1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This is the implementation of the page cache subsystem or "pager". 13 ** 14 ** The pager is used to access a database disk file. It implements 15 ** atomic commit and rollback through the use of a journal file that 16 ** is separate from the database file. The pager also implements file 17 ** locking to prevent two processes from writing the same database 18 ** file simultaneously, or one process from reading the database while 19 ** another is writing. 20 */ 21 #ifndef SQLITE_OMIT_DISKIO 22 #include "sqliteInt.h" 23 #include "wal.h" 24 25 26 /******************* NOTES ON THE DESIGN OF THE PAGER ************************ 27 ** 28 ** This comment block describes invariants that hold when using a rollback 29 ** journal. These invariants do not apply for journal_mode=WAL, 30 ** journal_mode=MEMORY, or journal_mode=OFF. 31 ** 32 ** Within this comment block, a page is deemed to have been synced 33 ** automatically as soon as it is written when PRAGMA synchronous=OFF. 34 ** Otherwise, the page is not synced until the xSync method of the VFS 35 ** is called successfully on the file containing the page. 36 ** 37 ** Definition: A page of the database file is said to be "overwriteable" if 38 ** one or more of the following are true about the page: 39 ** 40 ** (a) The original content of the page as it was at the beginning of 41 ** the transaction has been written into the rollback journal and 42 ** synced. 43 ** 44 ** (b) The page was a freelist leaf page at the start of the transaction. 45 ** 46 ** (c) The page number is greater than the largest page that existed in 47 ** the database file at the start of the transaction. 48 ** 49 ** (1) A page of the database file is never overwritten unless one of the 50 ** following are true: 51 ** 52 ** (a) The page and all other pages on the same sector are overwriteable. 53 ** 54 ** (b) The atomic page write optimization is enabled, and the entire 55 ** transaction other than the update of the transaction sequence 56 ** number consists of a single page change. 57 ** 58 ** (2) The content of a page written into the rollback journal exactly matches 59 ** both the content in the database when the rollback journal was written 60 ** and the content in the database at the beginning of the current 61 ** transaction. 62 ** 63 ** (3) Writes to the database file are an integer multiple of the page size 64 ** in length and are aligned on a page boundary. 65 ** 66 ** (4) Reads from the database file are either aligned on a page boundary and 67 ** an integer multiple of the page size in length or are taken from the 68 ** first 100 bytes of the database file. 69 ** 70 ** (5) All writes to the database file are synced prior to the rollback journal 71 ** being deleted, truncated, or zeroed. 72 ** 73 ** (6) If a super-journal file is used, then all writes to the database file 74 ** are synced prior to the super-journal being deleted. 75 ** 76 ** Definition: Two databases (or the same database at two points it time) 77 ** are said to be "logically equivalent" if they give the same answer to 78 ** all queries. Note in particular the content of freelist leaf 79 ** pages can be changed arbitrarily without affecting the logical equivalence 80 ** of the database. 81 ** 82 ** (7) At any time, if any subset, including the empty set and the total set, 83 ** of the unsynced changes to a rollback journal are removed and the 84 ** journal is rolled back, the resulting database file will be logically 85 ** equivalent to the database file at the beginning of the transaction. 86 ** 87 ** (8) When a transaction is rolled back, the xTruncate method of the VFS 88 ** is called to restore the database file to the same size it was at 89 ** the beginning of the transaction. (In some VFSes, the xTruncate 90 ** method is a no-op, but that does not change the fact the SQLite will 91 ** invoke it.) 92 ** 93 ** (9) Whenever the database file is modified, at least one bit in the range 94 ** of bytes from 24 through 39 inclusive will be changed prior to releasing 95 ** the EXCLUSIVE lock, thus signaling other connections on the same 96 ** database to flush their caches. 97 ** 98 ** (10) The pattern of bits in bytes 24 through 39 shall not repeat in less 99 ** than one billion transactions. 100 ** 101 ** (11) A database file is well-formed at the beginning and at the conclusion 102 ** of every transaction. 103 ** 104 ** (12) An EXCLUSIVE lock is held on the database file when writing to 105 ** the database file. 106 ** 107 ** (13) A SHARED lock is held on the database file while reading any 108 ** content out of the database file. 109 ** 110 ******************************************************************************/ 111 112 /* 113 ** Macros for troubleshooting. Normally turned off 114 */ 115 #if 0 116 int sqlite3PagerTrace=1; /* True to enable tracing */ 117 #define sqlite3DebugPrintf printf 118 #define PAGERTRACE(X) if( sqlite3PagerTrace ){ sqlite3DebugPrintf X; } 119 #else 120 #define PAGERTRACE(X) 121 #endif 122 123 /* 124 ** The following two macros are used within the PAGERTRACE() macros above 125 ** to print out file-descriptors. 126 ** 127 ** PAGERID() takes a pointer to a Pager struct as its argument. The 128 ** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file 129 ** struct as its argument. 130 */ 131 #define PAGERID(p) (SQLITE_PTR_TO_INT(p->fd)) 132 #define FILEHANDLEID(fd) (SQLITE_PTR_TO_INT(fd)) 133 134 /* 135 ** The Pager.eState variable stores the current 'state' of a pager. A 136 ** pager may be in any one of the seven states shown in the following 137 ** state diagram. 138 ** 139 ** OPEN <------+------+ 140 ** | | | 141 ** V | | 142 ** +---------> READER-------+ | 143 ** | | | 144 ** | V | 145 ** |<-------WRITER_LOCKED------> ERROR 146 ** | | ^ 147 ** | V | 148 ** |<------WRITER_CACHEMOD-------->| 149 ** | | | 150 ** | V | 151 ** |<-------WRITER_DBMOD---------->| 152 ** | | | 153 ** | V | 154 ** +<------WRITER_FINISHED-------->+ 155 ** 156 ** 157 ** List of state transitions and the C [function] that performs each: 158 ** 159 ** OPEN -> READER [sqlite3PagerSharedLock] 160 ** READER -> OPEN [pager_unlock] 161 ** 162 ** READER -> WRITER_LOCKED [sqlite3PagerBegin] 163 ** WRITER_LOCKED -> WRITER_CACHEMOD [pager_open_journal] 164 ** WRITER_CACHEMOD -> WRITER_DBMOD [syncJournal] 165 ** WRITER_DBMOD -> WRITER_FINISHED [sqlite3PagerCommitPhaseOne] 166 ** WRITER_*** -> READER [pager_end_transaction] 167 ** 168 ** WRITER_*** -> ERROR [pager_error] 169 ** ERROR -> OPEN [pager_unlock] 170 ** 171 ** 172 ** OPEN: 173 ** 174 ** The pager starts up in this state. Nothing is guaranteed in this 175 ** state - the file may or may not be locked and the database size is 176 ** unknown. The database may not be read or written. 177 ** 178 ** * No read or write transaction is active. 179 ** * Any lock, or no lock at all, may be held on the database file. 180 ** * The dbSize, dbOrigSize and dbFileSize variables may not be trusted. 181 ** 182 ** READER: 183 ** 184 ** In this state all the requirements for reading the database in 185 ** rollback (non-WAL) mode are met. Unless the pager is (or recently 186 ** was) in exclusive-locking mode, a user-level read transaction is 187 ** open. The database size is known in this state. 188 ** 189 ** A connection running with locking_mode=normal enters this state when 190 ** it opens a read-transaction on the database and returns to state 191 ** OPEN after the read-transaction is completed. However a connection 192 ** running in locking_mode=exclusive (including temp databases) remains in 193 ** this state even after the read-transaction is closed. The only way 194 ** a locking_mode=exclusive connection can transition from READER to OPEN 195 ** is via the ERROR state (see below). 196 ** 197 ** * A read transaction may be active (but a write-transaction cannot). 198 ** * A SHARED or greater lock is held on the database file. 199 ** * The dbSize variable may be trusted (even if a user-level read 200 ** transaction is not active). The dbOrigSize and dbFileSize variables 201 ** may not be trusted at this point. 202 ** * If the database is a WAL database, then the WAL connection is open. 203 ** * Even if a read-transaction is not open, it is guaranteed that 204 ** there is no hot-journal in the file-system. 205 ** 206 ** WRITER_LOCKED: 207 ** 208 ** The pager moves to this state from READER when a write-transaction 209 ** is first opened on the database. In WRITER_LOCKED state, all locks 210 ** required to start a write-transaction are held, but no actual 211 ** modifications to the cache or database have taken place. 212 ** 213 ** In rollback mode, a RESERVED or (if the transaction was opened with 214 ** BEGIN EXCLUSIVE) EXCLUSIVE lock is obtained on the database file when 215 ** moving to this state, but the journal file is not written to or opened 216 ** to in this state. If the transaction is committed or rolled back while 217 ** in WRITER_LOCKED state, all that is required is to unlock the database 218 ** file. 219 ** 220 ** IN WAL mode, WalBeginWriteTransaction() is called to lock the log file. 221 ** If the connection is running with locking_mode=exclusive, an attempt 222 ** is made to obtain an EXCLUSIVE lock on the database file. 223 ** 224 ** * A write transaction is active. 225 ** * If the connection is open in rollback-mode, a RESERVED or greater 226 ** lock is held on the database file. 227 ** * If the connection is open in WAL-mode, a WAL write transaction 228 ** is open (i.e. sqlite3WalBeginWriteTransaction() has been successfully 229 ** called). 230 ** * The dbSize, dbOrigSize and dbFileSize variables are all valid. 231 ** * The contents of the pager cache have not been modified. 232 ** * The journal file may or may not be open. 233 ** * Nothing (not even the first header) has been written to the journal. 234 ** 235 ** WRITER_CACHEMOD: 236 ** 237 ** A pager moves from WRITER_LOCKED state to this state when a page is 238 ** first modified by the upper layer. In rollback mode the journal file 239 ** is opened (if it is not already open) and a header written to the 240 ** start of it. The database file on disk has not been modified. 241 ** 242 ** * A write transaction is active. 243 ** * A RESERVED or greater lock is held on the database file. 244 ** * The journal file is open and the first header has been written 245 ** to it, but the header has not been synced to disk. 246 ** * The contents of the page cache have been modified. 247 ** 248 ** WRITER_DBMOD: 249 ** 250 ** The pager transitions from WRITER_CACHEMOD into WRITER_DBMOD state 251 ** when it modifies the contents of the database file. WAL connections 252 ** never enter this state (since they do not modify the database file, 253 ** just the log file). 254 ** 255 ** * A write transaction is active. 256 ** * An EXCLUSIVE or greater lock is held on the database file. 257 ** * The journal file is open and the first header has been written 258 ** and synced to disk. 259 ** * The contents of the page cache have been modified (and possibly 260 ** written to disk). 261 ** 262 ** WRITER_FINISHED: 263 ** 264 ** It is not possible for a WAL connection to enter this state. 265 ** 266 ** A rollback-mode pager changes to WRITER_FINISHED state from WRITER_DBMOD 267 ** state after the entire transaction has been successfully written into the 268 ** database file. In this state the transaction may be committed simply 269 ** by finalizing the journal file. Once in WRITER_FINISHED state, it is 270 ** not possible to modify the database further. At this point, the upper 271 ** layer must either commit or rollback the transaction. 272 ** 273 ** * A write transaction is active. 274 ** * An EXCLUSIVE or greater lock is held on the database file. 275 ** * All writing and syncing of journal and database data has finished. 276 ** If no error occurred, all that remains is to finalize the journal to 277 ** commit the transaction. If an error did occur, the caller will need 278 ** to rollback the transaction. 279 ** 280 ** ERROR: 281 ** 282 ** The ERROR state is entered when an IO or disk-full error (including 283 ** SQLITE_IOERR_NOMEM) occurs at a point in the code that makes it 284 ** difficult to be sure that the in-memory pager state (cache contents, 285 ** db size etc.) are consistent with the contents of the file-system. 286 ** 287 ** Temporary pager files may enter the ERROR state, but in-memory pagers 288 ** cannot. 289 ** 290 ** For example, if an IO error occurs while performing a rollback, 291 ** the contents of the page-cache may be left in an inconsistent state. 292 ** At this point it would be dangerous to change back to READER state 293 ** (as usually happens after a rollback). Any subsequent readers might 294 ** report database corruption (due to the inconsistent cache), and if 295 ** they upgrade to writers, they may inadvertently corrupt the database 296 ** file. To avoid this hazard, the pager switches into the ERROR state 297 ** instead of READER following such an error. 298 ** 299 ** Once it has entered the ERROR state, any attempt to use the pager 300 ** to read or write data returns an error. Eventually, once all 301 ** outstanding transactions have been abandoned, the pager is able to 302 ** transition back to OPEN state, discarding the contents of the 303 ** page-cache and any other in-memory state at the same time. Everything 304 ** is reloaded from disk (and, if necessary, hot-journal rollback peformed) 305 ** when a read-transaction is next opened on the pager (transitioning 306 ** the pager into READER state). At that point the system has recovered 307 ** from the error. 308 ** 309 ** Specifically, the pager jumps into the ERROR state if: 310 ** 311 ** 1. An error occurs while attempting a rollback. This happens in 312 ** function sqlite3PagerRollback(). 313 ** 314 ** 2. An error occurs while attempting to finalize a journal file 315 ** following a commit in function sqlite3PagerCommitPhaseTwo(). 316 ** 317 ** 3. An error occurs while attempting to write to the journal or 318 ** database file in function pagerStress() in order to free up 319 ** memory. 320 ** 321 ** In other cases, the error is returned to the b-tree layer. The b-tree 322 ** layer then attempts a rollback operation. If the error condition 323 ** persists, the pager enters the ERROR state via condition (1) above. 324 ** 325 ** Condition (3) is necessary because it can be triggered by a read-only 326 ** statement executed within a transaction. In this case, if the error 327 ** code were simply returned to the user, the b-tree layer would not 328 ** automatically attempt a rollback, as it assumes that an error in a 329 ** read-only statement cannot leave the pager in an internally inconsistent 330 ** state. 331 ** 332 ** * The Pager.errCode variable is set to something other than SQLITE_OK. 333 ** * There are one or more outstanding references to pages (after the 334 ** last reference is dropped the pager should move back to OPEN state). 335 ** * The pager is not an in-memory pager. 336 ** 337 ** 338 ** Notes: 339 ** 340 ** * A pager is never in WRITER_DBMOD or WRITER_FINISHED state if the 341 ** connection is open in WAL mode. A WAL connection is always in one 342 ** of the first four states. 343 ** 344 ** * Normally, a connection open in exclusive mode is never in PAGER_OPEN 345 ** state. There are two exceptions: immediately after exclusive-mode has 346 ** been turned on (and before any read or write transactions are 347 ** executed), and when the pager is leaving the "error state". 348 ** 349 ** * See also: assert_pager_state(). 350 */ 351 #define PAGER_OPEN 0 352 #define PAGER_READER 1 353 #define PAGER_WRITER_LOCKED 2 354 #define PAGER_WRITER_CACHEMOD 3 355 #define PAGER_WRITER_DBMOD 4 356 #define PAGER_WRITER_FINISHED 5 357 #define PAGER_ERROR 6 358 359 /* 360 ** The Pager.eLock variable is almost always set to one of the 361 ** following locking-states, according to the lock currently held on 362 ** the database file: NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. 363 ** This variable is kept up to date as locks are taken and released by 364 ** the pagerLockDb() and pagerUnlockDb() wrappers. 365 ** 366 ** If the VFS xLock() or xUnlock() returns an error other than SQLITE_BUSY 367 ** (i.e. one of the SQLITE_IOERR subtypes), it is not clear whether or not 368 ** the operation was successful. In these circumstances pagerLockDb() and 369 ** pagerUnlockDb() take a conservative approach - eLock is always updated 370 ** when unlocking the file, and only updated when locking the file if the 371 ** VFS call is successful. This way, the Pager.eLock variable may be set 372 ** to a less exclusive (lower) value than the lock that is actually held 373 ** at the system level, but it is never set to a more exclusive value. 374 ** 375 ** This is usually safe. If an xUnlock fails or appears to fail, there may 376 ** be a few redundant xLock() calls or a lock may be held for longer than 377 ** required, but nothing really goes wrong. 378 ** 379 ** The exception is when the database file is unlocked as the pager moves 380 ** from ERROR to OPEN state. At this point there may be a hot-journal file 381 ** in the file-system that needs to be rolled back (as part of an OPEN->SHARED 382 ** transition, by the same pager or any other). If the call to xUnlock() 383 ** fails at this point and the pager is left holding an EXCLUSIVE lock, this 384 ** can confuse the call to xCheckReservedLock() call made later as part 385 ** of hot-journal detection. 386 ** 387 ** xCheckReservedLock() is defined as returning true "if there is a RESERVED 388 ** lock held by this process or any others". So xCheckReservedLock may 389 ** return true because the caller itself is holding an EXCLUSIVE lock (but 390 ** doesn't know it because of a previous error in xUnlock). If this happens 391 ** a hot-journal may be mistaken for a journal being created by an active 392 ** transaction in another process, causing SQLite to read from the database 393 ** without rolling it back. 394 ** 395 ** To work around this, if a call to xUnlock() fails when unlocking the 396 ** database in the ERROR state, Pager.eLock is set to UNKNOWN_LOCK. It 397 ** is only changed back to a real locking state after a successful call 398 ** to xLock(EXCLUSIVE). Also, the code to do the OPEN->SHARED state transition 399 ** omits the check for a hot-journal if Pager.eLock is set to UNKNOWN_LOCK 400 ** lock. Instead, it assumes a hot-journal exists and obtains an EXCLUSIVE 401 ** lock on the database file before attempting to roll it back. See function 402 ** PagerSharedLock() for more detail. 403 ** 404 ** Pager.eLock may only be set to UNKNOWN_LOCK when the pager is in 405 ** PAGER_OPEN state. 406 */ 407 #define UNKNOWN_LOCK (EXCLUSIVE_LOCK+1) 408 409 /* 410 ** The maximum allowed sector size. 64KiB. If the xSectorsize() method 411 ** returns a value larger than this, then MAX_SECTOR_SIZE is used instead. 412 ** This could conceivably cause corruption following a power failure on 413 ** such a system. This is currently an undocumented limit. 414 */ 415 #define MAX_SECTOR_SIZE 0x10000 416 417 418 /* 419 ** An instance of the following structure is allocated for each active 420 ** savepoint and statement transaction in the system. All such structures 421 ** are stored in the Pager.aSavepoint[] array, which is allocated and 422 ** resized using sqlite3Realloc(). 423 ** 424 ** When a savepoint is created, the PagerSavepoint.iHdrOffset field is 425 ** set to 0. If a journal-header is written into the main journal while 426 ** the savepoint is active, then iHdrOffset is set to the byte offset 427 ** immediately following the last journal record written into the main 428 ** journal before the journal-header. This is required during savepoint 429 ** rollback (see pagerPlaybackSavepoint()). 430 */ 431 typedef struct PagerSavepoint PagerSavepoint; 432 struct PagerSavepoint { 433 i64 iOffset; /* Starting offset in main journal */ 434 i64 iHdrOffset; /* See above */ 435 Bitvec *pInSavepoint; /* Set of pages in this savepoint */ 436 Pgno nOrig; /* Original number of pages in file */ 437 Pgno iSubRec; /* Index of first record in sub-journal */ 438 #ifndef SQLITE_OMIT_WAL 439 u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */ 440 #endif 441 }; 442 443 /* 444 ** Bits of the Pager.doNotSpill flag. See further description below. 445 */ 446 #define SPILLFLAG_OFF 0x01 /* Never spill cache. Set via pragma */ 447 #define SPILLFLAG_ROLLBACK 0x02 /* Current rolling back, so do not spill */ 448 #define SPILLFLAG_NOSYNC 0x04 /* Spill is ok, but do not sync */ 449 450 /* 451 ** An open page cache is an instance of struct Pager. A description of 452 ** some of the more important member variables follows: 453 ** 454 ** eState 455 ** 456 ** The current 'state' of the pager object. See the comment and state 457 ** diagram above for a description of the pager state. 458 ** 459 ** eLock 460 ** 461 ** For a real on-disk database, the current lock held on the database file - 462 ** NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. 463 ** 464 ** For a temporary or in-memory database (neither of which require any 465 ** locks), this variable is always set to EXCLUSIVE_LOCK. Since such 466 ** databases always have Pager.exclusiveMode==1, this tricks the pager 467 ** logic into thinking that it already has all the locks it will ever 468 ** need (and no reason to release them). 469 ** 470 ** In some (obscure) circumstances, this variable may also be set to 471 ** UNKNOWN_LOCK. See the comment above the #define of UNKNOWN_LOCK for 472 ** details. 473 ** 474 ** changeCountDone 475 ** 476 ** This boolean variable is used to make sure that the change-counter 477 ** (the 4-byte header field at byte offset 24 of the database file) is 478 ** not updated more often than necessary. 479 ** 480 ** It is set to true when the change-counter field is updated, which 481 ** can only happen if an exclusive lock is held on the database file. 482 ** It is cleared (set to false) whenever an exclusive lock is 483 ** relinquished on the database file. Each time a transaction is committed, 484 ** The changeCountDone flag is inspected. If it is true, the work of 485 ** updating the change-counter is omitted for the current transaction. 486 ** 487 ** This mechanism means that when running in exclusive mode, a connection 488 ** need only update the change-counter once, for the first transaction 489 ** committed. 490 ** 491 ** setSuper 492 ** 493 ** When PagerCommitPhaseOne() is called to commit a transaction, it may 494 ** (or may not) specify a super-journal name to be written into the 495 ** journal file before it is synced to disk. 496 ** 497 ** Whether or not a journal file contains a super-journal pointer affects 498 ** the way in which the journal file is finalized after the transaction is 499 ** committed or rolled back when running in "journal_mode=PERSIST" mode. 500 ** If a journal file does not contain a super-journal pointer, it is 501 ** finalized by overwriting the first journal header with zeroes. If 502 ** it does contain a super-journal pointer the journal file is finalized 503 ** by truncating it to zero bytes, just as if the connection were 504 ** running in "journal_mode=truncate" mode. 505 ** 506 ** Journal files that contain super-journal pointers cannot be finalized 507 ** simply by overwriting the first journal-header with zeroes, as the 508 ** super-journal pointer could interfere with hot-journal rollback of any 509 ** subsequently interrupted transaction that reuses the journal file. 510 ** 511 ** The flag is cleared as soon as the journal file is finalized (either 512 ** by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the 513 ** journal file from being successfully finalized, the setSuper flag 514 ** is cleared anyway (and the pager will move to ERROR state). 515 ** 516 ** doNotSpill 517 ** 518 ** This variables control the behavior of cache-spills (calls made by 519 ** the pcache module to the pagerStress() routine to write cached data 520 ** to the file-system in order to free up memory). 521 ** 522 ** When bits SPILLFLAG_OFF or SPILLFLAG_ROLLBACK of doNotSpill are set, 523 ** writing to the database from pagerStress() is disabled altogether. 524 ** The SPILLFLAG_ROLLBACK case is done in a very obscure case that 525 ** comes up during savepoint rollback that requires the pcache module 526 ** to allocate a new page to prevent the journal file from being written 527 ** while it is being traversed by code in pager_playback(). The SPILLFLAG_OFF 528 ** case is a user preference. 529 ** 530 ** If the SPILLFLAG_NOSYNC bit is set, writing to the database from 531 ** pagerStress() is permitted, but syncing the journal file is not. 532 ** This flag is set by sqlite3PagerWrite() when the file-system sector-size 533 ** is larger than the database page-size in order to prevent a journal sync 534 ** from happening in between the journalling of two pages on the same sector. 535 ** 536 ** subjInMemory 537 ** 538 ** This is a boolean variable. If true, then any required sub-journal 539 ** is opened as an in-memory journal file. If false, then in-memory 540 ** sub-journals are only used for in-memory pager files. 541 ** 542 ** This variable is updated by the upper layer each time a new 543 ** write-transaction is opened. 544 ** 545 ** dbSize, dbOrigSize, dbFileSize 546 ** 547 ** Variable dbSize is set to the number of pages in the database file. 548 ** It is valid in PAGER_READER and higher states (all states except for 549 ** OPEN and ERROR). 550 ** 551 ** dbSize is set based on the size of the database file, which may be 552 ** larger than the size of the database (the value stored at offset 553 ** 28 of the database header by the btree). If the size of the file 554 ** is not an integer multiple of the page-size, the value stored in 555 ** dbSize is rounded down (i.e. a 5KB file with 2K page-size has dbSize==2). 556 ** Except, any file that is greater than 0 bytes in size is considered 557 ** to have at least one page. (i.e. a 1KB file with 2K page-size leads 558 ** to dbSize==1). 559 ** 560 ** During a write-transaction, if pages with page-numbers greater than 561 ** dbSize are modified in the cache, dbSize is updated accordingly. 562 ** Similarly, if the database is truncated using PagerTruncateImage(), 563 ** dbSize is updated. 564 ** 565 ** Variables dbOrigSize and dbFileSize are valid in states 566 ** PAGER_WRITER_LOCKED and higher. dbOrigSize is a copy of the dbSize 567 ** variable at the start of the transaction. It is used during rollback, 568 ** and to determine whether or not pages need to be journalled before 569 ** being modified. 570 ** 571 ** Throughout a write-transaction, dbFileSize contains the size of 572 ** the file on disk in pages. It is set to a copy of dbSize when the 573 ** write-transaction is first opened, and updated when VFS calls are made 574 ** to write or truncate the database file on disk. 575 ** 576 ** The only reason the dbFileSize variable is required is to suppress 577 ** unnecessary calls to xTruncate() after committing a transaction. If, 578 ** when a transaction is committed, the dbFileSize variable indicates 579 ** that the database file is larger than the database image (Pager.dbSize), 580 ** pager_truncate() is called. The pager_truncate() call uses xFilesize() 581 ** to measure the database file on disk, and then truncates it if required. 582 ** dbFileSize is not used when rolling back a transaction. In this case 583 ** pager_truncate() is called unconditionally (which means there may be 584 ** a call to xFilesize() that is not strictly required). In either case, 585 ** pager_truncate() may cause the file to become smaller or larger. 586 ** 587 ** dbHintSize 588 ** 589 ** The dbHintSize variable is used to limit the number of calls made to 590 ** the VFS xFileControl(FCNTL_SIZE_HINT) method. 591 ** 592 ** dbHintSize is set to a copy of the dbSize variable when a 593 ** write-transaction is opened (at the same time as dbFileSize and 594 ** dbOrigSize). If the xFileControl(FCNTL_SIZE_HINT) method is called, 595 ** dbHintSize is increased to the number of pages that correspond to the 596 ** size-hint passed to the method call. See pager_write_pagelist() for 597 ** details. 598 ** 599 ** errCode 600 ** 601 ** The Pager.errCode variable is only ever used in PAGER_ERROR state. It 602 ** is set to zero in all other states. In PAGER_ERROR state, Pager.errCode 603 ** is always set to SQLITE_FULL, SQLITE_IOERR or one of the SQLITE_IOERR_XXX 604 ** sub-codes. 605 ** 606 ** syncFlags, walSyncFlags 607 ** 608 ** syncFlags is either SQLITE_SYNC_NORMAL (0x02) or SQLITE_SYNC_FULL (0x03). 609 ** syncFlags is used for rollback mode. walSyncFlags is used for WAL mode 610 ** and contains the flags used to sync the checkpoint operations in the 611 ** lower two bits, and sync flags used for transaction commits in the WAL 612 ** file in bits 0x04 and 0x08. In other words, to get the correct sync flags 613 ** for checkpoint operations, use (walSyncFlags&0x03) and to get the correct 614 ** sync flags for transaction commit, use ((walSyncFlags>>2)&0x03). Note 615 ** that with synchronous=NORMAL in WAL mode, transaction commit is not synced 616 ** meaning that the 0x04 and 0x08 bits are both zero. 617 */ 618 struct Pager { 619 sqlite3_vfs *pVfs; /* OS functions to use for IO */ 620 u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */ 621 u8 journalMode; /* One of the PAGER_JOURNALMODE_* values */ 622 u8 useJournal; /* Use a rollback journal on this file */ 623 u8 noSync; /* Do not sync the journal if true */ 624 u8 fullSync; /* Do extra syncs of the journal for robustness */ 625 u8 extraSync; /* sync directory after journal delete */ 626 u8 syncFlags; /* SYNC_NORMAL or SYNC_FULL otherwise */ 627 u8 walSyncFlags; /* See description above */ 628 u8 tempFile; /* zFilename is a temporary or immutable file */ 629 u8 noLock; /* Do not lock (except in WAL mode) */ 630 u8 readOnly; /* True for a read-only database */ 631 u8 memDb; /* True to inhibit all file I/O */ 632 633 /************************************************************************** 634 ** The following block contains those class members that change during 635 ** routine operation. Class members not in this block are either fixed 636 ** when the pager is first created or else only change when there is a 637 ** significant mode change (such as changing the page_size, locking_mode, 638 ** or the journal_mode). From another view, these class members describe 639 ** the "state" of the pager, while other class members describe the 640 ** "configuration" of the pager. 641 */ 642 u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */ 643 u8 eLock; /* Current lock held on database file */ 644 u8 changeCountDone; /* Set after incrementing the change-counter */ 645 u8 setSuper; /* Super-jrnl name is written into jrnl */ 646 u8 doNotSpill; /* Do not spill the cache when non-zero */ 647 u8 subjInMemory; /* True to use in-memory sub-journals */ 648 u8 bUseFetch; /* True to use xFetch() */ 649 u8 hasHeldSharedLock; /* True if a shared lock has ever been held */ 650 Pgno dbSize; /* Number of pages in the database */ 651 Pgno dbOrigSize; /* dbSize before the current transaction */ 652 Pgno dbFileSize; /* Number of pages in the database file */ 653 Pgno dbHintSize; /* Value passed to FCNTL_SIZE_HINT call */ 654 int errCode; /* One of several kinds of errors */ 655 int nRec; /* Pages journalled since last j-header written */ 656 u32 cksumInit; /* Quasi-random value added to every checksum */ 657 u32 nSubRec; /* Number of records written to sub-journal */ 658 Bitvec *pInJournal; /* One bit for each page in the database file */ 659 sqlite3_file *fd; /* File descriptor for database */ 660 sqlite3_file *jfd; /* File descriptor for main journal */ 661 sqlite3_file *sjfd; /* File descriptor for sub-journal */ 662 i64 journalOff; /* Current write offset in the journal file */ 663 i64 journalHdr; /* Byte offset to previous journal header */ 664 sqlite3_backup *pBackup; /* Pointer to list of ongoing backup processes */ 665 PagerSavepoint *aSavepoint; /* Array of active savepoints */ 666 int nSavepoint; /* Number of elements in aSavepoint[] */ 667 u32 iDataVersion; /* Changes whenever database content changes */ 668 char dbFileVers[16]; /* Changes whenever database file changes */ 669 670 int nMmapOut; /* Number of mmap pages currently outstanding */ 671 sqlite3_int64 szMmap; /* Desired maximum mmap size */ 672 PgHdr *pMmapFreelist; /* List of free mmap page headers (pDirty) */ 673 /* 674 ** End of the routinely-changing class members 675 ***************************************************************************/ 676 677 u16 nExtra; /* Add this many bytes to each in-memory page */ 678 i16 nReserve; /* Number of unused bytes at end of each page */ 679 u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */ 680 u32 sectorSize; /* Assumed sector size during rollback */ 681 int pageSize; /* Number of bytes in a page */ 682 Pgno mxPgno; /* Maximum allowed size of the database */ 683 i64 journalSizeLimit; /* Size limit for persistent journal files */ 684 char *zFilename; /* Name of the database file */ 685 char *zJournal; /* Name of the journal file */ 686 int (*xBusyHandler)(void*); /* Function to call when busy */ 687 void *pBusyHandlerArg; /* Context argument for xBusyHandler */ 688 int aStat[4]; /* Total cache hits, misses, writes, spills */ 689 #ifdef SQLITE_TEST 690 int nRead; /* Database pages read */ 691 #endif 692 void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */ 693 int (*xGet)(Pager*,Pgno,DbPage**,int); /* Routine to fetch a patch */ 694 char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */ 695 PCache *pPCache; /* Pointer to page cache object */ 696 #ifndef SQLITE_OMIT_WAL 697 Wal *pWal; /* Write-ahead log used by "journal_mode=wal" */ 698 char *zWal; /* File name for write-ahead log */ 699 #endif 700 }; 701 702 /* 703 ** Indexes for use with Pager.aStat[]. The Pager.aStat[] array contains 704 ** the values accessed by passing SQLITE_DBSTATUS_CACHE_HIT, CACHE_MISS 705 ** or CACHE_WRITE to sqlite3_db_status(). 706 */ 707 #define PAGER_STAT_HIT 0 708 #define PAGER_STAT_MISS 1 709 #define PAGER_STAT_WRITE 2 710 #define PAGER_STAT_SPILL 3 711 712 /* 713 ** The following global variables hold counters used for 714 ** testing purposes only. These variables do not exist in 715 ** a non-testing build. These variables are not thread-safe. 716 */ 717 #ifdef SQLITE_TEST 718 int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */ 719 int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */ 720 int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */ 721 # define PAGER_INCR(v) v++ 722 #else 723 # define PAGER_INCR(v) 724 #endif 725 726 727 728 /* 729 ** Journal files begin with the following magic string. The data 730 ** was obtained from /dev/random. It is used only as a sanity check. 731 ** 732 ** Since version 2.8.0, the journal format contains additional sanity 733 ** checking information. If the power fails while the journal is being 734 ** written, semi-random garbage data might appear in the journal 735 ** file after power is restored. If an attempt is then made 736 ** to roll the journal back, the database could be corrupted. The additional 737 ** sanity checking data is an attempt to discover the garbage in the 738 ** journal and ignore it. 739 ** 740 ** The sanity checking information for the new journal format consists 741 ** of a 32-bit checksum on each page of data. The checksum covers both 742 ** the page number and the pPager->pageSize bytes of data for the page. 743 ** This cksum is initialized to a 32-bit random value that appears in the 744 ** journal file right after the header. The random initializer is important, 745 ** because garbage data that appears at the end of a journal is likely 746 ** data that was once in other files that have now been deleted. If the 747 ** garbage data came from an obsolete journal file, the checksums might 748 ** be correct. But by initializing the checksum to random value which 749 ** is different for every journal, we minimize that risk. 750 */ 751 static const unsigned char aJournalMagic[] = { 752 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7, 753 }; 754 755 /* 756 ** The size of the of each page record in the journal is given by 757 ** the following macro. 758 */ 759 #define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8) 760 761 /* 762 ** The journal header size for this pager. This is usually the same 763 ** size as a single disk sector. See also setSectorSize(). 764 */ 765 #define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize) 766 767 /* 768 ** The macro MEMDB is true if we are dealing with an in-memory database. 769 ** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set, 770 ** the value of MEMDB will be a constant and the compiler will optimize 771 ** out code that would never execute. 772 */ 773 #ifdef SQLITE_OMIT_MEMORYDB 774 # define MEMDB 0 775 #else 776 # define MEMDB pPager->memDb 777 #endif 778 779 /* 780 ** The macro USEFETCH is true if we are allowed to use the xFetch and xUnfetch 781 ** interfaces to access the database using memory-mapped I/O. 782 */ 783 #if SQLITE_MAX_MMAP_SIZE>0 784 # define USEFETCH(x) ((x)->bUseFetch) 785 #else 786 # define USEFETCH(x) 0 787 #endif 788 789 /* 790 ** The argument to this macro is a file descriptor (type sqlite3_file*). 791 ** Return 0 if it is not open, or non-zero (but not 1) if it is. 792 ** 793 ** This is so that expressions can be written as: 794 ** 795 ** if( isOpen(pPager->jfd) ){ ... 796 ** 797 ** instead of 798 ** 799 ** if( pPager->jfd->pMethods ){ ... 800 */ 801 #define isOpen(pFd) ((pFd)->pMethods!=0) 802 803 #ifdef SQLITE_DIRECT_OVERFLOW_READ 804 /* 805 ** Return true if page pgno can be read directly from the database file 806 ** by the b-tree layer. This is the case if: 807 ** 808 ** * the database file is open, 809 ** * there are no dirty pages in the cache, and 810 ** * the desired page is not currently in the wal file. 811 */ 812 int sqlite3PagerDirectReadOk(Pager *pPager, Pgno pgno){ 813 if( pPager->fd->pMethods==0 ) return 0; 814 if( sqlite3PCacheIsDirty(pPager->pPCache) ) return 0; 815 #ifndef SQLITE_OMIT_WAL 816 if( pPager->pWal ){ 817 u32 iRead = 0; 818 int rc; 819 rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iRead); 820 return (rc==SQLITE_OK && iRead==0); 821 } 822 #endif 823 return 1; 824 } 825 #endif 826 827 #ifndef SQLITE_OMIT_WAL 828 # define pagerUseWal(x) ((x)->pWal!=0) 829 #else 830 # define pagerUseWal(x) 0 831 # define pagerRollbackWal(x) 0 832 # define pagerWalFrames(v,w,x,y) 0 833 # define pagerOpenWalIfPresent(z) SQLITE_OK 834 # define pagerBeginReadTransaction(z) SQLITE_OK 835 #endif 836 837 #ifndef NDEBUG 838 /* 839 ** Usage: 840 ** 841 ** assert( assert_pager_state(pPager) ); 842 ** 843 ** This function runs many asserts to try to find inconsistencies in 844 ** the internal state of the Pager object. 845 */ 846 static int assert_pager_state(Pager *p){ 847 Pager *pPager = p; 848 849 /* State must be valid. */ 850 assert( p->eState==PAGER_OPEN 851 || p->eState==PAGER_READER 852 || p->eState==PAGER_WRITER_LOCKED 853 || p->eState==PAGER_WRITER_CACHEMOD 854 || p->eState==PAGER_WRITER_DBMOD 855 || p->eState==PAGER_WRITER_FINISHED 856 || p->eState==PAGER_ERROR 857 ); 858 859 /* Regardless of the current state, a temp-file connection always behaves 860 ** as if it has an exclusive lock on the database file. It never updates 861 ** the change-counter field, so the changeCountDone flag is always set. 862 */ 863 assert( p->tempFile==0 || p->eLock==EXCLUSIVE_LOCK ); 864 assert( p->tempFile==0 || pPager->changeCountDone ); 865 866 /* If the useJournal flag is clear, the journal-mode must be "OFF". 867 ** And if the journal-mode is "OFF", the journal file must not be open. 868 */ 869 assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->useJournal ); 870 assert( p->journalMode!=PAGER_JOURNALMODE_OFF || !isOpen(p->jfd) ); 871 872 /* Check that MEMDB implies noSync. And an in-memory journal. Since 873 ** this means an in-memory pager performs no IO at all, it cannot encounter 874 ** either SQLITE_IOERR or SQLITE_FULL during rollback or while finalizing 875 ** a journal file. (although the in-memory journal implementation may 876 ** return SQLITE_IOERR_NOMEM while the journal file is being written). It 877 ** is therefore not possible for an in-memory pager to enter the ERROR 878 ** state. 879 */ 880 if( MEMDB ){ 881 assert( !isOpen(p->fd) ); 882 assert( p->noSync ); 883 assert( p->journalMode==PAGER_JOURNALMODE_OFF 884 || p->journalMode==PAGER_JOURNALMODE_MEMORY 885 ); 886 assert( p->eState!=PAGER_ERROR && p->eState!=PAGER_OPEN ); 887 assert( pagerUseWal(p)==0 ); 888 } 889 890 /* If changeCountDone is set, a RESERVED lock or greater must be held 891 ** on the file. 892 */ 893 assert( pPager->changeCountDone==0 || pPager->eLock>=RESERVED_LOCK ); 894 assert( p->eLock!=PENDING_LOCK ); 895 896 switch( p->eState ){ 897 case PAGER_OPEN: 898 assert( !MEMDB ); 899 assert( pPager->errCode==SQLITE_OK ); 900 assert( sqlite3PcacheRefCount(pPager->pPCache)==0 || pPager->tempFile ); 901 break; 902 903 case PAGER_READER: 904 assert( pPager->errCode==SQLITE_OK ); 905 assert( p->eLock!=UNKNOWN_LOCK ); 906 assert( p->eLock>=SHARED_LOCK ); 907 break; 908 909 case PAGER_WRITER_LOCKED: 910 assert( p->eLock!=UNKNOWN_LOCK ); 911 assert( pPager->errCode==SQLITE_OK ); 912 if( !pagerUseWal(pPager) ){ 913 assert( p->eLock>=RESERVED_LOCK ); 914 } 915 assert( pPager->dbSize==pPager->dbOrigSize ); 916 assert( pPager->dbOrigSize==pPager->dbFileSize ); 917 assert( pPager->dbOrigSize==pPager->dbHintSize ); 918 assert( pPager->setSuper==0 ); 919 break; 920 921 case PAGER_WRITER_CACHEMOD: 922 assert( p->eLock!=UNKNOWN_LOCK ); 923 assert( pPager->errCode==SQLITE_OK ); 924 if( !pagerUseWal(pPager) ){ 925 /* It is possible that if journal_mode=wal here that neither the 926 ** journal file nor the WAL file are open. This happens during 927 ** a rollback transaction that switches from journal_mode=off 928 ** to journal_mode=wal. 929 */ 930 assert( p->eLock>=RESERVED_LOCK ); 931 assert( isOpen(p->jfd) 932 || p->journalMode==PAGER_JOURNALMODE_OFF 933 || p->journalMode==PAGER_JOURNALMODE_WAL 934 ); 935 } 936 assert( pPager->dbOrigSize==pPager->dbFileSize ); 937 assert( pPager->dbOrigSize==pPager->dbHintSize ); 938 break; 939 940 case PAGER_WRITER_DBMOD: 941 assert( p->eLock==EXCLUSIVE_LOCK ); 942 assert( pPager->errCode==SQLITE_OK ); 943 assert( !pagerUseWal(pPager) ); 944 assert( p->eLock>=EXCLUSIVE_LOCK ); 945 assert( isOpen(p->jfd) 946 || p->journalMode==PAGER_JOURNALMODE_OFF 947 || p->journalMode==PAGER_JOURNALMODE_WAL 948 || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC) 949 ); 950 assert( pPager->dbOrigSize<=pPager->dbHintSize ); 951 break; 952 953 case PAGER_WRITER_FINISHED: 954 assert( p->eLock==EXCLUSIVE_LOCK ); 955 assert( pPager->errCode==SQLITE_OK ); 956 assert( !pagerUseWal(pPager) ); 957 assert( isOpen(p->jfd) 958 || p->journalMode==PAGER_JOURNALMODE_OFF 959 || p->journalMode==PAGER_JOURNALMODE_WAL 960 || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC) 961 ); 962 break; 963 964 case PAGER_ERROR: 965 /* There must be at least one outstanding reference to the pager if 966 ** in ERROR state. Otherwise the pager should have already dropped 967 ** back to OPEN state. 968 */ 969 assert( pPager->errCode!=SQLITE_OK ); 970 assert( sqlite3PcacheRefCount(pPager->pPCache)>0 || pPager->tempFile ); 971 break; 972 } 973 974 return 1; 975 } 976 #endif /* ifndef NDEBUG */ 977 978 #ifdef SQLITE_DEBUG 979 /* 980 ** Return a pointer to a human readable string in a static buffer 981 ** containing the state of the Pager object passed as an argument. This 982 ** is intended to be used within debuggers. For example, as an alternative 983 ** to "print *pPager" in gdb: 984 ** 985 ** (gdb) printf "%s", print_pager_state(pPager) 986 ** 987 ** This routine has external linkage in order to suppress compiler warnings 988 ** about an unused function. It is enclosed within SQLITE_DEBUG and so does 989 ** not appear in normal builds. 990 */ 991 char *print_pager_state(Pager *p){ 992 static char zRet[1024]; 993 994 sqlite3_snprintf(1024, zRet, 995 "Filename: %s\n" 996 "State: %s errCode=%d\n" 997 "Lock: %s\n" 998 "Locking mode: locking_mode=%s\n" 999 "Journal mode: journal_mode=%s\n" 1000 "Backing store: tempFile=%d memDb=%d useJournal=%d\n" 1001 "Journal: journalOff=%lld journalHdr=%lld\n" 1002 "Size: dbsize=%d dbOrigSize=%d dbFileSize=%d\n" 1003 , p->zFilename 1004 , p->eState==PAGER_OPEN ? "OPEN" : 1005 p->eState==PAGER_READER ? "READER" : 1006 p->eState==PAGER_WRITER_LOCKED ? "WRITER_LOCKED" : 1007 p->eState==PAGER_WRITER_CACHEMOD ? "WRITER_CACHEMOD" : 1008 p->eState==PAGER_WRITER_DBMOD ? "WRITER_DBMOD" : 1009 p->eState==PAGER_WRITER_FINISHED ? "WRITER_FINISHED" : 1010 p->eState==PAGER_ERROR ? "ERROR" : "?error?" 1011 , (int)p->errCode 1012 , p->eLock==NO_LOCK ? "NO_LOCK" : 1013 p->eLock==RESERVED_LOCK ? "RESERVED" : 1014 p->eLock==EXCLUSIVE_LOCK ? "EXCLUSIVE" : 1015 p->eLock==SHARED_LOCK ? "SHARED" : 1016 p->eLock==UNKNOWN_LOCK ? "UNKNOWN" : "?error?" 1017 , p->exclusiveMode ? "exclusive" : "normal" 1018 , p->journalMode==PAGER_JOURNALMODE_MEMORY ? "memory" : 1019 p->journalMode==PAGER_JOURNALMODE_OFF ? "off" : 1020 p->journalMode==PAGER_JOURNALMODE_DELETE ? "delete" : 1021 p->journalMode==PAGER_JOURNALMODE_PERSIST ? "persist" : 1022 p->journalMode==PAGER_JOURNALMODE_TRUNCATE ? "truncate" : 1023 p->journalMode==PAGER_JOURNALMODE_WAL ? "wal" : "?error?" 1024 , (int)p->tempFile, (int)p->memDb, (int)p->useJournal 1025 , p->journalOff, p->journalHdr 1026 , (int)p->dbSize, (int)p->dbOrigSize, (int)p->dbFileSize 1027 ); 1028 1029 return zRet; 1030 } 1031 #endif 1032 1033 /* Forward references to the various page getters */ 1034 static int getPageNormal(Pager*,Pgno,DbPage**,int); 1035 static int getPageError(Pager*,Pgno,DbPage**,int); 1036 #if SQLITE_MAX_MMAP_SIZE>0 1037 static int getPageMMap(Pager*,Pgno,DbPage**,int); 1038 #endif 1039 1040 /* 1041 ** Set the Pager.xGet method for the appropriate routine used to fetch 1042 ** content from the pager. 1043 */ 1044 static void setGetterMethod(Pager *pPager){ 1045 if( pPager->errCode ){ 1046 pPager->xGet = getPageError; 1047 #if SQLITE_MAX_MMAP_SIZE>0 1048 }else if( USEFETCH(pPager) ){ 1049 pPager->xGet = getPageMMap; 1050 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 1051 }else{ 1052 pPager->xGet = getPageNormal; 1053 } 1054 } 1055 1056 /* 1057 ** Return true if it is necessary to write page *pPg into the sub-journal. 1058 ** A page needs to be written into the sub-journal if there exists one 1059 ** or more open savepoints for which: 1060 ** 1061 ** * The page-number is less than or equal to PagerSavepoint.nOrig, and 1062 ** * The bit corresponding to the page-number is not set in 1063 ** PagerSavepoint.pInSavepoint. 1064 */ 1065 static int subjRequiresPage(PgHdr *pPg){ 1066 Pager *pPager = pPg->pPager; 1067 PagerSavepoint *p; 1068 Pgno pgno = pPg->pgno; 1069 int i; 1070 for(i=0; i<pPager->nSavepoint; i++){ 1071 p = &pPager->aSavepoint[i]; 1072 if( p->nOrig>=pgno && 0==sqlite3BitvecTestNotNull(p->pInSavepoint, pgno) ){ 1073 return 1; 1074 } 1075 } 1076 return 0; 1077 } 1078 1079 #ifdef SQLITE_DEBUG 1080 /* 1081 ** Return true if the page is already in the journal file. 1082 */ 1083 static int pageInJournal(Pager *pPager, PgHdr *pPg){ 1084 return sqlite3BitvecTest(pPager->pInJournal, pPg->pgno); 1085 } 1086 #endif 1087 1088 /* 1089 ** Read a 32-bit integer from the given file descriptor. Store the integer 1090 ** that is read in *pRes. Return SQLITE_OK if everything worked, or an 1091 ** error code is something goes wrong. 1092 ** 1093 ** All values are stored on disk as big-endian. 1094 */ 1095 static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){ 1096 unsigned char ac[4]; 1097 int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset); 1098 if( rc==SQLITE_OK ){ 1099 *pRes = sqlite3Get4byte(ac); 1100 } 1101 return rc; 1102 } 1103 1104 /* 1105 ** Write a 32-bit integer into a string buffer in big-endian byte order. 1106 */ 1107 #define put32bits(A,B) sqlite3Put4byte((u8*)A,B) 1108 1109 1110 /* 1111 ** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK 1112 ** on success or an error code is something goes wrong. 1113 */ 1114 static int write32bits(sqlite3_file *fd, i64 offset, u32 val){ 1115 char ac[4]; 1116 put32bits(ac, val); 1117 return sqlite3OsWrite(fd, ac, 4, offset); 1118 } 1119 1120 /* 1121 ** Unlock the database file to level eLock, which must be either NO_LOCK 1122 ** or SHARED_LOCK. Regardless of whether or not the call to xUnlock() 1123 ** succeeds, set the Pager.eLock variable to match the (attempted) new lock. 1124 ** 1125 ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is 1126 ** called, do not modify it. See the comment above the #define of 1127 ** UNKNOWN_LOCK for an explanation of this. 1128 */ 1129 static int pagerUnlockDb(Pager *pPager, int eLock){ 1130 int rc = SQLITE_OK; 1131 1132 assert( !pPager->exclusiveMode || pPager->eLock==eLock ); 1133 assert( eLock==NO_LOCK || eLock==SHARED_LOCK ); 1134 assert( eLock!=NO_LOCK || pagerUseWal(pPager)==0 ); 1135 if( isOpen(pPager->fd) ){ 1136 assert( pPager->eLock>=eLock ); 1137 rc = pPager->noLock ? SQLITE_OK : sqlite3OsUnlock(pPager->fd, eLock); 1138 if( pPager->eLock!=UNKNOWN_LOCK ){ 1139 pPager->eLock = (u8)eLock; 1140 } 1141 IOTRACE(("UNLOCK %p %d\n", pPager, eLock)) 1142 } 1143 pPager->changeCountDone = pPager->tempFile; /* ticket fb3b3024ea238d5c */ 1144 return rc; 1145 } 1146 1147 /* 1148 ** Lock the database file to level eLock, which must be either SHARED_LOCK, 1149 ** RESERVED_LOCK or EXCLUSIVE_LOCK. If the caller is successful, set the 1150 ** Pager.eLock variable to the new locking state. 1151 ** 1152 ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is 1153 ** called, do not modify it unless the new locking state is EXCLUSIVE_LOCK. 1154 ** See the comment above the #define of UNKNOWN_LOCK for an explanation 1155 ** of this. 1156 */ 1157 static int pagerLockDb(Pager *pPager, int eLock){ 1158 int rc = SQLITE_OK; 1159 1160 assert( eLock==SHARED_LOCK || eLock==RESERVED_LOCK || eLock==EXCLUSIVE_LOCK ); 1161 if( pPager->eLock<eLock || pPager->eLock==UNKNOWN_LOCK ){ 1162 rc = pPager->noLock ? SQLITE_OK : sqlite3OsLock(pPager->fd, eLock); 1163 if( rc==SQLITE_OK && (pPager->eLock!=UNKNOWN_LOCK||eLock==EXCLUSIVE_LOCK) ){ 1164 pPager->eLock = (u8)eLock; 1165 IOTRACE(("LOCK %p %d\n", pPager, eLock)) 1166 } 1167 } 1168 return rc; 1169 } 1170 1171 /* 1172 ** This function determines whether or not the atomic-write or 1173 ** atomic-batch-write optimizations can be used with this pager. The 1174 ** atomic-write optimization can be used if: 1175 ** 1176 ** (a) the value returned by OsDeviceCharacteristics() indicates that 1177 ** a database page may be written atomically, and 1178 ** (b) the value returned by OsSectorSize() is less than or equal 1179 ** to the page size. 1180 ** 1181 ** If it can be used, then the value returned is the size of the journal 1182 ** file when it contains rollback data for exactly one page. 1183 ** 1184 ** The atomic-batch-write optimization can be used if OsDeviceCharacteristics() 1185 ** returns a value with the SQLITE_IOCAP_BATCH_ATOMIC bit set. -1 is 1186 ** returned in this case. 1187 ** 1188 ** If neither optimization can be used, 0 is returned. 1189 */ 1190 static int jrnlBufferSize(Pager *pPager){ 1191 assert( !MEMDB ); 1192 1193 #if defined(SQLITE_ENABLE_ATOMIC_WRITE) \ 1194 || defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) 1195 int dc; /* Device characteristics */ 1196 1197 assert( isOpen(pPager->fd) ); 1198 dc = sqlite3OsDeviceCharacteristics(pPager->fd); 1199 #else 1200 UNUSED_PARAMETER(pPager); 1201 #endif 1202 1203 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 1204 if( pPager->dbSize>0 && (dc&SQLITE_IOCAP_BATCH_ATOMIC) ){ 1205 return -1; 1206 } 1207 #endif 1208 1209 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 1210 { 1211 int nSector = pPager->sectorSize; 1212 int szPage = pPager->pageSize; 1213 1214 assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); 1215 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); 1216 if( 0==(dc&(SQLITE_IOCAP_ATOMIC|(szPage>>8)) || nSector>szPage) ){ 1217 return 0; 1218 } 1219 } 1220 1221 return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager); 1222 #endif 1223 1224 return 0; 1225 } 1226 1227 /* 1228 ** If SQLITE_CHECK_PAGES is defined then we do some sanity checking 1229 ** on the cache using a hash function. This is used for testing 1230 ** and debugging only. 1231 */ 1232 #ifdef SQLITE_CHECK_PAGES 1233 /* 1234 ** Return a 32-bit hash of the page data for pPage. 1235 */ 1236 static u32 pager_datahash(int nByte, unsigned char *pData){ 1237 u32 hash = 0; 1238 int i; 1239 for(i=0; i<nByte; i++){ 1240 hash = (hash*1039) + pData[i]; 1241 } 1242 return hash; 1243 } 1244 static u32 pager_pagehash(PgHdr *pPage){ 1245 return pager_datahash(pPage->pPager->pageSize, (unsigned char *)pPage->pData); 1246 } 1247 static void pager_set_pagehash(PgHdr *pPage){ 1248 pPage->pageHash = pager_pagehash(pPage); 1249 } 1250 1251 /* 1252 ** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES 1253 ** is defined, and NDEBUG is not defined, an assert() statement checks 1254 ** that the page is either dirty or still matches the calculated page-hash. 1255 */ 1256 #define CHECK_PAGE(x) checkPage(x) 1257 static void checkPage(PgHdr *pPg){ 1258 Pager *pPager = pPg->pPager; 1259 assert( pPager->eState!=PAGER_ERROR ); 1260 assert( (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) ); 1261 } 1262 1263 #else 1264 #define pager_datahash(X,Y) 0 1265 #define pager_pagehash(X) 0 1266 #define pager_set_pagehash(X) 1267 #define CHECK_PAGE(x) 1268 #endif /* SQLITE_CHECK_PAGES */ 1269 1270 /* 1271 ** When this is called the journal file for pager pPager must be open. 1272 ** This function attempts to read a super-journal file name from the 1273 ** end of the file and, if successful, copies it into memory supplied 1274 ** by the caller. See comments above writeSuperJournal() for the format 1275 ** used to store a super-journal file name at the end of a journal file. 1276 ** 1277 ** zSuper must point to a buffer of at least nSuper bytes allocated by 1278 ** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is 1279 ** enough space to write the super-journal name). If the super-journal 1280 ** name in the journal is longer than nSuper bytes (including a 1281 ** nul-terminator), then this is handled as if no super-journal name 1282 ** were present in the journal. 1283 ** 1284 ** If a super-journal file name is present at the end of the journal 1285 ** file, then it is copied into the buffer pointed to by zSuper. A 1286 ** nul-terminator byte is appended to the buffer following the 1287 ** super-journal file name. 1288 ** 1289 ** If it is determined that no super-journal file name is present 1290 ** zSuper[0] is set to 0 and SQLITE_OK returned. 1291 ** 1292 ** If an error occurs while reading from the journal file, an SQLite 1293 ** error code is returned. 1294 */ 1295 static int readSuperJournal(sqlite3_file *pJrnl, char *zSuper, u32 nSuper){ 1296 int rc; /* Return code */ 1297 u32 len; /* Length in bytes of super-journal name */ 1298 i64 szJ; /* Total size in bytes of journal file pJrnl */ 1299 u32 cksum; /* MJ checksum value read from journal */ 1300 u32 u; /* Unsigned loop counter */ 1301 unsigned char aMagic[8]; /* A buffer to hold the magic header */ 1302 zSuper[0] = '\0'; 1303 1304 if( SQLITE_OK!=(rc = sqlite3OsFileSize(pJrnl, &szJ)) 1305 || szJ<16 1306 || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-16, &len)) 1307 || len>=nSuper 1308 || len>szJ-16 1309 || len==0 1310 || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-12, &cksum)) 1311 || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8)) 1312 || memcmp(aMagic, aJournalMagic, 8) 1313 || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, zSuper, len, szJ-16-len)) 1314 ){ 1315 return rc; 1316 } 1317 1318 /* See if the checksum matches the super-journal name */ 1319 for(u=0; u<len; u++){ 1320 cksum -= zSuper[u]; 1321 } 1322 if( cksum ){ 1323 /* If the checksum doesn't add up, then one or more of the disk sectors 1324 ** containing the super-journal filename is corrupted. This means 1325 ** definitely roll back, so just return SQLITE_OK and report a (nul) 1326 ** super-journal filename. 1327 */ 1328 len = 0; 1329 } 1330 zSuper[len] = '\0'; 1331 zSuper[len+1] = '\0'; 1332 1333 return SQLITE_OK; 1334 } 1335 1336 /* 1337 ** Return the offset of the sector boundary at or immediately 1338 ** following the value in pPager->journalOff, assuming a sector 1339 ** size of pPager->sectorSize bytes. 1340 ** 1341 ** i.e for a sector size of 512: 1342 ** 1343 ** Pager.journalOff Return value 1344 ** --------------------------------------- 1345 ** 0 0 1346 ** 512 512 1347 ** 100 512 1348 ** 2000 2048 1349 ** 1350 */ 1351 static i64 journalHdrOffset(Pager *pPager){ 1352 i64 offset = 0; 1353 i64 c = pPager->journalOff; 1354 if( c ){ 1355 offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager); 1356 } 1357 assert( offset%JOURNAL_HDR_SZ(pPager)==0 ); 1358 assert( offset>=c ); 1359 assert( (offset-c)<JOURNAL_HDR_SZ(pPager) ); 1360 return offset; 1361 } 1362 1363 /* 1364 ** The journal file must be open when this function is called. 1365 ** 1366 ** This function is a no-op if the journal file has not been written to 1367 ** within the current transaction (i.e. if Pager.journalOff==0). 1368 ** 1369 ** If doTruncate is non-zero or the Pager.journalSizeLimit variable is 1370 ** set to 0, then truncate the journal file to zero bytes in size. Otherwise, 1371 ** zero the 28-byte header at the start of the journal file. In either case, 1372 ** if the pager is not in no-sync mode, sync the journal file immediately 1373 ** after writing or truncating it. 1374 ** 1375 ** If Pager.journalSizeLimit is set to a positive, non-zero value, and 1376 ** following the truncation or zeroing described above the size of the 1377 ** journal file in bytes is larger than this value, then truncate the 1378 ** journal file to Pager.journalSizeLimit bytes. The journal file does 1379 ** not need to be synced following this operation. 1380 ** 1381 ** If an IO error occurs, abandon processing and return the IO error code. 1382 ** Otherwise, return SQLITE_OK. 1383 */ 1384 static int zeroJournalHdr(Pager *pPager, int doTruncate){ 1385 int rc = SQLITE_OK; /* Return code */ 1386 assert( isOpen(pPager->jfd) ); 1387 assert( !sqlite3JournalIsInMemory(pPager->jfd) ); 1388 if( pPager->journalOff ){ 1389 const i64 iLimit = pPager->journalSizeLimit; /* Local cache of jsl */ 1390 1391 IOTRACE(("JZEROHDR %p\n", pPager)) 1392 if( doTruncate || iLimit==0 ){ 1393 rc = sqlite3OsTruncate(pPager->jfd, 0); 1394 }else{ 1395 static const char zeroHdr[28] = {0}; 1396 rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0); 1397 } 1398 if( rc==SQLITE_OK && !pPager->noSync ){ 1399 rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->syncFlags); 1400 } 1401 1402 /* At this point the transaction is committed but the write lock 1403 ** is still held on the file. If there is a size limit configured for 1404 ** the persistent journal and the journal file currently consumes more 1405 ** space than that limit allows for, truncate it now. There is no need 1406 ** to sync the file following this operation. 1407 */ 1408 if( rc==SQLITE_OK && iLimit>0 ){ 1409 i64 sz; 1410 rc = sqlite3OsFileSize(pPager->jfd, &sz); 1411 if( rc==SQLITE_OK && sz>iLimit ){ 1412 rc = sqlite3OsTruncate(pPager->jfd, iLimit); 1413 } 1414 } 1415 } 1416 return rc; 1417 } 1418 1419 /* 1420 ** The journal file must be open when this routine is called. A journal 1421 ** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the 1422 ** current location. 1423 ** 1424 ** The format for the journal header is as follows: 1425 ** - 8 bytes: Magic identifying journal format. 1426 ** - 4 bytes: Number of records in journal, or -1 no-sync mode is on. 1427 ** - 4 bytes: Random number used for page hash. 1428 ** - 4 bytes: Initial database page count. 1429 ** - 4 bytes: Sector size used by the process that wrote this journal. 1430 ** - 4 bytes: Database page size. 1431 ** 1432 ** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space. 1433 */ 1434 static int writeJournalHdr(Pager *pPager){ 1435 int rc = SQLITE_OK; /* Return code */ 1436 char *zHeader = pPager->pTmpSpace; /* Temporary space used to build header */ 1437 u32 nHeader = (u32)pPager->pageSize;/* Size of buffer pointed to by zHeader */ 1438 u32 nWrite; /* Bytes of header sector written */ 1439 int ii; /* Loop counter */ 1440 1441 assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ 1442 1443 if( nHeader>JOURNAL_HDR_SZ(pPager) ){ 1444 nHeader = JOURNAL_HDR_SZ(pPager); 1445 } 1446 1447 /* If there are active savepoints and any of them were created 1448 ** since the most recent journal header was written, update the 1449 ** PagerSavepoint.iHdrOffset fields now. 1450 */ 1451 for(ii=0; ii<pPager->nSavepoint; ii++){ 1452 if( pPager->aSavepoint[ii].iHdrOffset==0 ){ 1453 pPager->aSavepoint[ii].iHdrOffset = pPager->journalOff; 1454 } 1455 } 1456 1457 pPager->journalHdr = pPager->journalOff = journalHdrOffset(pPager); 1458 1459 /* 1460 ** Write the nRec Field - the number of page records that follow this 1461 ** journal header. Normally, zero is written to this value at this time. 1462 ** After the records are added to the journal (and the journal synced, 1463 ** if in full-sync mode), the zero is overwritten with the true number 1464 ** of records (see syncJournal()). 1465 ** 1466 ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When 1467 ** reading the journal this value tells SQLite to assume that the 1468 ** rest of the journal file contains valid page records. This assumption 1469 ** is dangerous, as if a failure occurred whilst writing to the journal 1470 ** file it may contain some garbage data. There are two scenarios 1471 ** where this risk can be ignored: 1472 ** 1473 ** * When the pager is in no-sync mode. Corruption can follow a 1474 ** power failure in this case anyway. 1475 ** 1476 ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees 1477 ** that garbage data is never appended to the journal file. 1478 */ 1479 assert( isOpen(pPager->fd) || pPager->noSync ); 1480 if( pPager->noSync || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY) 1481 || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) 1482 ){ 1483 memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); 1484 put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff); 1485 }else{ 1486 memset(zHeader, 0, sizeof(aJournalMagic)+4); 1487 } 1488 1489 /* The random check-hash initializer */ 1490 sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit); 1491 put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit); 1492 /* The initial database size */ 1493 put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbOrigSize); 1494 /* The assumed sector size for this process */ 1495 put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize); 1496 1497 /* The page size */ 1498 put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize); 1499 1500 /* Initializing the tail of the buffer is not necessary. Everything 1501 ** works find if the following memset() is omitted. But initializing 1502 ** the memory prevents valgrind from complaining, so we are willing to 1503 ** take the performance hit. 1504 */ 1505 memset(&zHeader[sizeof(aJournalMagic)+20], 0, 1506 nHeader-(sizeof(aJournalMagic)+20)); 1507 1508 /* In theory, it is only necessary to write the 28 bytes that the 1509 ** journal header consumes to the journal file here. Then increment the 1510 ** Pager.journalOff variable by JOURNAL_HDR_SZ so that the next 1511 ** record is written to the following sector (leaving a gap in the file 1512 ** that will be implicitly filled in by the OS). 1513 ** 1514 ** However it has been discovered that on some systems this pattern can 1515 ** be significantly slower than contiguously writing data to the file, 1516 ** even if that means explicitly writing data to the block of 1517 ** (JOURNAL_HDR_SZ - 28) bytes that will not be used. So that is what 1518 ** is done. 1519 ** 1520 ** The loop is required here in case the sector-size is larger than the 1521 ** database page size. Since the zHeader buffer is only Pager.pageSize 1522 ** bytes in size, more than one call to sqlite3OsWrite() may be required 1523 ** to populate the entire journal header sector. 1524 */ 1525 for(nWrite=0; rc==SQLITE_OK&&nWrite<JOURNAL_HDR_SZ(pPager); nWrite+=nHeader){ 1526 IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, nHeader)) 1527 rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff); 1528 assert( pPager->journalHdr <= pPager->journalOff ); 1529 pPager->journalOff += nHeader; 1530 } 1531 1532 return rc; 1533 } 1534 1535 /* 1536 ** The journal file must be open when this is called. A journal header file 1537 ** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal 1538 ** file. The current location in the journal file is given by 1539 ** pPager->journalOff. See comments above function writeJournalHdr() for 1540 ** a description of the journal header format. 1541 ** 1542 ** If the header is read successfully, *pNRec is set to the number of 1543 ** page records following this header and *pDbSize is set to the size of the 1544 ** database before the transaction began, in pages. Also, pPager->cksumInit 1545 ** is set to the value read from the journal header. SQLITE_OK is returned 1546 ** in this case. 1547 ** 1548 ** If the journal header file appears to be corrupted, SQLITE_DONE is 1549 ** returned and *pNRec and *PDbSize are undefined. If JOURNAL_HDR_SZ bytes 1550 ** cannot be read from the journal file an error code is returned. 1551 */ 1552 static int readJournalHdr( 1553 Pager *pPager, /* Pager object */ 1554 int isHot, 1555 i64 journalSize, /* Size of the open journal file in bytes */ 1556 u32 *pNRec, /* OUT: Value read from the nRec field */ 1557 u32 *pDbSize /* OUT: Value of original database size field */ 1558 ){ 1559 int rc; /* Return code */ 1560 unsigned char aMagic[8]; /* A buffer to hold the magic header */ 1561 i64 iHdrOff; /* Offset of journal header being read */ 1562 1563 assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ 1564 1565 /* Advance Pager.journalOff to the start of the next sector. If the 1566 ** journal file is too small for there to be a header stored at this 1567 ** point, return SQLITE_DONE. 1568 */ 1569 pPager->journalOff = journalHdrOffset(pPager); 1570 if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){ 1571 return SQLITE_DONE; 1572 } 1573 iHdrOff = pPager->journalOff; 1574 1575 /* Read in the first 8 bytes of the journal header. If they do not match 1576 ** the magic string found at the start of each journal header, return 1577 ** SQLITE_DONE. If an IO error occurs, return an error code. Otherwise, 1578 ** proceed. 1579 */ 1580 if( isHot || iHdrOff!=pPager->journalHdr ){ 1581 rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), iHdrOff); 1582 if( rc ){ 1583 return rc; 1584 } 1585 if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){ 1586 return SQLITE_DONE; 1587 } 1588 } 1589 1590 /* Read the first three 32-bit fields of the journal header: The nRec 1591 ** field, the checksum-initializer and the database size at the start 1592 ** of the transaction. Return an error code if anything goes wrong. 1593 */ 1594 if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+8, pNRec)) 1595 || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+12, &pPager->cksumInit)) 1596 || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+16, pDbSize)) 1597 ){ 1598 return rc; 1599 } 1600 1601 if( pPager->journalOff==0 ){ 1602 u32 iPageSize; /* Page-size field of journal header */ 1603 u32 iSectorSize; /* Sector-size field of journal header */ 1604 1605 /* Read the page-size and sector-size journal header fields. */ 1606 if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+20, &iSectorSize)) 1607 || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+24, &iPageSize)) 1608 ){ 1609 return rc; 1610 } 1611 1612 /* Versions of SQLite prior to 3.5.8 set the page-size field of the 1613 ** journal header to zero. In this case, assume that the Pager.pageSize 1614 ** variable is already set to the correct page size. 1615 */ 1616 if( iPageSize==0 ){ 1617 iPageSize = pPager->pageSize; 1618 } 1619 1620 /* Check that the values read from the page-size and sector-size fields 1621 ** are within range. To be 'in range', both values need to be a power 1622 ** of two greater than or equal to 512 or 32, and not greater than their 1623 ** respective compile time maximum limits. 1624 */ 1625 if( iPageSize<512 || iSectorSize<32 1626 || iPageSize>SQLITE_MAX_PAGE_SIZE || iSectorSize>MAX_SECTOR_SIZE 1627 || ((iPageSize-1)&iPageSize)!=0 || ((iSectorSize-1)&iSectorSize)!=0 1628 ){ 1629 /* If the either the page-size or sector-size in the journal-header is 1630 ** invalid, then the process that wrote the journal-header must have 1631 ** crashed before the header was synced. In this case stop reading 1632 ** the journal file here. 1633 */ 1634 return SQLITE_DONE; 1635 } 1636 1637 /* Update the page-size to match the value read from the journal. 1638 ** Use a testcase() macro to make sure that malloc failure within 1639 ** PagerSetPagesize() is tested. 1640 */ 1641 rc = sqlite3PagerSetPagesize(pPager, &iPageSize, -1); 1642 testcase( rc!=SQLITE_OK ); 1643 1644 /* Update the assumed sector-size to match the value used by 1645 ** the process that created this journal. If this journal was 1646 ** created by a process other than this one, then this routine 1647 ** is being called from within pager_playback(). The local value 1648 ** of Pager.sectorSize is restored at the end of that routine. 1649 */ 1650 pPager->sectorSize = iSectorSize; 1651 } 1652 1653 pPager->journalOff += JOURNAL_HDR_SZ(pPager); 1654 return rc; 1655 } 1656 1657 1658 /* 1659 ** Write the supplied super-journal name into the journal file for pager 1660 ** pPager at the current location. The super-journal name must be the last 1661 ** thing written to a journal file. If the pager is in full-sync mode, the 1662 ** journal file descriptor is advanced to the next sector boundary before 1663 ** anything is written. The format is: 1664 ** 1665 ** + 4 bytes: PAGER_MJ_PGNO. 1666 ** + N bytes: super-journal filename in utf-8. 1667 ** + 4 bytes: N (length of super-journal name in bytes, no nul-terminator). 1668 ** + 4 bytes: super-journal name checksum. 1669 ** + 8 bytes: aJournalMagic[]. 1670 ** 1671 ** The super-journal page checksum is the sum of the bytes in thesuper-journal 1672 ** name, where each byte is interpreted as a signed 8-bit integer. 1673 ** 1674 ** If zSuper is a NULL pointer (occurs for a single database transaction), 1675 ** this call is a no-op. 1676 */ 1677 static int writeSuperJournal(Pager *pPager, const char *zSuper){ 1678 int rc; /* Return code */ 1679 int nSuper; /* Length of string zSuper */ 1680 i64 iHdrOff; /* Offset of header in journal file */ 1681 i64 jrnlSize; /* Size of journal file on disk */ 1682 u32 cksum = 0; /* Checksum of string zSuper */ 1683 1684 assert( pPager->setSuper==0 ); 1685 assert( !pagerUseWal(pPager) ); 1686 1687 if( !zSuper 1688 || pPager->journalMode==PAGER_JOURNALMODE_MEMORY 1689 || !isOpen(pPager->jfd) 1690 ){ 1691 return SQLITE_OK; 1692 } 1693 pPager->setSuper = 1; 1694 assert( pPager->journalHdr <= pPager->journalOff ); 1695 1696 /* Calculate the length in bytes and the checksum of zSuper */ 1697 for(nSuper=0; zSuper[nSuper]; nSuper++){ 1698 cksum += zSuper[nSuper]; 1699 } 1700 1701 /* If in full-sync mode, advance to the next disk sector before writing 1702 ** the super-journal name. This is in case the previous page written to 1703 ** the journal has already been synced. 1704 */ 1705 if( pPager->fullSync ){ 1706 pPager->journalOff = journalHdrOffset(pPager); 1707 } 1708 iHdrOff = pPager->journalOff; 1709 1710 /* Write the super-journal data to the end of the journal file. If 1711 ** an error occurs, return the error code to the caller. 1712 */ 1713 if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_MJ_PGNO(pPager)))) 1714 || (0 != (rc = sqlite3OsWrite(pPager->jfd, zSuper, nSuper, iHdrOff+4))) 1715 || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nSuper, nSuper))) 1716 || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nSuper+4, cksum))) 1717 || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8, 1718 iHdrOff+4+nSuper+8))) 1719 ){ 1720 return rc; 1721 } 1722 pPager->journalOff += (nSuper+20); 1723 1724 /* If the pager is in peristent-journal mode, then the physical 1725 ** journal-file may extend past the end of the super-journal name 1726 ** and 8 bytes of magic data just written to the file. This is 1727 ** dangerous because the code to rollback a hot-journal file 1728 ** will not be able to find the super-journal name to determine 1729 ** whether or not the journal is hot. 1730 ** 1731 ** Easiest thing to do in this scenario is to truncate the journal 1732 ** file to the required size. 1733 */ 1734 if( SQLITE_OK==(rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize)) 1735 && jrnlSize>pPager->journalOff 1736 ){ 1737 rc = sqlite3OsTruncate(pPager->jfd, pPager->journalOff); 1738 } 1739 return rc; 1740 } 1741 1742 /* 1743 ** Discard the entire contents of the in-memory page-cache. 1744 */ 1745 static void pager_reset(Pager *pPager){ 1746 pPager->iDataVersion++; 1747 sqlite3BackupRestart(pPager->pBackup); 1748 sqlite3PcacheClear(pPager->pPCache); 1749 } 1750 1751 /* 1752 ** Return the pPager->iDataVersion value 1753 */ 1754 u32 sqlite3PagerDataVersion(Pager *pPager){ 1755 return pPager->iDataVersion; 1756 } 1757 1758 /* 1759 ** Free all structures in the Pager.aSavepoint[] array and set both 1760 ** Pager.aSavepoint and Pager.nSavepoint to zero. Close the sub-journal 1761 ** if it is open and the pager is not in exclusive mode. 1762 */ 1763 static void releaseAllSavepoints(Pager *pPager){ 1764 int ii; /* Iterator for looping through Pager.aSavepoint */ 1765 for(ii=0; ii<pPager->nSavepoint; ii++){ 1766 sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); 1767 } 1768 if( !pPager->exclusiveMode || sqlite3JournalIsInMemory(pPager->sjfd) ){ 1769 sqlite3OsClose(pPager->sjfd); 1770 } 1771 sqlite3_free(pPager->aSavepoint); 1772 pPager->aSavepoint = 0; 1773 pPager->nSavepoint = 0; 1774 pPager->nSubRec = 0; 1775 } 1776 1777 /* 1778 ** Set the bit number pgno in the PagerSavepoint.pInSavepoint 1779 ** bitvecs of all open savepoints. Return SQLITE_OK if successful 1780 ** or SQLITE_NOMEM if a malloc failure occurs. 1781 */ 1782 static int addToSavepointBitvecs(Pager *pPager, Pgno pgno){ 1783 int ii; /* Loop counter */ 1784 int rc = SQLITE_OK; /* Result code */ 1785 1786 for(ii=0; ii<pPager->nSavepoint; ii++){ 1787 PagerSavepoint *p = &pPager->aSavepoint[ii]; 1788 if( pgno<=p->nOrig ){ 1789 rc |= sqlite3BitvecSet(p->pInSavepoint, pgno); 1790 testcase( rc==SQLITE_NOMEM ); 1791 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 1792 } 1793 } 1794 return rc; 1795 } 1796 1797 /* 1798 ** This function is a no-op if the pager is in exclusive mode and not 1799 ** in the ERROR state. Otherwise, it switches the pager to PAGER_OPEN 1800 ** state. 1801 ** 1802 ** If the pager is not in exclusive-access mode, the database file is 1803 ** completely unlocked. If the file is unlocked and the file-system does 1804 ** not exhibit the UNDELETABLE_WHEN_OPEN property, the journal file is 1805 ** closed (if it is open). 1806 ** 1807 ** If the pager is in ERROR state when this function is called, the 1808 ** contents of the pager cache are discarded before switching back to 1809 ** the OPEN state. Regardless of whether the pager is in exclusive-mode 1810 ** or not, any journal file left in the file-system will be treated 1811 ** as a hot-journal and rolled back the next time a read-transaction 1812 ** is opened (by this or by any other connection). 1813 */ 1814 static void pager_unlock(Pager *pPager){ 1815 1816 assert( pPager->eState==PAGER_READER 1817 || pPager->eState==PAGER_OPEN 1818 || pPager->eState==PAGER_ERROR 1819 ); 1820 1821 sqlite3BitvecDestroy(pPager->pInJournal); 1822 pPager->pInJournal = 0; 1823 releaseAllSavepoints(pPager); 1824 1825 if( pagerUseWal(pPager) ){ 1826 assert( !isOpen(pPager->jfd) ); 1827 sqlite3WalEndReadTransaction(pPager->pWal); 1828 pPager->eState = PAGER_OPEN; 1829 }else if( !pPager->exclusiveMode ){ 1830 int rc; /* Error code returned by pagerUnlockDb() */ 1831 int iDc = isOpen(pPager->fd)?sqlite3OsDeviceCharacteristics(pPager->fd):0; 1832 1833 /* If the operating system support deletion of open files, then 1834 ** close the journal file when dropping the database lock. Otherwise 1835 ** another connection with journal_mode=delete might delete the file 1836 ** out from under us. 1837 */ 1838 assert( (PAGER_JOURNALMODE_MEMORY & 5)!=1 ); 1839 assert( (PAGER_JOURNALMODE_OFF & 5)!=1 ); 1840 assert( (PAGER_JOURNALMODE_WAL & 5)!=1 ); 1841 assert( (PAGER_JOURNALMODE_DELETE & 5)!=1 ); 1842 assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); 1843 assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); 1844 if( 0==(iDc & SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN) 1845 || 1!=(pPager->journalMode & 5) 1846 ){ 1847 sqlite3OsClose(pPager->jfd); 1848 } 1849 1850 /* If the pager is in the ERROR state and the call to unlock the database 1851 ** file fails, set the current lock to UNKNOWN_LOCK. See the comment 1852 ** above the #define for UNKNOWN_LOCK for an explanation of why this 1853 ** is necessary. 1854 */ 1855 rc = pagerUnlockDb(pPager, NO_LOCK); 1856 if( rc!=SQLITE_OK && pPager->eState==PAGER_ERROR ){ 1857 pPager->eLock = UNKNOWN_LOCK; 1858 } 1859 1860 /* The pager state may be changed from PAGER_ERROR to PAGER_OPEN here 1861 ** without clearing the error code. This is intentional - the error 1862 ** code is cleared and the cache reset in the block below. 1863 */ 1864 assert( pPager->errCode || pPager->eState!=PAGER_ERROR ); 1865 pPager->eState = PAGER_OPEN; 1866 } 1867 1868 /* If Pager.errCode is set, the contents of the pager cache cannot be 1869 ** trusted. Now that there are no outstanding references to the pager, 1870 ** it can safely move back to PAGER_OPEN state. This happens in both 1871 ** normal and exclusive-locking mode. 1872 */ 1873 assert( pPager->errCode==SQLITE_OK || !MEMDB ); 1874 if( pPager->errCode ){ 1875 if( pPager->tempFile==0 ){ 1876 pager_reset(pPager); 1877 pPager->changeCountDone = 0; 1878 pPager->eState = PAGER_OPEN; 1879 }else{ 1880 pPager->eState = (isOpen(pPager->jfd) ? PAGER_OPEN : PAGER_READER); 1881 } 1882 if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0); 1883 pPager->errCode = SQLITE_OK; 1884 setGetterMethod(pPager); 1885 } 1886 1887 pPager->journalOff = 0; 1888 pPager->journalHdr = 0; 1889 pPager->setSuper = 0; 1890 } 1891 1892 /* 1893 ** This function is called whenever an IOERR or FULL error that requires 1894 ** the pager to transition into the ERROR state may ahve occurred. 1895 ** The first argument is a pointer to the pager structure, the second 1896 ** the error-code about to be returned by a pager API function. The 1897 ** value returned is a copy of the second argument to this function. 1898 ** 1899 ** If the second argument is SQLITE_FULL, SQLITE_IOERR or one of the 1900 ** IOERR sub-codes, the pager enters the ERROR state and the error code 1901 ** is stored in Pager.errCode. While the pager remains in the ERROR state, 1902 ** all major API calls on the Pager will immediately return Pager.errCode. 1903 ** 1904 ** The ERROR state indicates that the contents of the pager-cache 1905 ** cannot be trusted. This state can be cleared by completely discarding 1906 ** the contents of the pager-cache. If a transaction was active when 1907 ** the persistent error occurred, then the rollback journal may need 1908 ** to be replayed to restore the contents of the database file (as if 1909 ** it were a hot-journal). 1910 */ 1911 static int pager_error(Pager *pPager, int rc){ 1912 int rc2 = rc & 0xff; 1913 assert( rc==SQLITE_OK || !MEMDB ); 1914 assert( 1915 pPager->errCode==SQLITE_FULL || 1916 pPager->errCode==SQLITE_OK || 1917 (pPager->errCode & 0xff)==SQLITE_IOERR 1918 ); 1919 if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR ){ 1920 pPager->errCode = rc; 1921 pPager->eState = PAGER_ERROR; 1922 setGetterMethod(pPager); 1923 } 1924 return rc; 1925 } 1926 1927 static int pager_truncate(Pager *pPager, Pgno nPage); 1928 1929 /* 1930 ** The write transaction open on pPager is being committed (bCommit==1) 1931 ** or rolled back (bCommit==0). 1932 ** 1933 ** Return TRUE if and only if all dirty pages should be flushed to disk. 1934 ** 1935 ** Rules: 1936 ** 1937 ** * For non-TEMP databases, always sync to disk. This is necessary 1938 ** for transactions to be durable. 1939 ** 1940 ** * Sync TEMP database only on a COMMIT (not a ROLLBACK) when the backing 1941 ** file has been created already (via a spill on pagerStress()) and 1942 ** when the number of dirty pages in memory exceeds 25% of the total 1943 ** cache size. 1944 */ 1945 static int pagerFlushOnCommit(Pager *pPager, int bCommit){ 1946 if( pPager->tempFile==0 ) return 1; 1947 if( !bCommit ) return 0; 1948 if( !isOpen(pPager->fd) ) return 0; 1949 return (sqlite3PCachePercentDirty(pPager->pPCache)>=25); 1950 } 1951 1952 /* 1953 ** This routine ends a transaction. A transaction is usually ended by 1954 ** either a COMMIT or a ROLLBACK operation. This routine may be called 1955 ** after rollback of a hot-journal, or if an error occurs while opening 1956 ** the journal file or writing the very first journal-header of a 1957 ** database transaction. 1958 ** 1959 ** This routine is never called in PAGER_ERROR state. If it is called 1960 ** in PAGER_NONE or PAGER_SHARED state and the lock held is less 1961 ** exclusive than a RESERVED lock, it is a no-op. 1962 ** 1963 ** Otherwise, any active savepoints are released. 1964 ** 1965 ** If the journal file is open, then it is "finalized". Once a journal 1966 ** file has been finalized it is not possible to use it to roll back a 1967 ** transaction. Nor will it be considered to be a hot-journal by this 1968 ** or any other database connection. Exactly how a journal is finalized 1969 ** depends on whether or not the pager is running in exclusive mode and 1970 ** the current journal-mode (Pager.journalMode value), as follows: 1971 ** 1972 ** journalMode==MEMORY 1973 ** Journal file descriptor is simply closed. This destroys an 1974 ** in-memory journal. 1975 ** 1976 ** journalMode==TRUNCATE 1977 ** Journal file is truncated to zero bytes in size. 1978 ** 1979 ** journalMode==PERSIST 1980 ** The first 28 bytes of the journal file are zeroed. This invalidates 1981 ** the first journal header in the file, and hence the entire journal 1982 ** file. An invalid journal file cannot be rolled back. 1983 ** 1984 ** journalMode==DELETE 1985 ** The journal file is closed and deleted using sqlite3OsDelete(). 1986 ** 1987 ** If the pager is running in exclusive mode, this method of finalizing 1988 ** the journal file is never used. Instead, if the journalMode is 1989 ** DELETE and the pager is in exclusive mode, the method described under 1990 ** journalMode==PERSIST is used instead. 1991 ** 1992 ** After the journal is finalized, the pager moves to PAGER_READER state. 1993 ** If running in non-exclusive rollback mode, the lock on the file is 1994 ** downgraded to a SHARED_LOCK. 1995 ** 1996 ** SQLITE_OK is returned if no error occurs. If an error occurs during 1997 ** any of the IO operations to finalize the journal file or unlock the 1998 ** database then the IO error code is returned to the user. If the 1999 ** operation to finalize the journal file fails, then the code still 2000 ** tries to unlock the database file if not in exclusive mode. If the 2001 ** unlock operation fails as well, then the first error code related 2002 ** to the first error encountered (the journal finalization one) is 2003 ** returned. 2004 */ 2005 static int pager_end_transaction(Pager *pPager, int hasSuper, int bCommit){ 2006 int rc = SQLITE_OK; /* Error code from journal finalization operation */ 2007 int rc2 = SQLITE_OK; /* Error code from db file unlock operation */ 2008 2009 /* Do nothing if the pager does not have an open write transaction 2010 ** or at least a RESERVED lock. This function may be called when there 2011 ** is no write-transaction active but a RESERVED or greater lock is 2012 ** held under two circumstances: 2013 ** 2014 ** 1. After a successful hot-journal rollback, it is called with 2015 ** eState==PAGER_NONE and eLock==EXCLUSIVE_LOCK. 2016 ** 2017 ** 2. If a connection with locking_mode=exclusive holding an EXCLUSIVE 2018 ** lock switches back to locking_mode=normal and then executes a 2019 ** read-transaction, this function is called with eState==PAGER_READER 2020 ** and eLock==EXCLUSIVE_LOCK when the read-transaction is closed. 2021 */ 2022 assert( assert_pager_state(pPager) ); 2023 assert( pPager->eState!=PAGER_ERROR ); 2024 if( pPager->eState<PAGER_WRITER_LOCKED && pPager->eLock<RESERVED_LOCK ){ 2025 return SQLITE_OK; 2026 } 2027 2028 releaseAllSavepoints(pPager); 2029 assert( isOpen(pPager->jfd) || pPager->pInJournal==0 2030 || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_BATCH_ATOMIC) 2031 ); 2032 if( isOpen(pPager->jfd) ){ 2033 assert( !pagerUseWal(pPager) ); 2034 2035 /* Finalize the journal file. */ 2036 if( sqlite3JournalIsInMemory(pPager->jfd) ){ 2037 /* assert( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ); */ 2038 sqlite3OsClose(pPager->jfd); 2039 }else if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE ){ 2040 if( pPager->journalOff==0 ){ 2041 rc = SQLITE_OK; 2042 }else{ 2043 rc = sqlite3OsTruncate(pPager->jfd, 0); 2044 if( rc==SQLITE_OK && pPager->fullSync ){ 2045 /* Make sure the new file size is written into the inode right away. 2046 ** Otherwise the journal might resurrect following a power loss and 2047 ** cause the last transaction to roll back. See 2048 ** https://bugzilla.mozilla.org/show_bug.cgi?id=1072773 2049 */ 2050 rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags); 2051 } 2052 } 2053 pPager->journalOff = 0; 2054 }else if( pPager->journalMode==PAGER_JOURNALMODE_PERSIST 2055 || (pPager->exclusiveMode && pPager->journalMode!=PAGER_JOURNALMODE_WAL) 2056 ){ 2057 rc = zeroJournalHdr(pPager, hasSuper||pPager->tempFile); 2058 pPager->journalOff = 0; 2059 }else{ 2060 /* This branch may be executed with Pager.journalMode==MEMORY if 2061 ** a hot-journal was just rolled back. In this case the journal 2062 ** file should be closed and deleted. If this connection writes to 2063 ** the database file, it will do so using an in-memory journal. 2064 */ 2065 int bDelete = !pPager->tempFile; 2066 assert( sqlite3JournalIsInMemory(pPager->jfd)==0 ); 2067 assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE 2068 || pPager->journalMode==PAGER_JOURNALMODE_MEMORY 2069 || pPager->journalMode==PAGER_JOURNALMODE_WAL 2070 ); 2071 sqlite3OsClose(pPager->jfd); 2072 if( bDelete ){ 2073 rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, pPager->extraSync); 2074 } 2075 } 2076 } 2077 2078 #ifdef SQLITE_CHECK_PAGES 2079 sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash); 2080 if( pPager->dbSize==0 && sqlite3PcacheRefCount(pPager->pPCache)>0 ){ 2081 PgHdr *p = sqlite3PagerLookup(pPager, 1); 2082 if( p ){ 2083 p->pageHash = 0; 2084 sqlite3PagerUnrefNotNull(p); 2085 } 2086 } 2087 #endif 2088 2089 sqlite3BitvecDestroy(pPager->pInJournal); 2090 pPager->pInJournal = 0; 2091 pPager->nRec = 0; 2092 if( rc==SQLITE_OK ){ 2093 if( MEMDB || pagerFlushOnCommit(pPager, bCommit) ){ 2094 sqlite3PcacheCleanAll(pPager->pPCache); 2095 }else{ 2096 sqlite3PcacheClearWritable(pPager->pPCache); 2097 } 2098 sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize); 2099 } 2100 2101 if( pagerUseWal(pPager) ){ 2102 /* Drop the WAL write-lock, if any. Also, if the connection was in 2103 ** locking_mode=exclusive mode but is no longer, drop the EXCLUSIVE 2104 ** lock held on the database file. 2105 */ 2106 rc2 = sqlite3WalEndWriteTransaction(pPager->pWal); 2107 assert( rc2==SQLITE_OK ); 2108 }else if( rc==SQLITE_OK && bCommit && pPager->dbFileSize>pPager->dbSize ){ 2109 /* This branch is taken when committing a transaction in rollback-journal 2110 ** mode if the database file on disk is larger than the database image. 2111 ** At this point the journal has been finalized and the transaction 2112 ** successfully committed, but the EXCLUSIVE lock is still held on the 2113 ** file. So it is safe to truncate the database file to its minimum 2114 ** required size. */ 2115 assert( pPager->eLock==EXCLUSIVE_LOCK ); 2116 rc = pager_truncate(pPager, pPager->dbSize); 2117 } 2118 2119 if( rc==SQLITE_OK && bCommit ){ 2120 rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_COMMIT_PHASETWO, 0); 2121 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 2122 } 2123 2124 if( !pPager->exclusiveMode 2125 && (!pagerUseWal(pPager) || sqlite3WalExclusiveMode(pPager->pWal, 0)) 2126 ){ 2127 rc2 = pagerUnlockDb(pPager, SHARED_LOCK); 2128 } 2129 pPager->eState = PAGER_READER; 2130 pPager->setSuper = 0; 2131 2132 return (rc==SQLITE_OK?rc2:rc); 2133 } 2134 2135 /* 2136 ** Execute a rollback if a transaction is active and unlock the 2137 ** database file. 2138 ** 2139 ** If the pager has already entered the ERROR state, do not attempt 2140 ** the rollback at this time. Instead, pager_unlock() is called. The 2141 ** call to pager_unlock() will discard all in-memory pages, unlock 2142 ** the database file and move the pager back to OPEN state. If this 2143 ** means that there is a hot-journal left in the file-system, the next 2144 ** connection to obtain a shared lock on the pager (which may be this one) 2145 ** will roll it back. 2146 ** 2147 ** If the pager has not already entered the ERROR state, but an IO or 2148 ** malloc error occurs during a rollback, then this will itself cause 2149 ** the pager to enter the ERROR state. Which will be cleared by the 2150 ** call to pager_unlock(), as described above. 2151 */ 2152 static void pagerUnlockAndRollback(Pager *pPager){ 2153 if( pPager->eState!=PAGER_ERROR && pPager->eState!=PAGER_OPEN ){ 2154 assert( assert_pager_state(pPager) ); 2155 if( pPager->eState>=PAGER_WRITER_LOCKED ){ 2156 sqlite3BeginBenignMalloc(); 2157 sqlite3PagerRollback(pPager); 2158 sqlite3EndBenignMalloc(); 2159 }else if( !pPager->exclusiveMode ){ 2160 assert( pPager->eState==PAGER_READER ); 2161 pager_end_transaction(pPager, 0, 0); 2162 } 2163 } 2164 pager_unlock(pPager); 2165 } 2166 2167 /* 2168 ** Parameter aData must point to a buffer of pPager->pageSize bytes 2169 ** of data. Compute and return a checksum based ont the contents of the 2170 ** page of data and the current value of pPager->cksumInit. 2171 ** 2172 ** This is not a real checksum. It is really just the sum of the 2173 ** random initial value (pPager->cksumInit) and every 200th byte 2174 ** of the page data, starting with byte offset (pPager->pageSize%200). 2175 ** Each byte is interpreted as an 8-bit unsigned integer. 2176 ** 2177 ** Changing the formula used to compute this checksum results in an 2178 ** incompatible journal file format. 2179 ** 2180 ** If journal corruption occurs due to a power failure, the most likely 2181 ** scenario is that one end or the other of the record will be changed. 2182 ** It is much less likely that the two ends of the journal record will be 2183 ** correct and the middle be corrupt. Thus, this "checksum" scheme, 2184 ** though fast and simple, catches the mostly likely kind of corruption. 2185 */ 2186 static u32 pager_cksum(Pager *pPager, const u8 *aData){ 2187 u32 cksum = pPager->cksumInit; /* Checksum value to return */ 2188 int i = pPager->pageSize-200; /* Loop counter */ 2189 while( i>0 ){ 2190 cksum += aData[i]; 2191 i -= 200; 2192 } 2193 return cksum; 2194 } 2195 2196 /* 2197 ** Read a single page from either the journal file (if isMainJrnl==1) or 2198 ** from the sub-journal (if isMainJrnl==0) and playback that page. 2199 ** The page begins at offset *pOffset into the file. The *pOffset 2200 ** value is increased to the start of the next page in the journal. 2201 ** 2202 ** The main rollback journal uses checksums - the statement journal does 2203 ** not. 2204 ** 2205 ** If the page number of the page record read from the (sub-)journal file 2206 ** is greater than the current value of Pager.dbSize, then playback is 2207 ** skipped and SQLITE_OK is returned. 2208 ** 2209 ** If pDone is not NULL, then it is a record of pages that have already 2210 ** been played back. If the page at *pOffset has already been played back 2211 ** (if the corresponding pDone bit is set) then skip the playback. 2212 ** Make sure the pDone bit corresponding to the *pOffset page is set 2213 ** prior to returning. 2214 ** 2215 ** If the page record is successfully read from the (sub-)journal file 2216 ** and played back, then SQLITE_OK is returned. If an IO error occurs 2217 ** while reading the record from the (sub-)journal file or while writing 2218 ** to the database file, then the IO error code is returned. If data 2219 ** is successfully read from the (sub-)journal file but appears to be 2220 ** corrupted, SQLITE_DONE is returned. Data is considered corrupted in 2221 ** two circumstances: 2222 ** 2223 ** * If the record page-number is illegal (0 or PAGER_MJ_PGNO), or 2224 ** * If the record is being rolled back from the main journal file 2225 ** and the checksum field does not match the record content. 2226 ** 2227 ** Neither of these two scenarios are possible during a savepoint rollback. 2228 ** 2229 ** If this is a savepoint rollback, then memory may have to be dynamically 2230 ** allocated by this function. If this is the case and an allocation fails, 2231 ** SQLITE_NOMEM is returned. 2232 */ 2233 static int pager_playback_one_page( 2234 Pager *pPager, /* The pager being played back */ 2235 i64 *pOffset, /* Offset of record to playback */ 2236 Bitvec *pDone, /* Bitvec of pages already played back */ 2237 int isMainJrnl, /* 1 -> main journal. 0 -> sub-journal. */ 2238 int isSavepnt /* True for a savepoint rollback */ 2239 ){ 2240 int rc; 2241 PgHdr *pPg; /* An existing page in the cache */ 2242 Pgno pgno; /* The page number of a page in journal */ 2243 u32 cksum; /* Checksum used for sanity checking */ 2244 char *aData; /* Temporary storage for the page */ 2245 sqlite3_file *jfd; /* The file descriptor for the journal file */ 2246 int isSynced; /* True if journal page is synced */ 2247 2248 assert( (isMainJrnl&~1)==0 ); /* isMainJrnl is 0 or 1 */ 2249 assert( (isSavepnt&~1)==0 ); /* isSavepnt is 0 or 1 */ 2250 assert( isMainJrnl || pDone ); /* pDone always used on sub-journals */ 2251 assert( isSavepnt || pDone==0 ); /* pDone never used on non-savepoint */ 2252 2253 aData = pPager->pTmpSpace; 2254 assert( aData ); /* Temp storage must have already been allocated */ 2255 assert( pagerUseWal(pPager)==0 || (!isMainJrnl && isSavepnt) ); 2256 2257 /* Either the state is greater than PAGER_WRITER_CACHEMOD (a transaction 2258 ** or savepoint rollback done at the request of the caller) or this is 2259 ** a hot-journal rollback. If it is a hot-journal rollback, the pager 2260 ** is in state OPEN and holds an EXCLUSIVE lock. Hot-journal rollback 2261 ** only reads from the main journal, not the sub-journal. 2262 */ 2263 assert( pPager->eState>=PAGER_WRITER_CACHEMOD 2264 || (pPager->eState==PAGER_OPEN && pPager->eLock==EXCLUSIVE_LOCK) 2265 ); 2266 assert( pPager->eState>=PAGER_WRITER_CACHEMOD || isMainJrnl ); 2267 2268 /* Read the page number and page data from the journal or sub-journal 2269 ** file. Return an error code to the caller if an IO error occurs. 2270 */ 2271 jfd = isMainJrnl ? pPager->jfd : pPager->sjfd; 2272 rc = read32bits(jfd, *pOffset, &pgno); 2273 if( rc!=SQLITE_OK ) return rc; 2274 rc = sqlite3OsRead(jfd, (u8*)aData, pPager->pageSize, (*pOffset)+4); 2275 if( rc!=SQLITE_OK ) return rc; 2276 *pOffset += pPager->pageSize + 4 + isMainJrnl*4; 2277 2278 /* Sanity checking on the page. This is more important that I originally 2279 ** thought. If a power failure occurs while the journal is being written, 2280 ** it could cause invalid data to be written into the journal. We need to 2281 ** detect this invalid data (with high probability) and ignore it. 2282 */ 2283 if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ 2284 assert( !isSavepnt ); 2285 return SQLITE_DONE; 2286 } 2287 if( pgno>(Pgno)pPager->dbSize || sqlite3BitvecTest(pDone, pgno) ){ 2288 return SQLITE_OK; 2289 } 2290 if( isMainJrnl ){ 2291 rc = read32bits(jfd, (*pOffset)-4, &cksum); 2292 if( rc ) return rc; 2293 if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){ 2294 return SQLITE_DONE; 2295 } 2296 } 2297 2298 /* If this page has already been played back before during the current 2299 ** rollback, then don't bother to play it back again. 2300 */ 2301 if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){ 2302 return rc; 2303 } 2304 2305 /* When playing back page 1, restore the nReserve setting 2306 */ 2307 if( pgno==1 && pPager->nReserve!=((u8*)aData)[20] ){ 2308 pPager->nReserve = ((u8*)aData)[20]; 2309 } 2310 2311 /* If the pager is in CACHEMOD state, then there must be a copy of this 2312 ** page in the pager cache. In this case just update the pager cache, 2313 ** not the database file. The page is left marked dirty in this case. 2314 ** 2315 ** An exception to the above rule: If the database is in no-sync mode 2316 ** and a page is moved during an incremental vacuum then the page may 2317 ** not be in the pager cache. Later: if a malloc() or IO error occurs 2318 ** during a Movepage() call, then the page may not be in the cache 2319 ** either. So the condition described in the above paragraph is not 2320 ** assert()able. 2321 ** 2322 ** If in WRITER_DBMOD, WRITER_FINISHED or OPEN state, then we update the 2323 ** pager cache if it exists and the main file. The page is then marked 2324 ** not dirty. Since this code is only executed in PAGER_OPEN state for 2325 ** a hot-journal rollback, it is guaranteed that the page-cache is empty 2326 ** if the pager is in OPEN state. 2327 ** 2328 ** Ticket #1171: The statement journal might contain page content that is 2329 ** different from the page content at the start of the transaction. 2330 ** This occurs when a page is changed prior to the start of a statement 2331 ** then changed again within the statement. When rolling back such a 2332 ** statement we must not write to the original database unless we know 2333 ** for certain that original page contents are synced into the main rollback 2334 ** journal. Otherwise, a power loss might leave modified data in the 2335 ** database file without an entry in the rollback journal that can 2336 ** restore the database to its original form. Two conditions must be 2337 ** met before writing to the database files. (1) the database must be 2338 ** locked. (2) we know that the original page content is fully synced 2339 ** in the main journal either because the page is not in cache or else 2340 ** the page is marked as needSync==0. 2341 ** 2342 ** 2008-04-14: When attempting to vacuum a corrupt database file, it 2343 ** is possible to fail a statement on a database that does not yet exist. 2344 ** Do not attempt to write if database file has never been opened. 2345 */ 2346 if( pagerUseWal(pPager) ){ 2347 pPg = 0; 2348 }else{ 2349 pPg = sqlite3PagerLookup(pPager, pgno); 2350 } 2351 assert( pPg || !MEMDB ); 2352 assert( pPager->eState!=PAGER_OPEN || pPg==0 || pPager->tempFile ); 2353 PAGERTRACE(("PLAYBACK %d page %d hash(%08x) %s\n", 2354 PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, (u8*)aData), 2355 (isMainJrnl?"main-journal":"sub-journal") 2356 )); 2357 if( isMainJrnl ){ 2358 isSynced = pPager->noSync || (*pOffset <= pPager->journalHdr); 2359 }else{ 2360 isSynced = (pPg==0 || 0==(pPg->flags & PGHDR_NEED_SYNC)); 2361 } 2362 if( isOpen(pPager->fd) 2363 && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) 2364 && isSynced 2365 ){ 2366 i64 ofst = (pgno-1)*(i64)pPager->pageSize; 2367 testcase( !isSavepnt && pPg!=0 && (pPg->flags&PGHDR_NEED_SYNC)!=0 ); 2368 assert( !pagerUseWal(pPager) ); 2369 2370 /* Write the data read from the journal back into the database file. 2371 ** This is usually safe even for an encrypted database - as the data 2372 ** was encrypted before it was written to the journal file. The exception 2373 ** is if the data was just read from an in-memory sub-journal. In that 2374 ** case it must be encrypted here before it is copied into the database 2375 ** file. */ 2376 rc = sqlite3OsWrite(pPager->fd, (u8 *)aData, pPager->pageSize, ofst); 2377 2378 if( pgno>pPager->dbFileSize ){ 2379 pPager->dbFileSize = pgno; 2380 } 2381 if( pPager->pBackup ){ 2382 sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData); 2383 } 2384 }else if( !isMainJrnl && pPg==0 ){ 2385 /* If this is a rollback of a savepoint and data was not written to 2386 ** the database and the page is not in-memory, there is a potential 2387 ** problem. When the page is next fetched by the b-tree layer, it 2388 ** will be read from the database file, which may or may not be 2389 ** current. 2390 ** 2391 ** There are a couple of different ways this can happen. All are quite 2392 ** obscure. When running in synchronous mode, this can only happen 2393 ** if the page is on the free-list at the start of the transaction, then 2394 ** populated, then moved using sqlite3PagerMovepage(). 2395 ** 2396 ** The solution is to add an in-memory page to the cache containing 2397 ** the data just read from the sub-journal. Mark the page as dirty 2398 ** and if the pager requires a journal-sync, then mark the page as 2399 ** requiring a journal-sync before it is written. 2400 */ 2401 assert( isSavepnt ); 2402 assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)==0 ); 2403 pPager->doNotSpill |= SPILLFLAG_ROLLBACK; 2404 rc = sqlite3PagerGet(pPager, pgno, &pPg, 1); 2405 assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)!=0 ); 2406 pPager->doNotSpill &= ~SPILLFLAG_ROLLBACK; 2407 if( rc!=SQLITE_OK ) return rc; 2408 sqlite3PcacheMakeDirty(pPg); 2409 } 2410 if( pPg ){ 2411 /* No page should ever be explicitly rolled back that is in use, except 2412 ** for page 1 which is held in use in order to keep the lock on the 2413 ** database active. However such a page may be rolled back as a result 2414 ** of an internal error resulting in an automatic call to 2415 ** sqlite3PagerRollback(). 2416 */ 2417 void *pData; 2418 pData = pPg->pData; 2419 memcpy(pData, (u8*)aData, pPager->pageSize); 2420 pPager->xReiniter(pPg); 2421 /* It used to be that sqlite3PcacheMakeClean(pPg) was called here. But 2422 ** that call was dangerous and had no detectable benefit since the cache 2423 ** is normally cleaned by sqlite3PcacheCleanAll() after rollback and so 2424 ** has been removed. */ 2425 pager_set_pagehash(pPg); 2426 2427 /* If this was page 1, then restore the value of Pager.dbFileVers. 2428 ** Do this before any decoding. */ 2429 if( pgno==1 ){ 2430 memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers)); 2431 } 2432 sqlite3PcacheRelease(pPg); 2433 } 2434 return rc; 2435 } 2436 2437 /* 2438 ** Parameter zSuper is the name of a super-journal file. A single journal 2439 ** file that referred to the super-journal file has just been rolled back. 2440 ** This routine checks if it is possible to delete the super-journal file, 2441 ** and does so if it is. 2442 ** 2443 ** Argument zSuper may point to Pager.pTmpSpace. So that buffer is not 2444 ** available for use within this function. 2445 ** 2446 ** When a super-journal file is created, it is populated with the names 2447 ** of all of its child journals, one after another, formatted as utf-8 2448 ** encoded text. The end of each child journal file is marked with a 2449 ** nul-terminator byte (0x00). i.e. the entire contents of a super-journal 2450 ** file for a transaction involving two databases might be: 2451 ** 2452 ** "/home/bill/a.db-journal\x00/home/bill/b.db-journal\x00" 2453 ** 2454 ** A super-journal file may only be deleted once all of its child 2455 ** journals have been rolled back. 2456 ** 2457 ** This function reads the contents of the super-journal file into 2458 ** memory and loops through each of the child journal names. For 2459 ** each child journal, it checks if: 2460 ** 2461 ** * if the child journal exists, and if so 2462 ** * if the child journal contains a reference to super-journal 2463 ** file zSuper 2464 ** 2465 ** If a child journal can be found that matches both of the criteria 2466 ** above, this function returns without doing anything. Otherwise, if 2467 ** no such child journal can be found, file zSuper is deleted from 2468 ** the file-system using sqlite3OsDelete(). 2469 ** 2470 ** If an IO error within this function, an error code is returned. This 2471 ** function allocates memory by calling sqlite3Malloc(). If an allocation 2472 ** fails, SQLITE_NOMEM is returned. Otherwise, if no IO or malloc errors 2473 ** occur, SQLITE_OK is returned. 2474 ** 2475 ** TODO: This function allocates a single block of memory to load 2476 ** the entire contents of the super-journal file. This could be 2477 ** a couple of kilobytes or so - potentially larger than the page 2478 ** size. 2479 */ 2480 static int pager_delsuper(Pager *pPager, const char *zSuper){ 2481 sqlite3_vfs *pVfs = pPager->pVfs; 2482 int rc; /* Return code */ 2483 sqlite3_file *pSuper; /* Malloc'd super-journal file descriptor */ 2484 sqlite3_file *pJournal; /* Malloc'd child-journal file descriptor */ 2485 char *zSuperJournal = 0; /* Contents of super-journal file */ 2486 i64 nSuperJournal; /* Size of super-journal file */ 2487 char *zJournal; /* Pointer to one journal within MJ file */ 2488 char *zSuperPtr; /* Space to hold super-journal filename */ 2489 char *zFree = 0; /* Free this buffer */ 2490 int nSuperPtr; /* Amount of space allocated to zSuperPtr[] */ 2491 2492 /* Allocate space for both the pJournal and pSuper file descriptors. 2493 ** If successful, open the super-journal file for reading. 2494 */ 2495 pSuper = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile * 2); 2496 if( !pSuper ){ 2497 rc = SQLITE_NOMEM_BKPT; 2498 pJournal = 0; 2499 }else{ 2500 const int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_SUPER_JOURNAL); 2501 rc = sqlite3OsOpen(pVfs, zSuper, pSuper, flags, 0); 2502 pJournal = (sqlite3_file *)(((u8 *)pSuper) + pVfs->szOsFile); 2503 } 2504 if( rc!=SQLITE_OK ) goto delsuper_out; 2505 2506 /* Load the entire super-journal file into space obtained from 2507 ** sqlite3_malloc() and pointed to by zSuperJournal. Also obtain 2508 ** sufficient space (in zSuperPtr) to hold the names of super-journal 2509 ** files extracted from regular rollback-journals. 2510 */ 2511 rc = sqlite3OsFileSize(pSuper, &nSuperJournal); 2512 if( rc!=SQLITE_OK ) goto delsuper_out; 2513 nSuperPtr = pVfs->mxPathname+1; 2514 zFree = sqlite3Malloc(4 + nSuperJournal + nSuperPtr + 2); 2515 if( !zFree ){ 2516 rc = SQLITE_NOMEM_BKPT; 2517 goto delsuper_out; 2518 } 2519 zFree[0] = zFree[1] = zFree[2] = zFree[3] = 0; 2520 zSuperJournal = &zFree[4]; 2521 zSuperPtr = &zSuperJournal[nSuperJournal+2]; 2522 rc = sqlite3OsRead(pSuper, zSuperJournal, (int)nSuperJournal, 0); 2523 if( rc!=SQLITE_OK ) goto delsuper_out; 2524 zSuperJournal[nSuperJournal] = 0; 2525 zSuperJournal[nSuperJournal+1] = 0; 2526 2527 zJournal = zSuperJournal; 2528 while( (zJournal-zSuperJournal)<nSuperJournal ){ 2529 int exists; 2530 rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS, &exists); 2531 if( rc!=SQLITE_OK ){ 2532 goto delsuper_out; 2533 } 2534 if( exists ){ 2535 /* One of the journals pointed to by the super-journal exists. 2536 ** Open it and check if it points at the super-journal. If 2537 ** so, return without deleting the super-journal file. 2538 ** NB: zJournal is really a MAIN_JOURNAL. But call it a 2539 ** SUPER_JOURNAL here so that the VFS will not send the zJournal 2540 ** name into sqlite3_database_file_object(). 2541 */ 2542 int c; 2543 int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_SUPER_JOURNAL); 2544 rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0); 2545 if( rc!=SQLITE_OK ){ 2546 goto delsuper_out; 2547 } 2548 2549 rc = readSuperJournal(pJournal, zSuperPtr, nSuperPtr); 2550 sqlite3OsClose(pJournal); 2551 if( rc!=SQLITE_OK ){ 2552 goto delsuper_out; 2553 } 2554 2555 c = zSuperPtr[0]!=0 && strcmp(zSuperPtr, zSuper)==0; 2556 if( c ){ 2557 /* We have a match. Do not delete the super-journal file. */ 2558 goto delsuper_out; 2559 } 2560 } 2561 zJournal += (sqlite3Strlen30(zJournal)+1); 2562 } 2563 2564 sqlite3OsClose(pSuper); 2565 rc = sqlite3OsDelete(pVfs, zSuper, 0); 2566 2567 delsuper_out: 2568 sqlite3_free(zFree); 2569 if( pSuper ){ 2570 sqlite3OsClose(pSuper); 2571 assert( !isOpen(pJournal) ); 2572 sqlite3_free(pSuper); 2573 } 2574 return rc; 2575 } 2576 2577 2578 /* 2579 ** This function is used to change the actual size of the database 2580 ** file in the file-system. This only happens when committing a transaction, 2581 ** or rolling back a transaction (including rolling back a hot-journal). 2582 ** 2583 ** If the main database file is not open, or the pager is not in either 2584 ** DBMOD or OPEN state, this function is a no-op. Otherwise, the size 2585 ** of the file is changed to nPage pages (nPage*pPager->pageSize bytes). 2586 ** If the file on disk is currently larger than nPage pages, then use the VFS 2587 ** xTruncate() method to truncate it. 2588 ** 2589 ** Or, it might be the case that the file on disk is smaller than 2590 ** nPage pages. Some operating system implementations can get confused if 2591 ** you try to truncate a file to some size that is larger than it 2592 ** currently is, so detect this case and write a single zero byte to 2593 ** the end of the new file instead. 2594 ** 2595 ** If successful, return SQLITE_OK. If an IO error occurs while modifying 2596 ** the database file, return the error code to the caller. 2597 */ 2598 static int pager_truncate(Pager *pPager, Pgno nPage){ 2599 int rc = SQLITE_OK; 2600 assert( pPager->eState!=PAGER_ERROR ); 2601 assert( pPager->eState!=PAGER_READER ); 2602 2603 if( isOpen(pPager->fd) 2604 && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) 2605 ){ 2606 i64 currentSize, newSize; 2607 int szPage = pPager->pageSize; 2608 assert( pPager->eLock==EXCLUSIVE_LOCK ); 2609 /* TODO: Is it safe to use Pager.dbFileSize here? */ 2610 rc = sqlite3OsFileSize(pPager->fd, ¤tSize); 2611 newSize = szPage*(i64)nPage; 2612 if( rc==SQLITE_OK && currentSize!=newSize ){ 2613 if( currentSize>newSize ){ 2614 rc = sqlite3OsTruncate(pPager->fd, newSize); 2615 }else if( (currentSize+szPage)<=newSize ){ 2616 char *pTmp = pPager->pTmpSpace; 2617 memset(pTmp, 0, szPage); 2618 testcase( (newSize-szPage) == currentSize ); 2619 testcase( (newSize-szPage) > currentSize ); 2620 rc = sqlite3OsWrite(pPager->fd, pTmp, szPage, newSize-szPage); 2621 } 2622 if( rc==SQLITE_OK ){ 2623 pPager->dbFileSize = nPage; 2624 } 2625 } 2626 } 2627 return rc; 2628 } 2629 2630 /* 2631 ** Return a sanitized version of the sector-size of OS file pFile. The 2632 ** return value is guaranteed to lie between 32 and MAX_SECTOR_SIZE. 2633 */ 2634 int sqlite3SectorSize(sqlite3_file *pFile){ 2635 int iRet = sqlite3OsSectorSize(pFile); 2636 if( iRet<32 ){ 2637 iRet = 512; 2638 }else if( iRet>MAX_SECTOR_SIZE ){ 2639 assert( MAX_SECTOR_SIZE>=512 ); 2640 iRet = MAX_SECTOR_SIZE; 2641 } 2642 return iRet; 2643 } 2644 2645 /* 2646 ** Set the value of the Pager.sectorSize variable for the given 2647 ** pager based on the value returned by the xSectorSize method 2648 ** of the open database file. The sector size will be used 2649 ** to determine the size and alignment of journal header and 2650 ** super-journal pointers within created journal files. 2651 ** 2652 ** For temporary files the effective sector size is always 512 bytes. 2653 ** 2654 ** Otherwise, for non-temporary files, the effective sector size is 2655 ** the value returned by the xSectorSize() method rounded up to 32 if 2656 ** it is less than 32, or rounded down to MAX_SECTOR_SIZE if it 2657 ** is greater than MAX_SECTOR_SIZE. 2658 ** 2659 ** If the file has the SQLITE_IOCAP_POWERSAFE_OVERWRITE property, then set 2660 ** the effective sector size to its minimum value (512). The purpose of 2661 ** pPager->sectorSize is to define the "blast radius" of bytes that 2662 ** might change if a crash occurs while writing to a single byte in 2663 ** that range. But with POWERSAFE_OVERWRITE, the blast radius is zero 2664 ** (that is what POWERSAFE_OVERWRITE means), so we minimize the sector 2665 ** size. For backwards compatibility of the rollback journal file format, 2666 ** we cannot reduce the effective sector size below 512. 2667 */ 2668 static void setSectorSize(Pager *pPager){ 2669 assert( isOpen(pPager->fd) || pPager->tempFile ); 2670 2671 if( pPager->tempFile 2672 || (sqlite3OsDeviceCharacteristics(pPager->fd) & 2673 SQLITE_IOCAP_POWERSAFE_OVERWRITE)!=0 2674 ){ 2675 /* Sector size doesn't matter for temporary files. Also, the file 2676 ** may not have been opened yet, in which case the OsSectorSize() 2677 ** call will segfault. */ 2678 pPager->sectorSize = 512; 2679 }else{ 2680 pPager->sectorSize = sqlite3SectorSize(pPager->fd); 2681 } 2682 } 2683 2684 /* 2685 ** Playback the journal and thus restore the database file to 2686 ** the state it was in before we started making changes. 2687 ** 2688 ** The journal file format is as follows: 2689 ** 2690 ** (1) 8 byte prefix. A copy of aJournalMagic[]. 2691 ** (2) 4 byte big-endian integer which is the number of valid page records 2692 ** in the journal. If this value is 0xffffffff, then compute the 2693 ** number of page records from the journal size. 2694 ** (3) 4 byte big-endian integer which is the initial value for the 2695 ** sanity checksum. 2696 ** (4) 4 byte integer which is the number of pages to truncate the 2697 ** database to during a rollback. 2698 ** (5) 4 byte big-endian integer which is the sector size. The header 2699 ** is this many bytes in size. 2700 ** (6) 4 byte big-endian integer which is the page size. 2701 ** (7) zero padding out to the next sector size. 2702 ** (8) Zero or more pages instances, each as follows: 2703 ** + 4 byte page number. 2704 ** + pPager->pageSize bytes of data. 2705 ** + 4 byte checksum 2706 ** 2707 ** When we speak of the journal header, we mean the first 7 items above. 2708 ** Each entry in the journal is an instance of the 8th item. 2709 ** 2710 ** Call the value from the second bullet "nRec". nRec is the number of 2711 ** valid page entries in the journal. In most cases, you can compute the 2712 ** value of nRec from the size of the journal file. But if a power 2713 ** failure occurred while the journal was being written, it could be the 2714 ** case that the size of the journal file had already been increased but 2715 ** the extra entries had not yet made it safely to disk. In such a case, 2716 ** the value of nRec computed from the file size would be too large. For 2717 ** that reason, we always use the nRec value in the header. 2718 ** 2719 ** If the nRec value is 0xffffffff it means that nRec should be computed 2720 ** from the file size. This value is used when the user selects the 2721 ** no-sync option for the journal. A power failure could lead to corruption 2722 ** in this case. But for things like temporary table (which will be 2723 ** deleted when the power is restored) we don't care. 2724 ** 2725 ** If the file opened as the journal file is not a well-formed 2726 ** journal file then all pages up to the first corrupted page are rolled 2727 ** back (or no pages if the journal header is corrupted). The journal file 2728 ** is then deleted and SQLITE_OK returned, just as if no corruption had 2729 ** been encountered. 2730 ** 2731 ** If an I/O or malloc() error occurs, the journal-file is not deleted 2732 ** and an error code is returned. 2733 ** 2734 ** The isHot parameter indicates that we are trying to rollback a journal 2735 ** that might be a hot journal. Or, it could be that the journal is 2736 ** preserved because of JOURNALMODE_PERSIST or JOURNALMODE_TRUNCATE. 2737 ** If the journal really is hot, reset the pager cache prior rolling 2738 ** back any content. If the journal is merely persistent, no reset is 2739 ** needed. 2740 */ 2741 static int pager_playback(Pager *pPager, int isHot){ 2742 sqlite3_vfs *pVfs = pPager->pVfs; 2743 i64 szJ; /* Size of the journal file in bytes */ 2744 u32 nRec; /* Number of Records in the journal */ 2745 u32 u; /* Unsigned loop counter */ 2746 Pgno mxPg = 0; /* Size of the original file in pages */ 2747 int rc; /* Result code of a subroutine */ 2748 int res = 1; /* Value returned by sqlite3OsAccess() */ 2749 char *zSuper = 0; /* Name of super-journal file if any */ 2750 int needPagerReset; /* True to reset page prior to first page rollback */ 2751 int nPlayback = 0; /* Total number of pages restored from journal */ 2752 u32 savedPageSize = pPager->pageSize; 2753 2754 /* Figure out how many records are in the journal. Abort early if 2755 ** the journal is empty. 2756 */ 2757 assert( isOpen(pPager->jfd) ); 2758 rc = sqlite3OsFileSize(pPager->jfd, &szJ); 2759 if( rc!=SQLITE_OK ){ 2760 goto end_playback; 2761 } 2762 2763 /* Read the super-journal name from the journal, if it is present. 2764 ** If a super-journal file name is specified, but the file is not 2765 ** present on disk, then the journal is not hot and does not need to be 2766 ** played back. 2767 ** 2768 ** TODO: Technically the following is an error because it assumes that 2769 ** buffer Pager.pTmpSpace is (mxPathname+1) bytes or larger. i.e. that 2770 ** (pPager->pageSize >= pPager->pVfs->mxPathname+1). Using os_unix.c, 2771 ** mxPathname is 512, which is the same as the minimum allowable value 2772 ** for pageSize. 2773 */ 2774 zSuper = pPager->pTmpSpace; 2775 rc = readSuperJournal(pPager->jfd, zSuper, pPager->pVfs->mxPathname+1); 2776 if( rc==SQLITE_OK && zSuper[0] ){ 2777 rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res); 2778 } 2779 zSuper = 0; 2780 if( rc!=SQLITE_OK || !res ){ 2781 goto end_playback; 2782 } 2783 pPager->journalOff = 0; 2784 needPagerReset = isHot; 2785 2786 /* This loop terminates either when a readJournalHdr() or 2787 ** pager_playback_one_page() call returns SQLITE_DONE or an IO error 2788 ** occurs. 2789 */ 2790 while( 1 ){ 2791 /* Read the next journal header from the journal file. If there are 2792 ** not enough bytes left in the journal file for a complete header, or 2793 ** it is corrupted, then a process must have failed while writing it. 2794 ** This indicates nothing more needs to be rolled back. 2795 */ 2796 rc = readJournalHdr(pPager, isHot, szJ, &nRec, &mxPg); 2797 if( rc!=SQLITE_OK ){ 2798 if( rc==SQLITE_DONE ){ 2799 rc = SQLITE_OK; 2800 } 2801 goto end_playback; 2802 } 2803 2804 /* If nRec is 0xffffffff, then this journal was created by a process 2805 ** working in no-sync mode. This means that the rest of the journal 2806 ** file consists of pages, there are no more journal headers. Compute 2807 ** the value of nRec based on this assumption. 2808 */ 2809 if( nRec==0xffffffff ){ 2810 assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ); 2811 nRec = (int)((szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager)); 2812 } 2813 2814 /* If nRec is 0 and this rollback is of a transaction created by this 2815 ** process and if this is the final header in the journal, then it means 2816 ** that this part of the journal was being filled but has not yet been 2817 ** synced to disk. Compute the number of pages based on the remaining 2818 ** size of the file. 2819 ** 2820 ** The third term of the test was added to fix ticket #2565. 2821 ** When rolling back a hot journal, nRec==0 always means that the next 2822 ** chunk of the journal contains zero pages to be rolled back. But 2823 ** when doing a ROLLBACK and the nRec==0 chunk is the last chunk in 2824 ** the journal, it means that the journal might contain additional 2825 ** pages that need to be rolled back and that the number of pages 2826 ** should be computed based on the journal file size. 2827 */ 2828 if( nRec==0 && !isHot && 2829 pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){ 2830 nRec = (int)((szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager)); 2831 } 2832 2833 /* If this is the first header read from the journal, truncate the 2834 ** database file back to its original size. 2835 */ 2836 if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){ 2837 rc = pager_truncate(pPager, mxPg); 2838 if( rc!=SQLITE_OK ){ 2839 goto end_playback; 2840 } 2841 pPager->dbSize = mxPg; 2842 } 2843 2844 /* Copy original pages out of the journal and back into the 2845 ** database file and/or page cache. 2846 */ 2847 for(u=0; u<nRec; u++){ 2848 if( needPagerReset ){ 2849 pager_reset(pPager); 2850 needPagerReset = 0; 2851 } 2852 rc = pager_playback_one_page(pPager,&pPager->journalOff,0,1,0); 2853 if( rc==SQLITE_OK ){ 2854 nPlayback++; 2855 }else{ 2856 if( rc==SQLITE_DONE ){ 2857 pPager->journalOff = szJ; 2858 break; 2859 }else if( rc==SQLITE_IOERR_SHORT_READ ){ 2860 /* If the journal has been truncated, simply stop reading and 2861 ** processing the journal. This might happen if the journal was 2862 ** not completely written and synced prior to a crash. In that 2863 ** case, the database should have never been written in the 2864 ** first place so it is OK to simply abandon the rollback. */ 2865 rc = SQLITE_OK; 2866 goto end_playback; 2867 }else{ 2868 /* If we are unable to rollback, quit and return the error 2869 ** code. This will cause the pager to enter the error state 2870 ** so that no further harm will be done. Perhaps the next 2871 ** process to come along will be able to rollback the database. 2872 */ 2873 goto end_playback; 2874 } 2875 } 2876 } 2877 } 2878 /*NOTREACHED*/ 2879 assert( 0 ); 2880 2881 end_playback: 2882 if( rc==SQLITE_OK ){ 2883 rc = sqlite3PagerSetPagesize(pPager, &savedPageSize, -1); 2884 } 2885 /* Following a rollback, the database file should be back in its original 2886 ** state prior to the start of the transaction, so invoke the 2887 ** SQLITE_FCNTL_DB_UNCHANGED file-control method to disable the 2888 ** assertion that the transaction counter was modified. 2889 */ 2890 #ifdef SQLITE_DEBUG 2891 sqlite3OsFileControlHint(pPager->fd,SQLITE_FCNTL_DB_UNCHANGED,0); 2892 #endif 2893 2894 /* If this playback is happening automatically as a result of an IO or 2895 ** malloc error that occurred after the change-counter was updated but 2896 ** before the transaction was committed, then the change-counter 2897 ** modification may just have been reverted. If this happens in exclusive 2898 ** mode, then subsequent transactions performed by the connection will not 2899 ** update the change-counter at all. This may lead to cache inconsistency 2900 ** problems for other processes at some point in the future. So, just 2901 ** in case this has happened, clear the changeCountDone flag now. 2902 */ 2903 pPager->changeCountDone = pPager->tempFile; 2904 2905 if( rc==SQLITE_OK ){ 2906 /* Leave 4 bytes of space before the super-journal filename in memory. 2907 ** This is because it may end up being passed to sqlite3OsOpen(), in 2908 ** which case it requires 4 0x00 bytes in memory immediately before 2909 ** the filename. */ 2910 zSuper = &pPager->pTmpSpace[4]; 2911 rc = readSuperJournal(pPager->jfd, zSuper, pPager->pVfs->mxPathname+1); 2912 testcase( rc!=SQLITE_OK ); 2913 } 2914 if( rc==SQLITE_OK 2915 && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) 2916 ){ 2917 rc = sqlite3PagerSync(pPager, 0); 2918 } 2919 if( rc==SQLITE_OK ){ 2920 rc = pager_end_transaction(pPager, zSuper[0]!='\0', 0); 2921 testcase( rc!=SQLITE_OK ); 2922 } 2923 if( rc==SQLITE_OK && zSuper[0] && res ){ 2924 /* If there was a super-journal and this routine will return success, 2925 ** see if it is possible to delete the super-journal. 2926 */ 2927 assert( zSuper==&pPager->pTmpSpace[4] ); 2928 memset(&zSuper[-4], 0, 4); 2929 rc = pager_delsuper(pPager, zSuper); 2930 testcase( rc!=SQLITE_OK ); 2931 } 2932 if( isHot && nPlayback ){ 2933 sqlite3_log(SQLITE_NOTICE_RECOVER_ROLLBACK, "recovered %d pages from %s", 2934 nPlayback, pPager->zJournal); 2935 } 2936 2937 /* The Pager.sectorSize variable may have been updated while rolling 2938 ** back a journal created by a process with a different sector size 2939 ** value. Reset it to the correct value for this process. 2940 */ 2941 setSectorSize(pPager); 2942 return rc; 2943 } 2944 2945 2946 /* 2947 ** Read the content for page pPg out of the database file (or out of 2948 ** the WAL if that is where the most recent copy if found) into 2949 ** pPg->pData. A shared lock or greater must be held on the database 2950 ** file before this function is called. 2951 ** 2952 ** If page 1 is read, then the value of Pager.dbFileVers[] is set to 2953 ** the value read from the database file. 2954 ** 2955 ** If an IO error occurs, then the IO error is returned to the caller. 2956 ** Otherwise, SQLITE_OK is returned. 2957 */ 2958 static int readDbPage(PgHdr *pPg){ 2959 Pager *pPager = pPg->pPager; /* Pager object associated with page pPg */ 2960 int rc = SQLITE_OK; /* Return code */ 2961 2962 #ifndef SQLITE_OMIT_WAL 2963 u32 iFrame = 0; /* Frame of WAL containing pgno */ 2964 2965 assert( pPager->eState>=PAGER_READER && !MEMDB ); 2966 assert( isOpen(pPager->fd) ); 2967 2968 if( pagerUseWal(pPager) ){ 2969 rc = sqlite3WalFindFrame(pPager->pWal, pPg->pgno, &iFrame); 2970 if( rc ) return rc; 2971 } 2972 if( iFrame ){ 2973 rc = sqlite3WalReadFrame(pPager->pWal, iFrame,pPager->pageSize,pPg->pData); 2974 }else 2975 #endif 2976 { 2977 i64 iOffset = (pPg->pgno-1)*(i64)pPager->pageSize; 2978 rc = sqlite3OsRead(pPager->fd, pPg->pData, pPager->pageSize, iOffset); 2979 if( rc==SQLITE_IOERR_SHORT_READ ){ 2980 rc = SQLITE_OK; 2981 } 2982 } 2983 2984 if( pPg->pgno==1 ){ 2985 if( rc ){ 2986 /* If the read is unsuccessful, set the dbFileVers[] to something 2987 ** that will never be a valid file version. dbFileVers[] is a copy 2988 ** of bytes 24..39 of the database. Bytes 28..31 should always be 2989 ** zero or the size of the database in page. Bytes 32..35 and 35..39 2990 ** should be page numbers which are never 0xffffffff. So filling 2991 ** pPager->dbFileVers[] with all 0xff bytes should suffice. 2992 ** 2993 ** For an encrypted database, the situation is more complex: bytes 2994 ** 24..39 of the database are white noise. But the probability of 2995 ** white noise equaling 16 bytes of 0xff is vanishingly small so 2996 ** we should still be ok. 2997 */ 2998 memset(pPager->dbFileVers, 0xff, sizeof(pPager->dbFileVers)); 2999 }else{ 3000 u8 *dbFileVers = &((u8*)pPg->pData)[24]; 3001 memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers)); 3002 } 3003 } 3004 PAGER_INCR(sqlite3_pager_readdb_count); 3005 PAGER_INCR(pPager->nRead); 3006 IOTRACE(("PGIN %p %d\n", pPager, pPg->pgno)); 3007 PAGERTRACE(("FETCH %d page %d hash(%08x)\n", 3008 PAGERID(pPager), pPg->pgno, pager_pagehash(pPg))); 3009 3010 return rc; 3011 } 3012 3013 /* 3014 ** Update the value of the change-counter at offsets 24 and 92 in 3015 ** the header and the sqlite version number at offset 96. 3016 ** 3017 ** This is an unconditional update. See also the pager_incr_changecounter() 3018 ** routine which only updates the change-counter if the update is actually 3019 ** needed, as determined by the pPager->changeCountDone state variable. 3020 */ 3021 static void pager_write_changecounter(PgHdr *pPg){ 3022 u32 change_counter; 3023 3024 /* Increment the value just read and write it back to byte 24. */ 3025 change_counter = sqlite3Get4byte((u8*)pPg->pPager->dbFileVers)+1; 3026 put32bits(((char*)pPg->pData)+24, change_counter); 3027 3028 /* Also store the SQLite version number in bytes 96..99 and in 3029 ** bytes 92..95 store the change counter for which the version number 3030 ** is valid. */ 3031 put32bits(((char*)pPg->pData)+92, change_counter); 3032 put32bits(((char*)pPg->pData)+96, SQLITE_VERSION_NUMBER); 3033 } 3034 3035 #ifndef SQLITE_OMIT_WAL 3036 /* 3037 ** This function is invoked once for each page that has already been 3038 ** written into the log file when a WAL transaction is rolled back. 3039 ** Parameter iPg is the page number of said page. The pCtx argument 3040 ** is actually a pointer to the Pager structure. 3041 ** 3042 ** If page iPg is present in the cache, and has no outstanding references, 3043 ** it is discarded. Otherwise, if there are one or more outstanding 3044 ** references, the page content is reloaded from the database. If the 3045 ** attempt to reload content from the database is required and fails, 3046 ** return an SQLite error code. Otherwise, SQLITE_OK. 3047 */ 3048 static int pagerUndoCallback(void *pCtx, Pgno iPg){ 3049 int rc = SQLITE_OK; 3050 Pager *pPager = (Pager *)pCtx; 3051 PgHdr *pPg; 3052 3053 assert( pagerUseWal(pPager) ); 3054 pPg = sqlite3PagerLookup(pPager, iPg); 3055 if( pPg ){ 3056 if( sqlite3PcachePageRefcount(pPg)==1 ){ 3057 sqlite3PcacheDrop(pPg); 3058 }else{ 3059 rc = readDbPage(pPg); 3060 if( rc==SQLITE_OK ){ 3061 pPager->xReiniter(pPg); 3062 } 3063 sqlite3PagerUnrefNotNull(pPg); 3064 } 3065 } 3066 3067 /* Normally, if a transaction is rolled back, any backup processes are 3068 ** updated as data is copied out of the rollback journal and into the 3069 ** database. This is not generally possible with a WAL database, as 3070 ** rollback involves simply truncating the log file. Therefore, if one 3071 ** or more frames have already been written to the log (and therefore 3072 ** also copied into the backup databases) as part of this transaction, 3073 ** the backups must be restarted. 3074 */ 3075 sqlite3BackupRestart(pPager->pBackup); 3076 3077 return rc; 3078 } 3079 3080 /* 3081 ** This function is called to rollback a transaction on a WAL database. 3082 */ 3083 static int pagerRollbackWal(Pager *pPager){ 3084 int rc; /* Return Code */ 3085 PgHdr *pList; /* List of dirty pages to revert */ 3086 3087 /* For all pages in the cache that are currently dirty or have already 3088 ** been written (but not committed) to the log file, do one of the 3089 ** following: 3090 ** 3091 ** + Discard the cached page (if refcount==0), or 3092 ** + Reload page content from the database (if refcount>0). 3093 */ 3094 pPager->dbSize = pPager->dbOrigSize; 3095 rc = sqlite3WalUndo(pPager->pWal, pagerUndoCallback, (void *)pPager); 3096 pList = sqlite3PcacheDirtyList(pPager->pPCache); 3097 while( pList && rc==SQLITE_OK ){ 3098 PgHdr *pNext = pList->pDirty; 3099 rc = pagerUndoCallback((void *)pPager, pList->pgno); 3100 pList = pNext; 3101 } 3102 3103 return rc; 3104 } 3105 3106 /* 3107 ** This function is a wrapper around sqlite3WalFrames(). As well as logging 3108 ** the contents of the list of pages headed by pList (connected by pDirty), 3109 ** this function notifies any active backup processes that the pages have 3110 ** changed. 3111 ** 3112 ** The list of pages passed into this routine is always sorted by page number. 3113 ** Hence, if page 1 appears anywhere on the list, it will be the first page. 3114 */ 3115 static int pagerWalFrames( 3116 Pager *pPager, /* Pager object */ 3117 PgHdr *pList, /* List of frames to log */ 3118 Pgno nTruncate, /* Database size after this commit */ 3119 int isCommit /* True if this is a commit */ 3120 ){ 3121 int rc; /* Return code */ 3122 int nList; /* Number of pages in pList */ 3123 PgHdr *p; /* For looping over pages */ 3124 3125 assert( pPager->pWal ); 3126 assert( pList ); 3127 #ifdef SQLITE_DEBUG 3128 /* Verify that the page list is in accending order */ 3129 for(p=pList; p && p->pDirty; p=p->pDirty){ 3130 assert( p->pgno < p->pDirty->pgno ); 3131 } 3132 #endif 3133 3134 assert( pList->pDirty==0 || isCommit ); 3135 if( isCommit ){ 3136 /* If a WAL transaction is being committed, there is no point in writing 3137 ** any pages with page numbers greater than nTruncate into the WAL file. 3138 ** They will never be read by any client. So remove them from the pDirty 3139 ** list here. */ 3140 PgHdr **ppNext = &pList; 3141 nList = 0; 3142 for(p=pList; (*ppNext = p)!=0; p=p->pDirty){ 3143 if( p->pgno<=nTruncate ){ 3144 ppNext = &p->pDirty; 3145 nList++; 3146 } 3147 } 3148 assert( pList ); 3149 }else{ 3150 nList = 1; 3151 } 3152 pPager->aStat[PAGER_STAT_WRITE] += nList; 3153 3154 if( pList->pgno==1 ) pager_write_changecounter(pList); 3155 rc = sqlite3WalFrames(pPager->pWal, 3156 pPager->pageSize, pList, nTruncate, isCommit, pPager->walSyncFlags 3157 ); 3158 if( rc==SQLITE_OK && pPager->pBackup ){ 3159 for(p=pList; p; p=p->pDirty){ 3160 sqlite3BackupUpdate(pPager->pBackup, p->pgno, (u8 *)p->pData); 3161 } 3162 } 3163 3164 #ifdef SQLITE_CHECK_PAGES 3165 pList = sqlite3PcacheDirtyList(pPager->pPCache); 3166 for(p=pList; p; p=p->pDirty){ 3167 pager_set_pagehash(p); 3168 } 3169 #endif 3170 3171 return rc; 3172 } 3173 3174 /* 3175 ** Begin a read transaction on the WAL. 3176 ** 3177 ** This routine used to be called "pagerOpenSnapshot()" because it essentially 3178 ** makes a snapshot of the database at the current point in time and preserves 3179 ** that snapshot for use by the reader in spite of concurrently changes by 3180 ** other writers or checkpointers. 3181 */ 3182 static int pagerBeginReadTransaction(Pager *pPager){ 3183 int rc; /* Return code */ 3184 int changed = 0; /* True if cache must be reset */ 3185 3186 assert( pagerUseWal(pPager) ); 3187 assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); 3188 3189 /* sqlite3WalEndReadTransaction() was not called for the previous 3190 ** transaction in locking_mode=EXCLUSIVE. So call it now. If we 3191 ** are in locking_mode=NORMAL and EndRead() was previously called, 3192 ** the duplicate call is harmless. 3193 */ 3194 sqlite3WalEndReadTransaction(pPager->pWal); 3195 3196 rc = sqlite3WalBeginReadTransaction(pPager->pWal, &changed); 3197 if( rc!=SQLITE_OK || changed ){ 3198 pager_reset(pPager); 3199 if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0); 3200 } 3201 3202 return rc; 3203 } 3204 #endif 3205 3206 /* 3207 ** This function is called as part of the transition from PAGER_OPEN 3208 ** to PAGER_READER state to determine the size of the database file 3209 ** in pages (assuming the page size currently stored in Pager.pageSize). 3210 ** 3211 ** If no error occurs, SQLITE_OK is returned and the size of the database 3212 ** in pages is stored in *pnPage. Otherwise, an error code (perhaps 3213 ** SQLITE_IOERR_FSTAT) is returned and *pnPage is left unmodified. 3214 */ 3215 static int pagerPagecount(Pager *pPager, Pgno *pnPage){ 3216 Pgno nPage; /* Value to return via *pnPage */ 3217 3218 /* Query the WAL sub-system for the database size. The WalDbsize() 3219 ** function returns zero if the WAL is not open (i.e. Pager.pWal==0), or 3220 ** if the database size is not available. The database size is not 3221 ** available from the WAL sub-system if the log file is empty or 3222 ** contains no valid committed transactions. 3223 */ 3224 assert( pPager->eState==PAGER_OPEN ); 3225 assert( pPager->eLock>=SHARED_LOCK ); 3226 assert( isOpen(pPager->fd) ); 3227 assert( pPager->tempFile==0 ); 3228 nPage = sqlite3WalDbsize(pPager->pWal); 3229 3230 /* If the number of pages in the database is not available from the 3231 ** WAL sub-system, determine the page count based on the size of 3232 ** the database file. If the size of the database file is not an 3233 ** integer multiple of the page-size, round up the result. 3234 */ 3235 if( nPage==0 && ALWAYS(isOpen(pPager->fd)) ){ 3236 i64 n = 0; /* Size of db file in bytes */ 3237 int rc = sqlite3OsFileSize(pPager->fd, &n); 3238 if( rc!=SQLITE_OK ){ 3239 return rc; 3240 } 3241 nPage = (Pgno)((n+pPager->pageSize-1) / pPager->pageSize); 3242 } 3243 3244 /* If the current number of pages in the file is greater than the 3245 ** configured maximum pager number, increase the allowed limit so 3246 ** that the file can be read. 3247 */ 3248 if( nPage>pPager->mxPgno ){ 3249 pPager->mxPgno = (Pgno)nPage; 3250 } 3251 3252 *pnPage = nPage; 3253 return SQLITE_OK; 3254 } 3255 3256 #ifndef SQLITE_OMIT_WAL 3257 /* 3258 ** Check if the *-wal file that corresponds to the database opened by pPager 3259 ** exists if the database is not empy, or verify that the *-wal file does 3260 ** not exist (by deleting it) if the database file is empty. 3261 ** 3262 ** If the database is not empty and the *-wal file exists, open the pager 3263 ** in WAL mode. If the database is empty or if no *-wal file exists and 3264 ** if no error occurs, make sure Pager.journalMode is not set to 3265 ** PAGER_JOURNALMODE_WAL. 3266 ** 3267 ** Return SQLITE_OK or an error code. 3268 ** 3269 ** The caller must hold a SHARED lock on the database file to call this 3270 ** function. Because an EXCLUSIVE lock on the db file is required to delete 3271 ** a WAL on a none-empty database, this ensures there is no race condition 3272 ** between the xAccess() below and an xDelete() being executed by some 3273 ** other connection. 3274 */ 3275 static int pagerOpenWalIfPresent(Pager *pPager){ 3276 int rc = SQLITE_OK; 3277 assert( pPager->eState==PAGER_OPEN ); 3278 assert( pPager->eLock>=SHARED_LOCK ); 3279 3280 if( !pPager->tempFile ){ 3281 int isWal; /* True if WAL file exists */ 3282 rc = sqlite3OsAccess( 3283 pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &isWal 3284 ); 3285 if( rc==SQLITE_OK ){ 3286 if( isWal ){ 3287 Pgno nPage; /* Size of the database file */ 3288 3289 rc = pagerPagecount(pPager, &nPage); 3290 if( rc ) return rc; 3291 if( nPage==0 ){ 3292 rc = sqlite3OsDelete(pPager->pVfs, pPager->zWal, 0); 3293 }else{ 3294 testcase( sqlite3PcachePagecount(pPager->pPCache)==0 ); 3295 rc = sqlite3PagerOpenWal(pPager, 0); 3296 } 3297 }else if( pPager->journalMode==PAGER_JOURNALMODE_WAL ){ 3298 pPager->journalMode = PAGER_JOURNALMODE_DELETE; 3299 } 3300 } 3301 } 3302 return rc; 3303 } 3304 #endif 3305 3306 /* 3307 ** Playback savepoint pSavepoint. Or, if pSavepoint==NULL, then playback 3308 ** the entire super-journal file. The case pSavepoint==NULL occurs when 3309 ** a ROLLBACK TO command is invoked on a SAVEPOINT that is a transaction 3310 ** savepoint. 3311 ** 3312 ** When pSavepoint is not NULL (meaning a non-transaction savepoint is 3313 ** being rolled back), then the rollback consists of up to three stages, 3314 ** performed in the order specified: 3315 ** 3316 ** * Pages are played back from the main journal starting at byte 3317 ** offset PagerSavepoint.iOffset and continuing to 3318 ** PagerSavepoint.iHdrOffset, or to the end of the main journal 3319 ** file if PagerSavepoint.iHdrOffset is zero. 3320 ** 3321 ** * If PagerSavepoint.iHdrOffset is not zero, then pages are played 3322 ** back starting from the journal header immediately following 3323 ** PagerSavepoint.iHdrOffset to the end of the main journal file. 3324 ** 3325 ** * Pages are then played back from the sub-journal file, starting 3326 ** with the PagerSavepoint.iSubRec and continuing to the end of 3327 ** the journal file. 3328 ** 3329 ** Throughout the rollback process, each time a page is rolled back, the 3330 ** corresponding bit is set in a bitvec structure (variable pDone in the 3331 ** implementation below). This is used to ensure that a page is only 3332 ** rolled back the first time it is encountered in either journal. 3333 ** 3334 ** If pSavepoint is NULL, then pages are only played back from the main 3335 ** journal file. There is no need for a bitvec in this case. 3336 ** 3337 ** In either case, before playback commences the Pager.dbSize variable 3338 ** is reset to the value that it held at the start of the savepoint 3339 ** (or transaction). No page with a page-number greater than this value 3340 ** is played back. If one is encountered it is simply skipped. 3341 */ 3342 static int pagerPlaybackSavepoint(Pager *pPager, PagerSavepoint *pSavepoint){ 3343 i64 szJ; /* Effective size of the main journal */ 3344 i64 iHdrOff; /* End of first segment of main-journal records */ 3345 int rc = SQLITE_OK; /* Return code */ 3346 Bitvec *pDone = 0; /* Bitvec to ensure pages played back only once */ 3347 3348 assert( pPager->eState!=PAGER_ERROR ); 3349 assert( pPager->eState>=PAGER_WRITER_LOCKED ); 3350 3351 /* Allocate a bitvec to use to store the set of pages rolled back */ 3352 if( pSavepoint ){ 3353 pDone = sqlite3BitvecCreate(pSavepoint->nOrig); 3354 if( !pDone ){ 3355 return SQLITE_NOMEM_BKPT; 3356 } 3357 } 3358 3359 /* Set the database size back to the value it was before the savepoint 3360 ** being reverted was opened. 3361 */ 3362 pPager->dbSize = pSavepoint ? pSavepoint->nOrig : pPager->dbOrigSize; 3363 pPager->changeCountDone = pPager->tempFile; 3364 3365 if( !pSavepoint && pagerUseWal(pPager) ){ 3366 return pagerRollbackWal(pPager); 3367 } 3368 3369 /* Use pPager->journalOff as the effective size of the main rollback 3370 ** journal. The actual file might be larger than this in 3371 ** PAGER_JOURNALMODE_TRUNCATE or PAGER_JOURNALMODE_PERSIST. But anything 3372 ** past pPager->journalOff is off-limits to us. 3373 */ 3374 szJ = pPager->journalOff; 3375 assert( pagerUseWal(pPager)==0 || szJ==0 ); 3376 3377 /* Begin by rolling back records from the main journal starting at 3378 ** PagerSavepoint.iOffset and continuing to the next journal header. 3379 ** There might be records in the main journal that have a page number 3380 ** greater than the current database size (pPager->dbSize) but those 3381 ** will be skipped automatically. Pages are added to pDone as they 3382 ** are played back. 3383 */ 3384 if( pSavepoint && !pagerUseWal(pPager) ){ 3385 iHdrOff = pSavepoint->iHdrOffset ? pSavepoint->iHdrOffset : szJ; 3386 pPager->journalOff = pSavepoint->iOffset; 3387 while( rc==SQLITE_OK && pPager->journalOff<iHdrOff ){ 3388 rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1); 3389 } 3390 assert( rc!=SQLITE_DONE ); 3391 }else{ 3392 pPager->journalOff = 0; 3393 } 3394 3395 /* Continue rolling back records out of the main journal starting at 3396 ** the first journal header seen and continuing until the effective end 3397 ** of the main journal file. Continue to skip out-of-range pages and 3398 ** continue adding pages rolled back to pDone. 3399 */ 3400 while( rc==SQLITE_OK && pPager->journalOff<szJ ){ 3401 u32 ii; /* Loop counter */ 3402 u32 nJRec = 0; /* Number of Journal Records */ 3403 u32 dummy; 3404 rc = readJournalHdr(pPager, 0, szJ, &nJRec, &dummy); 3405 assert( rc!=SQLITE_DONE ); 3406 3407 /* 3408 ** The "pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff" 3409 ** test is related to ticket #2565. See the discussion in the 3410 ** pager_playback() function for additional information. 3411 */ 3412 if( nJRec==0 3413 && pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff 3414 ){ 3415 nJRec = (u32)((szJ - pPager->journalOff)/JOURNAL_PG_SZ(pPager)); 3416 } 3417 for(ii=0; rc==SQLITE_OK && ii<nJRec && pPager->journalOff<szJ; ii++){ 3418 rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1); 3419 } 3420 assert( rc!=SQLITE_DONE ); 3421 } 3422 assert( rc!=SQLITE_OK || pPager->journalOff>=szJ ); 3423 3424 /* Finally, rollback pages from the sub-journal. Page that were 3425 ** previously rolled back out of the main journal (and are hence in pDone) 3426 ** will be skipped. Out-of-range pages are also skipped. 3427 */ 3428 if( pSavepoint ){ 3429 u32 ii; /* Loop counter */ 3430 i64 offset = (i64)pSavepoint->iSubRec*(4+pPager->pageSize); 3431 3432 if( pagerUseWal(pPager) ){ 3433 rc = sqlite3WalSavepointUndo(pPager->pWal, pSavepoint->aWalData); 3434 } 3435 for(ii=pSavepoint->iSubRec; rc==SQLITE_OK && ii<pPager->nSubRec; ii++){ 3436 assert( offset==(i64)ii*(4+pPager->pageSize) ); 3437 rc = pager_playback_one_page(pPager, &offset, pDone, 0, 1); 3438 } 3439 assert( rc!=SQLITE_DONE ); 3440 } 3441 3442 sqlite3BitvecDestroy(pDone); 3443 if( rc==SQLITE_OK ){ 3444 pPager->journalOff = szJ; 3445 } 3446 3447 return rc; 3448 } 3449 3450 /* 3451 ** Change the maximum number of in-memory pages that are allowed 3452 ** before attempting to recycle clean and unused pages. 3453 */ 3454 void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){ 3455 sqlite3PcacheSetCachesize(pPager->pPCache, mxPage); 3456 } 3457 3458 /* 3459 ** Change the maximum number of in-memory pages that are allowed 3460 ** before attempting to spill pages to journal. 3461 */ 3462 int sqlite3PagerSetSpillsize(Pager *pPager, int mxPage){ 3463 return sqlite3PcacheSetSpillsize(pPager->pPCache, mxPage); 3464 } 3465 3466 /* 3467 ** Invoke SQLITE_FCNTL_MMAP_SIZE based on the current value of szMmap. 3468 */ 3469 static void pagerFixMaplimit(Pager *pPager){ 3470 #if SQLITE_MAX_MMAP_SIZE>0 3471 sqlite3_file *fd = pPager->fd; 3472 if( isOpen(fd) && fd->pMethods->iVersion>=3 ){ 3473 sqlite3_int64 sz; 3474 sz = pPager->szMmap; 3475 pPager->bUseFetch = (sz>0); 3476 setGetterMethod(pPager); 3477 sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_MMAP_SIZE, &sz); 3478 } 3479 #endif 3480 } 3481 3482 /* 3483 ** Change the maximum size of any memory mapping made of the database file. 3484 */ 3485 void sqlite3PagerSetMmapLimit(Pager *pPager, sqlite3_int64 szMmap){ 3486 pPager->szMmap = szMmap; 3487 pagerFixMaplimit(pPager); 3488 } 3489 3490 /* 3491 ** Free as much memory as possible from the pager. 3492 */ 3493 void sqlite3PagerShrink(Pager *pPager){ 3494 sqlite3PcacheShrink(pPager->pPCache); 3495 } 3496 3497 /* 3498 ** Adjust settings of the pager to those specified in the pgFlags parameter. 3499 ** 3500 ** The "level" in pgFlags & PAGER_SYNCHRONOUS_MASK sets the robustness 3501 ** of the database to damage due to OS crashes or power failures by 3502 ** changing the number of syncs()s when writing the journals. 3503 ** There are four levels: 3504 ** 3505 ** OFF sqlite3OsSync() is never called. This is the default 3506 ** for temporary and transient files. 3507 ** 3508 ** NORMAL The journal is synced once before writes begin on the 3509 ** database. This is normally adequate protection, but 3510 ** it is theoretically possible, though very unlikely, 3511 ** that an inopertune power failure could leave the journal 3512 ** in a state which would cause damage to the database 3513 ** when it is rolled back. 3514 ** 3515 ** FULL The journal is synced twice before writes begin on the 3516 ** database (with some additional information - the nRec field 3517 ** of the journal header - being written in between the two 3518 ** syncs). If we assume that writing a 3519 ** single disk sector is atomic, then this mode provides 3520 ** assurance that the journal will not be corrupted to the 3521 ** point of causing damage to the database during rollback. 3522 ** 3523 ** EXTRA This is like FULL except that is also syncs the directory 3524 ** that contains the rollback journal after the rollback 3525 ** journal is unlinked. 3526 ** 3527 ** The above is for a rollback-journal mode. For WAL mode, OFF continues 3528 ** to mean that no syncs ever occur. NORMAL means that the WAL is synced 3529 ** prior to the start of checkpoint and that the database file is synced 3530 ** at the conclusion of the checkpoint if the entire content of the WAL 3531 ** was written back into the database. But no sync operations occur for 3532 ** an ordinary commit in NORMAL mode with WAL. FULL means that the WAL 3533 ** file is synced following each commit operation, in addition to the 3534 ** syncs associated with NORMAL. There is no difference between FULL 3535 ** and EXTRA for WAL mode. 3536 ** 3537 ** Do not confuse synchronous=FULL with SQLITE_SYNC_FULL. The 3538 ** SQLITE_SYNC_FULL macro means to use the MacOSX-style full-fsync 3539 ** using fcntl(F_FULLFSYNC). SQLITE_SYNC_NORMAL means to do an 3540 ** ordinary fsync() call. There is no difference between SQLITE_SYNC_FULL 3541 ** and SQLITE_SYNC_NORMAL on platforms other than MacOSX. But the 3542 ** synchronous=FULL versus synchronous=NORMAL setting determines when 3543 ** the xSync primitive is called and is relevant to all platforms. 3544 ** 3545 ** Numeric values associated with these states are OFF==1, NORMAL=2, 3546 ** and FULL=3. 3547 */ 3548 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 3549 void sqlite3PagerSetFlags( 3550 Pager *pPager, /* The pager to set safety level for */ 3551 unsigned pgFlags /* Various flags */ 3552 ){ 3553 unsigned level = pgFlags & PAGER_SYNCHRONOUS_MASK; 3554 if( pPager->tempFile ){ 3555 pPager->noSync = 1; 3556 pPager->fullSync = 0; 3557 pPager->extraSync = 0; 3558 }else{ 3559 pPager->noSync = level==PAGER_SYNCHRONOUS_OFF ?1:0; 3560 pPager->fullSync = level>=PAGER_SYNCHRONOUS_FULL ?1:0; 3561 pPager->extraSync = level==PAGER_SYNCHRONOUS_EXTRA ?1:0; 3562 } 3563 if( pPager->noSync ){ 3564 pPager->syncFlags = 0; 3565 }else if( pgFlags & PAGER_FULLFSYNC ){ 3566 pPager->syncFlags = SQLITE_SYNC_FULL; 3567 }else{ 3568 pPager->syncFlags = SQLITE_SYNC_NORMAL; 3569 } 3570 pPager->walSyncFlags = (pPager->syncFlags<<2); 3571 if( pPager->fullSync ){ 3572 pPager->walSyncFlags |= pPager->syncFlags; 3573 } 3574 if( (pgFlags & PAGER_CKPT_FULLFSYNC) && !pPager->noSync ){ 3575 pPager->walSyncFlags |= (SQLITE_SYNC_FULL<<2); 3576 } 3577 if( pgFlags & PAGER_CACHESPILL ){ 3578 pPager->doNotSpill &= ~SPILLFLAG_OFF; 3579 }else{ 3580 pPager->doNotSpill |= SPILLFLAG_OFF; 3581 } 3582 } 3583 #endif 3584 3585 /* 3586 ** The following global variable is incremented whenever the library 3587 ** attempts to open a temporary file. This information is used for 3588 ** testing and analysis only. 3589 */ 3590 #ifdef SQLITE_TEST 3591 int sqlite3_opentemp_count = 0; 3592 #endif 3593 3594 /* 3595 ** Open a temporary file. 3596 ** 3597 ** Write the file descriptor into *pFile. Return SQLITE_OK on success 3598 ** or some other error code if we fail. The OS will automatically 3599 ** delete the temporary file when it is closed. 3600 ** 3601 ** The flags passed to the VFS layer xOpen() call are those specified 3602 ** by parameter vfsFlags ORed with the following: 3603 ** 3604 ** SQLITE_OPEN_READWRITE 3605 ** SQLITE_OPEN_CREATE 3606 ** SQLITE_OPEN_EXCLUSIVE 3607 ** SQLITE_OPEN_DELETEONCLOSE 3608 */ 3609 static int pagerOpentemp( 3610 Pager *pPager, /* The pager object */ 3611 sqlite3_file *pFile, /* Write the file descriptor here */ 3612 int vfsFlags /* Flags passed through to the VFS */ 3613 ){ 3614 int rc; /* Return code */ 3615 3616 #ifdef SQLITE_TEST 3617 sqlite3_opentemp_count++; /* Used for testing and analysis only */ 3618 #endif 3619 3620 vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | 3621 SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE; 3622 rc = sqlite3OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0); 3623 assert( rc!=SQLITE_OK || isOpen(pFile) ); 3624 return rc; 3625 } 3626 3627 /* 3628 ** Set the busy handler function. 3629 ** 3630 ** The pager invokes the busy-handler if sqlite3OsLock() returns 3631 ** SQLITE_BUSY when trying to upgrade from no-lock to a SHARED lock, 3632 ** or when trying to upgrade from a RESERVED lock to an EXCLUSIVE 3633 ** lock. It does *not* invoke the busy handler when upgrading from 3634 ** SHARED to RESERVED, or when upgrading from SHARED to EXCLUSIVE 3635 ** (which occurs during hot-journal rollback). Summary: 3636 ** 3637 ** Transition | Invokes xBusyHandler 3638 ** -------------------------------------------------------- 3639 ** NO_LOCK -> SHARED_LOCK | Yes 3640 ** SHARED_LOCK -> RESERVED_LOCK | No 3641 ** SHARED_LOCK -> EXCLUSIVE_LOCK | No 3642 ** RESERVED_LOCK -> EXCLUSIVE_LOCK | Yes 3643 ** 3644 ** If the busy-handler callback returns non-zero, the lock is 3645 ** retried. If it returns zero, then the SQLITE_BUSY error is 3646 ** returned to the caller of the pager API function. 3647 */ 3648 void sqlite3PagerSetBusyHandler( 3649 Pager *pPager, /* Pager object */ 3650 int (*xBusyHandler)(void *), /* Pointer to busy-handler function */ 3651 void *pBusyHandlerArg /* Argument to pass to xBusyHandler */ 3652 ){ 3653 void **ap; 3654 pPager->xBusyHandler = xBusyHandler; 3655 pPager->pBusyHandlerArg = pBusyHandlerArg; 3656 ap = (void **)&pPager->xBusyHandler; 3657 assert( ((int(*)(void *))(ap[0]))==xBusyHandler ); 3658 assert( ap[1]==pBusyHandlerArg ); 3659 sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_BUSYHANDLER, (void *)ap); 3660 } 3661 3662 /* 3663 ** Change the page size used by the Pager object. The new page size 3664 ** is passed in *pPageSize. 3665 ** 3666 ** If the pager is in the error state when this function is called, it 3667 ** is a no-op. The value returned is the error state error code (i.e. 3668 ** one of SQLITE_IOERR, an SQLITE_IOERR_xxx sub-code or SQLITE_FULL). 3669 ** 3670 ** Otherwise, if all of the following are true: 3671 ** 3672 ** * the new page size (value of *pPageSize) is valid (a power 3673 ** of two between 512 and SQLITE_MAX_PAGE_SIZE, inclusive), and 3674 ** 3675 ** * there are no outstanding page references, and 3676 ** 3677 ** * the database is either not an in-memory database or it is 3678 ** an in-memory database that currently consists of zero pages. 3679 ** 3680 ** then the pager object page size is set to *pPageSize. 3681 ** 3682 ** If the page size is changed, then this function uses sqlite3PagerMalloc() 3683 ** to obtain a new Pager.pTmpSpace buffer. If this allocation attempt 3684 ** fails, SQLITE_NOMEM is returned and the page size remains unchanged. 3685 ** In all other cases, SQLITE_OK is returned. 3686 ** 3687 ** If the page size is not changed, either because one of the enumerated 3688 ** conditions above is not true, the pager was in error state when this 3689 ** function was called, or because the memory allocation attempt failed, 3690 ** then *pPageSize is set to the old, retained page size before returning. 3691 */ 3692 int sqlite3PagerSetPagesize(Pager *pPager, u32 *pPageSize, int nReserve){ 3693 int rc = SQLITE_OK; 3694 3695 /* It is not possible to do a full assert_pager_state() here, as this 3696 ** function may be called from within PagerOpen(), before the state 3697 ** of the Pager object is internally consistent. 3698 ** 3699 ** At one point this function returned an error if the pager was in 3700 ** PAGER_ERROR state. But since PAGER_ERROR state guarantees that 3701 ** there is at least one outstanding page reference, this function 3702 ** is a no-op for that case anyhow. 3703 */ 3704 3705 u32 pageSize = *pPageSize; 3706 assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) ); 3707 if( (pPager->memDb==0 || pPager->dbSize==0) 3708 && sqlite3PcacheRefCount(pPager->pPCache)==0 3709 && pageSize && pageSize!=(u32)pPager->pageSize 3710 ){ 3711 char *pNew = NULL; /* New temp space */ 3712 i64 nByte = 0; 3713 3714 if( pPager->eState>PAGER_OPEN && isOpen(pPager->fd) ){ 3715 rc = sqlite3OsFileSize(pPager->fd, &nByte); 3716 } 3717 if( rc==SQLITE_OK ){ 3718 /* 8 bytes of zeroed overrun space is sufficient so that the b-tree 3719 * cell header parser will never run off the end of the allocation */ 3720 pNew = (char *)sqlite3PageMalloc(pageSize+8); 3721 if( !pNew ){ 3722 rc = SQLITE_NOMEM_BKPT; 3723 }else{ 3724 memset(pNew+pageSize, 0, 8); 3725 } 3726 } 3727 3728 if( rc==SQLITE_OK ){ 3729 pager_reset(pPager); 3730 rc = sqlite3PcacheSetPageSize(pPager->pPCache, pageSize); 3731 } 3732 if( rc==SQLITE_OK ){ 3733 sqlite3PageFree(pPager->pTmpSpace); 3734 pPager->pTmpSpace = pNew; 3735 pPager->dbSize = (Pgno)((nByte+pageSize-1)/pageSize); 3736 pPager->pageSize = pageSize; 3737 }else{ 3738 sqlite3PageFree(pNew); 3739 } 3740 } 3741 3742 *pPageSize = pPager->pageSize; 3743 if( rc==SQLITE_OK ){ 3744 if( nReserve<0 ) nReserve = pPager->nReserve; 3745 assert( nReserve>=0 && nReserve<1000 ); 3746 pPager->nReserve = (i16)nReserve; 3747 pagerFixMaplimit(pPager); 3748 } 3749 return rc; 3750 } 3751 3752 /* 3753 ** Return a pointer to the "temporary page" buffer held internally 3754 ** by the pager. This is a buffer that is big enough to hold the 3755 ** entire content of a database page. This buffer is used internally 3756 ** during rollback and will be overwritten whenever a rollback 3757 ** occurs. But other modules are free to use it too, as long as 3758 ** no rollbacks are happening. 3759 */ 3760 void *sqlite3PagerTempSpace(Pager *pPager){ 3761 return pPager->pTmpSpace; 3762 } 3763 3764 /* 3765 ** Attempt to set the maximum database page count if mxPage is positive. 3766 ** Make no changes if mxPage is zero or negative. And never reduce the 3767 ** maximum page count below the current size of the database. 3768 ** 3769 ** Regardless of mxPage, return the current maximum page count. 3770 */ 3771 Pgno sqlite3PagerMaxPageCount(Pager *pPager, Pgno mxPage){ 3772 if( mxPage>0 ){ 3773 pPager->mxPgno = mxPage; 3774 } 3775 assert( pPager->eState!=PAGER_OPEN ); /* Called only by OP_MaxPgcnt */ 3776 /* assert( pPager->mxPgno>=pPager->dbSize ); */ 3777 /* OP_MaxPgcnt ensures that the parameter passed to this function is not 3778 ** less than the total number of valid pages in the database. But this 3779 ** may be less than Pager.dbSize, and so the assert() above is not valid */ 3780 return pPager->mxPgno; 3781 } 3782 3783 /* 3784 ** The following set of routines are used to disable the simulated 3785 ** I/O error mechanism. These routines are used to avoid simulated 3786 ** errors in places where we do not care about errors. 3787 ** 3788 ** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops 3789 ** and generate no code. 3790 */ 3791 #ifdef SQLITE_TEST 3792 extern int sqlite3_io_error_pending; 3793 extern int sqlite3_io_error_hit; 3794 static int saved_cnt; 3795 void disable_simulated_io_errors(void){ 3796 saved_cnt = sqlite3_io_error_pending; 3797 sqlite3_io_error_pending = -1; 3798 } 3799 void enable_simulated_io_errors(void){ 3800 sqlite3_io_error_pending = saved_cnt; 3801 } 3802 #else 3803 # define disable_simulated_io_errors() 3804 # define enable_simulated_io_errors() 3805 #endif 3806 3807 /* 3808 ** Read the first N bytes from the beginning of the file into memory 3809 ** that pDest points to. 3810 ** 3811 ** If the pager was opened on a transient file (zFilename==""), or 3812 ** opened on a file less than N bytes in size, the output buffer is 3813 ** zeroed and SQLITE_OK returned. The rationale for this is that this 3814 ** function is used to read database headers, and a new transient or 3815 ** zero sized database has a header than consists entirely of zeroes. 3816 ** 3817 ** If any IO error apart from SQLITE_IOERR_SHORT_READ is encountered, 3818 ** the error code is returned to the caller and the contents of the 3819 ** output buffer undefined. 3820 */ 3821 int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){ 3822 int rc = SQLITE_OK; 3823 memset(pDest, 0, N); 3824 assert( isOpen(pPager->fd) || pPager->tempFile ); 3825 3826 /* This routine is only called by btree immediately after creating 3827 ** the Pager object. There has not been an opportunity to transition 3828 ** to WAL mode yet. 3829 */ 3830 assert( !pagerUseWal(pPager) ); 3831 3832 if( isOpen(pPager->fd) ){ 3833 IOTRACE(("DBHDR %p 0 %d\n", pPager, N)) 3834 rc = sqlite3OsRead(pPager->fd, pDest, N, 0); 3835 if( rc==SQLITE_IOERR_SHORT_READ ){ 3836 rc = SQLITE_OK; 3837 } 3838 } 3839 return rc; 3840 } 3841 3842 /* 3843 ** This function may only be called when a read-transaction is open on 3844 ** the pager. It returns the total number of pages in the database. 3845 ** 3846 ** However, if the file is between 1 and <page-size> bytes in size, then 3847 ** this is considered a 1 page file. 3848 */ 3849 void sqlite3PagerPagecount(Pager *pPager, int *pnPage){ 3850 assert( pPager->eState>=PAGER_READER ); 3851 assert( pPager->eState!=PAGER_WRITER_FINISHED ); 3852 *pnPage = (int)pPager->dbSize; 3853 } 3854 3855 3856 /* 3857 ** Try to obtain a lock of type locktype on the database file. If 3858 ** a similar or greater lock is already held, this function is a no-op 3859 ** (returning SQLITE_OK immediately). 3860 ** 3861 ** Otherwise, attempt to obtain the lock using sqlite3OsLock(). Invoke 3862 ** the busy callback if the lock is currently not available. Repeat 3863 ** until the busy callback returns false or until the attempt to 3864 ** obtain the lock succeeds. 3865 ** 3866 ** Return SQLITE_OK on success and an error code if we cannot obtain 3867 ** the lock. If the lock is obtained successfully, set the Pager.state 3868 ** variable to locktype before returning. 3869 */ 3870 static int pager_wait_on_lock(Pager *pPager, int locktype){ 3871 int rc; /* Return code */ 3872 3873 /* Check that this is either a no-op (because the requested lock is 3874 ** already held), or one of the transitions that the busy-handler 3875 ** may be invoked during, according to the comment above 3876 ** sqlite3PagerSetBusyhandler(). 3877 */ 3878 assert( (pPager->eLock>=locktype) 3879 || (pPager->eLock==NO_LOCK && locktype==SHARED_LOCK) 3880 || (pPager->eLock==RESERVED_LOCK && locktype==EXCLUSIVE_LOCK) 3881 ); 3882 3883 do { 3884 rc = pagerLockDb(pPager, locktype); 3885 }while( rc==SQLITE_BUSY && pPager->xBusyHandler(pPager->pBusyHandlerArg) ); 3886 return rc; 3887 } 3888 3889 /* 3890 ** Function assertTruncateConstraint(pPager) checks that one of the 3891 ** following is true for all dirty pages currently in the page-cache: 3892 ** 3893 ** a) The page number is less than or equal to the size of the 3894 ** current database image, in pages, OR 3895 ** 3896 ** b) if the page content were written at this time, it would not 3897 ** be necessary to write the current content out to the sub-journal 3898 ** (as determined by function subjRequiresPage()). 3899 ** 3900 ** If the condition asserted by this function were not true, and the 3901 ** dirty page were to be discarded from the cache via the pagerStress() 3902 ** routine, pagerStress() would not write the current page content to 3903 ** the database file. If a savepoint transaction were rolled back after 3904 ** this happened, the correct behavior would be to restore the current 3905 ** content of the page. However, since this content is not present in either 3906 ** the database file or the portion of the rollback journal and 3907 ** sub-journal rolled back the content could not be restored and the 3908 ** database image would become corrupt. It is therefore fortunate that 3909 ** this circumstance cannot arise. 3910 */ 3911 #if defined(SQLITE_DEBUG) 3912 static void assertTruncateConstraintCb(PgHdr *pPg){ 3913 assert( pPg->flags&PGHDR_DIRTY ); 3914 assert( !subjRequiresPage(pPg) || pPg->pgno<=pPg->pPager->dbSize ); 3915 } 3916 static void assertTruncateConstraint(Pager *pPager){ 3917 sqlite3PcacheIterateDirty(pPager->pPCache, assertTruncateConstraintCb); 3918 } 3919 #else 3920 # define assertTruncateConstraint(pPager) 3921 #endif 3922 3923 /* 3924 ** Truncate the in-memory database file image to nPage pages. This 3925 ** function does not actually modify the database file on disk. It 3926 ** just sets the internal state of the pager object so that the 3927 ** truncation will be done when the current transaction is committed. 3928 ** 3929 ** This function is only called right before committing a transaction. 3930 ** Once this function has been called, the transaction must either be 3931 ** rolled back or committed. It is not safe to call this function and 3932 ** then continue writing to the database. 3933 */ 3934 void sqlite3PagerTruncateImage(Pager *pPager, Pgno nPage){ 3935 assert( pPager->dbSize>=nPage ); 3936 assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); 3937 pPager->dbSize = nPage; 3938 3939 /* At one point the code here called assertTruncateConstraint() to 3940 ** ensure that all pages being truncated away by this operation are, 3941 ** if one or more savepoints are open, present in the savepoint 3942 ** journal so that they can be restored if the savepoint is rolled 3943 ** back. This is no longer necessary as this function is now only 3944 ** called right before committing a transaction. So although the 3945 ** Pager object may still have open savepoints (Pager.nSavepoint!=0), 3946 ** they cannot be rolled back. So the assertTruncateConstraint() call 3947 ** is no longer correct. */ 3948 } 3949 3950 3951 /* 3952 ** This function is called before attempting a hot-journal rollback. It 3953 ** syncs the journal file to disk, then sets pPager->journalHdr to the 3954 ** size of the journal file so that the pager_playback() routine knows 3955 ** that the entire journal file has been synced. 3956 ** 3957 ** Syncing a hot-journal to disk before attempting to roll it back ensures 3958 ** that if a power-failure occurs during the rollback, the process that 3959 ** attempts rollback following system recovery sees the same journal 3960 ** content as this process. 3961 ** 3962 ** If everything goes as planned, SQLITE_OK is returned. Otherwise, 3963 ** an SQLite error code. 3964 */ 3965 static int pagerSyncHotJournal(Pager *pPager){ 3966 int rc = SQLITE_OK; 3967 if( !pPager->noSync ){ 3968 rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_NORMAL); 3969 } 3970 if( rc==SQLITE_OK ){ 3971 rc = sqlite3OsFileSize(pPager->jfd, &pPager->journalHdr); 3972 } 3973 return rc; 3974 } 3975 3976 #if SQLITE_MAX_MMAP_SIZE>0 3977 /* 3978 ** Obtain a reference to a memory mapped page object for page number pgno. 3979 ** The new object will use the pointer pData, obtained from xFetch(). 3980 ** If successful, set *ppPage to point to the new page reference 3981 ** and return SQLITE_OK. Otherwise, return an SQLite error code and set 3982 ** *ppPage to zero. 3983 ** 3984 ** Page references obtained by calling this function should be released 3985 ** by calling pagerReleaseMapPage(). 3986 */ 3987 static int pagerAcquireMapPage( 3988 Pager *pPager, /* Pager object */ 3989 Pgno pgno, /* Page number */ 3990 void *pData, /* xFetch()'d data for this page */ 3991 PgHdr **ppPage /* OUT: Acquired page object */ 3992 ){ 3993 PgHdr *p; /* Memory mapped page to return */ 3994 3995 if( pPager->pMmapFreelist ){ 3996 *ppPage = p = pPager->pMmapFreelist; 3997 pPager->pMmapFreelist = p->pDirty; 3998 p->pDirty = 0; 3999 assert( pPager->nExtra>=8 ); 4000 memset(p->pExtra, 0, 8); 4001 }else{ 4002 *ppPage = p = (PgHdr *)sqlite3MallocZero(sizeof(PgHdr) + pPager->nExtra); 4003 if( p==0 ){ 4004 sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1) * pPager->pageSize, pData); 4005 return SQLITE_NOMEM_BKPT; 4006 } 4007 p->pExtra = (void *)&p[1]; 4008 p->flags = PGHDR_MMAP; 4009 p->nRef = 1; 4010 p->pPager = pPager; 4011 } 4012 4013 assert( p->pExtra==(void *)&p[1] ); 4014 assert( p->pPage==0 ); 4015 assert( p->flags==PGHDR_MMAP ); 4016 assert( p->pPager==pPager ); 4017 assert( p->nRef==1 ); 4018 4019 p->pgno = pgno; 4020 p->pData = pData; 4021 pPager->nMmapOut++; 4022 4023 return SQLITE_OK; 4024 } 4025 #endif 4026 4027 /* 4028 ** Release a reference to page pPg. pPg must have been returned by an 4029 ** earlier call to pagerAcquireMapPage(). 4030 */ 4031 static void pagerReleaseMapPage(PgHdr *pPg){ 4032 Pager *pPager = pPg->pPager; 4033 pPager->nMmapOut--; 4034 pPg->pDirty = pPager->pMmapFreelist; 4035 pPager->pMmapFreelist = pPg; 4036 4037 assert( pPager->fd->pMethods->iVersion>=3 ); 4038 sqlite3OsUnfetch(pPager->fd, (i64)(pPg->pgno-1)*pPager->pageSize, pPg->pData); 4039 } 4040 4041 /* 4042 ** Free all PgHdr objects stored in the Pager.pMmapFreelist list. 4043 */ 4044 static void pagerFreeMapHdrs(Pager *pPager){ 4045 PgHdr *p; 4046 PgHdr *pNext; 4047 for(p=pPager->pMmapFreelist; p; p=pNext){ 4048 pNext = p->pDirty; 4049 sqlite3_free(p); 4050 } 4051 } 4052 4053 /* Verify that the database file has not be deleted or renamed out from 4054 ** under the pager. Return SQLITE_OK if the database is still where it ought 4055 ** to be on disk. Return non-zero (SQLITE_READONLY_DBMOVED or some other error 4056 ** code from sqlite3OsAccess()) if the database has gone missing. 4057 */ 4058 static int databaseIsUnmoved(Pager *pPager){ 4059 int bHasMoved = 0; 4060 int rc; 4061 4062 if( pPager->tempFile ) return SQLITE_OK; 4063 if( pPager->dbSize==0 ) return SQLITE_OK; 4064 assert( pPager->zFilename && pPager->zFilename[0] ); 4065 rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_HAS_MOVED, &bHasMoved); 4066 if( rc==SQLITE_NOTFOUND ){ 4067 /* If the HAS_MOVED file-control is unimplemented, assume that the file 4068 ** has not been moved. That is the historical behavior of SQLite: prior to 4069 ** version 3.8.3, it never checked */ 4070 rc = SQLITE_OK; 4071 }else if( rc==SQLITE_OK && bHasMoved ){ 4072 rc = SQLITE_READONLY_DBMOVED; 4073 } 4074 return rc; 4075 } 4076 4077 4078 /* 4079 ** Shutdown the page cache. Free all memory and close all files. 4080 ** 4081 ** If a transaction was in progress when this routine is called, that 4082 ** transaction is rolled back. All outstanding pages are invalidated 4083 ** and their memory is freed. Any attempt to use a page associated 4084 ** with this page cache after this function returns will likely 4085 ** result in a coredump. 4086 ** 4087 ** This function always succeeds. If a transaction is active an attempt 4088 ** is made to roll it back. If an error occurs during the rollback 4089 ** a hot journal may be left in the filesystem but no error is returned 4090 ** to the caller. 4091 */ 4092 int sqlite3PagerClose(Pager *pPager, sqlite3 *db){ 4093 u8 *pTmp = (u8*)pPager->pTmpSpace; 4094 assert( db || pagerUseWal(pPager)==0 ); 4095 assert( assert_pager_state(pPager) ); 4096 disable_simulated_io_errors(); 4097 sqlite3BeginBenignMalloc(); 4098 pagerFreeMapHdrs(pPager); 4099 /* pPager->errCode = 0; */ 4100 pPager->exclusiveMode = 0; 4101 #ifndef SQLITE_OMIT_WAL 4102 { 4103 u8 *a = 0; 4104 assert( db || pPager->pWal==0 ); 4105 if( db && 0==(db->flags & SQLITE_NoCkptOnClose) 4106 && SQLITE_OK==databaseIsUnmoved(pPager) 4107 ){ 4108 a = pTmp; 4109 } 4110 sqlite3WalClose(pPager->pWal, db, pPager->walSyncFlags, pPager->pageSize,a); 4111 pPager->pWal = 0; 4112 } 4113 #endif 4114 pager_reset(pPager); 4115 if( MEMDB ){ 4116 pager_unlock(pPager); 4117 }else{ 4118 /* If it is open, sync the journal file before calling UnlockAndRollback. 4119 ** If this is not done, then an unsynced portion of the open journal 4120 ** file may be played back into the database. If a power failure occurs 4121 ** while this is happening, the database could become corrupt. 4122 ** 4123 ** If an error occurs while trying to sync the journal, shift the pager 4124 ** into the ERROR state. This causes UnlockAndRollback to unlock the 4125 ** database and close the journal file without attempting to roll it 4126 ** back or finalize it. The next database user will have to do hot-journal 4127 ** rollback before accessing the database file. 4128 */ 4129 if( isOpen(pPager->jfd) ){ 4130 pager_error(pPager, pagerSyncHotJournal(pPager)); 4131 } 4132 pagerUnlockAndRollback(pPager); 4133 } 4134 sqlite3EndBenignMalloc(); 4135 enable_simulated_io_errors(); 4136 PAGERTRACE(("CLOSE %d\n", PAGERID(pPager))); 4137 IOTRACE(("CLOSE %p\n", pPager)) 4138 sqlite3OsClose(pPager->jfd); 4139 sqlite3OsClose(pPager->fd); 4140 sqlite3PageFree(pTmp); 4141 sqlite3PcacheClose(pPager->pPCache); 4142 assert( !pPager->aSavepoint && !pPager->pInJournal ); 4143 assert( !isOpen(pPager->jfd) && !isOpen(pPager->sjfd) ); 4144 4145 sqlite3_free(pPager); 4146 return SQLITE_OK; 4147 } 4148 4149 #if !defined(NDEBUG) || defined(SQLITE_TEST) 4150 /* 4151 ** Return the page number for page pPg. 4152 */ 4153 Pgno sqlite3PagerPagenumber(DbPage *pPg){ 4154 return pPg->pgno; 4155 } 4156 #endif 4157 4158 /* 4159 ** Increment the reference count for page pPg. 4160 */ 4161 void sqlite3PagerRef(DbPage *pPg){ 4162 sqlite3PcacheRef(pPg); 4163 } 4164 4165 /* 4166 ** Sync the journal. In other words, make sure all the pages that have 4167 ** been written to the journal have actually reached the surface of the 4168 ** disk and can be restored in the event of a hot-journal rollback. 4169 ** 4170 ** If the Pager.noSync flag is set, then this function is a no-op. 4171 ** Otherwise, the actions required depend on the journal-mode and the 4172 ** device characteristics of the file-system, as follows: 4173 ** 4174 ** * If the journal file is an in-memory journal file, no action need 4175 ** be taken. 4176 ** 4177 ** * Otherwise, if the device does not support the SAFE_APPEND property, 4178 ** then the nRec field of the most recently written journal header 4179 ** is updated to contain the number of journal records that have 4180 ** been written following it. If the pager is operating in full-sync 4181 ** mode, then the journal file is synced before this field is updated. 4182 ** 4183 ** * If the device does not support the SEQUENTIAL property, then 4184 ** journal file is synced. 4185 ** 4186 ** Or, in pseudo-code: 4187 ** 4188 ** if( NOT <in-memory journal> ){ 4189 ** if( NOT SAFE_APPEND ){ 4190 ** if( <full-sync mode> ) xSync(<journal file>); 4191 ** <update nRec field> 4192 ** } 4193 ** if( NOT SEQUENTIAL ) xSync(<journal file>); 4194 ** } 4195 ** 4196 ** If successful, this routine clears the PGHDR_NEED_SYNC flag of every 4197 ** page currently held in memory before returning SQLITE_OK. If an IO 4198 ** error is encountered, then the IO error code is returned to the caller. 4199 */ 4200 static int syncJournal(Pager *pPager, int newHdr){ 4201 int rc; /* Return code */ 4202 4203 assert( pPager->eState==PAGER_WRITER_CACHEMOD 4204 || pPager->eState==PAGER_WRITER_DBMOD 4205 ); 4206 assert( assert_pager_state(pPager) ); 4207 assert( !pagerUseWal(pPager) ); 4208 4209 rc = sqlite3PagerExclusiveLock(pPager); 4210 if( rc!=SQLITE_OK ) return rc; 4211 4212 if( !pPager->noSync ){ 4213 assert( !pPager->tempFile ); 4214 if( isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){ 4215 const int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); 4216 assert( isOpen(pPager->jfd) ); 4217 4218 if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ 4219 /* This block deals with an obscure problem. If the last connection 4220 ** that wrote to this database was operating in persistent-journal 4221 ** mode, then the journal file may at this point actually be larger 4222 ** than Pager.journalOff bytes. If the next thing in the journal 4223 ** file happens to be a journal-header (written as part of the 4224 ** previous connection's transaction), and a crash or power-failure 4225 ** occurs after nRec is updated but before this connection writes 4226 ** anything else to the journal file (or commits/rolls back its 4227 ** transaction), then SQLite may become confused when doing the 4228 ** hot-journal rollback following recovery. It may roll back all 4229 ** of this connections data, then proceed to rolling back the old, 4230 ** out-of-date data that follows it. Database corruption. 4231 ** 4232 ** To work around this, if the journal file does appear to contain 4233 ** a valid header following Pager.journalOff, then write a 0x00 4234 ** byte to the start of it to prevent it from being recognized. 4235 ** 4236 ** Variable iNextHdrOffset is set to the offset at which this 4237 ** problematic header will occur, if it exists. aMagic is used 4238 ** as a temporary buffer to inspect the first couple of bytes of 4239 ** the potential journal header. 4240 */ 4241 i64 iNextHdrOffset; 4242 u8 aMagic[8]; 4243 u8 zHeader[sizeof(aJournalMagic)+4]; 4244 4245 memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); 4246 put32bits(&zHeader[sizeof(aJournalMagic)], pPager->nRec); 4247 4248 iNextHdrOffset = journalHdrOffset(pPager); 4249 rc = sqlite3OsRead(pPager->jfd, aMagic, 8, iNextHdrOffset); 4250 if( rc==SQLITE_OK && 0==memcmp(aMagic, aJournalMagic, 8) ){ 4251 static const u8 zerobyte = 0; 4252 rc = sqlite3OsWrite(pPager->jfd, &zerobyte, 1, iNextHdrOffset); 4253 } 4254 if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){ 4255 return rc; 4256 } 4257 4258 /* Write the nRec value into the journal file header. If in 4259 ** full-synchronous mode, sync the journal first. This ensures that 4260 ** all data has really hit the disk before nRec is updated to mark 4261 ** it as a candidate for rollback. 4262 ** 4263 ** This is not required if the persistent media supports the 4264 ** SAFE_APPEND property. Because in this case it is not possible 4265 ** for garbage data to be appended to the file, the nRec field 4266 ** is populated with 0xFFFFFFFF when the journal header is written 4267 ** and never needs to be updated. 4268 */ 4269 if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ 4270 PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); 4271 IOTRACE(("JSYNC %p\n", pPager)) 4272 rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags); 4273 if( rc!=SQLITE_OK ) return rc; 4274 } 4275 IOTRACE(("JHDR %p %lld\n", pPager, pPager->journalHdr)); 4276 rc = sqlite3OsWrite( 4277 pPager->jfd, zHeader, sizeof(zHeader), pPager->journalHdr 4278 ); 4279 if( rc!=SQLITE_OK ) return rc; 4280 } 4281 if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ 4282 PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); 4283 IOTRACE(("JSYNC %p\n", pPager)) 4284 rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags| 4285 (pPager->syncFlags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0) 4286 ); 4287 if( rc!=SQLITE_OK ) return rc; 4288 } 4289 4290 pPager->journalHdr = pPager->journalOff; 4291 if( newHdr && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ 4292 pPager->nRec = 0; 4293 rc = writeJournalHdr(pPager); 4294 if( rc!=SQLITE_OK ) return rc; 4295 } 4296 }else{ 4297 pPager->journalHdr = pPager->journalOff; 4298 } 4299 } 4300 4301 /* Unless the pager is in noSync mode, the journal file was just 4302 ** successfully synced. Either way, clear the PGHDR_NEED_SYNC flag on 4303 ** all pages. 4304 */ 4305 sqlite3PcacheClearSyncFlags(pPager->pPCache); 4306 pPager->eState = PAGER_WRITER_DBMOD; 4307 assert( assert_pager_state(pPager) ); 4308 return SQLITE_OK; 4309 } 4310 4311 /* 4312 ** The argument is the first in a linked list of dirty pages connected 4313 ** by the PgHdr.pDirty pointer. This function writes each one of the 4314 ** in-memory pages in the list to the database file. The argument may 4315 ** be NULL, representing an empty list. In this case this function is 4316 ** a no-op. 4317 ** 4318 ** The pager must hold at least a RESERVED lock when this function 4319 ** is called. Before writing anything to the database file, this lock 4320 ** is upgraded to an EXCLUSIVE lock. If the lock cannot be obtained, 4321 ** SQLITE_BUSY is returned and no data is written to the database file. 4322 ** 4323 ** If the pager is a temp-file pager and the actual file-system file 4324 ** is not yet open, it is created and opened before any data is 4325 ** written out. 4326 ** 4327 ** Once the lock has been upgraded and, if necessary, the file opened, 4328 ** the pages are written out to the database file in list order. Writing 4329 ** a page is skipped if it meets either of the following criteria: 4330 ** 4331 ** * The page number is greater than Pager.dbSize, or 4332 ** * The PGHDR_DONT_WRITE flag is set on the page. 4333 ** 4334 ** If writing out a page causes the database file to grow, Pager.dbFileSize 4335 ** is updated accordingly. If page 1 is written out, then the value cached 4336 ** in Pager.dbFileVers[] is updated to match the new value stored in 4337 ** the database file. 4338 ** 4339 ** If everything is successful, SQLITE_OK is returned. If an IO error 4340 ** occurs, an IO error code is returned. Or, if the EXCLUSIVE lock cannot 4341 ** be obtained, SQLITE_BUSY is returned. 4342 */ 4343 static int pager_write_pagelist(Pager *pPager, PgHdr *pList){ 4344 int rc = SQLITE_OK; /* Return code */ 4345 4346 /* This function is only called for rollback pagers in WRITER_DBMOD state. */ 4347 assert( !pagerUseWal(pPager) ); 4348 assert( pPager->tempFile || pPager->eState==PAGER_WRITER_DBMOD ); 4349 assert( pPager->eLock==EXCLUSIVE_LOCK ); 4350 assert( isOpen(pPager->fd) || pList->pDirty==0 ); 4351 4352 /* If the file is a temp-file has not yet been opened, open it now. It 4353 ** is not possible for rc to be other than SQLITE_OK if this branch 4354 ** is taken, as pager_wait_on_lock() is a no-op for temp-files. 4355 */ 4356 if( !isOpen(pPager->fd) ){ 4357 assert( pPager->tempFile && rc==SQLITE_OK ); 4358 rc = pagerOpentemp(pPager, pPager->fd, pPager->vfsFlags); 4359 } 4360 4361 /* Before the first write, give the VFS a hint of what the final 4362 ** file size will be. 4363 */ 4364 assert( rc!=SQLITE_OK || isOpen(pPager->fd) ); 4365 if( rc==SQLITE_OK 4366 && pPager->dbHintSize<pPager->dbSize 4367 && (pList->pDirty || pList->pgno>pPager->dbHintSize) 4368 ){ 4369 sqlite3_int64 szFile = pPager->pageSize * (sqlite3_int64)pPager->dbSize; 4370 sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile); 4371 pPager->dbHintSize = pPager->dbSize; 4372 } 4373 4374 while( rc==SQLITE_OK && pList ){ 4375 Pgno pgno = pList->pgno; 4376 4377 /* If there are dirty pages in the page cache with page numbers greater 4378 ** than Pager.dbSize, this means sqlite3PagerTruncateImage() was called to 4379 ** make the file smaller (presumably by auto-vacuum code). Do not write 4380 ** any such pages to the file. 4381 ** 4382 ** Also, do not write out any page that has the PGHDR_DONT_WRITE flag 4383 ** set (set by sqlite3PagerDontWrite()). 4384 */ 4385 if( pgno<=pPager->dbSize && 0==(pList->flags&PGHDR_DONT_WRITE) ){ 4386 i64 offset = (pgno-1)*(i64)pPager->pageSize; /* Offset to write */ 4387 char *pData; /* Data to write */ 4388 4389 assert( (pList->flags&PGHDR_NEED_SYNC)==0 ); 4390 if( pList->pgno==1 ) pager_write_changecounter(pList); 4391 4392 pData = pList->pData; 4393 4394 /* Write out the page data. */ 4395 rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset); 4396 4397 /* If page 1 was just written, update Pager.dbFileVers to match 4398 ** the value now stored in the database file. If writing this 4399 ** page caused the database file to grow, update dbFileSize. 4400 */ 4401 if( pgno==1 ){ 4402 memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers)); 4403 } 4404 if( pgno>pPager->dbFileSize ){ 4405 pPager->dbFileSize = pgno; 4406 } 4407 pPager->aStat[PAGER_STAT_WRITE]++; 4408 4409 /* Update any backup objects copying the contents of this pager. */ 4410 sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)pList->pData); 4411 4412 PAGERTRACE(("STORE %d page %d hash(%08x)\n", 4413 PAGERID(pPager), pgno, pager_pagehash(pList))); 4414 IOTRACE(("PGOUT %p %d\n", pPager, pgno)); 4415 PAGER_INCR(sqlite3_pager_writedb_count); 4416 }else{ 4417 PAGERTRACE(("NOSTORE %d page %d\n", PAGERID(pPager), pgno)); 4418 } 4419 pager_set_pagehash(pList); 4420 pList = pList->pDirty; 4421 } 4422 4423 return rc; 4424 } 4425 4426 /* 4427 ** Ensure that the sub-journal file is open. If it is already open, this 4428 ** function is a no-op. 4429 ** 4430 ** SQLITE_OK is returned if everything goes according to plan. An 4431 ** SQLITE_IOERR_XXX error code is returned if a call to sqlite3OsOpen() 4432 ** fails. 4433 */ 4434 static int openSubJournal(Pager *pPager){ 4435 int rc = SQLITE_OK; 4436 if( !isOpen(pPager->sjfd) ){ 4437 const int flags = SQLITE_OPEN_SUBJOURNAL | SQLITE_OPEN_READWRITE 4438 | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE 4439 | SQLITE_OPEN_DELETEONCLOSE; 4440 int nStmtSpill = sqlite3Config.nStmtSpill; 4441 if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->subjInMemory ){ 4442 nStmtSpill = -1; 4443 } 4444 rc = sqlite3JournalOpen(pPager->pVfs, 0, pPager->sjfd, flags, nStmtSpill); 4445 } 4446 return rc; 4447 } 4448 4449 /* 4450 ** Append a record of the current state of page pPg to the sub-journal. 4451 ** 4452 ** If successful, set the bit corresponding to pPg->pgno in the bitvecs 4453 ** for all open savepoints before returning. 4454 ** 4455 ** This function returns SQLITE_OK if everything is successful, an IO 4456 ** error code if the attempt to write to the sub-journal fails, or 4457 ** SQLITE_NOMEM if a malloc fails while setting a bit in a savepoint 4458 ** bitvec. 4459 */ 4460 static int subjournalPage(PgHdr *pPg){ 4461 int rc = SQLITE_OK; 4462 Pager *pPager = pPg->pPager; 4463 if( pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ 4464 4465 /* Open the sub-journal, if it has not already been opened */ 4466 assert( pPager->useJournal ); 4467 assert( isOpen(pPager->jfd) || pagerUseWal(pPager) ); 4468 assert( isOpen(pPager->sjfd) || pPager->nSubRec==0 ); 4469 assert( pagerUseWal(pPager) 4470 || pageInJournal(pPager, pPg) 4471 || pPg->pgno>pPager->dbOrigSize 4472 ); 4473 rc = openSubJournal(pPager); 4474 4475 /* If the sub-journal was opened successfully (or was already open), 4476 ** write the journal record into the file. */ 4477 if( rc==SQLITE_OK ){ 4478 void *pData = pPg->pData; 4479 i64 offset = (i64)pPager->nSubRec*(4+pPager->pageSize); 4480 char *pData2; 4481 pData2 = pData; 4482 PAGERTRACE(("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno)); 4483 rc = write32bits(pPager->sjfd, offset, pPg->pgno); 4484 if( rc==SQLITE_OK ){ 4485 rc = sqlite3OsWrite(pPager->sjfd, pData2, pPager->pageSize, offset+4); 4486 } 4487 } 4488 } 4489 if( rc==SQLITE_OK ){ 4490 pPager->nSubRec++; 4491 assert( pPager->nSavepoint>0 ); 4492 rc = addToSavepointBitvecs(pPager, pPg->pgno); 4493 } 4494 return rc; 4495 } 4496 static int subjournalPageIfRequired(PgHdr *pPg){ 4497 if( subjRequiresPage(pPg) ){ 4498 return subjournalPage(pPg); 4499 }else{ 4500 return SQLITE_OK; 4501 } 4502 } 4503 4504 /* 4505 ** This function is called by the pcache layer when it has reached some 4506 ** soft memory limit. The first argument is a pointer to a Pager object 4507 ** (cast as a void*). The pager is always 'purgeable' (not an in-memory 4508 ** database). The second argument is a reference to a page that is 4509 ** currently dirty but has no outstanding references. The page 4510 ** is always associated with the Pager object passed as the first 4511 ** argument. 4512 ** 4513 ** The job of this function is to make pPg clean by writing its contents 4514 ** out to the database file, if possible. This may involve syncing the 4515 ** journal file. 4516 ** 4517 ** If successful, sqlite3PcacheMakeClean() is called on the page and 4518 ** SQLITE_OK returned. If an IO error occurs while trying to make the 4519 ** page clean, the IO error code is returned. If the page cannot be 4520 ** made clean for some other reason, but no error occurs, then SQLITE_OK 4521 ** is returned by sqlite3PcacheMakeClean() is not called. 4522 */ 4523 static int pagerStress(void *p, PgHdr *pPg){ 4524 Pager *pPager = (Pager *)p; 4525 int rc = SQLITE_OK; 4526 4527 assert( pPg->pPager==pPager ); 4528 assert( pPg->flags&PGHDR_DIRTY ); 4529 4530 /* The doNotSpill NOSYNC bit is set during times when doing a sync of 4531 ** journal (and adding a new header) is not allowed. This occurs 4532 ** during calls to sqlite3PagerWrite() while trying to journal multiple 4533 ** pages belonging to the same sector. 4534 ** 4535 ** The doNotSpill ROLLBACK and OFF bits inhibits all cache spilling 4536 ** regardless of whether or not a sync is required. This is set during 4537 ** a rollback or by user request, respectively. 4538 ** 4539 ** Spilling is also prohibited when in an error state since that could 4540 ** lead to database corruption. In the current implementation it 4541 ** is impossible for sqlite3PcacheFetch() to be called with createFlag==3 4542 ** while in the error state, hence it is impossible for this routine to 4543 ** be called in the error state. Nevertheless, we include a NEVER() 4544 ** test for the error state as a safeguard against future changes. 4545 */ 4546 if( NEVER(pPager->errCode) ) return SQLITE_OK; 4547 testcase( pPager->doNotSpill & SPILLFLAG_ROLLBACK ); 4548 testcase( pPager->doNotSpill & SPILLFLAG_OFF ); 4549 testcase( pPager->doNotSpill & SPILLFLAG_NOSYNC ); 4550 if( pPager->doNotSpill 4551 && ((pPager->doNotSpill & (SPILLFLAG_ROLLBACK|SPILLFLAG_OFF))!=0 4552 || (pPg->flags & PGHDR_NEED_SYNC)!=0) 4553 ){ 4554 return SQLITE_OK; 4555 } 4556 4557 pPager->aStat[PAGER_STAT_SPILL]++; 4558 pPg->pDirty = 0; 4559 if( pagerUseWal(pPager) ){ 4560 /* Write a single frame for this page to the log. */ 4561 rc = subjournalPageIfRequired(pPg); 4562 if( rc==SQLITE_OK ){ 4563 rc = pagerWalFrames(pPager, pPg, 0, 0); 4564 } 4565 }else{ 4566 4567 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 4568 if( pPager->tempFile==0 ){ 4569 rc = sqlite3JournalCreate(pPager->jfd); 4570 if( rc!=SQLITE_OK ) return pager_error(pPager, rc); 4571 } 4572 #endif 4573 4574 /* Sync the journal file if required. */ 4575 if( pPg->flags&PGHDR_NEED_SYNC 4576 || pPager->eState==PAGER_WRITER_CACHEMOD 4577 ){ 4578 rc = syncJournal(pPager, 1); 4579 } 4580 4581 /* Write the contents of the page out to the database file. */ 4582 if( rc==SQLITE_OK ){ 4583 assert( (pPg->flags&PGHDR_NEED_SYNC)==0 ); 4584 rc = pager_write_pagelist(pPager, pPg); 4585 } 4586 } 4587 4588 /* Mark the page as clean. */ 4589 if( rc==SQLITE_OK ){ 4590 PAGERTRACE(("STRESS %d page %d\n", PAGERID(pPager), pPg->pgno)); 4591 sqlite3PcacheMakeClean(pPg); 4592 } 4593 4594 return pager_error(pPager, rc); 4595 } 4596 4597 /* 4598 ** Flush all unreferenced dirty pages to disk. 4599 */ 4600 int sqlite3PagerFlush(Pager *pPager){ 4601 int rc = pPager->errCode; 4602 if( !MEMDB ){ 4603 PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache); 4604 assert( assert_pager_state(pPager) ); 4605 while( rc==SQLITE_OK && pList ){ 4606 PgHdr *pNext = pList->pDirty; 4607 if( pList->nRef==0 ){ 4608 rc = pagerStress((void*)pPager, pList); 4609 } 4610 pList = pNext; 4611 } 4612 } 4613 4614 return rc; 4615 } 4616 4617 /* 4618 ** Allocate and initialize a new Pager object and put a pointer to it 4619 ** in *ppPager. The pager should eventually be freed by passing it 4620 ** to sqlite3PagerClose(). 4621 ** 4622 ** The zFilename argument is the path to the database file to open. 4623 ** If zFilename is NULL then a randomly-named temporary file is created 4624 ** and used as the file to be cached. Temporary files are be deleted 4625 ** automatically when they are closed. If zFilename is ":memory:" then 4626 ** all information is held in cache. It is never written to disk. 4627 ** This can be used to implement an in-memory database. 4628 ** 4629 ** The nExtra parameter specifies the number of bytes of space allocated 4630 ** along with each page reference. This space is available to the user 4631 ** via the sqlite3PagerGetExtra() API. When a new page is allocated, the 4632 ** first 8 bytes of this space are zeroed but the remainder is uninitialized. 4633 ** (The extra space is used by btree as the MemPage object.) 4634 ** 4635 ** The flags argument is used to specify properties that affect the 4636 ** operation of the pager. It should be passed some bitwise combination 4637 ** of the PAGER_* flags. 4638 ** 4639 ** The vfsFlags parameter is a bitmask to pass to the flags parameter 4640 ** of the xOpen() method of the supplied VFS when opening files. 4641 ** 4642 ** If the pager object is allocated and the specified file opened 4643 ** successfully, SQLITE_OK is returned and *ppPager set to point to 4644 ** the new pager object. If an error occurs, *ppPager is set to NULL 4645 ** and error code returned. This function may return SQLITE_NOMEM 4646 ** (sqlite3Malloc() is used to allocate memory), SQLITE_CANTOPEN or 4647 ** various SQLITE_IO_XXX errors. 4648 */ 4649 int sqlite3PagerOpen( 4650 sqlite3_vfs *pVfs, /* The virtual file system to use */ 4651 Pager **ppPager, /* OUT: Return the Pager structure here */ 4652 const char *zFilename, /* Name of the database file to open */ 4653 int nExtra, /* Extra bytes append to each in-memory page */ 4654 int flags, /* flags controlling this file */ 4655 int vfsFlags, /* flags passed through to sqlite3_vfs.xOpen() */ 4656 void (*xReinit)(DbPage*) /* Function to reinitialize pages */ 4657 ){ 4658 u8 *pPtr; 4659 Pager *pPager = 0; /* Pager object to allocate and return */ 4660 int rc = SQLITE_OK; /* Return code */ 4661 int tempFile = 0; /* True for temp files (incl. in-memory files) */ 4662 int memDb = 0; /* True if this is an in-memory file */ 4663 #ifdef SQLITE_ENABLE_DESERIALIZE 4664 int memJM = 0; /* Memory journal mode */ 4665 #else 4666 # define memJM 0 4667 #endif 4668 int readOnly = 0; /* True if this is a read-only file */ 4669 int journalFileSize; /* Bytes to allocate for each journal fd */ 4670 char *zPathname = 0; /* Full path to database file */ 4671 int nPathname = 0; /* Number of bytes in zPathname */ 4672 int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; /* False to omit journal */ 4673 int pcacheSize = sqlite3PcacheSize(); /* Bytes to allocate for PCache */ 4674 u32 szPageDflt = SQLITE_DEFAULT_PAGE_SIZE; /* Default page size */ 4675 const char *zUri = 0; /* URI args to copy */ 4676 int nUriByte = 1; /* Number of bytes of URI args at *zUri */ 4677 int nUri = 0; /* Number of URI parameters */ 4678 4679 /* Figure out how much space is required for each journal file-handle 4680 ** (there are two of them, the main journal and the sub-journal). */ 4681 journalFileSize = ROUND8(sqlite3JournalSize(pVfs)); 4682 4683 /* Set the output variable to NULL in case an error occurs. */ 4684 *ppPager = 0; 4685 4686 #ifndef SQLITE_OMIT_MEMORYDB 4687 if( flags & PAGER_MEMORY ){ 4688 memDb = 1; 4689 if( zFilename && zFilename[0] ){ 4690 zPathname = sqlite3DbStrDup(0, zFilename); 4691 if( zPathname==0 ) return SQLITE_NOMEM_BKPT; 4692 nPathname = sqlite3Strlen30(zPathname); 4693 zFilename = 0; 4694 } 4695 } 4696 #endif 4697 4698 /* Compute and store the full pathname in an allocated buffer pointed 4699 ** to by zPathname, length nPathname. Or, if this is a temporary file, 4700 ** leave both nPathname and zPathname set to 0. 4701 */ 4702 if( zFilename && zFilename[0] ){ 4703 const char *z; 4704 nPathname = pVfs->mxPathname+1; 4705 zPathname = sqlite3DbMallocRaw(0, nPathname*2); 4706 if( zPathname==0 ){ 4707 return SQLITE_NOMEM_BKPT; 4708 } 4709 zPathname[0] = 0; /* Make sure initialized even if FullPathname() fails */ 4710 rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname); 4711 if( rc!=SQLITE_OK ){ 4712 if( rc==SQLITE_OK_SYMLINK ){ 4713 if( vfsFlags & SQLITE_OPEN_NOFOLLOW ){ 4714 rc = SQLITE_CANTOPEN_SYMLINK; 4715 }else{ 4716 rc = SQLITE_OK; 4717 } 4718 } 4719 } 4720 nPathname = sqlite3Strlen30(zPathname); 4721 z = zUri = &zFilename[sqlite3Strlen30(zFilename)+1]; 4722 while( *z ){ 4723 z += strlen(z)+1; 4724 z += strlen(z)+1; 4725 nUri++; 4726 } 4727 nUriByte = (int)(&z[1] - zUri); 4728 assert( nUriByte>=1 ); 4729 if( rc==SQLITE_OK && nPathname+8>pVfs->mxPathname ){ 4730 /* This branch is taken when the journal path required by 4731 ** the database being opened will be more than pVfs->mxPathname 4732 ** bytes in length. This means the database cannot be opened, 4733 ** as it will not be possible to open the journal file or even 4734 ** check for a hot-journal before reading. 4735 */ 4736 rc = SQLITE_CANTOPEN_BKPT; 4737 } 4738 if( rc!=SQLITE_OK ){ 4739 sqlite3DbFree(0, zPathname); 4740 return rc; 4741 } 4742 } 4743 4744 /* Allocate memory for the Pager structure, PCache object, the 4745 ** three file descriptors, the database file name and the journal 4746 ** file name. The layout in memory is as follows: 4747 ** 4748 ** Pager object (sizeof(Pager) bytes) 4749 ** PCache object (sqlite3PcacheSize() bytes) 4750 ** Database file handle (pVfs->szOsFile bytes) 4751 ** Sub-journal file handle (journalFileSize bytes) 4752 ** Main journal file handle (journalFileSize bytes) 4753 ** Ptr back to the Pager (sizeof(Pager*) bytes) 4754 ** \0\0\0\0 database prefix (4 bytes) 4755 ** Database file name (nPathname+1 bytes) 4756 ** URI query parameters (nUriByte bytes) 4757 ** Journal filename (nPathname+8+1 bytes) 4758 ** WAL filename (nPathname+4+1 bytes) 4759 ** \0\0\0 terminator (3 bytes) 4760 ** 4761 ** Some 3rd-party software, over which we have no control, depends on 4762 ** the specific order of the filenames and the \0 separators between them 4763 ** so that it can (for example) find the database filename given the WAL 4764 ** filename without using the sqlite3_filename_database() API. This is a 4765 ** misuse of SQLite and a bug in the 3rd-party software, but the 3rd-party 4766 ** software is in widespread use, so we try to avoid changing the filename 4767 ** order and formatting if possible. In particular, the details of the 4768 ** filename format expected by 3rd-party software should be as follows: 4769 ** 4770 ** - Main Database Path 4771 ** - \0 4772 ** - Multiple URI components consisting of: 4773 ** - Key 4774 ** - \0 4775 ** - Value 4776 ** - \0 4777 ** - \0 4778 ** - Journal Path 4779 ** - \0 4780 ** - WAL Path (zWALName) 4781 ** - \0 4782 ** 4783 ** The sqlite3_create_filename() interface and the databaseFilename() utility 4784 ** that is used by sqlite3_filename_database() and kin also depend on the 4785 ** specific formatting and order of the various filenames, so if the format 4786 ** changes here, be sure to change it there as well. 4787 */ 4788 pPtr = (u8 *)sqlite3MallocZero( 4789 ROUND8(sizeof(*pPager)) + /* Pager structure */ 4790 ROUND8(pcacheSize) + /* PCache object */ 4791 ROUND8(pVfs->szOsFile) + /* The main db file */ 4792 journalFileSize * 2 + /* The two journal files */ 4793 sizeof(pPager) + /* Space to hold a pointer */ 4794 4 + /* Database prefix */ 4795 nPathname + 1 + /* database filename */ 4796 nUriByte + /* query parameters */ 4797 nPathname + 8 + 1 + /* Journal filename */ 4798 #ifndef SQLITE_OMIT_WAL 4799 nPathname + 4 + 1 + /* WAL filename */ 4800 #endif 4801 3 /* Terminator */ 4802 ); 4803 assert( EIGHT_BYTE_ALIGNMENT(SQLITE_INT_TO_PTR(journalFileSize)) ); 4804 if( !pPtr ){ 4805 sqlite3DbFree(0, zPathname); 4806 return SQLITE_NOMEM_BKPT; 4807 } 4808 pPager = (Pager*)pPtr; pPtr += ROUND8(sizeof(*pPager)); 4809 pPager->pPCache = (PCache*)pPtr; pPtr += ROUND8(pcacheSize); 4810 pPager->fd = (sqlite3_file*)pPtr; pPtr += ROUND8(pVfs->szOsFile); 4811 pPager->sjfd = (sqlite3_file*)pPtr; pPtr += journalFileSize; 4812 pPager->jfd = (sqlite3_file*)pPtr; pPtr += journalFileSize; 4813 assert( EIGHT_BYTE_ALIGNMENT(pPager->jfd) ); 4814 memcpy(pPtr, &pPager, sizeof(pPager)); pPtr += sizeof(pPager); 4815 4816 /* Fill in the Pager.zFilename and pPager.zQueryParam fields */ 4817 pPtr += 4; /* Skip zero prefix */ 4818 pPager->zFilename = (char*)pPtr; 4819 if( nPathname>0 ){ 4820 memcpy(pPtr, zPathname, nPathname); pPtr += nPathname + 1; 4821 if( zUri ){ 4822 memcpy(pPtr, zUri, nUriByte); pPtr += nUriByte; 4823 }else{ 4824 pPtr++; 4825 } 4826 } 4827 4828 4829 /* Fill in Pager.zJournal */ 4830 if( nPathname>0 ){ 4831 pPager->zJournal = (char*)pPtr; 4832 memcpy(pPtr, zPathname, nPathname); pPtr += nPathname; 4833 memcpy(pPtr, "-journal",8); pPtr += 8 + 1; 4834 #ifdef SQLITE_ENABLE_8_3_NAMES 4835 sqlite3FileSuffix3(zFilename,pPager->zJournal); 4836 pPtr = (u8*)(pPager->zJournal + sqlite3Strlen30(pPager->zJournal)+1); 4837 #endif 4838 }else{ 4839 pPager->zJournal = 0; 4840 } 4841 4842 #ifndef SQLITE_OMIT_WAL 4843 /* Fill in Pager.zWal */ 4844 if( nPathname>0 ){ 4845 pPager->zWal = (char*)pPtr; 4846 memcpy(pPtr, zPathname, nPathname); pPtr += nPathname; 4847 memcpy(pPtr, "-wal", 4); pPtr += 4 + 1; 4848 #ifdef SQLITE_ENABLE_8_3_NAMES 4849 sqlite3FileSuffix3(zFilename, pPager->zWal); 4850 pPtr = (u8*)(pPager->zWal + sqlite3Strlen30(pPager->zWal)+1); 4851 #endif 4852 }else{ 4853 pPager->zWal = 0; 4854 } 4855 #endif 4856 4857 if( nPathname ) sqlite3DbFree(0, zPathname); 4858 pPager->pVfs = pVfs; 4859 pPager->vfsFlags = vfsFlags; 4860 4861 /* Open the pager file. 4862 */ 4863 if( zFilename && zFilename[0] ){ 4864 int fout = 0; /* VFS flags returned by xOpen() */ 4865 rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, vfsFlags, &fout); 4866 assert( !memDb ); 4867 #ifdef SQLITE_ENABLE_DESERIALIZE 4868 memJM = (fout&SQLITE_OPEN_MEMORY)!=0; 4869 #endif 4870 readOnly = (fout&SQLITE_OPEN_READONLY)!=0; 4871 4872 /* If the file was successfully opened for read/write access, 4873 ** choose a default page size in case we have to create the 4874 ** database file. The default page size is the maximum of: 4875 ** 4876 ** + SQLITE_DEFAULT_PAGE_SIZE, 4877 ** + The value returned by sqlite3OsSectorSize() 4878 ** + The largest page size that can be written atomically. 4879 */ 4880 if( rc==SQLITE_OK ){ 4881 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); 4882 if( !readOnly ){ 4883 setSectorSize(pPager); 4884 assert(SQLITE_DEFAULT_PAGE_SIZE<=SQLITE_MAX_DEFAULT_PAGE_SIZE); 4885 if( szPageDflt<pPager->sectorSize ){ 4886 if( pPager->sectorSize>SQLITE_MAX_DEFAULT_PAGE_SIZE ){ 4887 szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE; 4888 }else{ 4889 szPageDflt = (u32)pPager->sectorSize; 4890 } 4891 } 4892 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 4893 { 4894 int ii; 4895 assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); 4896 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); 4897 assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536); 4898 for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){ 4899 if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ){ 4900 szPageDflt = ii; 4901 } 4902 } 4903 } 4904 #endif 4905 } 4906 pPager->noLock = sqlite3_uri_boolean(pPager->zFilename, "nolock", 0); 4907 if( (iDc & SQLITE_IOCAP_IMMUTABLE)!=0 4908 || sqlite3_uri_boolean(pPager->zFilename, "immutable", 0) ){ 4909 vfsFlags |= SQLITE_OPEN_READONLY; 4910 goto act_like_temp_file; 4911 } 4912 } 4913 }else{ 4914 /* If a temporary file is requested, it is not opened immediately. 4915 ** In this case we accept the default page size and delay actually 4916 ** opening the file until the first call to OsWrite(). 4917 ** 4918 ** This branch is also run for an in-memory database. An in-memory 4919 ** database is the same as a temp-file that is never written out to 4920 ** disk and uses an in-memory rollback journal. 4921 ** 4922 ** This branch also runs for files marked as immutable. 4923 */ 4924 act_like_temp_file: 4925 tempFile = 1; 4926 pPager->eState = PAGER_READER; /* Pretend we already have a lock */ 4927 pPager->eLock = EXCLUSIVE_LOCK; /* Pretend we are in EXCLUSIVE mode */ 4928 pPager->noLock = 1; /* Do no locking */ 4929 readOnly = (vfsFlags&SQLITE_OPEN_READONLY); 4930 } 4931 4932 /* The following call to PagerSetPagesize() serves to set the value of 4933 ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer. 4934 */ 4935 if( rc==SQLITE_OK ){ 4936 assert( pPager->memDb==0 ); 4937 rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1); 4938 testcase( rc!=SQLITE_OK ); 4939 } 4940 4941 /* Initialize the PCache object. */ 4942 if( rc==SQLITE_OK ){ 4943 nExtra = ROUND8(nExtra); 4944 assert( nExtra>=8 && nExtra<1000 ); 4945 rc = sqlite3PcacheOpen(szPageDflt, nExtra, !memDb, 4946 !memDb?pagerStress:0, (void *)pPager, pPager->pPCache); 4947 } 4948 4949 /* If an error occurred above, free the Pager structure and close the file. 4950 */ 4951 if( rc!=SQLITE_OK ){ 4952 sqlite3OsClose(pPager->fd); 4953 sqlite3PageFree(pPager->pTmpSpace); 4954 sqlite3_free(pPager); 4955 return rc; 4956 } 4957 4958 PAGERTRACE(("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename)); 4959 IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename)) 4960 4961 pPager->useJournal = (u8)useJournal; 4962 /* pPager->stmtOpen = 0; */ 4963 /* pPager->stmtInUse = 0; */ 4964 /* pPager->nRef = 0; */ 4965 /* pPager->stmtSize = 0; */ 4966 /* pPager->stmtJSize = 0; */ 4967 /* pPager->nPage = 0; */ 4968 pPager->mxPgno = SQLITE_MAX_PAGE_COUNT; 4969 /* pPager->state = PAGER_UNLOCK; */ 4970 /* pPager->errMask = 0; */ 4971 pPager->tempFile = (u8)tempFile; 4972 assert( tempFile==PAGER_LOCKINGMODE_NORMAL 4973 || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE ); 4974 assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 ); 4975 pPager->exclusiveMode = (u8)tempFile; 4976 pPager->changeCountDone = pPager->tempFile; 4977 pPager->memDb = (u8)memDb; 4978 pPager->readOnly = (u8)readOnly; 4979 assert( useJournal || pPager->tempFile ); 4980 pPager->noSync = pPager->tempFile; 4981 if( pPager->noSync ){ 4982 assert( pPager->fullSync==0 ); 4983 assert( pPager->extraSync==0 ); 4984 assert( pPager->syncFlags==0 ); 4985 assert( pPager->walSyncFlags==0 ); 4986 }else{ 4987 pPager->fullSync = 1; 4988 pPager->extraSync = 0; 4989 pPager->syncFlags = SQLITE_SYNC_NORMAL; 4990 pPager->walSyncFlags = SQLITE_SYNC_NORMAL | (SQLITE_SYNC_NORMAL<<2); 4991 } 4992 /* pPager->pFirst = 0; */ 4993 /* pPager->pFirstSynced = 0; */ 4994 /* pPager->pLast = 0; */ 4995 pPager->nExtra = (u16)nExtra; 4996 pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT; 4997 assert( isOpen(pPager->fd) || tempFile ); 4998 setSectorSize(pPager); 4999 if( !useJournal ){ 5000 pPager->journalMode = PAGER_JOURNALMODE_OFF; 5001 }else if( memDb || memJM ){ 5002 pPager->journalMode = PAGER_JOURNALMODE_MEMORY; 5003 } 5004 /* pPager->xBusyHandler = 0; */ 5005 /* pPager->pBusyHandlerArg = 0; */ 5006 pPager->xReiniter = xReinit; 5007 setGetterMethod(pPager); 5008 /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */ 5009 /* pPager->szMmap = SQLITE_DEFAULT_MMAP_SIZE // will be set by btree.c */ 5010 5011 *ppPager = pPager; 5012 return SQLITE_OK; 5013 } 5014 5015 /* 5016 ** Return the sqlite3_file for the main database given the name 5017 ** of the corresonding WAL or Journal name as passed into 5018 ** xOpen. 5019 */ 5020 sqlite3_file *sqlite3_database_file_object(const char *zName){ 5021 Pager *pPager; 5022 while( zName[-1]!=0 || zName[-2]!=0 || zName[-3]!=0 || zName[-4]!=0 ){ 5023 zName--; 5024 } 5025 pPager = *(Pager**)(zName - 4 - sizeof(Pager*)); 5026 return pPager->fd; 5027 } 5028 5029 5030 /* 5031 ** This function is called after transitioning from PAGER_UNLOCK to 5032 ** PAGER_SHARED state. It tests if there is a hot journal present in 5033 ** the file-system for the given pager. A hot journal is one that 5034 ** needs to be played back. According to this function, a hot-journal 5035 ** file exists if the following criteria are met: 5036 ** 5037 ** * The journal file exists in the file system, and 5038 ** * No process holds a RESERVED or greater lock on the database file, and 5039 ** * The database file itself is greater than 0 bytes in size, and 5040 ** * The first byte of the journal file exists and is not 0x00. 5041 ** 5042 ** If the current size of the database file is 0 but a journal file 5043 ** exists, that is probably an old journal left over from a prior 5044 ** database with the same name. In this case the journal file is 5045 ** just deleted using OsDelete, *pExists is set to 0 and SQLITE_OK 5046 ** is returned. 5047 ** 5048 ** This routine does not check if there is a super-journal filename 5049 ** at the end of the file. If there is, and that super-journal file 5050 ** does not exist, then the journal file is not really hot. In this 5051 ** case this routine will return a false-positive. The pager_playback() 5052 ** routine will discover that the journal file is not really hot and 5053 ** will not roll it back. 5054 ** 5055 ** If a hot-journal file is found to exist, *pExists is set to 1 and 5056 ** SQLITE_OK returned. If no hot-journal file is present, *pExists is 5057 ** set to 0 and SQLITE_OK returned. If an IO error occurs while trying 5058 ** to determine whether or not a hot-journal file exists, the IO error 5059 ** code is returned and the value of *pExists is undefined. 5060 */ 5061 static int hasHotJournal(Pager *pPager, int *pExists){ 5062 sqlite3_vfs * const pVfs = pPager->pVfs; 5063 int rc = SQLITE_OK; /* Return code */ 5064 int exists = 1; /* True if a journal file is present */ 5065 int jrnlOpen = !!isOpen(pPager->jfd); 5066 5067 assert( pPager->useJournal ); 5068 assert( isOpen(pPager->fd) ); 5069 assert( pPager->eState==PAGER_OPEN ); 5070 5071 assert( jrnlOpen==0 || ( sqlite3OsDeviceCharacteristics(pPager->jfd) & 5072 SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN 5073 )); 5074 5075 *pExists = 0; 5076 if( !jrnlOpen ){ 5077 rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists); 5078 } 5079 if( rc==SQLITE_OK && exists ){ 5080 int locked = 0; /* True if some process holds a RESERVED lock */ 5081 5082 /* Race condition here: Another process might have been holding the 5083 ** the RESERVED lock and have a journal open at the sqlite3OsAccess() 5084 ** call above, but then delete the journal and drop the lock before 5085 ** we get to the following sqlite3OsCheckReservedLock() call. If that 5086 ** is the case, this routine might think there is a hot journal when 5087 ** in fact there is none. This results in a false-positive which will 5088 ** be dealt with by the playback routine. Ticket #3883. 5089 */ 5090 rc = sqlite3OsCheckReservedLock(pPager->fd, &locked); 5091 if( rc==SQLITE_OK && !locked ){ 5092 Pgno nPage; /* Number of pages in database file */ 5093 5094 assert( pPager->tempFile==0 ); 5095 rc = pagerPagecount(pPager, &nPage); 5096 if( rc==SQLITE_OK ){ 5097 /* If the database is zero pages in size, that means that either (1) the 5098 ** journal is a remnant from a prior database with the same name where 5099 ** the database file but not the journal was deleted, or (2) the initial 5100 ** transaction that populates a new database is being rolled back. 5101 ** In either case, the journal file can be deleted. However, take care 5102 ** not to delete the journal file if it is already open due to 5103 ** journal_mode=PERSIST. 5104 */ 5105 if( nPage==0 && !jrnlOpen ){ 5106 sqlite3BeginBenignMalloc(); 5107 if( pagerLockDb(pPager, RESERVED_LOCK)==SQLITE_OK ){ 5108 sqlite3OsDelete(pVfs, pPager->zJournal, 0); 5109 if( !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK); 5110 } 5111 sqlite3EndBenignMalloc(); 5112 }else{ 5113 /* The journal file exists and no other connection has a reserved 5114 ** or greater lock on the database file. Now check that there is 5115 ** at least one non-zero bytes at the start of the journal file. 5116 ** If there is, then we consider this journal to be hot. If not, 5117 ** it can be ignored. 5118 */ 5119 if( !jrnlOpen ){ 5120 int f = SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL; 5121 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &f); 5122 } 5123 if( rc==SQLITE_OK ){ 5124 u8 first = 0; 5125 rc = sqlite3OsRead(pPager->jfd, (void *)&first, 1, 0); 5126 if( rc==SQLITE_IOERR_SHORT_READ ){ 5127 rc = SQLITE_OK; 5128 } 5129 if( !jrnlOpen ){ 5130 sqlite3OsClose(pPager->jfd); 5131 } 5132 *pExists = (first!=0); 5133 }else if( rc==SQLITE_CANTOPEN ){ 5134 /* If we cannot open the rollback journal file in order to see if 5135 ** it has a zero header, that might be due to an I/O error, or 5136 ** it might be due to the race condition described above and in 5137 ** ticket #3883. Either way, assume that the journal is hot. 5138 ** This might be a false positive. But if it is, then the 5139 ** automatic journal playback and recovery mechanism will deal 5140 ** with it under an EXCLUSIVE lock where we do not need to 5141 ** worry so much with race conditions. 5142 */ 5143 *pExists = 1; 5144 rc = SQLITE_OK; 5145 } 5146 } 5147 } 5148 } 5149 } 5150 5151 return rc; 5152 } 5153 5154 /* 5155 ** This function is called to obtain a shared lock on the database file. 5156 ** It is illegal to call sqlite3PagerGet() until after this function 5157 ** has been successfully called. If a shared-lock is already held when 5158 ** this function is called, it is a no-op. 5159 ** 5160 ** The following operations are also performed by this function. 5161 ** 5162 ** 1) If the pager is currently in PAGER_OPEN state (no lock held 5163 ** on the database file), then an attempt is made to obtain a 5164 ** SHARED lock on the database file. Immediately after obtaining 5165 ** the SHARED lock, the file-system is checked for a hot-journal, 5166 ** which is played back if present. Following any hot-journal 5167 ** rollback, the contents of the cache are validated by checking 5168 ** the 'change-counter' field of the database file header and 5169 ** discarded if they are found to be invalid. 5170 ** 5171 ** 2) If the pager is running in exclusive-mode, and there are currently 5172 ** no outstanding references to any pages, and is in the error state, 5173 ** then an attempt is made to clear the error state by discarding 5174 ** the contents of the page cache and rolling back any open journal 5175 ** file. 5176 ** 5177 ** If everything is successful, SQLITE_OK is returned. If an IO error 5178 ** occurs while locking the database, checking for a hot-journal file or 5179 ** rolling back a journal file, the IO error code is returned. 5180 */ 5181 int sqlite3PagerSharedLock(Pager *pPager){ 5182 int rc = SQLITE_OK; /* Return code */ 5183 5184 /* This routine is only called from b-tree and only when there are no 5185 ** outstanding pages. This implies that the pager state should either 5186 ** be OPEN or READER. READER is only possible if the pager is or was in 5187 ** exclusive access mode. */ 5188 assert( sqlite3PcacheRefCount(pPager->pPCache)==0 ); 5189 assert( assert_pager_state(pPager) ); 5190 assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); 5191 assert( pPager->errCode==SQLITE_OK ); 5192 5193 if( !pagerUseWal(pPager) && pPager->eState==PAGER_OPEN ){ 5194 int bHotJournal = 1; /* True if there exists a hot journal-file */ 5195 5196 assert( !MEMDB ); 5197 assert( pPager->tempFile==0 || pPager->eLock==EXCLUSIVE_LOCK ); 5198 5199 rc = pager_wait_on_lock(pPager, SHARED_LOCK); 5200 if( rc!=SQLITE_OK ){ 5201 assert( pPager->eLock==NO_LOCK || pPager->eLock==UNKNOWN_LOCK ); 5202 goto failed; 5203 } 5204 5205 /* If a journal file exists, and there is no RESERVED lock on the 5206 ** database file, then it either needs to be played back or deleted. 5207 */ 5208 if( pPager->eLock<=SHARED_LOCK ){ 5209 rc = hasHotJournal(pPager, &bHotJournal); 5210 } 5211 if( rc!=SQLITE_OK ){ 5212 goto failed; 5213 } 5214 if( bHotJournal ){ 5215 if( pPager->readOnly ){ 5216 rc = SQLITE_READONLY_ROLLBACK; 5217 goto failed; 5218 } 5219 5220 /* Get an EXCLUSIVE lock on the database file. At this point it is 5221 ** important that a RESERVED lock is not obtained on the way to the 5222 ** EXCLUSIVE lock. If it were, another process might open the 5223 ** database file, detect the RESERVED lock, and conclude that the 5224 ** database is safe to read while this process is still rolling the 5225 ** hot-journal back. 5226 ** 5227 ** Because the intermediate RESERVED lock is not requested, any 5228 ** other process attempting to access the database file will get to 5229 ** this point in the code and fail to obtain its own EXCLUSIVE lock 5230 ** on the database file. 5231 ** 5232 ** Unless the pager is in locking_mode=exclusive mode, the lock is 5233 ** downgraded to SHARED_LOCK before this function returns. 5234 */ 5235 rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); 5236 if( rc!=SQLITE_OK ){ 5237 goto failed; 5238 } 5239 5240 /* If it is not already open and the file exists on disk, open the 5241 ** journal for read/write access. Write access is required because 5242 ** in exclusive-access mode the file descriptor will be kept open 5243 ** and possibly used for a transaction later on. Also, write-access 5244 ** is usually required to finalize the journal in journal_mode=persist 5245 ** mode (and also for journal_mode=truncate on some systems). 5246 ** 5247 ** If the journal does not exist, it usually means that some 5248 ** other connection managed to get in and roll it back before 5249 ** this connection obtained the exclusive lock above. Or, it 5250 ** may mean that the pager was in the error-state when this 5251 ** function was called and the journal file does not exist. 5252 */ 5253 if( !isOpen(pPager->jfd) ){ 5254 sqlite3_vfs * const pVfs = pPager->pVfs; 5255 int bExists; /* True if journal file exists */ 5256 rc = sqlite3OsAccess( 5257 pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &bExists); 5258 if( rc==SQLITE_OK && bExists ){ 5259 int fout = 0; 5260 int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL; 5261 assert( !pPager->tempFile ); 5262 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout); 5263 assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); 5264 if( rc==SQLITE_OK && fout&SQLITE_OPEN_READONLY ){ 5265 rc = SQLITE_CANTOPEN_BKPT; 5266 sqlite3OsClose(pPager->jfd); 5267 } 5268 } 5269 } 5270 5271 /* Playback and delete the journal. Drop the database write 5272 ** lock and reacquire the read lock. Purge the cache before 5273 ** playing back the hot-journal so that we don't end up with 5274 ** an inconsistent cache. Sync the hot journal before playing 5275 ** it back since the process that crashed and left the hot journal 5276 ** probably did not sync it and we are required to always sync 5277 ** the journal before playing it back. 5278 */ 5279 if( isOpen(pPager->jfd) ){ 5280 assert( rc==SQLITE_OK ); 5281 rc = pagerSyncHotJournal(pPager); 5282 if( rc==SQLITE_OK ){ 5283 rc = pager_playback(pPager, !pPager->tempFile); 5284 pPager->eState = PAGER_OPEN; 5285 } 5286 }else if( !pPager->exclusiveMode ){ 5287 pagerUnlockDb(pPager, SHARED_LOCK); 5288 } 5289 5290 if( rc!=SQLITE_OK ){ 5291 /* This branch is taken if an error occurs while trying to open 5292 ** or roll back a hot-journal while holding an EXCLUSIVE lock. The 5293 ** pager_unlock() routine will be called before returning to unlock 5294 ** the file. If the unlock attempt fails, then Pager.eLock must be 5295 ** set to UNKNOWN_LOCK (see the comment above the #define for 5296 ** UNKNOWN_LOCK above for an explanation). 5297 ** 5298 ** In order to get pager_unlock() to do this, set Pager.eState to 5299 ** PAGER_ERROR now. This is not actually counted as a transition 5300 ** to ERROR state in the state diagram at the top of this file, 5301 ** since we know that the same call to pager_unlock() will very 5302 ** shortly transition the pager object to the OPEN state. Calling 5303 ** assert_pager_state() would fail now, as it should not be possible 5304 ** to be in ERROR state when there are zero outstanding page 5305 ** references. 5306 */ 5307 pager_error(pPager, rc); 5308 goto failed; 5309 } 5310 5311 assert( pPager->eState==PAGER_OPEN ); 5312 assert( (pPager->eLock==SHARED_LOCK) 5313 || (pPager->exclusiveMode && pPager->eLock>SHARED_LOCK) 5314 ); 5315 } 5316 5317 if( !pPager->tempFile && pPager->hasHeldSharedLock ){ 5318 /* The shared-lock has just been acquired then check to 5319 ** see if the database has been modified. If the database has changed, 5320 ** flush the cache. The hasHeldSharedLock flag prevents this from 5321 ** occurring on the very first access to a file, in order to save a 5322 ** single unnecessary sqlite3OsRead() call at the start-up. 5323 ** 5324 ** Database changes are detected by looking at 15 bytes beginning 5325 ** at offset 24 into the file. The first 4 of these 16 bytes are 5326 ** a 32-bit counter that is incremented with each change. The 5327 ** other bytes change randomly with each file change when 5328 ** a codec is in use. 5329 ** 5330 ** There is a vanishingly small chance that a change will not be 5331 ** detected. The chance of an undetected change is so small that 5332 ** it can be neglected. 5333 */ 5334 char dbFileVers[sizeof(pPager->dbFileVers)]; 5335 5336 IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers))); 5337 rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24); 5338 if( rc!=SQLITE_OK ){ 5339 if( rc!=SQLITE_IOERR_SHORT_READ ){ 5340 goto failed; 5341 } 5342 memset(dbFileVers, 0, sizeof(dbFileVers)); 5343 } 5344 5345 if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){ 5346 pager_reset(pPager); 5347 5348 /* Unmap the database file. It is possible that external processes 5349 ** may have truncated the database file and then extended it back 5350 ** to its original size while this process was not holding a lock. 5351 ** In this case there may exist a Pager.pMap mapping that appears 5352 ** to be the right size but is not actually valid. Avoid this 5353 ** possibility by unmapping the db here. */ 5354 if( USEFETCH(pPager) ){ 5355 sqlite3OsUnfetch(pPager->fd, 0, 0); 5356 } 5357 } 5358 } 5359 5360 /* If there is a WAL file in the file-system, open this database in WAL 5361 ** mode. Otherwise, the following function call is a no-op. 5362 */ 5363 rc = pagerOpenWalIfPresent(pPager); 5364 #ifndef SQLITE_OMIT_WAL 5365 assert( pPager->pWal==0 || rc==SQLITE_OK ); 5366 #endif 5367 } 5368 5369 if( pagerUseWal(pPager) ){ 5370 assert( rc==SQLITE_OK ); 5371 rc = pagerBeginReadTransaction(pPager); 5372 } 5373 5374 if( pPager->tempFile==0 && pPager->eState==PAGER_OPEN && rc==SQLITE_OK ){ 5375 rc = pagerPagecount(pPager, &pPager->dbSize); 5376 } 5377 5378 failed: 5379 if( rc!=SQLITE_OK ){ 5380 assert( !MEMDB ); 5381 pager_unlock(pPager); 5382 assert( pPager->eState==PAGER_OPEN ); 5383 }else{ 5384 pPager->eState = PAGER_READER; 5385 pPager->hasHeldSharedLock = 1; 5386 } 5387 return rc; 5388 } 5389 5390 /* 5391 ** If the reference count has reached zero, rollback any active 5392 ** transaction and unlock the pager. 5393 ** 5394 ** Except, in locking_mode=EXCLUSIVE when there is nothing to in 5395 ** the rollback journal, the unlock is not performed and there is 5396 ** nothing to rollback, so this routine is a no-op. 5397 */ 5398 static void pagerUnlockIfUnused(Pager *pPager){ 5399 if( sqlite3PcacheRefCount(pPager->pPCache)==0 ){ 5400 assert( pPager->nMmapOut==0 ); /* because page1 is never memory mapped */ 5401 pagerUnlockAndRollback(pPager); 5402 } 5403 } 5404 5405 /* 5406 ** The page getter methods each try to acquire a reference to a 5407 ** page with page number pgno. If the requested reference is 5408 ** successfully obtained, it is copied to *ppPage and SQLITE_OK returned. 5409 ** 5410 ** There are different implementations of the getter method depending 5411 ** on the current state of the pager. 5412 ** 5413 ** getPageNormal() -- The normal getter 5414 ** getPageError() -- Used if the pager is in an error state 5415 ** getPageMmap() -- Used if memory-mapped I/O is enabled 5416 ** 5417 ** If the requested page is already in the cache, it is returned. 5418 ** Otherwise, a new page object is allocated and populated with data 5419 ** read from the database file. In some cases, the pcache module may 5420 ** choose not to allocate a new page object and may reuse an existing 5421 ** object with no outstanding references. 5422 ** 5423 ** The extra data appended to a page is always initialized to zeros the 5424 ** first time a page is loaded into memory. If the page requested is 5425 ** already in the cache when this function is called, then the extra 5426 ** data is left as it was when the page object was last used. 5427 ** 5428 ** If the database image is smaller than the requested page or if 5429 ** the flags parameter contains the PAGER_GET_NOCONTENT bit and the 5430 ** requested page is not already stored in the cache, then no 5431 ** actual disk read occurs. In this case the memory image of the 5432 ** page is initialized to all zeros. 5433 ** 5434 ** If PAGER_GET_NOCONTENT is true, it means that we do not care about 5435 ** the contents of the page. This occurs in two scenarios: 5436 ** 5437 ** a) When reading a free-list leaf page from the database, and 5438 ** 5439 ** b) When a savepoint is being rolled back and we need to load 5440 ** a new page into the cache to be filled with the data read 5441 ** from the savepoint journal. 5442 ** 5443 ** If PAGER_GET_NOCONTENT is true, then the data returned is zeroed instead 5444 ** of being read from the database. Additionally, the bits corresponding 5445 ** to pgno in Pager.pInJournal (bitvec of pages already written to the 5446 ** journal file) and the PagerSavepoint.pInSavepoint bitvecs of any open 5447 ** savepoints are set. This means if the page is made writable at any 5448 ** point in the future, using a call to sqlite3PagerWrite(), its contents 5449 ** will not be journaled. This saves IO. 5450 ** 5451 ** The acquisition might fail for several reasons. In all cases, 5452 ** an appropriate error code is returned and *ppPage is set to NULL. 5453 ** 5454 ** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt 5455 ** to find a page in the in-memory cache first. If the page is not already 5456 ** in memory, this routine goes to disk to read it in whereas Lookup() 5457 ** just returns 0. This routine acquires a read-lock the first time it 5458 ** has to go to disk, and could also playback an old journal if necessary. 5459 ** Since Lookup() never goes to disk, it never has to deal with locks 5460 ** or journal files. 5461 */ 5462 static int getPageNormal( 5463 Pager *pPager, /* The pager open on the database file */ 5464 Pgno pgno, /* Page number to fetch */ 5465 DbPage **ppPage, /* Write a pointer to the page here */ 5466 int flags /* PAGER_GET_XXX flags */ 5467 ){ 5468 int rc = SQLITE_OK; 5469 PgHdr *pPg; 5470 u8 noContent; /* True if PAGER_GET_NOCONTENT is set */ 5471 sqlite3_pcache_page *pBase; 5472 5473 assert( pPager->errCode==SQLITE_OK ); 5474 assert( pPager->eState>=PAGER_READER ); 5475 assert( assert_pager_state(pPager) ); 5476 assert( pPager->hasHeldSharedLock==1 ); 5477 5478 if( pgno==0 ) return SQLITE_CORRUPT_BKPT; 5479 pBase = sqlite3PcacheFetch(pPager->pPCache, pgno, 3); 5480 if( pBase==0 ){ 5481 pPg = 0; 5482 rc = sqlite3PcacheFetchStress(pPager->pPCache, pgno, &pBase); 5483 if( rc!=SQLITE_OK ) goto pager_acquire_err; 5484 if( pBase==0 ){ 5485 rc = SQLITE_NOMEM_BKPT; 5486 goto pager_acquire_err; 5487 } 5488 } 5489 pPg = *ppPage = sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pBase); 5490 assert( pPg==(*ppPage) ); 5491 assert( pPg->pgno==pgno ); 5492 assert( pPg->pPager==pPager || pPg->pPager==0 ); 5493 5494 noContent = (flags & PAGER_GET_NOCONTENT)!=0; 5495 if( pPg->pPager && !noContent ){ 5496 /* In this case the pcache already contains an initialized copy of 5497 ** the page. Return without further ado. */ 5498 assert( pgno!=PAGER_MJ_PGNO(pPager) ); 5499 pPager->aStat[PAGER_STAT_HIT]++; 5500 return SQLITE_OK; 5501 5502 }else{ 5503 /* The pager cache has created a new page. Its content needs to 5504 ** be initialized. But first some error checks: 5505 ** 5506 ** (*) obsolete. Was: maximum page number is 2^31 5507 ** (2) Never try to fetch the locking page 5508 */ 5509 if( pgno==PAGER_MJ_PGNO(pPager) ){ 5510 rc = SQLITE_CORRUPT_BKPT; 5511 goto pager_acquire_err; 5512 } 5513 5514 pPg->pPager = pPager; 5515 5516 assert( !isOpen(pPager->fd) || !MEMDB ); 5517 if( !isOpen(pPager->fd) || pPager->dbSize<pgno || noContent ){ 5518 if( pgno>pPager->mxPgno ){ 5519 rc = SQLITE_FULL; 5520 goto pager_acquire_err; 5521 } 5522 if( noContent ){ 5523 /* Failure to set the bits in the InJournal bit-vectors is benign. 5524 ** It merely means that we might do some extra work to journal a 5525 ** page that does not need to be journaled. Nevertheless, be sure 5526 ** to test the case where a malloc error occurs while trying to set 5527 ** a bit in a bit vector. 5528 */ 5529 sqlite3BeginBenignMalloc(); 5530 if( pgno<=pPager->dbOrigSize ){ 5531 TESTONLY( rc = ) sqlite3BitvecSet(pPager->pInJournal, pgno); 5532 testcase( rc==SQLITE_NOMEM ); 5533 } 5534 TESTONLY( rc = ) addToSavepointBitvecs(pPager, pgno); 5535 testcase( rc==SQLITE_NOMEM ); 5536 sqlite3EndBenignMalloc(); 5537 } 5538 memset(pPg->pData, 0, pPager->pageSize); 5539 IOTRACE(("ZERO %p %d\n", pPager, pgno)); 5540 }else{ 5541 assert( pPg->pPager==pPager ); 5542 pPager->aStat[PAGER_STAT_MISS]++; 5543 rc = readDbPage(pPg); 5544 if( rc!=SQLITE_OK ){ 5545 goto pager_acquire_err; 5546 } 5547 } 5548 pager_set_pagehash(pPg); 5549 } 5550 return SQLITE_OK; 5551 5552 pager_acquire_err: 5553 assert( rc!=SQLITE_OK ); 5554 if( pPg ){ 5555 sqlite3PcacheDrop(pPg); 5556 } 5557 pagerUnlockIfUnused(pPager); 5558 *ppPage = 0; 5559 return rc; 5560 } 5561 5562 #if SQLITE_MAX_MMAP_SIZE>0 5563 /* The page getter for when memory-mapped I/O is enabled */ 5564 static int getPageMMap( 5565 Pager *pPager, /* The pager open on the database file */ 5566 Pgno pgno, /* Page number to fetch */ 5567 DbPage **ppPage, /* Write a pointer to the page here */ 5568 int flags /* PAGER_GET_XXX flags */ 5569 ){ 5570 int rc = SQLITE_OK; 5571 PgHdr *pPg = 0; 5572 u32 iFrame = 0; /* Frame to read from WAL file */ 5573 5574 /* It is acceptable to use a read-only (mmap) page for any page except 5575 ** page 1 if there is no write-transaction open or the ACQUIRE_READONLY 5576 ** flag was specified by the caller. And so long as the db is not a 5577 ** temporary or in-memory database. */ 5578 const int bMmapOk = (pgno>1 5579 && (pPager->eState==PAGER_READER || (flags & PAGER_GET_READONLY)) 5580 ); 5581 5582 assert( USEFETCH(pPager) ); 5583 5584 /* Optimization note: Adding the "pgno<=1" term before "pgno==0" here 5585 ** allows the compiler optimizer to reuse the results of the "pgno>1" 5586 ** test in the previous statement, and avoid testing pgno==0 in the 5587 ** common case where pgno is large. */ 5588 if( pgno<=1 && pgno==0 ){ 5589 return SQLITE_CORRUPT_BKPT; 5590 } 5591 assert( pPager->eState>=PAGER_READER ); 5592 assert( assert_pager_state(pPager) ); 5593 assert( pPager->hasHeldSharedLock==1 ); 5594 assert( pPager->errCode==SQLITE_OK ); 5595 5596 if( bMmapOk && pagerUseWal(pPager) ){ 5597 rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iFrame); 5598 if( rc!=SQLITE_OK ){ 5599 *ppPage = 0; 5600 return rc; 5601 } 5602 } 5603 if( bMmapOk && iFrame==0 ){ 5604 void *pData = 0; 5605 rc = sqlite3OsFetch(pPager->fd, 5606 (i64)(pgno-1) * pPager->pageSize, pPager->pageSize, &pData 5607 ); 5608 if( rc==SQLITE_OK && pData ){ 5609 if( pPager->eState>PAGER_READER || pPager->tempFile ){ 5610 pPg = sqlite3PagerLookup(pPager, pgno); 5611 } 5612 if( pPg==0 ){ 5613 rc = pagerAcquireMapPage(pPager, pgno, pData, &pPg); 5614 }else{ 5615 sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1)*pPager->pageSize, pData); 5616 } 5617 if( pPg ){ 5618 assert( rc==SQLITE_OK ); 5619 *ppPage = pPg; 5620 return SQLITE_OK; 5621 } 5622 } 5623 if( rc!=SQLITE_OK ){ 5624 *ppPage = 0; 5625 return rc; 5626 } 5627 } 5628 return getPageNormal(pPager, pgno, ppPage, flags); 5629 } 5630 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 5631 5632 /* The page getter method for when the pager is an error state */ 5633 static int getPageError( 5634 Pager *pPager, /* The pager open on the database file */ 5635 Pgno pgno, /* Page number to fetch */ 5636 DbPage **ppPage, /* Write a pointer to the page here */ 5637 int flags /* PAGER_GET_XXX flags */ 5638 ){ 5639 UNUSED_PARAMETER(pgno); 5640 UNUSED_PARAMETER(flags); 5641 assert( pPager->errCode!=SQLITE_OK ); 5642 *ppPage = 0; 5643 return pPager->errCode; 5644 } 5645 5646 5647 /* Dispatch all page fetch requests to the appropriate getter method. 5648 */ 5649 int sqlite3PagerGet( 5650 Pager *pPager, /* The pager open on the database file */ 5651 Pgno pgno, /* Page number to fetch */ 5652 DbPage **ppPage, /* Write a pointer to the page here */ 5653 int flags /* PAGER_GET_XXX flags */ 5654 ){ 5655 return pPager->xGet(pPager, pgno, ppPage, flags); 5656 } 5657 5658 /* 5659 ** Acquire a page if it is already in the in-memory cache. Do 5660 ** not read the page from disk. Return a pointer to the page, 5661 ** or 0 if the page is not in cache. 5662 ** 5663 ** See also sqlite3PagerGet(). The difference between this routine 5664 ** and sqlite3PagerGet() is that _get() will go to the disk and read 5665 ** in the page if the page is not already in cache. This routine 5666 ** returns NULL if the page is not in cache or if a disk I/O error 5667 ** has ever happened. 5668 */ 5669 DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ 5670 sqlite3_pcache_page *pPage; 5671 assert( pPager!=0 ); 5672 assert( pgno!=0 ); 5673 assert( pPager->pPCache!=0 ); 5674 pPage = sqlite3PcacheFetch(pPager->pPCache, pgno, 0); 5675 assert( pPage==0 || pPager->hasHeldSharedLock ); 5676 if( pPage==0 ) return 0; 5677 return sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pPage); 5678 } 5679 5680 /* 5681 ** Release a page reference. 5682 ** 5683 ** The sqlite3PagerUnref() and sqlite3PagerUnrefNotNull() may only be 5684 ** used if we know that the page being released is not the last page. 5685 ** The btree layer always holds page1 open until the end, so these first 5686 ** to routines can be used to release any page other than BtShared.pPage1. 5687 ** 5688 ** Use sqlite3PagerUnrefPageOne() to release page1. This latter routine 5689 ** checks the total number of outstanding pages and if the number of 5690 ** pages reaches zero it drops the database lock. 5691 */ 5692 void sqlite3PagerUnrefNotNull(DbPage *pPg){ 5693 TESTONLY( Pager *pPager = pPg->pPager; ) 5694 assert( pPg!=0 ); 5695 if( pPg->flags & PGHDR_MMAP ){ 5696 assert( pPg->pgno!=1 ); /* Page1 is never memory mapped */ 5697 pagerReleaseMapPage(pPg); 5698 }else{ 5699 sqlite3PcacheRelease(pPg); 5700 } 5701 /* Do not use this routine to release the last reference to page1 */ 5702 assert( sqlite3PcacheRefCount(pPager->pPCache)>0 ); 5703 } 5704 void sqlite3PagerUnref(DbPage *pPg){ 5705 if( pPg ) sqlite3PagerUnrefNotNull(pPg); 5706 } 5707 void sqlite3PagerUnrefPageOne(DbPage *pPg){ 5708 Pager *pPager; 5709 assert( pPg!=0 ); 5710 assert( pPg->pgno==1 ); 5711 assert( (pPg->flags & PGHDR_MMAP)==0 ); /* Page1 is never memory mapped */ 5712 pPager = pPg->pPager; 5713 sqlite3PcacheRelease(pPg); 5714 pagerUnlockIfUnused(pPager); 5715 } 5716 5717 /* 5718 ** This function is called at the start of every write transaction. 5719 ** There must already be a RESERVED or EXCLUSIVE lock on the database 5720 ** file when this routine is called. 5721 ** 5722 ** Open the journal file for pager pPager and write a journal header 5723 ** to the start of it. If there are active savepoints, open the sub-journal 5724 ** as well. This function is only used when the journal file is being 5725 ** opened to write a rollback log for a transaction. It is not used 5726 ** when opening a hot journal file to roll it back. 5727 ** 5728 ** If the journal file is already open (as it may be in exclusive mode), 5729 ** then this function just writes a journal header to the start of the 5730 ** already open file. 5731 ** 5732 ** Whether or not the journal file is opened by this function, the 5733 ** Pager.pInJournal bitvec structure is allocated. 5734 ** 5735 ** Return SQLITE_OK if everything is successful. Otherwise, return 5736 ** SQLITE_NOMEM if the attempt to allocate Pager.pInJournal fails, or 5737 ** an IO error code if opening or writing the journal file fails. 5738 */ 5739 static int pager_open_journal(Pager *pPager){ 5740 int rc = SQLITE_OK; /* Return code */ 5741 sqlite3_vfs * const pVfs = pPager->pVfs; /* Local cache of vfs pointer */ 5742 5743 assert( pPager->eState==PAGER_WRITER_LOCKED ); 5744 assert( assert_pager_state(pPager) ); 5745 assert( pPager->pInJournal==0 ); 5746 5747 /* If already in the error state, this function is a no-op. But on 5748 ** the other hand, this routine is never called if we are already in 5749 ** an error state. */ 5750 if( NEVER(pPager->errCode) ) return pPager->errCode; 5751 5752 if( !pagerUseWal(pPager) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ 5753 pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize); 5754 if( pPager->pInJournal==0 ){ 5755 return SQLITE_NOMEM_BKPT; 5756 } 5757 5758 /* Open the journal file if it is not already open. */ 5759 if( !isOpen(pPager->jfd) ){ 5760 if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ){ 5761 sqlite3MemJournalOpen(pPager->jfd); 5762 }else{ 5763 int flags = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE; 5764 int nSpill; 5765 5766 if( pPager->tempFile ){ 5767 flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL); 5768 nSpill = sqlite3Config.nStmtSpill; 5769 }else{ 5770 flags |= SQLITE_OPEN_MAIN_JOURNAL; 5771 nSpill = jrnlBufferSize(pPager); 5772 } 5773 5774 /* Verify that the database still has the same name as it did when 5775 ** it was originally opened. */ 5776 rc = databaseIsUnmoved(pPager); 5777 if( rc==SQLITE_OK ){ 5778 rc = sqlite3JournalOpen ( 5779 pVfs, pPager->zJournal, pPager->jfd, flags, nSpill 5780 ); 5781 } 5782 } 5783 assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); 5784 } 5785 5786 5787 /* Write the first journal header to the journal file and open 5788 ** the sub-journal if necessary. 5789 */ 5790 if( rc==SQLITE_OK ){ 5791 /* TODO: Check if all of these are really required. */ 5792 pPager->nRec = 0; 5793 pPager->journalOff = 0; 5794 pPager->setSuper = 0; 5795 pPager->journalHdr = 0; 5796 rc = writeJournalHdr(pPager); 5797 } 5798 } 5799 5800 if( rc!=SQLITE_OK ){ 5801 sqlite3BitvecDestroy(pPager->pInJournal); 5802 pPager->pInJournal = 0; 5803 }else{ 5804 assert( pPager->eState==PAGER_WRITER_LOCKED ); 5805 pPager->eState = PAGER_WRITER_CACHEMOD; 5806 } 5807 5808 return rc; 5809 } 5810 5811 /* 5812 ** Begin a write-transaction on the specified pager object. If a 5813 ** write-transaction has already been opened, this function is a no-op. 5814 ** 5815 ** If the exFlag argument is false, then acquire at least a RESERVED 5816 ** lock on the database file. If exFlag is true, then acquire at least 5817 ** an EXCLUSIVE lock. If such a lock is already held, no locking 5818 ** functions need be called. 5819 ** 5820 ** If the subjInMemory argument is non-zero, then any sub-journal opened 5821 ** within this transaction will be opened as an in-memory file. This 5822 ** has no effect if the sub-journal is already opened (as it may be when 5823 ** running in exclusive mode) or if the transaction does not require a 5824 ** sub-journal. If the subjInMemory argument is zero, then any required 5825 ** sub-journal is implemented in-memory if pPager is an in-memory database, 5826 ** or using a temporary file otherwise. 5827 */ 5828 int sqlite3PagerBegin(Pager *pPager, int exFlag, int subjInMemory){ 5829 int rc = SQLITE_OK; 5830 5831 if( pPager->errCode ) return pPager->errCode; 5832 assert( pPager->eState>=PAGER_READER && pPager->eState<PAGER_ERROR ); 5833 pPager->subjInMemory = (u8)subjInMemory; 5834 5835 if( ALWAYS(pPager->eState==PAGER_READER) ){ 5836 assert( pPager->pInJournal==0 ); 5837 5838 if( pagerUseWal(pPager) ){ 5839 /* If the pager is configured to use locking_mode=exclusive, and an 5840 ** exclusive lock on the database is not already held, obtain it now. 5841 */ 5842 if( pPager->exclusiveMode && sqlite3WalExclusiveMode(pPager->pWal, -1) ){ 5843 rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); 5844 if( rc!=SQLITE_OK ){ 5845 return rc; 5846 } 5847 (void)sqlite3WalExclusiveMode(pPager->pWal, 1); 5848 } 5849 5850 /* Grab the write lock on the log file. If successful, upgrade to 5851 ** PAGER_RESERVED state. Otherwise, return an error code to the caller. 5852 ** The busy-handler is not invoked if another connection already 5853 ** holds the write-lock. If possible, the upper layer will call it. 5854 */ 5855 rc = sqlite3WalBeginWriteTransaction(pPager->pWal); 5856 }else{ 5857 /* Obtain a RESERVED lock on the database file. If the exFlag parameter 5858 ** is true, then immediately upgrade this to an EXCLUSIVE lock. The 5859 ** busy-handler callback can be used when upgrading to the EXCLUSIVE 5860 ** lock, but not when obtaining the RESERVED lock. 5861 */ 5862 rc = pagerLockDb(pPager, RESERVED_LOCK); 5863 if( rc==SQLITE_OK && exFlag ){ 5864 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); 5865 } 5866 } 5867 5868 if( rc==SQLITE_OK ){ 5869 /* Change to WRITER_LOCKED state. 5870 ** 5871 ** WAL mode sets Pager.eState to PAGER_WRITER_LOCKED or CACHEMOD 5872 ** when it has an open transaction, but never to DBMOD or FINISHED. 5873 ** This is because in those states the code to roll back savepoint 5874 ** transactions may copy data from the sub-journal into the database 5875 ** file as well as into the page cache. Which would be incorrect in 5876 ** WAL mode. 5877 */ 5878 pPager->eState = PAGER_WRITER_LOCKED; 5879 pPager->dbHintSize = pPager->dbSize; 5880 pPager->dbFileSize = pPager->dbSize; 5881 pPager->dbOrigSize = pPager->dbSize; 5882 pPager->journalOff = 0; 5883 } 5884 5885 assert( rc==SQLITE_OK || pPager->eState==PAGER_READER ); 5886 assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED ); 5887 assert( assert_pager_state(pPager) ); 5888 } 5889 5890 PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager))); 5891 return rc; 5892 } 5893 5894 /* 5895 ** Write page pPg onto the end of the rollback journal. 5896 */ 5897 static SQLITE_NOINLINE int pagerAddPageToRollbackJournal(PgHdr *pPg){ 5898 Pager *pPager = pPg->pPager; 5899 int rc; 5900 u32 cksum; 5901 char *pData2; 5902 i64 iOff = pPager->journalOff; 5903 5904 /* We should never write to the journal file the page that 5905 ** contains the database locks. The following assert verifies 5906 ** that we do not. */ 5907 assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) ); 5908 5909 assert( pPager->journalHdr<=pPager->journalOff ); 5910 pData2 = pPg->pData; 5911 cksum = pager_cksum(pPager, (u8*)pData2); 5912 5913 /* Even if an IO or diskfull error occurs while journalling the 5914 ** page in the block above, set the need-sync flag for the page. 5915 ** Otherwise, when the transaction is rolled back, the logic in 5916 ** playback_one_page() will think that the page needs to be restored 5917 ** in the database file. And if an IO error occurs while doing so, 5918 ** then corruption may follow. 5919 */ 5920 pPg->flags |= PGHDR_NEED_SYNC; 5921 5922 rc = write32bits(pPager->jfd, iOff, pPg->pgno); 5923 if( rc!=SQLITE_OK ) return rc; 5924 rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4); 5925 if( rc!=SQLITE_OK ) return rc; 5926 rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum); 5927 if( rc!=SQLITE_OK ) return rc; 5928 5929 IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, 5930 pPager->journalOff, pPager->pageSize)); 5931 PAGER_INCR(sqlite3_pager_writej_count); 5932 PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n", 5933 PAGERID(pPager), pPg->pgno, 5934 ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg))); 5935 5936 pPager->journalOff += 8 + pPager->pageSize; 5937 pPager->nRec++; 5938 assert( pPager->pInJournal!=0 ); 5939 rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno); 5940 testcase( rc==SQLITE_NOMEM ); 5941 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 5942 rc |= addToSavepointBitvecs(pPager, pPg->pgno); 5943 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 5944 return rc; 5945 } 5946 5947 /* 5948 ** Mark a single data page as writeable. The page is written into the 5949 ** main journal or sub-journal as required. If the page is written into 5950 ** one of the journals, the corresponding bit is set in the 5951 ** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs 5952 ** of any open savepoints as appropriate. 5953 */ 5954 static int pager_write(PgHdr *pPg){ 5955 Pager *pPager = pPg->pPager; 5956 int rc = SQLITE_OK; 5957 5958 /* This routine is not called unless a write-transaction has already 5959 ** been started. The journal file may or may not be open at this point. 5960 ** It is never called in the ERROR state. 5961 */ 5962 assert( pPager->eState==PAGER_WRITER_LOCKED 5963 || pPager->eState==PAGER_WRITER_CACHEMOD 5964 || pPager->eState==PAGER_WRITER_DBMOD 5965 ); 5966 assert( assert_pager_state(pPager) ); 5967 assert( pPager->errCode==0 ); 5968 assert( pPager->readOnly==0 ); 5969 CHECK_PAGE(pPg); 5970 5971 /* The journal file needs to be opened. Higher level routines have already 5972 ** obtained the necessary locks to begin the write-transaction, but the 5973 ** rollback journal might not yet be open. Open it now if this is the case. 5974 ** 5975 ** This is done before calling sqlite3PcacheMakeDirty() on the page. 5976 ** Otherwise, if it were done after calling sqlite3PcacheMakeDirty(), then 5977 ** an error might occur and the pager would end up in WRITER_LOCKED state 5978 ** with pages marked as dirty in the cache. 5979 */ 5980 if( pPager->eState==PAGER_WRITER_LOCKED ){ 5981 rc = pager_open_journal(pPager); 5982 if( rc!=SQLITE_OK ) return rc; 5983 } 5984 assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); 5985 assert( assert_pager_state(pPager) ); 5986 5987 /* Mark the page that is about to be modified as dirty. */ 5988 sqlite3PcacheMakeDirty(pPg); 5989 5990 /* If a rollback journal is in use, them make sure the page that is about 5991 ** to change is in the rollback journal, or if the page is a new page off 5992 ** then end of the file, make sure it is marked as PGHDR_NEED_SYNC. 5993 */ 5994 assert( (pPager->pInJournal!=0) == isOpen(pPager->jfd) ); 5995 if( pPager->pInJournal!=0 5996 && sqlite3BitvecTestNotNull(pPager->pInJournal, pPg->pgno)==0 5997 ){ 5998 assert( pagerUseWal(pPager)==0 ); 5999 if( pPg->pgno<=pPager->dbOrigSize ){ 6000 rc = pagerAddPageToRollbackJournal(pPg); 6001 if( rc!=SQLITE_OK ){ 6002 return rc; 6003 } 6004 }else{ 6005 if( pPager->eState!=PAGER_WRITER_DBMOD ){ 6006 pPg->flags |= PGHDR_NEED_SYNC; 6007 } 6008 PAGERTRACE(("APPEND %d page %d needSync=%d\n", 6009 PAGERID(pPager), pPg->pgno, 6010 ((pPg->flags&PGHDR_NEED_SYNC)?1:0))); 6011 } 6012 } 6013 6014 /* The PGHDR_DIRTY bit is set above when the page was added to the dirty-list 6015 ** and before writing the page into the rollback journal. Wait until now, 6016 ** after the page has been successfully journalled, before setting the 6017 ** PGHDR_WRITEABLE bit that indicates that the page can be safely modified. 6018 */ 6019 pPg->flags |= PGHDR_WRITEABLE; 6020 6021 /* If the statement journal is open and the page is not in it, 6022 ** then write the page into the statement journal. 6023 */ 6024 if( pPager->nSavepoint>0 ){ 6025 rc = subjournalPageIfRequired(pPg); 6026 } 6027 6028 /* Update the database size and return. */ 6029 if( pPager->dbSize<pPg->pgno ){ 6030 pPager->dbSize = pPg->pgno; 6031 } 6032 return rc; 6033 } 6034 6035 /* 6036 ** This is a variant of sqlite3PagerWrite() that runs when the sector size 6037 ** is larger than the page size. SQLite makes the (reasonable) assumption that 6038 ** all bytes of a sector are written together by hardware. Hence, all bytes of 6039 ** a sector need to be journalled in case of a power loss in the middle of 6040 ** a write. 6041 ** 6042 ** Usually, the sector size is less than or equal to the page size, in which 6043 ** case pages can be individually written. This routine only runs in the 6044 ** exceptional case where the page size is smaller than the sector size. 6045 */ 6046 static SQLITE_NOINLINE int pagerWriteLargeSector(PgHdr *pPg){ 6047 int rc = SQLITE_OK; /* Return code */ 6048 Pgno nPageCount; /* Total number of pages in database file */ 6049 Pgno pg1; /* First page of the sector pPg is located on. */ 6050 int nPage = 0; /* Number of pages starting at pg1 to journal */ 6051 int ii; /* Loop counter */ 6052 int needSync = 0; /* True if any page has PGHDR_NEED_SYNC */ 6053 Pager *pPager = pPg->pPager; /* The pager that owns pPg */ 6054 Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize); 6055 6056 /* Set the doNotSpill NOSYNC bit to 1. This is because we cannot allow 6057 ** a journal header to be written between the pages journaled by 6058 ** this function. 6059 */ 6060 assert( !MEMDB ); 6061 assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)==0 ); 6062 pPager->doNotSpill |= SPILLFLAG_NOSYNC; 6063 6064 /* This trick assumes that both the page-size and sector-size are 6065 ** an integer power of 2. It sets variable pg1 to the identifier 6066 ** of the first page of the sector pPg is located on. 6067 */ 6068 pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1; 6069 6070 nPageCount = pPager->dbSize; 6071 if( pPg->pgno>nPageCount ){ 6072 nPage = (pPg->pgno - pg1)+1; 6073 }else if( (pg1+nPagePerSector-1)>nPageCount ){ 6074 nPage = nPageCount+1-pg1; 6075 }else{ 6076 nPage = nPagePerSector; 6077 } 6078 assert(nPage>0); 6079 assert(pg1<=pPg->pgno); 6080 assert((pg1+nPage)>pPg->pgno); 6081 6082 for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){ 6083 Pgno pg = pg1+ii; 6084 PgHdr *pPage; 6085 if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){ 6086 if( pg!=PAGER_MJ_PGNO(pPager) ){ 6087 rc = sqlite3PagerGet(pPager, pg, &pPage, 0); 6088 if( rc==SQLITE_OK ){ 6089 rc = pager_write(pPage); 6090 if( pPage->flags&PGHDR_NEED_SYNC ){ 6091 needSync = 1; 6092 } 6093 sqlite3PagerUnrefNotNull(pPage); 6094 } 6095 } 6096 }else if( (pPage = sqlite3PagerLookup(pPager, pg))!=0 ){ 6097 if( pPage->flags&PGHDR_NEED_SYNC ){ 6098 needSync = 1; 6099 } 6100 sqlite3PagerUnrefNotNull(pPage); 6101 } 6102 } 6103 6104 /* If the PGHDR_NEED_SYNC flag is set for any of the nPage pages 6105 ** starting at pg1, then it needs to be set for all of them. Because 6106 ** writing to any of these nPage pages may damage the others, the 6107 ** journal file must contain sync()ed copies of all of them 6108 ** before any of them can be written out to the database file. 6109 */ 6110 if( rc==SQLITE_OK && needSync ){ 6111 assert( !MEMDB ); 6112 for(ii=0; ii<nPage; ii++){ 6113 PgHdr *pPage = sqlite3PagerLookup(pPager, pg1+ii); 6114 if( pPage ){ 6115 pPage->flags |= PGHDR_NEED_SYNC; 6116 sqlite3PagerUnrefNotNull(pPage); 6117 } 6118 } 6119 } 6120 6121 assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)!=0 ); 6122 pPager->doNotSpill &= ~SPILLFLAG_NOSYNC; 6123 return rc; 6124 } 6125 6126 /* 6127 ** Mark a data page as writeable. This routine must be called before 6128 ** making changes to a page. The caller must check the return value 6129 ** of this function and be careful not to change any page data unless 6130 ** this routine returns SQLITE_OK. 6131 ** 6132 ** The difference between this function and pager_write() is that this 6133 ** function also deals with the special case where 2 or more pages 6134 ** fit on a single disk sector. In this case all co-resident pages 6135 ** must have been written to the journal file before returning. 6136 ** 6137 ** If an error occurs, SQLITE_NOMEM or an IO error code is returned 6138 ** as appropriate. Otherwise, SQLITE_OK. 6139 */ 6140 int sqlite3PagerWrite(PgHdr *pPg){ 6141 Pager *pPager = pPg->pPager; 6142 assert( (pPg->flags & PGHDR_MMAP)==0 ); 6143 assert( pPager->eState>=PAGER_WRITER_LOCKED ); 6144 assert( assert_pager_state(pPager) ); 6145 if( (pPg->flags & PGHDR_WRITEABLE)!=0 && pPager->dbSize>=pPg->pgno ){ 6146 if( pPager->nSavepoint ) return subjournalPageIfRequired(pPg); 6147 return SQLITE_OK; 6148 }else if( pPager->errCode ){ 6149 return pPager->errCode; 6150 }else if( pPager->sectorSize > (u32)pPager->pageSize ){ 6151 assert( pPager->tempFile==0 ); 6152 return pagerWriteLargeSector(pPg); 6153 }else{ 6154 return pager_write(pPg); 6155 } 6156 } 6157 6158 /* 6159 ** Return TRUE if the page given in the argument was previously passed 6160 ** to sqlite3PagerWrite(). In other words, return TRUE if it is ok 6161 ** to change the content of the page. 6162 */ 6163 #ifndef NDEBUG 6164 int sqlite3PagerIswriteable(DbPage *pPg){ 6165 return pPg->flags & PGHDR_WRITEABLE; 6166 } 6167 #endif 6168 6169 /* 6170 ** A call to this routine tells the pager that it is not necessary to 6171 ** write the information on page pPg back to the disk, even though 6172 ** that page might be marked as dirty. This happens, for example, when 6173 ** the page has been added as a leaf of the freelist and so its 6174 ** content no longer matters. 6175 ** 6176 ** The overlying software layer calls this routine when all of the data 6177 ** on the given page is unused. The pager marks the page as clean so 6178 ** that it does not get written to disk. 6179 ** 6180 ** Tests show that this optimization can quadruple the speed of large 6181 ** DELETE operations. 6182 ** 6183 ** This optimization cannot be used with a temp-file, as the page may 6184 ** have been dirty at the start of the transaction. In that case, if 6185 ** memory pressure forces page pPg out of the cache, the data does need 6186 ** to be written out to disk so that it may be read back in if the 6187 ** current transaction is rolled back. 6188 */ 6189 void sqlite3PagerDontWrite(PgHdr *pPg){ 6190 Pager *pPager = pPg->pPager; 6191 if( !pPager->tempFile && (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){ 6192 PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager))); 6193 IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) 6194 pPg->flags |= PGHDR_DONT_WRITE; 6195 pPg->flags &= ~PGHDR_WRITEABLE; 6196 testcase( pPg->flags & PGHDR_NEED_SYNC ); 6197 pager_set_pagehash(pPg); 6198 } 6199 } 6200 6201 /* 6202 ** This routine is called to increment the value of the database file 6203 ** change-counter, stored as a 4-byte big-endian integer starting at 6204 ** byte offset 24 of the pager file. The secondary change counter at 6205 ** 92 is also updated, as is the SQLite version number at offset 96. 6206 ** 6207 ** But this only happens if the pPager->changeCountDone flag is false. 6208 ** To avoid excess churning of page 1, the update only happens once. 6209 ** See also the pager_write_changecounter() routine that does an 6210 ** unconditional update of the change counters. 6211 ** 6212 ** If the isDirectMode flag is zero, then this is done by calling 6213 ** sqlite3PagerWrite() on page 1, then modifying the contents of the 6214 ** page data. In this case the file will be updated when the current 6215 ** transaction is committed. 6216 ** 6217 ** The isDirectMode flag may only be non-zero if the library was compiled 6218 ** with the SQLITE_ENABLE_ATOMIC_WRITE macro defined. In this case, 6219 ** if isDirect is non-zero, then the database file is updated directly 6220 ** by writing an updated version of page 1 using a call to the 6221 ** sqlite3OsWrite() function. 6222 */ 6223 static int pager_incr_changecounter(Pager *pPager, int isDirectMode){ 6224 int rc = SQLITE_OK; 6225 6226 assert( pPager->eState==PAGER_WRITER_CACHEMOD 6227 || pPager->eState==PAGER_WRITER_DBMOD 6228 ); 6229 assert( assert_pager_state(pPager) ); 6230 6231 /* Declare and initialize constant integer 'isDirect'. If the 6232 ** atomic-write optimization is enabled in this build, then isDirect 6233 ** is initialized to the value passed as the isDirectMode parameter 6234 ** to this function. Otherwise, it is always set to zero. 6235 ** 6236 ** The idea is that if the atomic-write optimization is not 6237 ** enabled at compile time, the compiler can omit the tests of 6238 ** 'isDirect' below, as well as the block enclosed in the 6239 ** "if( isDirect )" condition. 6240 */ 6241 #ifndef SQLITE_ENABLE_ATOMIC_WRITE 6242 # define DIRECT_MODE 0 6243 assert( isDirectMode==0 ); 6244 UNUSED_PARAMETER(isDirectMode); 6245 #else 6246 # define DIRECT_MODE isDirectMode 6247 #endif 6248 6249 if( !pPager->changeCountDone && ALWAYS(pPager->dbSize>0) ){ 6250 PgHdr *pPgHdr; /* Reference to page 1 */ 6251 6252 assert( !pPager->tempFile && isOpen(pPager->fd) ); 6253 6254 /* Open page 1 of the file for writing. */ 6255 rc = sqlite3PagerGet(pPager, 1, &pPgHdr, 0); 6256 assert( pPgHdr==0 || rc==SQLITE_OK ); 6257 6258 /* If page one was fetched successfully, and this function is not 6259 ** operating in direct-mode, make page 1 writable. When not in 6260 ** direct mode, page 1 is always held in cache and hence the PagerGet() 6261 ** above is always successful - hence the ALWAYS on rc==SQLITE_OK. 6262 */ 6263 if( !DIRECT_MODE && ALWAYS(rc==SQLITE_OK) ){ 6264 rc = sqlite3PagerWrite(pPgHdr); 6265 } 6266 6267 if( rc==SQLITE_OK ){ 6268 /* Actually do the update of the change counter */ 6269 pager_write_changecounter(pPgHdr); 6270 6271 /* If running in direct mode, write the contents of page 1 to the file. */ 6272 if( DIRECT_MODE ){ 6273 const void *zBuf; 6274 assert( pPager->dbFileSize>0 ); 6275 zBuf = pPgHdr->pData; 6276 if( rc==SQLITE_OK ){ 6277 rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0); 6278 pPager->aStat[PAGER_STAT_WRITE]++; 6279 } 6280 if( rc==SQLITE_OK ){ 6281 /* Update the pager's copy of the change-counter. Otherwise, the 6282 ** next time a read transaction is opened the cache will be 6283 ** flushed (as the change-counter values will not match). */ 6284 const void *pCopy = (const void *)&((const char *)zBuf)[24]; 6285 memcpy(&pPager->dbFileVers, pCopy, sizeof(pPager->dbFileVers)); 6286 pPager->changeCountDone = 1; 6287 } 6288 }else{ 6289 pPager->changeCountDone = 1; 6290 } 6291 } 6292 6293 /* Release the page reference. */ 6294 sqlite3PagerUnref(pPgHdr); 6295 } 6296 return rc; 6297 } 6298 6299 /* 6300 ** Sync the database file to disk. This is a no-op for in-memory databases 6301 ** or pages with the Pager.noSync flag set. 6302 ** 6303 ** If successful, or if called on a pager for which it is a no-op, this 6304 ** function returns SQLITE_OK. Otherwise, an IO error code is returned. 6305 */ 6306 int sqlite3PagerSync(Pager *pPager, const char *zSuper){ 6307 int rc = SQLITE_OK; 6308 void *pArg = (void*)zSuper; 6309 rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SYNC, pArg); 6310 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 6311 if( rc==SQLITE_OK && !pPager->noSync ){ 6312 assert( !MEMDB ); 6313 rc = sqlite3OsSync(pPager->fd, pPager->syncFlags); 6314 } 6315 return rc; 6316 } 6317 6318 /* 6319 ** This function may only be called while a write-transaction is active in 6320 ** rollback. If the connection is in WAL mode, this call is a no-op. 6321 ** Otherwise, if the connection does not already have an EXCLUSIVE lock on 6322 ** the database file, an attempt is made to obtain one. 6323 ** 6324 ** If the EXCLUSIVE lock is already held or the attempt to obtain it is 6325 ** successful, or the connection is in WAL mode, SQLITE_OK is returned. 6326 ** Otherwise, either SQLITE_BUSY or an SQLITE_IOERR_XXX error code is 6327 ** returned. 6328 */ 6329 int sqlite3PagerExclusiveLock(Pager *pPager){ 6330 int rc = pPager->errCode; 6331 assert( assert_pager_state(pPager) ); 6332 if( rc==SQLITE_OK ){ 6333 assert( pPager->eState==PAGER_WRITER_CACHEMOD 6334 || pPager->eState==PAGER_WRITER_DBMOD 6335 || pPager->eState==PAGER_WRITER_LOCKED 6336 ); 6337 assert( assert_pager_state(pPager) ); 6338 if( 0==pagerUseWal(pPager) ){ 6339 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); 6340 } 6341 } 6342 return rc; 6343 } 6344 6345 /* 6346 ** Sync the database file for the pager pPager. zSuper points to the name 6347 ** of a super-journal file that should be written into the individual 6348 ** journal file. zSuper may be NULL, which is interpreted as no 6349 ** super-journal (a single database transaction). 6350 ** 6351 ** This routine ensures that: 6352 ** 6353 ** * The database file change-counter is updated, 6354 ** * the journal is synced (unless the atomic-write optimization is used), 6355 ** * all dirty pages are written to the database file, 6356 ** * the database file is truncated (if required), and 6357 ** * the database file synced. 6358 ** 6359 ** The only thing that remains to commit the transaction is to finalize 6360 ** (delete, truncate or zero the first part of) the journal file (or 6361 ** delete the super-journal file if specified). 6362 ** 6363 ** Note that if zSuper==NULL, this does not overwrite a previous value 6364 ** passed to an sqlite3PagerCommitPhaseOne() call. 6365 ** 6366 ** If the final parameter - noSync - is true, then the database file itself 6367 ** is not synced. The caller must call sqlite3PagerSync() directly to 6368 ** sync the database file before calling CommitPhaseTwo() to delete the 6369 ** journal file in this case. 6370 */ 6371 int sqlite3PagerCommitPhaseOne( 6372 Pager *pPager, /* Pager object */ 6373 const char *zSuper, /* If not NULL, the super-journal name */ 6374 int noSync /* True to omit the xSync on the db file */ 6375 ){ 6376 int rc = SQLITE_OK; /* Return code */ 6377 6378 assert( pPager->eState==PAGER_WRITER_LOCKED 6379 || pPager->eState==PAGER_WRITER_CACHEMOD 6380 || pPager->eState==PAGER_WRITER_DBMOD 6381 || pPager->eState==PAGER_ERROR 6382 ); 6383 assert( assert_pager_state(pPager) ); 6384 6385 /* If a prior error occurred, report that error again. */ 6386 if( NEVER(pPager->errCode) ) return pPager->errCode; 6387 6388 /* Provide the ability to easily simulate an I/O error during testing */ 6389 if( sqlite3FaultSim(400) ) return SQLITE_IOERR; 6390 6391 PAGERTRACE(("DATABASE SYNC: File=%s zSuper=%s nSize=%d\n", 6392 pPager->zFilename, zSuper, pPager->dbSize)); 6393 6394 /* If no database changes have been made, return early. */ 6395 if( pPager->eState<PAGER_WRITER_CACHEMOD ) return SQLITE_OK; 6396 6397 assert( MEMDB==0 || pPager->tempFile ); 6398 assert( isOpen(pPager->fd) || pPager->tempFile ); 6399 if( 0==pagerFlushOnCommit(pPager, 1) ){ 6400 /* If this is an in-memory db, or no pages have been written to, or this 6401 ** function has already been called, it is mostly a no-op. However, any 6402 ** backup in progress needs to be restarted. */ 6403 sqlite3BackupRestart(pPager->pBackup); 6404 }else{ 6405 PgHdr *pList; 6406 if( pagerUseWal(pPager) ){ 6407 PgHdr *pPageOne = 0; 6408 pList = sqlite3PcacheDirtyList(pPager->pPCache); 6409 if( pList==0 ){ 6410 /* Must have at least one page for the WAL commit flag. 6411 ** Ticket [2d1a5c67dfc2363e44f29d9bbd57f] 2011-05-18 */ 6412 rc = sqlite3PagerGet(pPager, 1, &pPageOne, 0); 6413 pList = pPageOne; 6414 pList->pDirty = 0; 6415 } 6416 assert( rc==SQLITE_OK ); 6417 if( ALWAYS(pList) ){ 6418 rc = pagerWalFrames(pPager, pList, pPager->dbSize, 1); 6419 } 6420 sqlite3PagerUnref(pPageOne); 6421 if( rc==SQLITE_OK ){ 6422 sqlite3PcacheCleanAll(pPager->pPCache); 6423 } 6424 }else{ 6425 /* The bBatch boolean is true if the batch-atomic-write commit method 6426 ** should be used. No rollback journal is created if batch-atomic-write 6427 ** is enabled. 6428 */ 6429 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 6430 sqlite3_file *fd = pPager->fd; 6431 int bBatch = zSuper==0 /* An SQLITE_IOCAP_BATCH_ATOMIC commit */ 6432 && (sqlite3OsDeviceCharacteristics(fd) & SQLITE_IOCAP_BATCH_ATOMIC) 6433 && !pPager->noSync 6434 && sqlite3JournalIsInMemory(pPager->jfd); 6435 #else 6436 # define bBatch 0 6437 #endif 6438 6439 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 6440 /* The following block updates the change-counter. Exactly how it 6441 ** does this depends on whether or not the atomic-update optimization 6442 ** was enabled at compile time, and if this transaction meets the 6443 ** runtime criteria to use the operation: 6444 ** 6445 ** * The file-system supports the atomic-write property for 6446 ** blocks of size page-size, and 6447 ** * This commit is not part of a multi-file transaction, and 6448 ** * Exactly one page has been modified and store in the journal file. 6449 ** 6450 ** If the optimization was not enabled at compile time, then the 6451 ** pager_incr_changecounter() function is called to update the change 6452 ** counter in 'indirect-mode'. If the optimization is compiled in but 6453 ** is not applicable to this transaction, call sqlite3JournalCreate() 6454 ** to make sure the journal file has actually been created, then call 6455 ** pager_incr_changecounter() to update the change-counter in indirect 6456 ** mode. 6457 ** 6458 ** Otherwise, if the optimization is both enabled and applicable, 6459 ** then call pager_incr_changecounter() to update the change-counter 6460 ** in 'direct' mode. In this case the journal file will never be 6461 ** created for this transaction. 6462 */ 6463 if( bBatch==0 ){ 6464 PgHdr *pPg; 6465 assert( isOpen(pPager->jfd) 6466 || pPager->journalMode==PAGER_JOURNALMODE_OFF 6467 || pPager->journalMode==PAGER_JOURNALMODE_WAL 6468 ); 6469 if( !zSuper && isOpen(pPager->jfd) 6470 && pPager->journalOff==jrnlBufferSize(pPager) 6471 && pPager->dbSize>=pPager->dbOrigSize 6472 && (!(pPg = sqlite3PcacheDirtyList(pPager->pPCache)) || 0==pPg->pDirty) 6473 ){ 6474 /* Update the db file change counter via the direct-write method. The 6475 ** following call will modify the in-memory representation of page 1 6476 ** to include the updated change counter and then write page 1 6477 ** directly to the database file. Because of the atomic-write 6478 ** property of the host file-system, this is safe. 6479 */ 6480 rc = pager_incr_changecounter(pPager, 1); 6481 }else{ 6482 rc = sqlite3JournalCreate(pPager->jfd); 6483 if( rc==SQLITE_OK ){ 6484 rc = pager_incr_changecounter(pPager, 0); 6485 } 6486 } 6487 } 6488 #else /* SQLITE_ENABLE_ATOMIC_WRITE */ 6489 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 6490 if( zSuper ){ 6491 rc = sqlite3JournalCreate(pPager->jfd); 6492 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6493 assert( bBatch==0 ); 6494 } 6495 #endif 6496 rc = pager_incr_changecounter(pPager, 0); 6497 #endif /* !SQLITE_ENABLE_ATOMIC_WRITE */ 6498 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6499 6500 /* Write the super-journal name into the journal file. If a 6501 ** super-journal file name has already been written to the journal file, 6502 ** or if zSuper is NULL (no super-journal), then this call is a no-op. 6503 */ 6504 rc = writeSuperJournal(pPager, zSuper); 6505 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6506 6507 /* Sync the journal file and write all dirty pages to the database. 6508 ** If the atomic-update optimization is being used, this sync will not 6509 ** create the journal file or perform any real IO. 6510 ** 6511 ** Because the change-counter page was just modified, unless the 6512 ** atomic-update optimization is used it is almost certain that the 6513 ** journal requires a sync here. However, in locking_mode=exclusive 6514 ** on a system under memory pressure it is just possible that this is 6515 ** not the case. In this case it is likely enough that the redundant 6516 ** xSync() call will be changed to a no-op by the OS anyhow. 6517 */ 6518 rc = syncJournal(pPager, 0); 6519 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6520 6521 pList = sqlite3PcacheDirtyList(pPager->pPCache); 6522 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 6523 if( bBatch ){ 6524 rc = sqlite3OsFileControl(fd, SQLITE_FCNTL_BEGIN_ATOMIC_WRITE, 0); 6525 if( rc==SQLITE_OK ){ 6526 rc = pager_write_pagelist(pPager, pList); 6527 if( rc==SQLITE_OK ){ 6528 rc = sqlite3OsFileControl(fd, SQLITE_FCNTL_COMMIT_ATOMIC_WRITE, 0); 6529 } 6530 if( rc!=SQLITE_OK ){ 6531 sqlite3OsFileControlHint(fd, SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE, 0); 6532 } 6533 } 6534 6535 if( (rc&0xFF)==SQLITE_IOERR && rc!=SQLITE_IOERR_NOMEM ){ 6536 rc = sqlite3JournalCreate(pPager->jfd); 6537 if( rc!=SQLITE_OK ){ 6538 sqlite3OsClose(pPager->jfd); 6539 goto commit_phase_one_exit; 6540 } 6541 bBatch = 0; 6542 }else{ 6543 sqlite3OsClose(pPager->jfd); 6544 } 6545 } 6546 #endif /* SQLITE_ENABLE_BATCH_ATOMIC_WRITE */ 6547 6548 if( bBatch==0 ){ 6549 rc = pager_write_pagelist(pPager, pList); 6550 } 6551 if( rc!=SQLITE_OK ){ 6552 assert( rc!=SQLITE_IOERR_BLOCKED ); 6553 goto commit_phase_one_exit; 6554 } 6555 sqlite3PcacheCleanAll(pPager->pPCache); 6556 6557 /* If the file on disk is smaller than the database image, use 6558 ** pager_truncate to grow the file here. This can happen if the database 6559 ** image was extended as part of the current transaction and then the 6560 ** last page in the db image moved to the free-list. In this case the 6561 ** last page is never written out to disk, leaving the database file 6562 ** undersized. Fix this now if it is the case. */ 6563 if( pPager->dbSize>pPager->dbFileSize ){ 6564 Pgno nNew = pPager->dbSize - (pPager->dbSize==PAGER_MJ_PGNO(pPager)); 6565 assert( pPager->eState==PAGER_WRITER_DBMOD ); 6566 rc = pager_truncate(pPager, nNew); 6567 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6568 } 6569 6570 /* Finally, sync the database file. */ 6571 if( !noSync ){ 6572 rc = sqlite3PagerSync(pPager, zSuper); 6573 } 6574 IOTRACE(("DBSYNC %p\n", pPager)) 6575 } 6576 } 6577 6578 commit_phase_one_exit: 6579 if( rc==SQLITE_OK && !pagerUseWal(pPager) ){ 6580 pPager->eState = PAGER_WRITER_FINISHED; 6581 } 6582 return rc; 6583 } 6584 6585 6586 /* 6587 ** When this function is called, the database file has been completely 6588 ** updated to reflect the changes made by the current transaction and 6589 ** synced to disk. The journal file still exists in the file-system 6590 ** though, and if a failure occurs at this point it will eventually 6591 ** be used as a hot-journal and the current transaction rolled back. 6592 ** 6593 ** This function finalizes the journal file, either by deleting, 6594 ** truncating or partially zeroing it, so that it cannot be used 6595 ** for hot-journal rollback. Once this is done the transaction is 6596 ** irrevocably committed. 6597 ** 6598 ** If an error occurs, an IO error code is returned and the pager 6599 ** moves into the error state. Otherwise, SQLITE_OK is returned. 6600 */ 6601 int sqlite3PagerCommitPhaseTwo(Pager *pPager){ 6602 int rc = SQLITE_OK; /* Return code */ 6603 6604 /* This routine should not be called if a prior error has occurred. 6605 ** But if (due to a coding error elsewhere in the system) it does get 6606 ** called, just return the same error code without doing anything. */ 6607 if( NEVER(pPager->errCode) ) return pPager->errCode; 6608 pPager->iDataVersion++; 6609 6610 assert( pPager->eState==PAGER_WRITER_LOCKED 6611 || pPager->eState==PAGER_WRITER_FINISHED 6612 || (pagerUseWal(pPager) && pPager->eState==PAGER_WRITER_CACHEMOD) 6613 ); 6614 assert( assert_pager_state(pPager) ); 6615 6616 /* An optimization. If the database was not actually modified during 6617 ** this transaction, the pager is running in exclusive-mode and is 6618 ** using persistent journals, then this function is a no-op. 6619 ** 6620 ** The start of the journal file currently contains a single journal 6621 ** header with the nRec field set to 0. If such a journal is used as 6622 ** a hot-journal during hot-journal rollback, 0 changes will be made 6623 ** to the database file. So there is no need to zero the journal 6624 ** header. Since the pager is in exclusive mode, there is no need 6625 ** to drop any locks either. 6626 */ 6627 if( pPager->eState==PAGER_WRITER_LOCKED 6628 && pPager->exclusiveMode 6629 && pPager->journalMode==PAGER_JOURNALMODE_PERSIST 6630 ){ 6631 assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff ); 6632 pPager->eState = PAGER_READER; 6633 return SQLITE_OK; 6634 } 6635 6636 PAGERTRACE(("COMMIT %d\n", PAGERID(pPager))); 6637 rc = pager_end_transaction(pPager, pPager->setSuper, 1); 6638 return pager_error(pPager, rc); 6639 } 6640 6641 /* 6642 ** If a write transaction is open, then all changes made within the 6643 ** transaction are reverted and the current write-transaction is closed. 6644 ** The pager falls back to PAGER_READER state if successful, or PAGER_ERROR 6645 ** state if an error occurs. 6646 ** 6647 ** If the pager is already in PAGER_ERROR state when this function is called, 6648 ** it returns Pager.errCode immediately. No work is performed in this case. 6649 ** 6650 ** Otherwise, in rollback mode, this function performs two functions: 6651 ** 6652 ** 1) It rolls back the journal file, restoring all database file and 6653 ** in-memory cache pages to the state they were in when the transaction 6654 ** was opened, and 6655 ** 6656 ** 2) It finalizes the journal file, so that it is not used for hot 6657 ** rollback at any point in the future. 6658 ** 6659 ** Finalization of the journal file (task 2) is only performed if the 6660 ** rollback is successful. 6661 ** 6662 ** In WAL mode, all cache-entries containing data modified within the 6663 ** current transaction are either expelled from the cache or reverted to 6664 ** their pre-transaction state by re-reading data from the database or 6665 ** WAL files. The WAL transaction is then closed. 6666 */ 6667 int sqlite3PagerRollback(Pager *pPager){ 6668 int rc = SQLITE_OK; /* Return code */ 6669 PAGERTRACE(("ROLLBACK %d\n", PAGERID(pPager))); 6670 6671 /* PagerRollback() is a no-op if called in READER or OPEN state. If 6672 ** the pager is already in the ERROR state, the rollback is not 6673 ** attempted here. Instead, the error code is returned to the caller. 6674 */ 6675 assert( assert_pager_state(pPager) ); 6676 if( pPager->eState==PAGER_ERROR ) return pPager->errCode; 6677 if( pPager->eState<=PAGER_READER ) return SQLITE_OK; 6678 6679 if( pagerUseWal(pPager) ){ 6680 int rc2; 6681 rc = sqlite3PagerSavepoint(pPager, SAVEPOINT_ROLLBACK, -1); 6682 rc2 = pager_end_transaction(pPager, pPager->setSuper, 0); 6683 if( rc==SQLITE_OK ) rc = rc2; 6684 }else if( !isOpen(pPager->jfd) || pPager->eState==PAGER_WRITER_LOCKED ){ 6685 int eState = pPager->eState; 6686 rc = pager_end_transaction(pPager, 0, 0); 6687 if( !MEMDB && eState>PAGER_WRITER_LOCKED ){ 6688 /* This can happen using journal_mode=off. Move the pager to the error 6689 ** state to indicate that the contents of the cache may not be trusted. 6690 ** Any active readers will get SQLITE_ABORT. 6691 */ 6692 pPager->errCode = SQLITE_ABORT; 6693 pPager->eState = PAGER_ERROR; 6694 setGetterMethod(pPager); 6695 return rc; 6696 } 6697 }else{ 6698 rc = pager_playback(pPager, 0); 6699 } 6700 6701 assert( pPager->eState==PAGER_READER || rc!=SQLITE_OK ); 6702 assert( rc==SQLITE_OK || rc==SQLITE_FULL || rc==SQLITE_CORRUPT 6703 || rc==SQLITE_NOMEM || (rc&0xFF)==SQLITE_IOERR 6704 || rc==SQLITE_CANTOPEN 6705 ); 6706 6707 /* If an error occurs during a ROLLBACK, we can no longer trust the pager 6708 ** cache. So call pager_error() on the way out to make any error persistent. 6709 */ 6710 return pager_error(pPager, rc); 6711 } 6712 6713 /* 6714 ** Return TRUE if the database file is opened read-only. Return FALSE 6715 ** if the database is (in theory) writable. 6716 */ 6717 u8 sqlite3PagerIsreadonly(Pager *pPager){ 6718 return pPager->readOnly; 6719 } 6720 6721 #ifdef SQLITE_DEBUG 6722 /* 6723 ** Return the sum of the reference counts for all pages held by pPager. 6724 */ 6725 int sqlite3PagerRefcount(Pager *pPager){ 6726 return sqlite3PcacheRefCount(pPager->pPCache); 6727 } 6728 #endif 6729 6730 /* 6731 ** Return the approximate number of bytes of memory currently 6732 ** used by the pager and its associated cache. 6733 */ 6734 int sqlite3PagerMemUsed(Pager *pPager){ 6735 int perPageSize = pPager->pageSize + pPager->nExtra + sizeof(PgHdr) 6736 + 5*sizeof(void*); 6737 return perPageSize*sqlite3PcachePagecount(pPager->pPCache) 6738 + sqlite3MallocSize(pPager) 6739 + pPager->pageSize; 6740 } 6741 6742 /* 6743 ** Return the number of references to the specified page. 6744 */ 6745 int sqlite3PagerPageRefcount(DbPage *pPage){ 6746 return sqlite3PcachePageRefcount(pPage); 6747 } 6748 6749 #ifdef SQLITE_TEST 6750 /* 6751 ** This routine is used for testing and analysis only. 6752 */ 6753 int *sqlite3PagerStats(Pager *pPager){ 6754 static int a[11]; 6755 a[0] = sqlite3PcacheRefCount(pPager->pPCache); 6756 a[1] = sqlite3PcachePagecount(pPager->pPCache); 6757 a[2] = sqlite3PcacheGetCachesize(pPager->pPCache); 6758 a[3] = pPager->eState==PAGER_OPEN ? -1 : (int) pPager->dbSize; 6759 a[4] = pPager->eState; 6760 a[5] = pPager->errCode; 6761 a[6] = pPager->aStat[PAGER_STAT_HIT]; 6762 a[7] = pPager->aStat[PAGER_STAT_MISS]; 6763 a[8] = 0; /* Used to be pPager->nOvfl */ 6764 a[9] = pPager->nRead; 6765 a[10] = pPager->aStat[PAGER_STAT_WRITE]; 6766 return a; 6767 } 6768 #endif 6769 6770 /* 6771 ** Parameter eStat must be one of SQLITE_DBSTATUS_CACHE_HIT, _MISS, _WRITE, 6772 ** or _WRITE+1. The SQLITE_DBSTATUS_CACHE_WRITE+1 case is a translation 6773 ** of SQLITE_DBSTATUS_CACHE_SPILL. The _SPILL case is not contiguous because 6774 ** it was added later. 6775 ** 6776 ** Before returning, *pnVal is incremented by the 6777 ** current cache hit or miss count, according to the value of eStat. If the 6778 ** reset parameter is non-zero, the cache hit or miss count is zeroed before 6779 ** returning. 6780 */ 6781 void sqlite3PagerCacheStat(Pager *pPager, int eStat, int reset, int *pnVal){ 6782 6783 assert( eStat==SQLITE_DBSTATUS_CACHE_HIT 6784 || eStat==SQLITE_DBSTATUS_CACHE_MISS 6785 || eStat==SQLITE_DBSTATUS_CACHE_WRITE 6786 || eStat==SQLITE_DBSTATUS_CACHE_WRITE+1 6787 ); 6788 6789 assert( SQLITE_DBSTATUS_CACHE_HIT+1==SQLITE_DBSTATUS_CACHE_MISS ); 6790 assert( SQLITE_DBSTATUS_CACHE_HIT+2==SQLITE_DBSTATUS_CACHE_WRITE ); 6791 assert( PAGER_STAT_HIT==0 && PAGER_STAT_MISS==1 6792 && PAGER_STAT_WRITE==2 && PAGER_STAT_SPILL==3 ); 6793 6794 eStat -= SQLITE_DBSTATUS_CACHE_HIT; 6795 *pnVal += pPager->aStat[eStat]; 6796 if( reset ){ 6797 pPager->aStat[eStat] = 0; 6798 } 6799 } 6800 6801 /* 6802 ** Return true if this is an in-memory or temp-file backed pager. 6803 */ 6804 int sqlite3PagerIsMemdb(Pager *pPager){ 6805 return pPager->tempFile; 6806 } 6807 6808 /* 6809 ** Check that there are at least nSavepoint savepoints open. If there are 6810 ** currently less than nSavepoints open, then open one or more savepoints 6811 ** to make up the difference. If the number of savepoints is already 6812 ** equal to nSavepoint, then this function is a no-op. 6813 ** 6814 ** If a memory allocation fails, SQLITE_NOMEM is returned. If an error 6815 ** occurs while opening the sub-journal file, then an IO error code is 6816 ** returned. Otherwise, SQLITE_OK. 6817 */ 6818 static SQLITE_NOINLINE int pagerOpenSavepoint(Pager *pPager, int nSavepoint){ 6819 int rc = SQLITE_OK; /* Return code */ 6820 int nCurrent = pPager->nSavepoint; /* Current number of savepoints */ 6821 int ii; /* Iterator variable */ 6822 PagerSavepoint *aNew; /* New Pager.aSavepoint array */ 6823 6824 assert( pPager->eState>=PAGER_WRITER_LOCKED ); 6825 assert( assert_pager_state(pPager) ); 6826 assert( nSavepoint>nCurrent && pPager->useJournal ); 6827 6828 /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM 6829 ** if the allocation fails. Otherwise, zero the new portion in case a 6830 ** malloc failure occurs while populating it in the for(...) loop below. 6831 */ 6832 aNew = (PagerSavepoint *)sqlite3Realloc( 6833 pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint 6834 ); 6835 if( !aNew ){ 6836 return SQLITE_NOMEM_BKPT; 6837 } 6838 memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint)); 6839 pPager->aSavepoint = aNew; 6840 6841 /* Populate the PagerSavepoint structures just allocated. */ 6842 for(ii=nCurrent; ii<nSavepoint; ii++){ 6843 aNew[ii].nOrig = pPager->dbSize; 6844 if( isOpen(pPager->jfd) && pPager->journalOff>0 ){ 6845 aNew[ii].iOffset = pPager->journalOff; 6846 }else{ 6847 aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager); 6848 } 6849 aNew[ii].iSubRec = pPager->nSubRec; 6850 aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize); 6851 if( !aNew[ii].pInSavepoint ){ 6852 return SQLITE_NOMEM_BKPT; 6853 } 6854 if( pagerUseWal(pPager) ){ 6855 sqlite3WalSavepoint(pPager->pWal, aNew[ii].aWalData); 6856 } 6857 pPager->nSavepoint = ii+1; 6858 } 6859 assert( pPager->nSavepoint==nSavepoint ); 6860 assertTruncateConstraint(pPager); 6861 return rc; 6862 } 6863 int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){ 6864 assert( pPager->eState>=PAGER_WRITER_LOCKED ); 6865 assert( assert_pager_state(pPager) ); 6866 6867 if( nSavepoint>pPager->nSavepoint && pPager->useJournal ){ 6868 return pagerOpenSavepoint(pPager, nSavepoint); 6869 }else{ 6870 return SQLITE_OK; 6871 } 6872 } 6873 6874 6875 /* 6876 ** This function is called to rollback or release (commit) a savepoint. 6877 ** The savepoint to release or rollback need not be the most recently 6878 ** created savepoint. 6879 ** 6880 ** Parameter op is always either SAVEPOINT_ROLLBACK or SAVEPOINT_RELEASE. 6881 ** If it is SAVEPOINT_RELEASE, then release and destroy the savepoint with 6882 ** index iSavepoint. If it is SAVEPOINT_ROLLBACK, then rollback all changes 6883 ** that have occurred since the specified savepoint was created. 6884 ** 6885 ** The savepoint to rollback or release is identified by parameter 6886 ** iSavepoint. A value of 0 means to operate on the outermost savepoint 6887 ** (the first created). A value of (Pager.nSavepoint-1) means operate 6888 ** on the most recently created savepoint. If iSavepoint is greater than 6889 ** (Pager.nSavepoint-1), then this function is a no-op. 6890 ** 6891 ** If a negative value is passed to this function, then the current 6892 ** transaction is rolled back. This is different to calling 6893 ** sqlite3PagerRollback() because this function does not terminate 6894 ** the transaction or unlock the database, it just restores the 6895 ** contents of the database to its original state. 6896 ** 6897 ** In any case, all savepoints with an index greater than iSavepoint 6898 ** are destroyed. If this is a release operation (op==SAVEPOINT_RELEASE), 6899 ** then savepoint iSavepoint is also destroyed. 6900 ** 6901 ** This function may return SQLITE_NOMEM if a memory allocation fails, 6902 ** or an IO error code if an IO error occurs while rolling back a 6903 ** savepoint. If no errors occur, SQLITE_OK is returned. 6904 */ 6905 int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint){ 6906 int rc = pPager->errCode; 6907 6908 #ifdef SQLITE_ENABLE_ZIPVFS 6909 if( op==SAVEPOINT_RELEASE ) rc = SQLITE_OK; 6910 #endif 6911 6912 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 6913 assert( iSavepoint>=0 || op==SAVEPOINT_ROLLBACK ); 6914 6915 if( rc==SQLITE_OK && iSavepoint<pPager->nSavepoint ){ 6916 int ii; /* Iterator variable */ 6917 int nNew; /* Number of remaining savepoints after this op. */ 6918 6919 /* Figure out how many savepoints will still be active after this 6920 ** operation. Store this value in nNew. Then free resources associated 6921 ** with any savepoints that are destroyed by this operation. 6922 */ 6923 nNew = iSavepoint + (( op==SAVEPOINT_RELEASE ) ? 0 : 1); 6924 for(ii=nNew; ii<pPager->nSavepoint; ii++){ 6925 sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); 6926 } 6927 pPager->nSavepoint = nNew; 6928 6929 /* If this is a release of the outermost savepoint, truncate 6930 ** the sub-journal to zero bytes in size. */ 6931 if( op==SAVEPOINT_RELEASE ){ 6932 if( nNew==0 && isOpen(pPager->sjfd) ){ 6933 /* Only truncate if it is an in-memory sub-journal. */ 6934 if( sqlite3JournalIsInMemory(pPager->sjfd) ){ 6935 rc = sqlite3OsTruncate(pPager->sjfd, 0); 6936 assert( rc==SQLITE_OK ); 6937 } 6938 pPager->nSubRec = 0; 6939 } 6940 } 6941 /* Else this is a rollback operation, playback the specified savepoint. 6942 ** If this is a temp-file, it is possible that the journal file has 6943 ** not yet been opened. In this case there have been no changes to 6944 ** the database file, so the playback operation can be skipped. 6945 */ 6946 else if( pagerUseWal(pPager) || isOpen(pPager->jfd) ){ 6947 PagerSavepoint *pSavepoint = (nNew==0)?0:&pPager->aSavepoint[nNew-1]; 6948 rc = pagerPlaybackSavepoint(pPager, pSavepoint); 6949 assert(rc!=SQLITE_DONE); 6950 } 6951 6952 #ifdef SQLITE_ENABLE_ZIPVFS 6953 /* If the cache has been modified but the savepoint cannot be rolled 6954 ** back journal_mode=off, put the pager in the error state. This way, 6955 ** if the VFS used by this pager includes ZipVFS, the entire transaction 6956 ** can be rolled back at the ZipVFS level. */ 6957 else if( 6958 pPager->journalMode==PAGER_JOURNALMODE_OFF 6959 && pPager->eState>=PAGER_WRITER_CACHEMOD 6960 ){ 6961 pPager->errCode = SQLITE_ABORT; 6962 pPager->eState = PAGER_ERROR; 6963 setGetterMethod(pPager); 6964 } 6965 #endif 6966 } 6967 6968 return rc; 6969 } 6970 6971 /* 6972 ** Return the full pathname of the database file. 6973 ** 6974 ** Except, if the pager is in-memory only, then return an empty string if 6975 ** nullIfMemDb is true. This routine is called with nullIfMemDb==1 when 6976 ** used to report the filename to the user, for compatibility with legacy 6977 ** behavior. But when the Btree needs to know the filename for matching to 6978 ** shared cache, it uses nullIfMemDb==0 so that in-memory databases can 6979 ** participate in shared-cache. 6980 ** 6981 ** The return value to this routine is always safe to use with 6982 ** sqlite3_uri_parameter() and sqlite3_filename_database() and friends. 6983 */ 6984 const char *sqlite3PagerFilename(const Pager *pPager, int nullIfMemDb){ 6985 static const char zFake[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 6986 return (nullIfMemDb && pPager->memDb) ? &zFake[4] : pPager->zFilename; 6987 } 6988 6989 /* 6990 ** Return the VFS structure for the pager. 6991 */ 6992 sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){ 6993 return pPager->pVfs; 6994 } 6995 6996 /* 6997 ** Return the file handle for the database file associated 6998 ** with the pager. This might return NULL if the file has 6999 ** not yet been opened. 7000 */ 7001 sqlite3_file *sqlite3PagerFile(Pager *pPager){ 7002 return pPager->fd; 7003 } 7004 7005 /* 7006 ** Return the file handle for the journal file (if it exists). 7007 ** This will be either the rollback journal or the WAL file. 7008 */ 7009 sqlite3_file *sqlite3PagerJrnlFile(Pager *pPager){ 7010 #if SQLITE_OMIT_WAL 7011 return pPager->jfd; 7012 #else 7013 return pPager->pWal ? sqlite3WalFile(pPager->pWal) : pPager->jfd; 7014 #endif 7015 } 7016 7017 /* 7018 ** Return the full pathname of the journal file. 7019 */ 7020 const char *sqlite3PagerJournalname(Pager *pPager){ 7021 return pPager->zJournal; 7022 } 7023 7024 #ifndef SQLITE_OMIT_AUTOVACUUM 7025 /* 7026 ** Move the page pPg to location pgno in the file. 7027 ** 7028 ** There must be no references to the page previously located at 7029 ** pgno (which we call pPgOld) though that page is allowed to be 7030 ** in cache. If the page previously located at pgno is not already 7031 ** in the rollback journal, it is not put there by by this routine. 7032 ** 7033 ** References to the page pPg remain valid. Updating any 7034 ** meta-data associated with pPg (i.e. data stored in the nExtra bytes 7035 ** allocated along with the page) is the responsibility of the caller. 7036 ** 7037 ** A transaction must be active when this routine is called. It used to be 7038 ** required that a statement transaction was not active, but this restriction 7039 ** has been removed (CREATE INDEX needs to move a page when a statement 7040 ** transaction is active). 7041 ** 7042 ** If the fourth argument, isCommit, is non-zero, then this page is being 7043 ** moved as part of a database reorganization just before the transaction 7044 ** is being committed. In this case, it is guaranteed that the database page 7045 ** pPg refers to will not be written to again within this transaction. 7046 ** 7047 ** This function may return SQLITE_NOMEM or an IO error code if an error 7048 ** occurs. Otherwise, it returns SQLITE_OK. 7049 */ 7050 int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){ 7051 PgHdr *pPgOld; /* The page being overwritten. */ 7052 Pgno needSyncPgno = 0; /* Old value of pPg->pgno, if sync is required */ 7053 int rc; /* Return code */ 7054 Pgno origPgno; /* The original page number */ 7055 7056 assert( pPg->nRef>0 ); 7057 assert( pPager->eState==PAGER_WRITER_CACHEMOD 7058 || pPager->eState==PAGER_WRITER_DBMOD 7059 ); 7060 assert( assert_pager_state(pPager) ); 7061 7062 /* In order to be able to rollback, an in-memory database must journal 7063 ** the page we are moving from. 7064 */ 7065 assert( pPager->tempFile || !MEMDB ); 7066 if( pPager->tempFile ){ 7067 rc = sqlite3PagerWrite(pPg); 7068 if( rc ) return rc; 7069 } 7070 7071 /* If the page being moved is dirty and has not been saved by the latest 7072 ** savepoint, then save the current contents of the page into the 7073 ** sub-journal now. This is required to handle the following scenario: 7074 ** 7075 ** BEGIN; 7076 ** <journal page X, then modify it in memory> 7077 ** SAVEPOINT one; 7078 ** <Move page X to location Y> 7079 ** ROLLBACK TO one; 7080 ** 7081 ** If page X were not written to the sub-journal here, it would not 7082 ** be possible to restore its contents when the "ROLLBACK TO one" 7083 ** statement were is processed. 7084 ** 7085 ** subjournalPage() may need to allocate space to store pPg->pgno into 7086 ** one or more savepoint bitvecs. This is the reason this function 7087 ** may return SQLITE_NOMEM. 7088 */ 7089 if( (pPg->flags & PGHDR_DIRTY)!=0 7090 && SQLITE_OK!=(rc = subjournalPageIfRequired(pPg)) 7091 ){ 7092 return rc; 7093 } 7094 7095 PAGERTRACE(("MOVE %d page %d (needSync=%d) moves to %d\n", 7096 PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno)); 7097 IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno)) 7098 7099 /* If the journal needs to be sync()ed before page pPg->pgno can 7100 ** be written to, store pPg->pgno in local variable needSyncPgno. 7101 ** 7102 ** If the isCommit flag is set, there is no need to remember that 7103 ** the journal needs to be sync()ed before database page pPg->pgno 7104 ** can be written to. The caller has already promised not to write to it. 7105 */ 7106 if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){ 7107 needSyncPgno = pPg->pgno; 7108 assert( pPager->journalMode==PAGER_JOURNALMODE_OFF || 7109 pageInJournal(pPager, pPg) || pPg->pgno>pPager->dbOrigSize ); 7110 assert( pPg->flags&PGHDR_DIRTY ); 7111 } 7112 7113 /* If the cache contains a page with page-number pgno, remove it 7114 ** from its hash chain. Also, if the PGHDR_NEED_SYNC flag was set for 7115 ** page pgno before the 'move' operation, it needs to be retained 7116 ** for the page moved there. 7117 */ 7118 pPg->flags &= ~PGHDR_NEED_SYNC; 7119 pPgOld = sqlite3PagerLookup(pPager, pgno); 7120 assert( !pPgOld || pPgOld->nRef==1 || CORRUPT_DB ); 7121 if( pPgOld ){ 7122 if( pPgOld->nRef>1 ){ 7123 sqlite3PagerUnrefNotNull(pPgOld); 7124 return SQLITE_CORRUPT_BKPT; 7125 } 7126 pPg->flags |= (pPgOld->flags&PGHDR_NEED_SYNC); 7127 if( pPager->tempFile ){ 7128 /* Do not discard pages from an in-memory database since we might 7129 ** need to rollback later. Just move the page out of the way. */ 7130 sqlite3PcacheMove(pPgOld, pPager->dbSize+1); 7131 }else{ 7132 sqlite3PcacheDrop(pPgOld); 7133 } 7134 } 7135 7136 origPgno = pPg->pgno; 7137 sqlite3PcacheMove(pPg, pgno); 7138 sqlite3PcacheMakeDirty(pPg); 7139 7140 /* For an in-memory database, make sure the original page continues 7141 ** to exist, in case the transaction needs to roll back. Use pPgOld 7142 ** as the original page since it has already been allocated. 7143 */ 7144 if( pPager->tempFile && pPgOld ){ 7145 sqlite3PcacheMove(pPgOld, origPgno); 7146 sqlite3PagerUnrefNotNull(pPgOld); 7147 } 7148 7149 if( needSyncPgno ){ 7150 /* If needSyncPgno is non-zero, then the journal file needs to be 7151 ** sync()ed before any data is written to database file page needSyncPgno. 7152 ** Currently, no such page exists in the page-cache and the 7153 ** "is journaled" bitvec flag has been set. This needs to be remedied by 7154 ** loading the page into the pager-cache and setting the PGHDR_NEED_SYNC 7155 ** flag. 7156 ** 7157 ** If the attempt to load the page into the page-cache fails, (due 7158 ** to a malloc() or IO failure), clear the bit in the pInJournal[] 7159 ** array. Otherwise, if the page is loaded and written again in 7160 ** this transaction, it may be written to the database file before 7161 ** it is synced into the journal file. This way, it may end up in 7162 ** the journal file twice, but that is not a problem. 7163 */ 7164 PgHdr *pPgHdr; 7165 rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr, 0); 7166 if( rc!=SQLITE_OK ){ 7167 if( needSyncPgno<=pPager->dbOrigSize ){ 7168 assert( pPager->pTmpSpace!=0 ); 7169 sqlite3BitvecClear(pPager->pInJournal, needSyncPgno, pPager->pTmpSpace); 7170 } 7171 return rc; 7172 } 7173 pPgHdr->flags |= PGHDR_NEED_SYNC; 7174 sqlite3PcacheMakeDirty(pPgHdr); 7175 sqlite3PagerUnrefNotNull(pPgHdr); 7176 } 7177 7178 return SQLITE_OK; 7179 } 7180 #endif 7181 7182 /* 7183 ** The page handle passed as the first argument refers to a dirty page 7184 ** with a page number other than iNew. This function changes the page's 7185 ** page number to iNew and sets the value of the PgHdr.flags field to 7186 ** the value passed as the third parameter. 7187 */ 7188 void sqlite3PagerRekey(DbPage *pPg, Pgno iNew, u16 flags){ 7189 assert( pPg->pgno!=iNew ); 7190 pPg->flags = flags; 7191 sqlite3PcacheMove(pPg, iNew); 7192 } 7193 7194 /* 7195 ** Return a pointer to the data for the specified page. 7196 */ 7197 void *sqlite3PagerGetData(DbPage *pPg){ 7198 assert( pPg->nRef>0 || pPg->pPager->memDb ); 7199 return pPg->pData; 7200 } 7201 7202 /* 7203 ** Return a pointer to the Pager.nExtra bytes of "extra" space 7204 ** allocated along with the specified page. 7205 */ 7206 void *sqlite3PagerGetExtra(DbPage *pPg){ 7207 return pPg->pExtra; 7208 } 7209 7210 /* 7211 ** Get/set the locking-mode for this pager. Parameter eMode must be one 7212 ** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or 7213 ** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then 7214 ** the locking-mode is set to the value specified. 7215 ** 7216 ** The returned value is either PAGER_LOCKINGMODE_NORMAL or 7217 ** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated) 7218 ** locking-mode. 7219 */ 7220 int sqlite3PagerLockingMode(Pager *pPager, int eMode){ 7221 assert( eMode==PAGER_LOCKINGMODE_QUERY 7222 || eMode==PAGER_LOCKINGMODE_NORMAL 7223 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); 7224 assert( PAGER_LOCKINGMODE_QUERY<0 ); 7225 assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 ); 7226 assert( pPager->exclusiveMode || 0==sqlite3WalHeapMemory(pPager->pWal) ); 7227 if( eMode>=0 && !pPager->tempFile && !sqlite3WalHeapMemory(pPager->pWal) ){ 7228 pPager->exclusiveMode = (u8)eMode; 7229 } 7230 return (int)pPager->exclusiveMode; 7231 } 7232 7233 /* 7234 ** Set the journal-mode for this pager. Parameter eMode must be one of: 7235 ** 7236 ** PAGER_JOURNALMODE_DELETE 7237 ** PAGER_JOURNALMODE_TRUNCATE 7238 ** PAGER_JOURNALMODE_PERSIST 7239 ** PAGER_JOURNALMODE_OFF 7240 ** PAGER_JOURNALMODE_MEMORY 7241 ** PAGER_JOURNALMODE_WAL 7242 ** 7243 ** The journalmode is set to the value specified if the change is allowed. 7244 ** The change may be disallowed for the following reasons: 7245 ** 7246 ** * An in-memory database can only have its journal_mode set to _OFF 7247 ** or _MEMORY. 7248 ** 7249 ** * Temporary databases cannot have _WAL journalmode. 7250 ** 7251 ** The returned indicate the current (possibly updated) journal-mode. 7252 */ 7253 int sqlite3PagerSetJournalMode(Pager *pPager, int eMode){ 7254 u8 eOld = pPager->journalMode; /* Prior journalmode */ 7255 7256 /* The eMode parameter is always valid */ 7257 assert( eMode==PAGER_JOURNALMODE_DELETE 7258 || eMode==PAGER_JOURNALMODE_TRUNCATE 7259 || eMode==PAGER_JOURNALMODE_PERSIST 7260 || eMode==PAGER_JOURNALMODE_OFF 7261 || eMode==PAGER_JOURNALMODE_WAL 7262 || eMode==PAGER_JOURNALMODE_MEMORY ); 7263 7264 /* This routine is only called from the OP_JournalMode opcode, and 7265 ** the logic there will never allow a temporary file to be changed 7266 ** to WAL mode. 7267 */ 7268 assert( pPager->tempFile==0 || eMode!=PAGER_JOURNALMODE_WAL ); 7269 7270 /* Do allow the journalmode of an in-memory database to be set to 7271 ** anything other than MEMORY or OFF 7272 */ 7273 if( MEMDB ){ 7274 assert( eOld==PAGER_JOURNALMODE_MEMORY || eOld==PAGER_JOURNALMODE_OFF ); 7275 if( eMode!=PAGER_JOURNALMODE_MEMORY && eMode!=PAGER_JOURNALMODE_OFF ){ 7276 eMode = eOld; 7277 } 7278 } 7279 7280 if( eMode!=eOld ){ 7281 7282 /* Change the journal mode. */ 7283 assert( pPager->eState!=PAGER_ERROR ); 7284 pPager->journalMode = (u8)eMode; 7285 7286 /* When transistioning from TRUNCATE or PERSIST to any other journal 7287 ** mode except WAL, unless the pager is in locking_mode=exclusive mode, 7288 ** delete the journal file. 7289 */ 7290 assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); 7291 assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); 7292 assert( (PAGER_JOURNALMODE_DELETE & 5)==0 ); 7293 assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 ); 7294 assert( (PAGER_JOURNALMODE_OFF & 5)==0 ); 7295 assert( (PAGER_JOURNALMODE_WAL & 5)==5 ); 7296 7297 assert( isOpen(pPager->fd) || pPager->exclusiveMode ); 7298 if( !pPager->exclusiveMode && (eOld & 5)==1 && (eMode & 1)==0 ){ 7299 7300 /* In this case we would like to delete the journal file. If it is 7301 ** not possible, then that is not a problem. Deleting the journal file 7302 ** here is an optimization only. 7303 ** 7304 ** Before deleting the journal file, obtain a RESERVED lock on the 7305 ** database file. This ensures that the journal file is not deleted 7306 ** while it is in use by some other client. 7307 */ 7308 sqlite3OsClose(pPager->jfd); 7309 if( pPager->eLock>=RESERVED_LOCK ){ 7310 sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); 7311 }else{ 7312 int rc = SQLITE_OK; 7313 int state = pPager->eState; 7314 assert( state==PAGER_OPEN || state==PAGER_READER ); 7315 if( state==PAGER_OPEN ){ 7316 rc = sqlite3PagerSharedLock(pPager); 7317 } 7318 if( pPager->eState==PAGER_READER ){ 7319 assert( rc==SQLITE_OK ); 7320 rc = pagerLockDb(pPager, RESERVED_LOCK); 7321 } 7322 if( rc==SQLITE_OK ){ 7323 sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); 7324 } 7325 if( rc==SQLITE_OK && state==PAGER_READER ){ 7326 pagerUnlockDb(pPager, SHARED_LOCK); 7327 }else if( state==PAGER_OPEN ){ 7328 pager_unlock(pPager); 7329 } 7330 assert( state==pPager->eState ); 7331 } 7332 }else if( eMode==PAGER_JOURNALMODE_OFF ){ 7333 sqlite3OsClose(pPager->jfd); 7334 } 7335 } 7336 7337 /* Return the new journal mode */ 7338 return (int)pPager->journalMode; 7339 } 7340 7341 /* 7342 ** Return the current journal mode. 7343 */ 7344 int sqlite3PagerGetJournalMode(Pager *pPager){ 7345 return (int)pPager->journalMode; 7346 } 7347 7348 /* 7349 ** Return TRUE if the pager is in a state where it is OK to change the 7350 ** journalmode. Journalmode changes can only happen when the database 7351 ** is unmodified. 7352 */ 7353 int sqlite3PagerOkToChangeJournalMode(Pager *pPager){ 7354 assert( assert_pager_state(pPager) ); 7355 if( pPager->eState>=PAGER_WRITER_CACHEMOD ) return 0; 7356 if( NEVER(isOpen(pPager->jfd) && pPager->journalOff>0) ) return 0; 7357 return 1; 7358 } 7359 7360 /* 7361 ** Get/set the size-limit used for persistent journal files. 7362 ** 7363 ** Setting the size limit to -1 means no limit is enforced. 7364 ** An attempt to set a limit smaller than -1 is a no-op. 7365 */ 7366 i64 sqlite3PagerJournalSizeLimit(Pager *pPager, i64 iLimit){ 7367 if( iLimit>=-1 ){ 7368 pPager->journalSizeLimit = iLimit; 7369 sqlite3WalLimit(pPager->pWal, iLimit); 7370 } 7371 return pPager->journalSizeLimit; 7372 } 7373 7374 /* 7375 ** Return a pointer to the pPager->pBackup variable. The backup module 7376 ** in backup.c maintains the content of this variable. This module 7377 ** uses it opaquely as an argument to sqlite3BackupRestart() and 7378 ** sqlite3BackupUpdate() only. 7379 */ 7380 sqlite3_backup **sqlite3PagerBackupPtr(Pager *pPager){ 7381 return &pPager->pBackup; 7382 } 7383 7384 #ifndef SQLITE_OMIT_VACUUM 7385 /* 7386 ** Unless this is an in-memory or temporary database, clear the pager cache. 7387 */ 7388 void sqlite3PagerClearCache(Pager *pPager){ 7389 assert( MEMDB==0 || pPager->tempFile ); 7390 if( pPager->tempFile==0 ) pager_reset(pPager); 7391 } 7392 #endif 7393 7394 7395 #ifndef SQLITE_OMIT_WAL 7396 /* 7397 ** This function is called when the user invokes "PRAGMA wal_checkpoint", 7398 ** "PRAGMA wal_blocking_checkpoint" or calls the sqlite3_wal_checkpoint() 7399 ** or wal_blocking_checkpoint() API functions. 7400 ** 7401 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 7402 */ 7403 int sqlite3PagerCheckpoint( 7404 Pager *pPager, /* Checkpoint on this pager */ 7405 sqlite3 *db, /* Db handle used to check for interrupts */ 7406 int eMode, /* Type of checkpoint */ 7407 int *pnLog, /* OUT: Final number of frames in log */ 7408 int *pnCkpt /* OUT: Final number of checkpointed frames */ 7409 ){ 7410 int rc = SQLITE_OK; 7411 if( pPager->pWal ){ 7412 rc = sqlite3WalCheckpoint(pPager->pWal, db, eMode, 7413 (eMode==SQLITE_CHECKPOINT_PASSIVE ? 0 : pPager->xBusyHandler), 7414 pPager->pBusyHandlerArg, 7415 pPager->walSyncFlags, pPager->pageSize, (u8 *)pPager->pTmpSpace, 7416 pnLog, pnCkpt 7417 ); 7418 } 7419 return rc; 7420 } 7421 7422 int sqlite3PagerWalCallback(Pager *pPager){ 7423 return sqlite3WalCallback(pPager->pWal); 7424 } 7425 7426 /* 7427 ** Return true if the underlying VFS for the given pager supports the 7428 ** primitives necessary for write-ahead logging. 7429 */ 7430 int sqlite3PagerWalSupported(Pager *pPager){ 7431 const sqlite3_io_methods *pMethods = pPager->fd->pMethods; 7432 if( pPager->noLock ) return 0; 7433 return pPager->exclusiveMode || (pMethods->iVersion>=2 && pMethods->xShmMap); 7434 } 7435 7436 /* 7437 ** Attempt to take an exclusive lock on the database file. If a PENDING lock 7438 ** is obtained instead, immediately release it. 7439 */ 7440 static int pagerExclusiveLock(Pager *pPager){ 7441 int rc; /* Return code */ 7442 7443 assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); 7444 rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); 7445 if( rc!=SQLITE_OK ){ 7446 /* If the attempt to grab the exclusive lock failed, release the 7447 ** pending lock that may have been obtained instead. */ 7448 pagerUnlockDb(pPager, SHARED_LOCK); 7449 } 7450 7451 return rc; 7452 } 7453 7454 /* 7455 ** Call sqlite3WalOpen() to open the WAL handle. If the pager is in 7456 ** exclusive-locking mode when this function is called, take an EXCLUSIVE 7457 ** lock on the database file and use heap-memory to store the wal-index 7458 ** in. Otherwise, use the normal shared-memory. 7459 */ 7460 static int pagerOpenWal(Pager *pPager){ 7461 int rc = SQLITE_OK; 7462 7463 assert( pPager->pWal==0 && pPager->tempFile==0 ); 7464 assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); 7465 7466 /* If the pager is already in exclusive-mode, the WAL module will use 7467 ** heap-memory for the wal-index instead of the VFS shared-memory 7468 ** implementation. Take the exclusive lock now, before opening the WAL 7469 ** file, to make sure this is safe. 7470 */ 7471 if( pPager->exclusiveMode ){ 7472 rc = pagerExclusiveLock(pPager); 7473 } 7474 7475 /* Open the connection to the log file. If this operation fails, 7476 ** (e.g. due to malloc() failure), return an error code. 7477 */ 7478 if( rc==SQLITE_OK ){ 7479 rc = sqlite3WalOpen(pPager->pVfs, 7480 pPager->fd, pPager->zWal, pPager->exclusiveMode, 7481 pPager->journalSizeLimit, &pPager->pWal 7482 ); 7483 } 7484 pagerFixMaplimit(pPager); 7485 7486 return rc; 7487 } 7488 7489 7490 /* 7491 ** The caller must be holding a SHARED lock on the database file to call 7492 ** this function. 7493 ** 7494 ** If the pager passed as the first argument is open on a real database 7495 ** file (not a temp file or an in-memory database), and the WAL file 7496 ** is not already open, make an attempt to open it now. If successful, 7497 ** return SQLITE_OK. If an error occurs or the VFS used by the pager does 7498 ** not support the xShmXXX() methods, return an error code. *pbOpen is 7499 ** not modified in either case. 7500 ** 7501 ** If the pager is open on a temp-file (or in-memory database), or if 7502 ** the WAL file is already open, set *pbOpen to 1 and return SQLITE_OK 7503 ** without doing anything. 7504 */ 7505 int sqlite3PagerOpenWal( 7506 Pager *pPager, /* Pager object */ 7507 int *pbOpen /* OUT: Set to true if call is a no-op */ 7508 ){ 7509 int rc = SQLITE_OK; /* Return code */ 7510 7511 assert( assert_pager_state(pPager) ); 7512 assert( pPager->eState==PAGER_OPEN || pbOpen ); 7513 assert( pPager->eState==PAGER_READER || !pbOpen ); 7514 assert( pbOpen==0 || *pbOpen==0 ); 7515 assert( pbOpen!=0 || (!pPager->tempFile && !pPager->pWal) ); 7516 7517 if( !pPager->tempFile && !pPager->pWal ){ 7518 if( !sqlite3PagerWalSupported(pPager) ) return SQLITE_CANTOPEN; 7519 7520 /* Close any rollback journal previously open */ 7521 sqlite3OsClose(pPager->jfd); 7522 7523 rc = pagerOpenWal(pPager); 7524 if( rc==SQLITE_OK ){ 7525 pPager->journalMode = PAGER_JOURNALMODE_WAL; 7526 pPager->eState = PAGER_OPEN; 7527 } 7528 }else{ 7529 *pbOpen = 1; 7530 } 7531 7532 return rc; 7533 } 7534 7535 /* 7536 ** This function is called to close the connection to the log file prior 7537 ** to switching from WAL to rollback mode. 7538 ** 7539 ** Before closing the log file, this function attempts to take an 7540 ** EXCLUSIVE lock on the database file. If this cannot be obtained, an 7541 ** error (SQLITE_BUSY) is returned and the log connection is not closed. 7542 ** If successful, the EXCLUSIVE lock is not released before returning. 7543 */ 7544 int sqlite3PagerCloseWal(Pager *pPager, sqlite3 *db){ 7545 int rc = SQLITE_OK; 7546 7547 assert( pPager->journalMode==PAGER_JOURNALMODE_WAL ); 7548 7549 /* If the log file is not already open, but does exist in the file-system, 7550 ** it may need to be checkpointed before the connection can switch to 7551 ** rollback mode. Open it now so this can happen. 7552 */ 7553 if( !pPager->pWal ){ 7554 int logexists = 0; 7555 rc = pagerLockDb(pPager, SHARED_LOCK); 7556 if( rc==SQLITE_OK ){ 7557 rc = sqlite3OsAccess( 7558 pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &logexists 7559 ); 7560 } 7561 if( rc==SQLITE_OK && logexists ){ 7562 rc = pagerOpenWal(pPager); 7563 } 7564 } 7565 7566 /* Checkpoint and close the log. Because an EXCLUSIVE lock is held on 7567 ** the database file, the log and log-summary files will be deleted. 7568 */ 7569 if( rc==SQLITE_OK && pPager->pWal ){ 7570 rc = pagerExclusiveLock(pPager); 7571 if( rc==SQLITE_OK ){ 7572 rc = sqlite3WalClose(pPager->pWal, db, pPager->walSyncFlags, 7573 pPager->pageSize, (u8*)pPager->pTmpSpace); 7574 pPager->pWal = 0; 7575 pagerFixMaplimit(pPager); 7576 if( rc && !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK); 7577 } 7578 } 7579 return rc; 7580 } 7581 7582 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 7583 /* 7584 ** If pager pPager is a wal-mode database not in exclusive locking mode, 7585 ** invoke the sqlite3WalWriteLock() function on the associated Wal object 7586 ** with the same db and bLock parameters as were passed to this function. 7587 ** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise. 7588 */ 7589 int sqlite3PagerWalWriteLock(Pager *pPager, int bLock){ 7590 int rc = SQLITE_OK; 7591 if( pagerUseWal(pPager) && pPager->exclusiveMode==0 ){ 7592 rc = sqlite3WalWriteLock(pPager->pWal, bLock); 7593 } 7594 return rc; 7595 } 7596 7597 /* 7598 ** Set the database handle used by the wal layer to determine if 7599 ** blocking locks are required. 7600 */ 7601 void sqlite3PagerWalDb(Pager *pPager, sqlite3 *db){ 7602 if( pagerUseWal(pPager) ){ 7603 sqlite3WalDb(pPager->pWal, db); 7604 } 7605 } 7606 #endif 7607 7608 #ifdef SQLITE_ENABLE_SNAPSHOT 7609 /* 7610 ** If this is a WAL database, obtain a snapshot handle for the snapshot 7611 ** currently open. Otherwise, return an error. 7612 */ 7613 int sqlite3PagerSnapshotGet(Pager *pPager, sqlite3_snapshot **ppSnapshot){ 7614 int rc = SQLITE_ERROR; 7615 if( pPager->pWal ){ 7616 rc = sqlite3WalSnapshotGet(pPager->pWal, ppSnapshot); 7617 } 7618 return rc; 7619 } 7620 7621 /* 7622 ** If this is a WAL database, store a pointer to pSnapshot. Next time a 7623 ** read transaction is opened, attempt to read from the snapshot it 7624 ** identifies. If this is not a WAL database, return an error. 7625 */ 7626 int sqlite3PagerSnapshotOpen( 7627 Pager *pPager, 7628 sqlite3_snapshot *pSnapshot 7629 ){ 7630 int rc = SQLITE_OK; 7631 if( pPager->pWal ){ 7632 sqlite3WalSnapshotOpen(pPager->pWal, pSnapshot); 7633 }else{ 7634 rc = SQLITE_ERROR; 7635 } 7636 return rc; 7637 } 7638 7639 /* 7640 ** If this is a WAL database, call sqlite3WalSnapshotRecover(). If this 7641 ** is not a WAL database, return an error. 7642 */ 7643 int sqlite3PagerSnapshotRecover(Pager *pPager){ 7644 int rc; 7645 if( pPager->pWal ){ 7646 rc = sqlite3WalSnapshotRecover(pPager->pWal); 7647 }else{ 7648 rc = SQLITE_ERROR; 7649 } 7650 return rc; 7651 } 7652 7653 /* 7654 ** The caller currently has a read transaction open on the database. 7655 ** If this is not a WAL database, SQLITE_ERROR is returned. Otherwise, 7656 ** this function takes a SHARED lock on the CHECKPOINTER slot and then 7657 ** checks if the snapshot passed as the second argument is still 7658 ** available. If so, SQLITE_OK is returned. 7659 ** 7660 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if 7661 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error 7662 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER 7663 ** lock is released before returning. 7664 */ 7665 int sqlite3PagerSnapshotCheck(Pager *pPager, sqlite3_snapshot *pSnapshot){ 7666 int rc; 7667 if( pPager->pWal ){ 7668 rc = sqlite3WalSnapshotCheck(pPager->pWal, pSnapshot); 7669 }else{ 7670 rc = SQLITE_ERROR; 7671 } 7672 return rc; 7673 } 7674 7675 /* 7676 ** Release a lock obtained by an earlier successful call to 7677 ** sqlite3PagerSnapshotCheck(). 7678 */ 7679 void sqlite3PagerSnapshotUnlock(Pager *pPager){ 7680 assert( pPager->pWal ); 7681 sqlite3WalSnapshotUnlock(pPager->pWal); 7682 } 7683 7684 #endif /* SQLITE_ENABLE_SNAPSHOT */ 7685 #endif /* !SQLITE_OMIT_WAL */ 7686 7687 #ifdef SQLITE_ENABLE_ZIPVFS 7688 /* 7689 ** A read-lock must be held on the pager when this function is called. If 7690 ** the pager is in WAL mode and the WAL file currently contains one or more 7691 ** frames, return the size in bytes of the page images stored within the 7692 ** WAL frames. Otherwise, if this is not a WAL database or the WAL file 7693 ** is empty, return 0. 7694 */ 7695 int sqlite3PagerWalFramesize(Pager *pPager){ 7696 assert( pPager->eState>=PAGER_READER ); 7697 return sqlite3WalFramesize(pPager->pWal); 7698 } 7699 #endif 7700 7701 #endif /* SQLITE_OMIT_DISKIO */ 7702