object and put a pointer to it 4624 ** in *ppPager. The pager should eventually be freed by passing it 4625 ** to sqlite3PagerClose(). 4626 ** 4627 ** The zFilename argument is the path to the database file to open. 4628 ** If zFilename is NULL then a randomly-named temporary file is created 4629 ** and used as the file to be cached. Temporary files are be deleted 4630 ** automatically when they are closed. If zFilename is ":memory:" then 4631 ** all information is held in cache. It is never written to disk. 4632 ** This can be used to implement an in-memory database. 4633 ** 4634 ** The nExtra parameter specifies the number of bytes of space allocated 4635 ** along with each page reference. This space is available to the user 4636 ** via the sqlite3PagerGetExtra() API. When a new page is allocated, the 4637 ** first 8 bytes of this space are zeroed but the remainder is uninitialized. 4638 ** (The extra space is used by btree as the MemPage object.) 4639 ** 4640 ** The flags argument is used to specify properties that affect the 4641 ** operation of the pager. It should be passed some bitwise combination 4642 ** of the PAGER_* flags. 4643 ** 4644 ** The vfsFlags parameter is a bitmask to pass to the flags parameter 4645 ** of the xOpen() method of the supplied VFS when opening files. 4646 ** 4647 ** If the pager object is allocated and the specified file opened 4648 ** successfully, SQLITE_OK is returned and *ppPager set to point to 4649 ** the new pager object. If an error occurs, *ppPager is set to NULL 4650 ** and error code returned. This function may return SQLITE_NOMEM 4651 ** (sqlite3Malloc() is used to allocate memory), SQLITE_CANTOPEN or 4652 ** various SQLITE_IO_XXX errors. 4653 */ 4654 int sqlite3PagerOpen( 4655 sqlite3_vfs *pVfs, /* The virtual file system to use */ 4656 Pager **ppPager, /* OUT: Return the Pager structure here */ 4657 const char *zFilename, /* Name of the database file to open */ 4658 int nExtra, /* Extra bytes append to each in-memory page */ 4659 int flags, /* flags controlling this file */ 4660 int vfsFlags, /* flags passed through to sqlite3_vfs.xOpen() */ 4661 void (*xReinit)(DbPage*) /* Function to reinitialize pages */ 4662 ){ 4663 u8 *pPtr; 4664 Pager *pPager = 0; /* Pager object to allocate and return */ 4665 int rc = SQLITE_OK; /* Return code */ 4666 int tempFile = 0; /* True for temp files (incl. in-memory files) */ 4667 int memDb = 0; /* True if this is an in-memory file */ 4668 #ifndef SQLITE_OMIT_DESERIALIZE 4669 int memJM = 0; /* Memory journal mode */ 4670 #else 4671 # define memJM 0 4672 #endif 4673 int readOnly = 0; /* True if this is a read-only file */ 4674 int journalFileSize; /* Bytes to allocate for each journal fd */ 4675 char *zPathname = 0; /* Full path to database file */ 4676 int nPathname = 0; /* Number of bytes in zPathname */ 4677 int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; /* False to omit journal */ 4678 int pcacheSize = sqlite3PcacheSize(); /* Bytes to allocate for PCache */ 4679 u32 szPageDflt = SQLITE_DEFAULT_PAGE_SIZE; /* Default page size */ 4680 const char *zUri = 0; /* URI args to copy */ 4681 int nUriByte = 1; /* Number of bytes of URI args at *zUri */ 4682 int nUri = 0; /* Number of URI parameters */ 4683 4684 /* Figure out how much space is required for each journal file-handle 4685 ** (there are two of them, the main journal and the sub-journal). */ 4686 journalFileSize = ROUND8(sqlite3JournalSize(pVfs)); 4687 4688 /* Set the output variable to NULL in case an error occurs. */ 4689 *ppPager = 0; 4690 4691 #ifndef SQLITE_OMIT_MEMORYDB 4692 if( flags & PAGER_MEMORY ){ 4693 memDb = 1; 4694 if( zFilename && zFilename[0] ){ 4695 zPathname = sqlite3DbStrDup(0, zFilename); 4696 if( zPathname==0 ) return SQLITE_NOMEM_BKPT; 4697 nPathname = sqlite3Strlen30(zPathname); 4698 zFilename = 0; 4699 } 4700 } 4701 #endif 4702 4703 /* Compute and store the full pathname in an allocated buffer pointed 4704 ** to by zPathname, length nPathname. Or, if this is a temporary file, 4705 ** leave both nPathname and zPathname set to 0. 4706 */ 4707 if( zFilename && zFilename[0] ){ 4708 const char *z; 4709 nPathname = pVfs->mxPathname+1; 4710 zPathname = sqlite3DbMallocRaw(0, nPathname*2); 4711 if( zPathname==0 ){ 4712 return SQLITE_NOMEM_BKPT; 4713 } 4714 zPathname[0] = 0; /* Make sure initialized even if FullPathname() fails */ 4715 rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname); 4716 if( rc!=SQLITE_OK ){ 4717 if( rc==SQLITE_OK_SYMLINK ){ 4718 if( vfsFlags & SQLITE_OPEN_NOFOLLOW ){ 4719 rc = SQLITE_CANTOPEN_SYMLINK; 4720 }else{ 4721 rc = SQLITE_OK; 4722 } 4723 } 4724 } 4725 nPathname = sqlite3Strlen30(zPathname); 4726 z = zUri = &zFilename[sqlite3Strlen30(zFilename)+1]; 4727 while( *z ){ 4728 z += strlen(z)+1; 4729 z += strlen(z)+1; 4730 nUri++; 4731 } 4732 nUriByte = (int)(&z[1] - zUri); 4733 assert( nUriByte>=1 ); 4734 if( rc==SQLITE_OK && nPathname+8>pVfs->mxPathname ){ 4735 /* This branch is taken when the journal path required by 4736 ** the database being opened will be more than pVfs->mxPathname 4737 ** bytes in length. This means the database cannot be opened, 4738 ** as it will not be possible to open the journal file or even 4739 ** check for a hot-journal before reading. 4740 */ 4741 rc = SQLITE_CANTOPEN_BKPT; 4742 } 4743 if( rc!=SQLITE_OK ){ 4744 sqlite3DbFree(0, zPathname); 4745 return rc; 4746 } 4747 } 4748 4749 /* Allocate memory for the Pager structure, PCache object, the 4750 ** three file descriptors, the database file name and the journal 4751 ** file name. The layout in memory is as follows: 4752 ** 4753 ** Pager object (sizeof(Pager) bytes) 4754 ** PCache object (sqlite3PcacheSize() bytes) 4755 ** Database file handle (pVfs->szOsFile bytes) 4756 ** Sub-journal file handle (journalFileSize bytes) 4757 ** Main journal file handle (journalFileSize bytes) 4758 ** Ptr back to the Pager (sizeof(Pager*) bytes) 4759 ** \0\0\0\0 database prefix (4 bytes) 4760 ** Database file name (nPathname+1 bytes) 4761 ** URI query parameters (nUriByte bytes) 4762 ** Journal filename (nPathname+8+1 bytes) 4763 ** WAL filename (nPathname+4+1 bytes) 4764 ** \0\0\0 terminator (3 bytes) 4765 ** 4766 ** Some 3rd-party software, over which we have no control, depends on 4767 ** the specific order of the filenames and the \0 separators between them 4768 ** so that it can (for example) find the database filename given the WAL 4769 ** filename without using the sqlite3_filename_database() API. This is a 4770 ** misuse of SQLite and a bug in the 3rd-party software, but the 3rd-party 4771 ** software is in widespread use, so we try to avoid changing the filename 4772 ** order and formatting if possible. In particular, the details of the 4773 ** filename format expected by 3rd-party software should be as follows: 4774 ** 4775 ** - Main Database Path 4776 ** - \0 4777 ** - Multiple URI components consisting of: 4778 ** - Key 4779 ** - \0 4780 ** - Value 4781 ** - \0 4782 ** - \0 4783 ** - Journal Path 4784 ** - \0 4785 ** - WAL Path (zWALName) 4786 ** - \0 4787 ** 4788 ** The sqlite3_create_filename() interface and the databaseFilename() utility 4789 ** that is used by sqlite3_filename_database() and kin also depend on the 4790 ** specific formatting and order of the various filenames, so if the format 4791 ** changes here, be sure to change it there as well. 4792 */ 4793 pPtr = (u8 *)sqlite3MallocZero( 4794 ROUND8(sizeof(*pPager)) + /* Pager structure */ 4795 ROUND8(pcacheSize) + /* PCache object */ 4796 ROUND8(pVfs->szOsFile) + /* The main db file */ 4797 journalFileSize * 2 + /* The two journal files */ 4798 sizeof(pPager) + /* Space to hold a pointer */ 4799 4 + /* Database prefix */ 4800 nPathname + 1 + /* database filename */ 4801 nUriByte + /* query parameters */ 4802 nPathname + 8 + 1 + /* Journal filename */ 4803 #ifndef SQLITE_OMIT_WAL 4804 nPathname + 4 + 1 + /* WAL filename */ 4805 #endif 4806 3 /* Terminator */ 4807 ); 4808 assert( EIGHT_BYTE_ALIGNMENT(SQLITE_INT_TO_PTR(journalFileSize)) ); 4809 if( !pPtr ){ 4810 sqlite3DbFree(0, zPathname); 4811 return SQLITE_NOMEM_BKPT; 4812 } 4813 pPager = (Pager*)pPtr; pPtr += ROUND8(sizeof(*pPager)); 4814 pPager->pPCache = (PCache*)pPtr; pPtr += ROUND8(pcacheSize); 4815 pPager->fd = (sqlite3_file*)pPtr; pPtr += ROUND8(pVfs->szOsFile); 4816 pPager->sjfd = (sqlite3_file*)pPtr; pPtr += journalFileSize; 4817 pPager->jfd = (sqlite3_file*)pPtr; pPtr += journalFileSize; 4818 assert( EIGHT_BYTE_ALIGNMENT(pPager->jfd) ); 4819 memcpy(pPtr, &pPager, sizeof(pPager)); pPtr += sizeof(pPager); 4820 4821 /* Fill in the Pager.zFilename and pPager.zQueryParam fields */ 4822 pPtr += 4; /* Skip zero prefix */ 4823 pPager->zFilename = (char*)pPtr; 4824 if( nPathname>0 ){ 4825 memcpy(pPtr, zPathname, nPathname); pPtr += nPathname + 1; 4826 if( zUri ){ 4827 memcpy(pPtr, zUri, nUriByte); pPtr += nUriByte; 4828 }else{ 4829 pPtr++; 4830 } 4831 } 4832 4833 4834 /* Fill in Pager.zJournal */ 4835 if( nPathname>0 ){ 4836 pPager->zJournal = (char*)pPtr; 4837 memcpy(pPtr, zPathname, nPathname); pPtr += nPathname; 4838 memcpy(pPtr, "-journal",8); pPtr += 8 + 1; 4839 #ifdef SQLITE_ENABLE_8_3_NAMES 4840 sqlite3FileSuffix3(zFilename,pPager->zJournal); 4841 pPtr = (u8*)(pPager->zJournal + sqlite3Strlen30(pPager->zJournal)+1); 4842 #endif 4843 }else{ 4844 pPager->zJournal = 0; 4845 } 4846 4847 #ifndef SQLITE_OMIT_WAL 4848 /* Fill in Pager.zWal */ 4849 if( nPathname>0 ){ 4850 pPager->zWal = (char*)pPtr; 4851 memcpy(pPtr, zPathname, nPathname); pPtr += nPathname; 4852 memcpy(pPtr, "-wal", 4); pPtr += 4 + 1; 4853 #ifdef SQLITE_ENABLE_8_3_NAMES 4854 sqlite3FileSuffix3(zFilename, pPager->zWal); 4855 pPtr = (u8*)(pPager->zWal + sqlite3Strlen30(pPager->zWal)+1); 4856 #endif 4857 }else{ 4858 pPager->zWal = 0; 4859 } 4860 #endif 4861 4862 if( nPathname ) sqlite3DbFree(0, zPathname); 4863 pPager->pVfs = pVfs; 4864 pPager->vfsFlags = vfsFlags; 4865 4866 /* Open the pager file. 4867 */ 4868 if( zFilename && zFilename[0] ){ 4869 int fout = 0; /* VFS flags returned by xOpen() */ 4870 rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, vfsFlags, &fout); 4871 assert( !memDb ); 4872 #ifndef SQLITE_OMIT_DESERIALIZE 4873 memJM = (fout&SQLITE_OPEN_MEMORY)!=0; 4874 #endif 4875 readOnly = (fout&SQLITE_OPEN_READONLY)!=0; 4876 4877 /* If the file was successfully opened for read/write access, 4878 ** choose a default page size in case we have to create the 4879 ** database file. The default page size is the maximum of: 4880 ** 4881 ** + SQLITE_DEFAULT_PAGE_SIZE, 4882 ** + The value returned by sqlite3OsSectorSize() 4883 ** + The largest page size that can be written atomically. 4884 */ 4885 if( rc==SQLITE_OK ){ 4886 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); 4887 if( !readOnly ){ 4888 setSectorSize(pPager); 4889 assert(SQLITE_DEFAULT_PAGE_SIZE<=SQLITE_MAX_DEFAULT_PAGE_SIZE); 4890 if( szPageDflt<pPager->sectorSize ){ 4891 if( pPager->sectorSize>SQLITE_MAX_DEFAULT_PAGE_SIZE ){ 4892 szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE; 4893 }else{ 4894 szPageDflt = (u32)pPager->sectorSize; 4895 } 4896 } 4897 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 4898 { 4899 int ii; 4900 assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); 4901 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); 4902 assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536); 4903 for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){ 4904 if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ){ 4905 szPageDflt = ii; 4906 } 4907 } 4908 } 4909 #endif 4910 } 4911 pPager->noLock = sqlite3_uri_boolean(pPager->zFilename, "nolock", 0); 4912 if( (iDc & SQLITE_IOCAP_IMMUTABLE)!=0 4913 || sqlite3_uri_boolean(pPager->zFilename, "immutable", 0) ){ 4914 vfsFlags |= SQLITE_OPEN_READONLY; 4915 goto act_like_temp_file; 4916 } 4917 } 4918 }else{ 4919 /* If a temporary file is requested, it is not opened immediately. 4920 ** In this case we accept the default page size and delay actually 4921 ** opening the file until the first call to OsWrite(). 4922 ** 4923 ** This branch is also run for an in-memory database. An in-memory 4924 ** database is the same as a temp-file that is never written out to 4925 ** disk and uses an in-memory rollback journal. 4926 ** 4927 ** This branch also runs for files marked as immutable. 4928 */ 4929 act_like_temp_file: 4930 tempFile = 1; 4931 pPager->eState = PAGER_READER; /* Pretend we already have a lock */ 4932 pPager->eLock = EXCLUSIVE_LOCK; /* Pretend we are in EXCLUSIVE mode */ 4933 pPager->noLock = 1; /* Do no locking */ 4934 readOnly = (vfsFlags&SQLITE_OPEN_READONLY); 4935 } 4936 4937 /* The following call to PagerSetPagesize() serves to set the value of 4938 ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer. 4939 */ 4940 if( rc==SQLITE_OK ){ 4941 assert( pPager->memDb==0 ); 4942 rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1); 4943 testcase( rc!=SQLITE_OK ); 4944 } 4945 4946 /* Initialize the PCache object. */ 4947 if( rc==SQLITE_OK ){ 4948 nExtra = ROUND8(nExtra); 4949 assert( nExtra>=8 && nExtra<1000 ); 4950 rc = sqlite3PcacheOpen(szPageDflt, nExtra, !memDb, 4951 !memDb?pagerStress:0, (void *)pPager, pPager->pPCache); 4952 } 4953 4954 /* If an error occurred above, free the Pager structure and close the file. 4955 */ 4956 if( rc!=SQLITE_OK ){ 4957 sqlite3OsClose(pPager->fd); 4958 sqlite3PageFree(pPager->pTmpSpace); 4959 sqlite3_free(pPager); 4960 return rc; 4961 } 4962 4963 PAGERTRACE(("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename)); 4964 IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename)) 4965 4966 pPager->useJournal = (u8)useJournal; 4967 /* pPager->stmtOpen = 0; */ 4968 /* pPager->stmtInUse = 0; */ 4969 /* pPager->nRef = 0; */ 4970 /* pPager->stmtSize = 0; */ 4971 /* pPager->stmtJSize = 0; */ 4972 /* pPager->nPage = 0; */ 4973 pPager->mxPgno = SQLITE_MAX_PAGE_COUNT; 4974 /* pPager->state = PAGER_UNLOCK; */ 4975 /* pPager->errMask = 0; */ 4976 pPager->tempFile = (u8)tempFile; 4977 assert( tempFile==PAGER_LOCKINGMODE_NORMAL 4978 || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE ); 4979 assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 ); 4980 pPager->exclusiveMode = (u8)tempFile; 4981 pPager->changeCountDone = pPager->tempFile; 4982 pPager->memDb = (u8)memDb; 4983 pPager->readOnly = (u8)readOnly; 4984 assert( useJournal || pPager->tempFile ); 4985 pPager->noSync = pPager->tempFile; 4986 if( pPager->noSync ){ 4987 assert( pPager->fullSync==0 ); 4988 assert( pPager->extraSync==0 ); 4989 assert( pPager->syncFlags==0 ); 4990 assert( pPager->walSyncFlags==0 ); 4991 }else{ 4992 pPager->fullSync = 1; 4993 pPager->extraSync = 0; 4994 pPager->syncFlags = SQLITE_SYNC_NORMAL; 4995 pPager->walSyncFlags = SQLITE_SYNC_NORMAL | (SQLITE_SYNC_NORMAL<<2); 4996 } 4997 /* pPager->pFirst = 0; */ 4998 /* pPager->pFirstSynced = 0; */ 4999 /* pPager->pLast = 0; */ 5000 pPager->nExtra = (u16)nExtra; 5001 pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT; 5002 assert( isOpen(pPager->fd) || tempFile ); 5003 setSectorSize(pPager); 5004 if( !useJournal ){ 5005 pPager->journalMode = PAGER_JOURNALMODE_OFF; 5006 }else if( memDb || memJM ){ 5007 pPager->journalMode = PAGER_JOURNALMODE_MEMORY; 5008 } 5009 /* pPager->xBusyHandler = 0; */ 5010 /* pPager->pBusyHandlerArg = 0; */ 5011 pPager->xReiniter = xReinit; 5012 setGetterMethod(pPager); 5013 /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */ 5014 /* pPager->szMmap = SQLITE_DEFAULT_MMAP_SIZE // will be set by btree.c */ 5015 5016 *ppPager = pPager; 5017 return SQLITE_OK; 5018 } 5019 5020 /* 5021 ** Return the sqlite3_file for the main database given the name 5022 ** of the corresonding WAL or Journal name as passed into 5023 ** xOpen. 5024 */ 5025 sqlite3_file *sqlite3_database_file_object(const char *zName){ 5026 Pager *pPager; 5027 while( zName[-1]!=0 || zName[-2]!=0 || zName[-3]!=0 || zName[-4]!=0 ){ 5028 zName--; 5029 } 5030 pPager = *(Pager**)(zName - 4 - sizeof(Pager*)); 5031 return pPager->fd; 5032 } 5033 5034 5035 /* 5036 ** This function is called after transitioning from PAGER_UNLOCK to 5037 ** PAGER_SHARED state. It tests if there is a hot journal present in 5038 ** the file-system for the given pager. A hot journal is one that 5039 ** needs to be played back. According to this function, a hot-journal 5040 ** file exists if the following criteria are met: 5041 ** 5042 ** * The journal file exists in the file system, and 5043 ** * No process holds a RESERVED or greater lock on the database file, and 5044 ** * The database file itself is greater than 0 bytes in size, and 5045 ** * The first byte of the journal file exists and is not 0x00. 5046 ** 5047 ** If the current size of the database file is 0 but a journal file 5048 ** exists, that is probably an old journal left over from a prior 5049 ** database with the same name. In this case the journal file is 5050 ** just deleted using OsDelete, *pExists is set to 0 and SQLITE_OK 5051 ** is returned. 5052 ** 5053 ** This routine does not check if there is a super-journal filename 5054 ** at the end of the file. If there is, and that super-journal file 5055 ** does not exist, then the journal file is not really hot. In this 5056 ** case this routine will return a false-positive. The pager_playback() 5057 ** routine will discover that the journal file is not really hot and 5058 ** will not roll it back. 5059 ** 5060 ** If a hot-journal file is found to exist, *pExists is set to 1 and 5061 ** SQLITE_OK returned. If no hot-journal file is present, *pExists is 5062 ** set to 0 and SQLITE_OK returned. If an IO error occurs while trying 5063 ** to determine whether or not a hot-journal file exists, the IO error 5064 ** code is returned and the value of *pExists is undefined. 5065 */ 5066 static int hasHotJournal(Pager *pPager, int *pExists){ 5067 sqlite3_vfs * const pVfs = pPager->pVfs; 5068 int rc = SQLITE_OK; /* Return code */ 5069 int exists = 1; /* True if a journal file is present */ 5070 int jrnlOpen = !!isOpen(pPager->jfd); 5071 5072 assert( pPager->useJournal ); 5073 assert( isOpen(pPager->fd) ); 5074 assert( pPager->eState==PAGER_OPEN ); 5075 5076 assert( jrnlOpen==0 || ( sqlite3OsDeviceCharacteristics(pPager->jfd) & 5077 SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN 5078 )); 5079 5080 *pExists = 0; 5081 if( !jrnlOpen ){ 5082 rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists); 5083 } 5084 if( rc==SQLITE_OK && exists ){ 5085 int locked = 0; /* True if some process holds a RESERVED lock */ 5086 5087 /* Race condition here: Another process might have been holding the 5088 ** the RESERVED lock and have a journal open at the sqlite3OsAccess() 5089 ** call above, but then delete the journal and drop the lock before 5090 ** we get to the following sqlite3OsCheckReservedLock() call. If that 5091 ** is the case, this routine might think there is a hot journal when 5092 ** in fact there is none. This results in a false-positive which will 5093 ** be dealt with by the playback routine. Ticket #3883. 5094 */ 5095 rc = sqlite3OsCheckReservedLock(pPager->fd, &locked); 5096 if( rc==SQLITE_OK && !locked ){ 5097 Pgno nPage; /* Number of pages in database file */ 5098 5099 assert( pPager->tempFile==0 ); 5100 rc = pagerPagecount(pPager, &nPage); 5101 if( rc==SQLITE_OK ){ 5102 /* If the database is zero pages in size, that means that either (1) the 5103 ** journal is a remnant from a prior database with the same name where 5104 ** the database file but not the journal was deleted, or (2) the initial 5105 ** transaction that populates a new database is being rolled back. 5106 ** In either case, the journal file can be deleted. However, take care 5107 ** not to delete the journal file if it is already open due to 5108 ** journal_mode=PERSIST. 5109 */ 5110 if( nPage==0 && !jrnlOpen ){ 5111 sqlite3BeginBenignMalloc(); 5112 if( pagerLockDb(pPager, RESERVED_LOCK)==SQLITE_OK ){ 5113 sqlite3OsDelete(pVfs, pPager->zJournal, 0); 5114 if( !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK); 5115 } 5116 sqlite3EndBenignMalloc(); 5117 }else{ 5118 /* The journal file exists and no other connection has a reserved 5119 ** or greater lock on the database file. Now check that there is 5120 ** at least one non-zero bytes at the start of the journal file. 5121 ** If there is, then we consider this journal to be hot. If not, 5122 ** it can be ignored. 5123 */ 5124 if( !jrnlOpen ){ 5125 int f = SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL; 5126 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &f); 5127 } 5128 if( rc==SQLITE_OK ){ 5129 u8 first = 0; 5130 rc = sqlite3OsRead(pPager->jfd, (void *)&first, 1, 0); 5131 if( rc==SQLITE_IOERR_SHORT_READ ){ 5132 rc = SQLITE_OK; 5133 } 5134 if( !jrnlOpen ){ 5135 sqlite3OsClose(pPager->jfd); 5136 } 5137 *pExists = (first!=0); 5138 }else if( rc==SQLITE_CANTOPEN ){ 5139 /* If we cannot open the rollback journal file in order to see if 5140 ** it has a zero header, that might be due to an I/O error, or 5141 ** it might be due to the race condition described above and in 5142 ** ticket #3883. Either way, assume that the journal is hot. 5143 ** This might be a false positive. But if it is, then the 5144 ** automatic journal playback and recovery mechanism will deal 5145 ** with it under an EXCLUSIVE lock where we do not need to 5146 ** worry so much with race conditions. 5147 */ 5148 *pExists = 1; 5149 rc = SQLITE_OK; 5150 } 5151 } 5152 } 5153 } 5154 } 5155 5156 return rc; 5157 } 5158 5159 /* 5160 ** This function is called to obtain a shared lock on the database file. 5161 ** It is illegal to call sqlite3PagerGet() until after this function 5162 ** has been successfully called. If a shared-lock is already held when 5163 ** this function is called, it is a no-op. 5164 ** 5165 ** The following operations are also performed by this function. 5166 ** 5167 ** 1) If the pager is currently in PAGER_OPEN state (no lock held 5168 ** on the database file), then an attempt is made to obtain a 5169 ** SHARED lock on the database file. Immediately after obtaining 5170 ** the SHARED lock, the file-system is checked for a hot-journal, 5171 ** which is played back if present. Following any hot-journal 5172 ** rollback, the contents of the cache are validated by checking 5173 ** the 'change-counter' field of the database file header and 5174 ** discarded if they are found to be invalid. 5175 ** 5176 ** 2) If the pager is running in exclusive-mode, and there are currently 5177 ** no outstanding references to any pages, and is in the error state, 5178 ** then an attempt is made to clear the error state by discarding 5179 ** the contents of the page cache and rolling back any open journal 5180 ** file. 5181 ** 5182 ** If everything is successful, SQLITE_OK is returned. If an IO error 5183 ** occurs while locking the database, checking for a hot-journal file or 5184 ** rolling back a journal file, the IO error code is returned. 5185 */ 5186 int sqlite3PagerSharedLock(Pager *pPager){ 5187 int rc = SQLITE_OK; /* Return code */ 5188 5189 /* This routine is only called from b-tree and only when there are no 5190 ** outstanding pages. This implies that the pager state should either 5191 ** be OPEN or READER. READER is only possible if the pager is or was in 5192 ** exclusive access mode. */ 5193 assert( sqlite3PcacheRefCount(pPager->pPCache)==0 ); 5194 assert( assert_pager_state(pPager) ); 5195 assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); 5196 assert( pPager->errCode==SQLITE_OK ); 5197 5198 if( !pagerUseWal(pPager) && pPager->eState==PAGER_OPEN ){ 5199 int bHotJournal = 1; /* True if there exists a hot journal-file */ 5200 5201 assert( !MEMDB ); 5202 assert( pPager->tempFile==0 || pPager->eLock==EXCLUSIVE_LOCK ); 5203 5204 rc = pager_wait_on_lock(pPager, SHARED_LOCK); 5205 if( rc!=SQLITE_OK ){ 5206 assert( pPager->eLock==NO_LOCK || pPager->eLock==UNKNOWN_LOCK ); 5207 goto failed; 5208 } 5209 5210 /* If a journal file exists, and there is no RESERVED lock on the 5211 ** database file, then it either needs to be played back or deleted. 5212 */ 5213 if( pPager->eLock<=SHARED_LOCK ){ 5214 rc = hasHotJournal(pPager, &bHotJournal); 5215 } 5216 if( rc!=SQLITE_OK ){ 5217 goto failed; 5218 } 5219 if( bHotJournal ){ 5220 if( pPager->readOnly ){ 5221 rc = SQLITE_READONLY_ROLLBACK; 5222 goto failed; 5223 } 5224 5225 /* Get an EXCLUSIVE lock on the database file. At this point it is 5226 ** important that a RESERVED lock is not obtained on the way to the 5227 ** EXCLUSIVE lock. If it were, another process might open the 5228 ** database file, detect the RESERVED lock, and conclude that the 5229 ** database is safe to read while this process is still rolling the 5230 ** hot-journal back. 5231 ** 5232 ** Because the intermediate RESERVED lock is not requested, any 5233 ** other process attempting to access the database file will get to 5234 ** this point in the code and fail to obtain its own EXCLUSIVE lock 5235 ** on the database file. 5236 ** 5237 ** Unless the pager is in locking_mode=exclusive mode, the lock is 5238 ** downgraded to SHARED_LOCK before this function returns. 5239 */ 5240 rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); 5241 if( rc!=SQLITE_OK ){ 5242 goto failed; 5243 } 5244 5245 /* If it is not already open and the file exists on disk, open the 5246 ** journal for read/write access. Write access is required because 5247 ** in exclusive-access mode the file descriptor will be kept open 5248 ** and possibly used for a transaction later on. Also, write-access 5249 ** is usually required to finalize the journal in journal_mode=persist 5250 ** mode (and also for journal_mode=truncate on some systems). 5251 ** 5252 ** If the journal does not exist, it usually means that some 5253 ** other connection managed to get in and roll it back before 5254 ** this connection obtained the exclusive lock above. Or, it 5255 ** may mean that the pager was in the error-state when this 5256 ** function was called and the journal file does not exist. 5257 */ 5258 if( !isOpen(pPager->jfd) ){ 5259 sqlite3_vfs * const pVfs = pPager->pVfs; 5260 int bExists; /* True if journal file exists */ 5261 rc = sqlite3OsAccess( 5262 pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &bExists); 5263 if( rc==SQLITE_OK && bExists ){ 5264 int fout = 0; 5265 int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL; 5266 assert( !pPager->tempFile ); 5267 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout); 5268 assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); 5269 if( rc==SQLITE_OK && fout&SQLITE_OPEN_READONLY ){ 5270 rc = SQLITE_CANTOPEN_BKPT; 5271 sqlite3OsClose(pPager->jfd); 5272 } 5273 } 5274 } 5275 5276 /* Playback and delete the journal. Drop the database write 5277 ** lock and reacquire the read lock. Purge the cache before 5278 ** playing back the hot-journal so that we don't end up with 5279 ** an inconsistent cache. Sync the hot journal before playing 5280 ** it back since the process that crashed and left the hot journal 5281 ** probably did not sync it and we are required to always sync 5282 ** the journal before playing it back. 5283 */ 5284 if( isOpen(pPager->jfd) ){ 5285 assert( rc==SQLITE_OK ); 5286 rc = pagerSyncHotJournal(pPager); 5287 if( rc==SQLITE_OK ){ 5288 rc = pager_playback(pPager, !pPager->tempFile); 5289 pPager->eState = PAGER_OPEN; 5290 } 5291 }else if( !pPager->exclusiveMode ){ 5292 pagerUnlockDb(pPager, SHARED_LOCK); 5293 } 5294 5295 if( rc!=SQLITE_OK ){ 5296 /* This branch is taken if an error occurs while trying to open 5297 ** or roll back a hot-journal while holding an EXCLUSIVE lock. The 5298 ** pager_unlock() routine will be called before returning to unlock 5299 ** the file. If the unlock attempt fails, then Pager.eLock must be 5300 ** set to UNKNOWN_LOCK (see the comment above the #define for 5301 ** UNKNOWN_LOCK above for an explanation). 5302 ** 5303 ** In order to get pager_unlock() to do this, set Pager.eState to 5304 ** PAGER_ERROR now. This is not actually counted as a transition 5305 ** to ERROR state in the state diagram at the top of this file, 5306 ** since we know that the same call to pager_unlock() will very 5307 ** shortly transition the pager object to the OPEN state. Calling 5308 ** assert_pager_state() would fail now, as it should not be possible 5309 ** to be in ERROR state when there are zero outstanding page 5310 ** references. 5311 */ 5312 pager_error(pPager, rc); 5313 goto failed; 5314 } 5315 5316 assert( pPager->eState==PAGER_OPEN ); 5317 assert( (pPager->eLock==SHARED_LOCK) 5318 || (pPager->exclusiveMode && pPager->eLock>SHARED_LOCK) 5319 ); 5320 } 5321 5322 if( !pPager->tempFile && pPager->hasHeldSharedLock ){ 5323 /* The shared-lock has just been acquired then check to 5324 ** see if the database has been modified. If the database has changed, 5325 ** flush the cache. The hasHeldSharedLock flag prevents this from 5326 ** occurring on the very first access to a file, in order to save a 5327 ** single unnecessary sqlite3OsRead() call at the start-up. 5328 ** 5329 ** Database changes are detected by looking at 15 bytes beginning 5330 ** at offset 24 into the file. The first 4 of these 16 bytes are 5331 ** a 32-bit counter that is incremented with each change. The 5332 ** other bytes change randomly with each file change when 5333 ** a codec is in use. 5334 ** 5335 ** There is a vanishingly small chance that a change will not be 5336 ** detected. The chance of an undetected change is so small that 5337 ** it can be neglected. 5338 */ 5339 char dbFileVers[sizeof(pPager->dbFileVers)]; 5340 5341 IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers))); 5342 rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24); 5343 if( rc!=SQLITE_OK ){ 5344 if( rc!=SQLITE_IOERR_SHORT_READ ){ 5345 goto failed; 5346 } 5347 memset(dbFileVers, 0, sizeof(dbFileVers)); 5348 } 5349 5350 if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){ 5351 pager_reset(pPager); 5352 5353 /* Unmap the database file. It is possible that external processes 5354 ** may have truncated the database file and then extended it back 5355 ** to its original size while this process was not holding a lock. 5356 ** In this case there may exist a Pager.pMap mapping that appears 5357 ** to be the right size but is not actually valid. Avoid this 5358 ** possibility by unmapping the db here. */ 5359 if( USEFETCH(pPager) ){ 5360 sqlite3OsUnfetch(pPager->fd, 0, 0); 5361 } 5362 } 5363 } 5364 5365 /* If there is a WAL file in the file-system, open this database in WAL 5366 ** mode. Otherwise, the following function call is a no-op. 5367 */ 5368 rc = pagerOpenWalIfPresent(pPager); 5369 #ifndef SQLITE_OMIT_WAL 5370 assert( pPager->pWal==0 || rc==SQLITE_OK ); 5371 #endif 5372 } 5373 5374 if( pagerUseWal(pPager) ){ 5375 assert( rc==SQLITE_OK ); 5376 rc = pagerBeginReadTransaction(pPager); 5377 } 5378 5379 if( pPager->tempFile==0 && pPager->eState==PAGER_OPEN && rc==SQLITE_OK ){ 5380 rc = pagerPagecount(pPager, &pPager->dbSize); 5381 } 5382 5383 failed: 5384 if( rc!=SQLITE_OK ){ 5385 assert( !MEMDB ); 5386 pager_unlock(pPager); 5387 assert( pPager->eState==PAGER_OPEN ); 5388 }else{ 5389 pPager->eState = PAGER_READER; 5390 pPager->hasHeldSharedLock = 1; 5391 } 5392 return rc; 5393 } 5394 5395 /* 5396 ** If the reference count has reached zero, rollback any active 5397 ** transaction and unlock the pager. 5398 ** 5399 ** Except, in locking_mode=EXCLUSIVE when there is nothing to in 5400 ** the rollback journal, the unlock is not performed and there is 5401 ** nothing to rollback, so this routine is a no-op. 5402 */ 5403 static void pagerUnlockIfUnused(Pager *pPager){ 5404 if( sqlite3PcacheRefCount(pPager->pPCache)==0 ){ 5405 assert( pPager->nMmapOut==0 ); /* because page1 is never memory mapped */ 5406 pagerUnlockAndRollback(pPager); 5407 } 5408 } 5409 5410 /* 5411 ** The page getter methods each try to acquire a reference to a 5412 ** page with page number pgno. If the requested reference is 5413 ** successfully obtained, it is copied to *ppPage and SQLITE_OK returned. 5414 ** 5415 ** There are different implementations of the getter method depending 5416 ** on the current state of the pager. 5417 ** 5418 ** getPageNormal() -- The normal getter 5419 ** getPageError() -- Used if the pager is in an error state 5420 ** getPageMmap() -- Used if memory-mapped I/O is enabled 5421 ** 5422 ** If the requested page is already in the cache, it is returned. 5423 ** Otherwise, a new page object is allocated and populated with data 5424 ** read from the database file. In some cases, the pcache module may 5425 ** choose not to allocate a new page object and may reuse an existing 5426 ** object with no outstanding references. 5427 ** 5428 ** The extra data appended to a page is always initialized to zeros the 5429 ** first time a page is loaded into memory. If the page requested is 5430 ** already in the cache when this function is called, then the extra 5431 ** data is left as it was when the page object was last used. 5432 ** 5433 ** If the database image is smaller than the requested page or if 5434 ** the flags parameter contains the PAGER_GET_NOCONTENT bit and the 5435 ** requested page is not already stored in the cache, then no 5436 ** actual disk read occurs. In this case the memory image of the 5437 ** page is initialized to all zeros. 5438 ** 5439 ** If PAGER_GET_NOCONTENT is true, it means that we do not care about 5440 ** the contents of the page. This occurs in two scenarios: 5441 ** 5442 ** a) When reading a free-list leaf page from the database, and 5443 ** 5444 ** b) When a savepoint is being rolled back and we need to load 5445 ** a new page into the cache to be filled with the data read 5446 ** from the savepoint journal. 5447 ** 5448 ** If PAGER_GET_NOCONTENT is true, then the data returned is zeroed instead 5449 ** of being read from the database. Additionally, the bits corresponding 5450 ** to pgno in Pager.pInJournal (bitvec of pages already written to the 5451 ** journal file) and the PagerSavepoint.pInSavepoint bitvecs of any open 5452 ** savepoints are set. This means if the page is made writable at any 5453 ** point in the future, using a call to sqlite3PagerWrite(), its contents 5454 ** will not be journaled. This saves IO. 5455 ** 5456 ** The acquisition might fail for several reasons. In all cases, 5457 ** an appropriate error code is returned and *ppPage is set to NULL. 5458 ** 5459 ** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt 5460 ** to find a page in the in-memory cache first. If the page is not already 5461 ** in memory, this routine goes to disk to read it in whereas Lookup() 5462 ** just returns 0. This routine acquires a read-lock the first time it 5463 ** has to go to disk, and could also playback an old journal if necessary. 5464 ** Since Lookup() never goes to disk, it never has to deal with locks 5465 ** or journal files. 5466 */ 5467 static int getPageNormal( 5468 Pager *pPager, /* The pager open on the database file */ 5469 Pgno pgno, /* Page number to fetch */ 5470 DbPage **ppPage, /* Write a pointer to the page here */ 5471 int flags /* PAGER_GET_XXX flags */ 5472 ){ 5473 int rc = SQLITE_OK; 5474 PgHdr *pPg; 5475 u8 noContent; /* True if PAGER_GET_NOCONTENT is set */ 5476 sqlite3_pcache_page *pBase; 5477 5478 assert( pPager->errCode==SQLITE_OK ); 5479 assert( pPager->eState>=PAGER_READER ); 5480 assert( assert_pager_state(pPager) ); 5481 assert( pPager->hasHeldSharedLock==1 ); 5482 5483 if( pgno==0 ) return SQLITE_CORRUPT_BKPT; 5484 pBase = sqlite3PcacheFetch(pPager->pPCache, pgno, 3); 5485 if( pBase==0 ){ 5486 pPg = 0; 5487 rc = sqlite3PcacheFetchStress(pPager->pPCache, pgno, &pBase); 5488 if( rc!=SQLITE_OK ) goto pager_acquire_err; 5489 if( pBase==0 ){ 5490 rc = SQLITE_NOMEM_BKPT; 5491 goto pager_acquire_err; 5492 } 5493 } 5494 pPg = *ppPage = sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pBase); 5495 assert( pPg==(*ppPage) ); 5496 assert( pPg->pgno==pgno ); 5497 assert( pPg->pPager==pPager || pPg->pPager==0 ); 5498 5499 noContent = (flags & PAGER_GET_NOCONTENT)!=0; 5500 if( pPg->pPager && !noContent ){ 5501 /* In this case the pcache already contains an initialized copy of 5502 ** the page. Return without further ado. */ 5503 assert( pgno!=PAGER_MJ_PGNO(pPager) ); 5504 pPager->aStat[PAGER_STAT_HIT]++; 5505 return SQLITE_OK; 5506 5507 }else{ 5508 /* The pager cache has created a new page. Its content needs to 5509 ** be initialized. But first some error checks: 5510 ** 5511 ** (*) obsolete. Was: maximum page number is 2^31 5512 ** (2) Never try to fetch the locking page 5513 */ 5514 if( pgno==PAGER_MJ_PGNO(pPager) ){ 5515 rc = SQLITE_CORRUPT_BKPT; 5516 goto pager_acquire_err; 5517 } 5518 5519 pPg->pPager = pPager; 5520 5521 assert( !isOpen(pPager->fd) || !MEMDB ); 5522 if( !isOpen(pPager->fd) || pPager->dbSize<pgno || noContent ){ 5523 if( pgno>pPager->mxPgno ){ 5524 rc = SQLITE_FULL; 5525 goto pager_acquire_err; 5526 } 5527 if( noContent ){ 5528 /* Failure to set the bits in the InJournal bit-vectors is benign. 5529 ** It merely means that we might do some extra work to journal a 5530 ** page that does not need to be journaled. Nevertheless, be sure 5531 ** to test the case where a malloc error occurs while trying to set 5532 ** a bit in a bit vector. 5533 */ 5534 sqlite3BeginBenignMalloc(); 5535 if( pgno<=pPager->dbOrigSize ){ 5536 TESTONLY( rc = ) sqlite3BitvecSet(pPager->pInJournal, pgno); 5537 testcase( rc==SQLITE_NOMEM ); 5538 } 5539 TESTONLY( rc = ) addToSavepointBitvecs(pPager, pgno); 5540 testcase( rc==SQLITE_NOMEM ); 5541 sqlite3EndBenignMalloc(); 5542 } 5543 memset(pPg->pData, 0, pPager->pageSize); 5544 IOTRACE(("ZERO %p %d\n", pPager, pgno)); 5545 }else{ 5546 assert( pPg->pPager==pPager ); 5547 pPager->aStat[PAGER_STAT_MISS]++; 5548 rc = readDbPage(pPg); 5549 if( rc!=SQLITE_OK ){ 5550 goto pager_acquire_err; 5551 } 5552 } 5553 pager_set_pagehash(pPg); 5554 } 5555 return SQLITE_OK; 5556 5557 pager_acquire_err: 5558 assert( rc!=SQLITE_OK ); 5559 if( pPg ){ 5560 sqlite3PcacheDrop(pPg); 5561 } 5562 pagerUnlockIfUnused(pPager); 5563 *ppPage = 0; 5564 return rc; 5565 } 5566 5567 #if SQLITE_MAX_MMAP_SIZE>0 5568 /* The page getter for when memory-mapped I/O is enabled */ 5569 static int getPageMMap( 5570 Pager *pPager, /* The pager open on the database file */ 5571 Pgno pgno, /* Page number to fetch */ 5572 DbPage **ppPage, /* Write a pointer to the page here */ 5573 int flags /* PAGER_GET_XXX flags */ 5574 ){ 5575 int rc = SQLITE_OK; 5576 PgHdr *pPg = 0; 5577 u32 iFrame = 0; /* Frame to read from WAL file */ 5578 5579 /* It is acceptable to use a read-only (mmap) page for any page except 5580 ** page 1 if there is no write-transaction open or the ACQUIRE_READONLY 5581 ** flag was specified by the caller. And so long as the db is not a 5582 ** temporary or in-memory database. */ 5583 const int bMmapOk = (pgno>1 5584 && (pPager->eState==PAGER_READER || (flags & PAGER_GET_READONLY)) 5585 ); 5586 5587 assert( USEFETCH(pPager) ); 5588 5589 /* Optimization note: Adding the "pgno<=1" term before "pgno==0" here 5590 ** allows the compiler optimizer to reuse the results of the "pgno>1" 5591 ** test in the previous statement, and avoid testing pgno==0 in the 5592 ** common case where pgno is large. */ 5593 if( pgno<=1 && pgno==0 ){ 5594 return SQLITE_CORRUPT_BKPT; 5595 } 5596 assert( pPager->eState>=PAGER_READER ); 5597 assert( assert_pager_state(pPager) ); 5598 assert( pPager->hasHeldSharedLock==1 ); 5599 assert( pPager->errCode==SQLITE_OK ); 5600 5601 if( bMmapOk && pagerUseWal(pPager) ){ 5602 rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iFrame); 5603 if( rc!=SQLITE_OK ){ 5604 *ppPage = 0; 5605 return rc; 5606 } 5607 } 5608 if( bMmapOk && iFrame==0 ){ 5609 void *pData = 0; 5610 rc = sqlite3OsFetch(pPager->fd, 5611 (i64)(pgno-1) * pPager->pageSize, pPager->pageSize, &pData 5612 ); 5613 if( rc==SQLITE_OK && pData ){ 5614 if( pPager->eState>PAGER_READER || pPager->tempFile ){ 5615 pPg = sqlite3PagerLookup(pPager, pgno); 5616 } 5617 if( pPg==0 ){ 5618 rc = pagerAcquireMapPage(pPager, pgno, pData, &pPg); 5619 }else{ 5620 sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1)*pPager->pageSize, pData); 5621 } 5622 if( pPg ){ 5623 assert( rc==SQLITE_OK ); 5624 *ppPage = pPg; 5625 return SQLITE_OK; 5626 } 5627 } 5628 if( rc!=SQLITE_OK ){ 5629 *ppPage = 0; 5630 return rc; 5631 } 5632 } 5633 return getPageNormal(pPager, pgno, ppPage, flags); 5634 } 5635 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 5636 5637 /* The page getter method for when the pager is an error state */ 5638 static int getPageError( 5639 Pager *pPager, /* The pager open on the database file */ 5640 Pgno pgno, /* Page number to fetch */ 5641 DbPage **ppPage, /* Write a pointer to the page here */ 5642 int flags /* PAGER_GET_XXX flags */ 5643 ){ 5644 UNUSED_PARAMETER(pgno); 5645 UNUSED_PARAMETER(flags); 5646 assert( pPager->errCode!=SQLITE_OK ); 5647 *ppPage = 0; 5648 return pPager->errCode; 5649 } 5650 5651 5652 /* Dispatch all page fetch requests to the appropriate getter method. 5653 */ 5654 int sqlite3PagerGet( 5655 Pager *pPager, /* The pager open on the database file */ 5656 Pgno pgno, /* Page number to fetch */ 5657 DbPage **ppPage, /* Write a pointer to the page here */ 5658 int flags /* PAGER_GET_XXX flags */ 5659 ){ 5660 return pPager->xGet(pPager, pgno, ppPage, flags); 5661 } 5662 5663 /* 5664 ** Acquire a page if it is already in the in-memory cache. Do 5665 ** not read the page from disk. Return a pointer to the page, 5666 ** or 0 if the page is not in cache. 5667 ** 5668 ** See also sqlite3PagerGet(). The difference between this routine 5669 ** and sqlite3PagerGet() is that _get() will go to the disk and read 5670 ** in the page if the page is not already in cache. This routine 5671 ** returns NULL if the page is not in cache or if a disk I/O error 5672 ** has ever happened. 5673 */ 5674 DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ 5675 sqlite3_pcache_page *pPage; 5676 assert( pPager!=0 ); 5677 assert( pgno!=0 ); 5678 assert( pPager->pPCache!=0 ); 5679 pPage = sqlite3PcacheFetch(pPager->pPCache, pgno, 0); 5680 assert( pPage==0 || pPager->hasHeldSharedLock ); 5681 if( pPage==0 ) return 0; 5682 return sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pPage); 5683 } 5684 5685 /* 5686 ** Release a page reference. 5687 ** 5688 ** The sqlite3PagerUnref() and sqlite3PagerUnrefNotNull() may only be 5689 ** used if we know that the page being released is not the last page. 5690 ** The btree layer always holds page1 open until the end, so these first 5691 ** to routines can be used to release any page other than BtShared.pPage1. 5692 ** 5693 ** Use sqlite3PagerUnrefPageOne() to release page1. This latter routine 5694 ** checks the total number of outstanding pages and if the number of 5695 ** pages reaches zero it drops the database lock. 5696 */ 5697 void sqlite3PagerUnrefNotNull(DbPage *pPg){ 5698 TESTONLY( Pager *pPager = pPg->pPager; ) 5699 assert( pPg!=0 ); 5700 if( pPg->flags & PGHDR_MMAP ){ 5701 assert( pPg->pgno!=1 ); /* Page1 is never memory mapped */ 5702 pagerReleaseMapPage(pPg); 5703 }else{ 5704 sqlite3PcacheRelease(pPg); 5705 } 5706 /* Do not use this routine to release the last reference to page1 */ 5707 assert( sqlite3PcacheRefCount(pPager->pPCache)>0 ); 5708 } 5709 void sqlite3PagerUnref(DbPage *pPg){ 5710 if( pPg ) sqlite3PagerUnrefNotNull(pPg); 5711 } 5712 void sqlite3PagerUnrefPageOne(DbPage *pPg){ 5713 Pager *pPager; 5714 assert( pPg!=0 ); 5715 assert( pPg->pgno==1 ); 5716 assert( (pPg->flags & PGHDR_MMAP)==0 ); /* Page1 is never memory mapped */ 5717 pPager = pPg->pPager; 5718 sqlite3PcacheRelease(pPg); 5719 pagerUnlockIfUnused(pPager); 5720 } 5721 5722 /* 5723 ** This function is called at the start of every write transaction. 5724 ** There must already be a RESERVED or EXCLUSIVE lock on the database 5725 ** file when this routine is called. 5726 ** 5727 ** Open the journal file for pager pPager and write a journal header 5728 ** to the start of it. If there are active savepoints, open the sub-journal 5729 ** as well. This function is only used when the journal file is being 5730 ** opened to write a rollback log for a transaction. It is not used 5731 ** when opening a hot journal file to roll it back. 5732 ** 5733 ** If the journal file is already open (as it may be in exclusive mode), 5734 ** then this function just writes a journal header to the start of the 5735 ** already open file. 5736 ** 5737 ** Whether or not the journal file is opened by this function, the 5738 ** Pager.pInJournal bitvec structure is allocated. 5739 ** 5740 ** Return SQLITE_OK if everything is successful. Otherwise, return 5741 ** SQLITE_NOMEM if the attempt to allocate Pager.pInJournal fails, or 5742 ** an IO error code if opening or writing the journal file fails. 5743 */ 5744 static int pager_open_journal(Pager *pPager){ 5745 int rc = SQLITE_OK; /* Return code */ 5746 sqlite3_vfs * const pVfs = pPager->pVfs; /* Local cache of vfs pointer */ 5747 5748 assert( pPager->eState==PAGER_WRITER_LOCKED ); 5749 assert( assert_pager_state(pPager) ); 5750 assert( pPager->pInJournal==0 ); 5751 5752 /* If already in the error state, this function is a no-op. But on 5753 ** the other hand, this routine is never called if we are already in 5754 ** an error state. */ 5755 if( NEVER(pPager->errCode) ) return pPager->errCode; 5756 5757 if( !pagerUseWal(pPager) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ 5758 pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize); 5759 if( pPager->pInJournal==0 ){ 5760 return SQLITE_NOMEM_BKPT; 5761 } 5762 5763 /* Open the journal file if it is not already open. */ 5764 if( !isOpen(pPager->jfd) ){ 5765 if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ){ 5766 sqlite3MemJournalOpen(pPager->jfd); 5767 }else{ 5768 int flags = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE; 5769 int nSpill; 5770 5771 if( pPager->tempFile ){ 5772 flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL); 5773 nSpill = sqlite3Config.nStmtSpill; 5774 }else{ 5775 flags |= SQLITE_OPEN_MAIN_JOURNAL; 5776 nSpill = jrnlBufferSize(pPager); 5777 } 5778 5779 /* Verify that the database still has the same name as it did when 5780 ** it was originally opened. */ 5781 rc = databaseIsUnmoved(pPager); 5782 if( rc==SQLITE_OK ){ 5783 rc = sqlite3JournalOpen ( 5784 pVfs, pPager->zJournal, pPager->jfd, flags, nSpill 5785 ); 5786 } 5787 } 5788 assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); 5789 } 5790 5791 5792 /* Write the first journal header to the journal file and open 5793 ** the sub-journal if necessary. 5794 */ 5795 if( rc==SQLITE_OK ){ 5796 /* TODO: Check if all of these are really required. */ 5797 pPager->nRec = 0; 5798 pPager->journalOff = 0; 5799 pPager->setSuper = 0; 5800 pPager->journalHdr = 0; 5801 rc = writeJournalHdr(pPager); 5802 } 5803 } 5804 5805 if( rc!=SQLITE_OK ){ 5806 sqlite3BitvecDestroy(pPager->pInJournal); 5807 pPager->pInJournal = 0; 5808 }else{ 5809 assert( pPager->eState==PAGER_WRITER_LOCKED ); 5810 pPager->eState = PAGER_WRITER_CACHEMOD; 5811 } 5812 5813 return rc; 5814 } 5815 5816 /* 5817 ** Begin a write-transaction on the specified pager object. If a 5818 ** write-transaction has already been opened, this function is a no-op. 5819 ** 5820 ** If the exFlag argument is false, then acquire at least a RESERVED 5821 ** lock on the database file. If exFlag is true, then acquire at least 5822 ** an EXCLUSIVE lock. If such a lock is already held, no locking 5823 ** functions need be called. 5824 ** 5825 ** If the subjInMemory argument is non-zero, then any sub-journal opened 5826 ** within this transaction will be opened as an in-memory file. This 5827 ** has no effect if the sub-journal is already opened (as it may be when 5828 ** running in exclusive mode) or if the transaction does not require a 5829 ** sub-journal. If the subjInMemory argument is zero, then any required 5830 ** sub-journal is implemented in-memory if pPager is an in-memory database, 5831 ** or using a temporary file otherwise. 5832 */ 5833 int sqlite3PagerBegin(Pager *pPager, int exFlag, int subjInMemory){ 5834 int rc = SQLITE_OK; 5835 5836 if( pPager->errCode ) return pPager->errCode; 5837 assert( pPager->eState>=PAGER_READER && pPager->eState<PAGER_ERROR ); 5838 pPager->subjInMemory = (u8)subjInMemory; 5839 5840 if( pPager->eState==PAGER_READER ){ 5841 assert( pPager->pInJournal==0 ); 5842 5843 if( pagerUseWal(pPager) ){ 5844 /* If the pager is configured to use locking_mode=exclusive, and an 5845 ** exclusive lock on the database is not already held, obtain it now. 5846 */ 5847 if( pPager->exclusiveMode && sqlite3WalExclusiveMode(pPager->pWal, -1) ){ 5848 rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); 5849 if( rc!=SQLITE_OK ){ 5850 return rc; 5851 } 5852 (void)sqlite3WalExclusiveMode(pPager->pWal, 1); 5853 } 5854 5855 /* Grab the write lock on the log file. If successful, upgrade to 5856 ** PAGER_RESERVED state. Otherwise, return an error code to the caller. 5857 ** The busy-handler is not invoked if another connection already 5858 ** holds the write-lock. If possible, the upper layer will call it. 5859 */ 5860 rc = sqlite3WalBeginWriteTransaction(pPager->pWal); 5861 }else{ 5862 /* Obtain a RESERVED lock on the database file. If the exFlag parameter 5863 ** is true, then immediately upgrade this to an EXCLUSIVE lock. The 5864 ** busy-handler callback can be used when upgrading to the EXCLUSIVE 5865 ** lock, but not when obtaining the RESERVED lock. 5866 */ 5867 rc = pagerLockDb(pPager, RESERVED_LOCK); 5868 if( rc==SQLITE_OK && exFlag ){ 5869 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); 5870 } 5871 } 5872 5873 if( rc==SQLITE_OK ){ 5874 /* Change to WRITER_LOCKED state. 5875 ** 5876 ** WAL mode sets Pager.eState to PAGER_WRITER_LOCKED or CACHEMOD 5877 ** when it has an open transaction, but never to DBMOD or FINISHED. 5878 ** This is because in those states the code to roll back savepoint 5879 ** transactions may copy data from the sub-journal into the database 5880 ** file as well as into the page cache. Which would be incorrect in 5881 ** WAL mode. 5882 */ 5883 pPager->eState = PAGER_WRITER_LOCKED; 5884 pPager->dbHintSize = pPager->dbSize; 5885 pPager->dbFileSize = pPager->dbSize; 5886 pPager->dbOrigSize = pPager->dbSize; 5887 pPager->journalOff = 0; 5888 } 5889 5890 assert( rc==SQLITE_OK || pPager->eState==PAGER_READER ); 5891 assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED ); 5892 assert( assert_pager_state(pPager) ); 5893 } 5894 5895 PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager))); 5896 return rc; 5897 } 5898 5899 /* 5900 ** Write page pPg onto the end of the rollback journal. 5901 */ 5902 static SQLITE_NOINLINE int pagerAddPageToRollbackJournal(PgHdr *pPg){ 5903 Pager *pPager = pPg->pPager; 5904 int rc; 5905 u32 cksum; 5906 char *pData2; 5907 i64 iOff = pPager->journalOff; 5908 5909 /* We should never write to the journal file the page that 5910 ** contains the database locks. The following assert verifies 5911 ** that we do not. */ 5912 assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) ); 5913 5914 assert( pPager->journalHdr<=pPager->journalOff ); 5915 pData2 = pPg->pData; 5916 cksum = pager_cksum(pPager, (u8*)pData2); 5917 5918 /* Even if an IO or diskfull error occurs while journalling the 5919 ** page in the block above, set the need-sync flag for the page. 5920 ** Otherwise, when the transaction is rolled back, the logic in 5921 ** playback_one_page() will think that the page needs to be restored 5922 ** in the database file. And if an IO error occurs while doing so, 5923 ** then corruption may follow. 5924 */ 5925 pPg->flags |= PGHDR_NEED_SYNC; 5926 5927 rc = write32bits(pPager->jfd, iOff, pPg->pgno); 5928 if( rc!=SQLITE_OK ) return rc; 5929 rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4); 5930 if( rc!=SQLITE_OK ) return rc; 5931 rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum); 5932 if( rc!=SQLITE_OK ) return rc; 5933 5934 IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, 5935 pPager->journalOff, pPager->pageSize)); 5936 PAGER_INCR(sqlite3_pager_writej_count); 5937 PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n", 5938 PAGERID(pPager), pPg->pgno, 5939 ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg))); 5940 5941 pPager->journalOff += 8 + pPager->pageSize; 5942 pPager->nRec++; 5943 assert( pPager->pInJournal!=0 ); 5944 rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno); 5945 testcase( rc==SQLITE_NOMEM ); 5946 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 5947 rc |= addToSavepointBitvecs(pPager, pPg->pgno); 5948 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 5949 return rc; 5950 } 5951 5952 /* 5953 ** Mark a single data page as writeable. The page is written into the 5954 ** main journal or sub-journal as required. If the page is written into 5955 ** one of the journals, the corresponding bit is set in the 5956 ** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs 5957 ** of any open savepoints as appropriate. 5958 */ 5959 static int pager_write(PgHdr *pPg){ 5960 Pager *pPager = pPg->pPager; 5961 int rc = SQLITE_OK; 5962 5963 /* This routine is not called unless a write-transaction has already 5964 ** been started. The journal file may or may not be open at this point. 5965 ** It is never called in the ERROR state. 5966 */ 5967 assert( pPager->eState==PAGER_WRITER_LOCKED 5968 || pPager->eState==PAGER_WRITER_CACHEMOD 5969 || pPager->eState==PAGER_WRITER_DBMOD 5970 ); 5971 assert( assert_pager_state(pPager) ); 5972 assert( pPager->errCode==0 ); 5973 assert( pPager->readOnly==0 ); 5974 CHECK_PAGE(pPg); 5975 5976 /* The journal file needs to be opened. Higher level routines have already 5977 ** obtained the necessary locks to begin the write-transaction, but the 5978 ** rollback journal might not yet be open. Open it now if this is the case. 5979 ** 5980 ** This is done before calling sqlite3PcacheMakeDirty() on the page. 5981 ** Otherwise, if it were done after calling sqlite3PcacheMakeDirty(), then 5982 ** an error might occur and the pager would end up in WRITER_LOCKED state 5983 ** with pages marked as dirty in the cache. 5984 */ 5985 if( pPager->eState==PAGER_WRITER_LOCKED ){ 5986 rc = pager_open_journal(pPager); 5987 if( rc!=SQLITE_OK ) return rc; 5988 } 5989 assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); 5990 assert( assert_pager_state(pPager) ); 5991 5992 /* Mark the page that is about to be modified as dirty. */ 5993 sqlite3PcacheMakeDirty(pPg); 5994 5995 /* If a rollback journal is in use, them make sure the page that is about 5996 ** to change is in the rollback journal, or if the page is a new page off 5997 ** then end of the file, make sure it is marked as PGHDR_NEED_SYNC. 5998 */ 5999 assert( (pPager->pInJournal!=0) == isOpen(pPager->jfd) ); 6000 if( pPager->pInJournal!=0 6001 && sqlite3BitvecTestNotNull(pPager->pInJournal, pPg->pgno)==0 6002 ){ 6003 assert( pagerUseWal(pPager)==0 ); 6004 if( pPg->pgno<=pPager->dbOrigSize ){ 6005 rc = pagerAddPageToRollbackJournal(pPg); 6006 if( rc!=SQLITE_OK ){ 6007 return rc; 6008 } 6009 }else{ 6010 if( pPager->eState!=PAGER_WRITER_DBMOD ){ 6011 pPg->flags |= PGHDR_NEED_SYNC; 6012 } 6013 PAGERTRACE(("APPEND %d page %d needSync=%d\n", 6014 PAGERID(pPager), pPg->pgno, 6015 ((pPg->flags&PGHDR_NEED_SYNC)?1:0))); 6016 } 6017 } 6018 6019 /* The PGHDR_DIRTY bit is set above when the page was added to the dirty-list 6020 ** and before writing the page into the rollback journal. Wait until now, 6021 ** after the page has been successfully journalled, before setting the 6022 ** PGHDR_WRITEABLE bit that indicates that the page can be safely modified. 6023 */ 6024 pPg->flags |= PGHDR_WRITEABLE; 6025 6026 /* If the statement journal is open and the page is not in it, 6027 ** then write the page into the statement journal. 6028 */ 6029 if( pPager->nSavepoint>0 ){ 6030 rc = subjournalPageIfRequired(pPg); 6031 } 6032 6033 /* Update the database size and return. */ 6034 if( pPager->dbSize<pPg->pgno ){ 6035 pPager->dbSize = pPg->pgno; 6036 } 6037 return rc; 6038 } 6039 6040 /* 6041 ** This is a variant of sqlite3PagerWrite() that runs when the sector size 6042 ** is larger than the page size. SQLite makes the (reasonable) assumption that 6043 ** all bytes of a sector are written together by hardware. Hence, all bytes of 6044 ** a sector need to be journalled in case of a power loss in the middle of 6045 ** a write. 6046 ** 6047 ** Usually, the sector size is less than or equal to the page size, in which 6048 ** case pages can be individually written. This routine only runs in the 6049 ** exceptional case where the page size is smaller than the sector size. 6050 */ 6051 static SQLITE_NOINLINE int pagerWriteLargeSector(PgHdr *pPg){ 6052 int rc = SQLITE_OK; /* Return code */ 6053 Pgno nPageCount; /* Total number of pages in database file */ 6054 Pgno pg1; /* First page of the sector pPg is located on. */ 6055 int nPage = 0; /* Number of pages starting at pg1 to journal */ 6056 int ii; /* Loop counter */ 6057 int needSync = 0; /* True if any page has PGHDR_NEED_SYNC */ 6058 Pager *pPager = pPg->pPager; /* The pager that owns pPg */ 6059 Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize); 6060 6061 /* Set the doNotSpill NOSYNC bit to 1. This is because we cannot allow 6062 ** a journal header to be written between the pages journaled by 6063 ** this function. 6064 */ 6065 assert( !MEMDB ); 6066 assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)==0 ); 6067 pPager->doNotSpill |= SPILLFLAG_NOSYNC; 6068 6069 /* This trick assumes that both the page-size and sector-size are 6070 ** an integer power of 2. It sets variable pg1 to the identifier 6071 ** of the first page of the sector pPg is located on. 6072 */ 6073 pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1; 6074 6075 nPageCount = pPager->dbSize; 6076 if( pPg->pgno>nPageCount ){ 6077 nPage = (pPg->pgno - pg1)+1; 6078 }else if( (pg1+nPagePerSector-1)>nPageCount ){ 6079 nPage = nPageCount+1-pg1; 6080 }else{ 6081 nPage = nPagePerSector; 6082 } 6083 assert(nPage>0); 6084 assert(pg1<=pPg->pgno); 6085 assert((pg1+nPage)>pPg->pgno); 6086 6087 for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){ 6088 Pgno pg = pg1+ii; 6089 PgHdr *pPage; 6090 if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){ 6091 if( pg!=PAGER_MJ_PGNO(pPager) ){ 6092 rc = sqlite3PagerGet(pPager, pg, &pPage, 0); 6093 if( rc==SQLITE_OK ){ 6094 rc = pager_write(pPage); 6095 if( pPage->flags&PGHDR_NEED_SYNC ){ 6096 needSync = 1; 6097 } 6098 sqlite3PagerUnrefNotNull(pPage); 6099 } 6100 } 6101 }else if( (pPage = sqlite3PagerLookup(pPager, pg))!=0 ){ 6102 if( pPage->flags&PGHDR_NEED_SYNC ){ 6103 needSync = 1; 6104 } 6105 sqlite3PagerUnrefNotNull(pPage); 6106 } 6107 } 6108 6109 /* If the PGHDR_NEED_SYNC flag is set for any of the nPage pages 6110 ** starting at pg1, then it needs to be set for all of them. Because 6111 ** writing to any of these nPage pages may damage the others, the 6112 ** journal file must contain sync()ed copies of all of them 6113 ** before any of them can be written out to the database file. 6114 */ 6115 if( rc==SQLITE_OK && needSync ){ 6116 assert( !MEMDB ); 6117 for(ii=0; ii<nPage; ii++){ 6118 PgHdr *pPage = sqlite3PagerLookup(pPager, pg1+ii); 6119 if( pPage ){ 6120 pPage->flags |= PGHDR_NEED_SYNC; 6121 sqlite3PagerUnrefNotNull(pPage); 6122 } 6123 } 6124 } 6125 6126 assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)!=0 ); 6127 pPager->doNotSpill &= ~SPILLFLAG_NOSYNC; 6128 return rc; 6129 } 6130 6131 /* 6132 ** Mark a data page as writeable. This routine must be called before 6133 ** making changes to a page. The caller must check the return value 6134 ** of this function and be careful not to change any page data unless 6135 ** this routine returns SQLITE_OK. 6136 ** 6137 ** The difference between this function and pager_write() is that this 6138 ** function also deals with the special case where 2 or more pages 6139 ** fit on a single disk sector. In this case all co-resident pages 6140 ** must have been written to the journal file before returning. 6141 ** 6142 ** If an error occurs, SQLITE_NOMEM or an IO error code is returned 6143 ** as appropriate. Otherwise, SQLITE_OK. 6144 */ 6145 int sqlite3PagerWrite(PgHdr *pPg){ 6146 Pager *pPager = pPg->pPager; 6147 assert( (pPg->flags & PGHDR_MMAP)==0 ); 6148 assert( pPager->eState>=PAGER_WRITER_LOCKED ); 6149 assert( assert_pager_state(pPager) ); 6150 if( (pPg->flags & PGHDR_WRITEABLE)!=0 && pPager->dbSize>=pPg->pgno ){ 6151 if( pPager->nSavepoint ) return subjournalPageIfRequired(pPg); 6152 return SQLITE_OK; 6153 }else if( pPager->errCode ){ 6154 return pPager->errCode; 6155 }else if( pPager->sectorSize > (u32)pPager->pageSize ){ 6156 assert( pPager->tempFile==0 ); 6157 return pagerWriteLargeSector(pPg); 6158 }else{ 6159 return pager_write(pPg); 6160 } 6161 } 6162 6163 /* 6164 ** Return TRUE if the page given in the argument was previously passed 6165 ** to sqlite3PagerWrite(). In other words, return TRUE if it is ok 6166 ** to change the content of the page. 6167 */ 6168 #ifndef NDEBUG 6169 int sqlite3PagerIswriteable(DbPage *pPg){ 6170 return pPg->flags & PGHDR_WRITEABLE; 6171 } 6172 #endif 6173 6174 /* 6175 ** A call to this routine tells the pager that it is not necessary to 6176 ** write the information on page pPg back to the disk, even though 6177 ** that page might be marked as dirty. This happens, for example, when 6178 ** the page has been added as a leaf of the freelist and so its 6179 ** content no longer matters. 6180 ** 6181 ** The overlying software layer calls this routine when all of the data 6182 ** on the given page is unused. The pager marks the page as clean so 6183 ** that it does not get written to disk. 6184 ** 6185 ** Tests show that this optimization can quadruple the speed of large 6186 ** DELETE operations. 6187 ** 6188 ** This optimization cannot be used with a temp-file, as the page may 6189 ** have been dirty at the start of the transaction. In that case, if 6190 ** memory pressure forces page pPg out of the cache, the data does need 6191 ** to be written out to disk so that it may be read back in if the 6192 ** current transaction is rolled back. 6193 */ 6194 void sqlite3PagerDontWrite(PgHdr *pPg){ 6195 Pager *pPager = pPg->pPager; 6196 if( !pPager->tempFile && (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){ 6197 PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager))); 6198 IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) 6199 pPg->flags |= PGHDR_DONT_WRITE; 6200 pPg->flags &= ~PGHDR_WRITEABLE; 6201 testcase( pPg->flags & PGHDR_NEED_SYNC ); 6202 pager_set_pagehash(pPg); 6203 } 6204 } 6205 6206 /* 6207 ** This routine is called to increment the value of the database file 6208 ** change-counter, stored as a 4-byte big-endian integer starting at 6209 ** byte offset 24 of the pager file. The secondary change counter at 6210 ** 92 is also updated, as is the SQLite version number at offset 96. 6211 ** 6212 ** But this only happens if the pPager->changeCountDone flag is false. 6213 ** To avoid excess churning of page 1, the update only happens once. 6214 ** See also the pager_write_changecounter() routine that does an 6215 ** unconditional update of the change counters. 6216 ** 6217 ** If the isDirectMode flag is zero, then this is done by calling 6218 ** sqlite3PagerWrite() on page 1, then modifying the contents of the 6219 ** page data. In this case the file will be updated when the current 6220 ** transaction is committed. 6221 ** 6222 ** The isDirectMode flag may only be non-zero if the library was compiled 6223 ** with the SQLITE_ENABLE_ATOMIC_WRITE macro defined. In this case, 6224 ** if isDirect is non-zero, then the database file is updated directly 6225 ** by writing an updated version of page 1 using a call to the 6226 ** sqlite3OsWrite() function. 6227 */ 6228 static int pager_incr_changecounter(Pager *pPager, int isDirectMode){ 6229 int rc = SQLITE_OK; 6230 6231 assert( pPager->eState==PAGER_WRITER_CACHEMOD 6232 || pPager->eState==PAGER_WRITER_DBMOD 6233 ); 6234 assert( assert_pager_state(pPager) ); 6235 6236 /* Declare and initialize constant integer 'isDirect'. If the 6237 ** atomic-write optimization is enabled in this build, then isDirect 6238 ** is initialized to the value passed as the isDirectMode parameter 6239 ** to this function. Otherwise, it is always set to zero. 6240 ** 6241 ** The idea is that if the atomic-write optimization is not 6242 ** enabled at compile time, the compiler can omit the tests of 6243 ** 'isDirect' below, as well as the block enclosed in the 6244 ** "if( isDirect )" condition. 6245 */ 6246 #ifndef SQLITE_ENABLE_ATOMIC_WRITE 6247 # define DIRECT_MODE 0 6248 assert( isDirectMode==0 ); 6249 UNUSED_PARAMETER(isDirectMode); 6250 #else 6251 # define DIRECT_MODE isDirectMode 6252 #endif 6253 6254 if( !pPager->changeCountDone && ALWAYS(pPager->dbSize>0) ){ 6255 PgHdr *pPgHdr; /* Reference to page 1 */ 6256 6257 assert( !pPager->tempFile && isOpen(pPager->fd) ); 6258 6259 /* Open page 1 of the file for writing. */ 6260 rc = sqlite3PagerGet(pPager, 1, &pPgHdr, 0); 6261 assert( pPgHdr==0 || rc==SQLITE_OK ); 6262 6263 /* If page one was fetched successfully, and this function is not 6264 ** operating in direct-mode, make page 1 writable. When not in 6265 ** direct mode, page 1 is always held in cache and hence the PagerGet() 6266 ** above is always successful - hence the ALWAYS on rc==SQLITE_OK. 6267 */ 6268 if( !DIRECT_MODE && ALWAYS(rc==SQLITE_OK) ){ 6269 rc = sqlite3PagerWrite(pPgHdr); 6270 } 6271 6272 if( rc==SQLITE_OK ){ 6273 /* Actually do the update of the change counter */ 6274 pager_write_changecounter(pPgHdr); 6275 6276 /* If running in direct mode, write the contents of page 1 to the file. */ 6277 if( DIRECT_MODE ){ 6278 const void *zBuf; 6279 assert( pPager->dbFileSize>0 ); 6280 zBuf = pPgHdr->pData; 6281 if( rc==SQLITE_OK ){ 6282 rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0); 6283 pPager->aStat[PAGER_STAT_WRITE]++; 6284 } 6285 if( rc==SQLITE_OK ){ 6286 /* Update the pager's copy of the change-counter. Otherwise, the 6287 ** next time a read transaction is opened the cache will be 6288 ** flushed (as the change-counter values will not match). */ 6289 const void *pCopy = (const void *)&((const char *)zBuf)[24]; 6290 memcpy(&pPager->dbFileVers, pCopy, sizeof(pPager->dbFileVers)); 6291 pPager->changeCountDone = 1; 6292 } 6293 }else{ 6294 pPager->changeCountDone = 1; 6295 } 6296 } 6297 6298 /* Release the page reference. */ 6299 sqlite3PagerUnref(pPgHdr); 6300 } 6301 return rc; 6302 } 6303 6304 /* 6305 ** Sync the database file to disk. This is a no-op for in-memory databases 6306 ** or pages with the Pager.noSync flag set. 6307 ** 6308 ** If successful, or if called on a pager for which it is a no-op, this 6309 ** function returns SQLITE_OK. Otherwise, an IO error code is returned. 6310 */ 6311 int sqlite3PagerSync(Pager *pPager, const char *zSuper){ 6312 int rc = SQLITE_OK; 6313 void *pArg = (void*)zSuper; 6314 rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SYNC, pArg); 6315 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 6316 if( rc==SQLITE_OK && !pPager->noSync ){ 6317 assert( !MEMDB ); 6318 rc = sqlite3OsSync(pPager->fd, pPager->syncFlags); 6319 } 6320 return rc; 6321 } 6322 6323 /* 6324 ** This function may only be called while a write-transaction is active in 6325 ** rollback. If the connection is in WAL mode, this call is a no-op. 6326 ** Otherwise, if the connection does not already have an EXCLUSIVE lock on 6327 ** the database file, an attempt is made to obtain one. 6328 ** 6329 ** If the EXCLUSIVE lock is already held or the attempt to obtain it is 6330 ** successful, or the connection is in WAL mode, SQLITE_OK is returned. 6331 ** Otherwise, either SQLITE_BUSY or an SQLITE_IOERR_XXX error code is 6332 ** returned. 6333 */ 6334 int sqlite3PagerExclusiveLock(Pager *pPager){ 6335 int rc = pPager->errCode; 6336 assert( assert_pager_state(pPager) ); 6337 if( rc==SQLITE_OK ){ 6338 assert( pPager->eState==PAGER_WRITER_CACHEMOD 6339 || pPager->eState==PAGER_WRITER_DBMOD 6340 || pPager->eState==PAGER_WRITER_LOCKED 6341 ); 6342 assert( assert_pager_state(pPager) ); 6343 if( 0==pagerUseWal(pPager) ){ 6344 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); 6345 } 6346 } 6347 return rc; 6348 } 6349 6350 /* 6351 ** Sync the database file for the pager pPager. zSuper points to the name 6352 ** of a super-journal file that should be written into the individual 6353 ** journal file. zSuper may be NULL, which is interpreted as no 6354 ** super-journal (a single database transaction). 6355 ** 6356 ** This routine ensures that: 6357 ** 6358 ** * The database file change-counter is updated, 6359 ** * the journal is synced (unless the atomic-write optimization is used), 6360 ** * all dirty pages are written to the database file, 6361 ** * the database file is truncated (if required), and 6362 ** * the database file synced. 6363 ** 6364 ** The only thing that remains to commit the transaction is to finalize 6365 ** (delete, truncate or zero the first part of) the journal file (or 6366 ** delete the super-journal file if specified). 6367 ** 6368 ** Note that if zSuper==NULL, this does not overwrite a previous value 6369 ** passed to an sqlite3PagerCommitPhaseOne() call. 6370 ** 6371 ** If the final parameter - noSync - is true, then the database file itself 6372 ** is not synced. The caller must call sqlite3PagerSync() directly to 6373 ** sync the database file before calling CommitPhaseTwo() to delete the 6374 ** journal file in this case. 6375 */ 6376 int sqlite3PagerCommitPhaseOne( 6377 Pager *pPager, /* Pager object */ 6378 const char *zSuper, /* If not NULL, the super-journal name */ 6379 int noSync /* True to omit the xSync on the db file */ 6380 ){ 6381 int rc = SQLITE_OK; /* Return code */ 6382 6383 assert( pPager->eState==PAGER_WRITER_LOCKED 6384 || pPager->eState==PAGER_WRITER_CACHEMOD 6385 || pPager->eState==PAGER_WRITER_DBMOD 6386 || pPager->eState==PAGER_ERROR 6387 ); 6388 assert( assert_pager_state(pPager) ); 6389 6390 /* If a prior error occurred, report that error again. */ 6391 if( NEVER(pPager->errCode) ) return pPager->errCode; 6392 6393 /* Provide the ability to easily simulate an I/O error during testing */ 6394 if( sqlite3FaultSim(400) ) return SQLITE_IOERR; 6395 6396 PAGERTRACE(("DATABASE SYNC: File=%s zSuper=%s nSize=%d\n", 6397 pPager->zFilename, zSuper, pPager->dbSize)); 6398 6399 /* If no database changes have been made, return early. */ 6400 if( pPager->eState<PAGER_WRITER_CACHEMOD ) return SQLITE_OK; 6401 6402 assert( MEMDB==0 || pPager->tempFile ); 6403 assert( isOpen(pPager->fd) || pPager->tempFile ); 6404 if( 0==pagerFlushOnCommit(pPager, 1) ){ 6405 /* If this is an in-memory db, or no pages have been written to, or this 6406 ** function has already been called, it is mostly a no-op. However, any 6407 ** backup in progress needs to be restarted. */ 6408 sqlite3BackupRestart(pPager->pBackup); 6409 }else{ 6410 PgHdr *pList; 6411 if( pagerUseWal(pPager) ){ 6412 PgHdr *pPageOne = 0; 6413 pList = sqlite3PcacheDirtyList(pPager->pPCache); 6414 if( pList==0 ){ 6415 /* Must have at least one page for the WAL commit flag. 6416 ** Ticket [2d1a5c67dfc2363e44f29d9bbd57f] 2011-05-18 */ 6417 rc = sqlite3PagerGet(pPager, 1, &pPageOne, 0); 6418 pList = pPageOne; 6419 pList->pDirty = 0; 6420 } 6421 assert( rc==SQLITE_OK ); 6422 if( ALWAYS(pList) ){ 6423 rc = pagerWalFrames(pPager, pList, pPager->dbSize, 1); 6424 } 6425 sqlite3PagerUnref(pPageOne); 6426 if( rc==SQLITE_OK ){ 6427 sqlite3PcacheCleanAll(pPager->pPCache); 6428 } 6429 }else{ 6430 /* The bBatch boolean is true if the batch-atomic-write commit method 6431 ** should be used. No rollback journal is created if batch-atomic-write 6432 ** is enabled. 6433 */ 6434 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 6435 sqlite3_file *fd = pPager->fd; 6436 int bBatch = zSuper==0 /* An SQLITE_IOCAP_BATCH_ATOMIC commit */ 6437 && (sqlite3OsDeviceCharacteristics(fd) & SQLITE_IOCAP_BATCH_ATOMIC) 6438 && !pPager->noSync 6439 && sqlite3JournalIsInMemory(pPager->jfd); 6440 #else 6441 # define bBatch 0 6442 #endif 6443 6444 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 6445 /* The following block updates the change-counter. Exactly how it 6446 ** does this depends on whether or not the atomic-update optimization 6447 ** was enabled at compile time, and if this transaction meets the 6448 ** runtime criteria to use the operation: 6449 ** 6450 ** * The file-system supports the atomic-write property for 6451 ** blocks of size page-size, and 6452 ** * This commit is not part of a multi-file transaction, and 6453 ** * Exactly one page has been modified and store in the journal file. 6454 ** 6455 ** If the optimization was not enabled at compile time, then the 6456 ** pager_incr_changecounter() function is called to update the change 6457 ** counter in 'indirect-mode'. If the optimization is compiled in but 6458 ** is not applicable to this transaction, call sqlite3JournalCreate() 6459 ** to make sure the journal file has actually been created, then call 6460 ** pager_incr_changecounter() to update the change-counter in indirect 6461 ** mode. 6462 ** 6463 ** Otherwise, if the optimization is both enabled and applicable, 6464 ** then call pager_incr_changecounter() to update the change-counter 6465 ** in 'direct' mode. In this case the journal file will never be 6466 ** created for this transaction. 6467 */ 6468 if( bBatch==0 ){ 6469 PgHdr *pPg; 6470 assert( isOpen(pPager->jfd) 6471 || pPager->journalMode==PAGER_JOURNALMODE_OFF 6472 || pPager->journalMode==PAGER_JOURNALMODE_WAL 6473 ); 6474 if( !zSuper && isOpen(pPager->jfd) 6475 && pPager->journalOff==jrnlBufferSize(pPager) 6476 && pPager->dbSize>=pPager->dbOrigSize 6477 && (!(pPg = sqlite3PcacheDirtyList(pPager->pPCache)) || 0==pPg->pDirty) 6478 ){ 6479 /* Update the db file change counter via the direct-write method. The 6480 ** following call will modify the in-memory representation of page 1 6481 ** to include the updated change counter and then write page 1 6482 ** directly to the database file. Because of the atomic-write 6483 ** property of the host file-system, this is safe. 6484 */ 6485 rc = pager_incr_changecounter(pPager, 1); 6486 }else{ 6487 rc = sqlite3JournalCreate(pPager->jfd); 6488 if( rc==SQLITE_OK ){ 6489 rc = pager_incr_changecounter(pPager, 0); 6490 } 6491 } 6492 } 6493 #else /* SQLITE_ENABLE_ATOMIC_WRITE */ 6494 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 6495 if( zSuper ){ 6496 rc = sqlite3JournalCreate(pPager->jfd); 6497 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6498 assert( bBatch==0 ); 6499 } 6500 #endif 6501 rc = pager_incr_changecounter(pPager, 0); 6502 #endif /* !SQLITE_ENABLE_ATOMIC_WRITE */ 6503 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6504 6505 /* Write the super-journal name into the journal file. If a 6506 ** super-journal file name has already been written to the journal file, 6507 ** or if zSuper is NULL (no super-journal), then this call is a no-op. 6508 */ 6509 rc = writeSuperJournal(pPager, zSuper); 6510 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6511 6512 /* Sync the journal file and write all dirty pages to the database. 6513 ** If the atomic-update optimization is being used, this sync will not 6514 ** create the journal file or perform any real IO. 6515 ** 6516 ** Because the change-counter page was just modified, unless the 6517 ** atomic-update optimization is used it is almost certain that the 6518 ** journal requires a sync here. However, in locking_mode=exclusive 6519 ** on a system under memory pressure it is just possible that this is 6520 ** not the case. In this case it is likely enough that the redundant 6521 ** xSync() call will be changed to a no-op by the OS anyhow. 6522 */ 6523 rc = syncJournal(pPager, 0); 6524 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6525 6526 pList = sqlite3PcacheDirtyList(pPager->pPCache); 6527 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 6528 if( bBatch ){ 6529 rc = sqlite3OsFileControl(fd, SQLITE_FCNTL_BEGIN_ATOMIC_WRITE, 0); 6530 if( rc==SQLITE_OK ){ 6531 rc = pager_write_pagelist(pPager, pList); 6532 if( rc==SQLITE_OK ){ 6533 rc = sqlite3OsFileControl(fd, SQLITE_FCNTL_COMMIT_ATOMIC_WRITE, 0); 6534 } 6535 if( rc!=SQLITE_OK ){ 6536 sqlite3OsFileControlHint(fd, SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE, 0); 6537 } 6538 } 6539 6540 if( (rc&0xFF)==SQLITE_IOERR && rc!=SQLITE_IOERR_NOMEM ){ 6541 rc = sqlite3JournalCreate(pPager->jfd); 6542 if( rc!=SQLITE_OK ){ 6543 sqlite3OsClose(pPager->jfd); 6544 goto commit_phase_one_exit; 6545 } 6546 bBatch = 0; 6547 }else{ 6548 sqlite3OsClose(pPager->jfd); 6549 } 6550 } 6551 #endif /* SQLITE_ENABLE_BATCH_ATOMIC_WRITE */ 6552 6553 if( bBatch==0 ){ 6554 rc = pager_write_pagelist(pPager, pList); 6555 } 6556 if( rc!=SQLITE_OK ){ 6557 assert( rc!=SQLITE_IOERR_BLOCKED ); 6558 goto commit_phase_one_exit; 6559 } 6560 sqlite3PcacheCleanAll(pPager->pPCache); 6561 6562 /* If the file on disk is smaller than the database image, use 6563 ** pager_truncate to grow the file here. This can happen if the database 6564 ** image was extended as part of the current transaction and then the 6565 ** last page in the db image moved to the free-list. In this case the 6566 ** last page is never written out to disk, leaving the database file 6567 ** undersized. Fix this now if it is the case. */ 6568 if( pPager->dbSize>pPager->dbFileSize ){ 6569 Pgno nNew = pPager->dbSize - (pPager->dbSize==PAGER_MJ_PGNO(pPager)); 6570 assert( pPager->eState==PAGER_WRITER_DBMOD ); 6571 rc = pager_truncate(pPager, nNew); 6572 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6573 } 6574 6575 /* Finally, sync the database file. */ 6576 if( !noSync ){ 6577 rc = sqlite3PagerSync(pPager, zSuper); 6578 } 6579 IOTRACE(("DBSYNC %p\n", pPager)) 6580 } 6581 } 6582 6583 commit_phase_one_exit: 6584 if( rc==SQLITE_OK && !pagerUseWal(pPager) ){ 6585 pPager->eState = PAGER_WRITER_FINISHED; 6586 } 6587 return rc; 6588 } 6589 6590 6591 /* 6592 ** When this function is called, the database file has been completely 6593 ** updated to reflect the changes made by the current transaction and 6594 ** synced to disk. The journal file still exists in the file-system 6595 ** though, and if a failure occurs at this point it will eventually 6596 ** be used as a hot-journal and the current transaction rolled back. 6597 ** 6598 ** This function finalizes the journal file, either by deleting, 6599 ** truncating or partially zeroing it, so that it cannot be used 6600 ** for hot-journal rollback. Once this is done the transaction is 6601 ** irrevocably committed. 6602 ** 6603 ** If an error occurs, an IO error code is returned and the pager 6604 ** moves into the error state. Otherwise, SQLITE_OK is returned. 6605 */ 6606 int sqlite3PagerCommitPhaseTwo(Pager *pPager){ 6607 int rc = SQLITE_OK; /* Return code */ 6608 6609 /* This routine should not be called if a prior error has occurred. 6610 ** But if (due to a coding error elsewhere in the system) it does get 6611 ** called, just return the same error code without doing anything. */ 6612 if( NEVER(pPager->errCode) ) return pPager->errCode; 6613 pPager->iDataVersion++; 6614 6615 assert( pPager->eState==PAGER_WRITER_LOCKED 6616 || pPager->eState==PAGER_WRITER_FINISHED 6617 || (pagerUseWal(pPager) && pPager->eState==PAGER_WRITER_CACHEMOD) 6618 ); 6619 assert( assert_pager_state(pPager) ); 6620 6621 /* An optimization. If the database was not actually modified during 6622 ** this transaction, the pager is running in exclusive-mode and is 6623 ** using persistent journals, then this function is a no-op. 6624 ** 6625 ** The start of the journal file currently contains a single journal 6626 ** header with the nRec field set to 0. If such a journal is used as 6627 ** a hot-journal during hot-journal rollback, 0 changes will be made 6628 ** to the database file. So there is no need to zero the journal 6629 ** header. Since the pager is in exclusive mode, there is no need 6630 ** to drop any locks either. 6631 */ 6632 if( pPager->eState==PAGER_WRITER_LOCKED 6633 && pPager->exclusiveMode 6634 && pPager->journalMode==PAGER_JOURNALMODE_PERSIST 6635 ){ 6636 assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff ); 6637 pPager->eState = PAGER_READER; 6638 return SQLITE_OK; 6639 } 6640 6641 PAGERTRACE(("COMMIT %d\n", PAGERID(pPager))); 6642 rc = pager_end_transaction(pPager, pPager->setSuper, 1); 6643 return pager_error(pPager, rc); 6644 } 6645 6646 /* 6647 ** If a write transaction is open, then all changes made within the 6648 ** transaction are reverted and the current write-transaction is closed. 6649 ** The pager falls back to PAGER_READER state if successful, or PAGER_ERROR 6650 ** state if an error occurs. 6651 ** 6652 ** If the pager is already in PAGER_ERROR state when this function is called, 6653 ** it returns Pager.errCode immediately. No work is performed in this case. 6654 ** 6655 ** Otherwise, in rollback mode, this function performs two functions: 6656 ** 6657 ** 1) It rolls back the journal file, restoring all database file and 6658 ** in-memory cache pages to the state they were in when the transaction 6659 ** was opened, and 6660 ** 6661 ** 2) It finalizes the journal file, so that it is not used for hot 6662 ** rollback at any point in the future. 6663 ** 6664 ** Finalization of the journal file (task 2) is only performed if the 6665 ** rollback is successful. 6666 ** 6667 ** In WAL mode, all cache-entries containing data modified within the 6668 ** current transaction are either expelled from the cache or reverted to 6669 ** their pre-transaction state by re-reading data from the database or 6670 ** WAL files. The WAL transaction is then closed. 6671 */ 6672 int sqlite3PagerRollback(Pager *pPager){ 6673 int rc = SQLITE_OK; /* Return code */ 6674 PAGERTRACE(("ROLLBACK %d\n", PAGERID(pPager))); 6675 6676 /* PagerRollback() is a no-op if called in READER or OPEN state. If 6677 ** the pager is already in the ERROR state, the rollback is not 6678 ** attempted here. Instead, the error code is returned to the caller. 6679 */ 6680 assert( assert_pager_state(pPager) ); 6681 if( pPager->eState==PAGER_ERROR ) return pPager->errCode; 6682 if( pPager->eState<=PAGER_READER ) return SQLITE_OK; 6683 6684 if( pagerUseWal(pPager) ){ 6685 int rc2; 6686 rc = sqlite3PagerSavepoint(pPager, SAVEPOINT_ROLLBACK, -1); 6687 rc2 = pager_end_transaction(pPager, pPager->setSuper, 0); 6688 if( rc==SQLITE_OK ) rc = rc2; 6689 }else if( !isOpen(pPager->jfd) || pPager->eState==PAGER_WRITER_LOCKED ){ 6690 int eState = pPager->eState; 6691 rc = pager_end_transaction(pPager, 0, 0); 6692 if( !MEMDB && eState>PAGER_WRITER_LOCKED ){ 6693 /* This can happen using journal_mode=off. Move the pager to the error 6694 ** state to indicate that the contents of the cache may not be trusted. 6695 ** Any active readers will get SQLITE_ABORT. 6696 */ 6697 pPager->errCode = SQLITE_ABORT; 6698 pPager->eState = PAGER_ERROR; 6699 setGetterMethod(pPager); 6700 return rc; 6701 } 6702 }else{ 6703 rc = pager_playback(pPager, 0); 6704 } 6705 6706 assert( pPager->eState==PAGER_READER || rc!=SQLITE_OK ); 6707 assert( rc==SQLITE_OK || rc==SQLITE_FULL || rc==SQLITE_CORRUPT 6708 || rc==SQLITE_NOMEM || (rc&0xFF)==SQLITE_IOERR 6709 || rc==SQLITE_CANTOPEN 6710 ); 6711 6712 /* If an error occurs during a ROLLBACK, we can no longer trust the pager 6713 ** cache. So call pager_error() on the way out to make any error persistent. 6714 */ 6715 return pager_error(pPager, rc); 6716 } 6717 6718 /* 6719 ** Return TRUE if the database file is opened read-only. Return FALSE 6720 ** if the database is (in theory) writable. 6721 */ 6722 u8 sqlite3PagerIsreadonly(Pager *pPager){ 6723 return pPager->readOnly; 6724 } 6725 6726 #ifdef SQLITE_DEBUG 6727 /* 6728 ** Return the sum of the reference counts for all pages held by pPager. 6729 */ 6730 int sqlite3PagerRefcount(Pager *pPager){ 6731 return sqlite3PcacheRefCount(pPager->pPCache); 6732 } 6733 #endif 6734 6735 /* 6736 ** Return the approximate number of bytes of memory currently 6737 ** used by the pager and its associated cache. 6738 */ 6739 int sqlite3PagerMemUsed(Pager *pPager){ 6740 int perPageSize = pPager->pageSize + pPager->nExtra + sizeof(PgHdr) 6741 + 5*sizeof(void*); 6742 return perPageSize*sqlite3PcachePagecount(pPager->pPCache) 6743 + sqlite3MallocSize(pPager) 6744 + pPager->pageSize; 6745 } 6746 6747 /* 6748 ** Return the number of references to the specified page. 6749 */ 6750 int sqlite3PagerPageRefcount(DbPage *pPage){ 6751 return sqlite3PcachePageRefcount(pPage); 6752 } 6753 6754 #ifdef SQLITE_TEST 6755 /* 6756 ** This routine is used for testing and analysis only. 6757 */ 6758 int *sqlite3PagerStats(Pager *pPager){ 6759 static int a[11]; 6760 a[0] = sqlite3PcacheRefCount(pPager->pPCache); 6761 a[1] = sqlite3PcachePagecount(pPager->pPCache); 6762 a[2] = sqlite3PcacheGetCachesize(pPager->pPCache); 6763 a[3] = pPager->eState==PAGER_OPEN ? -1 : (int) pPager->dbSize; 6764 a[4] = pPager->eState; 6765 a[5] = pPager->errCode; 6766 a[6] = pPager->aStat[PAGER_STAT_HIT]; 6767 a[7] = pPager->aStat[PAGER_STAT_MISS]; 6768 a[8] = 0; /* Used to be pPager->nOvfl */ 6769 a[9] = pPager->nRead; 6770 a[10] = pPager->aStat[PAGER_STAT_WRITE]; 6771 return a; 6772 } 6773 #endif 6774 6775 /* 6776 ** Parameter eStat must be one of SQLITE_DBSTATUS_CACHE_HIT, _MISS, _WRITE, 6777 ** or _WRITE+1. The SQLITE_DBSTATUS_CACHE_WRITE+1 case is a translation 6778 ** of SQLITE_DBSTATUS_CACHE_SPILL. The _SPILL case is not contiguous because 6779 ** it was added later. 6780 ** 6781 ** Before returning, *pnVal is incremented by the 6782 ** current cache hit or miss count, according to the value of eStat. If the 6783 ** reset parameter is non-zero, the cache hit or miss count is zeroed before 6784 ** returning. 6785 */ 6786 void sqlite3PagerCacheStat(Pager *pPager, int eStat, int reset, int *pnVal){ 6787 6788 assert( eStat==SQLITE_DBSTATUS_CACHE_HIT 6789 || eStat==SQLITE_DBSTATUS_CACHE_MISS 6790 || eStat==SQLITE_DBSTATUS_CACHE_WRITE 6791 || eStat==SQLITE_DBSTATUS_CACHE_WRITE+1 6792 ); 6793 6794 assert( SQLITE_DBSTATUS_CACHE_HIT+1==SQLITE_DBSTATUS_CACHE_MISS ); 6795 assert( SQLITE_DBSTATUS_CACHE_HIT+2==SQLITE_DBSTATUS_CACHE_WRITE ); 6796 assert( PAGER_STAT_HIT==0 && PAGER_STAT_MISS==1 6797 && PAGER_STAT_WRITE==2 && PAGER_STAT_SPILL==3 ); 6798 6799 eStat -= SQLITE_DBSTATUS_CACHE_HIT; 6800 *pnVal += pPager->aStat[eStat]; 6801 if( reset ){ 6802 pPager->aStat[eStat] = 0; 6803 } 6804 } 6805 6806 /* 6807 ** Return true if this is an in-memory or temp-file backed pager. 6808 */ 6809 int sqlite3PagerIsMemdb(Pager *pPager){ 6810 return pPager->tempFile; 6811 } 6812 6813 /* 6814 ** Check that there are at least nSavepoint savepoints open. If there are 6815 ** currently less than nSavepoints open, then open one or more savepoints 6816 ** to make up the difference. If the number of savepoints is already 6817 ** equal to nSavepoint, then this function is a no-op. 6818 ** 6819 ** If a memory allocation fails, SQLITE_NOMEM is returned. If an error 6820 ** occurs while opening the sub-journal file, then an IO error code is 6821 ** returned. Otherwise, SQLITE_OK. 6822 */ 6823 static SQLITE_NOINLINE int pagerOpenSavepoint(Pager *pPager, int nSavepoint){ 6824 int rc = SQLITE_OK; /* Return code */ 6825 int nCurrent = pPager->nSavepoint; /* Current number of savepoints */ 6826 int ii; /* Iterator variable */ 6827 PagerSavepoint *aNew; /* New Pager.aSavepoint array */ 6828 6829 assert( pPager->eState>=PAGER_WRITER_LOCKED ); 6830 assert( assert_pager_state(pPager) ); 6831 assert( nSavepoint>nCurrent && pPager->useJournal ); 6832 6833 /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM 6834 ** if the allocation fails. Otherwise, zero the new portion in case a 6835 ** malloc failure occurs while populating it in the for(...) loop below. 6836 */ 6837 aNew = (PagerSavepoint *)sqlite3Realloc( 6838 pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint 6839 ); 6840 if( !aNew ){ 6841 return SQLITE_NOMEM_BKPT; 6842 } 6843 memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint)); 6844 pPager->aSavepoint = aNew; 6845 6846 /* Populate the PagerSavepoint structures just allocated. */ 6847 for(ii=nCurrent; ii<nSavepoint; ii++){ 6848 aNew[ii].nOrig = pPager->dbSize; 6849 if( isOpen(pPager->jfd) && pPager->journalOff>0 ){ 6850 aNew[ii].iOffset = pPager->journalOff; 6851 }else{ 6852 aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager); 6853 } 6854 aNew[ii].iSubRec = pPager->nSubRec; 6855 aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize); 6856 aNew[ii].bTruncateOnRelease = 1; 6857 if( !aNew[ii].pInSavepoint ){ 6858 return SQLITE_NOMEM_BKPT; 6859 } 6860 if( pagerUseWal(pPager) ){ 6861 sqlite3WalSavepoint(pPager->pWal, aNew[ii].aWalData); 6862 } 6863 pPager->nSavepoint = ii+1; 6864 } 6865 assert( pPager->nSavepoint==nSavepoint ); 6866 assertTruncateConstraint(pPager); 6867 return rc; 6868 } 6869 int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){ 6870 assert( pPager->eState>=PAGER_WRITER_LOCKED ); 6871 assert( assert_pager_state(pPager) ); 6872 6873 if( nSavepoint>pPager->nSavepoint && pPager->useJournal ){ 6874 return pagerOpenSavepoint(pPager, nSavepoint); 6875 }else{ 6876 return SQLITE_OK; 6877 } 6878 } 6879 6880 6881 /* 6882 ** This function is called to rollback or release (commit) a savepoint. 6883 ** The savepoint to release or rollback need not be the most recently 6884 ** created savepoint. 6885 ** 6886 ** Parameter op is always either SAVEPOINT_ROLLBACK or SAVEPOINT_RELEASE. 6887 ** If it is SAVEPOINT_RELEASE, then release and destroy the savepoint with 6888 ** index iSavepoint. If it is SAVEPOINT_ROLLBACK, then rollback all changes 6889 ** that have occurred since the specified savepoint was created. 6890 ** 6891 ** The savepoint to rollback or release is identified by parameter 6892 ** iSavepoint. A value of 0 means to operate on the outermost savepoint 6893 ** (the first created). A value of (Pager.nSavepoint-1) means operate 6894 ** on the most recently created savepoint. If iSavepoint is greater than 6895 ** (Pager.nSavepoint-1), then this function is a no-op. 6896 ** 6897 ** If a negative value is passed to this function, then the current 6898 ** transaction is rolled back. This is different to calling 6899 ** sqlite3PagerRollback() because this function does not terminate 6900 ** the transaction or unlock the database, it just restores the 6901 ** contents of the database to its original state. 6902 ** 6903 ** In any case, all savepoints with an index greater than iSavepoint 6904 ** are destroyed. If this is a release operation (op==SAVEPOINT_RELEASE), 6905 ** then savepoint iSavepoint is also destroyed. 6906 ** 6907 ** This function may return SQLITE_NOMEM if a memory allocation fails, 6908 ** or an IO error code if an IO error occurs while rolling back a 6909 ** savepoint. If no errors occur, SQLITE_OK is returned. 6910 */ 6911 int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint){ 6912 int rc = pPager->errCode; 6913 6914 #ifdef SQLITE_ENABLE_ZIPVFS 6915 if( op==SAVEPOINT_RELEASE ) rc = SQLITE_OK; 6916 #endif 6917 6918 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 6919 assert( iSavepoint>=0 || op==SAVEPOINT_ROLLBACK ); 6920 6921 if( rc==SQLITE_OK && iSavepoint<pPager->nSavepoint ){ 6922 int ii; /* Iterator variable */ 6923 int nNew; /* Number of remaining savepoints after this op. */ 6924 6925 /* Figure out how many savepoints will still be active after this 6926 ** operation. Store this value in nNew. Then free resources associated 6927 ** with any savepoints that are destroyed by this operation. 6928 */ 6929 nNew = iSavepoint + (( op==SAVEPOINT_RELEASE ) ? 0 : 1); 6930 for(ii=nNew; ii<pPager->nSavepoint; ii++){ 6931 sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); 6932 } 6933 pPager->nSavepoint = nNew; 6934 6935 /* If this is a release of the outermost savepoint, truncate 6936 ** the sub-journal to zero bytes in size. */ 6937 if( op==SAVEPOINT_RELEASE ){ 6938 PagerSavepoint *pRel = &pPager->aSavepoint[nNew]; 6939 if( pRel->bTruncateOnRelease && isOpen(pPager->sjfd) ){ 6940 /* Only truncate if it is an in-memory sub-journal. */ 6941 if( sqlite3JournalIsInMemory(pPager->sjfd) ){ 6942 i64 sz = (pPager->pageSize+4)*pRel->iSubRec; 6943 rc = sqlite3OsTruncate(pPager->sjfd, sz); 6944 assert( rc==SQLITE_OK ); 6945 } 6946 pPager->nSubRec = pRel->iSubRec; 6947 } 6948 } 6949 /* Else this is a rollback operation, playback the specified savepoint. 6950 ** If this is a temp-file, it is possible that the journal file has 6951 ** not yet been opened. In this case there have been no changes to 6952 ** the database file, so the playback operation can be skipped. 6953 */ 6954 else if( pagerUseWal(pPager) || isOpen(pPager->jfd) ){ 6955 PagerSavepoint *pSavepoint = (nNew==0)?0:&pPager->aSavepoint[nNew-1]; 6956 rc = pagerPlaybackSavepoint(pPager, pSavepoint); 6957 assert(rc!=SQLITE_DONE); 6958 } 6959 6960 #ifdef SQLITE_ENABLE_ZIPVFS 6961 /* If the cache has been modified but the savepoint cannot be rolled 6962 ** back journal_mode=off, put the pager in the error state. This way, 6963 ** if the VFS used by this pager includes ZipVFS, the entire transaction 6964 ** can be rolled back at the ZipVFS level. */ 6965 else if( 6966 pPager->journalMode==PAGER_JOURNALMODE_OFF 6967 && pPager->eState>=PAGER_WRITER_CACHEMOD 6968 ){ 6969 pPager->errCode = SQLITE_ABORT; 6970 pPager->eState = PAGER_ERROR; 6971 setGetterMethod(pPager); 6972 } 6973 #endif 6974 } 6975 6976 return rc; 6977 } 6978 6979 /* 6980 ** Return the full pathname of the database file. 6981 ** 6982 ** Except, if the pager is in-memory only, then return an empty string if 6983 ** nullIfMemDb is true. This routine is called with nullIfMemDb==1 when 6984 ** used to report the filename to the user, for compatibility with legacy 6985 ** behavior. But when the Btree needs to know the filename for matching to 6986 ** shared cache, it uses nullIfMemDb==0 so that in-memory databases can 6987 ** participate in shared-cache. 6988 ** 6989 ** The return value to this routine is always safe to use with 6990 ** sqlite3_uri_parameter() and sqlite3_filename_database() and friends. 6991 */ 6992 const char *sqlite3PagerFilename(const Pager *pPager, int nullIfMemDb){ 6993 static const char zFake[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 6994 return (nullIfMemDb && pPager->memDb) ? &zFake[4] : pPager->zFilename; 6995 } 6996 6997 /* 6998 ** Return the VFS structure for the pager. 6999 */ 7000 sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){ 7001 return pPager->pVfs; 7002 } 7003 7004 /* 7005 ** Return the file handle for the database file associated 7006 ** with the pager. This might return NULL if the file has 7007 ** not yet been opened. 7008 */ 7009 sqlite3_file *sqlite3PagerFile(Pager *pPager){ 7010 return pPager->fd; 7011 } 7012 7013 /* 7014 ** Return the file handle for the journal file (if it exists). 7015 ** This will be either the rollback journal or the WAL file. 7016 */ 7017 sqlite3_file *sqlite3PagerJrnlFile(Pager *pPager){ 7018 #if SQLITE_OMIT_WAL 7019 return pPager->jfd; 7020 #else 7021 return pPager->pWal ? sqlite3WalFile(pPager->pWal) : pPager->jfd; 7022 #endif 7023 } 7024 7025 /* 7026 ** Return the full pathname of the journal file. 7027 */ 7028 const char *sqlite3PagerJournalname(Pager *pPager){ 7029 return pPager->zJournal; 7030 } 7031 7032 #ifndef SQLITE_OMIT_AUTOVACUUM 7033 /* 7034 ** Move the page pPg to location pgno in the file. 7035 ** 7036 ** There must be no references to the page previously located at 7037 ** pgno (which we call pPgOld) though that page is allowed to be 7038 ** in cache. If the page previously located at pgno is not already 7039 ** in the rollback journal, it is not put there by by this routine. 7040 ** 7041 ** References to the page pPg remain valid. Updating any 7042 ** meta-data associated with pPg (i.e. data stored in the nExtra bytes 7043 ** allocated along with the page) is the responsibility of the caller. 7044 ** 7045 ** A transaction must be active when this routine is called. It used to be 7046 ** required that a statement transaction was not active, but this restriction 7047 ** has been removed (CREATE INDEX needs to move a page when a statement 7048 ** transaction is active). 7049 ** 7050 ** If the fourth argument, isCommit, is non-zero, then this page is being 7051 ** moved as part of a database reorganization just before the transaction 7052 ** is being committed. In this case, it is guaranteed that the database page 7053 ** pPg refers to will not be written to again within this transaction. 7054 ** 7055 ** This function may return SQLITE_NOMEM or an IO error code if an error 7056 ** occurs. Otherwise, it returns SQLITE_OK. 7057 */ 7058 int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){ 7059 PgHdr *pPgOld; /* The page being overwritten. */ 7060 Pgno needSyncPgno = 0; /* Old value of pPg->pgno, if sync is required */ 7061 int rc; /* Return code */ 7062 Pgno origPgno; /* The original page number */ 7063 7064 assert( pPg->nRef>0 ); 7065 assert( pPager->eState==PAGER_WRITER_CACHEMOD 7066 || pPager->eState==PAGER_WRITER_DBMOD 7067 ); 7068 assert( assert_pager_state(pPager) ); 7069 7070 /* In order to be able to rollback, an in-memory database must journal 7071 ** the page we are moving from. 7072 */ 7073 assert( pPager->tempFile || !MEMDB ); 7074 if( pPager->tempFile ){ 7075 rc = sqlite3PagerWrite(pPg); 7076 if( rc ) return rc; 7077 } 7078 7079 /* If the page being moved is dirty and has not been saved by the latest 7080 ** savepoint, then save the current contents of the page into the 7081 ** sub-journal now. This is required to handle the following scenario: 7082 ** 7083 ** BEGIN; 7084 ** <journal page X, then modify it in memory> 7085 ** SAVEPOINT one; 7086 ** <Move page X to location Y> 7087 ** ROLLBACK TO one; 7088 ** 7089 ** If page X were not written to the sub-journal here, it would not 7090 ** be possible to restore its contents when the "ROLLBACK TO one" 7091 ** statement were is processed. 7092 ** 7093 ** subjournalPage() may need to allocate space to store pPg->pgno into 7094 ** one or more savepoint bitvecs. This is the reason this function 7095 ** may return SQLITE_NOMEM. 7096 */ 7097 if( (pPg->flags & PGHDR_DIRTY)!=0 7098 && SQLITE_OK!=(rc = subjournalPageIfRequired(pPg)) 7099 ){ 7100 return rc; 7101 } 7102 7103 PAGERTRACE(("MOVE %d page %d (needSync=%d) moves to %d\n", 7104 PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno)); 7105 IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno)) 7106 7107 /* If the journal needs to be sync()ed before page pPg->pgno can 7108 ** be written to, store pPg->pgno in local variable needSyncPgno. 7109 ** 7110 ** If the isCommit flag is set, there is no need to remember that 7111 ** the journal needs to be sync()ed before database page pPg->pgno 7112 ** can be written to. The caller has already promised not to write to it. 7113 */ 7114 if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){ 7115 needSyncPgno = pPg->pgno; 7116 assert( pPager->journalMode==PAGER_JOURNALMODE_OFF || 7117 pageInJournal(pPager, pPg) || pPg->pgno>pPager->dbOrigSize ); 7118 assert( pPg->flags&PGHDR_DIRTY ); 7119 } 7120 7121 /* If the cache contains a page with page-number pgno, remove it 7122 ** from its hash chain. Also, if the PGHDR_NEED_SYNC flag was set for 7123 ** page pgno before the 'move' operation, it needs to be retained 7124 ** for the page moved there. 7125 */ 7126 pPg->flags &= ~PGHDR_NEED_SYNC; 7127 pPgOld = sqlite3PagerLookup(pPager, pgno); 7128 assert( !pPgOld || pPgOld->nRef==1 || CORRUPT_DB ); 7129 if( pPgOld ){ 7130 if( pPgOld->nRef>1 ){ 7131 sqlite3PagerUnrefNotNull(pPgOld); 7132 return SQLITE_CORRUPT_BKPT; 7133 } 7134 pPg->flags |= (pPgOld->flags&PGHDR_NEED_SYNC); 7135 if( pPager->tempFile ){ 7136 /* Do not discard pages from an in-memory database since we might 7137 ** need to rollback later. Just move the page out of the way. */ 7138 sqlite3PcacheMove(pPgOld, pPager->dbSize+1); 7139 }else{ 7140 sqlite3PcacheDrop(pPgOld); 7141 } 7142 } 7143 7144 origPgno = pPg->pgno; 7145 sqlite3PcacheMove(pPg, pgno); 7146 sqlite3PcacheMakeDirty(pPg); 7147 7148 /* For an in-memory database, make sure the original page continues 7149 ** to exist, in case the transaction needs to roll back. Use pPgOld 7150 ** as the original page since it has already been allocated. 7151 */ 7152 if( pPager->tempFile && pPgOld ){ 7153 sqlite3PcacheMove(pPgOld, origPgno); 7154 sqlite3PagerUnrefNotNull(pPgOld); 7155 } 7156 7157 if( needSyncPgno ){ 7158 /* If needSyncPgno is non-zero, then the journal file needs to be 7159 ** sync()ed before any data is written to database file page needSyncPgno. 7160 ** Currently, no such page exists in the page-cache and the 7161 ** "is journaled" bitvec flag has been set. This needs to be remedied by 7162 ** loading the page into the pager-cache and setting the PGHDR_NEED_SYNC 7163 ** flag. 7164 ** 7165 ** If the attempt to load the page into the page-cache fails, (due 7166 ** to a malloc() or IO failure), clear the bit in the pInJournal[] 7167 ** array. Otherwise, if the page is loaded and written again in 7168 ** this transaction, it may be written to the database file before 7169 ** it is synced into the journal file. This way, it may end up in 7170 ** the journal file twice, but that is not a problem. 7171 */ 7172 PgHdr *pPgHdr; 7173 rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr, 0); 7174 if( rc!=SQLITE_OK ){ 7175 if( needSyncPgno<=pPager->dbOrigSize ){ 7176 assert( pPager->pTmpSpace!=0 ); 7177 sqlite3BitvecClear(pPager->pInJournal, needSyncPgno, pPager->pTmpSpace); 7178 } 7179 return rc; 7180 } 7181 pPgHdr->flags |= PGHDR_NEED_SYNC; 7182 sqlite3PcacheMakeDirty(pPgHdr); 7183 sqlite3PagerUnrefNotNull(pPgHdr); 7184 } 7185 7186 return SQLITE_OK; 7187 } 7188 #endif 7189 7190 /* 7191 ** The page handle passed as the first argument refers to a dirty page 7192 ** with a page number other than iNew. This function changes the page's 7193 ** page number to iNew and sets the value of the PgHdr.flags field to 7194 ** the value passed as the third parameter. 7195 */ 7196 void sqlite3PagerRekey(DbPage *pPg, Pgno iNew, u16 flags){ 7197 assert( pPg->pgno!=iNew ); 7198 pPg->flags = flags; 7199 sqlite3PcacheMove(pPg, iNew); 7200 } 7201 7202 /* 7203 ** Return a pointer to the data for the specified page. 7204 */ 7205 void *sqlite3PagerGetData(DbPage *pPg){ 7206 assert( pPg->nRef>0 || pPg->pPager->memDb ); 7207 return pPg->pData; 7208 } 7209 7210 /* 7211 ** Return a pointer to the Pager.nExtra bytes of "extra" space 7212 ** allocated along with the specified page. 7213 */ 7214 void *sqlite3PagerGetExtra(DbPage *pPg){ 7215 return pPg->pExtra; 7216 } 7217 7218 /* 7219 ** Get/set the locking-mode for this pager. Parameter eMode must be one 7220 ** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or 7221 ** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then 7222 ** the locking-mode is set to the value specified. 7223 ** 7224 ** The returned value is either PAGER_LOCKINGMODE_NORMAL or 7225 ** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated) 7226 ** locking-mode. 7227 */ 7228 int sqlite3PagerLockingMode(Pager *pPager, int eMode){ 7229 assert( eMode==PAGER_LOCKINGMODE_QUERY 7230 || eMode==PAGER_LOCKINGMODE_NORMAL 7231 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); 7232 assert( PAGER_LOCKINGMODE_QUERY<0 ); 7233 assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 ); 7234 assert( pPager->exclusiveMode || 0==sqlite3WalHeapMemory(pPager->pWal) ); 7235 if( eMode>=0 && !pPager->tempFile && !sqlite3WalHeapMemory(pPager->pWal) ){ 7236 pPager->exclusiveMode = (u8)eMode; 7237 } 7238 return (int)pPager->exclusiveMode; 7239 } 7240 7241 /* 7242 ** Set the journal-mode for this pager. Parameter eMode must be one of: 7243 ** 7244 ** PAGER_JOURNALMODE_DELETE 7245 ** PAGER_JOURNALMODE_TRUNCATE 7246 ** PAGER_JOURNALMODE_PERSIST 7247 ** PAGER_JOURNALMODE_OFF 7248 ** PAGER_JOURNALMODE_MEMORY 7249 ** PAGER_JOURNALMODE_WAL 7250 ** 7251 ** The journalmode is set to the value specified if the change is allowed. 7252 ** The change may be disallowed for the following reasons: 7253 ** 7254 ** * An in-memory database can only have its journal_mode set to _OFF 7255 ** or _MEMORY. 7256 ** 7257 ** * Temporary databases cannot have _WAL journalmode. 7258 ** 7259 ** The returned indicate the current (possibly updated) journal-mode. 7260 */ 7261 int sqlite3PagerSetJournalMode(Pager *pPager, int eMode){ 7262 u8 eOld = pPager->journalMode; /* Prior journalmode */ 7263 7264 /* The eMode parameter is always valid */ 7265 assert( eMode==PAGER_JOURNALMODE_DELETE 7266 || eMode==PAGER_JOURNALMODE_TRUNCATE 7267 || eMode==PAGER_JOURNALMODE_PERSIST 7268 || eMode==PAGER_JOURNALMODE_OFF 7269 || eMode==PAGER_JOURNALMODE_WAL 7270 || eMode==PAGER_JOURNALMODE_MEMORY ); 7271 7272 /* This routine is only called from the OP_JournalMode opcode, and 7273 ** the logic there will never allow a temporary file to be changed 7274 ** to WAL mode. 7275 */ 7276 assert( pPager->tempFile==0 || eMode!=PAGER_JOURNALMODE_WAL ); 7277 7278 /* Do allow the journalmode of an in-memory database to be set to 7279 ** anything other than MEMORY or OFF 7280 */ 7281 if( MEMDB ){ 7282 assert( eOld==PAGER_JOURNALMODE_MEMORY || eOld==PAGER_JOURNALMODE_OFF ); 7283 if( eMode!=PAGER_JOURNALMODE_MEMORY && eMode!=PAGER_JOURNALMODE_OFF ){ 7284 eMode = eOld; 7285 } 7286 } 7287 7288 if( eMode!=eOld ){ 7289 7290 /* Change the journal mode. */ 7291 assert( pPager->eState!=PAGER_ERROR ); 7292 pPager->journalMode = (u8)eMode; 7293 7294 /* When transistioning from TRUNCATE or PERSIST to any other journal 7295 ** mode except WAL, unless the pager is in locking_mode=exclusive mode, 7296 ** delete the journal file. 7297 */ 7298 assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); 7299 assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); 7300 assert( (PAGER_JOURNALMODE_DELETE & 5)==0 ); 7301 assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 ); 7302 assert( (PAGER_JOURNALMODE_OFF & 5)==0 ); 7303 assert( (PAGER_JOURNALMODE_WAL & 5)==5 ); 7304 7305 assert( isOpen(pPager->fd) || pPager->exclusiveMode ); 7306 if( !pPager->exclusiveMode && (eOld & 5)==1 && (eMode & 1)==0 ){ 7307 7308 /* In this case we would like to delete the journal file. If it is 7309 ** not possible, then that is not a problem. Deleting the journal file 7310 ** here is an optimization only. 7311 ** 7312 ** Before deleting the journal file, obtain a RESERVED lock on the 7313 ** database file. This ensures that the journal file is not deleted 7314 ** while it is in use by some other client. 7315 */ 7316 sqlite3OsClose(pPager->jfd); 7317 if( pPager->eLock>=RESERVED_LOCK ){ 7318 sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); 7319 }else{ 7320 int rc = SQLITE_OK; 7321 int state = pPager->eState; 7322 assert( state==PAGER_OPEN || state==PAGER_READER ); 7323 if( state==PAGER_OPEN ){ 7324 rc = sqlite3PagerSharedLock(pPager); 7325 } 7326 if( pPager->eState==PAGER_READER ){ 7327 assert( rc==SQLITE_OK ); 7328 rc = pagerLockDb(pPager, RESERVED_LOCK); 7329 } 7330 if( rc==SQLITE_OK ){ 7331 sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); 7332 } 7333 if( rc==SQLITE_OK && state==PAGER_READER ){ 7334 pagerUnlockDb(pPager, SHARED_LOCK); 7335 }else if( state==PAGER_OPEN ){ 7336 pager_unlock(pPager); 7337 } 7338 assert( state==pPager->eState ); 7339 } 7340 }else if( eMode==PAGER_JOURNALMODE_OFF ){ 7341 sqlite3OsClose(pPager->jfd); 7342 } 7343 } 7344 7345 /* Return the new journal mode */ 7346 return (int)pPager->journalMode; 7347 } 7348 7349 /* 7350 ** Return the current journal mode. 7351 */ 7352 int sqlite3PagerGetJournalMode(Pager *pPager){ 7353 return (int)pPager->journalMode; 7354 } 7355 7356 /* 7357 ** Return TRUE if the pager is in a state where it is OK to change the 7358 ** journalmode. Journalmode changes can only happen when the database 7359 ** is unmodified. 7360 */ 7361 int sqlite3PagerOkToChangeJournalMode(Pager *pPager){ 7362 assert( assert_pager_state(pPager) ); 7363 if( pPager->eState>=PAGER_WRITER_CACHEMOD ) return 0; 7364 if( NEVER(isOpen(pPager->jfd) && pPager->journalOff>0) ) return 0; 7365 return 1; 7366 } 7367 7368 /* 7369 ** Get/set the size-limit used for persistent journal files. 7370 ** 7371 ** Setting the size limit to -1 means no limit is enforced. 7372 ** An attempt to set a limit smaller than -1 is a no-op. 7373 */ 7374 i64 sqlite3PagerJournalSizeLimit(Pager *pPager, i64 iLimit){ 7375 if( iLimit>=-1 ){ 7376 pPager->journalSizeLimit = iLimit; 7377 sqlite3WalLimit(pPager->pWal, iLimit); 7378 } 7379 return pPager->journalSizeLimit; 7380 } 7381 7382 /* 7383 ** Return a pointer to the pPager->pBackup variable. The backup module 7384 ** in backup.c maintains the content of this variable. This module 7385 ** uses it opaquely as an argument to sqlite3BackupRestart() and 7386 ** sqlite3BackupUpdate() only. 7387 */ 7388 sqlite3_backup **sqlite3PagerBackupPtr(Pager *pPager){ 7389 return &pPager->pBackup; 7390 } 7391 7392 #ifndef SQLITE_OMIT_VACUUM 7393 /* 7394 ** Unless this is an in-memory or temporary database, clear the pager cache. 7395 */ 7396 void sqlite3PagerClearCache(Pager *pPager){ 7397 assert( MEMDB==0 || pPager->tempFile ); 7398 if( pPager->tempFile==0 ) pager_reset(pPager); 7399 } 7400 #endif 7401 7402 7403 #ifndef SQLITE_OMIT_WAL 7404 /* 7405 ** This function is called when the user invokes "PRAGMA wal_checkpoint", 7406 ** "PRAGMA wal_blocking_checkpoint" or calls the sqlite3_wal_checkpoint() 7407 ** or wal_blocking_checkpoint() API functions. 7408 ** 7409 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 7410 */ 7411 int sqlite3PagerCheckpoint( 7412 Pager *pPager, /* Checkpoint on this pager */ 7413 sqlite3 *db, /* Db handle used to check for interrupts */ 7414 int eMode, /* Type of checkpoint */ 7415 int *pnLog, /* OUT: Final number of frames in log */ 7416 int *pnCkpt /* OUT: Final number of checkpointed frames */ 7417 ){ 7418 int rc = SQLITE_OK; 7419 if( pPager->pWal ){ 7420 rc = sqlite3WalCheckpoint(pPager->pWal, db, eMode, 7421 (eMode==SQLITE_CHECKPOINT_PASSIVE ? 0 : pPager->xBusyHandler), 7422 pPager->pBusyHandlerArg, 7423 pPager->walSyncFlags, pPager->pageSize, (u8 *)pPager->pTmpSpace, 7424 pnLog, pnCkpt 7425 ); 7426 } 7427 return rc; 7428 } 7429 7430 int sqlite3PagerWalCallback(Pager *pPager){ 7431 return sqlite3WalCallback(pPager->pWal); 7432 } 7433 7434 /* 7435 ** Return true if the underlying VFS for the given pager supports the 7436 ** primitives necessary for write-ahead logging. 7437 */ 7438 int sqlite3PagerWalSupported(Pager *pPager){ 7439 const sqlite3_io_methods *pMethods = pPager->fd->pMethods; 7440 if( pPager->noLock ) return 0; 7441 return pPager->exclusiveMode || (pMethods->iVersion>=2 && pMethods->xShmMap); 7442 } 7443 7444 /* 7445 ** Attempt to take an exclusive lock on the database file. If a PENDING lock 7446 ** is obtained instead, immediately release it. 7447 */ 7448 static int pagerExclusiveLock(Pager *pPager){ 7449 int rc; /* Return code */ 7450 7451 assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); 7452 rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); 7453 if( rc!=SQLITE_OK ){ 7454 /* If the attempt to grab the exclusive lock failed, release the 7455 ** pending lock that may have been obtained instead. */ 7456 pagerUnlockDb(pPager, SHARED_LOCK); 7457 } 7458 7459 return rc; 7460 } 7461 7462 /* 7463 ** Call sqlite3WalOpen() to open the WAL handle. If the pager is in 7464 ** exclusive-locking mode when this function is called, take an EXCLUSIVE 7465 ** lock on the database file and use heap-memory to store the wal-index 7466 ** in. Otherwise, use the normal shared-memory. 7467 */ 7468 static int pagerOpenWal(Pager *pPager){ 7469 int rc = SQLITE_OK; 7470 7471 assert( pPager->pWal==0 && pPager->tempFile==0 ); 7472 assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); 7473 7474 /* If the pager is already in exclusive-mode, the WAL module will use 7475 ** heap-memory for the wal-index instead of the VFS shared-memory 7476 ** implementation. Take the exclusive lock now, before opening the WAL 7477 ** file, to make sure this is safe. 7478 */ 7479 if( pPager->exclusiveMode ){ 7480 rc = pagerExclusiveLock(pPager); 7481 } 7482 7483 /* Open the connection to the log file. If this operation fails, 7484 ** (e.g. due to malloc() failure), return an error code. 7485 */ 7486 if( rc==SQLITE_OK ){ 7487 rc = sqlite3WalOpen(pPager->pVfs, 7488 pPager->fd, pPager->zWal, pPager->exclusiveMode, 7489 pPager->journalSizeLimit, &pPager->pWal 7490 ); 7491 } 7492 pagerFixMaplimit(pPager); 7493 7494 return rc; 7495 } 7496 7497 7498 /* 7499 ** The caller must be holding a SHARED lock on the database file to call 7500 ** this function. 7501 ** 7502 ** If the pager passed as the first argument is open on a real database 7503 ** file (not a temp file or an in-memory database), and the WAL file 7504 ** is not already open, make an attempt to open it now. If successful, 7505 ** return SQLITE_OK. If an error occurs or the VFS used by the pager does 7506 ** not support the xShmXXX() methods, return an error code. *pbOpen is 7507 ** not modified in either case. 7508 ** 7509 ** If the pager is open on a temp-file (or in-memory database), or if 7510 ** the WAL file is already open, set *pbOpen to 1 and return SQLITE_OK 7511 ** without doing anything. 7512 */ 7513 int sqlite3PagerOpenWal( 7514 Pager *pPager, /* Pager object */ 7515 int *pbOpen /* OUT: Set to true if call is a no-op */ 7516 ){ 7517 int rc = SQLITE_OK; /* Return code */ 7518 7519 assert( assert_pager_state(pPager) ); 7520 assert( pPager->eState==PAGER_OPEN || pbOpen ); 7521 assert( pPager->eState==PAGER_READER || !pbOpen ); 7522 assert( pbOpen==0 || *pbOpen==0 ); 7523 assert( pbOpen!=0 || (!pPager->tempFile && !pPager->pWal) ); 7524 7525 if( !pPager->tempFile && !pPager->pWal ){ 7526 if( !sqlite3PagerWalSupported(pPager) ) return SQLITE_CANTOPEN; 7527 7528 /* Close any rollback journal previously open */ 7529 sqlite3OsClose(pPager->jfd); 7530 7531 rc = pagerOpenWal(pPager); 7532 if( rc==SQLITE_OK ){ 7533 pPager->journalMode = PAGER_JOURNALMODE_WAL; 7534 pPager->eState = PAGER_OPEN; 7535 } 7536 }else{ 7537 *pbOpen = 1; 7538 } 7539 7540 return rc; 7541 } 7542 7543 /* 7544 ** This function is called to close the connection to the log file prior 7545 ** to switching from WAL to rollback mode. 7546 ** 7547 ** Before closing the log file, this function attempts to take an 7548 ** EXCLUSIVE lock on the database file. If this cannot be obtained, an 7549 ** error (SQLITE_BUSY) is returned and the log connection is not closed. 7550 ** If successful, the EXCLUSIVE lock is not released before returning. 7551 */ 7552 int sqlite3PagerCloseWal(Pager *pPager, sqlite3 *db){ 7553 int rc = SQLITE_OK; 7554 7555 assert( pPager->journalMode==PAGER_JOURNALMODE_WAL ); 7556 7557 /* If the log file is not already open, but does exist in the file-system, 7558 ** it may need to be checkpointed before the connection can switch to 7559 ** rollback mode. Open it now so this can happen. 7560 */ 7561 if( !pPager->pWal ){ 7562 int logexists = 0; 7563 rc = pagerLockDb(pPager, SHARED_LOCK); 7564 if( rc==SQLITE_OK ){ 7565 rc = sqlite3OsAccess( 7566 pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &logexists 7567 ); 7568 } 7569 if( rc==SQLITE_OK && logexists ){ 7570 rc = pagerOpenWal(pPager); 7571 } 7572 } 7573 7574 /* Checkpoint and close the log. Because an EXCLUSIVE lock is held on 7575 ** the database file, the log and log-summary files will be deleted. 7576 */ 7577 if( rc==SQLITE_OK && pPager->pWal ){ 7578 rc = pagerExclusiveLock(pPager); 7579 if( rc==SQLITE_OK ){ 7580 rc = sqlite3WalClose(pPager->pWal, db, pPager->walSyncFlags, 7581 pPager->pageSize, (u8*)pPager->pTmpSpace); 7582 pPager->pWal = 0; 7583 pagerFixMaplimit(pPager); 7584 if( rc && !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK); 7585 } 7586 } 7587 return rc; 7588 } 7589 7590 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 7591 /* 7592 ** If pager pPager is a wal-mode database not in exclusive locking mode, 7593 ** invoke the sqlite3WalWriteLock() function on the associated Wal object 7594 ** with the same db and bLock parameters as were passed to this function. 7595 ** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise. 7596 */ 7597 int sqlite3PagerWalWriteLock(Pager *pPager, int bLock){ 7598 int rc = SQLITE_OK; 7599 if( pagerUseWal(pPager) && pPager->exclusiveMode==0 ){ 7600 rc = sqlite3WalWriteLock(pPager->pWal, bLock); 7601 } 7602 return rc; 7603 } 7604 7605 /* 7606 ** Set the database handle used by the wal layer to determine if 7607 ** blocking locks are required. 7608 */ 7609 void sqlite3PagerWalDb(Pager *pPager, sqlite3 *db){ 7610 if( pagerUseWal(pPager) ){ 7611 sqlite3WalDb(pPager->pWal, db); 7612 } 7613 } 7614 #endif 7615 7616 #ifdef SQLITE_ENABLE_SNAPSHOT 7617 /* 7618 ** If this is a WAL database, obtain a snapshot handle for the snapshot 7619 ** currently open. Otherwise, return an error. 7620 */ 7621 int sqlite3PagerSnapshotGet(Pager *pPager, sqlite3_snapshot **ppSnapshot){ 7622 int rc = SQLITE_ERROR; 7623 if( pPager->pWal ){ 7624 rc = sqlite3WalSnapshotGet(pPager->pWal, ppSnapshot); 7625 } 7626 return rc; 7627 } 7628 7629 /* 7630 ** If this is a WAL database, store a pointer to pSnapshot. Next time a 7631 ** read transaction is opened, attempt to read from the snapshot it 7632 ** identifies. If this is not a WAL database, return an error. 7633 */ 7634 int sqlite3PagerSnapshotOpen( 7635 Pager *pPager, 7636 sqlite3_snapshot *pSnapshot 7637 ){ 7638 int rc = SQLITE_OK; 7639 if( pPager->pWal ){ 7640 sqlite3WalSnapshotOpen(pPager->pWal, pSnapshot); 7641 }else{ 7642 rc = SQLITE_ERROR; 7643 } 7644 return rc; 7645 } 7646 7647 /* 7648 ** If this is a WAL database, call sqlite3WalSnapshotRecover(). If this 7649 ** is not a WAL database, return an error. 7650 */ 7651 int sqlite3PagerSnapshotRecover(Pager *pPager){ 7652 int rc; 7653 if( pPager->pWal ){ 7654 rc = sqlite3WalSnapshotRecover(pPager->pWal); 7655 }else{ 7656 rc = SQLITE_ERROR; 7657 } 7658 return rc; 7659 } 7660 7661 /* 7662 ** The caller currently has a read transaction open on the database. 7663 ** If this is not a WAL database, SQLITE_ERROR is returned. Otherwise, 7664 ** this function takes a SHARED lock on the CHECKPOINTER slot and then 7665 ** checks if the snapshot passed as the second argument is still 7666 ** available. If so, SQLITE_OK is returned. 7667 ** 7668 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if 7669 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error 7670 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER 7671 ** lock is released before returning. 7672 */ 7673 int sqlite3PagerSnapshotCheck(Pager *pPager, sqlite3_snapshot *pSnapshot){ 7674 int rc; 7675 if( pPager->pWal ){ 7676 rc = sqlite3WalSnapshotCheck(pPager->pWal, pSnapshot); 7677 }else{ 7678 rc = SQLITE_ERROR; 7679 } 7680 return rc; 7681 } 7682 7683 /* 7684 ** Release a lock obtained by an earlier successful call to 7685 ** sqlite3PagerSnapshotCheck(). 7686 */ 7687 void sqlite3PagerSnapshotUnlock(Pager *pPager){ 7688 assert( pPager->pWal ); 7689 sqlite3WalSnapshotUnlock(pPager->pWal); 7690 } 7691 7692 #endif /* SQLITE_ENABLE_SNAPSHOT */ 7693 #endif /* !SQLITE_OMIT_WAL */ 7694 7695 #ifdef SQLITE_ENABLE_ZIPVFS 7696 /* 7697 ** A read-lock must be held on the pager when this function is called. If 7698 ** the pager is in WAL mode and the WAL file currently contains one or more 7699 ** frames, return the size in bytes of the page images stored within the 7700 ** WAL frames. Otherwise, if this is not a WAL database or the WAL file 7701 ** is empty, return 0. 7702 */ 7703 int sqlite3PagerWalFramesize(Pager *pPager){ 7704 assert( pPager->eState>=PAGER_READER ); 7705 return sqlite3WalFramesize(pPager->pWal); 7706 } 7707 #endif 7708 7709 #endif /* SQLITE_OMIT_DISKIO */ 7710