1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This is the implementation of the page cache subsystem or "pager". 13 ** 14 ** The pager is used to access a database disk file. It implements 15 ** atomic commit and rollback through the use of a journal file that 16 ** is separate from the database file. The pager also implements file 17 ** locking to prevent two processes from writing the same database 18 ** file simultaneously, or one process from reading the database while 19 ** another is writing. 20 */ 21 #ifndef SQLITE_OMIT_DISKIO 22 #include "sqliteInt.h" 23 #include "wal.h" 24 25 26 /******************* NOTES ON THE DESIGN OF THE PAGER ************************ 27 ** 28 ** This comment block describes invariants that hold when using a rollback 29 ** journal. These invariants do not apply for journal_mode=WAL, 30 ** journal_mode=MEMORY, or journal_mode=OFF. 31 ** 32 ** Within this comment block, a page is deemed to have been synced 33 ** automatically as soon as it is written when PRAGMA synchronous=OFF. 34 ** Otherwise, the page is not synced until the xSync method of the VFS 35 ** is called successfully on the file containing the page. 36 ** 37 ** Definition: A page of the database file is said to be "overwriteable" if 38 ** one or more of the following are true about the page: 39 ** 40 ** (a) The original content of the page as it was at the beginning of 41 ** the transaction has been written into the rollback journal and 42 ** synced. 43 ** 44 ** (b) The page was a freelist leaf page at the start of the transaction. 45 ** 46 ** (c) The page number is greater than the largest page that existed in 47 ** the database file at the start of the transaction. 48 ** 49 ** (1) A page of the database file is never overwritten unless one of the 50 ** following are true: 51 ** 52 ** (a) The page and all other pages on the same sector are overwriteable. 53 ** 54 ** (b) The atomic page write optimization is enabled, and the entire 55 ** transaction other than the update of the transaction sequence 56 ** number consists of a single page change. 57 ** 58 ** (2) The content of a page written into the rollback journal exactly matches 59 ** both the content in the database when the rollback journal was written 60 ** and the content in the database at the beginning of the current 61 ** transaction. 62 ** 63 ** (3) Writes to the database file are an integer multiple of the page size 64 ** in length and are aligned on a page boundary. 65 ** 66 ** (4) Reads from the database file are either aligned on a page boundary and 67 ** an integer multiple of the page size in length or are taken from the 68 ** first 100 bytes of the database file. 69 ** 70 ** (5) All writes to the database file are synced prior to the rollback journal 71 ** being deleted, truncated, or zeroed. 72 ** 73 ** (6) If a master journal file is used, then all writes to the database file 74 ** are synced prior to the master journal being deleted. 75 ** 76 ** Definition: Two databases (or the same database at two points it time) 77 ** are said to be "logically equivalent" if they give the same answer to 78 ** all queries. Note in particular the content of freelist leaf 79 ** pages can be changed arbitrarily without affecting the logical equivalence 80 ** of the database. 81 ** 82 ** (7) At any time, if any subset, including the empty set and the total set, 83 ** of the unsynced changes to a rollback journal are removed and the 84 ** journal is rolled back, the resulting database file will be logically 85 ** equivalent to the database file at the beginning of the transaction. 86 ** 87 ** (8) When a transaction is rolled back, the xTruncate method of the VFS 88 ** is called to restore the database file to the same size it was at 89 ** the beginning of the transaction. (In some VFSes, the xTruncate 90 ** method is a no-op, but that does not change the fact the SQLite will 91 ** invoke it.) 92 ** 93 ** (9) Whenever the database file is modified, at least one bit in the range 94 ** of bytes from 24 through 39 inclusive will be changed prior to releasing 95 ** the EXCLUSIVE lock, thus signaling other connections on the same 96 ** database to flush their caches. 97 ** 98 ** (10) The pattern of bits in bytes 24 through 39 shall not repeat in less 99 ** than one billion transactions. 100 ** 101 ** (11) A database file is well-formed at the beginning and at the conclusion 102 ** of every transaction. 103 ** 104 ** (12) An EXCLUSIVE lock is held on the database file when writing to 105 ** the database file. 106 ** 107 ** (13) A SHARED lock is held on the database file while reading any 108 ** content out of the database file. 109 ** 110 ******************************************************************************/ 111 112 /* 113 ** Macros for troubleshooting. Normally turned off 114 */ 115 #if 0 116 int sqlite3PagerTrace=1; /* True to enable tracing */ 117 #define sqlite3DebugPrintf printf 118 #define PAGERTRACE(X) if( sqlite3PagerTrace ){ sqlite3DebugPrintf X; } 119 #else 120 #define PAGERTRACE(X) 121 #endif 122 123 /* 124 ** The following two macros are used within the PAGERTRACE() macros above 125 ** to print out file-descriptors. 126 ** 127 ** PAGERID() takes a pointer to a Pager struct as its argument. The 128 ** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file 129 ** struct as its argument. 130 */ 131 #define PAGERID(p) (SQLITE_PTR_TO_INT(p->fd)) 132 #define FILEHANDLEID(fd) (SQLITE_PTR_TO_INT(fd)) 133 134 /* 135 ** The Pager.eState variable stores the current 'state' of a pager. A 136 ** pager may be in any one of the seven states shown in the following 137 ** state diagram. 138 ** 139 ** OPEN <------+------+ 140 ** | | | 141 ** V | | 142 ** +---------> READER-------+ | 143 ** | | | 144 ** | V | 145 ** |<-------WRITER_LOCKED------> ERROR 146 ** | | ^ 147 ** | V | 148 ** |<------WRITER_CACHEMOD-------->| 149 ** | | | 150 ** | V | 151 ** |<-------WRITER_DBMOD---------->| 152 ** | | | 153 ** | V | 154 ** +<------WRITER_FINISHED-------->+ 155 ** 156 ** 157 ** List of state transitions and the C [function] that performs each: 158 ** 159 ** OPEN -> READER [sqlite3PagerSharedLock] 160 ** READER -> OPEN [pager_unlock] 161 ** 162 ** READER -> WRITER_LOCKED [sqlite3PagerBegin] 163 ** WRITER_LOCKED -> WRITER_CACHEMOD [pager_open_journal] 164 ** WRITER_CACHEMOD -> WRITER_DBMOD [syncJournal] 165 ** WRITER_DBMOD -> WRITER_FINISHED [sqlite3PagerCommitPhaseOne] 166 ** WRITER_*** -> READER [pager_end_transaction] 167 ** 168 ** WRITER_*** -> ERROR [pager_error] 169 ** ERROR -> OPEN [pager_unlock] 170 ** 171 ** 172 ** OPEN: 173 ** 174 ** The pager starts up in this state. Nothing is guaranteed in this 175 ** state - the file may or may not be locked and the database size is 176 ** unknown. The database may not be read or written. 177 ** 178 ** * No read or write transaction is active. 179 ** * Any lock, or no lock at all, may be held on the database file. 180 ** * The dbSize, dbOrigSize and dbFileSize variables may not be trusted. 181 ** 182 ** READER: 183 ** 184 ** In this state all the requirements for reading the database in 185 ** rollback (non-WAL) mode are met. Unless the pager is (or recently 186 ** was) in exclusive-locking mode, a user-level read transaction is 187 ** open. The database size is known in this state. 188 ** 189 ** A connection running with locking_mode=normal enters this state when 190 ** it opens a read-transaction on the database and returns to state 191 ** OPEN after the read-transaction is completed. However a connection 192 ** running in locking_mode=exclusive (including temp databases) remains in 193 ** this state even after the read-transaction is closed. The only way 194 ** a locking_mode=exclusive connection can transition from READER to OPEN 195 ** is via the ERROR state (see below). 196 ** 197 ** * A read transaction may be active (but a write-transaction cannot). 198 ** * A SHARED or greater lock is held on the database file. 199 ** * The dbSize variable may be trusted (even if a user-level read 200 ** transaction is not active). The dbOrigSize and dbFileSize variables 201 ** may not be trusted at this point. 202 ** * If the database is a WAL database, then the WAL connection is open. 203 ** * Even if a read-transaction is not open, it is guaranteed that 204 ** there is no hot-journal in the file-system. 205 ** 206 ** WRITER_LOCKED: 207 ** 208 ** The pager moves to this state from READER when a write-transaction 209 ** is first opened on the database. In WRITER_LOCKED state, all locks 210 ** required to start a write-transaction are held, but no actual 211 ** modifications to the cache or database have taken place. 212 ** 213 ** In rollback mode, a RESERVED or (if the transaction was opened with 214 ** BEGIN EXCLUSIVE) EXCLUSIVE lock is obtained on the database file when 215 ** moving to this state, but the journal file is not written to or opened 216 ** to in this state. If the transaction is committed or rolled back while 217 ** in WRITER_LOCKED state, all that is required is to unlock the database 218 ** file. 219 ** 220 ** IN WAL mode, WalBeginWriteTransaction() is called to lock the log file. 221 ** If the connection is running with locking_mode=exclusive, an attempt 222 ** is made to obtain an EXCLUSIVE lock on the database file. 223 ** 224 ** * A write transaction is active. 225 ** * If the connection is open in rollback-mode, a RESERVED or greater 226 ** lock is held on the database file. 227 ** * If the connection is open in WAL-mode, a WAL write transaction 228 ** is open (i.e. sqlite3WalBeginWriteTransaction() has been successfully 229 ** called). 230 ** * The dbSize, dbOrigSize and dbFileSize variables are all valid. 231 ** * The contents of the pager cache have not been modified. 232 ** * The journal file may or may not be open. 233 ** * Nothing (not even the first header) has been written to the journal. 234 ** 235 ** WRITER_CACHEMOD: 236 ** 237 ** A pager moves from WRITER_LOCKED state to this state when a page is 238 ** first modified by the upper layer. In rollback mode the journal file 239 ** is opened (if it is not already open) and a header written to the 240 ** start of it. The database file on disk has not been modified. 241 ** 242 ** * A write transaction is active. 243 ** * A RESERVED or greater lock is held on the database file. 244 ** * The journal file is open and the first header has been written 245 ** to it, but the header has not been synced to disk. 246 ** * The contents of the page cache have been modified. 247 ** 248 ** WRITER_DBMOD: 249 ** 250 ** The pager transitions from WRITER_CACHEMOD into WRITER_DBMOD state 251 ** when it modifies the contents of the database file. WAL connections 252 ** never enter this state (since they do not modify the database file, 253 ** just the log file). 254 ** 255 ** * A write transaction is active. 256 ** * An EXCLUSIVE or greater lock is held on the database file. 257 ** * The journal file is open and the first header has been written 258 ** and synced to disk. 259 ** * The contents of the page cache have been modified (and possibly 260 ** written to disk). 261 ** 262 ** WRITER_FINISHED: 263 ** 264 ** It is not possible for a WAL connection to enter this state. 265 ** 266 ** A rollback-mode pager changes to WRITER_FINISHED state from WRITER_DBMOD 267 ** state after the entire transaction has been successfully written into the 268 ** database file. In this state the transaction may be committed simply 269 ** by finalizing the journal file. Once in WRITER_FINISHED state, it is 270 ** not possible to modify the database further. At this point, the upper 271 ** layer must either commit or rollback the transaction. 272 ** 273 ** * A write transaction is active. 274 ** * An EXCLUSIVE or greater lock is held on the database file. 275 ** * All writing and syncing of journal and database data has finished. 276 ** If no error occurred, all that remains is to finalize the journal to 277 ** commit the transaction. If an error did occur, the caller will need 278 ** to rollback the transaction. 279 ** 280 ** ERROR: 281 ** 282 ** The ERROR state is entered when an IO or disk-full error (including 283 ** SQLITE_IOERR_NOMEM) occurs at a point in the code that makes it 284 ** difficult to be sure that the in-memory pager state (cache contents, 285 ** db size etc.) are consistent with the contents of the file-system. 286 ** 287 ** Temporary pager files may enter the ERROR state, but in-memory pagers 288 ** cannot. 289 ** 290 ** For example, if an IO error occurs while performing a rollback, 291 ** the contents of the page-cache may be left in an inconsistent state. 292 ** At this point it would be dangerous to change back to READER state 293 ** (as usually happens after a rollback). Any subsequent readers might 294 ** report database corruption (due to the inconsistent cache), and if 295 ** they upgrade to writers, they may inadvertently corrupt the database 296 ** file. To avoid this hazard, the pager switches into the ERROR state 297 ** instead of READER following such an error. 298 ** 299 ** Once it has entered the ERROR state, any attempt to use the pager 300 ** to read or write data returns an error. Eventually, once all 301 ** outstanding transactions have been abandoned, the pager is able to 302 ** transition back to OPEN state, discarding the contents of the 303 ** page-cache and any other in-memory state at the same time. Everything 304 ** is reloaded from disk (and, if necessary, hot-journal rollback peformed) 305 ** when a read-transaction is next opened on the pager (transitioning 306 ** the pager into READER state). At that point the system has recovered 307 ** from the error. 308 ** 309 ** Specifically, the pager jumps into the ERROR state if: 310 ** 311 ** 1. An error occurs while attempting a rollback. This happens in 312 ** function sqlite3PagerRollback(). 313 ** 314 ** 2. An error occurs while attempting to finalize a journal file 315 ** following a commit in function sqlite3PagerCommitPhaseTwo(). 316 ** 317 ** 3. An error occurs while attempting to write to the journal or 318 ** database file in function pagerStress() in order to free up 319 ** memory. 320 ** 321 ** In other cases, the error is returned to the b-tree layer. The b-tree 322 ** layer then attempts a rollback operation. If the error condition 323 ** persists, the pager enters the ERROR state via condition (1) above. 324 ** 325 ** Condition (3) is necessary because it can be triggered by a read-only 326 ** statement executed within a transaction. In this case, if the error 327 ** code were simply returned to the user, the b-tree layer would not 328 ** automatically attempt a rollback, as it assumes that an error in a 329 ** read-only statement cannot leave the pager in an internally inconsistent 330 ** state. 331 ** 332 ** * The Pager.errCode variable is set to something other than SQLITE_OK. 333 ** * There are one or more outstanding references to pages (after the 334 ** last reference is dropped the pager should move back to OPEN state). 335 ** * The pager is not an in-memory pager. 336 ** 337 ** 338 ** Notes: 339 ** 340 ** * A pager is never in WRITER_DBMOD or WRITER_FINISHED state if the 341 ** connection is open in WAL mode. A WAL connection is always in one 342 ** of the first four states. 343 ** 344 ** * Normally, a connection open in exclusive mode is never in PAGER_OPEN 345 ** state. There are two exceptions: immediately after exclusive-mode has 346 ** been turned on (and before any read or write transactions are 347 ** executed), and when the pager is leaving the "error state". 348 ** 349 ** * See also: assert_pager_state(). 350 */ 351 #define PAGER_OPEN 0 352 #define PAGER_READER 1 353 #define PAGER_WRITER_LOCKED 2 354 #define PAGER_WRITER_CACHEMOD 3 355 #define PAGER_WRITER_DBMOD 4 356 #define PAGER_WRITER_FINISHED 5 357 #define PAGER_ERROR 6 358 359 /* 360 ** The Pager.eLock variable is almost always set to one of the 361 ** following locking-states, according to the lock currently held on 362 ** the database file: NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. 363 ** This variable is kept up to date as locks are taken and released by 364 ** the pagerLockDb() and pagerUnlockDb() wrappers. 365 ** 366 ** If the VFS xLock() or xUnlock() returns an error other than SQLITE_BUSY 367 ** (i.e. one of the SQLITE_IOERR subtypes), it is not clear whether or not 368 ** the operation was successful. In these circumstances pagerLockDb() and 369 ** pagerUnlockDb() take a conservative approach - eLock is always updated 370 ** when unlocking the file, and only updated when locking the file if the 371 ** VFS call is successful. This way, the Pager.eLock variable may be set 372 ** to a less exclusive (lower) value than the lock that is actually held 373 ** at the system level, but it is never set to a more exclusive value. 374 ** 375 ** This is usually safe. If an xUnlock fails or appears to fail, there may 376 ** be a few redundant xLock() calls or a lock may be held for longer than 377 ** required, but nothing really goes wrong. 378 ** 379 ** The exception is when the database file is unlocked as the pager moves 380 ** from ERROR to OPEN state. At this point there may be a hot-journal file 381 ** in the file-system that needs to be rolled back (as part of an OPEN->SHARED 382 ** transition, by the same pager or any other). If the call to xUnlock() 383 ** fails at this point and the pager is left holding an EXCLUSIVE lock, this 384 ** can confuse the call to xCheckReservedLock() call made later as part 385 ** of hot-journal detection. 386 ** 387 ** xCheckReservedLock() is defined as returning true "if there is a RESERVED 388 ** lock held by this process or any others". So xCheckReservedLock may 389 ** return true because the caller itself is holding an EXCLUSIVE lock (but 390 ** doesn't know it because of a previous error in xUnlock). If this happens 391 ** a hot-journal may be mistaken for a journal being created by an active 392 ** transaction in another process, causing SQLite to read from the database 393 ** without rolling it back. 394 ** 395 ** To work around this, if a call to xUnlock() fails when unlocking the 396 ** database in the ERROR state, Pager.eLock is set to UNKNOWN_LOCK. It 397 ** is only changed back to a real locking state after a successful call 398 ** to xLock(EXCLUSIVE). Also, the code to do the OPEN->SHARED state transition 399 ** omits the check for a hot-journal if Pager.eLock is set to UNKNOWN_LOCK 400 ** lock. Instead, it assumes a hot-journal exists and obtains an EXCLUSIVE 401 ** lock on the database file before attempting to roll it back. See function 402 ** PagerSharedLock() for more detail. 403 ** 404 ** Pager.eLock may only be set to UNKNOWN_LOCK when the pager is in 405 ** PAGER_OPEN state. 406 */ 407 #define UNKNOWN_LOCK (EXCLUSIVE_LOCK+1) 408 409 /* 410 ** The maximum allowed sector size. 64KiB. If the xSectorsize() method 411 ** returns a value larger than this, then MAX_SECTOR_SIZE is used instead. 412 ** This could conceivably cause corruption following a power failure on 413 ** such a system. This is currently an undocumented limit. 414 */ 415 #define MAX_SECTOR_SIZE 0x10000 416 417 418 /* 419 ** An instance of the following structure is allocated for each active 420 ** savepoint and statement transaction in the system. All such structures 421 ** are stored in the Pager.aSavepoint[] array, which is allocated and 422 ** resized using sqlite3Realloc(). 423 ** 424 ** When a savepoint is created, the PagerSavepoint.iHdrOffset field is 425 ** set to 0. If a journal-header is written into the main journal while 426 ** the savepoint is active, then iHdrOffset is set to the byte offset 427 ** immediately following the last journal record written into the main 428 ** journal before the journal-header. This is required during savepoint 429 ** rollback (see pagerPlaybackSavepoint()). 430 */ 431 typedef struct PagerSavepoint PagerSavepoint; 432 struct PagerSavepoint { 433 i64 iOffset; /* Starting offset in main journal */ 434 i64 iHdrOffset; /* See above */ 435 Bitvec *pInSavepoint; /* Set of pages in this savepoint */ 436 Pgno nOrig; /* Original number of pages in file */ 437 Pgno iSubRec; /* Index of first record in sub-journal */ 438 #ifndef SQLITE_OMIT_WAL 439 u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */ 440 #endif 441 }; 442 443 /* 444 ** Bits of the Pager.doNotSpill flag. See further description below. 445 */ 446 #define SPILLFLAG_OFF 0x01 /* Never spill cache. Set via pragma */ 447 #define SPILLFLAG_ROLLBACK 0x02 /* Current rolling back, so do not spill */ 448 #define SPILLFLAG_NOSYNC 0x04 /* Spill is ok, but do not sync */ 449 450 /* 451 ** An open page cache is an instance of struct Pager. A description of 452 ** some of the more important member variables follows: 453 ** 454 ** eState 455 ** 456 ** The current 'state' of the pager object. See the comment and state 457 ** diagram above for a description of the pager state. 458 ** 459 ** eLock 460 ** 461 ** For a real on-disk database, the current lock held on the database file - 462 ** NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. 463 ** 464 ** For a temporary or in-memory database (neither of which require any 465 ** locks), this variable is always set to EXCLUSIVE_LOCK. Since such 466 ** databases always have Pager.exclusiveMode==1, this tricks the pager 467 ** logic into thinking that it already has all the locks it will ever 468 ** need (and no reason to release them). 469 ** 470 ** In some (obscure) circumstances, this variable may also be set to 471 ** UNKNOWN_LOCK. See the comment above the #define of UNKNOWN_LOCK for 472 ** details. 473 ** 474 ** changeCountDone 475 ** 476 ** This boolean variable is used to make sure that the change-counter 477 ** (the 4-byte header field at byte offset 24 of the database file) is 478 ** not updated more often than necessary. 479 ** 480 ** It is set to true when the change-counter field is updated, which 481 ** can only happen if an exclusive lock is held on the database file. 482 ** It is cleared (set to false) whenever an exclusive lock is 483 ** relinquished on the database file. Each time a transaction is committed, 484 ** The changeCountDone flag is inspected. If it is true, the work of 485 ** updating the change-counter is omitted for the current transaction. 486 ** 487 ** This mechanism means that when running in exclusive mode, a connection 488 ** need only update the change-counter once, for the first transaction 489 ** committed. 490 ** 491 ** setMaster 492 ** 493 ** When PagerCommitPhaseOne() is called to commit a transaction, it may 494 ** (or may not) specify a master-journal name to be written into the 495 ** journal file before it is synced to disk. 496 ** 497 ** Whether or not a journal file contains a master-journal pointer affects 498 ** the way in which the journal file is finalized after the transaction is 499 ** committed or rolled back when running in "journal_mode=PERSIST" mode. 500 ** If a journal file does not contain a master-journal pointer, it is 501 ** finalized by overwriting the first journal header with zeroes. If 502 ** it does contain a master-journal pointer the journal file is finalized 503 ** by truncating it to zero bytes, just as if the connection were 504 ** running in "journal_mode=truncate" mode. 505 ** 506 ** Journal files that contain master journal pointers cannot be finalized 507 ** simply by overwriting the first journal-header with zeroes, as the 508 ** master journal pointer could interfere with hot-journal rollback of any 509 ** subsequently interrupted transaction that reuses the journal file. 510 ** 511 ** The flag is cleared as soon as the journal file is finalized (either 512 ** by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the 513 ** journal file from being successfully finalized, the setMaster flag 514 ** is cleared anyway (and the pager will move to ERROR state). 515 ** 516 ** doNotSpill 517 ** 518 ** This variables control the behavior of cache-spills (calls made by 519 ** the pcache module to the pagerStress() routine to write cached data 520 ** to the file-system in order to free up memory). 521 ** 522 ** When bits SPILLFLAG_OFF or SPILLFLAG_ROLLBACK of doNotSpill are set, 523 ** writing to the database from pagerStress() is disabled altogether. 524 ** The SPILLFLAG_ROLLBACK case is done in a very obscure case that 525 ** comes up during savepoint rollback that requires the pcache module 526 ** to allocate a new page to prevent the journal file from being written 527 ** while it is being traversed by code in pager_playback(). The SPILLFLAG_OFF 528 ** case is a user preference. 529 ** 530 ** If the SPILLFLAG_NOSYNC bit is set, writing to the database from 531 ** pagerStress() is permitted, but syncing the journal file is not. 532 ** This flag is set by sqlite3PagerWrite() when the file-system sector-size 533 ** is larger than the database page-size in order to prevent a journal sync 534 ** from happening in between the journalling of two pages on the same sector. 535 ** 536 ** subjInMemory 537 ** 538 ** This is a boolean variable. If true, then any required sub-journal 539 ** is opened as an in-memory journal file. If false, then in-memory 540 ** sub-journals are only used for in-memory pager files. 541 ** 542 ** This variable is updated by the upper layer each time a new 543 ** write-transaction is opened. 544 ** 545 ** dbSize, dbOrigSize, dbFileSize 546 ** 547 ** Variable dbSize is set to the number of pages in the database file. 548 ** It is valid in PAGER_READER and higher states (all states except for 549 ** OPEN and ERROR). 550 ** 551 ** dbSize is set based on the size of the database file, which may be 552 ** larger than the size of the database (the value stored at offset 553 ** 28 of the database header by the btree). If the size of the file 554 ** is not an integer multiple of the page-size, the value stored in 555 ** dbSize is rounded down (i.e. a 5KB file with 2K page-size has dbSize==2). 556 ** Except, any file that is greater than 0 bytes in size is considered 557 ** to have at least one page. (i.e. a 1KB file with 2K page-size leads 558 ** to dbSize==1). 559 ** 560 ** During a write-transaction, if pages with page-numbers greater than 561 ** dbSize are modified in the cache, dbSize is updated accordingly. 562 ** Similarly, if the database is truncated using PagerTruncateImage(), 563 ** dbSize is updated. 564 ** 565 ** Variables dbOrigSize and dbFileSize are valid in states 566 ** PAGER_WRITER_LOCKED and higher. dbOrigSize is a copy of the dbSize 567 ** variable at the start of the transaction. It is used during rollback, 568 ** and to determine whether or not pages need to be journalled before 569 ** being modified. 570 ** 571 ** Throughout a write-transaction, dbFileSize contains the size of 572 ** the file on disk in pages. It is set to a copy of dbSize when the 573 ** write-transaction is first opened, and updated when VFS calls are made 574 ** to write or truncate the database file on disk. 575 ** 576 ** The only reason the dbFileSize variable is required is to suppress 577 ** unnecessary calls to xTruncate() after committing a transaction. If, 578 ** when a transaction is committed, the dbFileSize variable indicates 579 ** that the database file is larger than the database image (Pager.dbSize), 580 ** pager_truncate() is called. The pager_truncate() call uses xFilesize() 581 ** to measure the database file on disk, and then truncates it if required. 582 ** dbFileSize is not used when rolling back a transaction. In this case 583 ** pager_truncate() is called unconditionally (which means there may be 584 ** a call to xFilesize() that is not strictly required). In either case, 585 ** pager_truncate() may cause the file to become smaller or larger. 586 ** 587 ** dbHintSize 588 ** 589 ** The dbHintSize variable is used to limit the number of calls made to 590 ** the VFS xFileControl(FCNTL_SIZE_HINT) method. 591 ** 592 ** dbHintSize is set to a copy of the dbSize variable when a 593 ** write-transaction is opened (at the same time as dbFileSize and 594 ** dbOrigSize). If the xFileControl(FCNTL_SIZE_HINT) method is called, 595 ** dbHintSize is increased to the number of pages that correspond to the 596 ** size-hint passed to the method call. See pager_write_pagelist() for 597 ** details. 598 ** 599 ** errCode 600 ** 601 ** The Pager.errCode variable is only ever used in PAGER_ERROR state. It 602 ** is set to zero in all other states. In PAGER_ERROR state, Pager.errCode 603 ** is always set to SQLITE_FULL, SQLITE_IOERR or one of the SQLITE_IOERR_XXX 604 ** sub-codes. 605 ** 606 ** syncFlags, walSyncFlags 607 ** 608 ** syncFlags is either SQLITE_SYNC_NORMAL (0x02) or SQLITE_SYNC_FULL (0x03). 609 ** syncFlags is used for rollback mode. walSyncFlags is used for WAL mode 610 ** and contains the flags used to sync the checkpoint operations in the 611 ** lower two bits, and sync flags used for transaction commits in the WAL 612 ** file in bits 0x04 and 0x08. In other words, to get the correct sync flags 613 ** for checkpoint operations, use (walSyncFlags&0x03) and to get the correct 614 ** sync flags for transaction commit, use ((walSyncFlags>>2)&0x03). Note 615 ** that with synchronous=NORMAL in WAL mode, transaction commit is not synced 616 ** meaning that the 0x04 and 0x08 bits are both zero. 617 */ 618 struct Pager { 619 sqlite3_vfs *pVfs; /* OS functions to use for IO */ 620 u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */ 621 u8 journalMode; /* One of the PAGER_JOURNALMODE_* values */ 622 u8 useJournal; /* Use a rollback journal on this file */ 623 u8 noSync; /* Do not sync the journal if true */ 624 u8 fullSync; /* Do extra syncs of the journal for robustness */ 625 u8 extraSync; /* sync directory after journal delete */ 626 u8 syncFlags; /* SYNC_NORMAL or SYNC_FULL otherwise */ 627 u8 walSyncFlags; /* See description above */ 628 u8 tempFile; /* zFilename is a temporary or immutable file */ 629 u8 noLock; /* Do not lock (except in WAL mode) */ 630 u8 readOnly; /* True for a read-only database */ 631 u8 memDb; /* True to inhibit all file I/O */ 632 633 /************************************************************************** 634 ** The following block contains those class members that change during 635 ** routine operation. Class members not in this block are either fixed 636 ** when the pager is first created or else only change when there is a 637 ** significant mode change (such as changing the page_size, locking_mode, 638 ** or the journal_mode). From another view, these class members describe 639 ** the "state" of the pager, while other class members describe the 640 ** "configuration" of the pager. 641 */ 642 u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */ 643 u8 eLock; /* Current lock held on database file */ 644 u8 changeCountDone; /* Set after incrementing the change-counter */ 645 u8 setMaster; /* True if a m-j name has been written to jrnl */ 646 u8 doNotSpill; /* Do not spill the cache when non-zero */ 647 u8 subjInMemory; /* True to use in-memory sub-journals */ 648 u8 bUseFetch; /* True to use xFetch() */ 649 u8 hasHeldSharedLock; /* True if a shared lock has ever been held */ 650 Pgno dbSize; /* Number of pages in the database */ 651 Pgno dbOrigSize; /* dbSize before the current transaction */ 652 Pgno dbFileSize; /* Number of pages in the database file */ 653 Pgno dbHintSize; /* Value passed to FCNTL_SIZE_HINT call */ 654 int errCode; /* One of several kinds of errors */ 655 int nRec; /* Pages journalled since last j-header written */ 656 u32 cksumInit; /* Quasi-random value added to every checksum */ 657 u32 nSubRec; /* Number of records written to sub-journal */ 658 Bitvec *pInJournal; /* One bit for each page in the database file */ 659 sqlite3_file *fd; /* File descriptor for database */ 660 sqlite3_file *jfd; /* File descriptor for main journal */ 661 sqlite3_file *sjfd; /* File descriptor for sub-journal */ 662 i64 journalOff; /* Current write offset in the journal file */ 663 i64 journalHdr; /* Byte offset to previous journal header */ 664 sqlite3_backup *pBackup; /* Pointer to list of ongoing backup processes */ 665 PagerSavepoint *aSavepoint; /* Array of active savepoints */ 666 int nSavepoint; /* Number of elements in aSavepoint[] */ 667 u32 iDataVersion; /* Changes whenever database content changes */ 668 char dbFileVers[16]; /* Changes whenever database file changes */ 669 670 int nMmapOut; /* Number of mmap pages currently outstanding */ 671 sqlite3_int64 szMmap; /* Desired maximum mmap size */ 672 PgHdr *pMmapFreelist; /* List of free mmap page headers (pDirty) */ 673 /* 674 ** End of the routinely-changing class members 675 ***************************************************************************/ 676 677 u16 nExtra; /* Add this many bytes to each in-memory page */ 678 i16 nReserve; /* Number of unused bytes at end of each page */ 679 u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */ 680 u32 sectorSize; /* Assumed sector size during rollback */ 681 int pageSize; /* Number of bytes in a page */ 682 Pgno mxPgno; /* Maximum allowed size of the database */ 683 i64 journalSizeLimit; /* Size limit for persistent journal files */ 684 char *zFilename; /* Name of the database file */ 685 char *zJournal; /* Name of the journal file */ 686 int (*xBusyHandler)(void*); /* Function to call when busy */ 687 void *pBusyHandlerArg; /* Context argument for xBusyHandler */ 688 int aStat[4]; /* Total cache hits, misses, writes, spills */ 689 #ifdef SQLITE_TEST 690 int nRead; /* Database pages read */ 691 #endif 692 void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */ 693 int (*xGet)(Pager*,Pgno,DbPage**,int); /* Routine to fetch a patch */ 694 char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */ 695 PCache *pPCache; /* Pointer to page cache object */ 696 #ifndef SQLITE_OMIT_WAL 697 Wal *pWal; /* Write-ahead log used by "journal_mode=wal" */ 698 char *zWal; /* File name for write-ahead log */ 699 #endif 700 }; 701 702 /* 703 ** Indexes for use with Pager.aStat[]. The Pager.aStat[] array contains 704 ** the values accessed by passing SQLITE_DBSTATUS_CACHE_HIT, CACHE_MISS 705 ** or CACHE_WRITE to sqlite3_db_status(). 706 */ 707 #define PAGER_STAT_HIT 0 708 #define PAGER_STAT_MISS 1 709 #define PAGER_STAT_WRITE 2 710 #define PAGER_STAT_SPILL 3 711 712 /* 713 ** The following global variables hold counters used for 714 ** testing purposes only. These variables do not exist in 715 ** a non-testing build. These variables are not thread-safe. 716 */ 717 #ifdef SQLITE_TEST 718 int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */ 719 int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */ 720 int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */ 721 # define PAGER_INCR(v) v++ 722 #else 723 # define PAGER_INCR(v) 724 #endif 725 726 727 728 /* 729 ** Journal files begin with the following magic string. The data 730 ** was obtained from /dev/random. It is used only as a sanity check. 731 ** 732 ** Since version 2.8.0, the journal format contains additional sanity 733 ** checking information. If the power fails while the journal is being 734 ** written, semi-random garbage data might appear in the journal 735 ** file after power is restored. If an attempt is then made 736 ** to roll the journal back, the database could be corrupted. The additional 737 ** sanity checking data is an attempt to discover the garbage in the 738 ** journal and ignore it. 739 ** 740 ** The sanity checking information for the new journal format consists 741 ** of a 32-bit checksum on each page of data. The checksum covers both 742 ** the page number and the pPager->pageSize bytes of data for the page. 743 ** This cksum is initialized to a 32-bit random value that appears in the 744 ** journal file right after the header. The random initializer is important, 745 ** because garbage data that appears at the end of a journal is likely 746 ** data that was once in other files that have now been deleted. If the 747 ** garbage data came from an obsolete journal file, the checksums might 748 ** be correct. But by initializing the checksum to random value which 749 ** is different for every journal, we minimize that risk. 750 */ 751 static const unsigned char aJournalMagic[] = { 752 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7, 753 }; 754 755 /* 756 ** The size of the of each page record in the journal is given by 757 ** the following macro. 758 */ 759 #define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8) 760 761 /* 762 ** The journal header size for this pager. This is usually the same 763 ** size as a single disk sector. See also setSectorSize(). 764 */ 765 #define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize) 766 767 /* 768 ** The macro MEMDB is true if we are dealing with an in-memory database. 769 ** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set, 770 ** the value of MEMDB will be a constant and the compiler will optimize 771 ** out code that would never execute. 772 */ 773 #ifdef SQLITE_OMIT_MEMORYDB 774 # define MEMDB 0 775 #else 776 # define MEMDB pPager->memDb 777 #endif 778 779 /* 780 ** The macro USEFETCH is true if we are allowed to use the xFetch and xUnfetch 781 ** interfaces to access the database using memory-mapped I/O. 782 */ 783 #if SQLITE_MAX_MMAP_SIZE>0 784 # define USEFETCH(x) ((x)->bUseFetch) 785 #else 786 # define USEFETCH(x) 0 787 #endif 788 789 /* 790 ** The maximum legal page number is (2^31 - 1). 791 */ 792 #define PAGER_MAX_PGNO 2147483647 793 794 /* 795 ** The argument to this macro is a file descriptor (type sqlite3_file*). 796 ** Return 0 if it is not open, or non-zero (but not 1) if it is. 797 ** 798 ** This is so that expressions can be written as: 799 ** 800 ** if( isOpen(pPager->jfd) ){ ... 801 ** 802 ** instead of 803 ** 804 ** if( pPager->jfd->pMethods ){ ... 805 */ 806 #define isOpen(pFd) ((pFd)->pMethods!=0) 807 808 #ifdef SQLITE_DIRECT_OVERFLOW_READ 809 /* 810 ** Return true if page pgno can be read directly from the database file 811 ** by the b-tree layer. This is the case if: 812 ** 813 ** * the database file is open, 814 ** * there are no dirty pages in the cache, and 815 ** * the desired page is not currently in the wal file. 816 */ 817 int sqlite3PagerDirectReadOk(Pager *pPager, Pgno pgno){ 818 if( pPager->fd->pMethods==0 ) return 0; 819 if( sqlite3PCacheIsDirty(pPager->pPCache) ) return 0; 820 #ifndef SQLITE_OMIT_WAL 821 if( pPager->pWal ){ 822 u32 iRead = 0; 823 int rc; 824 rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iRead); 825 return (rc==SQLITE_OK && iRead==0); 826 } 827 #endif 828 return 1; 829 } 830 #endif 831 832 #ifndef SQLITE_OMIT_WAL 833 # define pagerUseWal(x) ((x)->pWal!=0) 834 #else 835 # define pagerUseWal(x) 0 836 # define pagerRollbackWal(x) 0 837 # define pagerWalFrames(v,w,x,y) 0 838 # define pagerOpenWalIfPresent(z) SQLITE_OK 839 # define pagerBeginReadTransaction(z) SQLITE_OK 840 #endif 841 842 #ifndef NDEBUG 843 /* 844 ** Usage: 845 ** 846 ** assert( assert_pager_state(pPager) ); 847 ** 848 ** This function runs many asserts to try to find inconsistencies in 849 ** the internal state of the Pager object. 850 */ 851 static int assert_pager_state(Pager *p){ 852 Pager *pPager = p; 853 854 /* State must be valid. */ 855 assert( p->eState==PAGER_OPEN 856 || p->eState==PAGER_READER 857 || p->eState==PAGER_WRITER_LOCKED 858 || p->eState==PAGER_WRITER_CACHEMOD 859 || p->eState==PAGER_WRITER_DBMOD 860 || p->eState==PAGER_WRITER_FINISHED 861 || p->eState==PAGER_ERROR 862 ); 863 864 /* Regardless of the current state, a temp-file connection always behaves 865 ** as if it has an exclusive lock on the database file. It never updates 866 ** the change-counter field, so the changeCountDone flag is always set. 867 */ 868 assert( p->tempFile==0 || p->eLock==EXCLUSIVE_LOCK ); 869 assert( p->tempFile==0 || pPager->changeCountDone ); 870 871 /* If the useJournal flag is clear, the journal-mode must be "OFF". 872 ** And if the journal-mode is "OFF", the journal file must not be open. 873 */ 874 assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->useJournal ); 875 assert( p->journalMode!=PAGER_JOURNALMODE_OFF || !isOpen(p->jfd) ); 876 877 /* Check that MEMDB implies noSync. And an in-memory journal. Since 878 ** this means an in-memory pager performs no IO at all, it cannot encounter 879 ** either SQLITE_IOERR or SQLITE_FULL during rollback or while finalizing 880 ** a journal file. (although the in-memory journal implementation may 881 ** return SQLITE_IOERR_NOMEM while the journal file is being written). It 882 ** is therefore not possible for an in-memory pager to enter the ERROR 883 ** state. 884 */ 885 if( MEMDB ){ 886 assert( !isOpen(p->fd) ); 887 assert( p->noSync ); 888 assert( p->journalMode==PAGER_JOURNALMODE_OFF 889 || p->journalMode==PAGER_JOURNALMODE_MEMORY 890 ); 891 assert( p->eState!=PAGER_ERROR && p->eState!=PAGER_OPEN ); 892 assert( pagerUseWal(p)==0 ); 893 } 894 895 /* If changeCountDone is set, a RESERVED lock or greater must be held 896 ** on the file. 897 */ 898 assert( pPager->changeCountDone==0 || pPager->eLock>=RESERVED_LOCK ); 899 assert( p->eLock!=PENDING_LOCK ); 900 901 switch( p->eState ){ 902 case PAGER_OPEN: 903 assert( !MEMDB ); 904 assert( pPager->errCode==SQLITE_OK ); 905 assert( sqlite3PcacheRefCount(pPager->pPCache)==0 || pPager->tempFile ); 906 break; 907 908 case PAGER_READER: 909 assert( pPager->errCode==SQLITE_OK ); 910 assert( p->eLock!=UNKNOWN_LOCK ); 911 assert( p->eLock>=SHARED_LOCK ); 912 break; 913 914 case PAGER_WRITER_LOCKED: 915 assert( p->eLock!=UNKNOWN_LOCK ); 916 assert( pPager->errCode==SQLITE_OK ); 917 if( !pagerUseWal(pPager) ){ 918 assert( p->eLock>=RESERVED_LOCK ); 919 } 920 assert( pPager->dbSize==pPager->dbOrigSize ); 921 assert( pPager->dbOrigSize==pPager->dbFileSize ); 922 assert( pPager->dbOrigSize==pPager->dbHintSize ); 923 assert( pPager->setMaster==0 ); 924 break; 925 926 case PAGER_WRITER_CACHEMOD: 927 assert( p->eLock!=UNKNOWN_LOCK ); 928 assert( pPager->errCode==SQLITE_OK ); 929 if( !pagerUseWal(pPager) ){ 930 /* It is possible that if journal_mode=wal here that neither the 931 ** journal file nor the WAL file are open. This happens during 932 ** a rollback transaction that switches from journal_mode=off 933 ** to journal_mode=wal. 934 */ 935 assert( p->eLock>=RESERVED_LOCK ); 936 assert( isOpen(p->jfd) 937 || p->journalMode==PAGER_JOURNALMODE_OFF 938 || p->journalMode==PAGER_JOURNALMODE_WAL 939 ); 940 } 941 assert( pPager->dbOrigSize==pPager->dbFileSize ); 942 assert( pPager->dbOrigSize==pPager->dbHintSize ); 943 break; 944 945 case PAGER_WRITER_DBMOD: 946 assert( p->eLock==EXCLUSIVE_LOCK ); 947 assert( pPager->errCode==SQLITE_OK ); 948 assert( !pagerUseWal(pPager) ); 949 assert( p->eLock>=EXCLUSIVE_LOCK ); 950 assert( isOpen(p->jfd) 951 || p->journalMode==PAGER_JOURNALMODE_OFF 952 || p->journalMode==PAGER_JOURNALMODE_WAL 953 || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC) 954 ); 955 assert( pPager->dbOrigSize<=pPager->dbHintSize ); 956 break; 957 958 case PAGER_WRITER_FINISHED: 959 assert( p->eLock==EXCLUSIVE_LOCK ); 960 assert( pPager->errCode==SQLITE_OK ); 961 assert( !pagerUseWal(pPager) ); 962 assert( isOpen(p->jfd) 963 || p->journalMode==PAGER_JOURNALMODE_OFF 964 || p->journalMode==PAGER_JOURNALMODE_WAL 965 || (sqlite3OsDeviceCharacteristics(p->fd)&SQLITE_IOCAP_BATCH_ATOMIC) 966 ); 967 break; 968 969 case PAGER_ERROR: 970 /* There must be at least one outstanding reference to the pager if 971 ** in ERROR state. Otherwise the pager should have already dropped 972 ** back to OPEN state. 973 */ 974 assert( pPager->errCode!=SQLITE_OK ); 975 assert( sqlite3PcacheRefCount(pPager->pPCache)>0 || pPager->tempFile ); 976 break; 977 } 978 979 return 1; 980 } 981 #endif /* ifndef NDEBUG */ 982 983 #ifdef SQLITE_DEBUG 984 /* 985 ** Return a pointer to a human readable string in a static buffer 986 ** containing the state of the Pager object passed as an argument. This 987 ** is intended to be used within debuggers. For example, as an alternative 988 ** to "print *pPager" in gdb: 989 ** 990 ** (gdb) printf "%s", print_pager_state(pPager) 991 ** 992 ** This routine has external linkage in order to suppress compiler warnings 993 ** about an unused function. It is enclosed within SQLITE_DEBUG and so does 994 ** not appear in normal builds. 995 */ 996 char *print_pager_state(Pager *p){ 997 static char zRet[1024]; 998 999 sqlite3_snprintf(1024, zRet, 1000 "Filename: %s\n" 1001 "State: %s errCode=%d\n" 1002 "Lock: %s\n" 1003 "Locking mode: locking_mode=%s\n" 1004 "Journal mode: journal_mode=%s\n" 1005 "Backing store: tempFile=%d memDb=%d useJournal=%d\n" 1006 "Journal: journalOff=%lld journalHdr=%lld\n" 1007 "Size: dbsize=%d dbOrigSize=%d dbFileSize=%d\n" 1008 , p->zFilename 1009 , p->eState==PAGER_OPEN ? "OPEN" : 1010 p->eState==PAGER_READER ? "READER" : 1011 p->eState==PAGER_WRITER_LOCKED ? "WRITER_LOCKED" : 1012 p->eState==PAGER_WRITER_CACHEMOD ? "WRITER_CACHEMOD" : 1013 p->eState==PAGER_WRITER_DBMOD ? "WRITER_DBMOD" : 1014 p->eState==PAGER_WRITER_FINISHED ? "WRITER_FINISHED" : 1015 p->eState==PAGER_ERROR ? "ERROR" : "?error?" 1016 , (int)p->errCode 1017 , p->eLock==NO_LOCK ? "NO_LOCK" : 1018 p->eLock==RESERVED_LOCK ? "RESERVED" : 1019 p->eLock==EXCLUSIVE_LOCK ? "EXCLUSIVE" : 1020 p->eLock==SHARED_LOCK ? "SHARED" : 1021 p->eLock==UNKNOWN_LOCK ? "UNKNOWN" : "?error?" 1022 , p->exclusiveMode ? "exclusive" : "normal" 1023 , p->journalMode==PAGER_JOURNALMODE_MEMORY ? "memory" : 1024 p->journalMode==PAGER_JOURNALMODE_OFF ? "off" : 1025 p->journalMode==PAGER_JOURNALMODE_DELETE ? "delete" : 1026 p->journalMode==PAGER_JOURNALMODE_PERSIST ? "persist" : 1027 p->journalMode==PAGER_JOURNALMODE_TRUNCATE ? "truncate" : 1028 p->journalMode==PAGER_JOURNALMODE_WAL ? "wal" : "?error?" 1029 , (int)p->tempFile, (int)p->memDb, (int)p->useJournal 1030 , p->journalOff, p->journalHdr 1031 , (int)p->dbSize, (int)p->dbOrigSize, (int)p->dbFileSize 1032 ); 1033 1034 return zRet; 1035 } 1036 #endif 1037 1038 /* Forward references to the various page getters */ 1039 static int getPageNormal(Pager*,Pgno,DbPage**,int); 1040 static int getPageError(Pager*,Pgno,DbPage**,int); 1041 #if SQLITE_MAX_MMAP_SIZE>0 1042 static int getPageMMap(Pager*,Pgno,DbPage**,int); 1043 #endif 1044 1045 /* 1046 ** Set the Pager.xGet method for the appropriate routine used to fetch 1047 ** content from the pager. 1048 */ 1049 static void setGetterMethod(Pager *pPager){ 1050 if( pPager->errCode ){ 1051 pPager->xGet = getPageError; 1052 #if SQLITE_MAX_MMAP_SIZE>0 1053 }else if( USEFETCH(pPager) ){ 1054 pPager->xGet = getPageMMap; 1055 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 1056 }else{ 1057 pPager->xGet = getPageNormal; 1058 } 1059 } 1060 1061 /* 1062 ** Return true if it is necessary to write page *pPg into the sub-journal. 1063 ** A page needs to be written into the sub-journal if there exists one 1064 ** or more open savepoints for which: 1065 ** 1066 ** * The page-number is less than or equal to PagerSavepoint.nOrig, and 1067 ** * The bit corresponding to the page-number is not set in 1068 ** PagerSavepoint.pInSavepoint. 1069 */ 1070 static int subjRequiresPage(PgHdr *pPg){ 1071 Pager *pPager = pPg->pPager; 1072 PagerSavepoint *p; 1073 Pgno pgno = pPg->pgno; 1074 int i; 1075 for(i=0; i<pPager->nSavepoint; i++){ 1076 p = &pPager->aSavepoint[i]; 1077 if( p->nOrig>=pgno && 0==sqlite3BitvecTestNotNull(p->pInSavepoint, pgno) ){ 1078 return 1; 1079 } 1080 } 1081 return 0; 1082 } 1083 1084 #ifdef SQLITE_DEBUG 1085 /* 1086 ** Return true if the page is already in the journal file. 1087 */ 1088 static int pageInJournal(Pager *pPager, PgHdr *pPg){ 1089 return sqlite3BitvecTest(pPager->pInJournal, pPg->pgno); 1090 } 1091 #endif 1092 1093 /* 1094 ** Read a 32-bit integer from the given file descriptor. Store the integer 1095 ** that is read in *pRes. Return SQLITE_OK if everything worked, or an 1096 ** error code is something goes wrong. 1097 ** 1098 ** All values are stored on disk as big-endian. 1099 */ 1100 static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){ 1101 unsigned char ac[4]; 1102 int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset); 1103 if( rc==SQLITE_OK ){ 1104 *pRes = sqlite3Get4byte(ac); 1105 } 1106 return rc; 1107 } 1108 1109 /* 1110 ** Write a 32-bit integer into a string buffer in big-endian byte order. 1111 */ 1112 #define put32bits(A,B) sqlite3Put4byte((u8*)A,B) 1113 1114 1115 /* 1116 ** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK 1117 ** on success or an error code is something goes wrong. 1118 */ 1119 static int write32bits(sqlite3_file *fd, i64 offset, u32 val){ 1120 char ac[4]; 1121 put32bits(ac, val); 1122 return sqlite3OsWrite(fd, ac, 4, offset); 1123 } 1124 1125 /* 1126 ** Unlock the database file to level eLock, which must be either NO_LOCK 1127 ** or SHARED_LOCK. Regardless of whether or not the call to xUnlock() 1128 ** succeeds, set the Pager.eLock variable to match the (attempted) new lock. 1129 ** 1130 ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is 1131 ** called, do not modify it. See the comment above the #define of 1132 ** UNKNOWN_LOCK for an explanation of this. 1133 */ 1134 static int pagerUnlockDb(Pager *pPager, int eLock){ 1135 int rc = SQLITE_OK; 1136 1137 assert( !pPager->exclusiveMode || pPager->eLock==eLock ); 1138 assert( eLock==NO_LOCK || eLock==SHARED_LOCK ); 1139 assert( eLock!=NO_LOCK || pagerUseWal(pPager)==0 ); 1140 if( isOpen(pPager->fd) ){ 1141 assert( pPager->eLock>=eLock ); 1142 rc = pPager->noLock ? SQLITE_OK : sqlite3OsUnlock(pPager->fd, eLock); 1143 if( pPager->eLock!=UNKNOWN_LOCK ){ 1144 pPager->eLock = (u8)eLock; 1145 } 1146 IOTRACE(("UNLOCK %p %d\n", pPager, eLock)) 1147 } 1148 pPager->changeCountDone = pPager->tempFile; /* ticket fb3b3024ea238d5c */ 1149 return rc; 1150 } 1151 1152 /* 1153 ** Lock the database file to level eLock, which must be either SHARED_LOCK, 1154 ** RESERVED_LOCK or EXCLUSIVE_LOCK. If the caller is successful, set the 1155 ** Pager.eLock variable to the new locking state. 1156 ** 1157 ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is 1158 ** called, do not modify it unless the new locking state is EXCLUSIVE_LOCK. 1159 ** See the comment above the #define of UNKNOWN_LOCK for an explanation 1160 ** of this. 1161 */ 1162 static int pagerLockDb(Pager *pPager, int eLock){ 1163 int rc = SQLITE_OK; 1164 1165 assert( eLock==SHARED_LOCK || eLock==RESERVED_LOCK || eLock==EXCLUSIVE_LOCK ); 1166 if( pPager->eLock<eLock || pPager->eLock==UNKNOWN_LOCK ){ 1167 rc = pPager->noLock ? SQLITE_OK : sqlite3OsLock(pPager->fd, eLock); 1168 if( rc==SQLITE_OK && (pPager->eLock!=UNKNOWN_LOCK||eLock==EXCLUSIVE_LOCK) ){ 1169 pPager->eLock = (u8)eLock; 1170 IOTRACE(("LOCK %p %d\n", pPager, eLock)) 1171 } 1172 } 1173 return rc; 1174 } 1175 1176 /* 1177 ** This function determines whether or not the atomic-write or 1178 ** atomic-batch-write optimizations can be used with this pager. The 1179 ** atomic-write optimization can be used if: 1180 ** 1181 ** (a) the value returned by OsDeviceCharacteristics() indicates that 1182 ** a database page may be written atomically, and 1183 ** (b) the value returned by OsSectorSize() is less than or equal 1184 ** to the page size. 1185 ** 1186 ** If it can be used, then the value returned is the size of the journal 1187 ** file when it contains rollback data for exactly one page. 1188 ** 1189 ** The atomic-batch-write optimization can be used if OsDeviceCharacteristics() 1190 ** returns a value with the SQLITE_IOCAP_BATCH_ATOMIC bit set. -1 is 1191 ** returned in this case. 1192 ** 1193 ** If neither optimization can be used, 0 is returned. 1194 */ 1195 static int jrnlBufferSize(Pager *pPager){ 1196 assert( !MEMDB ); 1197 1198 #if defined(SQLITE_ENABLE_ATOMIC_WRITE) \ 1199 || defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) 1200 int dc; /* Device characteristics */ 1201 1202 assert( isOpen(pPager->fd) ); 1203 dc = sqlite3OsDeviceCharacteristics(pPager->fd); 1204 #else 1205 UNUSED_PARAMETER(pPager); 1206 #endif 1207 1208 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 1209 if( pPager->dbSize>0 && (dc&SQLITE_IOCAP_BATCH_ATOMIC) ){ 1210 return -1; 1211 } 1212 #endif 1213 1214 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 1215 { 1216 int nSector = pPager->sectorSize; 1217 int szPage = pPager->pageSize; 1218 1219 assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); 1220 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); 1221 if( 0==(dc&(SQLITE_IOCAP_ATOMIC|(szPage>>8)) || nSector>szPage) ){ 1222 return 0; 1223 } 1224 } 1225 1226 return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager); 1227 #endif 1228 1229 return 0; 1230 } 1231 1232 /* 1233 ** If SQLITE_CHECK_PAGES is defined then we do some sanity checking 1234 ** on the cache using a hash function. This is used for testing 1235 ** and debugging only. 1236 */ 1237 #ifdef SQLITE_CHECK_PAGES 1238 /* 1239 ** Return a 32-bit hash of the page data for pPage. 1240 */ 1241 static u32 pager_datahash(int nByte, unsigned char *pData){ 1242 u32 hash = 0; 1243 int i; 1244 for(i=0; i<nByte; i++){ 1245 hash = (hash*1039) + pData[i]; 1246 } 1247 return hash; 1248 } 1249 static u32 pager_pagehash(PgHdr *pPage){ 1250 return pager_datahash(pPage->pPager->pageSize, (unsigned char *)pPage->pData); 1251 } 1252 static void pager_set_pagehash(PgHdr *pPage){ 1253 pPage->pageHash = pager_pagehash(pPage); 1254 } 1255 1256 /* 1257 ** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES 1258 ** is defined, and NDEBUG is not defined, an assert() statement checks 1259 ** that the page is either dirty or still matches the calculated page-hash. 1260 */ 1261 #define CHECK_PAGE(x) checkPage(x) 1262 static void checkPage(PgHdr *pPg){ 1263 Pager *pPager = pPg->pPager; 1264 assert( pPager->eState!=PAGER_ERROR ); 1265 assert( (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) ); 1266 } 1267 1268 #else 1269 #define pager_datahash(X,Y) 0 1270 #define pager_pagehash(X) 0 1271 #define pager_set_pagehash(X) 1272 #define CHECK_PAGE(x) 1273 #endif /* SQLITE_CHECK_PAGES */ 1274 1275 /* 1276 ** When this is called the journal file for pager pPager must be open. 1277 ** This function attempts to read a master journal file name from the 1278 ** end of the file and, if successful, copies it into memory supplied 1279 ** by the caller. See comments above writeMasterJournal() for the format 1280 ** used to store a master journal file name at the end of a journal file. 1281 ** 1282 ** zMaster must point to a buffer of at least nMaster bytes allocated by 1283 ** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is 1284 ** enough space to write the master journal name). If the master journal 1285 ** name in the journal is longer than nMaster bytes (including a 1286 ** nul-terminator), then this is handled as if no master journal name 1287 ** were present in the journal. 1288 ** 1289 ** If a master journal file name is present at the end of the journal 1290 ** file, then it is copied into the buffer pointed to by zMaster. A 1291 ** nul-terminator byte is appended to the buffer following the master 1292 ** journal file name. 1293 ** 1294 ** If it is determined that no master journal file name is present 1295 ** zMaster[0] is set to 0 and SQLITE_OK returned. 1296 ** 1297 ** If an error occurs while reading from the journal file, an SQLite 1298 ** error code is returned. 1299 */ 1300 static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, u32 nMaster){ 1301 int rc; /* Return code */ 1302 u32 len; /* Length in bytes of master journal name */ 1303 i64 szJ; /* Total size in bytes of journal file pJrnl */ 1304 u32 cksum; /* MJ checksum value read from journal */ 1305 u32 u; /* Unsigned loop counter */ 1306 unsigned char aMagic[8]; /* A buffer to hold the magic header */ 1307 zMaster[0] = '\0'; 1308 1309 if( SQLITE_OK!=(rc = sqlite3OsFileSize(pJrnl, &szJ)) 1310 || szJ<16 1311 || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-16, &len)) 1312 || len>=nMaster 1313 || len>szJ-16 1314 || len==0 1315 || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-12, &cksum)) 1316 || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8)) 1317 || memcmp(aMagic, aJournalMagic, 8) 1318 || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len)) 1319 ){ 1320 return rc; 1321 } 1322 1323 /* See if the checksum matches the master journal name */ 1324 for(u=0; u<len; u++){ 1325 cksum -= zMaster[u]; 1326 } 1327 if( cksum ){ 1328 /* If the checksum doesn't add up, then one or more of the disk sectors 1329 ** containing the master journal filename is corrupted. This means 1330 ** definitely roll back, so just return SQLITE_OK and report a (nul) 1331 ** master-journal filename. 1332 */ 1333 len = 0; 1334 } 1335 zMaster[len] = '\0'; 1336 zMaster[len+1] = '\0'; 1337 1338 return SQLITE_OK; 1339 } 1340 1341 /* 1342 ** Return the offset of the sector boundary at or immediately 1343 ** following the value in pPager->journalOff, assuming a sector 1344 ** size of pPager->sectorSize bytes. 1345 ** 1346 ** i.e for a sector size of 512: 1347 ** 1348 ** Pager.journalOff Return value 1349 ** --------------------------------------- 1350 ** 0 0 1351 ** 512 512 1352 ** 100 512 1353 ** 2000 2048 1354 ** 1355 */ 1356 static i64 journalHdrOffset(Pager *pPager){ 1357 i64 offset = 0; 1358 i64 c = pPager->journalOff; 1359 if( c ){ 1360 offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager); 1361 } 1362 assert( offset%JOURNAL_HDR_SZ(pPager)==0 ); 1363 assert( offset>=c ); 1364 assert( (offset-c)<JOURNAL_HDR_SZ(pPager) ); 1365 return offset; 1366 } 1367 1368 /* 1369 ** The journal file must be open when this function is called. 1370 ** 1371 ** This function is a no-op if the journal file has not been written to 1372 ** within the current transaction (i.e. if Pager.journalOff==0). 1373 ** 1374 ** If doTruncate is non-zero or the Pager.journalSizeLimit variable is 1375 ** set to 0, then truncate the journal file to zero bytes in size. Otherwise, 1376 ** zero the 28-byte header at the start of the journal file. In either case, 1377 ** if the pager is not in no-sync mode, sync the journal file immediately 1378 ** after writing or truncating it. 1379 ** 1380 ** If Pager.journalSizeLimit is set to a positive, non-zero value, and 1381 ** following the truncation or zeroing described above the size of the 1382 ** journal file in bytes is larger than this value, then truncate the 1383 ** journal file to Pager.journalSizeLimit bytes. The journal file does 1384 ** not need to be synced following this operation. 1385 ** 1386 ** If an IO error occurs, abandon processing and return the IO error code. 1387 ** Otherwise, return SQLITE_OK. 1388 */ 1389 static int zeroJournalHdr(Pager *pPager, int doTruncate){ 1390 int rc = SQLITE_OK; /* Return code */ 1391 assert( isOpen(pPager->jfd) ); 1392 assert( !sqlite3JournalIsInMemory(pPager->jfd) ); 1393 if( pPager->journalOff ){ 1394 const i64 iLimit = pPager->journalSizeLimit; /* Local cache of jsl */ 1395 1396 IOTRACE(("JZEROHDR %p\n", pPager)) 1397 if( doTruncate || iLimit==0 ){ 1398 rc = sqlite3OsTruncate(pPager->jfd, 0); 1399 }else{ 1400 static const char zeroHdr[28] = {0}; 1401 rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0); 1402 } 1403 if( rc==SQLITE_OK && !pPager->noSync ){ 1404 rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->syncFlags); 1405 } 1406 1407 /* At this point the transaction is committed but the write lock 1408 ** is still held on the file. If there is a size limit configured for 1409 ** the persistent journal and the journal file currently consumes more 1410 ** space than that limit allows for, truncate it now. There is no need 1411 ** to sync the file following this operation. 1412 */ 1413 if( rc==SQLITE_OK && iLimit>0 ){ 1414 i64 sz; 1415 rc = sqlite3OsFileSize(pPager->jfd, &sz); 1416 if( rc==SQLITE_OK && sz>iLimit ){ 1417 rc = sqlite3OsTruncate(pPager->jfd, iLimit); 1418 } 1419 } 1420 } 1421 return rc; 1422 } 1423 1424 /* 1425 ** The journal file must be open when this routine is called. A journal 1426 ** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the 1427 ** current location. 1428 ** 1429 ** The format for the journal header is as follows: 1430 ** - 8 bytes: Magic identifying journal format. 1431 ** - 4 bytes: Number of records in journal, or -1 no-sync mode is on. 1432 ** - 4 bytes: Random number used for page hash. 1433 ** - 4 bytes: Initial database page count. 1434 ** - 4 bytes: Sector size used by the process that wrote this journal. 1435 ** - 4 bytes: Database page size. 1436 ** 1437 ** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space. 1438 */ 1439 static int writeJournalHdr(Pager *pPager){ 1440 int rc = SQLITE_OK; /* Return code */ 1441 char *zHeader = pPager->pTmpSpace; /* Temporary space used to build header */ 1442 u32 nHeader = (u32)pPager->pageSize;/* Size of buffer pointed to by zHeader */ 1443 u32 nWrite; /* Bytes of header sector written */ 1444 int ii; /* Loop counter */ 1445 1446 assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ 1447 1448 if( nHeader>JOURNAL_HDR_SZ(pPager) ){ 1449 nHeader = JOURNAL_HDR_SZ(pPager); 1450 } 1451 1452 /* If there are active savepoints and any of them were created 1453 ** since the most recent journal header was written, update the 1454 ** PagerSavepoint.iHdrOffset fields now. 1455 */ 1456 for(ii=0; ii<pPager->nSavepoint; ii++){ 1457 if( pPager->aSavepoint[ii].iHdrOffset==0 ){ 1458 pPager->aSavepoint[ii].iHdrOffset = pPager->journalOff; 1459 } 1460 } 1461 1462 pPager->journalHdr = pPager->journalOff = journalHdrOffset(pPager); 1463 1464 /* 1465 ** Write the nRec Field - the number of page records that follow this 1466 ** journal header. Normally, zero is written to this value at this time. 1467 ** After the records are added to the journal (and the journal synced, 1468 ** if in full-sync mode), the zero is overwritten with the true number 1469 ** of records (see syncJournal()). 1470 ** 1471 ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When 1472 ** reading the journal this value tells SQLite to assume that the 1473 ** rest of the journal file contains valid page records. This assumption 1474 ** is dangerous, as if a failure occurred whilst writing to the journal 1475 ** file it may contain some garbage data. There are two scenarios 1476 ** where this risk can be ignored: 1477 ** 1478 ** * When the pager is in no-sync mode. Corruption can follow a 1479 ** power failure in this case anyway. 1480 ** 1481 ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees 1482 ** that garbage data is never appended to the journal file. 1483 */ 1484 assert( isOpen(pPager->fd) || pPager->noSync ); 1485 if( pPager->noSync || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY) 1486 || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) 1487 ){ 1488 memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); 1489 put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff); 1490 }else{ 1491 memset(zHeader, 0, sizeof(aJournalMagic)+4); 1492 } 1493 1494 /* The random check-hash initializer */ 1495 sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit); 1496 put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit); 1497 /* The initial database size */ 1498 put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbOrigSize); 1499 /* The assumed sector size for this process */ 1500 put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize); 1501 1502 /* The page size */ 1503 put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize); 1504 1505 /* Initializing the tail of the buffer is not necessary. Everything 1506 ** works find if the following memset() is omitted. But initializing 1507 ** the memory prevents valgrind from complaining, so we are willing to 1508 ** take the performance hit. 1509 */ 1510 memset(&zHeader[sizeof(aJournalMagic)+20], 0, 1511 nHeader-(sizeof(aJournalMagic)+20)); 1512 1513 /* In theory, it is only necessary to write the 28 bytes that the 1514 ** journal header consumes to the journal file here. Then increment the 1515 ** Pager.journalOff variable by JOURNAL_HDR_SZ so that the next 1516 ** record is written to the following sector (leaving a gap in the file 1517 ** that will be implicitly filled in by the OS). 1518 ** 1519 ** However it has been discovered that on some systems this pattern can 1520 ** be significantly slower than contiguously writing data to the file, 1521 ** even if that means explicitly writing data to the block of 1522 ** (JOURNAL_HDR_SZ - 28) bytes that will not be used. So that is what 1523 ** is done. 1524 ** 1525 ** The loop is required here in case the sector-size is larger than the 1526 ** database page size. Since the zHeader buffer is only Pager.pageSize 1527 ** bytes in size, more than one call to sqlite3OsWrite() may be required 1528 ** to populate the entire journal header sector. 1529 */ 1530 for(nWrite=0; rc==SQLITE_OK&&nWrite<JOURNAL_HDR_SZ(pPager); nWrite+=nHeader){ 1531 IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, nHeader)) 1532 rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff); 1533 assert( pPager->journalHdr <= pPager->journalOff ); 1534 pPager->journalOff += nHeader; 1535 } 1536 1537 return rc; 1538 } 1539 1540 /* 1541 ** The journal file must be open when this is called. A journal header file 1542 ** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal 1543 ** file. The current location in the journal file is given by 1544 ** pPager->journalOff. See comments above function writeJournalHdr() for 1545 ** a description of the journal header format. 1546 ** 1547 ** If the header is read successfully, *pNRec is set to the number of 1548 ** page records following this header and *pDbSize is set to the size of the 1549 ** database before the transaction began, in pages. Also, pPager->cksumInit 1550 ** is set to the value read from the journal header. SQLITE_OK is returned 1551 ** in this case. 1552 ** 1553 ** If the journal header file appears to be corrupted, SQLITE_DONE is 1554 ** returned and *pNRec and *PDbSize are undefined. If JOURNAL_HDR_SZ bytes 1555 ** cannot be read from the journal file an error code is returned. 1556 */ 1557 static int readJournalHdr( 1558 Pager *pPager, /* Pager object */ 1559 int isHot, 1560 i64 journalSize, /* Size of the open journal file in bytes */ 1561 u32 *pNRec, /* OUT: Value read from the nRec field */ 1562 u32 *pDbSize /* OUT: Value of original database size field */ 1563 ){ 1564 int rc; /* Return code */ 1565 unsigned char aMagic[8]; /* A buffer to hold the magic header */ 1566 i64 iHdrOff; /* Offset of journal header being read */ 1567 1568 assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ 1569 1570 /* Advance Pager.journalOff to the start of the next sector. If the 1571 ** journal file is too small for there to be a header stored at this 1572 ** point, return SQLITE_DONE. 1573 */ 1574 pPager->journalOff = journalHdrOffset(pPager); 1575 if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){ 1576 return SQLITE_DONE; 1577 } 1578 iHdrOff = pPager->journalOff; 1579 1580 /* Read in the first 8 bytes of the journal header. If they do not match 1581 ** the magic string found at the start of each journal header, return 1582 ** SQLITE_DONE. If an IO error occurs, return an error code. Otherwise, 1583 ** proceed. 1584 */ 1585 if( isHot || iHdrOff!=pPager->journalHdr ){ 1586 rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), iHdrOff); 1587 if( rc ){ 1588 return rc; 1589 } 1590 if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){ 1591 return SQLITE_DONE; 1592 } 1593 } 1594 1595 /* Read the first three 32-bit fields of the journal header: The nRec 1596 ** field, the checksum-initializer and the database size at the start 1597 ** of the transaction. Return an error code if anything goes wrong. 1598 */ 1599 if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+8, pNRec)) 1600 || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+12, &pPager->cksumInit)) 1601 || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+16, pDbSize)) 1602 ){ 1603 return rc; 1604 } 1605 1606 if( pPager->journalOff==0 ){ 1607 u32 iPageSize; /* Page-size field of journal header */ 1608 u32 iSectorSize; /* Sector-size field of journal header */ 1609 1610 /* Read the page-size and sector-size journal header fields. */ 1611 if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+20, &iSectorSize)) 1612 || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+24, &iPageSize)) 1613 ){ 1614 return rc; 1615 } 1616 1617 /* Versions of SQLite prior to 3.5.8 set the page-size field of the 1618 ** journal header to zero. In this case, assume that the Pager.pageSize 1619 ** variable is already set to the correct page size. 1620 */ 1621 if( iPageSize==0 ){ 1622 iPageSize = pPager->pageSize; 1623 } 1624 1625 /* Check that the values read from the page-size and sector-size fields 1626 ** are within range. To be 'in range', both values need to be a power 1627 ** of two greater than or equal to 512 or 32, and not greater than their 1628 ** respective compile time maximum limits. 1629 */ 1630 if( iPageSize<512 || iSectorSize<32 1631 || iPageSize>SQLITE_MAX_PAGE_SIZE || iSectorSize>MAX_SECTOR_SIZE 1632 || ((iPageSize-1)&iPageSize)!=0 || ((iSectorSize-1)&iSectorSize)!=0 1633 ){ 1634 /* If the either the page-size or sector-size in the journal-header is 1635 ** invalid, then the process that wrote the journal-header must have 1636 ** crashed before the header was synced. In this case stop reading 1637 ** the journal file here. 1638 */ 1639 return SQLITE_DONE; 1640 } 1641 1642 /* Update the page-size to match the value read from the journal. 1643 ** Use a testcase() macro to make sure that malloc failure within 1644 ** PagerSetPagesize() is tested. 1645 */ 1646 rc = sqlite3PagerSetPagesize(pPager, &iPageSize, -1); 1647 testcase( rc!=SQLITE_OK ); 1648 1649 /* Update the assumed sector-size to match the value used by 1650 ** the process that created this journal. If this journal was 1651 ** created by a process other than this one, then this routine 1652 ** is being called from within pager_playback(). The local value 1653 ** of Pager.sectorSize is restored at the end of that routine. 1654 */ 1655 pPager->sectorSize = iSectorSize; 1656 } 1657 1658 pPager->journalOff += JOURNAL_HDR_SZ(pPager); 1659 return rc; 1660 } 1661 1662 1663 /* 1664 ** Write the supplied master journal name into the journal file for pager 1665 ** pPager at the current location. The master journal name must be the last 1666 ** thing written to a journal file. If the pager is in full-sync mode, the 1667 ** journal file descriptor is advanced to the next sector boundary before 1668 ** anything is written. The format is: 1669 ** 1670 ** + 4 bytes: PAGER_MJ_PGNO. 1671 ** + N bytes: Master journal filename in utf-8. 1672 ** + 4 bytes: N (length of master journal name in bytes, no nul-terminator). 1673 ** + 4 bytes: Master journal name checksum. 1674 ** + 8 bytes: aJournalMagic[]. 1675 ** 1676 ** The master journal page checksum is the sum of the bytes in the master 1677 ** journal name, where each byte is interpreted as a signed 8-bit integer. 1678 ** 1679 ** If zMaster is a NULL pointer (occurs for a single database transaction), 1680 ** this call is a no-op. 1681 */ 1682 static int writeMasterJournal(Pager *pPager, const char *zMaster){ 1683 int rc; /* Return code */ 1684 int nMaster; /* Length of string zMaster */ 1685 i64 iHdrOff; /* Offset of header in journal file */ 1686 i64 jrnlSize; /* Size of journal file on disk */ 1687 u32 cksum = 0; /* Checksum of string zMaster */ 1688 1689 assert( pPager->setMaster==0 ); 1690 assert( !pagerUseWal(pPager) ); 1691 1692 if( !zMaster 1693 || pPager->journalMode==PAGER_JOURNALMODE_MEMORY 1694 || !isOpen(pPager->jfd) 1695 ){ 1696 return SQLITE_OK; 1697 } 1698 pPager->setMaster = 1; 1699 assert( pPager->journalHdr <= pPager->journalOff ); 1700 1701 /* Calculate the length in bytes and the checksum of zMaster */ 1702 for(nMaster=0; zMaster[nMaster]; nMaster++){ 1703 cksum += zMaster[nMaster]; 1704 } 1705 1706 /* If in full-sync mode, advance to the next disk sector before writing 1707 ** the master journal name. This is in case the previous page written to 1708 ** the journal has already been synced. 1709 */ 1710 if( pPager->fullSync ){ 1711 pPager->journalOff = journalHdrOffset(pPager); 1712 } 1713 iHdrOff = pPager->journalOff; 1714 1715 /* Write the master journal data to the end of the journal file. If 1716 ** an error occurs, return the error code to the caller. 1717 */ 1718 if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_MJ_PGNO(pPager)))) 1719 || (0 != (rc = sqlite3OsWrite(pPager->jfd, zMaster, nMaster, iHdrOff+4))) 1720 || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster, nMaster))) 1721 || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster+4, cksum))) 1722 || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8, 1723 iHdrOff+4+nMaster+8))) 1724 ){ 1725 return rc; 1726 } 1727 pPager->journalOff += (nMaster+20); 1728 1729 /* If the pager is in peristent-journal mode, then the physical 1730 ** journal-file may extend past the end of the master-journal name 1731 ** and 8 bytes of magic data just written to the file. This is 1732 ** dangerous because the code to rollback a hot-journal file 1733 ** will not be able to find the master-journal name to determine 1734 ** whether or not the journal is hot. 1735 ** 1736 ** Easiest thing to do in this scenario is to truncate the journal 1737 ** file to the required size. 1738 */ 1739 if( SQLITE_OK==(rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize)) 1740 && jrnlSize>pPager->journalOff 1741 ){ 1742 rc = sqlite3OsTruncate(pPager->jfd, pPager->journalOff); 1743 } 1744 return rc; 1745 } 1746 1747 /* 1748 ** Discard the entire contents of the in-memory page-cache. 1749 */ 1750 static void pager_reset(Pager *pPager){ 1751 pPager->iDataVersion++; 1752 sqlite3BackupRestart(pPager->pBackup); 1753 sqlite3PcacheClear(pPager->pPCache); 1754 } 1755 1756 /* 1757 ** Return the pPager->iDataVersion value 1758 */ 1759 u32 sqlite3PagerDataVersion(Pager *pPager){ 1760 return pPager->iDataVersion; 1761 } 1762 1763 /* 1764 ** Free all structures in the Pager.aSavepoint[] array and set both 1765 ** Pager.aSavepoint and Pager.nSavepoint to zero. Close the sub-journal 1766 ** if it is open and the pager is not in exclusive mode. 1767 */ 1768 static void releaseAllSavepoints(Pager *pPager){ 1769 int ii; /* Iterator for looping through Pager.aSavepoint */ 1770 for(ii=0; ii<pPager->nSavepoint; ii++){ 1771 sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); 1772 } 1773 if( !pPager->exclusiveMode || sqlite3JournalIsInMemory(pPager->sjfd) ){ 1774 sqlite3OsClose(pPager->sjfd); 1775 } 1776 sqlite3_free(pPager->aSavepoint); 1777 pPager->aSavepoint = 0; 1778 pPager->nSavepoint = 0; 1779 pPager->nSubRec = 0; 1780 } 1781 1782 /* 1783 ** Set the bit number pgno in the PagerSavepoint.pInSavepoint 1784 ** bitvecs of all open savepoints. Return SQLITE_OK if successful 1785 ** or SQLITE_NOMEM if a malloc failure occurs. 1786 */ 1787 static int addToSavepointBitvecs(Pager *pPager, Pgno pgno){ 1788 int ii; /* Loop counter */ 1789 int rc = SQLITE_OK; /* Result code */ 1790 1791 for(ii=0; ii<pPager->nSavepoint; ii++){ 1792 PagerSavepoint *p = &pPager->aSavepoint[ii]; 1793 if( pgno<=p->nOrig ){ 1794 rc |= sqlite3BitvecSet(p->pInSavepoint, pgno); 1795 testcase( rc==SQLITE_NOMEM ); 1796 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 1797 } 1798 } 1799 return rc; 1800 } 1801 1802 /* 1803 ** This function is a no-op if the pager is in exclusive mode and not 1804 ** in the ERROR state. Otherwise, it switches the pager to PAGER_OPEN 1805 ** state. 1806 ** 1807 ** If the pager is not in exclusive-access mode, the database file is 1808 ** completely unlocked. If the file is unlocked and the file-system does 1809 ** not exhibit the UNDELETABLE_WHEN_OPEN property, the journal file is 1810 ** closed (if it is open). 1811 ** 1812 ** If the pager is in ERROR state when this function is called, the 1813 ** contents of the pager cache are discarded before switching back to 1814 ** the OPEN state. Regardless of whether the pager is in exclusive-mode 1815 ** or not, any journal file left in the file-system will be treated 1816 ** as a hot-journal and rolled back the next time a read-transaction 1817 ** is opened (by this or by any other connection). 1818 */ 1819 static void pager_unlock(Pager *pPager){ 1820 1821 assert( pPager->eState==PAGER_READER 1822 || pPager->eState==PAGER_OPEN 1823 || pPager->eState==PAGER_ERROR 1824 ); 1825 1826 sqlite3BitvecDestroy(pPager->pInJournal); 1827 pPager->pInJournal = 0; 1828 releaseAllSavepoints(pPager); 1829 1830 if( pagerUseWal(pPager) ){ 1831 assert( !isOpen(pPager->jfd) ); 1832 sqlite3WalEndReadTransaction(pPager->pWal); 1833 pPager->eState = PAGER_OPEN; 1834 }else if( !pPager->exclusiveMode ){ 1835 int rc; /* Error code returned by pagerUnlockDb() */ 1836 int iDc = isOpen(pPager->fd)?sqlite3OsDeviceCharacteristics(pPager->fd):0; 1837 1838 /* If the operating system support deletion of open files, then 1839 ** close the journal file when dropping the database lock. Otherwise 1840 ** another connection with journal_mode=delete might delete the file 1841 ** out from under us. 1842 */ 1843 assert( (PAGER_JOURNALMODE_MEMORY & 5)!=1 ); 1844 assert( (PAGER_JOURNALMODE_OFF & 5)!=1 ); 1845 assert( (PAGER_JOURNALMODE_WAL & 5)!=1 ); 1846 assert( (PAGER_JOURNALMODE_DELETE & 5)!=1 ); 1847 assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); 1848 assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); 1849 if( 0==(iDc & SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN) 1850 || 1!=(pPager->journalMode & 5) 1851 ){ 1852 sqlite3OsClose(pPager->jfd); 1853 } 1854 1855 /* If the pager is in the ERROR state and the call to unlock the database 1856 ** file fails, set the current lock to UNKNOWN_LOCK. See the comment 1857 ** above the #define for UNKNOWN_LOCK for an explanation of why this 1858 ** is necessary. 1859 */ 1860 rc = pagerUnlockDb(pPager, NO_LOCK); 1861 if( rc!=SQLITE_OK && pPager->eState==PAGER_ERROR ){ 1862 pPager->eLock = UNKNOWN_LOCK; 1863 } 1864 1865 /* The pager state may be changed from PAGER_ERROR to PAGER_OPEN here 1866 ** without clearing the error code. This is intentional - the error 1867 ** code is cleared and the cache reset in the block below. 1868 */ 1869 assert( pPager->errCode || pPager->eState!=PAGER_ERROR ); 1870 pPager->eState = PAGER_OPEN; 1871 } 1872 1873 /* If Pager.errCode is set, the contents of the pager cache cannot be 1874 ** trusted. Now that there are no outstanding references to the pager, 1875 ** it can safely move back to PAGER_OPEN state. This happens in both 1876 ** normal and exclusive-locking mode. 1877 */ 1878 assert( pPager->errCode==SQLITE_OK || !MEMDB ); 1879 if( pPager->errCode ){ 1880 if( pPager->tempFile==0 ){ 1881 pager_reset(pPager); 1882 pPager->changeCountDone = 0; 1883 pPager->eState = PAGER_OPEN; 1884 }else{ 1885 pPager->eState = (isOpen(pPager->jfd) ? PAGER_OPEN : PAGER_READER); 1886 } 1887 if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0); 1888 pPager->errCode = SQLITE_OK; 1889 setGetterMethod(pPager); 1890 } 1891 1892 pPager->journalOff = 0; 1893 pPager->journalHdr = 0; 1894 pPager->setMaster = 0; 1895 } 1896 1897 /* 1898 ** This function is called whenever an IOERR or FULL error that requires 1899 ** the pager to transition into the ERROR state may ahve occurred. 1900 ** The first argument is a pointer to the pager structure, the second 1901 ** the error-code about to be returned by a pager API function. The 1902 ** value returned is a copy of the second argument to this function. 1903 ** 1904 ** If the second argument is SQLITE_FULL, SQLITE_IOERR or one of the 1905 ** IOERR sub-codes, the pager enters the ERROR state and the error code 1906 ** is stored in Pager.errCode. While the pager remains in the ERROR state, 1907 ** all major API calls on the Pager will immediately return Pager.errCode. 1908 ** 1909 ** The ERROR state indicates that the contents of the pager-cache 1910 ** cannot be trusted. This state can be cleared by completely discarding 1911 ** the contents of the pager-cache. If a transaction was active when 1912 ** the persistent error occurred, then the rollback journal may need 1913 ** to be replayed to restore the contents of the database file (as if 1914 ** it were a hot-journal). 1915 */ 1916 static int pager_error(Pager *pPager, int rc){ 1917 int rc2 = rc & 0xff; 1918 assert( rc==SQLITE_OK || !MEMDB ); 1919 assert( 1920 pPager->errCode==SQLITE_FULL || 1921 pPager->errCode==SQLITE_OK || 1922 (pPager->errCode & 0xff)==SQLITE_IOERR 1923 ); 1924 if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR ){ 1925 pPager->errCode = rc; 1926 pPager->eState = PAGER_ERROR; 1927 setGetterMethod(pPager); 1928 } 1929 return rc; 1930 } 1931 1932 static int pager_truncate(Pager *pPager, Pgno nPage); 1933 1934 /* 1935 ** The write transaction open on pPager is being committed (bCommit==1) 1936 ** or rolled back (bCommit==0). 1937 ** 1938 ** Return TRUE if and only if all dirty pages should be flushed to disk. 1939 ** 1940 ** Rules: 1941 ** 1942 ** * For non-TEMP databases, always sync to disk. This is necessary 1943 ** for transactions to be durable. 1944 ** 1945 ** * Sync TEMP database only on a COMMIT (not a ROLLBACK) when the backing 1946 ** file has been created already (via a spill on pagerStress()) and 1947 ** when the number of dirty pages in memory exceeds 25% of the total 1948 ** cache size. 1949 */ 1950 static int pagerFlushOnCommit(Pager *pPager, int bCommit){ 1951 if( pPager->tempFile==0 ) return 1; 1952 if( !bCommit ) return 0; 1953 if( !isOpen(pPager->fd) ) return 0; 1954 return (sqlite3PCachePercentDirty(pPager->pPCache)>=25); 1955 } 1956 1957 /* 1958 ** This routine ends a transaction. A transaction is usually ended by 1959 ** either a COMMIT or a ROLLBACK operation. This routine may be called 1960 ** after rollback of a hot-journal, or if an error occurs while opening 1961 ** the journal file or writing the very first journal-header of a 1962 ** database transaction. 1963 ** 1964 ** This routine is never called in PAGER_ERROR state. If it is called 1965 ** in PAGER_NONE or PAGER_SHARED state and the lock held is less 1966 ** exclusive than a RESERVED lock, it is a no-op. 1967 ** 1968 ** Otherwise, any active savepoints are released. 1969 ** 1970 ** If the journal file is open, then it is "finalized". Once a journal 1971 ** file has been finalized it is not possible to use it to roll back a 1972 ** transaction. Nor will it be considered to be a hot-journal by this 1973 ** or any other database connection. Exactly how a journal is finalized 1974 ** depends on whether or not the pager is running in exclusive mode and 1975 ** the current journal-mode (Pager.journalMode value), as follows: 1976 ** 1977 ** journalMode==MEMORY 1978 ** Journal file descriptor is simply closed. This destroys an 1979 ** in-memory journal. 1980 ** 1981 ** journalMode==TRUNCATE 1982 ** Journal file is truncated to zero bytes in size. 1983 ** 1984 ** journalMode==PERSIST 1985 ** The first 28 bytes of the journal file are zeroed. This invalidates 1986 ** the first journal header in the file, and hence the entire journal 1987 ** file. An invalid journal file cannot be rolled back. 1988 ** 1989 ** journalMode==DELETE 1990 ** The journal file is closed and deleted using sqlite3OsDelete(). 1991 ** 1992 ** If the pager is running in exclusive mode, this method of finalizing 1993 ** the journal file is never used. Instead, if the journalMode is 1994 ** DELETE and the pager is in exclusive mode, the method described under 1995 ** journalMode==PERSIST is used instead. 1996 ** 1997 ** After the journal is finalized, the pager moves to PAGER_READER state. 1998 ** If running in non-exclusive rollback mode, the lock on the file is 1999 ** downgraded to a SHARED_LOCK. 2000 ** 2001 ** SQLITE_OK is returned if no error occurs. If an error occurs during 2002 ** any of the IO operations to finalize the journal file or unlock the 2003 ** database then the IO error code is returned to the user. If the 2004 ** operation to finalize the journal file fails, then the code still 2005 ** tries to unlock the database file if not in exclusive mode. If the 2006 ** unlock operation fails as well, then the first error code related 2007 ** to the first error encountered (the journal finalization one) is 2008 ** returned. 2009 */ 2010 static int pager_end_transaction(Pager *pPager, int hasMaster, int bCommit){ 2011 int rc = SQLITE_OK; /* Error code from journal finalization operation */ 2012 int rc2 = SQLITE_OK; /* Error code from db file unlock operation */ 2013 2014 /* Do nothing if the pager does not have an open write transaction 2015 ** or at least a RESERVED lock. This function may be called when there 2016 ** is no write-transaction active but a RESERVED or greater lock is 2017 ** held under two circumstances: 2018 ** 2019 ** 1. After a successful hot-journal rollback, it is called with 2020 ** eState==PAGER_NONE and eLock==EXCLUSIVE_LOCK. 2021 ** 2022 ** 2. If a connection with locking_mode=exclusive holding an EXCLUSIVE 2023 ** lock switches back to locking_mode=normal and then executes a 2024 ** read-transaction, this function is called with eState==PAGER_READER 2025 ** and eLock==EXCLUSIVE_LOCK when the read-transaction is closed. 2026 */ 2027 assert( assert_pager_state(pPager) ); 2028 assert( pPager->eState!=PAGER_ERROR ); 2029 if( pPager->eState<PAGER_WRITER_LOCKED && pPager->eLock<RESERVED_LOCK ){ 2030 return SQLITE_OK; 2031 } 2032 2033 releaseAllSavepoints(pPager); 2034 assert( isOpen(pPager->jfd) || pPager->pInJournal==0 2035 || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_BATCH_ATOMIC) 2036 ); 2037 if( isOpen(pPager->jfd) ){ 2038 assert( !pagerUseWal(pPager) ); 2039 2040 /* Finalize the journal file. */ 2041 if( sqlite3JournalIsInMemory(pPager->jfd) ){ 2042 /* assert( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ); */ 2043 sqlite3OsClose(pPager->jfd); 2044 }else if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE ){ 2045 if( pPager->journalOff==0 ){ 2046 rc = SQLITE_OK; 2047 }else{ 2048 rc = sqlite3OsTruncate(pPager->jfd, 0); 2049 if( rc==SQLITE_OK && pPager->fullSync ){ 2050 /* Make sure the new file size is written into the inode right away. 2051 ** Otherwise the journal might resurrect following a power loss and 2052 ** cause the last transaction to roll back. See 2053 ** https://bugzilla.mozilla.org/show_bug.cgi?id=1072773 2054 */ 2055 rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags); 2056 } 2057 } 2058 pPager->journalOff = 0; 2059 }else if( pPager->journalMode==PAGER_JOURNALMODE_PERSIST 2060 || (pPager->exclusiveMode && pPager->journalMode!=PAGER_JOURNALMODE_WAL) 2061 ){ 2062 rc = zeroJournalHdr(pPager, hasMaster||pPager->tempFile); 2063 pPager->journalOff = 0; 2064 }else{ 2065 /* This branch may be executed with Pager.journalMode==MEMORY if 2066 ** a hot-journal was just rolled back. In this case the journal 2067 ** file should be closed and deleted. If this connection writes to 2068 ** the database file, it will do so using an in-memory journal. 2069 */ 2070 int bDelete = !pPager->tempFile; 2071 assert( sqlite3JournalIsInMemory(pPager->jfd)==0 ); 2072 assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE 2073 || pPager->journalMode==PAGER_JOURNALMODE_MEMORY 2074 || pPager->journalMode==PAGER_JOURNALMODE_WAL 2075 ); 2076 sqlite3OsClose(pPager->jfd); 2077 if( bDelete ){ 2078 rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, pPager->extraSync); 2079 } 2080 } 2081 } 2082 2083 #ifdef SQLITE_CHECK_PAGES 2084 sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash); 2085 if( pPager->dbSize==0 && sqlite3PcacheRefCount(pPager->pPCache)>0 ){ 2086 PgHdr *p = sqlite3PagerLookup(pPager, 1); 2087 if( p ){ 2088 p->pageHash = 0; 2089 sqlite3PagerUnrefNotNull(p); 2090 } 2091 } 2092 #endif 2093 2094 sqlite3BitvecDestroy(pPager->pInJournal); 2095 pPager->pInJournal = 0; 2096 pPager->nRec = 0; 2097 if( rc==SQLITE_OK ){ 2098 if( MEMDB || pagerFlushOnCommit(pPager, bCommit) ){ 2099 sqlite3PcacheCleanAll(pPager->pPCache); 2100 }else{ 2101 sqlite3PcacheClearWritable(pPager->pPCache); 2102 } 2103 sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize); 2104 } 2105 2106 if( pagerUseWal(pPager) ){ 2107 /* Drop the WAL write-lock, if any. Also, if the connection was in 2108 ** locking_mode=exclusive mode but is no longer, drop the EXCLUSIVE 2109 ** lock held on the database file. 2110 */ 2111 rc2 = sqlite3WalEndWriteTransaction(pPager->pWal); 2112 assert( rc2==SQLITE_OK ); 2113 }else if( rc==SQLITE_OK && bCommit && pPager->dbFileSize>pPager->dbSize ){ 2114 /* This branch is taken when committing a transaction in rollback-journal 2115 ** mode if the database file on disk is larger than the database image. 2116 ** At this point the journal has been finalized and the transaction 2117 ** successfully committed, but the EXCLUSIVE lock is still held on the 2118 ** file. So it is safe to truncate the database file to its minimum 2119 ** required size. */ 2120 assert( pPager->eLock==EXCLUSIVE_LOCK ); 2121 rc = pager_truncate(pPager, pPager->dbSize); 2122 } 2123 2124 if( rc==SQLITE_OK && bCommit ){ 2125 rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_COMMIT_PHASETWO, 0); 2126 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 2127 } 2128 2129 if( !pPager->exclusiveMode 2130 && (!pagerUseWal(pPager) || sqlite3WalExclusiveMode(pPager->pWal, 0)) 2131 ){ 2132 rc2 = pagerUnlockDb(pPager, SHARED_LOCK); 2133 } 2134 pPager->eState = PAGER_READER; 2135 pPager->setMaster = 0; 2136 2137 return (rc==SQLITE_OK?rc2:rc); 2138 } 2139 2140 /* 2141 ** Execute a rollback if a transaction is active and unlock the 2142 ** database file. 2143 ** 2144 ** If the pager has already entered the ERROR state, do not attempt 2145 ** the rollback at this time. Instead, pager_unlock() is called. The 2146 ** call to pager_unlock() will discard all in-memory pages, unlock 2147 ** the database file and move the pager back to OPEN state. If this 2148 ** means that there is a hot-journal left in the file-system, the next 2149 ** connection to obtain a shared lock on the pager (which may be this one) 2150 ** will roll it back. 2151 ** 2152 ** If the pager has not already entered the ERROR state, but an IO or 2153 ** malloc error occurs during a rollback, then this will itself cause 2154 ** the pager to enter the ERROR state. Which will be cleared by the 2155 ** call to pager_unlock(), as described above. 2156 */ 2157 static void pagerUnlockAndRollback(Pager *pPager){ 2158 if( pPager->eState!=PAGER_ERROR && pPager->eState!=PAGER_OPEN ){ 2159 assert( assert_pager_state(pPager) ); 2160 if( pPager->eState>=PAGER_WRITER_LOCKED ){ 2161 sqlite3BeginBenignMalloc(); 2162 sqlite3PagerRollback(pPager); 2163 sqlite3EndBenignMalloc(); 2164 }else if( !pPager->exclusiveMode ){ 2165 assert( pPager->eState==PAGER_READER ); 2166 pager_end_transaction(pPager, 0, 0); 2167 } 2168 } 2169 pager_unlock(pPager); 2170 } 2171 2172 /* 2173 ** Parameter aData must point to a buffer of pPager->pageSize bytes 2174 ** of data. Compute and return a checksum based ont the contents of the 2175 ** page of data and the current value of pPager->cksumInit. 2176 ** 2177 ** This is not a real checksum. It is really just the sum of the 2178 ** random initial value (pPager->cksumInit) and every 200th byte 2179 ** of the page data, starting with byte offset (pPager->pageSize%200). 2180 ** Each byte is interpreted as an 8-bit unsigned integer. 2181 ** 2182 ** Changing the formula used to compute this checksum results in an 2183 ** incompatible journal file format. 2184 ** 2185 ** If journal corruption occurs due to a power failure, the most likely 2186 ** scenario is that one end or the other of the record will be changed. 2187 ** It is much less likely that the two ends of the journal record will be 2188 ** correct and the middle be corrupt. Thus, this "checksum" scheme, 2189 ** though fast and simple, catches the mostly likely kind of corruption. 2190 */ 2191 static u32 pager_cksum(Pager *pPager, const u8 *aData){ 2192 u32 cksum = pPager->cksumInit; /* Checksum value to return */ 2193 int i = pPager->pageSize-200; /* Loop counter */ 2194 while( i>0 ){ 2195 cksum += aData[i]; 2196 i -= 200; 2197 } 2198 return cksum; 2199 } 2200 2201 /* 2202 ** Read a single page from either the journal file (if isMainJrnl==1) or 2203 ** from the sub-journal (if isMainJrnl==0) and playback that page. 2204 ** The page begins at offset *pOffset into the file. The *pOffset 2205 ** value is increased to the start of the next page in the journal. 2206 ** 2207 ** The main rollback journal uses checksums - the statement journal does 2208 ** not. 2209 ** 2210 ** If the page number of the page record read from the (sub-)journal file 2211 ** is greater than the current value of Pager.dbSize, then playback is 2212 ** skipped and SQLITE_OK is returned. 2213 ** 2214 ** If pDone is not NULL, then it is a record of pages that have already 2215 ** been played back. If the page at *pOffset has already been played back 2216 ** (if the corresponding pDone bit is set) then skip the playback. 2217 ** Make sure the pDone bit corresponding to the *pOffset page is set 2218 ** prior to returning. 2219 ** 2220 ** If the page record is successfully read from the (sub-)journal file 2221 ** and played back, then SQLITE_OK is returned. If an IO error occurs 2222 ** while reading the record from the (sub-)journal file or while writing 2223 ** to the database file, then the IO error code is returned. If data 2224 ** is successfully read from the (sub-)journal file but appears to be 2225 ** corrupted, SQLITE_DONE is returned. Data is considered corrupted in 2226 ** two circumstances: 2227 ** 2228 ** * If the record page-number is illegal (0 or PAGER_MJ_PGNO), or 2229 ** * If the record is being rolled back from the main journal file 2230 ** and the checksum field does not match the record content. 2231 ** 2232 ** Neither of these two scenarios are possible during a savepoint rollback. 2233 ** 2234 ** If this is a savepoint rollback, then memory may have to be dynamically 2235 ** allocated by this function. If this is the case and an allocation fails, 2236 ** SQLITE_NOMEM is returned. 2237 */ 2238 static int pager_playback_one_page( 2239 Pager *pPager, /* The pager being played back */ 2240 i64 *pOffset, /* Offset of record to playback */ 2241 Bitvec *pDone, /* Bitvec of pages already played back */ 2242 int isMainJrnl, /* 1 -> main journal. 0 -> sub-journal. */ 2243 int isSavepnt /* True for a savepoint rollback */ 2244 ){ 2245 int rc; 2246 PgHdr *pPg; /* An existing page in the cache */ 2247 Pgno pgno; /* The page number of a page in journal */ 2248 u32 cksum; /* Checksum used for sanity checking */ 2249 char *aData; /* Temporary storage for the page */ 2250 sqlite3_file *jfd; /* The file descriptor for the journal file */ 2251 int isSynced; /* True if journal page is synced */ 2252 2253 assert( (isMainJrnl&~1)==0 ); /* isMainJrnl is 0 or 1 */ 2254 assert( (isSavepnt&~1)==0 ); /* isSavepnt is 0 or 1 */ 2255 assert( isMainJrnl || pDone ); /* pDone always used on sub-journals */ 2256 assert( isSavepnt || pDone==0 ); /* pDone never used on non-savepoint */ 2257 2258 aData = pPager->pTmpSpace; 2259 assert( aData ); /* Temp storage must have already been allocated */ 2260 assert( pagerUseWal(pPager)==0 || (!isMainJrnl && isSavepnt) ); 2261 2262 /* Either the state is greater than PAGER_WRITER_CACHEMOD (a transaction 2263 ** or savepoint rollback done at the request of the caller) or this is 2264 ** a hot-journal rollback. If it is a hot-journal rollback, the pager 2265 ** is in state OPEN and holds an EXCLUSIVE lock. Hot-journal rollback 2266 ** only reads from the main journal, not the sub-journal. 2267 */ 2268 assert( pPager->eState>=PAGER_WRITER_CACHEMOD 2269 || (pPager->eState==PAGER_OPEN && pPager->eLock==EXCLUSIVE_LOCK) 2270 ); 2271 assert( pPager->eState>=PAGER_WRITER_CACHEMOD || isMainJrnl ); 2272 2273 /* Read the page number and page data from the journal or sub-journal 2274 ** file. Return an error code to the caller if an IO error occurs. 2275 */ 2276 jfd = isMainJrnl ? pPager->jfd : pPager->sjfd; 2277 rc = read32bits(jfd, *pOffset, &pgno); 2278 if( rc!=SQLITE_OK ) return rc; 2279 rc = sqlite3OsRead(jfd, (u8*)aData, pPager->pageSize, (*pOffset)+4); 2280 if( rc!=SQLITE_OK ) return rc; 2281 *pOffset += pPager->pageSize + 4 + isMainJrnl*4; 2282 2283 /* Sanity checking on the page. This is more important that I originally 2284 ** thought. If a power failure occurs while the journal is being written, 2285 ** it could cause invalid data to be written into the journal. We need to 2286 ** detect this invalid data (with high probability) and ignore it. 2287 */ 2288 if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ 2289 assert( !isSavepnt ); 2290 return SQLITE_DONE; 2291 } 2292 if( pgno>(Pgno)pPager->dbSize || sqlite3BitvecTest(pDone, pgno) ){ 2293 return SQLITE_OK; 2294 } 2295 if( isMainJrnl ){ 2296 rc = read32bits(jfd, (*pOffset)-4, &cksum); 2297 if( rc ) return rc; 2298 if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){ 2299 return SQLITE_DONE; 2300 } 2301 } 2302 2303 /* If this page has already been played back before during the current 2304 ** rollback, then don't bother to play it back again. 2305 */ 2306 if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){ 2307 return rc; 2308 } 2309 2310 /* When playing back page 1, restore the nReserve setting 2311 */ 2312 if( pgno==1 && pPager->nReserve!=((u8*)aData)[20] ){ 2313 pPager->nReserve = ((u8*)aData)[20]; 2314 } 2315 2316 /* If the pager is in CACHEMOD state, then there must be a copy of this 2317 ** page in the pager cache. In this case just update the pager cache, 2318 ** not the database file. The page is left marked dirty in this case. 2319 ** 2320 ** An exception to the above rule: If the database is in no-sync mode 2321 ** and a page is moved during an incremental vacuum then the page may 2322 ** not be in the pager cache. Later: if a malloc() or IO error occurs 2323 ** during a Movepage() call, then the page may not be in the cache 2324 ** either. So the condition described in the above paragraph is not 2325 ** assert()able. 2326 ** 2327 ** If in WRITER_DBMOD, WRITER_FINISHED or OPEN state, then we update the 2328 ** pager cache if it exists and the main file. The page is then marked 2329 ** not dirty. Since this code is only executed in PAGER_OPEN state for 2330 ** a hot-journal rollback, it is guaranteed that the page-cache is empty 2331 ** if the pager is in OPEN state. 2332 ** 2333 ** Ticket #1171: The statement journal might contain page content that is 2334 ** different from the page content at the start of the transaction. 2335 ** This occurs when a page is changed prior to the start of a statement 2336 ** then changed again within the statement. When rolling back such a 2337 ** statement we must not write to the original database unless we know 2338 ** for certain that original page contents are synced into the main rollback 2339 ** journal. Otherwise, a power loss might leave modified data in the 2340 ** database file without an entry in the rollback journal that can 2341 ** restore the database to its original form. Two conditions must be 2342 ** met before writing to the database files. (1) the database must be 2343 ** locked. (2) we know that the original page content is fully synced 2344 ** in the main journal either because the page is not in cache or else 2345 ** the page is marked as needSync==0. 2346 ** 2347 ** 2008-04-14: When attempting to vacuum a corrupt database file, it 2348 ** is possible to fail a statement on a database that does not yet exist. 2349 ** Do not attempt to write if database file has never been opened. 2350 */ 2351 if( pagerUseWal(pPager) ){ 2352 pPg = 0; 2353 }else{ 2354 pPg = sqlite3PagerLookup(pPager, pgno); 2355 } 2356 assert( pPg || !MEMDB ); 2357 assert( pPager->eState!=PAGER_OPEN || pPg==0 || pPager->tempFile ); 2358 PAGERTRACE(("PLAYBACK %d page %d hash(%08x) %s\n", 2359 PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, (u8*)aData), 2360 (isMainJrnl?"main-journal":"sub-journal") 2361 )); 2362 if( isMainJrnl ){ 2363 isSynced = pPager->noSync || (*pOffset <= pPager->journalHdr); 2364 }else{ 2365 isSynced = (pPg==0 || 0==(pPg->flags & PGHDR_NEED_SYNC)); 2366 } 2367 if( isOpen(pPager->fd) 2368 && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) 2369 && isSynced 2370 ){ 2371 i64 ofst = (pgno-1)*(i64)pPager->pageSize; 2372 testcase( !isSavepnt && pPg!=0 && (pPg->flags&PGHDR_NEED_SYNC)!=0 ); 2373 assert( !pagerUseWal(pPager) ); 2374 2375 /* Write the data read from the journal back into the database file. 2376 ** This is usually safe even for an encrypted database - as the data 2377 ** was encrypted before it was written to the journal file. The exception 2378 ** is if the data was just read from an in-memory sub-journal. In that 2379 ** case it must be encrypted here before it is copied into the database 2380 ** file. */ 2381 rc = sqlite3OsWrite(pPager->fd, (u8 *)aData, pPager->pageSize, ofst); 2382 2383 if( pgno>pPager->dbFileSize ){ 2384 pPager->dbFileSize = pgno; 2385 } 2386 if( pPager->pBackup ){ 2387 sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData); 2388 } 2389 }else if( !isMainJrnl && pPg==0 ){ 2390 /* If this is a rollback of a savepoint and data was not written to 2391 ** the database and the page is not in-memory, there is a potential 2392 ** problem. When the page is next fetched by the b-tree layer, it 2393 ** will be read from the database file, which may or may not be 2394 ** current. 2395 ** 2396 ** There are a couple of different ways this can happen. All are quite 2397 ** obscure. When running in synchronous mode, this can only happen 2398 ** if the page is on the free-list at the start of the transaction, then 2399 ** populated, then moved using sqlite3PagerMovepage(). 2400 ** 2401 ** The solution is to add an in-memory page to the cache containing 2402 ** the data just read from the sub-journal. Mark the page as dirty 2403 ** and if the pager requires a journal-sync, then mark the page as 2404 ** requiring a journal-sync before it is written. 2405 */ 2406 assert( isSavepnt ); 2407 assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)==0 ); 2408 pPager->doNotSpill |= SPILLFLAG_ROLLBACK; 2409 rc = sqlite3PagerGet(pPager, pgno, &pPg, 1); 2410 assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)!=0 ); 2411 pPager->doNotSpill &= ~SPILLFLAG_ROLLBACK; 2412 if( rc!=SQLITE_OK ) return rc; 2413 sqlite3PcacheMakeDirty(pPg); 2414 } 2415 if( pPg ){ 2416 /* No page should ever be explicitly rolled back that is in use, except 2417 ** for page 1 which is held in use in order to keep the lock on the 2418 ** database active. However such a page may be rolled back as a result 2419 ** of an internal error resulting in an automatic call to 2420 ** sqlite3PagerRollback(). 2421 */ 2422 void *pData; 2423 pData = pPg->pData; 2424 memcpy(pData, (u8*)aData, pPager->pageSize); 2425 pPager->xReiniter(pPg); 2426 /* It used to be that sqlite3PcacheMakeClean(pPg) was called here. But 2427 ** that call was dangerous and had no detectable benefit since the cache 2428 ** is normally cleaned by sqlite3PcacheCleanAll() after rollback and so 2429 ** has been removed. */ 2430 pager_set_pagehash(pPg); 2431 2432 /* If this was page 1, then restore the value of Pager.dbFileVers. 2433 ** Do this before any decoding. */ 2434 if( pgno==1 ){ 2435 memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers)); 2436 } 2437 sqlite3PcacheRelease(pPg); 2438 } 2439 return rc; 2440 } 2441 2442 /* 2443 ** Parameter zMaster is the name of a master journal file. A single journal 2444 ** file that referred to the master journal file has just been rolled back. 2445 ** This routine checks if it is possible to delete the master journal file, 2446 ** and does so if it is. 2447 ** 2448 ** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not 2449 ** available for use within this function. 2450 ** 2451 ** When a master journal file is created, it is populated with the names 2452 ** of all of its child journals, one after another, formatted as utf-8 2453 ** encoded text. The end of each child journal file is marked with a 2454 ** nul-terminator byte (0x00). i.e. the entire contents of a master journal 2455 ** file for a transaction involving two databases might be: 2456 ** 2457 ** "/home/bill/a.db-journal\x00/home/bill/b.db-journal\x00" 2458 ** 2459 ** A master journal file may only be deleted once all of its child 2460 ** journals have been rolled back. 2461 ** 2462 ** This function reads the contents of the master-journal file into 2463 ** memory and loops through each of the child journal names. For 2464 ** each child journal, it checks if: 2465 ** 2466 ** * if the child journal exists, and if so 2467 ** * if the child journal contains a reference to master journal 2468 ** file zMaster 2469 ** 2470 ** If a child journal can be found that matches both of the criteria 2471 ** above, this function returns without doing anything. Otherwise, if 2472 ** no such child journal can be found, file zMaster is deleted from 2473 ** the file-system using sqlite3OsDelete(). 2474 ** 2475 ** If an IO error within this function, an error code is returned. This 2476 ** function allocates memory by calling sqlite3Malloc(). If an allocation 2477 ** fails, SQLITE_NOMEM is returned. Otherwise, if no IO or malloc errors 2478 ** occur, SQLITE_OK is returned. 2479 ** 2480 ** TODO: This function allocates a single block of memory to load 2481 ** the entire contents of the master journal file. This could be 2482 ** a couple of kilobytes or so - potentially larger than the page 2483 ** size. 2484 */ 2485 static int pager_delmaster(Pager *pPager, const char *zMaster){ 2486 sqlite3_vfs *pVfs = pPager->pVfs; 2487 int rc; /* Return code */ 2488 sqlite3_file *pMaster; /* Malloc'd master-journal file descriptor */ 2489 sqlite3_file *pJournal; /* Malloc'd child-journal file descriptor */ 2490 char *zMasterJournal = 0; /* Contents of master journal file */ 2491 i64 nMasterJournal; /* Size of master journal file */ 2492 char *zJournal; /* Pointer to one journal within MJ file */ 2493 char *zMasterPtr; /* Space to hold MJ filename from a journal file */ 2494 int nMasterPtr; /* Amount of space allocated to zMasterPtr[] */ 2495 2496 /* Allocate space for both the pJournal and pMaster file descriptors. 2497 ** If successful, open the master journal file for reading. 2498 */ 2499 pMaster = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile * 2); 2500 pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile); 2501 if( !pMaster ){ 2502 rc = SQLITE_NOMEM_BKPT; 2503 }else{ 2504 const int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL); 2505 rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0); 2506 } 2507 if( rc!=SQLITE_OK ) goto delmaster_out; 2508 2509 /* Load the entire master journal file into space obtained from 2510 ** sqlite3_malloc() and pointed to by zMasterJournal. Also obtain 2511 ** sufficient space (in zMasterPtr) to hold the names of master 2512 ** journal files extracted from regular rollback-journals. 2513 */ 2514 rc = sqlite3OsFileSize(pMaster, &nMasterJournal); 2515 if( rc!=SQLITE_OK ) goto delmaster_out; 2516 nMasterPtr = pVfs->mxPathname+1; 2517 zMasterJournal = sqlite3Malloc(nMasterJournal + nMasterPtr + 2); 2518 if( !zMasterJournal ){ 2519 rc = SQLITE_NOMEM_BKPT; 2520 goto delmaster_out; 2521 } 2522 zMasterPtr = &zMasterJournal[nMasterJournal+2]; 2523 rc = sqlite3OsRead(pMaster, zMasterJournal, (int)nMasterJournal, 0); 2524 if( rc!=SQLITE_OK ) goto delmaster_out; 2525 zMasterJournal[nMasterJournal] = 0; 2526 zMasterJournal[nMasterJournal+1] = 0; 2527 2528 zJournal = zMasterJournal; 2529 while( (zJournal-zMasterJournal)<nMasterJournal ){ 2530 int exists; 2531 rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS, &exists); 2532 if( rc!=SQLITE_OK ){ 2533 goto delmaster_out; 2534 } 2535 if( exists ){ 2536 /* One of the journals pointed to by the master journal exists. 2537 ** Open it and check if it points at the master journal. If 2538 ** so, return without deleting the master journal file. 2539 ** NB: zJournal is really a MAIN_JOURNAL. But call it a 2540 ** MASTER_JOURNAL here so that the VFS will not send the zJournal 2541 ** name into sqlite3_database_file_object(). 2542 */ 2543 int c; 2544 int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL); 2545 rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0); 2546 if( rc!=SQLITE_OK ){ 2547 goto delmaster_out; 2548 } 2549 2550 rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr); 2551 sqlite3OsClose(pJournal); 2552 if( rc!=SQLITE_OK ){ 2553 goto delmaster_out; 2554 } 2555 2556 c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0; 2557 if( c ){ 2558 /* We have a match. Do not delete the master journal file. */ 2559 goto delmaster_out; 2560 } 2561 } 2562 zJournal += (sqlite3Strlen30(zJournal)+1); 2563 } 2564 2565 sqlite3OsClose(pMaster); 2566 rc = sqlite3OsDelete(pVfs, zMaster, 0); 2567 2568 delmaster_out: 2569 sqlite3_free(zMasterJournal); 2570 if( pMaster ){ 2571 sqlite3OsClose(pMaster); 2572 assert( !isOpen(pJournal) ); 2573 sqlite3_free(pMaster); 2574 } 2575 return rc; 2576 } 2577 2578 2579 /* 2580 ** This function is used to change the actual size of the database 2581 ** file in the file-system. This only happens when committing a transaction, 2582 ** or rolling back a transaction (including rolling back a hot-journal). 2583 ** 2584 ** If the main database file is not open, or the pager is not in either 2585 ** DBMOD or OPEN state, this function is a no-op. Otherwise, the size 2586 ** of the file is changed to nPage pages (nPage*pPager->pageSize bytes). 2587 ** If the file on disk is currently larger than nPage pages, then use the VFS 2588 ** xTruncate() method to truncate it. 2589 ** 2590 ** Or, it might be the case that the file on disk is smaller than 2591 ** nPage pages. Some operating system implementations can get confused if 2592 ** you try to truncate a file to some size that is larger than it 2593 ** currently is, so detect this case and write a single zero byte to 2594 ** the end of the new file instead. 2595 ** 2596 ** If successful, return SQLITE_OK. If an IO error occurs while modifying 2597 ** the database file, return the error code to the caller. 2598 */ 2599 static int pager_truncate(Pager *pPager, Pgno nPage){ 2600 int rc = SQLITE_OK; 2601 assert( pPager->eState!=PAGER_ERROR ); 2602 assert( pPager->eState!=PAGER_READER ); 2603 2604 if( isOpen(pPager->fd) 2605 && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) 2606 ){ 2607 i64 currentSize, newSize; 2608 int szPage = pPager->pageSize; 2609 assert( pPager->eLock==EXCLUSIVE_LOCK ); 2610 /* TODO: Is it safe to use Pager.dbFileSize here? */ 2611 rc = sqlite3OsFileSize(pPager->fd, ¤tSize); 2612 newSize = szPage*(i64)nPage; 2613 if( rc==SQLITE_OK && currentSize!=newSize ){ 2614 if( currentSize>newSize ){ 2615 rc = sqlite3OsTruncate(pPager->fd, newSize); 2616 }else if( (currentSize+szPage)<=newSize ){ 2617 char *pTmp = pPager->pTmpSpace; 2618 memset(pTmp, 0, szPage); 2619 testcase( (newSize-szPage) == currentSize ); 2620 testcase( (newSize-szPage) > currentSize ); 2621 rc = sqlite3OsWrite(pPager->fd, pTmp, szPage, newSize-szPage); 2622 } 2623 if( rc==SQLITE_OK ){ 2624 pPager->dbFileSize = nPage; 2625 } 2626 } 2627 } 2628 return rc; 2629 } 2630 2631 /* 2632 ** Return a sanitized version of the sector-size of OS file pFile. The 2633 ** return value is guaranteed to lie between 32 and MAX_SECTOR_SIZE. 2634 */ 2635 int sqlite3SectorSize(sqlite3_file *pFile){ 2636 int iRet = sqlite3OsSectorSize(pFile); 2637 if( iRet<32 ){ 2638 iRet = 512; 2639 }else if( iRet>MAX_SECTOR_SIZE ){ 2640 assert( MAX_SECTOR_SIZE>=512 ); 2641 iRet = MAX_SECTOR_SIZE; 2642 } 2643 return iRet; 2644 } 2645 2646 /* 2647 ** Set the value of the Pager.sectorSize variable for the given 2648 ** pager based on the value returned by the xSectorSize method 2649 ** of the open database file. The sector size will be used 2650 ** to determine the size and alignment of journal header and 2651 ** master journal pointers within created journal files. 2652 ** 2653 ** For temporary files the effective sector size is always 512 bytes. 2654 ** 2655 ** Otherwise, for non-temporary files, the effective sector size is 2656 ** the value returned by the xSectorSize() method rounded up to 32 if 2657 ** it is less than 32, or rounded down to MAX_SECTOR_SIZE if it 2658 ** is greater than MAX_SECTOR_SIZE. 2659 ** 2660 ** If the file has the SQLITE_IOCAP_POWERSAFE_OVERWRITE property, then set 2661 ** the effective sector size to its minimum value (512). The purpose of 2662 ** pPager->sectorSize is to define the "blast radius" of bytes that 2663 ** might change if a crash occurs while writing to a single byte in 2664 ** that range. But with POWERSAFE_OVERWRITE, the blast radius is zero 2665 ** (that is what POWERSAFE_OVERWRITE means), so we minimize the sector 2666 ** size. For backwards compatibility of the rollback journal file format, 2667 ** we cannot reduce the effective sector size below 512. 2668 */ 2669 static void setSectorSize(Pager *pPager){ 2670 assert( isOpen(pPager->fd) || pPager->tempFile ); 2671 2672 if( pPager->tempFile 2673 || (sqlite3OsDeviceCharacteristics(pPager->fd) & 2674 SQLITE_IOCAP_POWERSAFE_OVERWRITE)!=0 2675 ){ 2676 /* Sector size doesn't matter for temporary files. Also, the file 2677 ** may not have been opened yet, in which case the OsSectorSize() 2678 ** call will segfault. */ 2679 pPager->sectorSize = 512; 2680 }else{ 2681 pPager->sectorSize = sqlite3SectorSize(pPager->fd); 2682 } 2683 } 2684 2685 /* 2686 ** Playback the journal and thus restore the database file to 2687 ** the state it was in before we started making changes. 2688 ** 2689 ** The journal file format is as follows: 2690 ** 2691 ** (1) 8 byte prefix. A copy of aJournalMagic[]. 2692 ** (2) 4 byte big-endian integer which is the number of valid page records 2693 ** in the journal. If this value is 0xffffffff, then compute the 2694 ** number of page records from the journal size. 2695 ** (3) 4 byte big-endian integer which is the initial value for the 2696 ** sanity checksum. 2697 ** (4) 4 byte integer which is the number of pages to truncate the 2698 ** database to during a rollback. 2699 ** (5) 4 byte big-endian integer which is the sector size. The header 2700 ** is this many bytes in size. 2701 ** (6) 4 byte big-endian integer which is the page size. 2702 ** (7) zero padding out to the next sector size. 2703 ** (8) Zero or more pages instances, each as follows: 2704 ** + 4 byte page number. 2705 ** + pPager->pageSize bytes of data. 2706 ** + 4 byte checksum 2707 ** 2708 ** When we speak of the journal header, we mean the first 7 items above. 2709 ** Each entry in the journal is an instance of the 8th item. 2710 ** 2711 ** Call the value from the second bullet "nRec". nRec is the number of 2712 ** valid page entries in the journal. In most cases, you can compute the 2713 ** value of nRec from the size of the journal file. But if a power 2714 ** failure occurred while the journal was being written, it could be the 2715 ** case that the size of the journal file had already been increased but 2716 ** the extra entries had not yet made it safely to disk. In such a case, 2717 ** the value of nRec computed from the file size would be too large. For 2718 ** that reason, we always use the nRec value in the header. 2719 ** 2720 ** If the nRec value is 0xffffffff it means that nRec should be computed 2721 ** from the file size. This value is used when the user selects the 2722 ** no-sync option for the journal. A power failure could lead to corruption 2723 ** in this case. But for things like temporary table (which will be 2724 ** deleted when the power is restored) we don't care. 2725 ** 2726 ** If the file opened as the journal file is not a well-formed 2727 ** journal file then all pages up to the first corrupted page are rolled 2728 ** back (or no pages if the journal header is corrupted). The journal file 2729 ** is then deleted and SQLITE_OK returned, just as if no corruption had 2730 ** been encountered. 2731 ** 2732 ** If an I/O or malloc() error occurs, the journal-file is not deleted 2733 ** and an error code is returned. 2734 ** 2735 ** The isHot parameter indicates that we are trying to rollback a journal 2736 ** that might be a hot journal. Or, it could be that the journal is 2737 ** preserved because of JOURNALMODE_PERSIST or JOURNALMODE_TRUNCATE. 2738 ** If the journal really is hot, reset the pager cache prior rolling 2739 ** back any content. If the journal is merely persistent, no reset is 2740 ** needed. 2741 */ 2742 static int pager_playback(Pager *pPager, int isHot){ 2743 sqlite3_vfs *pVfs = pPager->pVfs; 2744 i64 szJ; /* Size of the journal file in bytes */ 2745 u32 nRec; /* Number of Records in the journal */ 2746 u32 u; /* Unsigned loop counter */ 2747 Pgno mxPg = 0; /* Size of the original file in pages */ 2748 int rc; /* Result code of a subroutine */ 2749 int res = 1; /* Value returned by sqlite3OsAccess() */ 2750 char *zMaster = 0; /* Name of master journal file if any */ 2751 int needPagerReset; /* True to reset page prior to first page rollback */ 2752 int nPlayback = 0; /* Total number of pages restored from journal */ 2753 u32 savedPageSize = pPager->pageSize; 2754 2755 /* Figure out how many records are in the journal. Abort early if 2756 ** the journal is empty. 2757 */ 2758 assert( isOpen(pPager->jfd) ); 2759 rc = sqlite3OsFileSize(pPager->jfd, &szJ); 2760 if( rc!=SQLITE_OK ){ 2761 goto end_playback; 2762 } 2763 2764 /* Read the master journal name from the journal, if it is present. 2765 ** If a master journal file name is specified, but the file is not 2766 ** present on disk, then the journal is not hot and does not need to be 2767 ** played back. 2768 ** 2769 ** TODO: Technically the following is an error because it assumes that 2770 ** buffer Pager.pTmpSpace is (mxPathname+1) bytes or larger. i.e. that 2771 ** (pPager->pageSize >= pPager->pVfs->mxPathname+1). Using os_unix.c, 2772 ** mxPathname is 512, which is the same as the minimum allowable value 2773 ** for pageSize. 2774 */ 2775 zMaster = pPager->pTmpSpace; 2776 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); 2777 if( rc==SQLITE_OK && zMaster[0] ){ 2778 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2779 } 2780 zMaster = 0; 2781 if( rc!=SQLITE_OK || !res ){ 2782 goto end_playback; 2783 } 2784 pPager->journalOff = 0; 2785 needPagerReset = isHot; 2786 2787 /* This loop terminates either when a readJournalHdr() or 2788 ** pager_playback_one_page() call returns SQLITE_DONE or an IO error 2789 ** occurs. 2790 */ 2791 while( 1 ){ 2792 /* Read the next journal header from the journal file. If there are 2793 ** not enough bytes left in the journal file for a complete header, or 2794 ** it is corrupted, then a process must have failed while writing it. 2795 ** This indicates nothing more needs to be rolled back. 2796 */ 2797 rc = readJournalHdr(pPager, isHot, szJ, &nRec, &mxPg); 2798 if( rc!=SQLITE_OK ){ 2799 if( rc==SQLITE_DONE ){ 2800 rc = SQLITE_OK; 2801 } 2802 goto end_playback; 2803 } 2804 2805 /* If nRec is 0xffffffff, then this journal was created by a process 2806 ** working in no-sync mode. This means that the rest of the journal 2807 ** file consists of pages, there are no more journal headers. Compute 2808 ** the value of nRec based on this assumption. 2809 */ 2810 if( nRec==0xffffffff ){ 2811 assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ); 2812 nRec = (int)((szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager)); 2813 } 2814 2815 /* If nRec is 0 and this rollback is of a transaction created by this 2816 ** process and if this is the final header in the journal, then it means 2817 ** that this part of the journal was being filled but has not yet been 2818 ** synced to disk. Compute the number of pages based on the remaining 2819 ** size of the file. 2820 ** 2821 ** The third term of the test was added to fix ticket #2565. 2822 ** When rolling back a hot journal, nRec==0 always means that the next 2823 ** chunk of the journal contains zero pages to be rolled back. But 2824 ** when doing a ROLLBACK and the nRec==0 chunk is the last chunk in 2825 ** the journal, it means that the journal might contain additional 2826 ** pages that need to be rolled back and that the number of pages 2827 ** should be computed based on the journal file size. 2828 */ 2829 if( nRec==0 && !isHot && 2830 pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){ 2831 nRec = (int)((szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager)); 2832 } 2833 2834 /* If this is the first header read from the journal, truncate the 2835 ** database file back to its original size. 2836 */ 2837 if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){ 2838 rc = pager_truncate(pPager, mxPg); 2839 if( rc!=SQLITE_OK ){ 2840 goto end_playback; 2841 } 2842 pPager->dbSize = mxPg; 2843 } 2844 2845 /* Copy original pages out of the journal and back into the 2846 ** database file and/or page cache. 2847 */ 2848 for(u=0; u<nRec; u++){ 2849 if( needPagerReset ){ 2850 pager_reset(pPager); 2851 needPagerReset = 0; 2852 } 2853 rc = pager_playback_one_page(pPager,&pPager->journalOff,0,1,0); 2854 if( rc==SQLITE_OK ){ 2855 nPlayback++; 2856 }else{ 2857 if( rc==SQLITE_DONE ){ 2858 pPager->journalOff = szJ; 2859 break; 2860 }else if( rc==SQLITE_IOERR_SHORT_READ ){ 2861 /* If the journal has been truncated, simply stop reading and 2862 ** processing the journal. This might happen if the journal was 2863 ** not completely written and synced prior to a crash. In that 2864 ** case, the database should have never been written in the 2865 ** first place so it is OK to simply abandon the rollback. */ 2866 rc = SQLITE_OK; 2867 goto end_playback; 2868 }else{ 2869 /* If we are unable to rollback, quit and return the error 2870 ** code. This will cause the pager to enter the error state 2871 ** so that no further harm will be done. Perhaps the next 2872 ** process to come along will be able to rollback the database. 2873 */ 2874 goto end_playback; 2875 } 2876 } 2877 } 2878 } 2879 /*NOTREACHED*/ 2880 assert( 0 ); 2881 2882 end_playback: 2883 if( rc==SQLITE_OK ){ 2884 rc = sqlite3PagerSetPagesize(pPager, &savedPageSize, -1); 2885 } 2886 /* Following a rollback, the database file should be back in its original 2887 ** state prior to the start of the transaction, so invoke the 2888 ** SQLITE_FCNTL_DB_UNCHANGED file-control method to disable the 2889 ** assertion that the transaction counter was modified. 2890 */ 2891 #ifdef SQLITE_DEBUG 2892 sqlite3OsFileControlHint(pPager->fd,SQLITE_FCNTL_DB_UNCHANGED,0); 2893 #endif 2894 2895 /* If this playback is happening automatically as a result of an IO or 2896 ** malloc error that occurred after the change-counter was updated but 2897 ** before the transaction was committed, then the change-counter 2898 ** modification may just have been reverted. If this happens in exclusive 2899 ** mode, then subsequent transactions performed by the connection will not 2900 ** update the change-counter at all. This may lead to cache inconsistency 2901 ** problems for other processes at some point in the future. So, just 2902 ** in case this has happened, clear the changeCountDone flag now. 2903 */ 2904 pPager->changeCountDone = pPager->tempFile; 2905 2906 if( rc==SQLITE_OK ){ 2907 zMaster = pPager->pTmpSpace; 2908 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); 2909 testcase( rc!=SQLITE_OK ); 2910 } 2911 if( rc==SQLITE_OK 2912 && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) 2913 ){ 2914 rc = sqlite3PagerSync(pPager, 0); 2915 } 2916 if( rc==SQLITE_OK ){ 2917 rc = pager_end_transaction(pPager, zMaster[0]!='\0', 0); 2918 testcase( rc!=SQLITE_OK ); 2919 } 2920 if( rc==SQLITE_OK && zMaster[0] && res ){ 2921 /* If there was a master journal and this routine will return success, 2922 ** see if it is possible to delete the master journal. 2923 */ 2924 rc = pager_delmaster(pPager, zMaster); 2925 testcase( rc!=SQLITE_OK ); 2926 } 2927 if( isHot && nPlayback ){ 2928 sqlite3_log(SQLITE_NOTICE_RECOVER_ROLLBACK, "recovered %d pages from %s", 2929 nPlayback, pPager->zJournal); 2930 } 2931 2932 /* The Pager.sectorSize variable may have been updated while rolling 2933 ** back a journal created by a process with a different sector size 2934 ** value. Reset it to the correct value for this process. 2935 */ 2936 setSectorSize(pPager); 2937 return rc; 2938 } 2939 2940 2941 /* 2942 ** Read the content for page pPg out of the database file (or out of 2943 ** the WAL if that is where the most recent copy if found) into 2944 ** pPg->pData. A shared lock or greater must be held on the database 2945 ** file before this function is called. 2946 ** 2947 ** If page 1 is read, then the value of Pager.dbFileVers[] is set to 2948 ** the value read from the database file. 2949 ** 2950 ** If an IO error occurs, then the IO error is returned to the caller. 2951 ** Otherwise, SQLITE_OK is returned. 2952 */ 2953 static int readDbPage(PgHdr *pPg){ 2954 Pager *pPager = pPg->pPager; /* Pager object associated with page pPg */ 2955 int rc = SQLITE_OK; /* Return code */ 2956 2957 #ifndef SQLITE_OMIT_WAL 2958 u32 iFrame = 0; /* Frame of WAL containing pgno */ 2959 2960 assert( pPager->eState>=PAGER_READER && !MEMDB ); 2961 assert( isOpen(pPager->fd) ); 2962 2963 if( pagerUseWal(pPager) ){ 2964 rc = sqlite3WalFindFrame(pPager->pWal, pPg->pgno, &iFrame); 2965 if( rc ) return rc; 2966 } 2967 if( iFrame ){ 2968 rc = sqlite3WalReadFrame(pPager->pWal, iFrame,pPager->pageSize,pPg->pData); 2969 }else 2970 #endif 2971 { 2972 i64 iOffset = (pPg->pgno-1)*(i64)pPager->pageSize; 2973 rc = sqlite3OsRead(pPager->fd, pPg->pData, pPager->pageSize, iOffset); 2974 if( rc==SQLITE_IOERR_SHORT_READ ){ 2975 rc = SQLITE_OK; 2976 } 2977 } 2978 2979 if( pPg->pgno==1 ){ 2980 if( rc ){ 2981 /* If the read is unsuccessful, set the dbFileVers[] to something 2982 ** that will never be a valid file version. dbFileVers[] is a copy 2983 ** of bytes 24..39 of the database. Bytes 28..31 should always be 2984 ** zero or the size of the database in page. Bytes 32..35 and 35..39 2985 ** should be page numbers which are never 0xffffffff. So filling 2986 ** pPager->dbFileVers[] with all 0xff bytes should suffice. 2987 ** 2988 ** For an encrypted database, the situation is more complex: bytes 2989 ** 24..39 of the database are white noise. But the probability of 2990 ** white noise equaling 16 bytes of 0xff is vanishingly small so 2991 ** we should still be ok. 2992 */ 2993 memset(pPager->dbFileVers, 0xff, sizeof(pPager->dbFileVers)); 2994 }else{ 2995 u8 *dbFileVers = &((u8*)pPg->pData)[24]; 2996 memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers)); 2997 } 2998 } 2999 PAGER_INCR(sqlite3_pager_readdb_count); 3000 PAGER_INCR(pPager->nRead); 3001 IOTRACE(("PGIN %p %d\n", pPager, pPg->pgno)); 3002 PAGERTRACE(("FETCH %d page %d hash(%08x)\n", 3003 PAGERID(pPager), pPg->pgno, pager_pagehash(pPg))); 3004 3005 return rc; 3006 } 3007 3008 /* 3009 ** Update the value of the change-counter at offsets 24 and 92 in 3010 ** the header and the sqlite version number at offset 96. 3011 ** 3012 ** This is an unconditional update. See also the pager_incr_changecounter() 3013 ** routine which only updates the change-counter if the update is actually 3014 ** needed, as determined by the pPager->changeCountDone state variable. 3015 */ 3016 static void pager_write_changecounter(PgHdr *pPg){ 3017 u32 change_counter; 3018 3019 /* Increment the value just read and write it back to byte 24. */ 3020 change_counter = sqlite3Get4byte((u8*)pPg->pPager->dbFileVers)+1; 3021 put32bits(((char*)pPg->pData)+24, change_counter); 3022 3023 /* Also store the SQLite version number in bytes 96..99 and in 3024 ** bytes 92..95 store the change counter for which the version number 3025 ** is valid. */ 3026 put32bits(((char*)pPg->pData)+92, change_counter); 3027 put32bits(((char*)pPg->pData)+96, SQLITE_VERSION_NUMBER); 3028 } 3029 3030 #ifndef SQLITE_OMIT_WAL 3031 /* 3032 ** This function is invoked once for each page that has already been 3033 ** written into the log file when a WAL transaction is rolled back. 3034 ** Parameter iPg is the page number of said page. The pCtx argument 3035 ** is actually a pointer to the Pager structure. 3036 ** 3037 ** If page iPg is present in the cache, and has no outstanding references, 3038 ** it is discarded. Otherwise, if there are one or more outstanding 3039 ** references, the page content is reloaded from the database. If the 3040 ** attempt to reload content from the database is required and fails, 3041 ** return an SQLite error code. Otherwise, SQLITE_OK. 3042 */ 3043 static int pagerUndoCallback(void *pCtx, Pgno iPg){ 3044 int rc = SQLITE_OK; 3045 Pager *pPager = (Pager *)pCtx; 3046 PgHdr *pPg; 3047 3048 assert( pagerUseWal(pPager) ); 3049 pPg = sqlite3PagerLookup(pPager, iPg); 3050 if( pPg ){ 3051 if( sqlite3PcachePageRefcount(pPg)==1 ){ 3052 sqlite3PcacheDrop(pPg); 3053 }else{ 3054 rc = readDbPage(pPg); 3055 if( rc==SQLITE_OK ){ 3056 pPager->xReiniter(pPg); 3057 } 3058 sqlite3PagerUnrefNotNull(pPg); 3059 } 3060 } 3061 3062 /* Normally, if a transaction is rolled back, any backup processes are 3063 ** updated as data is copied out of the rollback journal and into the 3064 ** database. This is not generally possible with a WAL database, as 3065 ** rollback involves simply truncating the log file. Therefore, if one 3066 ** or more frames have already been written to the log (and therefore 3067 ** also copied into the backup databases) as part of this transaction, 3068 ** the backups must be restarted. 3069 */ 3070 sqlite3BackupRestart(pPager->pBackup); 3071 3072 return rc; 3073 } 3074 3075 /* 3076 ** This function is called to rollback a transaction on a WAL database. 3077 */ 3078 static int pagerRollbackWal(Pager *pPager){ 3079 int rc; /* Return Code */ 3080 PgHdr *pList; /* List of dirty pages to revert */ 3081 3082 /* For all pages in the cache that are currently dirty or have already 3083 ** been written (but not committed) to the log file, do one of the 3084 ** following: 3085 ** 3086 ** + Discard the cached page (if refcount==0), or 3087 ** + Reload page content from the database (if refcount>0). 3088 */ 3089 pPager->dbSize = pPager->dbOrigSize; 3090 rc = sqlite3WalUndo(pPager->pWal, pagerUndoCallback, (void *)pPager); 3091 pList = sqlite3PcacheDirtyList(pPager->pPCache); 3092 while( pList && rc==SQLITE_OK ){ 3093 PgHdr *pNext = pList->pDirty; 3094 rc = pagerUndoCallback((void *)pPager, pList->pgno); 3095 pList = pNext; 3096 } 3097 3098 return rc; 3099 } 3100 3101 /* 3102 ** This function is a wrapper around sqlite3WalFrames(). As well as logging 3103 ** the contents of the list of pages headed by pList (connected by pDirty), 3104 ** this function notifies any active backup processes that the pages have 3105 ** changed. 3106 ** 3107 ** The list of pages passed into this routine is always sorted by page number. 3108 ** Hence, if page 1 appears anywhere on the list, it will be the first page. 3109 */ 3110 static int pagerWalFrames( 3111 Pager *pPager, /* Pager object */ 3112 PgHdr *pList, /* List of frames to log */ 3113 Pgno nTruncate, /* Database size after this commit */ 3114 int isCommit /* True if this is a commit */ 3115 ){ 3116 int rc; /* Return code */ 3117 int nList; /* Number of pages in pList */ 3118 PgHdr *p; /* For looping over pages */ 3119 3120 assert( pPager->pWal ); 3121 assert( pList ); 3122 #ifdef SQLITE_DEBUG 3123 /* Verify that the page list is in accending order */ 3124 for(p=pList; p && p->pDirty; p=p->pDirty){ 3125 assert( p->pgno < p->pDirty->pgno ); 3126 } 3127 #endif 3128 3129 assert( pList->pDirty==0 || isCommit ); 3130 if( isCommit ){ 3131 /* If a WAL transaction is being committed, there is no point in writing 3132 ** any pages with page numbers greater than nTruncate into the WAL file. 3133 ** They will never be read by any client. So remove them from the pDirty 3134 ** list here. */ 3135 PgHdr **ppNext = &pList; 3136 nList = 0; 3137 for(p=pList; (*ppNext = p)!=0; p=p->pDirty){ 3138 if( p->pgno<=nTruncate ){ 3139 ppNext = &p->pDirty; 3140 nList++; 3141 } 3142 } 3143 assert( pList ); 3144 }else{ 3145 nList = 1; 3146 } 3147 pPager->aStat[PAGER_STAT_WRITE] += nList; 3148 3149 if( pList->pgno==1 ) pager_write_changecounter(pList); 3150 rc = sqlite3WalFrames(pPager->pWal, 3151 pPager->pageSize, pList, nTruncate, isCommit, pPager->walSyncFlags 3152 ); 3153 if( rc==SQLITE_OK && pPager->pBackup ){ 3154 for(p=pList; p; p=p->pDirty){ 3155 sqlite3BackupUpdate(pPager->pBackup, p->pgno, (u8 *)p->pData); 3156 } 3157 } 3158 3159 #ifdef SQLITE_CHECK_PAGES 3160 pList = sqlite3PcacheDirtyList(pPager->pPCache); 3161 for(p=pList; p; p=p->pDirty){ 3162 pager_set_pagehash(p); 3163 } 3164 #endif 3165 3166 return rc; 3167 } 3168 3169 /* 3170 ** Begin a read transaction on the WAL. 3171 ** 3172 ** This routine used to be called "pagerOpenSnapshot()" because it essentially 3173 ** makes a snapshot of the database at the current point in time and preserves 3174 ** that snapshot for use by the reader in spite of concurrently changes by 3175 ** other writers or checkpointers. 3176 */ 3177 static int pagerBeginReadTransaction(Pager *pPager){ 3178 int rc; /* Return code */ 3179 int changed = 0; /* True if cache must be reset */ 3180 3181 assert( pagerUseWal(pPager) ); 3182 assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); 3183 3184 /* sqlite3WalEndReadTransaction() was not called for the previous 3185 ** transaction in locking_mode=EXCLUSIVE. So call it now. If we 3186 ** are in locking_mode=NORMAL and EndRead() was previously called, 3187 ** the duplicate call is harmless. 3188 */ 3189 sqlite3WalEndReadTransaction(pPager->pWal); 3190 3191 rc = sqlite3WalBeginReadTransaction(pPager->pWal, &changed); 3192 if( rc!=SQLITE_OK || changed ){ 3193 pager_reset(pPager); 3194 if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0); 3195 } 3196 3197 return rc; 3198 } 3199 #endif 3200 3201 /* 3202 ** This function is called as part of the transition from PAGER_OPEN 3203 ** to PAGER_READER state to determine the size of the database file 3204 ** in pages (assuming the page size currently stored in Pager.pageSize). 3205 ** 3206 ** If no error occurs, SQLITE_OK is returned and the size of the database 3207 ** in pages is stored in *pnPage. Otherwise, an error code (perhaps 3208 ** SQLITE_IOERR_FSTAT) is returned and *pnPage is left unmodified. 3209 */ 3210 static int pagerPagecount(Pager *pPager, Pgno *pnPage){ 3211 Pgno nPage; /* Value to return via *pnPage */ 3212 3213 /* Query the WAL sub-system for the database size. The WalDbsize() 3214 ** function returns zero if the WAL is not open (i.e. Pager.pWal==0), or 3215 ** if the database size is not available. The database size is not 3216 ** available from the WAL sub-system if the log file is empty or 3217 ** contains no valid committed transactions. 3218 */ 3219 assert( pPager->eState==PAGER_OPEN ); 3220 assert( pPager->eLock>=SHARED_LOCK ); 3221 assert( isOpen(pPager->fd) ); 3222 assert( pPager->tempFile==0 ); 3223 nPage = sqlite3WalDbsize(pPager->pWal); 3224 3225 /* If the number of pages in the database is not available from the 3226 ** WAL sub-system, determine the page count based on the size of 3227 ** the database file. If the size of the database file is not an 3228 ** integer multiple of the page-size, round up the result. 3229 */ 3230 if( nPage==0 && ALWAYS(isOpen(pPager->fd)) ){ 3231 i64 n = 0; /* Size of db file in bytes */ 3232 int rc = sqlite3OsFileSize(pPager->fd, &n); 3233 if( rc!=SQLITE_OK ){ 3234 return rc; 3235 } 3236 nPage = (Pgno)((n+pPager->pageSize-1) / pPager->pageSize); 3237 } 3238 3239 /* If the current number of pages in the file is greater than the 3240 ** configured maximum pager number, increase the allowed limit so 3241 ** that the file can be read. 3242 */ 3243 if( nPage>pPager->mxPgno ){ 3244 pPager->mxPgno = (Pgno)nPage; 3245 } 3246 3247 *pnPage = nPage; 3248 return SQLITE_OK; 3249 } 3250 3251 #ifndef SQLITE_OMIT_WAL 3252 /* 3253 ** Check if the *-wal file that corresponds to the database opened by pPager 3254 ** exists if the database is not empy, or verify that the *-wal file does 3255 ** not exist (by deleting it) if the database file is empty. 3256 ** 3257 ** If the database is not empty and the *-wal file exists, open the pager 3258 ** in WAL mode. If the database is empty or if no *-wal file exists and 3259 ** if no error occurs, make sure Pager.journalMode is not set to 3260 ** PAGER_JOURNALMODE_WAL. 3261 ** 3262 ** Return SQLITE_OK or an error code. 3263 ** 3264 ** The caller must hold a SHARED lock on the database file to call this 3265 ** function. Because an EXCLUSIVE lock on the db file is required to delete 3266 ** a WAL on a none-empty database, this ensures there is no race condition 3267 ** between the xAccess() below and an xDelete() being executed by some 3268 ** other connection. 3269 */ 3270 static int pagerOpenWalIfPresent(Pager *pPager){ 3271 int rc = SQLITE_OK; 3272 assert( pPager->eState==PAGER_OPEN ); 3273 assert( pPager->eLock>=SHARED_LOCK ); 3274 3275 if( !pPager->tempFile ){ 3276 int isWal; /* True if WAL file exists */ 3277 rc = sqlite3OsAccess( 3278 pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &isWal 3279 ); 3280 if( rc==SQLITE_OK ){ 3281 if( isWal ){ 3282 Pgno nPage; /* Size of the database file */ 3283 3284 rc = pagerPagecount(pPager, &nPage); 3285 if( rc ) return rc; 3286 if( nPage==0 ){ 3287 rc = sqlite3OsDelete(pPager->pVfs, pPager->zWal, 0); 3288 }else{ 3289 testcase( sqlite3PcachePagecount(pPager->pPCache)==0 ); 3290 rc = sqlite3PagerOpenWal(pPager, 0); 3291 } 3292 }else if( pPager->journalMode==PAGER_JOURNALMODE_WAL ){ 3293 pPager->journalMode = PAGER_JOURNALMODE_DELETE; 3294 } 3295 } 3296 } 3297 return rc; 3298 } 3299 #endif 3300 3301 /* 3302 ** Playback savepoint pSavepoint. Or, if pSavepoint==NULL, then playback 3303 ** the entire master journal file. The case pSavepoint==NULL occurs when 3304 ** a ROLLBACK TO command is invoked on a SAVEPOINT that is a transaction 3305 ** savepoint. 3306 ** 3307 ** When pSavepoint is not NULL (meaning a non-transaction savepoint is 3308 ** being rolled back), then the rollback consists of up to three stages, 3309 ** performed in the order specified: 3310 ** 3311 ** * Pages are played back from the main journal starting at byte 3312 ** offset PagerSavepoint.iOffset and continuing to 3313 ** PagerSavepoint.iHdrOffset, or to the end of the main journal 3314 ** file if PagerSavepoint.iHdrOffset is zero. 3315 ** 3316 ** * If PagerSavepoint.iHdrOffset is not zero, then pages are played 3317 ** back starting from the journal header immediately following 3318 ** PagerSavepoint.iHdrOffset to the end of the main journal file. 3319 ** 3320 ** * Pages are then played back from the sub-journal file, starting 3321 ** with the PagerSavepoint.iSubRec and continuing to the end of 3322 ** the journal file. 3323 ** 3324 ** Throughout the rollback process, each time a page is rolled back, the 3325 ** corresponding bit is set in a bitvec structure (variable pDone in the 3326 ** implementation below). This is used to ensure that a page is only 3327 ** rolled back the first time it is encountered in either journal. 3328 ** 3329 ** If pSavepoint is NULL, then pages are only played back from the main 3330 ** journal file. There is no need for a bitvec in this case. 3331 ** 3332 ** In either case, before playback commences the Pager.dbSize variable 3333 ** is reset to the value that it held at the start of the savepoint 3334 ** (or transaction). No page with a page-number greater than this value 3335 ** is played back. If one is encountered it is simply skipped. 3336 */ 3337 static int pagerPlaybackSavepoint(Pager *pPager, PagerSavepoint *pSavepoint){ 3338 i64 szJ; /* Effective size of the main journal */ 3339 i64 iHdrOff; /* End of first segment of main-journal records */ 3340 int rc = SQLITE_OK; /* Return code */ 3341 Bitvec *pDone = 0; /* Bitvec to ensure pages played back only once */ 3342 3343 assert( pPager->eState!=PAGER_ERROR ); 3344 assert( pPager->eState>=PAGER_WRITER_LOCKED ); 3345 3346 /* Allocate a bitvec to use to store the set of pages rolled back */ 3347 if( pSavepoint ){ 3348 pDone = sqlite3BitvecCreate(pSavepoint->nOrig); 3349 if( !pDone ){ 3350 return SQLITE_NOMEM_BKPT; 3351 } 3352 } 3353 3354 /* Set the database size back to the value it was before the savepoint 3355 ** being reverted was opened. 3356 */ 3357 pPager->dbSize = pSavepoint ? pSavepoint->nOrig : pPager->dbOrigSize; 3358 pPager->changeCountDone = pPager->tempFile; 3359 3360 if( !pSavepoint && pagerUseWal(pPager) ){ 3361 return pagerRollbackWal(pPager); 3362 } 3363 3364 /* Use pPager->journalOff as the effective size of the main rollback 3365 ** journal. The actual file might be larger than this in 3366 ** PAGER_JOURNALMODE_TRUNCATE or PAGER_JOURNALMODE_PERSIST. But anything 3367 ** past pPager->journalOff is off-limits to us. 3368 */ 3369 szJ = pPager->journalOff; 3370 assert( pagerUseWal(pPager)==0 || szJ==0 ); 3371 3372 /* Begin by rolling back records from the main journal starting at 3373 ** PagerSavepoint.iOffset and continuing to the next journal header. 3374 ** There might be records in the main journal that have a page number 3375 ** greater than the current database size (pPager->dbSize) but those 3376 ** will be skipped automatically. Pages are added to pDone as they 3377 ** are played back. 3378 */ 3379 if( pSavepoint && !pagerUseWal(pPager) ){ 3380 iHdrOff = pSavepoint->iHdrOffset ? pSavepoint->iHdrOffset : szJ; 3381 pPager->journalOff = pSavepoint->iOffset; 3382 while( rc==SQLITE_OK && pPager->journalOff<iHdrOff ){ 3383 rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1); 3384 } 3385 assert( rc!=SQLITE_DONE ); 3386 }else{ 3387 pPager->journalOff = 0; 3388 } 3389 3390 /* Continue rolling back records out of the main journal starting at 3391 ** the first journal header seen and continuing until the effective end 3392 ** of the main journal file. Continue to skip out-of-range pages and 3393 ** continue adding pages rolled back to pDone. 3394 */ 3395 while( rc==SQLITE_OK && pPager->journalOff<szJ ){ 3396 u32 ii; /* Loop counter */ 3397 u32 nJRec = 0; /* Number of Journal Records */ 3398 u32 dummy; 3399 rc = readJournalHdr(pPager, 0, szJ, &nJRec, &dummy); 3400 assert( rc!=SQLITE_DONE ); 3401 3402 /* 3403 ** The "pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff" 3404 ** test is related to ticket #2565. See the discussion in the 3405 ** pager_playback() function for additional information. 3406 */ 3407 if( nJRec==0 3408 && pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff 3409 ){ 3410 nJRec = (u32)((szJ - pPager->journalOff)/JOURNAL_PG_SZ(pPager)); 3411 } 3412 for(ii=0; rc==SQLITE_OK && ii<nJRec && pPager->journalOff<szJ; ii++){ 3413 rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1); 3414 } 3415 assert( rc!=SQLITE_DONE ); 3416 } 3417 assert( rc!=SQLITE_OK || pPager->journalOff>=szJ ); 3418 3419 /* Finally, rollback pages from the sub-journal. Page that were 3420 ** previously rolled back out of the main journal (and are hence in pDone) 3421 ** will be skipped. Out-of-range pages are also skipped. 3422 */ 3423 if( pSavepoint ){ 3424 u32 ii; /* Loop counter */ 3425 i64 offset = (i64)pSavepoint->iSubRec*(4+pPager->pageSize); 3426 3427 if( pagerUseWal(pPager) ){ 3428 rc = sqlite3WalSavepointUndo(pPager->pWal, pSavepoint->aWalData); 3429 } 3430 for(ii=pSavepoint->iSubRec; rc==SQLITE_OK && ii<pPager->nSubRec; ii++){ 3431 assert( offset==(i64)ii*(4+pPager->pageSize) ); 3432 rc = pager_playback_one_page(pPager, &offset, pDone, 0, 1); 3433 } 3434 assert( rc!=SQLITE_DONE ); 3435 } 3436 3437 sqlite3BitvecDestroy(pDone); 3438 if( rc==SQLITE_OK ){ 3439 pPager->journalOff = szJ; 3440 } 3441 3442 return rc; 3443 } 3444 3445 /* 3446 ** Change the maximum number of in-memory pages that are allowed 3447 ** before attempting to recycle clean and unused pages. 3448 */ 3449 void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){ 3450 sqlite3PcacheSetCachesize(pPager->pPCache, mxPage); 3451 } 3452 3453 /* 3454 ** Change the maximum number of in-memory pages that are allowed 3455 ** before attempting to spill pages to journal. 3456 */ 3457 int sqlite3PagerSetSpillsize(Pager *pPager, int mxPage){ 3458 return sqlite3PcacheSetSpillsize(pPager->pPCache, mxPage); 3459 } 3460 3461 /* 3462 ** Invoke SQLITE_FCNTL_MMAP_SIZE based on the current value of szMmap. 3463 */ 3464 static void pagerFixMaplimit(Pager *pPager){ 3465 #if SQLITE_MAX_MMAP_SIZE>0 3466 sqlite3_file *fd = pPager->fd; 3467 if( isOpen(fd) && fd->pMethods->iVersion>=3 ){ 3468 sqlite3_int64 sz; 3469 sz = pPager->szMmap; 3470 pPager->bUseFetch = (sz>0); 3471 setGetterMethod(pPager); 3472 sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_MMAP_SIZE, &sz); 3473 } 3474 #endif 3475 } 3476 3477 /* 3478 ** Change the maximum size of any memory mapping made of the database file. 3479 */ 3480 void sqlite3PagerSetMmapLimit(Pager *pPager, sqlite3_int64 szMmap){ 3481 pPager->szMmap = szMmap; 3482 pagerFixMaplimit(pPager); 3483 } 3484 3485 /* 3486 ** Free as much memory as possible from the pager. 3487 */ 3488 void sqlite3PagerShrink(Pager *pPager){ 3489 sqlite3PcacheShrink(pPager->pPCache); 3490 } 3491 3492 /* 3493 ** Adjust settings of the pager to those specified in the pgFlags parameter. 3494 ** 3495 ** The "level" in pgFlags & PAGER_SYNCHRONOUS_MASK sets the robustness 3496 ** of the database to damage due to OS crashes or power failures by 3497 ** changing the number of syncs()s when writing the journals. 3498 ** There are four levels: 3499 ** 3500 ** OFF sqlite3OsSync() is never called. This is the default 3501 ** for temporary and transient files. 3502 ** 3503 ** NORMAL The journal is synced once before writes begin on the 3504 ** database. This is normally adequate protection, but 3505 ** it is theoretically possible, though very unlikely, 3506 ** that an inopertune power failure could leave the journal 3507 ** in a state which would cause damage to the database 3508 ** when it is rolled back. 3509 ** 3510 ** FULL The journal is synced twice before writes begin on the 3511 ** database (with some additional information - the nRec field 3512 ** of the journal header - being written in between the two 3513 ** syncs). If we assume that writing a 3514 ** single disk sector is atomic, then this mode provides 3515 ** assurance that the journal will not be corrupted to the 3516 ** point of causing damage to the database during rollback. 3517 ** 3518 ** EXTRA This is like FULL except that is also syncs the directory 3519 ** that contains the rollback journal after the rollback 3520 ** journal is unlinked. 3521 ** 3522 ** The above is for a rollback-journal mode. For WAL mode, OFF continues 3523 ** to mean that no syncs ever occur. NORMAL means that the WAL is synced 3524 ** prior to the start of checkpoint and that the database file is synced 3525 ** at the conclusion of the checkpoint if the entire content of the WAL 3526 ** was written back into the database. But no sync operations occur for 3527 ** an ordinary commit in NORMAL mode with WAL. FULL means that the WAL 3528 ** file is synced following each commit operation, in addition to the 3529 ** syncs associated with NORMAL. There is no difference between FULL 3530 ** and EXTRA for WAL mode. 3531 ** 3532 ** Do not confuse synchronous=FULL with SQLITE_SYNC_FULL. The 3533 ** SQLITE_SYNC_FULL macro means to use the MacOSX-style full-fsync 3534 ** using fcntl(F_FULLFSYNC). SQLITE_SYNC_NORMAL means to do an 3535 ** ordinary fsync() call. There is no difference between SQLITE_SYNC_FULL 3536 ** and SQLITE_SYNC_NORMAL on platforms other than MacOSX. But the 3537 ** synchronous=FULL versus synchronous=NORMAL setting determines when 3538 ** the xSync primitive is called and is relevant to all platforms. 3539 ** 3540 ** Numeric values associated with these states are OFF==1, NORMAL=2, 3541 ** and FULL=3. 3542 */ 3543 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 3544 void sqlite3PagerSetFlags( 3545 Pager *pPager, /* The pager to set safety level for */ 3546 unsigned pgFlags /* Various flags */ 3547 ){ 3548 unsigned level = pgFlags & PAGER_SYNCHRONOUS_MASK; 3549 if( pPager->tempFile ){ 3550 pPager->noSync = 1; 3551 pPager->fullSync = 0; 3552 pPager->extraSync = 0; 3553 }else{ 3554 pPager->noSync = level==PAGER_SYNCHRONOUS_OFF ?1:0; 3555 pPager->fullSync = level>=PAGER_SYNCHRONOUS_FULL ?1:0; 3556 pPager->extraSync = level==PAGER_SYNCHRONOUS_EXTRA ?1:0; 3557 } 3558 if( pPager->noSync ){ 3559 pPager->syncFlags = 0; 3560 }else if( pgFlags & PAGER_FULLFSYNC ){ 3561 pPager->syncFlags = SQLITE_SYNC_FULL; 3562 }else{ 3563 pPager->syncFlags = SQLITE_SYNC_NORMAL; 3564 } 3565 pPager->walSyncFlags = (pPager->syncFlags<<2); 3566 if( pPager->fullSync ){ 3567 pPager->walSyncFlags |= pPager->syncFlags; 3568 } 3569 if( (pgFlags & PAGER_CKPT_FULLFSYNC) && !pPager->noSync ){ 3570 pPager->walSyncFlags |= (SQLITE_SYNC_FULL<<2); 3571 } 3572 if( pgFlags & PAGER_CACHESPILL ){ 3573 pPager->doNotSpill &= ~SPILLFLAG_OFF; 3574 }else{ 3575 pPager->doNotSpill |= SPILLFLAG_OFF; 3576 } 3577 } 3578 #endif 3579 3580 /* 3581 ** The following global variable is incremented whenever the library 3582 ** attempts to open a temporary file. This information is used for 3583 ** testing and analysis only. 3584 */ 3585 #ifdef SQLITE_TEST 3586 int sqlite3_opentemp_count = 0; 3587 #endif 3588 3589 /* 3590 ** Open a temporary file. 3591 ** 3592 ** Write the file descriptor into *pFile. Return SQLITE_OK on success 3593 ** or some other error code if we fail. The OS will automatically 3594 ** delete the temporary file when it is closed. 3595 ** 3596 ** The flags passed to the VFS layer xOpen() call are those specified 3597 ** by parameter vfsFlags ORed with the following: 3598 ** 3599 ** SQLITE_OPEN_READWRITE 3600 ** SQLITE_OPEN_CREATE 3601 ** SQLITE_OPEN_EXCLUSIVE 3602 ** SQLITE_OPEN_DELETEONCLOSE 3603 */ 3604 static int pagerOpentemp( 3605 Pager *pPager, /* The pager object */ 3606 sqlite3_file *pFile, /* Write the file descriptor here */ 3607 int vfsFlags /* Flags passed through to the VFS */ 3608 ){ 3609 int rc; /* Return code */ 3610 3611 #ifdef SQLITE_TEST 3612 sqlite3_opentemp_count++; /* Used for testing and analysis only */ 3613 #endif 3614 3615 vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | 3616 SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE; 3617 rc = sqlite3OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0); 3618 assert( rc!=SQLITE_OK || isOpen(pFile) ); 3619 return rc; 3620 } 3621 3622 /* 3623 ** Set the busy handler function. 3624 ** 3625 ** The pager invokes the busy-handler if sqlite3OsLock() returns 3626 ** SQLITE_BUSY when trying to upgrade from no-lock to a SHARED lock, 3627 ** or when trying to upgrade from a RESERVED lock to an EXCLUSIVE 3628 ** lock. It does *not* invoke the busy handler when upgrading from 3629 ** SHARED to RESERVED, or when upgrading from SHARED to EXCLUSIVE 3630 ** (which occurs during hot-journal rollback). Summary: 3631 ** 3632 ** Transition | Invokes xBusyHandler 3633 ** -------------------------------------------------------- 3634 ** NO_LOCK -> SHARED_LOCK | Yes 3635 ** SHARED_LOCK -> RESERVED_LOCK | No 3636 ** SHARED_LOCK -> EXCLUSIVE_LOCK | No 3637 ** RESERVED_LOCK -> EXCLUSIVE_LOCK | Yes 3638 ** 3639 ** If the busy-handler callback returns non-zero, the lock is 3640 ** retried. If it returns zero, then the SQLITE_BUSY error is 3641 ** returned to the caller of the pager API function. 3642 */ 3643 void sqlite3PagerSetBusyHandler( 3644 Pager *pPager, /* Pager object */ 3645 int (*xBusyHandler)(void *), /* Pointer to busy-handler function */ 3646 void *pBusyHandlerArg /* Argument to pass to xBusyHandler */ 3647 ){ 3648 void **ap; 3649 pPager->xBusyHandler = xBusyHandler; 3650 pPager->pBusyHandlerArg = pBusyHandlerArg; 3651 ap = (void **)&pPager->xBusyHandler; 3652 assert( ((int(*)(void *))(ap[0]))==xBusyHandler ); 3653 assert( ap[1]==pBusyHandlerArg ); 3654 sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_BUSYHANDLER, (void *)ap); 3655 } 3656 3657 /* 3658 ** Change the page size used by the Pager object. The new page size 3659 ** is passed in *pPageSize. 3660 ** 3661 ** If the pager is in the error state when this function is called, it 3662 ** is a no-op. The value returned is the error state error code (i.e. 3663 ** one of SQLITE_IOERR, an SQLITE_IOERR_xxx sub-code or SQLITE_FULL). 3664 ** 3665 ** Otherwise, if all of the following are true: 3666 ** 3667 ** * the new page size (value of *pPageSize) is valid (a power 3668 ** of two between 512 and SQLITE_MAX_PAGE_SIZE, inclusive), and 3669 ** 3670 ** * there are no outstanding page references, and 3671 ** 3672 ** * the database is either not an in-memory database or it is 3673 ** an in-memory database that currently consists of zero pages. 3674 ** 3675 ** then the pager object page size is set to *pPageSize. 3676 ** 3677 ** If the page size is changed, then this function uses sqlite3PagerMalloc() 3678 ** to obtain a new Pager.pTmpSpace buffer. If this allocation attempt 3679 ** fails, SQLITE_NOMEM is returned and the page size remains unchanged. 3680 ** In all other cases, SQLITE_OK is returned. 3681 ** 3682 ** If the page size is not changed, either because one of the enumerated 3683 ** conditions above is not true, the pager was in error state when this 3684 ** function was called, or because the memory allocation attempt failed, 3685 ** then *pPageSize is set to the old, retained page size before returning. 3686 */ 3687 int sqlite3PagerSetPagesize(Pager *pPager, u32 *pPageSize, int nReserve){ 3688 int rc = SQLITE_OK; 3689 3690 /* It is not possible to do a full assert_pager_state() here, as this 3691 ** function may be called from within PagerOpen(), before the state 3692 ** of the Pager object is internally consistent. 3693 ** 3694 ** At one point this function returned an error if the pager was in 3695 ** PAGER_ERROR state. But since PAGER_ERROR state guarantees that 3696 ** there is at least one outstanding page reference, this function 3697 ** is a no-op for that case anyhow. 3698 */ 3699 3700 u32 pageSize = *pPageSize; 3701 assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) ); 3702 if( (pPager->memDb==0 || pPager->dbSize==0) 3703 && sqlite3PcacheRefCount(pPager->pPCache)==0 3704 && pageSize && pageSize!=(u32)pPager->pageSize 3705 ){ 3706 char *pNew = NULL; /* New temp space */ 3707 i64 nByte = 0; 3708 3709 if( pPager->eState>PAGER_OPEN && isOpen(pPager->fd) ){ 3710 rc = sqlite3OsFileSize(pPager->fd, &nByte); 3711 } 3712 if( rc==SQLITE_OK ){ 3713 /* 8 bytes of zeroed overrun space is sufficient so that the b-tree 3714 * cell header parser will never run off the end of the allocation */ 3715 pNew = (char *)sqlite3PageMalloc(pageSize+8); 3716 if( !pNew ){ 3717 rc = SQLITE_NOMEM_BKPT; 3718 }else{ 3719 memset(pNew+pageSize, 0, 8); 3720 } 3721 } 3722 3723 if( rc==SQLITE_OK ){ 3724 pager_reset(pPager); 3725 rc = sqlite3PcacheSetPageSize(pPager->pPCache, pageSize); 3726 } 3727 if( rc==SQLITE_OK ){ 3728 sqlite3PageFree(pPager->pTmpSpace); 3729 pPager->pTmpSpace = pNew; 3730 pPager->dbSize = (Pgno)((nByte+pageSize-1)/pageSize); 3731 pPager->pageSize = pageSize; 3732 }else{ 3733 sqlite3PageFree(pNew); 3734 } 3735 } 3736 3737 *pPageSize = pPager->pageSize; 3738 if( rc==SQLITE_OK ){ 3739 if( nReserve<0 ) nReserve = pPager->nReserve; 3740 assert( nReserve>=0 && nReserve<1000 ); 3741 pPager->nReserve = (i16)nReserve; 3742 pagerFixMaplimit(pPager); 3743 } 3744 return rc; 3745 } 3746 3747 /* 3748 ** Return a pointer to the "temporary page" buffer held internally 3749 ** by the pager. This is a buffer that is big enough to hold the 3750 ** entire content of a database page. This buffer is used internally 3751 ** during rollback and will be overwritten whenever a rollback 3752 ** occurs. But other modules are free to use it too, as long as 3753 ** no rollbacks are happening. 3754 */ 3755 void *sqlite3PagerTempSpace(Pager *pPager){ 3756 return pPager->pTmpSpace; 3757 } 3758 3759 /* 3760 ** Attempt to set the maximum database page count if mxPage is positive. 3761 ** Make no changes if mxPage is zero or negative. And never reduce the 3762 ** maximum page count below the current size of the database. 3763 ** 3764 ** Regardless of mxPage, return the current maximum page count. 3765 */ 3766 int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){ 3767 if( mxPage>0 ){ 3768 pPager->mxPgno = mxPage; 3769 } 3770 assert( pPager->eState!=PAGER_OPEN ); /* Called only by OP_MaxPgcnt */ 3771 /* assert( pPager->mxPgno>=pPager->dbSize ); */ 3772 /* OP_MaxPgcnt ensures that the parameter passed to this function is not 3773 ** less than the total number of valid pages in the database. But this 3774 ** may be less than Pager.dbSize, and so the assert() above is not valid */ 3775 return pPager->mxPgno; 3776 } 3777 3778 /* 3779 ** The following set of routines are used to disable the simulated 3780 ** I/O error mechanism. These routines are used to avoid simulated 3781 ** errors in places where we do not care about errors. 3782 ** 3783 ** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops 3784 ** and generate no code. 3785 */ 3786 #ifdef SQLITE_TEST 3787 extern int sqlite3_io_error_pending; 3788 extern int sqlite3_io_error_hit; 3789 static int saved_cnt; 3790 void disable_simulated_io_errors(void){ 3791 saved_cnt = sqlite3_io_error_pending; 3792 sqlite3_io_error_pending = -1; 3793 } 3794 void enable_simulated_io_errors(void){ 3795 sqlite3_io_error_pending = saved_cnt; 3796 } 3797 #else 3798 # define disable_simulated_io_errors() 3799 # define enable_simulated_io_errors() 3800 #endif 3801 3802 /* 3803 ** Read the first N bytes from the beginning of the file into memory 3804 ** that pDest points to. 3805 ** 3806 ** If the pager was opened on a transient file (zFilename==""), or 3807 ** opened on a file less than N bytes in size, the output buffer is 3808 ** zeroed and SQLITE_OK returned. The rationale for this is that this 3809 ** function is used to read database headers, and a new transient or 3810 ** zero sized database has a header than consists entirely of zeroes. 3811 ** 3812 ** If any IO error apart from SQLITE_IOERR_SHORT_READ is encountered, 3813 ** the error code is returned to the caller and the contents of the 3814 ** output buffer undefined. 3815 */ 3816 int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){ 3817 int rc = SQLITE_OK; 3818 memset(pDest, 0, N); 3819 assert( isOpen(pPager->fd) || pPager->tempFile ); 3820 3821 /* This routine is only called by btree immediately after creating 3822 ** the Pager object. There has not been an opportunity to transition 3823 ** to WAL mode yet. 3824 */ 3825 assert( !pagerUseWal(pPager) ); 3826 3827 if( isOpen(pPager->fd) ){ 3828 IOTRACE(("DBHDR %p 0 %d\n", pPager, N)) 3829 rc = sqlite3OsRead(pPager->fd, pDest, N, 0); 3830 if( rc==SQLITE_IOERR_SHORT_READ ){ 3831 rc = SQLITE_OK; 3832 } 3833 } 3834 return rc; 3835 } 3836 3837 /* 3838 ** This function may only be called when a read-transaction is open on 3839 ** the pager. It returns the total number of pages in the database. 3840 ** 3841 ** However, if the file is between 1 and <page-size> bytes in size, then 3842 ** this is considered a 1 page file. 3843 */ 3844 void sqlite3PagerPagecount(Pager *pPager, int *pnPage){ 3845 assert( pPager->eState>=PAGER_READER ); 3846 assert( pPager->eState!=PAGER_WRITER_FINISHED ); 3847 *pnPage = (int)pPager->dbSize; 3848 } 3849 3850 3851 /* 3852 ** Try to obtain a lock of type locktype on the database file. If 3853 ** a similar or greater lock is already held, this function is a no-op 3854 ** (returning SQLITE_OK immediately). 3855 ** 3856 ** Otherwise, attempt to obtain the lock using sqlite3OsLock(). Invoke 3857 ** the busy callback if the lock is currently not available. Repeat 3858 ** until the busy callback returns false or until the attempt to 3859 ** obtain the lock succeeds. 3860 ** 3861 ** Return SQLITE_OK on success and an error code if we cannot obtain 3862 ** the lock. If the lock is obtained successfully, set the Pager.state 3863 ** variable to locktype before returning. 3864 */ 3865 static int pager_wait_on_lock(Pager *pPager, int locktype){ 3866 int rc; /* Return code */ 3867 3868 /* Check that this is either a no-op (because the requested lock is 3869 ** already held), or one of the transitions that the busy-handler 3870 ** may be invoked during, according to the comment above 3871 ** sqlite3PagerSetBusyhandler(). 3872 */ 3873 assert( (pPager->eLock>=locktype) 3874 || (pPager->eLock==NO_LOCK && locktype==SHARED_LOCK) 3875 || (pPager->eLock==RESERVED_LOCK && locktype==EXCLUSIVE_LOCK) 3876 ); 3877 3878 do { 3879 rc = pagerLockDb(pPager, locktype); 3880 }while( rc==SQLITE_BUSY && pPager->xBusyHandler(pPager->pBusyHandlerArg) ); 3881 return rc; 3882 } 3883 3884 /* 3885 ** Function assertTruncateConstraint(pPager) checks that one of the 3886 ** following is true for all dirty pages currently in the page-cache: 3887 ** 3888 ** a) The page number is less than or equal to the size of the 3889 ** current database image, in pages, OR 3890 ** 3891 ** b) if the page content were written at this time, it would not 3892 ** be necessary to write the current content out to the sub-journal 3893 ** (as determined by function subjRequiresPage()). 3894 ** 3895 ** If the condition asserted by this function were not true, and the 3896 ** dirty page were to be discarded from the cache via the pagerStress() 3897 ** routine, pagerStress() would not write the current page content to 3898 ** the database file. If a savepoint transaction were rolled back after 3899 ** this happened, the correct behavior would be to restore the current 3900 ** content of the page. However, since this content is not present in either 3901 ** the database file or the portion of the rollback journal and 3902 ** sub-journal rolled back the content could not be restored and the 3903 ** database image would become corrupt. It is therefore fortunate that 3904 ** this circumstance cannot arise. 3905 */ 3906 #if defined(SQLITE_DEBUG) 3907 static void assertTruncateConstraintCb(PgHdr *pPg){ 3908 assert( pPg->flags&PGHDR_DIRTY ); 3909 assert( !subjRequiresPage(pPg) || pPg->pgno<=pPg->pPager->dbSize ); 3910 } 3911 static void assertTruncateConstraint(Pager *pPager){ 3912 sqlite3PcacheIterateDirty(pPager->pPCache, assertTruncateConstraintCb); 3913 } 3914 #else 3915 # define assertTruncateConstraint(pPager) 3916 #endif 3917 3918 /* 3919 ** Truncate the in-memory database file image to nPage pages. This 3920 ** function does not actually modify the database file on disk. It 3921 ** just sets the internal state of the pager object so that the 3922 ** truncation will be done when the current transaction is committed. 3923 ** 3924 ** This function is only called right before committing a transaction. 3925 ** Once this function has been called, the transaction must either be 3926 ** rolled back or committed. It is not safe to call this function and 3927 ** then continue writing to the database. 3928 */ 3929 void sqlite3PagerTruncateImage(Pager *pPager, Pgno nPage){ 3930 assert( pPager->dbSize>=nPage ); 3931 assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); 3932 pPager->dbSize = nPage; 3933 3934 /* At one point the code here called assertTruncateConstraint() to 3935 ** ensure that all pages being truncated away by this operation are, 3936 ** if one or more savepoints are open, present in the savepoint 3937 ** journal so that they can be restored if the savepoint is rolled 3938 ** back. This is no longer necessary as this function is now only 3939 ** called right before committing a transaction. So although the 3940 ** Pager object may still have open savepoints (Pager.nSavepoint!=0), 3941 ** they cannot be rolled back. So the assertTruncateConstraint() call 3942 ** is no longer correct. */ 3943 } 3944 3945 3946 /* 3947 ** This function is called before attempting a hot-journal rollback. It 3948 ** syncs the journal file to disk, then sets pPager->journalHdr to the 3949 ** size of the journal file so that the pager_playback() routine knows 3950 ** that the entire journal file has been synced. 3951 ** 3952 ** Syncing a hot-journal to disk before attempting to roll it back ensures 3953 ** that if a power-failure occurs during the rollback, the process that 3954 ** attempts rollback following system recovery sees the same journal 3955 ** content as this process. 3956 ** 3957 ** If everything goes as planned, SQLITE_OK is returned. Otherwise, 3958 ** an SQLite error code. 3959 */ 3960 static int pagerSyncHotJournal(Pager *pPager){ 3961 int rc = SQLITE_OK; 3962 if( !pPager->noSync ){ 3963 rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_NORMAL); 3964 } 3965 if( rc==SQLITE_OK ){ 3966 rc = sqlite3OsFileSize(pPager->jfd, &pPager->journalHdr); 3967 } 3968 return rc; 3969 } 3970 3971 #if SQLITE_MAX_MMAP_SIZE>0 3972 /* 3973 ** Obtain a reference to a memory mapped page object for page number pgno. 3974 ** The new object will use the pointer pData, obtained from xFetch(). 3975 ** If successful, set *ppPage to point to the new page reference 3976 ** and return SQLITE_OK. Otherwise, return an SQLite error code and set 3977 ** *ppPage to zero. 3978 ** 3979 ** Page references obtained by calling this function should be released 3980 ** by calling pagerReleaseMapPage(). 3981 */ 3982 static int pagerAcquireMapPage( 3983 Pager *pPager, /* Pager object */ 3984 Pgno pgno, /* Page number */ 3985 void *pData, /* xFetch()'d data for this page */ 3986 PgHdr **ppPage /* OUT: Acquired page object */ 3987 ){ 3988 PgHdr *p; /* Memory mapped page to return */ 3989 3990 if( pPager->pMmapFreelist ){ 3991 *ppPage = p = pPager->pMmapFreelist; 3992 pPager->pMmapFreelist = p->pDirty; 3993 p->pDirty = 0; 3994 assert( pPager->nExtra>=8 ); 3995 memset(p->pExtra, 0, 8); 3996 }else{ 3997 *ppPage = p = (PgHdr *)sqlite3MallocZero(sizeof(PgHdr) + pPager->nExtra); 3998 if( p==0 ){ 3999 sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1) * pPager->pageSize, pData); 4000 return SQLITE_NOMEM_BKPT; 4001 } 4002 p->pExtra = (void *)&p[1]; 4003 p->flags = PGHDR_MMAP; 4004 p->nRef = 1; 4005 p->pPager = pPager; 4006 } 4007 4008 assert( p->pExtra==(void *)&p[1] ); 4009 assert( p->pPage==0 ); 4010 assert( p->flags==PGHDR_MMAP ); 4011 assert( p->pPager==pPager ); 4012 assert( p->nRef==1 ); 4013 4014 p->pgno = pgno; 4015 p->pData = pData; 4016 pPager->nMmapOut++; 4017 4018 return SQLITE_OK; 4019 } 4020 #endif 4021 4022 /* 4023 ** Release a reference to page pPg. pPg must have been returned by an 4024 ** earlier call to pagerAcquireMapPage(). 4025 */ 4026 static void pagerReleaseMapPage(PgHdr *pPg){ 4027 Pager *pPager = pPg->pPager; 4028 pPager->nMmapOut--; 4029 pPg->pDirty = pPager->pMmapFreelist; 4030 pPager->pMmapFreelist = pPg; 4031 4032 assert( pPager->fd->pMethods->iVersion>=3 ); 4033 sqlite3OsUnfetch(pPager->fd, (i64)(pPg->pgno-1)*pPager->pageSize, pPg->pData); 4034 } 4035 4036 /* 4037 ** Free all PgHdr objects stored in the Pager.pMmapFreelist list. 4038 */ 4039 static void pagerFreeMapHdrs(Pager *pPager){ 4040 PgHdr *p; 4041 PgHdr *pNext; 4042 for(p=pPager->pMmapFreelist; p; p=pNext){ 4043 pNext = p->pDirty; 4044 sqlite3_free(p); 4045 } 4046 } 4047 4048 /* Verify that the database file has not be deleted or renamed out from 4049 ** under the pager. Return SQLITE_OK if the database is still where it ought 4050 ** to be on disk. Return non-zero (SQLITE_READONLY_DBMOVED or some other error 4051 ** code from sqlite3OsAccess()) if the database has gone missing. 4052 */ 4053 static int databaseIsUnmoved(Pager *pPager){ 4054 int bHasMoved = 0; 4055 int rc; 4056 4057 if( pPager->tempFile ) return SQLITE_OK; 4058 if( pPager->dbSize==0 ) return SQLITE_OK; 4059 assert( pPager->zFilename && pPager->zFilename[0] ); 4060 rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_HAS_MOVED, &bHasMoved); 4061 if( rc==SQLITE_NOTFOUND ){ 4062 /* If the HAS_MOVED file-control is unimplemented, assume that the file 4063 ** has not been moved. That is the historical behavior of SQLite: prior to 4064 ** version 3.8.3, it never checked */ 4065 rc = SQLITE_OK; 4066 }else if( rc==SQLITE_OK && bHasMoved ){ 4067 rc = SQLITE_READONLY_DBMOVED; 4068 } 4069 return rc; 4070 } 4071 4072 4073 /* 4074 ** Shutdown the page cache. Free all memory and close all files. 4075 ** 4076 ** If a transaction was in progress when this routine is called, that 4077 ** transaction is rolled back. All outstanding pages are invalidated 4078 ** and their memory is freed. Any attempt to use a page associated 4079 ** with this page cache after this function returns will likely 4080 ** result in a coredump. 4081 ** 4082 ** This function always succeeds. If a transaction is active an attempt 4083 ** is made to roll it back. If an error occurs during the rollback 4084 ** a hot journal may be left in the filesystem but no error is returned 4085 ** to the caller. 4086 */ 4087 int sqlite3PagerClose(Pager *pPager, sqlite3 *db){ 4088 u8 *pTmp = (u8*)pPager->pTmpSpace; 4089 assert( db || pagerUseWal(pPager)==0 ); 4090 assert( assert_pager_state(pPager) ); 4091 disable_simulated_io_errors(); 4092 sqlite3BeginBenignMalloc(); 4093 pagerFreeMapHdrs(pPager); 4094 /* pPager->errCode = 0; */ 4095 pPager->exclusiveMode = 0; 4096 #ifndef SQLITE_OMIT_WAL 4097 { 4098 u8 *a = 0; 4099 assert( db || pPager->pWal==0 ); 4100 if( db && 0==(db->flags & SQLITE_NoCkptOnClose) 4101 && SQLITE_OK==databaseIsUnmoved(pPager) 4102 ){ 4103 a = pTmp; 4104 } 4105 sqlite3WalClose(pPager->pWal, db, pPager->walSyncFlags, pPager->pageSize,a); 4106 pPager->pWal = 0; 4107 } 4108 #endif 4109 pager_reset(pPager); 4110 if( MEMDB ){ 4111 pager_unlock(pPager); 4112 }else{ 4113 /* If it is open, sync the journal file before calling UnlockAndRollback. 4114 ** If this is not done, then an unsynced portion of the open journal 4115 ** file may be played back into the database. If a power failure occurs 4116 ** while this is happening, the database could become corrupt. 4117 ** 4118 ** If an error occurs while trying to sync the journal, shift the pager 4119 ** into the ERROR state. This causes UnlockAndRollback to unlock the 4120 ** database and close the journal file without attempting to roll it 4121 ** back or finalize it. The next database user will have to do hot-journal 4122 ** rollback before accessing the database file. 4123 */ 4124 if( isOpen(pPager->jfd) ){ 4125 pager_error(pPager, pagerSyncHotJournal(pPager)); 4126 } 4127 pagerUnlockAndRollback(pPager); 4128 } 4129 sqlite3EndBenignMalloc(); 4130 enable_simulated_io_errors(); 4131 PAGERTRACE(("CLOSE %d\n", PAGERID(pPager))); 4132 IOTRACE(("CLOSE %p\n", pPager)) 4133 sqlite3OsClose(pPager->jfd); 4134 sqlite3OsClose(pPager->fd); 4135 sqlite3PageFree(pTmp); 4136 sqlite3PcacheClose(pPager->pPCache); 4137 assert( !pPager->aSavepoint && !pPager->pInJournal ); 4138 assert( !isOpen(pPager->jfd) && !isOpen(pPager->sjfd) ); 4139 4140 sqlite3_free(pPager); 4141 return SQLITE_OK; 4142 } 4143 4144 #if !defined(NDEBUG) || defined(SQLITE_TEST) 4145 /* 4146 ** Return the page number for page pPg. 4147 */ 4148 Pgno sqlite3PagerPagenumber(DbPage *pPg){ 4149 return pPg->pgno; 4150 } 4151 #endif 4152 4153 /* 4154 ** Increment the reference count for page pPg. 4155 */ 4156 void sqlite3PagerRef(DbPage *pPg){ 4157 sqlite3PcacheRef(pPg); 4158 } 4159 4160 /* 4161 ** Sync the journal. In other words, make sure all the pages that have 4162 ** been written to the journal have actually reached the surface of the 4163 ** disk and can be restored in the event of a hot-journal rollback. 4164 ** 4165 ** If the Pager.noSync flag is set, then this function is a no-op. 4166 ** Otherwise, the actions required depend on the journal-mode and the 4167 ** device characteristics of the file-system, as follows: 4168 ** 4169 ** * If the journal file is an in-memory journal file, no action need 4170 ** be taken. 4171 ** 4172 ** * Otherwise, if the device does not support the SAFE_APPEND property, 4173 ** then the nRec field of the most recently written journal header 4174 ** is updated to contain the number of journal records that have 4175 ** been written following it. If the pager is operating in full-sync 4176 ** mode, then the journal file is synced before this field is updated. 4177 ** 4178 ** * If the device does not support the SEQUENTIAL property, then 4179 ** journal file is synced. 4180 ** 4181 ** Or, in pseudo-code: 4182 ** 4183 ** if( NOT <in-memory journal> ){ 4184 ** if( NOT SAFE_APPEND ){ 4185 ** if( <full-sync mode> ) xSync(<journal file>); 4186 ** <update nRec field> 4187 ** } 4188 ** if( NOT SEQUENTIAL ) xSync(<journal file>); 4189 ** } 4190 ** 4191 ** If successful, this routine clears the PGHDR_NEED_SYNC flag of every 4192 ** page currently held in memory before returning SQLITE_OK. If an IO 4193 ** error is encountered, then the IO error code is returned to the caller. 4194 */ 4195 static int syncJournal(Pager *pPager, int newHdr){ 4196 int rc; /* Return code */ 4197 4198 assert( pPager->eState==PAGER_WRITER_CACHEMOD 4199 || pPager->eState==PAGER_WRITER_DBMOD 4200 ); 4201 assert( assert_pager_state(pPager) ); 4202 assert( !pagerUseWal(pPager) ); 4203 4204 rc = sqlite3PagerExclusiveLock(pPager); 4205 if( rc!=SQLITE_OK ) return rc; 4206 4207 if( !pPager->noSync ){ 4208 assert( !pPager->tempFile ); 4209 if( isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){ 4210 const int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); 4211 assert( isOpen(pPager->jfd) ); 4212 4213 if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ 4214 /* This block deals with an obscure problem. If the last connection 4215 ** that wrote to this database was operating in persistent-journal 4216 ** mode, then the journal file may at this point actually be larger 4217 ** than Pager.journalOff bytes. If the next thing in the journal 4218 ** file happens to be a journal-header (written as part of the 4219 ** previous connection's transaction), and a crash or power-failure 4220 ** occurs after nRec is updated but before this connection writes 4221 ** anything else to the journal file (or commits/rolls back its 4222 ** transaction), then SQLite may become confused when doing the 4223 ** hot-journal rollback following recovery. It may roll back all 4224 ** of this connections data, then proceed to rolling back the old, 4225 ** out-of-date data that follows it. Database corruption. 4226 ** 4227 ** To work around this, if the journal file does appear to contain 4228 ** a valid header following Pager.journalOff, then write a 0x00 4229 ** byte to the start of it to prevent it from being recognized. 4230 ** 4231 ** Variable iNextHdrOffset is set to the offset at which this 4232 ** problematic header will occur, if it exists. aMagic is used 4233 ** as a temporary buffer to inspect the first couple of bytes of 4234 ** the potential journal header. 4235 */ 4236 i64 iNextHdrOffset; 4237 u8 aMagic[8]; 4238 u8 zHeader[sizeof(aJournalMagic)+4]; 4239 4240 memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); 4241 put32bits(&zHeader[sizeof(aJournalMagic)], pPager->nRec); 4242 4243 iNextHdrOffset = journalHdrOffset(pPager); 4244 rc = sqlite3OsRead(pPager->jfd, aMagic, 8, iNextHdrOffset); 4245 if( rc==SQLITE_OK && 0==memcmp(aMagic, aJournalMagic, 8) ){ 4246 static const u8 zerobyte = 0; 4247 rc = sqlite3OsWrite(pPager->jfd, &zerobyte, 1, iNextHdrOffset); 4248 } 4249 if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){ 4250 return rc; 4251 } 4252 4253 /* Write the nRec value into the journal file header. If in 4254 ** full-synchronous mode, sync the journal first. This ensures that 4255 ** all data has really hit the disk before nRec is updated to mark 4256 ** it as a candidate for rollback. 4257 ** 4258 ** This is not required if the persistent media supports the 4259 ** SAFE_APPEND property. Because in this case it is not possible 4260 ** for garbage data to be appended to the file, the nRec field 4261 ** is populated with 0xFFFFFFFF when the journal header is written 4262 ** and never needs to be updated. 4263 */ 4264 if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ 4265 PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); 4266 IOTRACE(("JSYNC %p\n", pPager)) 4267 rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags); 4268 if( rc!=SQLITE_OK ) return rc; 4269 } 4270 IOTRACE(("JHDR %p %lld\n", pPager, pPager->journalHdr)); 4271 rc = sqlite3OsWrite( 4272 pPager->jfd, zHeader, sizeof(zHeader), pPager->journalHdr 4273 ); 4274 if( rc!=SQLITE_OK ) return rc; 4275 } 4276 if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ 4277 PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); 4278 IOTRACE(("JSYNC %p\n", pPager)) 4279 rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags| 4280 (pPager->syncFlags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0) 4281 ); 4282 if( rc!=SQLITE_OK ) return rc; 4283 } 4284 4285 pPager->journalHdr = pPager->journalOff; 4286 if( newHdr && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ 4287 pPager->nRec = 0; 4288 rc = writeJournalHdr(pPager); 4289 if( rc!=SQLITE_OK ) return rc; 4290 } 4291 }else{ 4292 pPager->journalHdr = pPager->journalOff; 4293 } 4294 } 4295 4296 /* Unless the pager is in noSync mode, the journal file was just 4297 ** successfully synced. Either way, clear the PGHDR_NEED_SYNC flag on 4298 ** all pages. 4299 */ 4300 sqlite3PcacheClearSyncFlags(pPager->pPCache); 4301 pPager->eState = PAGER_WRITER_DBMOD; 4302 assert( assert_pager_state(pPager) ); 4303 return SQLITE_OK; 4304 } 4305 4306 /* 4307 ** The argument is the first in a linked list of dirty pages connected 4308 ** by the PgHdr.pDirty pointer. This function writes each one of the 4309 ** in-memory pages in the list to the database file. The argument may 4310 ** be NULL, representing an empty list. In this case this function is 4311 ** a no-op. 4312 ** 4313 ** The pager must hold at least a RESERVED lock when this function 4314 ** is called. Before writing anything to the database file, this lock 4315 ** is upgraded to an EXCLUSIVE lock. If the lock cannot be obtained, 4316 ** SQLITE_BUSY is returned and no data is written to the database file. 4317 ** 4318 ** If the pager is a temp-file pager and the actual file-system file 4319 ** is not yet open, it is created and opened before any data is 4320 ** written out. 4321 ** 4322 ** Once the lock has been upgraded and, if necessary, the file opened, 4323 ** the pages are written out to the database file in list order. Writing 4324 ** a page is skipped if it meets either of the following criteria: 4325 ** 4326 ** * The page number is greater than Pager.dbSize, or 4327 ** * The PGHDR_DONT_WRITE flag is set on the page. 4328 ** 4329 ** If writing out a page causes the database file to grow, Pager.dbFileSize 4330 ** is updated accordingly. If page 1 is written out, then the value cached 4331 ** in Pager.dbFileVers[] is updated to match the new value stored in 4332 ** the database file. 4333 ** 4334 ** If everything is successful, SQLITE_OK is returned. If an IO error 4335 ** occurs, an IO error code is returned. Or, if the EXCLUSIVE lock cannot 4336 ** be obtained, SQLITE_BUSY is returned. 4337 */ 4338 static int pager_write_pagelist(Pager *pPager, PgHdr *pList){ 4339 int rc = SQLITE_OK; /* Return code */ 4340 4341 /* This function is only called for rollback pagers in WRITER_DBMOD state. */ 4342 assert( !pagerUseWal(pPager) ); 4343 assert( pPager->tempFile || pPager->eState==PAGER_WRITER_DBMOD ); 4344 assert( pPager->eLock==EXCLUSIVE_LOCK ); 4345 assert( isOpen(pPager->fd) || pList->pDirty==0 ); 4346 4347 /* If the file is a temp-file has not yet been opened, open it now. It 4348 ** is not possible for rc to be other than SQLITE_OK if this branch 4349 ** is taken, as pager_wait_on_lock() is a no-op for temp-files. 4350 */ 4351 if( !isOpen(pPager->fd) ){ 4352 assert( pPager->tempFile && rc==SQLITE_OK ); 4353 rc = pagerOpentemp(pPager, pPager->fd, pPager->vfsFlags); 4354 } 4355 4356 /* Before the first write, give the VFS a hint of what the final 4357 ** file size will be. 4358 */ 4359 assert( rc!=SQLITE_OK || isOpen(pPager->fd) ); 4360 if( rc==SQLITE_OK 4361 && pPager->dbHintSize<pPager->dbSize 4362 && (pList->pDirty || pList->pgno>pPager->dbHintSize) 4363 ){ 4364 sqlite3_int64 szFile = pPager->pageSize * (sqlite3_int64)pPager->dbSize; 4365 sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile); 4366 pPager->dbHintSize = pPager->dbSize; 4367 } 4368 4369 while( rc==SQLITE_OK && pList ){ 4370 Pgno pgno = pList->pgno; 4371 4372 /* If there are dirty pages in the page cache with page numbers greater 4373 ** than Pager.dbSize, this means sqlite3PagerTruncateImage() was called to 4374 ** make the file smaller (presumably by auto-vacuum code). Do not write 4375 ** any such pages to the file. 4376 ** 4377 ** Also, do not write out any page that has the PGHDR_DONT_WRITE flag 4378 ** set (set by sqlite3PagerDontWrite()). 4379 */ 4380 if( pgno<=pPager->dbSize && 0==(pList->flags&PGHDR_DONT_WRITE) ){ 4381 i64 offset = (pgno-1)*(i64)pPager->pageSize; /* Offset to write */ 4382 char *pData; /* Data to write */ 4383 4384 assert( (pList->flags&PGHDR_NEED_SYNC)==0 ); 4385 if( pList->pgno==1 ) pager_write_changecounter(pList); 4386 4387 pData = pList->pData; 4388 4389 /* Write out the page data. */ 4390 rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset); 4391 4392 /* If page 1 was just written, update Pager.dbFileVers to match 4393 ** the value now stored in the database file. If writing this 4394 ** page caused the database file to grow, update dbFileSize. 4395 */ 4396 if( pgno==1 ){ 4397 memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers)); 4398 } 4399 if( pgno>pPager->dbFileSize ){ 4400 pPager->dbFileSize = pgno; 4401 } 4402 pPager->aStat[PAGER_STAT_WRITE]++; 4403 4404 /* Update any backup objects copying the contents of this pager. */ 4405 sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)pList->pData); 4406 4407 PAGERTRACE(("STORE %d page %d hash(%08x)\n", 4408 PAGERID(pPager), pgno, pager_pagehash(pList))); 4409 IOTRACE(("PGOUT %p %d\n", pPager, pgno)); 4410 PAGER_INCR(sqlite3_pager_writedb_count); 4411 }else{ 4412 PAGERTRACE(("NOSTORE %d page %d\n", PAGERID(pPager), pgno)); 4413 } 4414 pager_set_pagehash(pList); 4415 pList = pList->pDirty; 4416 } 4417 4418 return rc; 4419 } 4420 4421 /* 4422 ** Ensure that the sub-journal file is open. If it is already open, this 4423 ** function is a no-op. 4424 ** 4425 ** SQLITE_OK is returned if everything goes according to plan. An 4426 ** SQLITE_IOERR_XXX error code is returned if a call to sqlite3OsOpen() 4427 ** fails. 4428 */ 4429 static int openSubJournal(Pager *pPager){ 4430 int rc = SQLITE_OK; 4431 if( !isOpen(pPager->sjfd) ){ 4432 const int flags = SQLITE_OPEN_SUBJOURNAL | SQLITE_OPEN_READWRITE 4433 | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE 4434 | SQLITE_OPEN_DELETEONCLOSE; 4435 int nStmtSpill = sqlite3Config.nStmtSpill; 4436 if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->subjInMemory ){ 4437 nStmtSpill = -1; 4438 } 4439 rc = sqlite3JournalOpen(pPager->pVfs, 0, pPager->sjfd, flags, nStmtSpill); 4440 } 4441 return rc; 4442 } 4443 4444 /* 4445 ** Append a record of the current state of page pPg to the sub-journal. 4446 ** 4447 ** If successful, set the bit corresponding to pPg->pgno in the bitvecs 4448 ** for all open savepoints before returning. 4449 ** 4450 ** This function returns SQLITE_OK if everything is successful, an IO 4451 ** error code if the attempt to write to the sub-journal fails, or 4452 ** SQLITE_NOMEM if a malloc fails while setting a bit in a savepoint 4453 ** bitvec. 4454 */ 4455 static int subjournalPage(PgHdr *pPg){ 4456 int rc = SQLITE_OK; 4457 Pager *pPager = pPg->pPager; 4458 if( pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ 4459 4460 /* Open the sub-journal, if it has not already been opened */ 4461 assert( pPager->useJournal ); 4462 assert( isOpen(pPager->jfd) || pagerUseWal(pPager) ); 4463 assert( isOpen(pPager->sjfd) || pPager->nSubRec==0 ); 4464 assert( pagerUseWal(pPager) 4465 || pageInJournal(pPager, pPg) 4466 || pPg->pgno>pPager->dbOrigSize 4467 ); 4468 rc = openSubJournal(pPager); 4469 4470 /* If the sub-journal was opened successfully (or was already open), 4471 ** write the journal record into the file. */ 4472 if( rc==SQLITE_OK ){ 4473 void *pData = pPg->pData; 4474 i64 offset = (i64)pPager->nSubRec*(4+pPager->pageSize); 4475 char *pData2; 4476 pData2 = pData; 4477 PAGERTRACE(("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno)); 4478 rc = write32bits(pPager->sjfd, offset, pPg->pgno); 4479 if( rc==SQLITE_OK ){ 4480 rc = sqlite3OsWrite(pPager->sjfd, pData2, pPager->pageSize, offset+4); 4481 } 4482 } 4483 } 4484 if( rc==SQLITE_OK ){ 4485 pPager->nSubRec++; 4486 assert( pPager->nSavepoint>0 ); 4487 rc = addToSavepointBitvecs(pPager, pPg->pgno); 4488 } 4489 return rc; 4490 } 4491 static int subjournalPageIfRequired(PgHdr *pPg){ 4492 if( subjRequiresPage(pPg) ){ 4493 return subjournalPage(pPg); 4494 }else{ 4495 return SQLITE_OK; 4496 } 4497 } 4498 4499 /* 4500 ** This function is called by the pcache layer when it has reached some 4501 ** soft memory limit. The first argument is a pointer to a Pager object 4502 ** (cast as a void*). The pager is always 'purgeable' (not an in-memory 4503 ** database). The second argument is a reference to a page that is 4504 ** currently dirty but has no outstanding references. The page 4505 ** is always associated with the Pager object passed as the first 4506 ** argument. 4507 ** 4508 ** The job of this function is to make pPg clean by writing its contents 4509 ** out to the database file, if possible. This may involve syncing the 4510 ** journal file. 4511 ** 4512 ** If successful, sqlite3PcacheMakeClean() is called on the page and 4513 ** SQLITE_OK returned. If an IO error occurs while trying to make the 4514 ** page clean, the IO error code is returned. If the page cannot be 4515 ** made clean for some other reason, but no error occurs, then SQLITE_OK 4516 ** is returned by sqlite3PcacheMakeClean() is not called. 4517 */ 4518 static int pagerStress(void *p, PgHdr *pPg){ 4519 Pager *pPager = (Pager *)p; 4520 int rc = SQLITE_OK; 4521 4522 assert( pPg->pPager==pPager ); 4523 assert( pPg->flags&PGHDR_DIRTY ); 4524 4525 /* The doNotSpill NOSYNC bit is set during times when doing a sync of 4526 ** journal (and adding a new header) is not allowed. This occurs 4527 ** during calls to sqlite3PagerWrite() while trying to journal multiple 4528 ** pages belonging to the same sector. 4529 ** 4530 ** The doNotSpill ROLLBACK and OFF bits inhibits all cache spilling 4531 ** regardless of whether or not a sync is required. This is set during 4532 ** a rollback or by user request, respectively. 4533 ** 4534 ** Spilling is also prohibited when in an error state since that could 4535 ** lead to database corruption. In the current implementation it 4536 ** is impossible for sqlite3PcacheFetch() to be called with createFlag==3 4537 ** while in the error state, hence it is impossible for this routine to 4538 ** be called in the error state. Nevertheless, we include a NEVER() 4539 ** test for the error state as a safeguard against future changes. 4540 */ 4541 if( NEVER(pPager->errCode) ) return SQLITE_OK; 4542 testcase( pPager->doNotSpill & SPILLFLAG_ROLLBACK ); 4543 testcase( pPager->doNotSpill & SPILLFLAG_OFF ); 4544 testcase( pPager->doNotSpill & SPILLFLAG_NOSYNC ); 4545 if( pPager->doNotSpill 4546 && ((pPager->doNotSpill & (SPILLFLAG_ROLLBACK|SPILLFLAG_OFF))!=0 4547 || (pPg->flags & PGHDR_NEED_SYNC)!=0) 4548 ){ 4549 return SQLITE_OK; 4550 } 4551 4552 pPager->aStat[PAGER_STAT_SPILL]++; 4553 pPg->pDirty = 0; 4554 if( pagerUseWal(pPager) ){ 4555 /* Write a single frame for this page to the log. */ 4556 rc = subjournalPageIfRequired(pPg); 4557 if( rc==SQLITE_OK ){ 4558 rc = pagerWalFrames(pPager, pPg, 0, 0); 4559 } 4560 }else{ 4561 4562 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 4563 if( pPager->tempFile==0 ){ 4564 rc = sqlite3JournalCreate(pPager->jfd); 4565 if( rc!=SQLITE_OK ) return pager_error(pPager, rc); 4566 } 4567 #endif 4568 4569 /* Sync the journal file if required. */ 4570 if( pPg->flags&PGHDR_NEED_SYNC 4571 || pPager->eState==PAGER_WRITER_CACHEMOD 4572 ){ 4573 rc = syncJournal(pPager, 1); 4574 } 4575 4576 /* Write the contents of the page out to the database file. */ 4577 if( rc==SQLITE_OK ){ 4578 assert( (pPg->flags&PGHDR_NEED_SYNC)==0 ); 4579 rc = pager_write_pagelist(pPager, pPg); 4580 } 4581 } 4582 4583 /* Mark the page as clean. */ 4584 if( rc==SQLITE_OK ){ 4585 PAGERTRACE(("STRESS %d page %d\n", PAGERID(pPager), pPg->pgno)); 4586 sqlite3PcacheMakeClean(pPg); 4587 } 4588 4589 return pager_error(pPager, rc); 4590 } 4591 4592 /* 4593 ** Flush all unreferenced dirty pages to disk. 4594 */ 4595 int sqlite3PagerFlush(Pager *pPager){ 4596 int rc = pPager->errCode; 4597 if( !MEMDB ){ 4598 PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache); 4599 assert( assert_pager_state(pPager) ); 4600 while( rc==SQLITE_OK && pList ){ 4601 PgHdr *pNext = pList->pDirty; 4602 if( pList->nRef==0 ){ 4603 rc = pagerStress((void*)pPager, pList); 4604 } 4605 pList = pNext; 4606 } 4607 } 4608 4609 return rc; 4610 } 4611 4612 /* 4613 ** Allocate and initialize a new Pager object and put a pointer to it 4614 ** in *ppPager. The pager should eventually be freed by passing it 4615 ** to sqlite3PagerClose(). 4616 ** 4617 ** The zFilename argument is the path to the database file to open. 4618 ** If zFilename is NULL then a randomly-named temporary file is created 4619 ** and used as the file to be cached. Temporary files are be deleted 4620 ** automatically when they are closed. If zFilename is ":memory:" then 4621 ** all information is held in cache. It is never written to disk. 4622 ** This can be used to implement an in-memory database. 4623 ** 4624 ** The nExtra parameter specifies the number of bytes of space allocated 4625 ** along with each page reference. This space is available to the user 4626 ** via the sqlite3PagerGetExtra() API. When a new page is allocated, the 4627 ** first 8 bytes of this space are zeroed but the remainder is uninitialized. 4628 ** (The extra space is used by btree as the MemPage object.) 4629 ** 4630 ** The flags argument is used to specify properties that affect the 4631 ** operation of the pager. It should be passed some bitwise combination 4632 ** of the PAGER_* flags. 4633 ** 4634 ** The vfsFlags parameter is a bitmask to pass to the flags parameter 4635 ** of the xOpen() method of the supplied VFS when opening files. 4636 ** 4637 ** If the pager object is allocated and the specified file opened 4638 ** successfully, SQLITE_OK is returned and *ppPager set to point to 4639 ** the new pager object. If an error occurs, *ppPager is set to NULL 4640 ** and error code returned. This function may return SQLITE_NOMEM 4641 ** (sqlite3Malloc() is used to allocate memory), SQLITE_CANTOPEN or 4642 ** various SQLITE_IO_XXX errors. 4643 */ 4644 int sqlite3PagerOpen( 4645 sqlite3_vfs *pVfs, /* The virtual file system to use */ 4646 Pager **ppPager, /* OUT: Return the Pager structure here */ 4647 const char *zFilename, /* Name of the database file to open */ 4648 int nExtra, /* Extra bytes append to each in-memory page */ 4649 int flags, /* flags controlling this file */ 4650 int vfsFlags, /* flags passed through to sqlite3_vfs.xOpen() */ 4651 void (*xReinit)(DbPage*) /* Function to reinitialize pages */ 4652 ){ 4653 u8 *pPtr; 4654 Pager *pPager = 0; /* Pager object to allocate and return */ 4655 int rc = SQLITE_OK; /* Return code */ 4656 int tempFile = 0; /* True for temp files (incl. in-memory files) */ 4657 int memDb = 0; /* True if this is an in-memory file */ 4658 #ifdef SQLITE_ENABLE_DESERIALIZE 4659 int memJM = 0; /* Memory journal mode */ 4660 #else 4661 # define memJM 0 4662 #endif 4663 int readOnly = 0; /* True if this is a read-only file */ 4664 int journalFileSize; /* Bytes to allocate for each journal fd */ 4665 char *zPathname = 0; /* Full path to database file */ 4666 int nPathname = 0; /* Number of bytes in zPathname */ 4667 int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; /* False to omit journal */ 4668 int pcacheSize = sqlite3PcacheSize(); /* Bytes to allocate for PCache */ 4669 u32 szPageDflt = SQLITE_DEFAULT_PAGE_SIZE; /* Default page size */ 4670 const char *zUri = 0; /* URI args to copy */ 4671 int nUriByte = 1; /* Number of bytes of URI args at *zUri */ 4672 int nUri = 0; /* Number of URI parameters */ 4673 4674 /* Figure out how much space is required for each journal file-handle 4675 ** (there are two of them, the main journal and the sub-journal). */ 4676 journalFileSize = ROUND8(sqlite3JournalSize(pVfs)); 4677 4678 /* Set the output variable to NULL in case an error occurs. */ 4679 *ppPager = 0; 4680 4681 #ifndef SQLITE_OMIT_MEMORYDB 4682 if( flags & PAGER_MEMORY ){ 4683 memDb = 1; 4684 if( zFilename && zFilename[0] ){ 4685 zPathname = sqlite3DbStrDup(0, zFilename); 4686 if( zPathname==0 ) return SQLITE_NOMEM_BKPT; 4687 nPathname = sqlite3Strlen30(zPathname); 4688 zFilename = 0; 4689 } 4690 } 4691 #endif 4692 4693 /* Compute and store the full pathname in an allocated buffer pointed 4694 ** to by zPathname, length nPathname. Or, if this is a temporary file, 4695 ** leave both nPathname and zPathname set to 0. 4696 */ 4697 if( zFilename && zFilename[0] ){ 4698 const char *z; 4699 nPathname = pVfs->mxPathname+1; 4700 zPathname = sqlite3DbMallocRaw(0, nPathname*2); 4701 if( zPathname==0 ){ 4702 return SQLITE_NOMEM_BKPT; 4703 } 4704 zPathname[0] = 0; /* Make sure initialized even if FullPathname() fails */ 4705 rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname); 4706 if( rc!=SQLITE_OK ){ 4707 if( rc==SQLITE_OK_SYMLINK ){ 4708 if( vfsFlags & SQLITE_OPEN_NOFOLLOW ){ 4709 rc = SQLITE_CANTOPEN_SYMLINK; 4710 }else{ 4711 rc = SQLITE_OK; 4712 } 4713 } 4714 } 4715 nPathname = sqlite3Strlen30(zPathname); 4716 z = zUri = &zFilename[sqlite3Strlen30(zFilename)+1]; 4717 while( *z ){ 4718 z += strlen(z)+1; 4719 z += strlen(z)+1; 4720 nUri++; 4721 } 4722 nUriByte = (int)(&z[1] - zUri); 4723 assert( nUriByte>=1 ); 4724 if( rc==SQLITE_OK && nPathname+8>pVfs->mxPathname ){ 4725 /* This branch is taken when the journal path required by 4726 ** the database being opened will be more than pVfs->mxPathname 4727 ** bytes in length. This means the database cannot be opened, 4728 ** as it will not be possible to open the journal file or even 4729 ** check for a hot-journal before reading. 4730 */ 4731 rc = SQLITE_CANTOPEN_BKPT; 4732 } 4733 if( rc!=SQLITE_OK ){ 4734 sqlite3DbFree(0, zPathname); 4735 return rc; 4736 } 4737 } 4738 4739 /* Allocate memory for the Pager structure, PCache object, the 4740 ** three file descriptors, the database file name and the journal 4741 ** file name. The layout in memory is as follows: 4742 ** 4743 ** Pager object (sizeof(Pager) bytes) 4744 ** PCache object (sqlite3PcacheSize() bytes) 4745 ** Database file handle (pVfs->szOsFile bytes) 4746 ** Sub-journal file handle (journalFileSize bytes) 4747 ** Main journal file handle (journalFileSize bytes) 4748 ** Ptr back to the Pager (sizeof(Pager*) bytes) 4749 ** \0\0\0\0 database prefix (4 bytes) 4750 ** Database file name (nPathname+1 bytes) 4751 ** URI query parameters (nUriByte bytes) 4752 ** Journal filename (nPathname+8+1 bytes) 4753 ** WAL filename (nPathname+4+1 bytes) 4754 ** \0\0\0 terminator (3 bytes) 4755 ** 4756 ** Some 3rd-party software, over which we have no control, depends on 4757 ** the specific order of the filenames and the \0 separators between them 4758 ** so that it can (for example) find the database filename given the WAL 4759 ** filename without using the sqlite3_filename_database() API. This is a 4760 ** misuse of SQLite and a bug in the 3rd-party software, but the 3rd-party 4761 ** software is in widespread use, so we try to avoid changing the filename 4762 ** order and formatting if possible. In particular, the details of the 4763 ** filename format expected by 3rd-party software should be as follows: 4764 ** 4765 ** - Main Database Path 4766 ** - \0 4767 ** - Multiple URI components consisting of: 4768 ** - Key 4769 ** - \0 4770 ** - Value 4771 ** - \0 4772 ** - \0 4773 ** - Journal Path 4774 ** - \0 4775 ** - WAL Path (zWALName) 4776 ** - \0 4777 ** 4778 ** The sqlite3_create_filename() interface and the databaseFilename() utility 4779 ** that is used by sqlite3_filename_database() and kin also depend on the 4780 ** specific formatting and order of the various filenames, so if the format 4781 ** changes here, be sure to change it there as well. 4782 */ 4783 pPtr = (u8 *)sqlite3MallocZero( 4784 ROUND8(sizeof(*pPager)) + /* Pager structure */ 4785 ROUND8(pcacheSize) + /* PCache object */ 4786 ROUND8(pVfs->szOsFile) + /* The main db file */ 4787 journalFileSize * 2 + /* The two journal files */ 4788 sizeof(pPager) + /* Space to hold a pointer */ 4789 4 + /* Database prefix */ 4790 nPathname + 1 + /* database filename */ 4791 nUriByte + /* query parameters */ 4792 nPathname + 8 + 1 + /* Journal filename */ 4793 #ifndef SQLITE_OMIT_WAL 4794 nPathname + 4 + 1 + /* WAL filename */ 4795 #endif 4796 3 /* Terminator */ 4797 ); 4798 assert( EIGHT_BYTE_ALIGNMENT(SQLITE_INT_TO_PTR(journalFileSize)) ); 4799 if( !pPtr ){ 4800 sqlite3DbFree(0, zPathname); 4801 return SQLITE_NOMEM_BKPT; 4802 } 4803 pPager = (Pager*)pPtr; pPtr += ROUND8(sizeof(*pPager)); 4804 pPager->pPCache = (PCache*)pPtr; pPtr += ROUND8(pcacheSize); 4805 pPager->fd = (sqlite3_file*)pPtr; pPtr += ROUND8(pVfs->szOsFile); 4806 pPager->sjfd = (sqlite3_file*)pPtr; pPtr += journalFileSize; 4807 pPager->jfd = (sqlite3_file*)pPtr; pPtr += journalFileSize; 4808 assert( EIGHT_BYTE_ALIGNMENT(pPager->jfd) ); 4809 memcpy(pPtr, &pPager, sizeof(pPager)); pPtr += sizeof(pPager); 4810 4811 /* Fill in the Pager.zFilename and pPager.zQueryParam fields */ 4812 pPtr += 4; /* Skip zero prefix */ 4813 pPager->zFilename = (char*)pPtr; 4814 if( nPathname>0 ){ 4815 memcpy(pPtr, zPathname, nPathname); pPtr += nPathname + 1; 4816 if( zUri ){ 4817 memcpy(pPtr, zUri, nUriByte); pPtr += nUriByte; 4818 }else{ 4819 pPtr++; 4820 } 4821 } 4822 4823 4824 /* Fill in Pager.zJournal */ 4825 if( nPathname>0 ){ 4826 pPager->zJournal = (char*)pPtr; 4827 memcpy(pPtr, zPathname, nPathname); pPtr += nPathname; 4828 memcpy(pPtr, "-journal",8); pPtr += 8 + 1; 4829 #ifdef SQLITE_ENABLE_8_3_NAMES 4830 sqlite3FileSuffix3(zFilename,pPager->zJournal); 4831 pPtr = (u8*)(pPager->zJournal + sqlite3Strlen30(pPager->zJournal)+1); 4832 #endif 4833 }else{ 4834 pPager->zJournal = 0; 4835 } 4836 4837 #ifndef SQLITE_OMIT_WAL 4838 /* Fill in Pager.zWal */ 4839 if( nPathname>0 ){ 4840 pPager->zWal = (char*)pPtr; 4841 memcpy(pPtr, zPathname, nPathname); pPtr += nPathname; 4842 memcpy(pPtr, "-wal", 4); pPtr += 4 + 1; 4843 #ifdef SQLITE_ENABLE_8_3_NAMES 4844 sqlite3FileSuffix3(zFilename, pPager->zWal); 4845 pPtr = (u8*)(pPager->zWal + sqlite3Strlen30(pPager->zWal)+1); 4846 #endif 4847 }else{ 4848 pPager->zWal = 0; 4849 } 4850 #endif 4851 4852 if( nPathname ) sqlite3DbFree(0, zPathname); 4853 pPager->pVfs = pVfs; 4854 pPager->vfsFlags = vfsFlags; 4855 4856 /* Open the pager file. 4857 */ 4858 if( zFilename && zFilename[0] ){ 4859 int fout = 0; /* VFS flags returned by xOpen() */ 4860 rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, vfsFlags, &fout); 4861 assert( !memDb ); 4862 #ifdef SQLITE_ENABLE_DESERIALIZE 4863 memJM = (fout&SQLITE_OPEN_MEMORY)!=0; 4864 #endif 4865 readOnly = (fout&SQLITE_OPEN_READONLY)!=0; 4866 4867 /* If the file was successfully opened for read/write access, 4868 ** choose a default page size in case we have to create the 4869 ** database file. The default page size is the maximum of: 4870 ** 4871 ** + SQLITE_DEFAULT_PAGE_SIZE, 4872 ** + The value returned by sqlite3OsSectorSize() 4873 ** + The largest page size that can be written atomically. 4874 */ 4875 if( rc==SQLITE_OK ){ 4876 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); 4877 if( !readOnly ){ 4878 setSectorSize(pPager); 4879 assert(SQLITE_DEFAULT_PAGE_SIZE<=SQLITE_MAX_DEFAULT_PAGE_SIZE); 4880 if( szPageDflt<pPager->sectorSize ){ 4881 if( pPager->sectorSize>SQLITE_MAX_DEFAULT_PAGE_SIZE ){ 4882 szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE; 4883 }else{ 4884 szPageDflt = (u32)pPager->sectorSize; 4885 } 4886 } 4887 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 4888 { 4889 int ii; 4890 assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); 4891 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); 4892 assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536); 4893 for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){ 4894 if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ){ 4895 szPageDflt = ii; 4896 } 4897 } 4898 } 4899 #endif 4900 } 4901 pPager->noLock = sqlite3_uri_boolean(pPager->zFilename, "nolock", 0); 4902 if( (iDc & SQLITE_IOCAP_IMMUTABLE)!=0 4903 || sqlite3_uri_boolean(pPager->zFilename, "immutable", 0) ){ 4904 vfsFlags |= SQLITE_OPEN_READONLY; 4905 goto act_like_temp_file; 4906 } 4907 } 4908 }else{ 4909 /* If a temporary file is requested, it is not opened immediately. 4910 ** In this case we accept the default page size and delay actually 4911 ** opening the file until the first call to OsWrite(). 4912 ** 4913 ** This branch is also run for an in-memory database. An in-memory 4914 ** database is the same as a temp-file that is never written out to 4915 ** disk and uses an in-memory rollback journal. 4916 ** 4917 ** This branch also runs for files marked as immutable. 4918 */ 4919 act_like_temp_file: 4920 tempFile = 1; 4921 pPager->eState = PAGER_READER; /* Pretend we already have a lock */ 4922 pPager->eLock = EXCLUSIVE_LOCK; /* Pretend we are in EXCLUSIVE mode */ 4923 pPager->noLock = 1; /* Do no locking */ 4924 readOnly = (vfsFlags&SQLITE_OPEN_READONLY); 4925 } 4926 4927 /* The following call to PagerSetPagesize() serves to set the value of 4928 ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer. 4929 */ 4930 if( rc==SQLITE_OK ){ 4931 assert( pPager->memDb==0 ); 4932 rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1); 4933 testcase( rc!=SQLITE_OK ); 4934 } 4935 4936 /* Initialize the PCache object. */ 4937 if( rc==SQLITE_OK ){ 4938 nExtra = ROUND8(nExtra); 4939 assert( nExtra>=8 && nExtra<1000 ); 4940 rc = sqlite3PcacheOpen(szPageDflt, nExtra, !memDb, 4941 !memDb?pagerStress:0, (void *)pPager, pPager->pPCache); 4942 } 4943 4944 /* If an error occurred above, free the Pager structure and close the file. 4945 */ 4946 if( rc!=SQLITE_OK ){ 4947 sqlite3OsClose(pPager->fd); 4948 sqlite3PageFree(pPager->pTmpSpace); 4949 sqlite3_free(pPager); 4950 return rc; 4951 } 4952 4953 PAGERTRACE(("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename)); 4954 IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename)) 4955 4956 pPager->useJournal = (u8)useJournal; 4957 /* pPager->stmtOpen = 0; */ 4958 /* pPager->stmtInUse = 0; */ 4959 /* pPager->nRef = 0; */ 4960 /* pPager->stmtSize = 0; */ 4961 /* pPager->stmtJSize = 0; */ 4962 /* pPager->nPage = 0; */ 4963 pPager->mxPgno = SQLITE_MAX_PAGE_COUNT; 4964 /* pPager->state = PAGER_UNLOCK; */ 4965 /* pPager->errMask = 0; */ 4966 pPager->tempFile = (u8)tempFile; 4967 assert( tempFile==PAGER_LOCKINGMODE_NORMAL 4968 || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE ); 4969 assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 ); 4970 pPager->exclusiveMode = (u8)tempFile; 4971 pPager->changeCountDone = pPager->tempFile; 4972 pPager->memDb = (u8)memDb; 4973 pPager->readOnly = (u8)readOnly; 4974 assert( useJournal || pPager->tempFile ); 4975 pPager->noSync = pPager->tempFile; 4976 if( pPager->noSync ){ 4977 assert( pPager->fullSync==0 ); 4978 assert( pPager->extraSync==0 ); 4979 assert( pPager->syncFlags==0 ); 4980 assert( pPager->walSyncFlags==0 ); 4981 }else{ 4982 pPager->fullSync = 1; 4983 pPager->extraSync = 0; 4984 pPager->syncFlags = SQLITE_SYNC_NORMAL; 4985 pPager->walSyncFlags = SQLITE_SYNC_NORMAL | (SQLITE_SYNC_NORMAL<<2); 4986 } 4987 /* pPager->pFirst = 0; */ 4988 /* pPager->pFirstSynced = 0; */ 4989 /* pPager->pLast = 0; */ 4990 pPager->nExtra = (u16)nExtra; 4991 pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT; 4992 assert( isOpen(pPager->fd) || tempFile ); 4993 setSectorSize(pPager); 4994 if( !useJournal ){ 4995 pPager->journalMode = PAGER_JOURNALMODE_OFF; 4996 }else if( memDb || memJM ){ 4997 pPager->journalMode = PAGER_JOURNALMODE_MEMORY; 4998 } 4999 /* pPager->xBusyHandler = 0; */ 5000 /* pPager->pBusyHandlerArg = 0; */ 5001 pPager->xReiniter = xReinit; 5002 setGetterMethod(pPager); 5003 /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */ 5004 /* pPager->szMmap = SQLITE_DEFAULT_MMAP_SIZE // will be set by btree.c */ 5005 5006 *ppPager = pPager; 5007 return SQLITE_OK; 5008 } 5009 5010 /* 5011 ** Return the sqlite3_file for the main database given the name 5012 ** of the corresonding WAL or Journal name as passed into 5013 ** xOpen. 5014 */ 5015 sqlite3_file *sqlite3_database_file_object(const char *zName){ 5016 Pager *pPager; 5017 while( zName[-1]!=0 || zName[-2]!=0 || zName[-3]!=0 || zName[-4]!=0 ){ 5018 zName--; 5019 } 5020 pPager = *(Pager**)(zName - 4 - sizeof(Pager*)); 5021 return pPager->fd; 5022 } 5023 5024 5025 /* 5026 ** This function is called after transitioning from PAGER_UNLOCK to 5027 ** PAGER_SHARED state. It tests if there is a hot journal present in 5028 ** the file-system for the given pager. A hot journal is one that 5029 ** needs to be played back. According to this function, a hot-journal 5030 ** file exists if the following criteria are met: 5031 ** 5032 ** * The journal file exists in the file system, and 5033 ** * No process holds a RESERVED or greater lock on the database file, and 5034 ** * The database file itself is greater than 0 bytes in size, and 5035 ** * The first byte of the journal file exists and is not 0x00. 5036 ** 5037 ** If the current size of the database file is 0 but a journal file 5038 ** exists, that is probably an old journal left over from a prior 5039 ** database with the same name. In this case the journal file is 5040 ** just deleted using OsDelete, *pExists is set to 0 and SQLITE_OK 5041 ** is returned. 5042 ** 5043 ** This routine does not check if there is a master journal filename 5044 ** at the end of the file. If there is, and that master journal file 5045 ** does not exist, then the journal file is not really hot. In this 5046 ** case this routine will return a false-positive. The pager_playback() 5047 ** routine will discover that the journal file is not really hot and 5048 ** will not roll it back. 5049 ** 5050 ** If a hot-journal file is found to exist, *pExists is set to 1 and 5051 ** SQLITE_OK returned. If no hot-journal file is present, *pExists is 5052 ** set to 0 and SQLITE_OK returned. If an IO error occurs while trying 5053 ** to determine whether or not a hot-journal file exists, the IO error 5054 ** code is returned and the value of *pExists is undefined. 5055 */ 5056 static int hasHotJournal(Pager *pPager, int *pExists){ 5057 sqlite3_vfs * const pVfs = pPager->pVfs; 5058 int rc = SQLITE_OK; /* Return code */ 5059 int exists = 1; /* True if a journal file is present */ 5060 int jrnlOpen = !!isOpen(pPager->jfd); 5061 5062 assert( pPager->useJournal ); 5063 assert( isOpen(pPager->fd) ); 5064 assert( pPager->eState==PAGER_OPEN ); 5065 5066 assert( jrnlOpen==0 || ( sqlite3OsDeviceCharacteristics(pPager->jfd) & 5067 SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN 5068 )); 5069 5070 *pExists = 0; 5071 if( !jrnlOpen ){ 5072 rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists); 5073 } 5074 if( rc==SQLITE_OK && exists ){ 5075 int locked = 0; /* True if some process holds a RESERVED lock */ 5076 5077 /* Race condition here: Another process might have been holding the 5078 ** the RESERVED lock and have a journal open at the sqlite3OsAccess() 5079 ** call above, but then delete the journal and drop the lock before 5080 ** we get to the following sqlite3OsCheckReservedLock() call. If that 5081 ** is the case, this routine might think there is a hot journal when 5082 ** in fact there is none. This results in a false-positive which will 5083 ** be dealt with by the playback routine. Ticket #3883. 5084 */ 5085 rc = sqlite3OsCheckReservedLock(pPager->fd, &locked); 5086 if( rc==SQLITE_OK && !locked ){ 5087 Pgno nPage; /* Number of pages in database file */ 5088 5089 assert( pPager->tempFile==0 ); 5090 rc = pagerPagecount(pPager, &nPage); 5091 if( rc==SQLITE_OK ){ 5092 /* If the database is zero pages in size, that means that either (1) the 5093 ** journal is a remnant from a prior database with the same name where 5094 ** the database file but not the journal was deleted, or (2) the initial 5095 ** transaction that populates a new database is being rolled back. 5096 ** In either case, the journal file can be deleted. However, take care 5097 ** not to delete the journal file if it is already open due to 5098 ** journal_mode=PERSIST. 5099 */ 5100 if( nPage==0 && !jrnlOpen ){ 5101 sqlite3BeginBenignMalloc(); 5102 if( pagerLockDb(pPager, RESERVED_LOCK)==SQLITE_OK ){ 5103 sqlite3OsDelete(pVfs, pPager->zJournal, 0); 5104 if( !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK); 5105 } 5106 sqlite3EndBenignMalloc(); 5107 }else{ 5108 /* The journal file exists and no other connection has a reserved 5109 ** or greater lock on the database file. Now check that there is 5110 ** at least one non-zero bytes at the start of the journal file. 5111 ** If there is, then we consider this journal to be hot. If not, 5112 ** it can be ignored. 5113 */ 5114 if( !jrnlOpen ){ 5115 int f = SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL; 5116 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &f); 5117 } 5118 if( rc==SQLITE_OK ){ 5119 u8 first = 0; 5120 rc = sqlite3OsRead(pPager->jfd, (void *)&first, 1, 0); 5121 if( rc==SQLITE_IOERR_SHORT_READ ){ 5122 rc = SQLITE_OK; 5123 } 5124 if( !jrnlOpen ){ 5125 sqlite3OsClose(pPager->jfd); 5126 } 5127 *pExists = (first!=0); 5128 }else if( rc==SQLITE_CANTOPEN ){ 5129 /* If we cannot open the rollback journal file in order to see if 5130 ** it has a zero header, that might be due to an I/O error, or 5131 ** it might be due to the race condition described above and in 5132 ** ticket #3883. Either way, assume that the journal is hot. 5133 ** This might be a false positive. But if it is, then the 5134 ** automatic journal playback and recovery mechanism will deal 5135 ** with it under an EXCLUSIVE lock where we do not need to 5136 ** worry so much with race conditions. 5137 */ 5138 *pExists = 1; 5139 rc = SQLITE_OK; 5140 } 5141 } 5142 } 5143 } 5144 } 5145 5146 return rc; 5147 } 5148 5149 /* 5150 ** This function is called to obtain a shared lock on the database file. 5151 ** It is illegal to call sqlite3PagerGet() until after this function 5152 ** has been successfully called. If a shared-lock is already held when 5153 ** this function is called, it is a no-op. 5154 ** 5155 ** The following operations are also performed by this function. 5156 ** 5157 ** 1) If the pager is currently in PAGER_OPEN state (no lock held 5158 ** on the database file), then an attempt is made to obtain a 5159 ** SHARED lock on the database file. Immediately after obtaining 5160 ** the SHARED lock, the file-system is checked for a hot-journal, 5161 ** which is played back if present. Following any hot-journal 5162 ** rollback, the contents of the cache are validated by checking 5163 ** the 'change-counter' field of the database file header and 5164 ** discarded if they are found to be invalid. 5165 ** 5166 ** 2) If the pager is running in exclusive-mode, and there are currently 5167 ** no outstanding references to any pages, and is in the error state, 5168 ** then an attempt is made to clear the error state by discarding 5169 ** the contents of the page cache and rolling back any open journal 5170 ** file. 5171 ** 5172 ** If everything is successful, SQLITE_OK is returned. If an IO error 5173 ** occurs while locking the database, checking for a hot-journal file or 5174 ** rolling back a journal file, the IO error code is returned. 5175 */ 5176 int sqlite3PagerSharedLock(Pager *pPager){ 5177 int rc = SQLITE_OK; /* Return code */ 5178 5179 /* This routine is only called from b-tree and only when there are no 5180 ** outstanding pages. This implies that the pager state should either 5181 ** be OPEN or READER. READER is only possible if the pager is or was in 5182 ** exclusive access mode. */ 5183 assert( sqlite3PcacheRefCount(pPager->pPCache)==0 ); 5184 assert( assert_pager_state(pPager) ); 5185 assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); 5186 assert( pPager->errCode==SQLITE_OK ); 5187 5188 if( !pagerUseWal(pPager) && pPager->eState==PAGER_OPEN ){ 5189 int bHotJournal = 1; /* True if there exists a hot journal-file */ 5190 5191 assert( !MEMDB ); 5192 assert( pPager->tempFile==0 || pPager->eLock==EXCLUSIVE_LOCK ); 5193 5194 rc = pager_wait_on_lock(pPager, SHARED_LOCK); 5195 if( rc!=SQLITE_OK ){ 5196 assert( pPager->eLock==NO_LOCK || pPager->eLock==UNKNOWN_LOCK ); 5197 goto failed; 5198 } 5199 5200 /* If a journal file exists, and there is no RESERVED lock on the 5201 ** database file, then it either needs to be played back or deleted. 5202 */ 5203 if( pPager->eLock<=SHARED_LOCK ){ 5204 rc = hasHotJournal(pPager, &bHotJournal); 5205 } 5206 if( rc!=SQLITE_OK ){ 5207 goto failed; 5208 } 5209 if( bHotJournal ){ 5210 if( pPager->readOnly ){ 5211 rc = SQLITE_READONLY_ROLLBACK; 5212 goto failed; 5213 } 5214 5215 /* Get an EXCLUSIVE lock on the database file. At this point it is 5216 ** important that a RESERVED lock is not obtained on the way to the 5217 ** EXCLUSIVE lock. If it were, another process might open the 5218 ** database file, detect the RESERVED lock, and conclude that the 5219 ** database is safe to read while this process is still rolling the 5220 ** hot-journal back. 5221 ** 5222 ** Because the intermediate RESERVED lock is not requested, any 5223 ** other process attempting to access the database file will get to 5224 ** this point in the code and fail to obtain its own EXCLUSIVE lock 5225 ** on the database file. 5226 ** 5227 ** Unless the pager is in locking_mode=exclusive mode, the lock is 5228 ** downgraded to SHARED_LOCK before this function returns. 5229 */ 5230 rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); 5231 if( rc!=SQLITE_OK ){ 5232 goto failed; 5233 } 5234 5235 /* If it is not already open and the file exists on disk, open the 5236 ** journal for read/write access. Write access is required because 5237 ** in exclusive-access mode the file descriptor will be kept open 5238 ** and possibly used for a transaction later on. Also, write-access 5239 ** is usually required to finalize the journal in journal_mode=persist 5240 ** mode (and also for journal_mode=truncate on some systems). 5241 ** 5242 ** If the journal does not exist, it usually means that some 5243 ** other connection managed to get in and roll it back before 5244 ** this connection obtained the exclusive lock above. Or, it 5245 ** may mean that the pager was in the error-state when this 5246 ** function was called and the journal file does not exist. 5247 */ 5248 if( !isOpen(pPager->jfd) ){ 5249 sqlite3_vfs * const pVfs = pPager->pVfs; 5250 int bExists; /* True if journal file exists */ 5251 rc = sqlite3OsAccess( 5252 pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &bExists); 5253 if( rc==SQLITE_OK && bExists ){ 5254 int fout = 0; 5255 int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL; 5256 assert( !pPager->tempFile ); 5257 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout); 5258 assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); 5259 if( rc==SQLITE_OK && fout&SQLITE_OPEN_READONLY ){ 5260 rc = SQLITE_CANTOPEN_BKPT; 5261 sqlite3OsClose(pPager->jfd); 5262 } 5263 } 5264 } 5265 5266 /* Playback and delete the journal. Drop the database write 5267 ** lock and reacquire the read lock. Purge the cache before 5268 ** playing back the hot-journal so that we don't end up with 5269 ** an inconsistent cache. Sync the hot journal before playing 5270 ** it back since the process that crashed and left the hot journal 5271 ** probably did not sync it and we are required to always sync 5272 ** the journal before playing it back. 5273 */ 5274 if( isOpen(pPager->jfd) ){ 5275 assert( rc==SQLITE_OK ); 5276 rc = pagerSyncHotJournal(pPager); 5277 if( rc==SQLITE_OK ){ 5278 rc = pager_playback(pPager, !pPager->tempFile); 5279 pPager->eState = PAGER_OPEN; 5280 } 5281 }else if( !pPager->exclusiveMode ){ 5282 pagerUnlockDb(pPager, SHARED_LOCK); 5283 } 5284 5285 if( rc!=SQLITE_OK ){ 5286 /* This branch is taken if an error occurs while trying to open 5287 ** or roll back a hot-journal while holding an EXCLUSIVE lock. The 5288 ** pager_unlock() routine will be called before returning to unlock 5289 ** the file. If the unlock attempt fails, then Pager.eLock must be 5290 ** set to UNKNOWN_LOCK (see the comment above the #define for 5291 ** UNKNOWN_LOCK above for an explanation). 5292 ** 5293 ** In order to get pager_unlock() to do this, set Pager.eState to 5294 ** PAGER_ERROR now. This is not actually counted as a transition 5295 ** to ERROR state in the state diagram at the top of this file, 5296 ** since we know that the same call to pager_unlock() will very 5297 ** shortly transition the pager object to the OPEN state. Calling 5298 ** assert_pager_state() would fail now, as it should not be possible 5299 ** to be in ERROR state when there are zero outstanding page 5300 ** references. 5301 */ 5302 pager_error(pPager, rc); 5303 goto failed; 5304 } 5305 5306 assert( pPager->eState==PAGER_OPEN ); 5307 assert( (pPager->eLock==SHARED_LOCK) 5308 || (pPager->exclusiveMode && pPager->eLock>SHARED_LOCK) 5309 ); 5310 } 5311 5312 if( !pPager->tempFile && pPager->hasHeldSharedLock ){ 5313 /* The shared-lock has just been acquired then check to 5314 ** see if the database has been modified. If the database has changed, 5315 ** flush the cache. The hasHeldSharedLock flag prevents this from 5316 ** occurring on the very first access to a file, in order to save a 5317 ** single unnecessary sqlite3OsRead() call at the start-up. 5318 ** 5319 ** Database changes are detected by looking at 15 bytes beginning 5320 ** at offset 24 into the file. The first 4 of these 16 bytes are 5321 ** a 32-bit counter that is incremented with each change. The 5322 ** other bytes change randomly with each file change when 5323 ** a codec is in use. 5324 ** 5325 ** There is a vanishingly small chance that a change will not be 5326 ** detected. The chance of an undetected change is so small that 5327 ** it can be neglected. 5328 */ 5329 char dbFileVers[sizeof(pPager->dbFileVers)]; 5330 5331 IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers))); 5332 rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24); 5333 if( rc!=SQLITE_OK ){ 5334 if( rc!=SQLITE_IOERR_SHORT_READ ){ 5335 goto failed; 5336 } 5337 memset(dbFileVers, 0, sizeof(dbFileVers)); 5338 } 5339 5340 if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){ 5341 pager_reset(pPager); 5342 5343 /* Unmap the database file. It is possible that external processes 5344 ** may have truncated the database file and then extended it back 5345 ** to its original size while this process was not holding a lock. 5346 ** In this case there may exist a Pager.pMap mapping that appears 5347 ** to be the right size but is not actually valid. Avoid this 5348 ** possibility by unmapping the db here. */ 5349 if( USEFETCH(pPager) ){ 5350 sqlite3OsUnfetch(pPager->fd, 0, 0); 5351 } 5352 } 5353 } 5354 5355 /* If there is a WAL file in the file-system, open this database in WAL 5356 ** mode. Otherwise, the following function call is a no-op. 5357 */ 5358 rc = pagerOpenWalIfPresent(pPager); 5359 #ifndef SQLITE_OMIT_WAL 5360 assert( pPager->pWal==0 || rc==SQLITE_OK ); 5361 #endif 5362 } 5363 5364 if( pagerUseWal(pPager) ){ 5365 assert( rc==SQLITE_OK ); 5366 rc = pagerBeginReadTransaction(pPager); 5367 } 5368 5369 if( pPager->tempFile==0 && pPager->eState==PAGER_OPEN && rc==SQLITE_OK ){ 5370 rc = pagerPagecount(pPager, &pPager->dbSize); 5371 } 5372 5373 failed: 5374 if( rc!=SQLITE_OK ){ 5375 assert( !MEMDB ); 5376 pager_unlock(pPager); 5377 assert( pPager->eState==PAGER_OPEN ); 5378 }else{ 5379 pPager->eState = PAGER_READER; 5380 pPager->hasHeldSharedLock = 1; 5381 } 5382 return rc; 5383 } 5384 5385 /* 5386 ** If the reference count has reached zero, rollback any active 5387 ** transaction and unlock the pager. 5388 ** 5389 ** Except, in locking_mode=EXCLUSIVE when there is nothing to in 5390 ** the rollback journal, the unlock is not performed and there is 5391 ** nothing to rollback, so this routine is a no-op. 5392 */ 5393 static void pagerUnlockIfUnused(Pager *pPager){ 5394 if( sqlite3PcacheRefCount(pPager->pPCache)==0 ){ 5395 assert( pPager->nMmapOut==0 ); /* because page1 is never memory mapped */ 5396 pagerUnlockAndRollback(pPager); 5397 } 5398 } 5399 5400 /* 5401 ** The page getter methods each try to acquire a reference to a 5402 ** page with page number pgno. If the requested reference is 5403 ** successfully obtained, it is copied to *ppPage and SQLITE_OK returned. 5404 ** 5405 ** There are different implementations of the getter method depending 5406 ** on the current state of the pager. 5407 ** 5408 ** getPageNormal() -- The normal getter 5409 ** getPageError() -- Used if the pager is in an error state 5410 ** getPageMmap() -- Used if memory-mapped I/O is enabled 5411 ** 5412 ** If the requested page is already in the cache, it is returned. 5413 ** Otherwise, a new page object is allocated and populated with data 5414 ** read from the database file. In some cases, the pcache module may 5415 ** choose not to allocate a new page object and may reuse an existing 5416 ** object with no outstanding references. 5417 ** 5418 ** The extra data appended to a page is always initialized to zeros the 5419 ** first time a page is loaded into memory. If the page requested is 5420 ** already in the cache when this function is called, then the extra 5421 ** data is left as it was when the page object was last used. 5422 ** 5423 ** If the database image is smaller than the requested page or if 5424 ** the flags parameter contains the PAGER_GET_NOCONTENT bit and the 5425 ** requested page is not already stored in the cache, then no 5426 ** actual disk read occurs. In this case the memory image of the 5427 ** page is initialized to all zeros. 5428 ** 5429 ** If PAGER_GET_NOCONTENT is true, it means that we do not care about 5430 ** the contents of the page. This occurs in two scenarios: 5431 ** 5432 ** a) When reading a free-list leaf page from the database, and 5433 ** 5434 ** b) When a savepoint is being rolled back and we need to load 5435 ** a new page into the cache to be filled with the data read 5436 ** from the savepoint journal. 5437 ** 5438 ** If PAGER_GET_NOCONTENT is true, then the data returned is zeroed instead 5439 ** of being read from the database. Additionally, the bits corresponding 5440 ** to pgno in Pager.pInJournal (bitvec of pages already written to the 5441 ** journal file) and the PagerSavepoint.pInSavepoint bitvecs of any open 5442 ** savepoints are set. This means if the page is made writable at any 5443 ** point in the future, using a call to sqlite3PagerWrite(), its contents 5444 ** will not be journaled. This saves IO. 5445 ** 5446 ** The acquisition might fail for several reasons. In all cases, 5447 ** an appropriate error code is returned and *ppPage is set to NULL. 5448 ** 5449 ** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt 5450 ** to find a page in the in-memory cache first. If the page is not already 5451 ** in memory, this routine goes to disk to read it in whereas Lookup() 5452 ** just returns 0. This routine acquires a read-lock the first time it 5453 ** has to go to disk, and could also playback an old journal if necessary. 5454 ** Since Lookup() never goes to disk, it never has to deal with locks 5455 ** or journal files. 5456 */ 5457 static int getPageNormal( 5458 Pager *pPager, /* The pager open on the database file */ 5459 Pgno pgno, /* Page number to fetch */ 5460 DbPage **ppPage, /* Write a pointer to the page here */ 5461 int flags /* PAGER_GET_XXX flags */ 5462 ){ 5463 int rc = SQLITE_OK; 5464 PgHdr *pPg; 5465 u8 noContent; /* True if PAGER_GET_NOCONTENT is set */ 5466 sqlite3_pcache_page *pBase; 5467 5468 assert( pPager->errCode==SQLITE_OK ); 5469 assert( pPager->eState>=PAGER_READER ); 5470 assert( assert_pager_state(pPager) ); 5471 assert( pPager->hasHeldSharedLock==1 ); 5472 5473 if( pgno==0 ) return SQLITE_CORRUPT_BKPT; 5474 pBase = sqlite3PcacheFetch(pPager->pPCache, pgno, 3); 5475 if( pBase==0 ){ 5476 pPg = 0; 5477 rc = sqlite3PcacheFetchStress(pPager->pPCache, pgno, &pBase); 5478 if( rc!=SQLITE_OK ) goto pager_acquire_err; 5479 if( pBase==0 ){ 5480 rc = SQLITE_NOMEM_BKPT; 5481 goto pager_acquire_err; 5482 } 5483 } 5484 pPg = *ppPage = sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pBase); 5485 assert( pPg==(*ppPage) ); 5486 assert( pPg->pgno==pgno ); 5487 assert( pPg->pPager==pPager || pPg->pPager==0 ); 5488 5489 noContent = (flags & PAGER_GET_NOCONTENT)!=0; 5490 if( pPg->pPager && !noContent ){ 5491 /* In this case the pcache already contains an initialized copy of 5492 ** the page. Return without further ado. */ 5493 assert( pgno<=PAGER_MAX_PGNO && pgno!=PAGER_MJ_PGNO(pPager) ); 5494 pPager->aStat[PAGER_STAT_HIT]++; 5495 return SQLITE_OK; 5496 5497 }else{ 5498 /* The pager cache has created a new page. Its content needs to 5499 ** be initialized. But first some error checks: 5500 ** 5501 ** (1) The maximum page number is 2^31 5502 ** (2) Never try to fetch the locking page 5503 */ 5504 if( pgno>PAGER_MAX_PGNO || pgno==PAGER_MJ_PGNO(pPager) ){ 5505 rc = SQLITE_CORRUPT_BKPT; 5506 goto pager_acquire_err; 5507 } 5508 5509 pPg->pPager = pPager; 5510 5511 assert( !isOpen(pPager->fd) || !MEMDB ); 5512 if( !isOpen(pPager->fd) || pPager->dbSize<pgno || noContent ){ 5513 if( pgno>pPager->mxPgno ){ 5514 rc = SQLITE_FULL; 5515 goto pager_acquire_err; 5516 } 5517 if( noContent ){ 5518 /* Failure to set the bits in the InJournal bit-vectors is benign. 5519 ** It merely means that we might do some extra work to journal a 5520 ** page that does not need to be journaled. Nevertheless, be sure 5521 ** to test the case where a malloc error occurs while trying to set 5522 ** a bit in a bit vector. 5523 */ 5524 sqlite3BeginBenignMalloc(); 5525 if( pgno<=pPager->dbOrigSize ){ 5526 TESTONLY( rc = ) sqlite3BitvecSet(pPager->pInJournal, pgno); 5527 testcase( rc==SQLITE_NOMEM ); 5528 } 5529 TESTONLY( rc = ) addToSavepointBitvecs(pPager, pgno); 5530 testcase( rc==SQLITE_NOMEM ); 5531 sqlite3EndBenignMalloc(); 5532 } 5533 memset(pPg->pData, 0, pPager->pageSize); 5534 IOTRACE(("ZERO %p %d\n", pPager, pgno)); 5535 }else{ 5536 assert( pPg->pPager==pPager ); 5537 pPager->aStat[PAGER_STAT_MISS]++; 5538 rc = readDbPage(pPg); 5539 if( rc!=SQLITE_OK ){ 5540 goto pager_acquire_err; 5541 } 5542 } 5543 pager_set_pagehash(pPg); 5544 } 5545 return SQLITE_OK; 5546 5547 pager_acquire_err: 5548 assert( rc!=SQLITE_OK ); 5549 if( pPg ){ 5550 sqlite3PcacheDrop(pPg); 5551 } 5552 pagerUnlockIfUnused(pPager); 5553 *ppPage = 0; 5554 return rc; 5555 } 5556 5557 #if SQLITE_MAX_MMAP_SIZE>0 5558 /* The page getter for when memory-mapped I/O is enabled */ 5559 static int getPageMMap( 5560 Pager *pPager, /* The pager open on the database file */ 5561 Pgno pgno, /* Page number to fetch */ 5562 DbPage **ppPage, /* Write a pointer to the page here */ 5563 int flags /* PAGER_GET_XXX flags */ 5564 ){ 5565 int rc = SQLITE_OK; 5566 PgHdr *pPg = 0; 5567 u32 iFrame = 0; /* Frame to read from WAL file */ 5568 5569 /* It is acceptable to use a read-only (mmap) page for any page except 5570 ** page 1 if there is no write-transaction open or the ACQUIRE_READONLY 5571 ** flag was specified by the caller. And so long as the db is not a 5572 ** temporary or in-memory database. */ 5573 const int bMmapOk = (pgno>1 5574 && (pPager->eState==PAGER_READER || (flags & PAGER_GET_READONLY)) 5575 ); 5576 5577 assert( USEFETCH(pPager) ); 5578 5579 /* Optimization note: Adding the "pgno<=1" term before "pgno==0" here 5580 ** allows the compiler optimizer to reuse the results of the "pgno>1" 5581 ** test in the previous statement, and avoid testing pgno==0 in the 5582 ** common case where pgno is large. */ 5583 if( pgno<=1 && pgno==0 ){ 5584 return SQLITE_CORRUPT_BKPT; 5585 } 5586 assert( pPager->eState>=PAGER_READER ); 5587 assert( assert_pager_state(pPager) ); 5588 assert( pPager->hasHeldSharedLock==1 ); 5589 assert( pPager->errCode==SQLITE_OK ); 5590 5591 if( bMmapOk && pagerUseWal(pPager) ){ 5592 rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iFrame); 5593 if( rc!=SQLITE_OK ){ 5594 *ppPage = 0; 5595 return rc; 5596 } 5597 } 5598 if( bMmapOk && iFrame==0 ){ 5599 void *pData = 0; 5600 rc = sqlite3OsFetch(pPager->fd, 5601 (i64)(pgno-1) * pPager->pageSize, pPager->pageSize, &pData 5602 ); 5603 if( rc==SQLITE_OK && pData ){ 5604 if( pPager->eState>PAGER_READER || pPager->tempFile ){ 5605 pPg = sqlite3PagerLookup(pPager, pgno); 5606 } 5607 if( pPg==0 ){ 5608 rc = pagerAcquireMapPage(pPager, pgno, pData, &pPg); 5609 }else{ 5610 sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1)*pPager->pageSize, pData); 5611 } 5612 if( pPg ){ 5613 assert( rc==SQLITE_OK ); 5614 *ppPage = pPg; 5615 return SQLITE_OK; 5616 } 5617 } 5618 if( rc!=SQLITE_OK ){ 5619 *ppPage = 0; 5620 return rc; 5621 } 5622 } 5623 return getPageNormal(pPager, pgno, ppPage, flags); 5624 } 5625 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ 5626 5627 /* The page getter method for when the pager is an error state */ 5628 static int getPageError( 5629 Pager *pPager, /* The pager open on the database file */ 5630 Pgno pgno, /* Page number to fetch */ 5631 DbPage **ppPage, /* Write a pointer to the page here */ 5632 int flags /* PAGER_GET_XXX flags */ 5633 ){ 5634 UNUSED_PARAMETER(pgno); 5635 UNUSED_PARAMETER(flags); 5636 assert( pPager->errCode!=SQLITE_OK ); 5637 *ppPage = 0; 5638 return pPager->errCode; 5639 } 5640 5641 5642 /* Dispatch all page fetch requests to the appropriate getter method. 5643 */ 5644 int sqlite3PagerGet( 5645 Pager *pPager, /* The pager open on the database file */ 5646 Pgno pgno, /* Page number to fetch */ 5647 DbPage **ppPage, /* Write a pointer to the page here */ 5648 int flags /* PAGER_GET_XXX flags */ 5649 ){ 5650 return pPager->xGet(pPager, pgno, ppPage, flags); 5651 } 5652 5653 /* 5654 ** Acquire a page if it is already in the in-memory cache. Do 5655 ** not read the page from disk. Return a pointer to the page, 5656 ** or 0 if the page is not in cache. 5657 ** 5658 ** See also sqlite3PagerGet(). The difference between this routine 5659 ** and sqlite3PagerGet() is that _get() will go to the disk and read 5660 ** in the page if the page is not already in cache. This routine 5661 ** returns NULL if the page is not in cache or if a disk I/O error 5662 ** has ever happened. 5663 */ 5664 DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ 5665 sqlite3_pcache_page *pPage; 5666 assert( pPager!=0 ); 5667 assert( pgno!=0 ); 5668 assert( pPager->pPCache!=0 ); 5669 pPage = sqlite3PcacheFetch(pPager->pPCache, pgno, 0); 5670 assert( pPage==0 || pPager->hasHeldSharedLock ); 5671 if( pPage==0 ) return 0; 5672 return sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pPage); 5673 } 5674 5675 /* 5676 ** Release a page reference. 5677 ** 5678 ** The sqlite3PagerUnref() and sqlite3PagerUnrefNotNull() may only be 5679 ** used if we know that the page being released is not the last page. 5680 ** The btree layer always holds page1 open until the end, so these first 5681 ** to routines can be used to release any page other than BtShared.pPage1. 5682 ** 5683 ** Use sqlite3PagerUnrefPageOne() to release page1. This latter routine 5684 ** checks the total number of outstanding pages and if the number of 5685 ** pages reaches zero it drops the database lock. 5686 */ 5687 void sqlite3PagerUnrefNotNull(DbPage *pPg){ 5688 TESTONLY( Pager *pPager = pPg->pPager; ) 5689 assert( pPg!=0 ); 5690 if( pPg->flags & PGHDR_MMAP ){ 5691 assert( pPg->pgno!=1 ); /* Page1 is never memory mapped */ 5692 pagerReleaseMapPage(pPg); 5693 }else{ 5694 sqlite3PcacheRelease(pPg); 5695 } 5696 /* Do not use this routine to release the last reference to page1 */ 5697 assert( sqlite3PcacheRefCount(pPager->pPCache)>0 ); 5698 } 5699 void sqlite3PagerUnref(DbPage *pPg){ 5700 if( pPg ) sqlite3PagerUnrefNotNull(pPg); 5701 } 5702 void sqlite3PagerUnrefPageOne(DbPage *pPg){ 5703 Pager *pPager; 5704 assert( pPg!=0 ); 5705 assert( pPg->pgno==1 ); 5706 assert( (pPg->flags & PGHDR_MMAP)==0 ); /* Page1 is never memory mapped */ 5707 pPager = pPg->pPager; 5708 sqlite3PcacheRelease(pPg); 5709 pagerUnlockIfUnused(pPager); 5710 } 5711 5712 /* 5713 ** This function is called at the start of every write transaction. 5714 ** There must already be a RESERVED or EXCLUSIVE lock on the database 5715 ** file when this routine is called. 5716 ** 5717 ** Open the journal file for pager pPager and write a journal header 5718 ** to the start of it. If there are active savepoints, open the sub-journal 5719 ** as well. This function is only used when the journal file is being 5720 ** opened to write a rollback log for a transaction. It is not used 5721 ** when opening a hot journal file to roll it back. 5722 ** 5723 ** If the journal file is already open (as it may be in exclusive mode), 5724 ** then this function just writes a journal header to the start of the 5725 ** already open file. 5726 ** 5727 ** Whether or not the journal file is opened by this function, the 5728 ** Pager.pInJournal bitvec structure is allocated. 5729 ** 5730 ** Return SQLITE_OK if everything is successful. Otherwise, return 5731 ** SQLITE_NOMEM if the attempt to allocate Pager.pInJournal fails, or 5732 ** an IO error code if opening or writing the journal file fails. 5733 */ 5734 static int pager_open_journal(Pager *pPager){ 5735 int rc = SQLITE_OK; /* Return code */ 5736 sqlite3_vfs * const pVfs = pPager->pVfs; /* Local cache of vfs pointer */ 5737 5738 assert( pPager->eState==PAGER_WRITER_LOCKED ); 5739 assert( assert_pager_state(pPager) ); 5740 assert( pPager->pInJournal==0 ); 5741 5742 /* If already in the error state, this function is a no-op. But on 5743 ** the other hand, this routine is never called if we are already in 5744 ** an error state. */ 5745 if( NEVER(pPager->errCode) ) return pPager->errCode; 5746 5747 if( !pagerUseWal(pPager) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ 5748 pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize); 5749 if( pPager->pInJournal==0 ){ 5750 return SQLITE_NOMEM_BKPT; 5751 } 5752 5753 /* Open the journal file if it is not already open. */ 5754 if( !isOpen(pPager->jfd) ){ 5755 if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ){ 5756 sqlite3MemJournalOpen(pPager->jfd); 5757 }else{ 5758 int flags = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE; 5759 int nSpill; 5760 5761 if( pPager->tempFile ){ 5762 flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL); 5763 nSpill = sqlite3Config.nStmtSpill; 5764 }else{ 5765 flags |= SQLITE_OPEN_MAIN_JOURNAL; 5766 nSpill = jrnlBufferSize(pPager); 5767 } 5768 5769 /* Verify that the database still has the same name as it did when 5770 ** it was originally opened. */ 5771 rc = databaseIsUnmoved(pPager); 5772 if( rc==SQLITE_OK ){ 5773 rc = sqlite3JournalOpen ( 5774 pVfs, pPager->zJournal, pPager->jfd, flags, nSpill 5775 ); 5776 } 5777 } 5778 assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); 5779 } 5780 5781 5782 /* Write the first journal header to the journal file and open 5783 ** the sub-journal if necessary. 5784 */ 5785 if( rc==SQLITE_OK ){ 5786 /* TODO: Check if all of these are really required. */ 5787 pPager->nRec = 0; 5788 pPager->journalOff = 0; 5789 pPager->setMaster = 0; 5790 pPager->journalHdr = 0; 5791 rc = writeJournalHdr(pPager); 5792 } 5793 } 5794 5795 if( rc!=SQLITE_OK ){ 5796 sqlite3BitvecDestroy(pPager->pInJournal); 5797 pPager->pInJournal = 0; 5798 }else{ 5799 assert( pPager->eState==PAGER_WRITER_LOCKED ); 5800 pPager->eState = PAGER_WRITER_CACHEMOD; 5801 } 5802 5803 return rc; 5804 } 5805 5806 /* 5807 ** Begin a write-transaction on the specified pager object. If a 5808 ** write-transaction has already been opened, this function is a no-op. 5809 ** 5810 ** If the exFlag argument is false, then acquire at least a RESERVED 5811 ** lock on the database file. If exFlag is true, then acquire at least 5812 ** an EXCLUSIVE lock. If such a lock is already held, no locking 5813 ** functions need be called. 5814 ** 5815 ** If the subjInMemory argument is non-zero, then any sub-journal opened 5816 ** within this transaction will be opened as an in-memory file. This 5817 ** has no effect if the sub-journal is already opened (as it may be when 5818 ** running in exclusive mode) or if the transaction does not require a 5819 ** sub-journal. If the subjInMemory argument is zero, then any required 5820 ** sub-journal is implemented in-memory if pPager is an in-memory database, 5821 ** or using a temporary file otherwise. 5822 */ 5823 int sqlite3PagerBegin(Pager *pPager, int exFlag, int subjInMemory){ 5824 int rc = SQLITE_OK; 5825 5826 if( pPager->errCode ) return pPager->errCode; 5827 assert( pPager->eState>=PAGER_READER && pPager->eState<PAGER_ERROR ); 5828 pPager->subjInMemory = (u8)subjInMemory; 5829 5830 if( ALWAYS(pPager->eState==PAGER_READER) ){ 5831 assert( pPager->pInJournal==0 ); 5832 5833 if( pagerUseWal(pPager) ){ 5834 /* If the pager is configured to use locking_mode=exclusive, and an 5835 ** exclusive lock on the database is not already held, obtain it now. 5836 */ 5837 if( pPager->exclusiveMode && sqlite3WalExclusiveMode(pPager->pWal, -1) ){ 5838 rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); 5839 if( rc!=SQLITE_OK ){ 5840 return rc; 5841 } 5842 (void)sqlite3WalExclusiveMode(pPager->pWal, 1); 5843 } 5844 5845 /* Grab the write lock on the log file. If successful, upgrade to 5846 ** PAGER_RESERVED state. Otherwise, return an error code to the caller. 5847 ** The busy-handler is not invoked if another connection already 5848 ** holds the write-lock. If possible, the upper layer will call it. 5849 */ 5850 rc = sqlite3WalBeginWriteTransaction(pPager->pWal); 5851 }else{ 5852 /* Obtain a RESERVED lock on the database file. If the exFlag parameter 5853 ** is true, then immediately upgrade this to an EXCLUSIVE lock. The 5854 ** busy-handler callback can be used when upgrading to the EXCLUSIVE 5855 ** lock, but not when obtaining the RESERVED lock. 5856 */ 5857 rc = pagerLockDb(pPager, RESERVED_LOCK); 5858 if( rc==SQLITE_OK && exFlag ){ 5859 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); 5860 } 5861 } 5862 5863 if( rc==SQLITE_OK ){ 5864 /* Change to WRITER_LOCKED state. 5865 ** 5866 ** WAL mode sets Pager.eState to PAGER_WRITER_LOCKED or CACHEMOD 5867 ** when it has an open transaction, but never to DBMOD or FINISHED. 5868 ** This is because in those states the code to roll back savepoint 5869 ** transactions may copy data from the sub-journal into the database 5870 ** file as well as into the page cache. Which would be incorrect in 5871 ** WAL mode. 5872 */ 5873 pPager->eState = PAGER_WRITER_LOCKED; 5874 pPager->dbHintSize = pPager->dbSize; 5875 pPager->dbFileSize = pPager->dbSize; 5876 pPager->dbOrigSize = pPager->dbSize; 5877 pPager->journalOff = 0; 5878 } 5879 5880 assert( rc==SQLITE_OK || pPager->eState==PAGER_READER ); 5881 assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED ); 5882 assert( assert_pager_state(pPager) ); 5883 } 5884 5885 PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager))); 5886 return rc; 5887 } 5888 5889 /* 5890 ** Write page pPg onto the end of the rollback journal. 5891 */ 5892 static SQLITE_NOINLINE int pagerAddPageToRollbackJournal(PgHdr *pPg){ 5893 Pager *pPager = pPg->pPager; 5894 int rc; 5895 u32 cksum; 5896 char *pData2; 5897 i64 iOff = pPager->journalOff; 5898 5899 /* We should never write to the journal file the page that 5900 ** contains the database locks. The following assert verifies 5901 ** that we do not. */ 5902 assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) ); 5903 5904 assert( pPager->journalHdr<=pPager->journalOff ); 5905 pData2 = pPg->pData; 5906 cksum = pager_cksum(pPager, (u8*)pData2); 5907 5908 /* Even if an IO or diskfull error occurs while journalling the 5909 ** page in the block above, set the need-sync flag for the page. 5910 ** Otherwise, when the transaction is rolled back, the logic in 5911 ** playback_one_page() will think that the page needs to be restored 5912 ** in the database file. And if an IO error occurs while doing so, 5913 ** then corruption may follow. 5914 */ 5915 pPg->flags |= PGHDR_NEED_SYNC; 5916 5917 rc = write32bits(pPager->jfd, iOff, pPg->pgno); 5918 if( rc!=SQLITE_OK ) return rc; 5919 rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4); 5920 if( rc!=SQLITE_OK ) return rc; 5921 rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum); 5922 if( rc!=SQLITE_OK ) return rc; 5923 5924 IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, 5925 pPager->journalOff, pPager->pageSize)); 5926 PAGER_INCR(sqlite3_pager_writej_count); 5927 PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n", 5928 PAGERID(pPager), pPg->pgno, 5929 ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg))); 5930 5931 pPager->journalOff += 8 + pPager->pageSize; 5932 pPager->nRec++; 5933 assert( pPager->pInJournal!=0 ); 5934 rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno); 5935 testcase( rc==SQLITE_NOMEM ); 5936 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 5937 rc |= addToSavepointBitvecs(pPager, pPg->pgno); 5938 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 5939 return rc; 5940 } 5941 5942 /* 5943 ** Mark a single data page as writeable. The page is written into the 5944 ** main journal or sub-journal as required. If the page is written into 5945 ** one of the journals, the corresponding bit is set in the 5946 ** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs 5947 ** of any open savepoints as appropriate. 5948 */ 5949 static int pager_write(PgHdr *pPg){ 5950 Pager *pPager = pPg->pPager; 5951 int rc = SQLITE_OK; 5952 5953 /* This routine is not called unless a write-transaction has already 5954 ** been started. The journal file may or may not be open at this point. 5955 ** It is never called in the ERROR state. 5956 */ 5957 assert( pPager->eState==PAGER_WRITER_LOCKED 5958 || pPager->eState==PAGER_WRITER_CACHEMOD 5959 || pPager->eState==PAGER_WRITER_DBMOD 5960 ); 5961 assert( assert_pager_state(pPager) ); 5962 assert( pPager->errCode==0 ); 5963 assert( pPager->readOnly==0 ); 5964 CHECK_PAGE(pPg); 5965 5966 /* The journal file needs to be opened. Higher level routines have already 5967 ** obtained the necessary locks to begin the write-transaction, but the 5968 ** rollback journal might not yet be open. Open it now if this is the case. 5969 ** 5970 ** This is done before calling sqlite3PcacheMakeDirty() on the page. 5971 ** Otherwise, if it were done after calling sqlite3PcacheMakeDirty(), then 5972 ** an error might occur and the pager would end up in WRITER_LOCKED state 5973 ** with pages marked as dirty in the cache. 5974 */ 5975 if( pPager->eState==PAGER_WRITER_LOCKED ){ 5976 rc = pager_open_journal(pPager); 5977 if( rc!=SQLITE_OK ) return rc; 5978 } 5979 assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); 5980 assert( assert_pager_state(pPager) ); 5981 5982 /* Mark the page that is about to be modified as dirty. */ 5983 sqlite3PcacheMakeDirty(pPg); 5984 5985 /* If a rollback journal is in use, them make sure the page that is about 5986 ** to change is in the rollback journal, or if the page is a new page off 5987 ** then end of the file, make sure it is marked as PGHDR_NEED_SYNC. 5988 */ 5989 assert( (pPager->pInJournal!=0) == isOpen(pPager->jfd) ); 5990 if( pPager->pInJournal!=0 5991 && sqlite3BitvecTestNotNull(pPager->pInJournal, pPg->pgno)==0 5992 ){ 5993 assert( pagerUseWal(pPager)==0 ); 5994 if( pPg->pgno<=pPager->dbOrigSize ){ 5995 rc = pagerAddPageToRollbackJournal(pPg); 5996 if( rc!=SQLITE_OK ){ 5997 return rc; 5998 } 5999 }else{ 6000 if( pPager->eState!=PAGER_WRITER_DBMOD ){ 6001 pPg->flags |= PGHDR_NEED_SYNC; 6002 } 6003 PAGERTRACE(("APPEND %d page %d needSync=%d\n", 6004 PAGERID(pPager), pPg->pgno, 6005 ((pPg->flags&PGHDR_NEED_SYNC)?1:0))); 6006 } 6007 } 6008 6009 /* The PGHDR_DIRTY bit is set above when the page was added to the dirty-list 6010 ** and before writing the page into the rollback journal. Wait until now, 6011 ** after the page has been successfully journalled, before setting the 6012 ** PGHDR_WRITEABLE bit that indicates that the page can be safely modified. 6013 */ 6014 pPg->flags |= PGHDR_WRITEABLE; 6015 6016 /* If the statement journal is open and the page is not in it, 6017 ** then write the page into the statement journal. 6018 */ 6019 if( pPager->nSavepoint>0 ){ 6020 rc = subjournalPageIfRequired(pPg); 6021 } 6022 6023 /* Update the database size and return. */ 6024 if( pPager->dbSize<pPg->pgno ){ 6025 pPager->dbSize = pPg->pgno; 6026 } 6027 return rc; 6028 } 6029 6030 /* 6031 ** This is a variant of sqlite3PagerWrite() that runs when the sector size 6032 ** is larger than the page size. SQLite makes the (reasonable) assumption that 6033 ** all bytes of a sector are written together by hardware. Hence, all bytes of 6034 ** a sector need to be journalled in case of a power loss in the middle of 6035 ** a write. 6036 ** 6037 ** Usually, the sector size is less than or equal to the page size, in which 6038 ** case pages can be individually written. This routine only runs in the 6039 ** exceptional case where the page size is smaller than the sector size. 6040 */ 6041 static SQLITE_NOINLINE int pagerWriteLargeSector(PgHdr *pPg){ 6042 int rc = SQLITE_OK; /* Return code */ 6043 Pgno nPageCount; /* Total number of pages in database file */ 6044 Pgno pg1; /* First page of the sector pPg is located on. */ 6045 int nPage = 0; /* Number of pages starting at pg1 to journal */ 6046 int ii; /* Loop counter */ 6047 int needSync = 0; /* True if any page has PGHDR_NEED_SYNC */ 6048 Pager *pPager = pPg->pPager; /* The pager that owns pPg */ 6049 Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize); 6050 6051 /* Set the doNotSpill NOSYNC bit to 1. This is because we cannot allow 6052 ** a journal header to be written between the pages journaled by 6053 ** this function. 6054 */ 6055 assert( !MEMDB ); 6056 assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)==0 ); 6057 pPager->doNotSpill |= SPILLFLAG_NOSYNC; 6058 6059 /* This trick assumes that both the page-size and sector-size are 6060 ** an integer power of 2. It sets variable pg1 to the identifier 6061 ** of the first page of the sector pPg is located on. 6062 */ 6063 pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1; 6064 6065 nPageCount = pPager->dbSize; 6066 if( pPg->pgno>nPageCount ){ 6067 nPage = (pPg->pgno - pg1)+1; 6068 }else if( (pg1+nPagePerSector-1)>nPageCount ){ 6069 nPage = nPageCount+1-pg1; 6070 }else{ 6071 nPage = nPagePerSector; 6072 } 6073 assert(nPage>0); 6074 assert(pg1<=pPg->pgno); 6075 assert((pg1+nPage)>pPg->pgno); 6076 6077 for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){ 6078 Pgno pg = pg1+ii; 6079 PgHdr *pPage; 6080 if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){ 6081 if( pg!=PAGER_MJ_PGNO(pPager) ){ 6082 rc = sqlite3PagerGet(pPager, pg, &pPage, 0); 6083 if( rc==SQLITE_OK ){ 6084 rc = pager_write(pPage); 6085 if( pPage->flags&PGHDR_NEED_SYNC ){ 6086 needSync = 1; 6087 } 6088 sqlite3PagerUnrefNotNull(pPage); 6089 } 6090 } 6091 }else if( (pPage = sqlite3PagerLookup(pPager, pg))!=0 ){ 6092 if( pPage->flags&PGHDR_NEED_SYNC ){ 6093 needSync = 1; 6094 } 6095 sqlite3PagerUnrefNotNull(pPage); 6096 } 6097 } 6098 6099 /* If the PGHDR_NEED_SYNC flag is set for any of the nPage pages 6100 ** starting at pg1, then it needs to be set for all of them. Because 6101 ** writing to any of these nPage pages may damage the others, the 6102 ** journal file must contain sync()ed copies of all of them 6103 ** before any of them can be written out to the database file. 6104 */ 6105 if( rc==SQLITE_OK && needSync ){ 6106 assert( !MEMDB ); 6107 for(ii=0; ii<nPage; ii++){ 6108 PgHdr *pPage = sqlite3PagerLookup(pPager, pg1+ii); 6109 if( pPage ){ 6110 pPage->flags |= PGHDR_NEED_SYNC; 6111 sqlite3PagerUnrefNotNull(pPage); 6112 } 6113 } 6114 } 6115 6116 assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)!=0 ); 6117 pPager->doNotSpill &= ~SPILLFLAG_NOSYNC; 6118 return rc; 6119 } 6120 6121 /* 6122 ** Mark a data page as writeable. This routine must be called before 6123 ** making changes to a page. The caller must check the return value 6124 ** of this function and be careful not to change any page data unless 6125 ** this routine returns SQLITE_OK. 6126 ** 6127 ** The difference between this function and pager_write() is that this 6128 ** function also deals with the special case where 2 or more pages 6129 ** fit on a single disk sector. In this case all co-resident pages 6130 ** must have been written to the journal file before returning. 6131 ** 6132 ** If an error occurs, SQLITE_NOMEM or an IO error code is returned 6133 ** as appropriate. Otherwise, SQLITE_OK. 6134 */ 6135 int sqlite3PagerWrite(PgHdr *pPg){ 6136 Pager *pPager = pPg->pPager; 6137 assert( (pPg->flags & PGHDR_MMAP)==0 ); 6138 assert( pPager->eState>=PAGER_WRITER_LOCKED ); 6139 assert( assert_pager_state(pPager) ); 6140 if( (pPg->flags & PGHDR_WRITEABLE)!=0 && pPager->dbSize>=pPg->pgno ){ 6141 if( pPager->nSavepoint ) return subjournalPageIfRequired(pPg); 6142 return SQLITE_OK; 6143 }else if( pPager->errCode ){ 6144 return pPager->errCode; 6145 }else if( pPager->sectorSize > (u32)pPager->pageSize ){ 6146 assert( pPager->tempFile==0 ); 6147 return pagerWriteLargeSector(pPg); 6148 }else{ 6149 return pager_write(pPg); 6150 } 6151 } 6152 6153 /* 6154 ** Return TRUE if the page given in the argument was previously passed 6155 ** to sqlite3PagerWrite(). In other words, return TRUE if it is ok 6156 ** to change the content of the page. 6157 */ 6158 #ifndef NDEBUG 6159 int sqlite3PagerIswriteable(DbPage *pPg){ 6160 return pPg->flags & PGHDR_WRITEABLE; 6161 } 6162 #endif 6163 6164 /* 6165 ** A call to this routine tells the pager that it is not necessary to 6166 ** write the information on page pPg back to the disk, even though 6167 ** that page might be marked as dirty. This happens, for example, when 6168 ** the page has been added as a leaf of the freelist and so its 6169 ** content no longer matters. 6170 ** 6171 ** The overlying software layer calls this routine when all of the data 6172 ** on the given page is unused. The pager marks the page as clean so 6173 ** that it does not get written to disk. 6174 ** 6175 ** Tests show that this optimization can quadruple the speed of large 6176 ** DELETE operations. 6177 ** 6178 ** This optimization cannot be used with a temp-file, as the page may 6179 ** have been dirty at the start of the transaction. In that case, if 6180 ** memory pressure forces page pPg out of the cache, the data does need 6181 ** to be written out to disk so that it may be read back in if the 6182 ** current transaction is rolled back. 6183 */ 6184 void sqlite3PagerDontWrite(PgHdr *pPg){ 6185 Pager *pPager = pPg->pPager; 6186 if( !pPager->tempFile && (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){ 6187 PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager))); 6188 IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) 6189 pPg->flags |= PGHDR_DONT_WRITE; 6190 pPg->flags &= ~PGHDR_WRITEABLE; 6191 testcase( pPg->flags & PGHDR_NEED_SYNC ); 6192 pager_set_pagehash(pPg); 6193 } 6194 } 6195 6196 /* 6197 ** This routine is called to increment the value of the database file 6198 ** change-counter, stored as a 4-byte big-endian integer starting at 6199 ** byte offset 24 of the pager file. The secondary change counter at 6200 ** 92 is also updated, as is the SQLite version number at offset 96. 6201 ** 6202 ** But this only happens if the pPager->changeCountDone flag is false. 6203 ** To avoid excess churning of page 1, the update only happens once. 6204 ** See also the pager_write_changecounter() routine that does an 6205 ** unconditional update of the change counters. 6206 ** 6207 ** If the isDirectMode flag is zero, then this is done by calling 6208 ** sqlite3PagerWrite() on page 1, then modifying the contents of the 6209 ** page data. In this case the file will be updated when the current 6210 ** transaction is committed. 6211 ** 6212 ** The isDirectMode flag may only be non-zero if the library was compiled 6213 ** with the SQLITE_ENABLE_ATOMIC_WRITE macro defined. In this case, 6214 ** if isDirect is non-zero, then the database file is updated directly 6215 ** by writing an updated version of page 1 using a call to the 6216 ** sqlite3OsWrite() function. 6217 */ 6218 static int pager_incr_changecounter(Pager *pPager, int isDirectMode){ 6219 int rc = SQLITE_OK; 6220 6221 assert( pPager->eState==PAGER_WRITER_CACHEMOD 6222 || pPager->eState==PAGER_WRITER_DBMOD 6223 ); 6224 assert( assert_pager_state(pPager) ); 6225 6226 /* Declare and initialize constant integer 'isDirect'. If the 6227 ** atomic-write optimization is enabled in this build, then isDirect 6228 ** is initialized to the value passed as the isDirectMode parameter 6229 ** to this function. Otherwise, it is always set to zero. 6230 ** 6231 ** The idea is that if the atomic-write optimization is not 6232 ** enabled at compile time, the compiler can omit the tests of 6233 ** 'isDirect' below, as well as the block enclosed in the 6234 ** "if( isDirect )" condition. 6235 */ 6236 #ifndef SQLITE_ENABLE_ATOMIC_WRITE 6237 # define DIRECT_MODE 0 6238 assert( isDirectMode==0 ); 6239 UNUSED_PARAMETER(isDirectMode); 6240 #else 6241 # define DIRECT_MODE isDirectMode 6242 #endif 6243 6244 if( !pPager->changeCountDone && ALWAYS(pPager->dbSize>0) ){ 6245 PgHdr *pPgHdr; /* Reference to page 1 */ 6246 6247 assert( !pPager->tempFile && isOpen(pPager->fd) ); 6248 6249 /* Open page 1 of the file for writing. */ 6250 rc = sqlite3PagerGet(pPager, 1, &pPgHdr, 0); 6251 assert( pPgHdr==0 || rc==SQLITE_OK ); 6252 6253 /* If page one was fetched successfully, and this function is not 6254 ** operating in direct-mode, make page 1 writable. When not in 6255 ** direct mode, page 1 is always held in cache and hence the PagerGet() 6256 ** above is always successful - hence the ALWAYS on rc==SQLITE_OK. 6257 */ 6258 if( !DIRECT_MODE && ALWAYS(rc==SQLITE_OK) ){ 6259 rc = sqlite3PagerWrite(pPgHdr); 6260 } 6261 6262 if( rc==SQLITE_OK ){ 6263 /* Actually do the update of the change counter */ 6264 pager_write_changecounter(pPgHdr); 6265 6266 /* If running in direct mode, write the contents of page 1 to the file. */ 6267 if( DIRECT_MODE ){ 6268 const void *zBuf; 6269 assert( pPager->dbFileSize>0 ); 6270 zBuf = pPgHdr->pData; 6271 if( rc==SQLITE_OK ){ 6272 rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0); 6273 pPager->aStat[PAGER_STAT_WRITE]++; 6274 } 6275 if( rc==SQLITE_OK ){ 6276 /* Update the pager's copy of the change-counter. Otherwise, the 6277 ** next time a read transaction is opened the cache will be 6278 ** flushed (as the change-counter values will not match). */ 6279 const void *pCopy = (const void *)&((const char *)zBuf)[24]; 6280 memcpy(&pPager->dbFileVers, pCopy, sizeof(pPager->dbFileVers)); 6281 pPager->changeCountDone = 1; 6282 } 6283 }else{ 6284 pPager->changeCountDone = 1; 6285 } 6286 } 6287 6288 /* Release the page reference. */ 6289 sqlite3PagerUnref(pPgHdr); 6290 } 6291 return rc; 6292 } 6293 6294 /* 6295 ** Sync the database file to disk. This is a no-op for in-memory databases 6296 ** or pages with the Pager.noSync flag set. 6297 ** 6298 ** If successful, or if called on a pager for which it is a no-op, this 6299 ** function returns SQLITE_OK. Otherwise, an IO error code is returned. 6300 */ 6301 int sqlite3PagerSync(Pager *pPager, const char *zMaster){ 6302 int rc = SQLITE_OK; 6303 void *pArg = (void*)zMaster; 6304 rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SYNC, pArg); 6305 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 6306 if( rc==SQLITE_OK && !pPager->noSync ){ 6307 assert( !MEMDB ); 6308 rc = sqlite3OsSync(pPager->fd, pPager->syncFlags); 6309 } 6310 return rc; 6311 } 6312 6313 /* 6314 ** This function may only be called while a write-transaction is active in 6315 ** rollback. If the connection is in WAL mode, this call is a no-op. 6316 ** Otherwise, if the connection does not already have an EXCLUSIVE lock on 6317 ** the database file, an attempt is made to obtain one. 6318 ** 6319 ** If the EXCLUSIVE lock is already held or the attempt to obtain it is 6320 ** successful, or the connection is in WAL mode, SQLITE_OK is returned. 6321 ** Otherwise, either SQLITE_BUSY or an SQLITE_IOERR_XXX error code is 6322 ** returned. 6323 */ 6324 int sqlite3PagerExclusiveLock(Pager *pPager){ 6325 int rc = pPager->errCode; 6326 assert( assert_pager_state(pPager) ); 6327 if( rc==SQLITE_OK ){ 6328 assert( pPager->eState==PAGER_WRITER_CACHEMOD 6329 || pPager->eState==PAGER_WRITER_DBMOD 6330 || pPager->eState==PAGER_WRITER_LOCKED 6331 ); 6332 assert( assert_pager_state(pPager) ); 6333 if( 0==pagerUseWal(pPager) ){ 6334 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); 6335 } 6336 } 6337 return rc; 6338 } 6339 6340 /* 6341 ** Sync the database file for the pager pPager. zMaster points to the name 6342 ** of a master journal file that should be written into the individual 6343 ** journal file. zMaster may be NULL, which is interpreted as no master 6344 ** journal (a single database transaction). 6345 ** 6346 ** This routine ensures that: 6347 ** 6348 ** * The database file change-counter is updated, 6349 ** * the journal is synced (unless the atomic-write optimization is used), 6350 ** * all dirty pages are written to the database file, 6351 ** * the database file is truncated (if required), and 6352 ** * the database file synced. 6353 ** 6354 ** The only thing that remains to commit the transaction is to finalize 6355 ** (delete, truncate or zero the first part of) the journal file (or 6356 ** delete the master journal file if specified). 6357 ** 6358 ** Note that if zMaster==NULL, this does not overwrite a previous value 6359 ** passed to an sqlite3PagerCommitPhaseOne() call. 6360 ** 6361 ** If the final parameter - noSync - is true, then the database file itself 6362 ** is not synced. The caller must call sqlite3PagerSync() directly to 6363 ** sync the database file before calling CommitPhaseTwo() to delete the 6364 ** journal file in this case. 6365 */ 6366 int sqlite3PagerCommitPhaseOne( 6367 Pager *pPager, /* Pager object */ 6368 const char *zMaster, /* If not NULL, the master journal name */ 6369 int noSync /* True to omit the xSync on the db file */ 6370 ){ 6371 int rc = SQLITE_OK; /* Return code */ 6372 6373 assert( pPager->eState==PAGER_WRITER_LOCKED 6374 || pPager->eState==PAGER_WRITER_CACHEMOD 6375 || pPager->eState==PAGER_WRITER_DBMOD 6376 || pPager->eState==PAGER_ERROR 6377 ); 6378 assert( assert_pager_state(pPager) ); 6379 6380 /* If a prior error occurred, report that error again. */ 6381 if( NEVER(pPager->errCode) ) return pPager->errCode; 6382 6383 /* Provide the ability to easily simulate an I/O error during testing */ 6384 if( sqlite3FaultSim(400) ) return SQLITE_IOERR; 6385 6386 PAGERTRACE(("DATABASE SYNC: File=%s zMaster=%s nSize=%d\n", 6387 pPager->zFilename, zMaster, pPager->dbSize)); 6388 6389 /* If no database changes have been made, return early. */ 6390 if( pPager->eState<PAGER_WRITER_CACHEMOD ) return SQLITE_OK; 6391 6392 assert( MEMDB==0 || pPager->tempFile ); 6393 assert( isOpen(pPager->fd) || pPager->tempFile ); 6394 if( 0==pagerFlushOnCommit(pPager, 1) ){ 6395 /* If this is an in-memory db, or no pages have been written to, or this 6396 ** function has already been called, it is mostly a no-op. However, any 6397 ** backup in progress needs to be restarted. */ 6398 sqlite3BackupRestart(pPager->pBackup); 6399 }else{ 6400 PgHdr *pList; 6401 if( pagerUseWal(pPager) ){ 6402 PgHdr *pPageOne = 0; 6403 pList = sqlite3PcacheDirtyList(pPager->pPCache); 6404 if( pList==0 ){ 6405 /* Must have at least one page for the WAL commit flag. 6406 ** Ticket [2d1a5c67dfc2363e44f29d9bbd57f] 2011-05-18 */ 6407 rc = sqlite3PagerGet(pPager, 1, &pPageOne, 0); 6408 pList = pPageOne; 6409 pList->pDirty = 0; 6410 } 6411 assert( rc==SQLITE_OK ); 6412 if( ALWAYS(pList) ){ 6413 rc = pagerWalFrames(pPager, pList, pPager->dbSize, 1); 6414 } 6415 sqlite3PagerUnref(pPageOne); 6416 if( rc==SQLITE_OK ){ 6417 sqlite3PcacheCleanAll(pPager->pPCache); 6418 } 6419 }else{ 6420 /* The bBatch boolean is true if the batch-atomic-write commit method 6421 ** should be used. No rollback journal is created if batch-atomic-write 6422 ** is enabled. 6423 */ 6424 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 6425 sqlite3_file *fd = pPager->fd; 6426 int bBatch = zMaster==0 /* An SQLITE_IOCAP_BATCH_ATOMIC commit */ 6427 && (sqlite3OsDeviceCharacteristics(fd) & SQLITE_IOCAP_BATCH_ATOMIC) 6428 && !pPager->noSync 6429 && sqlite3JournalIsInMemory(pPager->jfd); 6430 #else 6431 # define bBatch 0 6432 #endif 6433 6434 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 6435 /* The following block updates the change-counter. Exactly how it 6436 ** does this depends on whether or not the atomic-update optimization 6437 ** was enabled at compile time, and if this transaction meets the 6438 ** runtime criteria to use the operation: 6439 ** 6440 ** * The file-system supports the atomic-write property for 6441 ** blocks of size page-size, and 6442 ** * This commit is not part of a multi-file transaction, and 6443 ** * Exactly one page has been modified and store in the journal file. 6444 ** 6445 ** If the optimization was not enabled at compile time, then the 6446 ** pager_incr_changecounter() function is called to update the change 6447 ** counter in 'indirect-mode'. If the optimization is compiled in but 6448 ** is not applicable to this transaction, call sqlite3JournalCreate() 6449 ** to make sure the journal file has actually been created, then call 6450 ** pager_incr_changecounter() to update the change-counter in indirect 6451 ** mode. 6452 ** 6453 ** Otherwise, if the optimization is both enabled and applicable, 6454 ** then call pager_incr_changecounter() to update the change-counter 6455 ** in 'direct' mode. In this case the journal file will never be 6456 ** created for this transaction. 6457 */ 6458 if( bBatch==0 ){ 6459 PgHdr *pPg; 6460 assert( isOpen(pPager->jfd) 6461 || pPager->journalMode==PAGER_JOURNALMODE_OFF 6462 || pPager->journalMode==PAGER_JOURNALMODE_WAL 6463 ); 6464 if( !zMaster && isOpen(pPager->jfd) 6465 && pPager->journalOff==jrnlBufferSize(pPager) 6466 && pPager->dbSize>=pPager->dbOrigSize 6467 && (!(pPg = sqlite3PcacheDirtyList(pPager->pPCache)) || 0==pPg->pDirty) 6468 ){ 6469 /* Update the db file change counter via the direct-write method. The 6470 ** following call will modify the in-memory representation of page 1 6471 ** to include the updated change counter and then write page 1 6472 ** directly to the database file. Because of the atomic-write 6473 ** property of the host file-system, this is safe. 6474 */ 6475 rc = pager_incr_changecounter(pPager, 1); 6476 }else{ 6477 rc = sqlite3JournalCreate(pPager->jfd); 6478 if( rc==SQLITE_OK ){ 6479 rc = pager_incr_changecounter(pPager, 0); 6480 } 6481 } 6482 } 6483 #else /* SQLITE_ENABLE_ATOMIC_WRITE */ 6484 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 6485 if( zMaster ){ 6486 rc = sqlite3JournalCreate(pPager->jfd); 6487 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6488 assert( bBatch==0 ); 6489 } 6490 #endif 6491 rc = pager_incr_changecounter(pPager, 0); 6492 #endif /* !SQLITE_ENABLE_ATOMIC_WRITE */ 6493 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6494 6495 /* Write the master journal name into the journal file. If a master 6496 ** journal file name has already been written to the journal file, 6497 ** or if zMaster is NULL (no master journal), then this call is a no-op. 6498 */ 6499 rc = writeMasterJournal(pPager, zMaster); 6500 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6501 6502 /* Sync the journal file and write all dirty pages to the database. 6503 ** If the atomic-update optimization is being used, this sync will not 6504 ** create the journal file or perform any real IO. 6505 ** 6506 ** Because the change-counter page was just modified, unless the 6507 ** atomic-update optimization is used it is almost certain that the 6508 ** journal requires a sync here. However, in locking_mode=exclusive 6509 ** on a system under memory pressure it is just possible that this is 6510 ** not the case. In this case it is likely enough that the redundant 6511 ** xSync() call will be changed to a no-op by the OS anyhow. 6512 */ 6513 rc = syncJournal(pPager, 0); 6514 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6515 6516 pList = sqlite3PcacheDirtyList(pPager->pPCache); 6517 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 6518 if( bBatch ){ 6519 rc = sqlite3OsFileControl(fd, SQLITE_FCNTL_BEGIN_ATOMIC_WRITE, 0); 6520 if( rc==SQLITE_OK ){ 6521 rc = pager_write_pagelist(pPager, pList); 6522 if( rc==SQLITE_OK ){ 6523 rc = sqlite3OsFileControl(fd, SQLITE_FCNTL_COMMIT_ATOMIC_WRITE, 0); 6524 } 6525 if( rc!=SQLITE_OK ){ 6526 sqlite3OsFileControlHint(fd, SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE, 0); 6527 } 6528 } 6529 6530 if( (rc&0xFF)==SQLITE_IOERR && rc!=SQLITE_IOERR_NOMEM ){ 6531 rc = sqlite3JournalCreate(pPager->jfd); 6532 if( rc!=SQLITE_OK ){ 6533 sqlite3OsClose(pPager->jfd); 6534 goto commit_phase_one_exit; 6535 } 6536 bBatch = 0; 6537 }else{ 6538 sqlite3OsClose(pPager->jfd); 6539 } 6540 } 6541 #endif /* SQLITE_ENABLE_BATCH_ATOMIC_WRITE */ 6542 6543 if( bBatch==0 ){ 6544 rc = pager_write_pagelist(pPager, pList); 6545 } 6546 if( rc!=SQLITE_OK ){ 6547 assert( rc!=SQLITE_IOERR_BLOCKED ); 6548 goto commit_phase_one_exit; 6549 } 6550 sqlite3PcacheCleanAll(pPager->pPCache); 6551 6552 /* If the file on disk is smaller than the database image, use 6553 ** pager_truncate to grow the file here. This can happen if the database 6554 ** image was extended as part of the current transaction and then the 6555 ** last page in the db image moved to the free-list. In this case the 6556 ** last page is never written out to disk, leaving the database file 6557 ** undersized. Fix this now if it is the case. */ 6558 if( pPager->dbSize>pPager->dbFileSize ){ 6559 Pgno nNew = pPager->dbSize - (pPager->dbSize==PAGER_MJ_PGNO(pPager)); 6560 assert( pPager->eState==PAGER_WRITER_DBMOD ); 6561 rc = pager_truncate(pPager, nNew); 6562 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6563 } 6564 6565 /* Finally, sync the database file. */ 6566 if( !noSync ){ 6567 rc = sqlite3PagerSync(pPager, zMaster); 6568 } 6569 IOTRACE(("DBSYNC %p\n", pPager)) 6570 } 6571 } 6572 6573 commit_phase_one_exit: 6574 if( rc==SQLITE_OK && !pagerUseWal(pPager) ){ 6575 pPager->eState = PAGER_WRITER_FINISHED; 6576 } 6577 return rc; 6578 } 6579 6580 6581 /* 6582 ** When this function is called, the database file has been completely 6583 ** updated to reflect the changes made by the current transaction and 6584 ** synced to disk. The journal file still exists in the file-system 6585 ** though, and if a failure occurs at this point it will eventually 6586 ** be used as a hot-journal and the current transaction rolled back. 6587 ** 6588 ** This function finalizes the journal file, either by deleting, 6589 ** truncating or partially zeroing it, so that it cannot be used 6590 ** for hot-journal rollback. Once this is done the transaction is 6591 ** irrevocably committed. 6592 ** 6593 ** If an error occurs, an IO error code is returned and the pager 6594 ** moves into the error state. Otherwise, SQLITE_OK is returned. 6595 */ 6596 int sqlite3PagerCommitPhaseTwo(Pager *pPager){ 6597 int rc = SQLITE_OK; /* Return code */ 6598 6599 /* This routine should not be called if a prior error has occurred. 6600 ** But if (due to a coding error elsewhere in the system) it does get 6601 ** called, just return the same error code without doing anything. */ 6602 if( NEVER(pPager->errCode) ) return pPager->errCode; 6603 pPager->iDataVersion++; 6604 6605 assert( pPager->eState==PAGER_WRITER_LOCKED 6606 || pPager->eState==PAGER_WRITER_FINISHED 6607 || (pagerUseWal(pPager) && pPager->eState==PAGER_WRITER_CACHEMOD) 6608 ); 6609 assert( assert_pager_state(pPager) ); 6610 6611 /* An optimization. If the database was not actually modified during 6612 ** this transaction, the pager is running in exclusive-mode and is 6613 ** using persistent journals, then this function is a no-op. 6614 ** 6615 ** The start of the journal file currently contains a single journal 6616 ** header with the nRec field set to 0. If such a journal is used as 6617 ** a hot-journal during hot-journal rollback, 0 changes will be made 6618 ** to the database file. So there is no need to zero the journal 6619 ** header. Since the pager is in exclusive mode, there is no need 6620 ** to drop any locks either. 6621 */ 6622 if( pPager->eState==PAGER_WRITER_LOCKED 6623 && pPager->exclusiveMode 6624 && pPager->journalMode==PAGER_JOURNALMODE_PERSIST 6625 ){ 6626 assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff ); 6627 pPager->eState = PAGER_READER; 6628 return SQLITE_OK; 6629 } 6630 6631 PAGERTRACE(("COMMIT %d\n", PAGERID(pPager))); 6632 rc = pager_end_transaction(pPager, pPager->setMaster, 1); 6633 return pager_error(pPager, rc); 6634 } 6635 6636 /* 6637 ** If a write transaction is open, then all changes made within the 6638 ** transaction are reverted and the current write-transaction is closed. 6639 ** The pager falls back to PAGER_READER state if successful, or PAGER_ERROR 6640 ** state if an error occurs. 6641 ** 6642 ** If the pager is already in PAGER_ERROR state when this function is called, 6643 ** it returns Pager.errCode immediately. No work is performed in this case. 6644 ** 6645 ** Otherwise, in rollback mode, this function performs two functions: 6646 ** 6647 ** 1) It rolls back the journal file, restoring all database file and 6648 ** in-memory cache pages to the state they were in when the transaction 6649 ** was opened, and 6650 ** 6651 ** 2) It finalizes the journal file, so that it is not used for hot 6652 ** rollback at any point in the future. 6653 ** 6654 ** Finalization of the journal file (task 2) is only performed if the 6655 ** rollback is successful. 6656 ** 6657 ** In WAL mode, all cache-entries containing data modified within the 6658 ** current transaction are either expelled from the cache or reverted to 6659 ** their pre-transaction state by re-reading data from the database or 6660 ** WAL files. The WAL transaction is then closed. 6661 */ 6662 int sqlite3PagerRollback(Pager *pPager){ 6663 int rc = SQLITE_OK; /* Return code */ 6664 PAGERTRACE(("ROLLBACK %d\n", PAGERID(pPager))); 6665 6666 /* PagerRollback() is a no-op if called in READER or OPEN state. If 6667 ** the pager is already in the ERROR state, the rollback is not 6668 ** attempted here. Instead, the error code is returned to the caller. 6669 */ 6670 assert( assert_pager_state(pPager) ); 6671 if( pPager->eState==PAGER_ERROR ) return pPager->errCode; 6672 if( pPager->eState<=PAGER_READER ) return SQLITE_OK; 6673 6674 if( pagerUseWal(pPager) ){ 6675 int rc2; 6676 rc = sqlite3PagerSavepoint(pPager, SAVEPOINT_ROLLBACK, -1); 6677 rc2 = pager_end_transaction(pPager, pPager->setMaster, 0); 6678 if( rc==SQLITE_OK ) rc = rc2; 6679 }else if( !isOpen(pPager->jfd) || pPager->eState==PAGER_WRITER_LOCKED ){ 6680 int eState = pPager->eState; 6681 rc = pager_end_transaction(pPager, 0, 0); 6682 if( !MEMDB && eState>PAGER_WRITER_LOCKED ){ 6683 /* This can happen using journal_mode=off. Move the pager to the error 6684 ** state to indicate that the contents of the cache may not be trusted. 6685 ** Any active readers will get SQLITE_ABORT. 6686 */ 6687 pPager->errCode = SQLITE_ABORT; 6688 pPager->eState = PAGER_ERROR; 6689 setGetterMethod(pPager); 6690 return rc; 6691 } 6692 }else{ 6693 rc = pager_playback(pPager, 0); 6694 } 6695 6696 assert( pPager->eState==PAGER_READER || rc!=SQLITE_OK ); 6697 assert( rc==SQLITE_OK || rc==SQLITE_FULL || rc==SQLITE_CORRUPT 6698 || rc==SQLITE_NOMEM || (rc&0xFF)==SQLITE_IOERR 6699 || rc==SQLITE_CANTOPEN 6700 ); 6701 6702 /* If an error occurs during a ROLLBACK, we can no longer trust the pager 6703 ** cache. So call pager_error() on the way out to make any error persistent. 6704 */ 6705 return pager_error(pPager, rc); 6706 } 6707 6708 /* 6709 ** Return TRUE if the database file is opened read-only. Return FALSE 6710 ** if the database is (in theory) writable. 6711 */ 6712 u8 sqlite3PagerIsreadonly(Pager *pPager){ 6713 return pPager->readOnly; 6714 } 6715 6716 #ifdef SQLITE_DEBUG 6717 /* 6718 ** Return the sum of the reference counts for all pages held by pPager. 6719 */ 6720 int sqlite3PagerRefcount(Pager *pPager){ 6721 return sqlite3PcacheRefCount(pPager->pPCache); 6722 } 6723 #endif 6724 6725 /* 6726 ** Return the approximate number of bytes of memory currently 6727 ** used by the pager and its associated cache. 6728 */ 6729 int sqlite3PagerMemUsed(Pager *pPager){ 6730 int perPageSize = pPager->pageSize + pPager->nExtra + sizeof(PgHdr) 6731 + 5*sizeof(void*); 6732 return perPageSize*sqlite3PcachePagecount(pPager->pPCache) 6733 + sqlite3MallocSize(pPager) 6734 + pPager->pageSize; 6735 } 6736 6737 /* 6738 ** Return the number of references to the specified page. 6739 */ 6740 int sqlite3PagerPageRefcount(DbPage *pPage){ 6741 return sqlite3PcachePageRefcount(pPage); 6742 } 6743 6744 #ifdef SQLITE_TEST 6745 /* 6746 ** This routine is used for testing and analysis only. 6747 */ 6748 int *sqlite3PagerStats(Pager *pPager){ 6749 static int a[11]; 6750 a[0] = sqlite3PcacheRefCount(pPager->pPCache); 6751 a[1] = sqlite3PcachePagecount(pPager->pPCache); 6752 a[2] = sqlite3PcacheGetCachesize(pPager->pPCache); 6753 a[3] = pPager->eState==PAGER_OPEN ? -1 : (int) pPager->dbSize; 6754 a[4] = pPager->eState; 6755 a[5] = pPager->errCode; 6756 a[6] = pPager->aStat[PAGER_STAT_HIT]; 6757 a[7] = pPager->aStat[PAGER_STAT_MISS]; 6758 a[8] = 0; /* Used to be pPager->nOvfl */ 6759 a[9] = pPager->nRead; 6760 a[10] = pPager->aStat[PAGER_STAT_WRITE]; 6761 return a; 6762 } 6763 #endif 6764 6765 /* 6766 ** Parameter eStat must be one of SQLITE_DBSTATUS_CACHE_HIT, _MISS, _WRITE, 6767 ** or _WRITE+1. The SQLITE_DBSTATUS_CACHE_WRITE+1 case is a translation 6768 ** of SQLITE_DBSTATUS_CACHE_SPILL. The _SPILL case is not contiguous because 6769 ** it was added later. 6770 ** 6771 ** Before returning, *pnVal is incremented by the 6772 ** current cache hit or miss count, according to the value of eStat. If the 6773 ** reset parameter is non-zero, the cache hit or miss count is zeroed before 6774 ** returning. 6775 */ 6776 void sqlite3PagerCacheStat(Pager *pPager, int eStat, int reset, int *pnVal){ 6777 6778 assert( eStat==SQLITE_DBSTATUS_CACHE_HIT 6779 || eStat==SQLITE_DBSTATUS_CACHE_MISS 6780 || eStat==SQLITE_DBSTATUS_CACHE_WRITE 6781 || eStat==SQLITE_DBSTATUS_CACHE_WRITE+1 6782 ); 6783 6784 assert( SQLITE_DBSTATUS_CACHE_HIT+1==SQLITE_DBSTATUS_CACHE_MISS ); 6785 assert( SQLITE_DBSTATUS_CACHE_HIT+2==SQLITE_DBSTATUS_CACHE_WRITE ); 6786 assert( PAGER_STAT_HIT==0 && PAGER_STAT_MISS==1 6787 && PAGER_STAT_WRITE==2 && PAGER_STAT_SPILL==3 ); 6788 6789 eStat -= SQLITE_DBSTATUS_CACHE_HIT; 6790 *pnVal += pPager->aStat[eStat]; 6791 if( reset ){ 6792 pPager->aStat[eStat] = 0; 6793 } 6794 } 6795 6796 /* 6797 ** Return true if this is an in-memory or temp-file backed pager. 6798 */ 6799 int sqlite3PagerIsMemdb(Pager *pPager){ 6800 return pPager->tempFile; 6801 } 6802 6803 /* 6804 ** Check that there are at least nSavepoint savepoints open. If there are 6805 ** currently less than nSavepoints open, then open one or more savepoints 6806 ** to make up the difference. If the number of savepoints is already 6807 ** equal to nSavepoint, then this function is a no-op. 6808 ** 6809 ** If a memory allocation fails, SQLITE_NOMEM is returned. If an error 6810 ** occurs while opening the sub-journal file, then an IO error code is 6811 ** returned. Otherwise, SQLITE_OK. 6812 */ 6813 static SQLITE_NOINLINE int pagerOpenSavepoint(Pager *pPager, int nSavepoint){ 6814 int rc = SQLITE_OK; /* Return code */ 6815 int nCurrent = pPager->nSavepoint; /* Current number of savepoints */ 6816 int ii; /* Iterator variable */ 6817 PagerSavepoint *aNew; /* New Pager.aSavepoint array */ 6818 6819 assert( pPager->eState>=PAGER_WRITER_LOCKED ); 6820 assert( assert_pager_state(pPager) ); 6821 assert( nSavepoint>nCurrent && pPager->useJournal ); 6822 6823 /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM 6824 ** if the allocation fails. Otherwise, zero the new portion in case a 6825 ** malloc failure occurs while populating it in the for(...) loop below. 6826 */ 6827 aNew = (PagerSavepoint *)sqlite3Realloc( 6828 pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint 6829 ); 6830 if( !aNew ){ 6831 return SQLITE_NOMEM_BKPT; 6832 } 6833 memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint)); 6834 pPager->aSavepoint = aNew; 6835 6836 /* Populate the PagerSavepoint structures just allocated. */ 6837 for(ii=nCurrent; ii<nSavepoint; ii++){ 6838 aNew[ii].nOrig = pPager->dbSize; 6839 if( isOpen(pPager->jfd) && pPager->journalOff>0 ){ 6840 aNew[ii].iOffset = pPager->journalOff; 6841 }else{ 6842 aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager); 6843 } 6844 aNew[ii].iSubRec = pPager->nSubRec; 6845 aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize); 6846 if( !aNew[ii].pInSavepoint ){ 6847 return SQLITE_NOMEM_BKPT; 6848 } 6849 if( pagerUseWal(pPager) ){ 6850 sqlite3WalSavepoint(pPager->pWal, aNew[ii].aWalData); 6851 } 6852 pPager->nSavepoint = ii+1; 6853 } 6854 assert( pPager->nSavepoint==nSavepoint ); 6855 assertTruncateConstraint(pPager); 6856 return rc; 6857 } 6858 int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){ 6859 assert( pPager->eState>=PAGER_WRITER_LOCKED ); 6860 assert( assert_pager_state(pPager) ); 6861 6862 if( nSavepoint>pPager->nSavepoint && pPager->useJournal ){ 6863 return pagerOpenSavepoint(pPager, nSavepoint); 6864 }else{ 6865 return SQLITE_OK; 6866 } 6867 } 6868 6869 6870 /* 6871 ** This function is called to rollback or release (commit) a savepoint. 6872 ** The savepoint to release or rollback need not be the most recently 6873 ** created savepoint. 6874 ** 6875 ** Parameter op is always either SAVEPOINT_ROLLBACK or SAVEPOINT_RELEASE. 6876 ** If it is SAVEPOINT_RELEASE, then release and destroy the savepoint with 6877 ** index iSavepoint. If it is SAVEPOINT_ROLLBACK, then rollback all changes 6878 ** that have occurred since the specified savepoint was created. 6879 ** 6880 ** The savepoint to rollback or release is identified by parameter 6881 ** iSavepoint. A value of 0 means to operate on the outermost savepoint 6882 ** (the first created). A value of (Pager.nSavepoint-1) means operate 6883 ** on the most recently created savepoint. If iSavepoint is greater than 6884 ** (Pager.nSavepoint-1), then this function is a no-op. 6885 ** 6886 ** If a negative value is passed to this function, then the current 6887 ** transaction is rolled back. This is different to calling 6888 ** sqlite3PagerRollback() because this function does not terminate 6889 ** the transaction or unlock the database, it just restores the 6890 ** contents of the database to its original state. 6891 ** 6892 ** In any case, all savepoints with an index greater than iSavepoint 6893 ** are destroyed. If this is a release operation (op==SAVEPOINT_RELEASE), 6894 ** then savepoint iSavepoint is also destroyed. 6895 ** 6896 ** This function may return SQLITE_NOMEM if a memory allocation fails, 6897 ** or an IO error code if an IO error occurs while rolling back a 6898 ** savepoint. If no errors occur, SQLITE_OK is returned. 6899 */ 6900 int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint){ 6901 int rc = pPager->errCode; 6902 6903 #ifdef SQLITE_ENABLE_ZIPVFS 6904 if( op==SAVEPOINT_RELEASE ) rc = SQLITE_OK; 6905 #endif 6906 6907 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 6908 assert( iSavepoint>=0 || op==SAVEPOINT_ROLLBACK ); 6909 6910 if( rc==SQLITE_OK && iSavepoint<pPager->nSavepoint ){ 6911 int ii; /* Iterator variable */ 6912 int nNew; /* Number of remaining savepoints after this op. */ 6913 6914 /* Figure out how many savepoints will still be active after this 6915 ** operation. Store this value in nNew. Then free resources associated 6916 ** with any savepoints that are destroyed by this operation. 6917 */ 6918 nNew = iSavepoint + (( op==SAVEPOINT_RELEASE ) ? 0 : 1); 6919 for(ii=nNew; ii<pPager->nSavepoint; ii++){ 6920 sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); 6921 } 6922 pPager->nSavepoint = nNew; 6923 6924 /* If this is a release of the outermost savepoint, truncate 6925 ** the sub-journal to zero bytes in size. */ 6926 if( op==SAVEPOINT_RELEASE ){ 6927 if( nNew==0 && isOpen(pPager->sjfd) ){ 6928 /* Only truncate if it is an in-memory sub-journal. */ 6929 if( sqlite3JournalIsInMemory(pPager->sjfd) ){ 6930 rc = sqlite3OsTruncate(pPager->sjfd, 0); 6931 assert( rc==SQLITE_OK ); 6932 } 6933 pPager->nSubRec = 0; 6934 } 6935 } 6936 /* Else this is a rollback operation, playback the specified savepoint. 6937 ** If this is a temp-file, it is possible that the journal file has 6938 ** not yet been opened. In this case there have been no changes to 6939 ** the database file, so the playback operation can be skipped. 6940 */ 6941 else if( pagerUseWal(pPager) || isOpen(pPager->jfd) ){ 6942 PagerSavepoint *pSavepoint = (nNew==0)?0:&pPager->aSavepoint[nNew-1]; 6943 rc = pagerPlaybackSavepoint(pPager, pSavepoint); 6944 assert(rc!=SQLITE_DONE); 6945 } 6946 6947 #ifdef SQLITE_ENABLE_ZIPVFS 6948 /* If the cache has been modified but the savepoint cannot be rolled 6949 ** back journal_mode=off, put the pager in the error state. This way, 6950 ** if the VFS used by this pager includes ZipVFS, the entire transaction 6951 ** can be rolled back at the ZipVFS level. */ 6952 else if( 6953 pPager->journalMode==PAGER_JOURNALMODE_OFF 6954 && pPager->eState>=PAGER_WRITER_CACHEMOD 6955 ){ 6956 pPager->errCode = SQLITE_ABORT; 6957 pPager->eState = PAGER_ERROR; 6958 setGetterMethod(pPager); 6959 } 6960 #endif 6961 } 6962 6963 return rc; 6964 } 6965 6966 /* 6967 ** Return the full pathname of the database file. 6968 ** 6969 ** Except, if the pager is in-memory only, then return an empty string if 6970 ** nullIfMemDb is true. This routine is called with nullIfMemDb==1 when 6971 ** used to report the filename to the user, for compatibility with legacy 6972 ** behavior. But when the Btree needs to know the filename for matching to 6973 ** shared cache, it uses nullIfMemDb==0 so that in-memory databases can 6974 ** participate in shared-cache. 6975 ** 6976 ** The return value to this routine is always safe to use with 6977 ** sqlite3_uri_parameter() and sqlite3_filename_database() and friends. 6978 */ 6979 const char *sqlite3PagerFilename(const Pager *pPager, int nullIfMemDb){ 6980 static const char zFake[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; 6981 return (nullIfMemDb && pPager->memDb) ? &zFake[4] : pPager->zFilename; 6982 } 6983 6984 /* 6985 ** Return the VFS structure for the pager. 6986 */ 6987 sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){ 6988 return pPager->pVfs; 6989 } 6990 6991 /* 6992 ** Return the file handle for the database file associated 6993 ** with the pager. This might return NULL if the file has 6994 ** not yet been opened. 6995 */ 6996 sqlite3_file *sqlite3PagerFile(Pager *pPager){ 6997 return pPager->fd; 6998 } 6999 7000 /* 7001 ** Return the file handle for the journal file (if it exists). 7002 ** This will be either the rollback journal or the WAL file. 7003 */ 7004 sqlite3_file *sqlite3PagerJrnlFile(Pager *pPager){ 7005 #if SQLITE_OMIT_WAL 7006 return pPager->jfd; 7007 #else 7008 return pPager->pWal ? sqlite3WalFile(pPager->pWal) : pPager->jfd; 7009 #endif 7010 } 7011 7012 /* 7013 ** Return the full pathname of the journal file. 7014 */ 7015 const char *sqlite3PagerJournalname(Pager *pPager){ 7016 return pPager->zJournal; 7017 } 7018 7019 #ifndef SQLITE_OMIT_AUTOVACUUM 7020 /* 7021 ** Move the page pPg to location pgno in the file. 7022 ** 7023 ** There must be no references to the page previously located at 7024 ** pgno (which we call pPgOld) though that page is allowed to be 7025 ** in cache. If the page previously located at pgno is not already 7026 ** in the rollback journal, it is not put there by by this routine. 7027 ** 7028 ** References to the page pPg remain valid. Updating any 7029 ** meta-data associated with pPg (i.e. data stored in the nExtra bytes 7030 ** allocated along with the page) is the responsibility of the caller. 7031 ** 7032 ** A transaction must be active when this routine is called. It used to be 7033 ** required that a statement transaction was not active, but this restriction 7034 ** has been removed (CREATE INDEX needs to move a page when a statement 7035 ** transaction is active). 7036 ** 7037 ** If the fourth argument, isCommit, is non-zero, then this page is being 7038 ** moved as part of a database reorganization just before the transaction 7039 ** is being committed. In this case, it is guaranteed that the database page 7040 ** pPg refers to will not be written to again within this transaction. 7041 ** 7042 ** This function may return SQLITE_NOMEM or an IO error code if an error 7043 ** occurs. Otherwise, it returns SQLITE_OK. 7044 */ 7045 int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){ 7046 PgHdr *pPgOld; /* The page being overwritten. */ 7047 Pgno needSyncPgno = 0; /* Old value of pPg->pgno, if sync is required */ 7048 int rc; /* Return code */ 7049 Pgno origPgno; /* The original page number */ 7050 7051 assert( pPg->nRef>0 ); 7052 assert( pPager->eState==PAGER_WRITER_CACHEMOD 7053 || pPager->eState==PAGER_WRITER_DBMOD 7054 ); 7055 assert( assert_pager_state(pPager) ); 7056 7057 /* In order to be able to rollback, an in-memory database must journal 7058 ** the page we are moving from. 7059 */ 7060 assert( pPager->tempFile || !MEMDB ); 7061 if( pPager->tempFile ){ 7062 rc = sqlite3PagerWrite(pPg); 7063 if( rc ) return rc; 7064 } 7065 7066 /* If the page being moved is dirty and has not been saved by the latest 7067 ** savepoint, then save the current contents of the page into the 7068 ** sub-journal now. This is required to handle the following scenario: 7069 ** 7070 ** BEGIN; 7071 ** <journal page X, then modify it in memory> 7072 ** SAVEPOINT one; 7073 ** <Move page X to location Y> 7074 ** ROLLBACK TO one; 7075 ** 7076 ** If page X were not written to the sub-journal here, it would not 7077 ** be possible to restore its contents when the "ROLLBACK TO one" 7078 ** statement were is processed. 7079 ** 7080 ** subjournalPage() may need to allocate space to store pPg->pgno into 7081 ** one or more savepoint bitvecs. This is the reason this function 7082 ** may return SQLITE_NOMEM. 7083 */ 7084 if( (pPg->flags & PGHDR_DIRTY)!=0 7085 && SQLITE_OK!=(rc = subjournalPageIfRequired(pPg)) 7086 ){ 7087 return rc; 7088 } 7089 7090 PAGERTRACE(("MOVE %d page %d (needSync=%d) moves to %d\n", 7091 PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno)); 7092 IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno)) 7093 7094 /* If the journal needs to be sync()ed before page pPg->pgno can 7095 ** be written to, store pPg->pgno in local variable needSyncPgno. 7096 ** 7097 ** If the isCommit flag is set, there is no need to remember that 7098 ** the journal needs to be sync()ed before database page pPg->pgno 7099 ** can be written to. The caller has already promised not to write to it. 7100 */ 7101 if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){ 7102 needSyncPgno = pPg->pgno; 7103 assert( pPager->journalMode==PAGER_JOURNALMODE_OFF || 7104 pageInJournal(pPager, pPg) || pPg->pgno>pPager->dbOrigSize ); 7105 assert( pPg->flags&PGHDR_DIRTY ); 7106 } 7107 7108 /* If the cache contains a page with page-number pgno, remove it 7109 ** from its hash chain. Also, if the PGHDR_NEED_SYNC flag was set for 7110 ** page pgno before the 'move' operation, it needs to be retained 7111 ** for the page moved there. 7112 */ 7113 pPg->flags &= ~PGHDR_NEED_SYNC; 7114 pPgOld = sqlite3PagerLookup(pPager, pgno); 7115 assert( !pPgOld || pPgOld->nRef==1 || CORRUPT_DB ); 7116 if( pPgOld ){ 7117 if( pPgOld->nRef>1 ){ 7118 sqlite3PagerUnrefNotNull(pPgOld); 7119 return SQLITE_CORRUPT_BKPT; 7120 } 7121 pPg->flags |= (pPgOld->flags&PGHDR_NEED_SYNC); 7122 if( pPager->tempFile ){ 7123 /* Do not discard pages from an in-memory database since we might 7124 ** need to rollback later. Just move the page out of the way. */ 7125 sqlite3PcacheMove(pPgOld, pPager->dbSize+1); 7126 }else{ 7127 sqlite3PcacheDrop(pPgOld); 7128 } 7129 } 7130 7131 origPgno = pPg->pgno; 7132 sqlite3PcacheMove(pPg, pgno); 7133 sqlite3PcacheMakeDirty(pPg); 7134 7135 /* For an in-memory database, make sure the original page continues 7136 ** to exist, in case the transaction needs to roll back. Use pPgOld 7137 ** as the original page since it has already been allocated. 7138 */ 7139 if( pPager->tempFile && pPgOld ){ 7140 sqlite3PcacheMove(pPgOld, origPgno); 7141 sqlite3PagerUnrefNotNull(pPgOld); 7142 } 7143 7144 if( needSyncPgno ){ 7145 /* If needSyncPgno is non-zero, then the journal file needs to be 7146 ** sync()ed before any data is written to database file page needSyncPgno. 7147 ** Currently, no such page exists in the page-cache and the 7148 ** "is journaled" bitvec flag has been set. This needs to be remedied by 7149 ** loading the page into the pager-cache and setting the PGHDR_NEED_SYNC 7150 ** flag. 7151 ** 7152 ** If the attempt to load the page into the page-cache fails, (due 7153 ** to a malloc() or IO failure), clear the bit in the pInJournal[] 7154 ** array. Otherwise, if the page is loaded and written again in 7155 ** this transaction, it may be written to the database file before 7156 ** it is synced into the journal file. This way, it may end up in 7157 ** the journal file twice, but that is not a problem. 7158 */ 7159 PgHdr *pPgHdr; 7160 rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr, 0); 7161 if( rc!=SQLITE_OK ){ 7162 if( needSyncPgno<=pPager->dbOrigSize ){ 7163 assert( pPager->pTmpSpace!=0 ); 7164 sqlite3BitvecClear(pPager->pInJournal, needSyncPgno, pPager->pTmpSpace); 7165 } 7166 return rc; 7167 } 7168 pPgHdr->flags |= PGHDR_NEED_SYNC; 7169 sqlite3PcacheMakeDirty(pPgHdr); 7170 sqlite3PagerUnrefNotNull(pPgHdr); 7171 } 7172 7173 return SQLITE_OK; 7174 } 7175 #endif 7176 7177 /* 7178 ** The page handle passed as the first argument refers to a dirty page 7179 ** with a page number other than iNew. This function changes the page's 7180 ** page number to iNew and sets the value of the PgHdr.flags field to 7181 ** the value passed as the third parameter. 7182 */ 7183 void sqlite3PagerRekey(DbPage *pPg, Pgno iNew, u16 flags){ 7184 assert( pPg->pgno!=iNew ); 7185 pPg->flags = flags; 7186 sqlite3PcacheMove(pPg, iNew); 7187 } 7188 7189 /* 7190 ** Return a pointer to the data for the specified page. 7191 */ 7192 void *sqlite3PagerGetData(DbPage *pPg){ 7193 assert( pPg->nRef>0 || pPg->pPager->memDb ); 7194 return pPg->pData; 7195 } 7196 7197 /* 7198 ** Return a pointer to the Pager.nExtra bytes of "extra" space 7199 ** allocated along with the specified page. 7200 */ 7201 void *sqlite3PagerGetExtra(DbPage *pPg){ 7202 return pPg->pExtra; 7203 } 7204 7205 /* 7206 ** Get/set the locking-mode for this pager. Parameter eMode must be one 7207 ** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or 7208 ** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then 7209 ** the locking-mode is set to the value specified. 7210 ** 7211 ** The returned value is either PAGER_LOCKINGMODE_NORMAL or 7212 ** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated) 7213 ** locking-mode. 7214 */ 7215 int sqlite3PagerLockingMode(Pager *pPager, int eMode){ 7216 assert( eMode==PAGER_LOCKINGMODE_QUERY 7217 || eMode==PAGER_LOCKINGMODE_NORMAL 7218 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); 7219 assert( PAGER_LOCKINGMODE_QUERY<0 ); 7220 assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 ); 7221 assert( pPager->exclusiveMode || 0==sqlite3WalHeapMemory(pPager->pWal) ); 7222 if( eMode>=0 && !pPager->tempFile && !sqlite3WalHeapMemory(pPager->pWal) ){ 7223 pPager->exclusiveMode = (u8)eMode; 7224 } 7225 return (int)pPager->exclusiveMode; 7226 } 7227 7228 /* 7229 ** Set the journal-mode for this pager. Parameter eMode must be one of: 7230 ** 7231 ** PAGER_JOURNALMODE_DELETE 7232 ** PAGER_JOURNALMODE_TRUNCATE 7233 ** PAGER_JOURNALMODE_PERSIST 7234 ** PAGER_JOURNALMODE_OFF 7235 ** PAGER_JOURNALMODE_MEMORY 7236 ** PAGER_JOURNALMODE_WAL 7237 ** 7238 ** The journalmode is set to the value specified if the change is allowed. 7239 ** The change may be disallowed for the following reasons: 7240 ** 7241 ** * An in-memory database can only have its journal_mode set to _OFF 7242 ** or _MEMORY. 7243 ** 7244 ** * Temporary databases cannot have _WAL journalmode. 7245 ** 7246 ** The returned indicate the current (possibly updated) journal-mode. 7247 */ 7248 int sqlite3PagerSetJournalMode(Pager *pPager, int eMode){ 7249 u8 eOld = pPager->journalMode; /* Prior journalmode */ 7250 7251 /* The eMode parameter is always valid */ 7252 assert( eMode==PAGER_JOURNALMODE_DELETE 7253 || eMode==PAGER_JOURNALMODE_TRUNCATE 7254 || eMode==PAGER_JOURNALMODE_PERSIST 7255 || eMode==PAGER_JOURNALMODE_OFF 7256 || eMode==PAGER_JOURNALMODE_WAL 7257 || eMode==PAGER_JOURNALMODE_MEMORY ); 7258 7259 /* This routine is only called from the OP_JournalMode opcode, and 7260 ** the logic there will never allow a temporary file to be changed 7261 ** to WAL mode. 7262 */ 7263 assert( pPager->tempFile==0 || eMode!=PAGER_JOURNALMODE_WAL ); 7264 7265 /* Do allow the journalmode of an in-memory database to be set to 7266 ** anything other than MEMORY or OFF 7267 */ 7268 if( MEMDB ){ 7269 assert( eOld==PAGER_JOURNALMODE_MEMORY || eOld==PAGER_JOURNALMODE_OFF ); 7270 if( eMode!=PAGER_JOURNALMODE_MEMORY && eMode!=PAGER_JOURNALMODE_OFF ){ 7271 eMode = eOld; 7272 } 7273 } 7274 7275 if( eMode!=eOld ){ 7276 7277 /* Change the journal mode. */ 7278 assert( pPager->eState!=PAGER_ERROR ); 7279 pPager->journalMode = (u8)eMode; 7280 7281 /* When transistioning from TRUNCATE or PERSIST to any other journal 7282 ** mode except WAL, unless the pager is in locking_mode=exclusive mode, 7283 ** delete the journal file. 7284 */ 7285 assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); 7286 assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); 7287 assert( (PAGER_JOURNALMODE_DELETE & 5)==0 ); 7288 assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 ); 7289 assert( (PAGER_JOURNALMODE_OFF & 5)==0 ); 7290 assert( (PAGER_JOURNALMODE_WAL & 5)==5 ); 7291 7292 assert( isOpen(pPager->fd) || pPager->exclusiveMode ); 7293 if( !pPager->exclusiveMode && (eOld & 5)==1 && (eMode & 1)==0 ){ 7294 7295 /* In this case we would like to delete the journal file. If it is 7296 ** not possible, then that is not a problem. Deleting the journal file 7297 ** here is an optimization only. 7298 ** 7299 ** Before deleting the journal file, obtain a RESERVED lock on the 7300 ** database file. This ensures that the journal file is not deleted 7301 ** while it is in use by some other client. 7302 */ 7303 sqlite3OsClose(pPager->jfd); 7304 if( pPager->eLock>=RESERVED_LOCK ){ 7305 sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); 7306 }else{ 7307 int rc = SQLITE_OK; 7308 int state = pPager->eState; 7309 assert( state==PAGER_OPEN || state==PAGER_READER ); 7310 if( state==PAGER_OPEN ){ 7311 rc = sqlite3PagerSharedLock(pPager); 7312 } 7313 if( pPager->eState==PAGER_READER ){ 7314 assert( rc==SQLITE_OK ); 7315 rc = pagerLockDb(pPager, RESERVED_LOCK); 7316 } 7317 if( rc==SQLITE_OK ){ 7318 sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); 7319 } 7320 if( rc==SQLITE_OK && state==PAGER_READER ){ 7321 pagerUnlockDb(pPager, SHARED_LOCK); 7322 }else if( state==PAGER_OPEN ){ 7323 pager_unlock(pPager); 7324 } 7325 assert( state==pPager->eState ); 7326 } 7327 }else if( eMode==PAGER_JOURNALMODE_OFF ){ 7328 sqlite3OsClose(pPager->jfd); 7329 } 7330 } 7331 7332 /* Return the new journal mode */ 7333 return (int)pPager->journalMode; 7334 } 7335 7336 /* 7337 ** Return the current journal mode. 7338 */ 7339 int sqlite3PagerGetJournalMode(Pager *pPager){ 7340 return (int)pPager->journalMode; 7341 } 7342 7343 /* 7344 ** Return TRUE if the pager is in a state where it is OK to change the 7345 ** journalmode. Journalmode changes can only happen when the database 7346 ** is unmodified. 7347 */ 7348 int sqlite3PagerOkToChangeJournalMode(Pager *pPager){ 7349 assert( assert_pager_state(pPager) ); 7350 if( pPager->eState>=PAGER_WRITER_CACHEMOD ) return 0; 7351 if( NEVER(isOpen(pPager->jfd) && pPager->journalOff>0) ) return 0; 7352 return 1; 7353 } 7354 7355 /* 7356 ** Get/set the size-limit used for persistent journal files. 7357 ** 7358 ** Setting the size limit to -1 means no limit is enforced. 7359 ** An attempt to set a limit smaller than -1 is a no-op. 7360 */ 7361 i64 sqlite3PagerJournalSizeLimit(Pager *pPager, i64 iLimit){ 7362 if( iLimit>=-1 ){ 7363 pPager->journalSizeLimit = iLimit; 7364 sqlite3WalLimit(pPager->pWal, iLimit); 7365 } 7366 return pPager->journalSizeLimit; 7367 } 7368 7369 /* 7370 ** Return a pointer to the pPager->pBackup variable. The backup module 7371 ** in backup.c maintains the content of this variable. This module 7372 ** uses it opaquely as an argument to sqlite3BackupRestart() and 7373 ** sqlite3BackupUpdate() only. 7374 */ 7375 sqlite3_backup **sqlite3PagerBackupPtr(Pager *pPager){ 7376 return &pPager->pBackup; 7377 } 7378 7379 #ifndef SQLITE_OMIT_VACUUM 7380 /* 7381 ** Unless this is an in-memory or temporary database, clear the pager cache. 7382 */ 7383 void sqlite3PagerClearCache(Pager *pPager){ 7384 assert( MEMDB==0 || pPager->tempFile ); 7385 if( pPager->tempFile==0 ) pager_reset(pPager); 7386 } 7387 #endif 7388 7389 7390 #ifndef SQLITE_OMIT_WAL 7391 /* 7392 ** This function is called when the user invokes "PRAGMA wal_checkpoint", 7393 ** "PRAGMA wal_blocking_checkpoint" or calls the sqlite3_wal_checkpoint() 7394 ** or wal_blocking_checkpoint() API functions. 7395 ** 7396 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 7397 */ 7398 int sqlite3PagerCheckpoint( 7399 Pager *pPager, /* Checkpoint on this pager */ 7400 sqlite3 *db, /* Db handle used to check for interrupts */ 7401 int eMode, /* Type of checkpoint */ 7402 int *pnLog, /* OUT: Final number of frames in log */ 7403 int *pnCkpt /* OUT: Final number of checkpointed frames */ 7404 ){ 7405 int rc = SQLITE_OK; 7406 if( pPager->pWal ){ 7407 rc = sqlite3WalCheckpoint(pPager->pWal, db, eMode, 7408 (eMode==SQLITE_CHECKPOINT_PASSIVE ? 0 : pPager->xBusyHandler), 7409 pPager->pBusyHandlerArg, 7410 pPager->walSyncFlags, pPager->pageSize, (u8 *)pPager->pTmpSpace, 7411 pnLog, pnCkpt 7412 ); 7413 } 7414 return rc; 7415 } 7416 7417 int sqlite3PagerWalCallback(Pager *pPager){ 7418 return sqlite3WalCallback(pPager->pWal); 7419 } 7420 7421 /* 7422 ** Return true if the underlying VFS for the given pager supports the 7423 ** primitives necessary for write-ahead logging. 7424 */ 7425 int sqlite3PagerWalSupported(Pager *pPager){ 7426 const sqlite3_io_methods *pMethods = pPager->fd->pMethods; 7427 if( pPager->noLock ) return 0; 7428 return pPager->exclusiveMode || (pMethods->iVersion>=2 && pMethods->xShmMap); 7429 } 7430 7431 /* 7432 ** Attempt to take an exclusive lock on the database file. If a PENDING lock 7433 ** is obtained instead, immediately release it. 7434 */ 7435 static int pagerExclusiveLock(Pager *pPager){ 7436 int rc; /* Return code */ 7437 7438 assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); 7439 rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); 7440 if( rc!=SQLITE_OK ){ 7441 /* If the attempt to grab the exclusive lock failed, release the 7442 ** pending lock that may have been obtained instead. */ 7443 pagerUnlockDb(pPager, SHARED_LOCK); 7444 } 7445 7446 return rc; 7447 } 7448 7449 /* 7450 ** Call sqlite3WalOpen() to open the WAL handle. If the pager is in 7451 ** exclusive-locking mode when this function is called, take an EXCLUSIVE 7452 ** lock on the database file and use heap-memory to store the wal-index 7453 ** in. Otherwise, use the normal shared-memory. 7454 */ 7455 static int pagerOpenWal(Pager *pPager){ 7456 int rc = SQLITE_OK; 7457 7458 assert( pPager->pWal==0 && pPager->tempFile==0 ); 7459 assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); 7460 7461 /* If the pager is already in exclusive-mode, the WAL module will use 7462 ** heap-memory for the wal-index instead of the VFS shared-memory 7463 ** implementation. Take the exclusive lock now, before opening the WAL 7464 ** file, to make sure this is safe. 7465 */ 7466 if( pPager->exclusiveMode ){ 7467 rc = pagerExclusiveLock(pPager); 7468 } 7469 7470 /* Open the connection to the log file. If this operation fails, 7471 ** (e.g. due to malloc() failure), return an error code. 7472 */ 7473 if( rc==SQLITE_OK ){ 7474 rc = sqlite3WalOpen(pPager->pVfs, 7475 pPager->fd, pPager->zWal, pPager->exclusiveMode, 7476 pPager->journalSizeLimit, &pPager->pWal 7477 ); 7478 } 7479 pagerFixMaplimit(pPager); 7480 7481 return rc; 7482 } 7483 7484 7485 /* 7486 ** The caller must be holding a SHARED lock on the database file to call 7487 ** this function. 7488 ** 7489 ** If the pager passed as the first argument is open on a real database 7490 ** file (not a temp file or an in-memory database), and the WAL file 7491 ** is not already open, make an attempt to open it now. If successful, 7492 ** return SQLITE_OK. If an error occurs or the VFS used by the pager does 7493 ** not support the xShmXXX() methods, return an error code. *pbOpen is 7494 ** not modified in either case. 7495 ** 7496 ** If the pager is open on a temp-file (or in-memory database), or if 7497 ** the WAL file is already open, set *pbOpen to 1 and return SQLITE_OK 7498 ** without doing anything. 7499 */ 7500 int sqlite3PagerOpenWal( 7501 Pager *pPager, /* Pager object */ 7502 int *pbOpen /* OUT: Set to true if call is a no-op */ 7503 ){ 7504 int rc = SQLITE_OK; /* Return code */ 7505 7506 assert( assert_pager_state(pPager) ); 7507 assert( pPager->eState==PAGER_OPEN || pbOpen ); 7508 assert( pPager->eState==PAGER_READER || !pbOpen ); 7509 assert( pbOpen==0 || *pbOpen==0 ); 7510 assert( pbOpen!=0 || (!pPager->tempFile && !pPager->pWal) ); 7511 7512 if( !pPager->tempFile && !pPager->pWal ){ 7513 if( !sqlite3PagerWalSupported(pPager) ) return SQLITE_CANTOPEN; 7514 7515 /* Close any rollback journal previously open */ 7516 sqlite3OsClose(pPager->jfd); 7517 7518 rc = pagerOpenWal(pPager); 7519 if( rc==SQLITE_OK ){ 7520 pPager->journalMode = PAGER_JOURNALMODE_WAL; 7521 pPager->eState = PAGER_OPEN; 7522 } 7523 }else{ 7524 *pbOpen = 1; 7525 } 7526 7527 return rc; 7528 } 7529 7530 /* 7531 ** This function is called to close the connection to the log file prior 7532 ** to switching from WAL to rollback mode. 7533 ** 7534 ** Before closing the log file, this function attempts to take an 7535 ** EXCLUSIVE lock on the database file. If this cannot be obtained, an 7536 ** error (SQLITE_BUSY) is returned and the log connection is not closed. 7537 ** If successful, the EXCLUSIVE lock is not released before returning. 7538 */ 7539 int sqlite3PagerCloseWal(Pager *pPager, sqlite3 *db){ 7540 int rc = SQLITE_OK; 7541 7542 assert( pPager->journalMode==PAGER_JOURNALMODE_WAL ); 7543 7544 /* If the log file is not already open, but does exist in the file-system, 7545 ** it may need to be checkpointed before the connection can switch to 7546 ** rollback mode. Open it now so this can happen. 7547 */ 7548 if( !pPager->pWal ){ 7549 int logexists = 0; 7550 rc = pagerLockDb(pPager, SHARED_LOCK); 7551 if( rc==SQLITE_OK ){ 7552 rc = sqlite3OsAccess( 7553 pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &logexists 7554 ); 7555 } 7556 if( rc==SQLITE_OK && logexists ){ 7557 rc = pagerOpenWal(pPager); 7558 } 7559 } 7560 7561 /* Checkpoint and close the log. Because an EXCLUSIVE lock is held on 7562 ** the database file, the log and log-summary files will be deleted. 7563 */ 7564 if( rc==SQLITE_OK && pPager->pWal ){ 7565 rc = pagerExclusiveLock(pPager); 7566 if( rc==SQLITE_OK ){ 7567 rc = sqlite3WalClose(pPager->pWal, db, pPager->walSyncFlags, 7568 pPager->pageSize, (u8*)pPager->pTmpSpace); 7569 pPager->pWal = 0; 7570 pagerFixMaplimit(pPager); 7571 if( rc && !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK); 7572 } 7573 } 7574 return rc; 7575 } 7576 7577 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT 7578 /* 7579 ** If pager pPager is a wal-mode database not in exclusive locking mode, 7580 ** invoke the sqlite3WalWriteLock() function on the associated Wal object 7581 ** with the same db and bLock parameters as were passed to this function. 7582 ** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise. 7583 */ 7584 int sqlite3PagerWalWriteLock(Pager *pPager, int bLock){ 7585 int rc = SQLITE_OK; 7586 if( pagerUseWal(pPager) && pPager->exclusiveMode==0 ){ 7587 rc = sqlite3WalWriteLock(pPager->pWal, bLock); 7588 } 7589 return rc; 7590 } 7591 7592 /* 7593 ** Set the database handle used by the wal layer to determine if 7594 ** blocking locks are required. 7595 */ 7596 void sqlite3PagerWalDb(Pager *pPager, sqlite3 *db){ 7597 if( pagerUseWal(pPager) ){ 7598 sqlite3WalDb(pPager->pWal, db); 7599 } 7600 } 7601 #endif 7602 7603 #ifdef SQLITE_ENABLE_SNAPSHOT 7604 /* 7605 ** If this is a WAL database, obtain a snapshot handle for the snapshot 7606 ** currently open. Otherwise, return an error. 7607 */ 7608 int sqlite3PagerSnapshotGet(Pager *pPager, sqlite3_snapshot **ppSnapshot){ 7609 int rc = SQLITE_ERROR; 7610 if( pPager->pWal ){ 7611 rc = sqlite3WalSnapshotGet(pPager->pWal, ppSnapshot); 7612 } 7613 return rc; 7614 } 7615 7616 /* 7617 ** If this is a WAL database, store a pointer to pSnapshot. Next time a 7618 ** read transaction is opened, attempt to read from the snapshot it 7619 ** identifies. If this is not a WAL database, return an error. 7620 */ 7621 int sqlite3PagerSnapshotOpen( 7622 Pager *pPager, 7623 sqlite3_snapshot *pSnapshot 7624 ){ 7625 int rc = SQLITE_OK; 7626 if( pPager->pWal ){ 7627 sqlite3WalSnapshotOpen(pPager->pWal, pSnapshot); 7628 }else{ 7629 rc = SQLITE_ERROR; 7630 } 7631 return rc; 7632 } 7633 7634 /* 7635 ** If this is a WAL database, call sqlite3WalSnapshotRecover(). If this 7636 ** is not a WAL database, return an error. 7637 */ 7638 int sqlite3PagerSnapshotRecover(Pager *pPager){ 7639 int rc; 7640 if( pPager->pWal ){ 7641 rc = sqlite3WalSnapshotRecover(pPager->pWal); 7642 }else{ 7643 rc = SQLITE_ERROR; 7644 } 7645 return rc; 7646 } 7647 7648 /* 7649 ** The caller currently has a read transaction open on the database. 7650 ** If this is not a WAL database, SQLITE_ERROR is returned. Otherwise, 7651 ** this function takes a SHARED lock on the CHECKPOINTER slot and then 7652 ** checks if the snapshot passed as the second argument is still 7653 ** available. If so, SQLITE_OK is returned. 7654 ** 7655 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if 7656 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error 7657 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER 7658 ** lock is released before returning. 7659 */ 7660 int sqlite3PagerSnapshotCheck(Pager *pPager, sqlite3_snapshot *pSnapshot){ 7661 int rc; 7662 if( pPager->pWal ){ 7663 rc = sqlite3WalSnapshotCheck(pPager->pWal, pSnapshot); 7664 }else{ 7665 rc = SQLITE_ERROR; 7666 } 7667 return rc; 7668 } 7669 7670 /* 7671 ** Release a lock obtained by an earlier successful call to 7672 ** sqlite3PagerSnapshotCheck(). 7673 */ 7674 void sqlite3PagerSnapshotUnlock(Pager *pPager){ 7675 assert( pPager->pWal ); 7676 sqlite3WalSnapshotUnlock(pPager->pWal); 7677 } 7678 7679 #endif /* SQLITE_ENABLE_SNAPSHOT */ 7680 #endif /* !SQLITE_OMIT_WAL */ 7681 7682 #ifdef SQLITE_ENABLE_ZIPVFS 7683 /* 7684 ** A read-lock must be held on the pager when this function is called. If 7685 ** the pager is in WAL mode and the WAL file currently contains one or more 7686 ** frames, return the size in bytes of the page images stored within the 7687 ** WAL frames. Otherwise, if this is not a WAL database or the WAL file 7688 ** is empty, return 0. 7689 */ 7690 int sqlite3PagerWalFramesize(Pager *pPager){ 7691 assert( pPager->eState>=PAGER_READER ); 7692 return sqlite3WalFramesize(pPager->pWal); 7693 } 7694 #endif 7695 7696 #endif /* SQLITE_OMIT_DISKIO */ 7697