1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This is the implementation of the page cache subsystem or "pager". 13 ** 14 ** The pager is used to access a database disk file. It implements 15 ** atomic commit and rollback through the use of a journal file that 16 ** is separate from the database file. The pager also implements file 17 ** locking to prevent two processes from writing the same database 18 ** file simultaneously, or one process from reading the database while 19 ** another is writing. 20 ** 21 ** @(#) $Id: pager.c,v 1.423 2008/04/03 10:13:01 danielk1977 Exp $ 22 */ 23 #ifndef SQLITE_OMIT_DISKIO 24 #include "sqliteInt.h" 25 #include <assert.h> 26 #include <string.h> 27 28 /* 29 ** Macros for troubleshooting. Normally turned off 30 */ 31 #if 0 32 #define sqlite3DebugPrintf printf 33 #define PAGERTRACE1(X) sqlite3DebugPrintf(X) 34 #define PAGERTRACE2(X,Y) sqlite3DebugPrintf(X,Y) 35 #define PAGERTRACE3(X,Y,Z) sqlite3DebugPrintf(X,Y,Z) 36 #define PAGERTRACE4(X,Y,Z,W) sqlite3DebugPrintf(X,Y,Z,W) 37 #define PAGERTRACE5(X,Y,Z,W,V) sqlite3DebugPrintf(X,Y,Z,W,V) 38 #else 39 #define PAGERTRACE1(X) 40 #define PAGERTRACE2(X,Y) 41 #define PAGERTRACE3(X,Y,Z) 42 #define PAGERTRACE4(X,Y,Z,W) 43 #define PAGERTRACE5(X,Y,Z,W,V) 44 #endif 45 46 /* 47 ** The following two macros are used within the PAGERTRACEX() macros above 48 ** to print out file-descriptors. 49 ** 50 ** PAGERID() takes a pointer to a Pager struct as its argument. The 51 ** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file 52 ** struct as its argument. 53 */ 54 #define PAGERID(p) ((int)(p->fd)) 55 #define FILEHANDLEID(fd) ((int)fd) 56 57 /* 58 ** The page cache as a whole is always in one of the following 59 ** states: 60 ** 61 ** PAGER_UNLOCK The page cache is not currently reading or 62 ** writing the database file. There is no 63 ** data held in memory. This is the initial 64 ** state. 65 ** 66 ** PAGER_SHARED The page cache is reading the database. 67 ** Writing is not permitted. There can be 68 ** multiple readers accessing the same database 69 ** file at the same time. 70 ** 71 ** PAGER_RESERVED This process has reserved the database for writing 72 ** but has not yet made any changes. Only one process 73 ** at a time can reserve the database. The original 74 ** database file has not been modified so other 75 ** processes may still be reading the on-disk 76 ** database file. 77 ** 78 ** PAGER_EXCLUSIVE The page cache is writing the database. 79 ** Access is exclusive. No other processes or 80 ** threads can be reading or writing while one 81 ** process is writing. 82 ** 83 ** PAGER_SYNCED The pager moves to this state from PAGER_EXCLUSIVE 84 ** after all dirty pages have been written to the 85 ** database file and the file has been synced to 86 ** disk. All that remains to do is to remove or 87 ** truncate the journal file and the transaction 88 ** will be committed. 89 ** 90 ** The page cache comes up in PAGER_UNLOCK. The first time a 91 ** sqlite3PagerGet() occurs, the state transitions to PAGER_SHARED. 92 ** After all pages have been released using sqlite_page_unref(), 93 ** the state transitions back to PAGER_UNLOCK. The first time 94 ** that sqlite3PagerWrite() is called, the state transitions to 95 ** PAGER_RESERVED. (Note that sqlite3PagerWrite() can only be 96 ** called on an outstanding page which means that the pager must 97 ** be in PAGER_SHARED before it transitions to PAGER_RESERVED.) 98 ** PAGER_RESERVED means that there is an open rollback journal. 99 ** The transition to PAGER_EXCLUSIVE occurs before any changes 100 ** are made to the database file, though writes to the rollback 101 ** journal occurs with just PAGER_RESERVED. After an sqlite3PagerRollback() 102 ** or sqlite3PagerCommitPhaseTwo(), the state can go back to PAGER_SHARED, 103 ** or it can stay at PAGER_EXCLUSIVE if we are in exclusive access mode. 104 */ 105 #define PAGER_UNLOCK 0 106 #define PAGER_SHARED 1 /* same as SHARED_LOCK */ 107 #define PAGER_RESERVED 2 /* same as RESERVED_LOCK */ 108 #define PAGER_EXCLUSIVE 4 /* same as EXCLUSIVE_LOCK */ 109 #define PAGER_SYNCED 5 110 111 /* 112 ** If the SQLITE_BUSY_RESERVED_LOCK macro is set to true at compile-time, 113 ** then failed attempts to get a reserved lock will invoke the busy callback. 114 ** This is off by default. To see why, consider the following scenario: 115 ** 116 ** Suppose thread A already has a shared lock and wants a reserved lock. 117 ** Thread B already has a reserved lock and wants an exclusive lock. If 118 ** both threads are using their busy callbacks, it might be a long time 119 ** be for one of the threads give up and allows the other to proceed. 120 ** But if the thread trying to get the reserved lock gives up quickly 121 ** (if it never invokes its busy callback) then the contention will be 122 ** resolved quickly. 123 */ 124 #ifndef SQLITE_BUSY_RESERVED_LOCK 125 # define SQLITE_BUSY_RESERVED_LOCK 0 126 #endif 127 128 /* 129 ** This macro rounds values up so that if the value is an address it 130 ** is guaranteed to be an address that is aligned to an 8-byte boundary. 131 */ 132 #define FORCE_ALIGNMENT(X) (((X)+7)&~7) 133 134 typedef struct PgHdr PgHdr; 135 136 /* 137 ** Each pager stores all currently unreferenced pages in a list sorted 138 ** in least-recently-used (LRU) order (i.e. the first item on the list has 139 ** not been referenced in a long time, the last item has been recently 140 ** used). An instance of this structure is included as part of each 141 ** pager structure for this purpose (variable Pager.lru). 142 ** 143 ** Additionally, if memory-management is enabled, all unreferenced pages 144 ** are stored in a global LRU list (global variable sqlite3LruPageList). 145 ** 146 ** In both cases, the PagerLruList.pFirstSynced variable points to 147 ** the first page in the corresponding list that does not require an 148 ** fsync() operation before its memory can be reclaimed. If no such 149 ** page exists, PagerLruList.pFirstSynced is set to NULL. 150 */ 151 typedef struct PagerLruList PagerLruList; 152 struct PagerLruList { 153 PgHdr *pFirst; /* First page in LRU list */ 154 PgHdr *pLast; /* Last page in LRU list (the most recently used) */ 155 PgHdr *pFirstSynced; /* First page in list with PgHdr.needSync==0 */ 156 }; 157 158 /* 159 ** The following structure contains the next and previous pointers used 160 ** to link a PgHdr structure into a PagerLruList linked list. 161 */ 162 typedef struct PagerLruLink PagerLruLink; 163 struct PagerLruLink { 164 PgHdr *pNext; 165 PgHdr *pPrev; 166 }; 167 168 /* 169 ** Each in-memory image of a page begins with the following header. 170 ** This header is only visible to this pager module. The client 171 ** code that calls pager sees only the data that follows the header. 172 ** 173 ** Client code should call sqlite3PagerWrite() on a page prior to making 174 ** any modifications to that page. The first time sqlite3PagerWrite() 175 ** is called, the original page contents are written into the rollback 176 ** journal and PgHdr.inJournal and PgHdr.needSync are set. Later, once 177 ** the journal page has made it onto the disk surface, PgHdr.needSync 178 ** is cleared. The modified page cannot be written back into the original 179 ** database file until the journal pages has been synced to disk and the 180 ** PgHdr.needSync has been cleared. 181 ** 182 ** The PgHdr.dirty flag is set when sqlite3PagerWrite() is called and 183 ** is cleared again when the page content is written back to the original 184 ** database file. 185 ** 186 ** Details of important structure elements: 187 ** 188 ** needSync 189 ** 190 ** If this is true, this means that it is not safe to write the page 191 ** content to the database because the original content needed 192 ** for rollback has not by synced to the main rollback journal. 193 ** The original content may have been written to the rollback journal 194 ** but it has not yet been synced. So we cannot write to the database 195 ** file because power failure might cause the page in the journal file 196 ** to never reach the disk. It is as if the write to the journal file 197 ** does not occur until the journal file is synced. 198 ** 199 ** This flag is false if the page content exactly matches what 200 ** currently exists in the database file. The needSync flag is also 201 ** false if the original content has been written to the main rollback 202 ** journal and synced. If the page represents a new page that has 203 ** been added onto the end of the database during the current 204 ** transaction, the needSync flag is true until the original database 205 ** size in the journal header has been synced to disk. 206 ** 207 ** inJournal 208 ** 209 ** This is true if the original page has been written into the main 210 ** rollback journal. This is always false for new pages added to 211 ** the end of the database file during the current transaction. 212 ** And this flag says nothing about whether or not the journal 213 ** has been synced to disk. For pages that are in the original 214 ** database file, the following expression should always be true: 215 ** 216 ** inJournal = sqlite3BitvecTest(pPager->pInJournal, pgno) 217 ** 218 ** The pPager->pInJournal object is only valid for the original 219 ** pages of the database, not new pages that are added to the end 220 ** of the database, so obviously the above expression cannot be 221 ** valid for new pages. For new pages inJournal is always 0. 222 ** 223 ** dirty 224 ** 225 ** When true, this means that the content of the page has been 226 ** modified and needs to be written back to the database file. 227 ** If false, it means that either the content of the page is 228 ** unchanged or else the content is unimportant and we do not 229 ** care whether or not it is preserved. 230 ** 231 ** alwaysRollback 232 ** 233 ** This means that the sqlite3PagerDontRollback() API should be 234 ** ignored for this page. The DontRollback() API attempts to say 235 ** that the content of the page on disk is unimportant (it is an 236 ** unused page on the freelist) so that it is unnecessary to 237 ** rollback changes to this page because the content of the page 238 ** can change without changing the meaning of the database. This 239 ** flag overrides any DontRollback() attempt. This flag is set 240 ** when a page that originally contained valid data is added to 241 ** the freelist. Later in the same transaction, this page might 242 ** be pulled from the freelist and reused for something different 243 ** and at that point the DontRollback() API will be called because 244 ** pages taken from the freelist do not need to be protected by 245 ** the rollback journal. But this flag says that the page was 246 ** not originally part of the freelist so that it still needs to 247 ** be rolled back in spite of any subsequent DontRollback() calls. 248 ** 249 ** needRead 250 ** 251 ** This flag means (when true) that the content of the page has 252 ** not yet been loaded from disk. The in-memory content is just 253 ** garbage. (Actually, we zero the content, but you should not 254 ** make any assumptions about the content nevertheless.) If the 255 ** content is needed in the future, it should be read from the 256 ** original database file. 257 */ 258 struct PgHdr { 259 Pager *pPager; /* The pager to which this page belongs */ 260 Pgno pgno; /* The page number for this page */ 261 PgHdr *pNextHash, *pPrevHash; /* Hash collision chain for PgHdr.pgno */ 262 PagerLruLink free; /* Next and previous free pages */ 263 PgHdr *pNextAll; /* A list of all pages */ 264 u8 inJournal; /* TRUE if has been written to journal */ 265 u8 dirty; /* TRUE if we need to write back changes */ 266 u8 needSync; /* Sync journal before writing this page */ 267 u8 alwaysRollback; /* Disable DontRollback() for this page */ 268 u8 needRead; /* Read content if PagerWrite() is called */ 269 short int nRef; /* Number of users of this page */ 270 PgHdr *pDirty, *pPrevDirty; /* Dirty pages */ 271 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 272 PagerLruLink gfree; /* Global list of nRef==0 pages */ 273 #endif 274 #ifdef SQLITE_CHECK_PAGES 275 u32 pageHash; 276 #endif 277 void *pData; /* Page data */ 278 /* Pager.nExtra bytes of local data appended to this header */ 279 }; 280 281 /* 282 ** For an in-memory only database, some extra information is recorded about 283 ** each page so that changes can be rolled back. (Journal files are not 284 ** used for in-memory databases.) The following information is added to 285 ** the end of every EXTRA block for in-memory databases. 286 ** 287 ** This information could have been added directly to the PgHdr structure. 288 ** But then it would take up an extra 8 bytes of storage on every PgHdr 289 ** even for disk-based databases. Splitting it out saves 8 bytes. This 290 ** is only a savings of 0.8% but those percentages add up. 291 */ 292 typedef struct PgHistory PgHistory; 293 struct PgHistory { 294 u8 *pOrig; /* Original page text. Restore to this on a full rollback */ 295 u8 *pStmt; /* Text as it was at the beginning of the current statement */ 296 PgHdr *pNextStmt, *pPrevStmt; /* List of pages in the statement journal */ 297 u8 inStmt; /* TRUE if in the statement subjournal */ 298 }; 299 300 /* 301 ** A macro used for invoking the codec if there is one 302 */ 303 #ifdef SQLITE_HAS_CODEC 304 # define CODEC1(P,D,N,X) if( P->xCodec!=0 ){ P->xCodec(P->pCodecArg,D,N,X); } 305 # define CODEC2(P,D,N,X) ((char*)(P->xCodec!=0?P->xCodec(P->pCodecArg,D,N,X):D)) 306 #else 307 # define CODEC1(P,D,N,X) /* NO-OP */ 308 # define CODEC2(P,D,N,X) ((char*)D) 309 #endif 310 311 /* 312 ** Convert a pointer to a PgHdr into a pointer to its data 313 ** and back again. 314 */ 315 #define PGHDR_TO_DATA(P) ((P)->pData) 316 #define PGHDR_TO_EXTRA(G,P) ((void*)&((G)[1])) 317 #define PGHDR_TO_HIST(P,PGR) \ 318 ((PgHistory*)&((char*)(&(P)[1]))[(PGR)->nExtra]) 319 320 /* 321 ** A open page cache is an instance of the following structure. 322 ** 323 ** Pager.errCode may be set to SQLITE_IOERR, SQLITE_CORRUPT, or 324 ** or SQLITE_FULL. Once one of the first three errors occurs, it persists 325 ** and is returned as the result of every major pager API call. The 326 ** SQLITE_FULL return code is slightly different. It persists only until the 327 ** next successful rollback is performed on the pager cache. Also, 328 ** SQLITE_FULL does not affect the sqlite3PagerGet() and sqlite3PagerLookup() 329 ** APIs, they may still be used successfully. 330 */ 331 struct Pager { 332 sqlite3_vfs *pVfs; /* OS functions to use for IO */ 333 u8 journalOpen; /* True if journal file descriptors is valid */ 334 u8 journalStarted; /* True if header of journal is synced */ 335 u8 useJournal; /* Use a rollback journal on this file */ 336 u8 noReadlock; /* Do not bother to obtain readlocks */ 337 u8 stmtOpen; /* True if the statement subjournal is open */ 338 u8 stmtInUse; /* True we are in a statement subtransaction */ 339 u8 stmtAutoopen; /* Open stmt journal when main journal is opened*/ 340 u8 noSync; /* Do not sync the journal if true */ 341 u8 fullSync; /* Do extra syncs of the journal for robustness */ 342 u8 sync_flags; /* One of SYNC_NORMAL or SYNC_FULL */ 343 u8 state; /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */ 344 u8 tempFile; /* zFilename is a temporary file */ 345 u8 readOnly; /* True for a read-only database */ 346 u8 needSync; /* True if an fsync() is needed on the journal */ 347 u8 dirtyCache; /* True if cached pages have changed */ 348 u8 alwaysRollback; /* Disable DontRollback() for all pages */ 349 u8 memDb; /* True to inhibit all file I/O */ 350 u8 setMaster; /* True if a m-j name has been written to jrnl */ 351 u8 doNotSync; /* Boolean. While true, do not spill the cache */ 352 u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */ 353 u8 changeCountDone; /* Set after incrementing the change-counter */ 354 u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */ 355 int errCode; /* One of several kinds of errors */ 356 int dbSize; /* Number of pages in the file */ 357 int origDbSize; /* dbSize before the current change */ 358 int stmtSize; /* Size of database (in pages) at stmt_begin() */ 359 int nRec; /* Number of pages written to the journal */ 360 u32 cksumInit; /* Quasi-random value added to every checksum */ 361 int stmtNRec; /* Number of records in stmt subjournal */ 362 int nExtra; /* Add this many bytes to each in-memory page */ 363 int pageSize; /* Number of bytes in a page */ 364 int nPage; /* Total number of in-memory pages */ 365 int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */ 366 int mxPage; /* Maximum number of pages to hold in cache */ 367 Pgno mxPgno; /* Maximum allowed size of the database */ 368 Bitvec *pInJournal; /* One bit for each page in the database file */ 369 Bitvec *pInStmt; /* One bit for each page in the database */ 370 char *zFilename; /* Name of the database file */ 371 char *zJournal; /* Name of the journal file */ 372 char *zDirectory; /* Directory hold database and journal files */ 373 char *zStmtJrnl; /* Name of the statement journal file */ 374 sqlite3_file *fd, *jfd; /* File descriptors for database and journal */ 375 sqlite3_file *stfd; /* File descriptor for the statement subjournal*/ 376 BusyHandler *pBusyHandler; /* Pointer to sqlite.busyHandler */ 377 PagerLruList lru; /* LRU list of free pages */ 378 PgHdr *pAll; /* List of all pages */ 379 PgHdr *pStmt; /* List of pages in the statement subjournal */ 380 PgHdr *pDirty; /* List of all dirty pages */ 381 i64 journalOff; /* Current byte offset in the journal file */ 382 i64 journalHdr; /* Byte offset to previous journal header */ 383 i64 stmtHdrOff; /* First journal header written this statement */ 384 i64 stmtCksum; /* cksumInit when statement was started */ 385 i64 stmtJSize; /* Size of journal at stmt_begin() */ 386 int sectorSize; /* Assumed sector size during rollback */ 387 #ifdef SQLITE_TEST 388 int nHit, nMiss; /* Cache hits and missing */ 389 int nRead, nWrite; /* Database pages read/written */ 390 #endif 391 void (*xDestructor)(DbPage*,int); /* Call this routine when freeing pages */ 392 void (*xReiniter)(DbPage*,int); /* Call this routine when reloading pages */ 393 #ifdef SQLITE_HAS_CODEC 394 void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */ 395 void *pCodecArg; /* First argument to xCodec() */ 396 #endif 397 int nHash; /* Size of the pager hash table */ 398 PgHdr **aHash; /* Hash table to map page number to PgHdr */ 399 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 400 Pager *pNext; /* Doubly linked list of pagers on which */ 401 Pager *pPrev; /* sqlite3_release_memory() will work */ 402 int iInUseMM; /* Non-zero if unavailable to MM */ 403 int iInUseDB; /* Non-zero if in sqlite3_release_memory() */ 404 #endif 405 char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */ 406 char dbFileVers[16]; /* Changes whenever database file changes */ 407 }; 408 409 /* 410 ** The following global variables hold counters used for 411 ** testing purposes only. These variables do not exist in 412 ** a non-testing build. These variables are not thread-safe. 413 */ 414 #ifdef SQLITE_TEST 415 int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */ 416 int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */ 417 int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */ 418 int sqlite3_pager_pgfree_count = 0; /* Number of cache pages freed */ 419 # define PAGER_INCR(v) v++ 420 #else 421 # define PAGER_INCR(v) 422 #endif 423 424 /* 425 ** The following variable points to the head of a double-linked list 426 ** of all pagers that are eligible for page stealing by the 427 ** sqlite3_release_memory() interface. Access to this list is 428 ** protected by the SQLITE_MUTEX_STATIC_MEM2 mutex. 429 */ 430 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 431 static Pager *sqlite3PagerList = 0; 432 static PagerLruList sqlite3LruPageList = {0, 0, 0}; 433 #endif 434 435 436 /* 437 ** Journal files begin with the following magic string. The data 438 ** was obtained from /dev/random. It is used only as a sanity check. 439 ** 440 ** Since version 2.8.0, the journal format contains additional sanity 441 ** checking information. If the power fails while the journal is begin 442 ** written, semi-random garbage data might appear in the journal 443 ** file after power is restored. If an attempt is then made 444 ** to roll the journal back, the database could be corrupted. The additional 445 ** sanity checking data is an attempt to discover the garbage in the 446 ** journal and ignore it. 447 ** 448 ** The sanity checking information for the new journal format consists 449 ** of a 32-bit checksum on each page of data. The checksum covers both 450 ** the page number and the pPager->pageSize bytes of data for the page. 451 ** This cksum is initialized to a 32-bit random value that appears in the 452 ** journal file right after the header. The random initializer is important, 453 ** because garbage data that appears at the end of a journal is likely 454 ** data that was once in other files that have now been deleted. If the 455 ** garbage data came from an obsolete journal file, the checksums might 456 ** be correct. But by initializing the checksum to random value which 457 ** is different for every journal, we minimize that risk. 458 */ 459 static const unsigned char aJournalMagic[] = { 460 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7, 461 }; 462 463 /* 464 ** The size of the header and of each page in the journal is determined 465 ** by the following macros. 466 */ 467 #define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8) 468 469 /* 470 ** The journal header size for this pager. In the future, this could be 471 ** set to some value read from the disk controller. The important 472 ** characteristic is that it is the same size as a disk sector. 473 */ 474 #define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize) 475 476 /* 477 ** The macro MEMDB is true if we are dealing with an in-memory database. 478 ** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set, 479 ** the value of MEMDB will be a constant and the compiler will optimize 480 ** out code that would never execute. 481 */ 482 #ifdef SQLITE_OMIT_MEMORYDB 483 # define MEMDB 0 484 #else 485 # define MEMDB pPager->memDb 486 #endif 487 488 /* 489 ** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is 490 ** reserved for working around a windows/posix incompatibility). It is 491 ** used in the journal to signify that the remainder of the journal file 492 ** is devoted to storing a master journal name - there are no more pages to 493 ** roll back. See comments for function writeMasterJournal() for details. 494 */ 495 /* #define PAGER_MJ_PGNO(x) (PENDING_BYTE/((x)->pageSize)) */ 496 #define PAGER_MJ_PGNO(x) ((PENDING_BYTE/((x)->pageSize))+1) 497 498 /* 499 ** The maximum legal page number is (2^31 - 1). 500 */ 501 #define PAGER_MAX_PGNO 2147483647 502 503 /* 504 ** The pagerEnter() and pagerLeave() routines acquire and release 505 ** a mutex on each pager. The mutex is recursive. 506 ** 507 ** This is a special-purpose mutex. It only provides mutual exclusion 508 ** between the Btree and the Memory Management sqlite3_release_memory() 509 ** function. It does not prevent, for example, two Btrees from accessing 510 ** the same pager at the same time. Other general-purpose mutexes in 511 ** the btree layer handle that chore. 512 */ 513 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 514 static void pagerEnter(Pager *p){ 515 p->iInUseDB++; 516 if( p->iInUseMM && p->iInUseDB==1 ){ 517 sqlite3_mutex *mutex; 518 mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); 519 p->iInUseDB = 0; 520 sqlite3_mutex_enter(mutex); 521 p->iInUseDB = 1; 522 sqlite3_mutex_leave(mutex); 523 } 524 assert( p->iInUseMM==0 ); 525 } 526 static void pagerLeave(Pager *p){ 527 p->iInUseDB--; 528 assert( p->iInUseDB>=0 ); 529 } 530 #else 531 # define pagerEnter(X) 532 # define pagerLeave(X) 533 #endif 534 535 /* 536 ** Add page pPg to the end of the linked list managed by structure 537 ** pList (pPg becomes the last entry in the list - the most recently 538 ** used). Argument pLink should point to either pPg->free or pPg->gfree, 539 ** depending on whether pPg is being added to the pager-specific or 540 ** global LRU list. 541 */ 542 static void listAdd(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){ 543 pLink->pNext = 0; 544 pLink->pPrev = pList->pLast; 545 546 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 547 assert(pLink==&pPg->free || pLink==&pPg->gfree); 548 assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList); 549 #endif 550 551 if( pList->pLast ){ 552 int iOff = (char *)pLink - (char *)pPg; 553 PagerLruLink *pLastLink = (PagerLruLink *)(&((u8 *)pList->pLast)[iOff]); 554 pLastLink->pNext = pPg; 555 }else{ 556 assert(!pList->pFirst); 557 pList->pFirst = pPg; 558 } 559 560 pList->pLast = pPg; 561 if( !pList->pFirstSynced && pPg->needSync==0 ){ 562 pList->pFirstSynced = pPg; 563 } 564 } 565 566 /* 567 ** Remove pPg from the list managed by the structure pointed to by pList. 568 ** 569 ** Argument pLink should point to either pPg->free or pPg->gfree, depending 570 ** on whether pPg is being added to the pager-specific or global LRU list. 571 */ 572 static void listRemove(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){ 573 int iOff = (char *)pLink - (char *)pPg; 574 575 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 576 assert(pLink==&pPg->free || pLink==&pPg->gfree); 577 assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList); 578 #endif 579 580 if( pPg==pList->pFirst ){ 581 pList->pFirst = pLink->pNext; 582 } 583 if( pPg==pList->pLast ){ 584 pList->pLast = pLink->pPrev; 585 } 586 if( pLink->pPrev ){ 587 PagerLruLink *pPrevLink = (PagerLruLink *)(&((u8 *)pLink->pPrev)[iOff]); 588 pPrevLink->pNext = pLink->pNext; 589 } 590 if( pLink->pNext ){ 591 PagerLruLink *pNextLink = (PagerLruLink *)(&((u8 *)pLink->pNext)[iOff]); 592 pNextLink->pPrev = pLink->pPrev; 593 } 594 if( pPg==pList->pFirstSynced ){ 595 PgHdr *p = pLink->pNext; 596 while( p && p->needSync ){ 597 PagerLruLink *pL = (PagerLruLink *)(&((u8 *)p)[iOff]); 598 p = pL->pNext; 599 } 600 pList->pFirstSynced = p; 601 } 602 603 pLink->pNext = pLink->pPrev = 0; 604 } 605 606 /* 607 ** Add page pPg to the list of free pages for the pager. If 608 ** memory-management is enabled, also add the page to the global 609 ** list of free pages. 610 */ 611 static void lruListAdd(PgHdr *pPg){ 612 listAdd(&pPg->pPager->lru, &pPg->free, pPg); 613 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 614 if( !pPg->pPager->memDb ){ 615 sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 616 listAdd(&sqlite3LruPageList, &pPg->gfree, pPg); 617 sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 618 } 619 #endif 620 } 621 622 /* 623 ** Remove page pPg from the list of free pages for the associated pager. 624 ** If memory-management is enabled, also remove pPg from the global list 625 ** of free pages. 626 */ 627 static void lruListRemove(PgHdr *pPg){ 628 listRemove(&pPg->pPager->lru, &pPg->free, pPg); 629 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 630 if( !pPg->pPager->memDb ){ 631 sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 632 listRemove(&sqlite3LruPageList, &pPg->gfree, pPg); 633 sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 634 } 635 #endif 636 } 637 638 /* 639 ** This function is called just after the needSync flag has been cleared 640 ** from all pages managed by pPager (usually because the journal file 641 ** has just been synced). It updates the pPager->lru.pFirstSynced variable 642 ** and, if memory-management is enabled, the sqlite3LruPageList.pFirstSynced 643 ** variable also. 644 */ 645 static void lruListSetFirstSynced(Pager *pPager){ 646 pPager->lru.pFirstSynced = pPager->lru.pFirst; 647 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 648 if( !pPager->memDb ){ 649 PgHdr *p; 650 sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 651 for(p=sqlite3LruPageList.pFirst; p && p->needSync; p=p->gfree.pNext); 652 assert(p==pPager->lru.pFirstSynced || p==sqlite3LruPageList.pFirstSynced); 653 sqlite3LruPageList.pFirstSynced = p; 654 sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 655 } 656 #endif 657 } 658 659 /* 660 ** Return true if page *pPg has already been written to the statement 661 ** journal (or statement snapshot has been created, if *pPg is part 662 ** of an in-memory database). 663 */ 664 static int pageInStatement(PgHdr *pPg){ 665 Pager *pPager = pPg->pPager; 666 if( MEMDB ){ 667 return PGHDR_TO_HIST(pPg, pPager)->inStmt; 668 }else{ 669 return sqlite3BitvecTest(pPager->pInStmt, pPg->pgno); 670 } 671 } 672 673 /* 674 ** Change the size of the pager hash table to N. N must be a power 675 ** of two. 676 */ 677 static void pager_resize_hash_table(Pager *pPager, int N){ 678 PgHdr **aHash, *pPg; 679 assert( N>0 && (N&(N-1))==0 ); 680 #ifdef SQLITE_MALLOC_SOFT_LIMIT 681 if( N*sizeof(aHash[0])>SQLITE_MALLOC_SOFT_LIMIT ){ 682 N = SQLITE_MALLOC_SOFT_LIMIT/sizeof(aHash[0]); 683 } 684 if( N==pPager->nHash ) return; 685 #endif 686 pagerLeave(pPager); 687 sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, pPager->aHash!=0); 688 aHash = sqlite3MallocZero( sizeof(aHash[0])*N ); 689 sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, 0); 690 pagerEnter(pPager); 691 if( aHash==0 ){ 692 /* Failure to rehash is not an error. It is only a performance hit. */ 693 return; 694 } 695 sqlite3_free(pPager->aHash); 696 pPager->nHash = N; 697 pPager->aHash = aHash; 698 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ 699 int h; 700 if( pPg->pgno==0 ){ 701 assert( pPg->pNextHash==0 && pPg->pPrevHash==0 ); 702 continue; 703 } 704 h = pPg->pgno & (N-1); 705 pPg->pNextHash = aHash[h]; 706 if( aHash[h] ){ 707 aHash[h]->pPrevHash = pPg; 708 } 709 aHash[h] = pPg; 710 pPg->pPrevHash = 0; 711 } 712 } 713 714 /* 715 ** Read a 32-bit integer from the given file descriptor. Store the integer 716 ** that is read in *pRes. Return SQLITE_OK if everything worked, or an 717 ** error code is something goes wrong. 718 ** 719 ** All values are stored on disk as big-endian. 720 */ 721 static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){ 722 unsigned char ac[4]; 723 int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset); 724 if( rc==SQLITE_OK ){ 725 *pRes = sqlite3Get4byte(ac); 726 } 727 return rc; 728 } 729 730 /* 731 ** Write a 32-bit integer into a string buffer in big-endian byte order. 732 */ 733 #define put32bits(A,B) sqlite3Put4byte((u8*)A,B) 734 735 /* 736 ** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK 737 ** on success or an error code is something goes wrong. 738 */ 739 static int write32bits(sqlite3_file *fd, i64 offset, u32 val){ 740 char ac[4]; 741 put32bits(ac, val); 742 return sqlite3OsWrite(fd, ac, 4, offset); 743 } 744 745 /* 746 ** If file pFd is open, call sqlite3OsUnlock() on it. 747 */ 748 static int osUnlock(sqlite3_file *pFd, int eLock){ 749 if( !pFd->pMethods ){ 750 return SQLITE_OK; 751 } 752 return sqlite3OsUnlock(pFd, eLock); 753 } 754 755 /* 756 ** This function determines whether or not the atomic-write optimization 757 ** can be used with this pager. The optimization can be used if: 758 ** 759 ** (a) the value returned by OsDeviceCharacteristics() indicates that 760 ** a database page may be written atomically, and 761 ** (b) the value returned by OsSectorSize() is less than or equal 762 ** to the page size. 763 ** 764 ** If the optimization cannot be used, 0 is returned. If it can be used, 765 ** then the value returned is the size of the journal file when it 766 ** contains rollback data for exactly one page. 767 */ 768 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 769 static int jrnlBufferSize(Pager *pPager){ 770 int dc; /* Device characteristics */ 771 int nSector; /* Sector size */ 772 int nPage; /* Page size */ 773 sqlite3_file *fd = pPager->fd; 774 775 if( fd->pMethods ){ 776 dc = sqlite3OsDeviceCharacteristics(fd); 777 nSector = sqlite3OsSectorSize(fd); 778 nPage = pPager->pageSize; 779 } 780 781 assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); 782 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); 783 784 if( !fd->pMethods || (dc&(SQLITE_IOCAP_ATOMIC|(nPage>>8))&&nSector<=nPage) ){ 785 return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager); 786 } 787 return 0; 788 } 789 #endif 790 791 /* 792 ** This function should be called when an error occurs within the pager 793 ** code. The first argument is a pointer to the pager structure, the 794 ** second the error-code about to be returned by a pager API function. 795 ** The value returned is a copy of the second argument to this function. 796 ** 797 ** If the second argument is SQLITE_IOERR, SQLITE_CORRUPT, or SQLITE_FULL 798 ** the error becomes persistent. Until the persisten error is cleared, 799 ** subsequent API calls on this Pager will immediately return the same 800 ** error code. 801 ** 802 ** A persistent error indicates that the contents of the pager-cache 803 ** cannot be trusted. This state can be cleared by completely discarding 804 ** the contents of the pager-cache. If a transaction was active when 805 ** the persistent error occured, then the rollback journal may need 806 ** to be replayed. 807 */ 808 static void pager_unlock(Pager *pPager); 809 static int pager_error(Pager *pPager, int rc){ 810 int rc2 = rc & 0xff; 811 assert( 812 pPager->errCode==SQLITE_FULL || 813 pPager->errCode==SQLITE_OK || 814 (pPager->errCode & 0xff)==SQLITE_IOERR 815 ); 816 if( 817 rc2==SQLITE_FULL || 818 rc2==SQLITE_IOERR || 819 rc2==SQLITE_CORRUPT 820 ){ 821 pPager->errCode = rc; 822 if( pPager->state==PAGER_UNLOCK && pPager->nRef==0 ){ 823 /* If the pager is already unlocked, call pager_unlock() now to 824 ** clear the error state and ensure that the pager-cache is 825 ** completely empty. 826 */ 827 pager_unlock(pPager); 828 } 829 } 830 return rc; 831 } 832 833 /* 834 ** If SQLITE_CHECK_PAGES is defined then we do some sanity checking 835 ** on the cache using a hash function. This is used for testing 836 ** and debugging only. 837 */ 838 #ifdef SQLITE_CHECK_PAGES 839 /* 840 ** Return a 32-bit hash of the page data for pPage. 841 */ 842 static u32 pager_datahash(int nByte, unsigned char *pData){ 843 u32 hash = 0; 844 int i; 845 for(i=0; i<nByte; i++){ 846 hash = (hash*1039) + pData[i]; 847 } 848 return hash; 849 } 850 static u32 pager_pagehash(PgHdr *pPage){ 851 return pager_datahash(pPage->pPager->pageSize, 852 (unsigned char *)PGHDR_TO_DATA(pPage)); 853 } 854 855 /* 856 ** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES 857 ** is defined, and NDEBUG is not defined, an assert() statement checks 858 ** that the page is either dirty or still matches the calculated page-hash. 859 */ 860 #define CHECK_PAGE(x) checkPage(x) 861 static void checkPage(PgHdr *pPg){ 862 Pager *pPager = pPg->pPager; 863 assert( !pPg->pageHash || pPager->errCode || MEMDB || pPg->dirty || 864 pPg->pageHash==pager_pagehash(pPg) ); 865 } 866 867 #else 868 #define pager_datahash(X,Y) 0 869 #define pager_pagehash(X) 0 870 #define CHECK_PAGE(x) 871 #endif 872 873 /* 874 ** When this is called the journal file for pager pPager must be open. 875 ** The master journal file name is read from the end of the file and 876 ** written into memory supplied by the caller. 877 ** 878 ** zMaster must point to a buffer of at least nMaster bytes allocated by 879 ** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is 880 ** enough space to write the master journal name). If the master journal 881 ** name in the journal is longer than nMaster bytes (including a 882 ** nul-terminator), then this is handled as if no master journal name 883 ** were present in the journal. 884 ** 885 ** If no master journal file name is present zMaster[0] is set to 0 and 886 ** SQLITE_OK returned. 887 */ 888 static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, int nMaster){ 889 int rc; 890 u32 len; 891 i64 szJ; 892 u32 cksum; 893 int i; 894 unsigned char aMagic[8]; /* A buffer to hold the magic header */ 895 896 zMaster[0] = '\0'; 897 898 rc = sqlite3OsFileSize(pJrnl, &szJ); 899 if( rc!=SQLITE_OK || szJ<16 ) return rc; 900 901 rc = read32bits(pJrnl, szJ-16, &len); 902 if( rc!=SQLITE_OK ) return rc; 903 904 if( len>=nMaster ){ 905 return SQLITE_OK; 906 } 907 908 rc = read32bits(pJrnl, szJ-12, &cksum); 909 if( rc!=SQLITE_OK ) return rc; 910 911 rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8); 912 if( rc!=SQLITE_OK || memcmp(aMagic, aJournalMagic, 8) ) return rc; 913 914 rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len); 915 if( rc!=SQLITE_OK ){ 916 return rc; 917 } 918 zMaster[len] = '\0'; 919 920 /* See if the checksum matches the master journal name */ 921 for(i=0; i<len; i++){ 922 cksum -= zMaster[i]; 923 } 924 if( cksum ){ 925 /* If the checksum doesn't add up, then one or more of the disk sectors 926 ** containing the master journal filename is corrupted. This means 927 ** definitely roll back, so just return SQLITE_OK and report a (nul) 928 ** master-journal filename. 929 */ 930 zMaster[0] = '\0'; 931 } 932 933 return SQLITE_OK; 934 } 935 936 /* 937 ** Seek the journal file descriptor to the next sector boundary where a 938 ** journal header may be read or written. Pager.journalOff is updated with 939 ** the new seek offset. 940 ** 941 ** i.e for a sector size of 512: 942 ** 943 ** Input Offset Output Offset 944 ** --------------------------------------- 945 ** 0 0 946 ** 512 512 947 ** 100 512 948 ** 2000 2048 949 ** 950 */ 951 static void seekJournalHdr(Pager *pPager){ 952 i64 offset = 0; 953 i64 c = pPager->journalOff; 954 if( c ){ 955 offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager); 956 } 957 assert( offset%JOURNAL_HDR_SZ(pPager)==0 ); 958 assert( offset>=c ); 959 assert( (offset-c)<JOURNAL_HDR_SZ(pPager) ); 960 pPager->journalOff = offset; 961 } 962 963 /* 964 ** The journal file must be open when this routine is called. A journal 965 ** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the 966 ** current location. 967 ** 968 ** The format for the journal header is as follows: 969 ** - 8 bytes: Magic identifying journal format. 970 ** - 4 bytes: Number of records in journal, or -1 no-sync mode is on. 971 ** - 4 bytes: Random number used for page hash. 972 ** - 4 bytes: Initial database page count. 973 ** - 4 bytes: Sector size used by the process that wrote this journal. 974 ** - 4 bytes: Database page size. 975 ** 976 ** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space. 977 */ 978 static int writeJournalHdr(Pager *pPager){ 979 char zHeader[sizeof(aJournalMagic)+20]; 980 int rc; 981 982 if( pPager->stmtHdrOff==0 ){ 983 pPager->stmtHdrOff = pPager->journalOff; 984 } 985 986 seekJournalHdr(pPager); 987 pPager->journalHdr = pPager->journalOff; 988 989 memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); 990 991 /* 992 ** Write the nRec Field - the number of page records that follow this 993 ** journal header. Normally, zero is written to this value at this time. 994 ** After the records are added to the journal (and the journal synced, 995 ** if in full-sync mode), the zero is overwritten with the true number 996 ** of records (see syncJournal()). 997 ** 998 ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When 999 ** reading the journal this value tells SQLite to assume that the 1000 ** rest of the journal file contains valid page records. This assumption 1001 ** is dangerous, as if a failure occured whilst writing to the journal 1002 ** file it may contain some garbage data. There are two scenarios 1003 ** where this risk can be ignored: 1004 ** 1005 ** * When the pager is in no-sync mode. Corruption can follow a 1006 ** power failure in this case anyway. 1007 ** 1008 ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees 1009 ** that garbage data is never appended to the journal file. 1010 */ 1011 assert(pPager->fd->pMethods||pPager->noSync); 1012 if( (pPager->noSync) 1013 || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) 1014 ){ 1015 put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff); 1016 }else{ 1017 put32bits(&zHeader[sizeof(aJournalMagic)], 0); 1018 } 1019 1020 /* The random check-hash initialiser */ 1021 sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit); 1022 put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit); 1023 /* The initial database size */ 1024 put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbSize); 1025 /* The assumed sector size for this process */ 1026 put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize); 1027 if( pPager->journalHdr==0 ){ 1028 /* The page size */ 1029 put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize); 1030 } 1031 IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, sizeof(zHeader))) 1032 rc = sqlite3OsWrite(pPager->jfd, zHeader, sizeof(zHeader),pPager->journalOff); 1033 pPager->journalOff += JOURNAL_HDR_SZ(pPager); 1034 1035 /* The journal header has been written successfully. Seek the journal 1036 ** file descriptor to the end of the journal header sector. 1037 */ 1038 if( rc==SQLITE_OK ){ 1039 IOTRACE(("JTAIL %p %lld\n", pPager, pPager->journalOff-1)) 1040 rc = sqlite3OsWrite(pPager->jfd, "\000", 1, pPager->journalOff-1); 1041 } 1042 return rc; 1043 } 1044 1045 /* 1046 ** The journal file must be open when this is called. A journal header file 1047 ** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal 1048 ** file. See comments above function writeJournalHdr() for a description of 1049 ** the journal header format. 1050 ** 1051 ** If the header is read successfully, *nRec is set to the number of 1052 ** page records following this header and *dbSize is set to the size of the 1053 ** database before the transaction began, in pages. Also, pPager->cksumInit 1054 ** is set to the value read from the journal header. SQLITE_OK is returned 1055 ** in this case. 1056 ** 1057 ** If the journal header file appears to be corrupted, SQLITE_DONE is 1058 ** returned and *nRec and *dbSize are not set. If JOURNAL_HDR_SZ bytes 1059 ** cannot be read from the journal file an error code is returned. 1060 */ 1061 static int readJournalHdr( 1062 Pager *pPager, 1063 i64 journalSize, 1064 u32 *pNRec, 1065 u32 *pDbSize 1066 ){ 1067 int rc; 1068 unsigned char aMagic[8]; /* A buffer to hold the magic header */ 1069 i64 jrnlOff; 1070 int iPageSize; 1071 1072 seekJournalHdr(pPager); 1073 if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){ 1074 return SQLITE_DONE; 1075 } 1076 jrnlOff = pPager->journalOff; 1077 1078 rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), jrnlOff); 1079 if( rc ) return rc; 1080 jrnlOff += sizeof(aMagic); 1081 1082 if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){ 1083 return SQLITE_DONE; 1084 } 1085 1086 rc = read32bits(pPager->jfd, jrnlOff, pNRec); 1087 if( rc ) return rc; 1088 1089 rc = read32bits(pPager->jfd, jrnlOff+4, &pPager->cksumInit); 1090 if( rc ) return rc; 1091 1092 rc = read32bits(pPager->jfd, jrnlOff+8, pDbSize); 1093 if( rc ) return rc; 1094 1095 rc = read32bits(pPager->jfd, jrnlOff+16, (u32 *)&iPageSize); 1096 if( rc==SQLITE_OK 1097 && iPageSize>=512 1098 && iPageSize<=SQLITE_MAX_PAGE_SIZE 1099 && ((iPageSize-1)&iPageSize)==0 1100 ){ 1101 u16 pagesize = iPageSize; 1102 rc = sqlite3PagerSetPagesize(pPager, &pagesize); 1103 } 1104 if( rc ) return rc; 1105 1106 /* Update the assumed sector-size to match the value used by 1107 ** the process that created this journal. If this journal was 1108 ** created by a process other than this one, then this routine 1109 ** is being called from within pager_playback(). The local value 1110 ** of Pager.sectorSize is restored at the end of that routine. 1111 */ 1112 rc = read32bits(pPager->jfd, jrnlOff+12, (u32 *)&pPager->sectorSize); 1113 if( rc ) return rc; 1114 1115 pPager->journalOff += JOURNAL_HDR_SZ(pPager); 1116 return SQLITE_OK; 1117 } 1118 1119 1120 /* 1121 ** Write the supplied master journal name into the journal file for pager 1122 ** pPager at the current location. The master journal name must be the last 1123 ** thing written to a journal file. If the pager is in full-sync mode, the 1124 ** journal file descriptor is advanced to the next sector boundary before 1125 ** anything is written. The format is: 1126 ** 1127 ** + 4 bytes: PAGER_MJ_PGNO. 1128 ** + N bytes: length of master journal name. 1129 ** + 4 bytes: N 1130 ** + 4 bytes: Master journal name checksum. 1131 ** + 8 bytes: aJournalMagic[]. 1132 ** 1133 ** The master journal page checksum is the sum of the bytes in the master 1134 ** journal name. 1135 ** 1136 ** If zMaster is a NULL pointer (occurs for a single database transaction), 1137 ** this call is a no-op. 1138 */ 1139 static int writeMasterJournal(Pager *pPager, const char *zMaster){ 1140 int rc; 1141 int len; 1142 int i; 1143 i64 jrnlOff; 1144 u32 cksum = 0; 1145 char zBuf[sizeof(aJournalMagic)+2*4]; 1146 1147 if( !zMaster || pPager->setMaster) return SQLITE_OK; 1148 pPager->setMaster = 1; 1149 1150 len = strlen(zMaster); 1151 for(i=0; i<len; i++){ 1152 cksum += zMaster[i]; 1153 } 1154 1155 /* If in full-sync mode, advance to the next disk sector before writing 1156 ** the master journal name. This is in case the previous page written to 1157 ** the journal has already been synced. 1158 */ 1159 if( pPager->fullSync ){ 1160 seekJournalHdr(pPager); 1161 } 1162 jrnlOff = pPager->journalOff; 1163 pPager->journalOff += (len+20); 1164 1165 rc = write32bits(pPager->jfd, jrnlOff, PAGER_MJ_PGNO(pPager)); 1166 if( rc!=SQLITE_OK ) return rc; 1167 jrnlOff += 4; 1168 1169 rc = sqlite3OsWrite(pPager->jfd, zMaster, len, jrnlOff); 1170 if( rc!=SQLITE_OK ) return rc; 1171 jrnlOff += len; 1172 1173 put32bits(zBuf, len); 1174 put32bits(&zBuf[4], cksum); 1175 memcpy(&zBuf[8], aJournalMagic, sizeof(aJournalMagic)); 1176 rc = sqlite3OsWrite(pPager->jfd, zBuf, 8+sizeof(aJournalMagic), jrnlOff); 1177 pPager->needSync = !pPager->noSync; 1178 return rc; 1179 } 1180 1181 /* 1182 ** Add or remove a page from the list of all pages that are in the 1183 ** statement journal. 1184 ** 1185 ** The Pager keeps a separate list of pages that are currently in 1186 ** the statement journal. This helps the sqlite3PagerStmtCommit() 1187 ** routine run MUCH faster for the common case where there are many 1188 ** pages in memory but only a few are in the statement journal. 1189 */ 1190 static void page_add_to_stmt_list(PgHdr *pPg){ 1191 Pager *pPager = pPg->pPager; 1192 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); 1193 assert( MEMDB ); 1194 if( !pHist->inStmt ){ 1195 assert( pHist->pPrevStmt==0 && pHist->pNextStmt==0 ); 1196 if( pPager->pStmt ){ 1197 PGHDR_TO_HIST(pPager->pStmt, pPager)->pPrevStmt = pPg; 1198 } 1199 pHist->pNextStmt = pPager->pStmt; 1200 pPager->pStmt = pPg; 1201 pHist->inStmt = 1; 1202 } 1203 } 1204 1205 /* 1206 ** Find a page in the hash table given its page number. Return 1207 ** a pointer to the page or NULL if not found. 1208 */ 1209 static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){ 1210 PgHdr *p; 1211 if( pPager->aHash==0 ) return 0; 1212 p = pPager->aHash[pgno & (pPager->nHash-1)]; 1213 while( p && p->pgno!=pgno ){ 1214 p = p->pNextHash; 1215 } 1216 return p; 1217 } 1218 1219 /* 1220 ** Clear the in-memory cache. This routine 1221 ** sets the state of the pager back to what it was when it was first 1222 ** opened. Any outstanding pages are invalidated and subsequent attempts 1223 ** to access those pages will likely result in a coredump. 1224 */ 1225 static void pager_reset(Pager *pPager){ 1226 PgHdr *pPg, *pNext; 1227 if( pPager->errCode ) return; 1228 for(pPg=pPager->pAll; pPg; pPg=pNext){ 1229 IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno)); 1230 PAGER_INCR(sqlite3_pager_pgfree_count); 1231 pNext = pPg->pNextAll; 1232 lruListRemove(pPg); 1233 sqlite3_free(pPg->pData); 1234 sqlite3_free(pPg); 1235 } 1236 assert(pPager->lru.pFirst==0); 1237 assert(pPager->lru.pFirstSynced==0); 1238 assert(pPager->lru.pLast==0); 1239 pPager->pStmt = 0; 1240 pPager->pAll = 0; 1241 pPager->pDirty = 0; 1242 pPager->nHash = 0; 1243 sqlite3_free(pPager->aHash); 1244 pPager->nPage = 0; 1245 pPager->aHash = 0; 1246 pPager->nRef = 0; 1247 } 1248 1249 /* 1250 ** Unlock the database file. 1251 ** 1252 ** If the pager is currently in error state, discard the contents of 1253 ** the cache and reset the Pager structure internal state. If there is 1254 ** an open journal-file, then the next time a shared-lock is obtained 1255 ** on the pager file (by this or any other process), it will be 1256 ** treated as a hot-journal and rolled back. 1257 */ 1258 static void pager_unlock(Pager *pPager){ 1259 if( !pPager->exclusiveMode ){ 1260 if( !MEMDB ){ 1261 int rc = osUnlock(pPager->fd, NO_LOCK); 1262 if( rc ) pPager->errCode = rc; 1263 pPager->dbSize = -1; 1264 IOTRACE(("UNLOCK %p\n", pPager)) 1265 1266 /* If Pager.errCode is set, the contents of the pager cache cannot be 1267 ** trusted. Now that the pager file is unlocked, the contents of the 1268 ** cache can be discarded and the error code safely cleared. 1269 */ 1270 if( pPager->errCode ){ 1271 if( rc==SQLITE_OK ) pPager->errCode = SQLITE_OK; 1272 pager_reset(pPager); 1273 if( pPager->stmtOpen ){ 1274 sqlite3OsClose(pPager->stfd); 1275 sqlite3BitvecDestroy(pPager->pInStmt); 1276 pPager->pInStmt = 0; 1277 } 1278 if( pPager->journalOpen ){ 1279 sqlite3OsClose(pPager->jfd); 1280 pPager->journalOpen = 0; 1281 sqlite3BitvecDestroy(pPager->pInJournal); 1282 pPager->pInJournal = 0; 1283 } 1284 pPager->stmtOpen = 0; 1285 pPager->stmtInUse = 0; 1286 pPager->journalOff = 0; 1287 pPager->journalStarted = 0; 1288 pPager->stmtAutoopen = 0; 1289 pPager->origDbSize = 0; 1290 } 1291 } 1292 1293 if( !MEMDB || pPager->errCode==SQLITE_OK ){ 1294 pPager->state = PAGER_UNLOCK; 1295 pPager->changeCountDone = 0; 1296 } 1297 } 1298 } 1299 1300 /* 1301 ** Execute a rollback if a transaction is active and unlock the 1302 ** database file. If the pager has already entered the error state, 1303 ** do not attempt the rollback. 1304 */ 1305 static void pagerUnlockAndRollback(Pager *p){ 1306 assert( p->state>=PAGER_RESERVED || p->journalOpen==0 ); 1307 if( p->errCode==SQLITE_OK && p->state>=PAGER_RESERVED ){ 1308 sqlite3PagerRollback(p); 1309 } 1310 pager_unlock(p); 1311 assert( p->errCode || !p->journalOpen || (p->exclusiveMode&&!p->journalOff) ); 1312 assert( p->errCode || !p->stmtOpen || p->exclusiveMode ); 1313 } 1314 1315 /* 1316 ** This routine ends a transaction. A transaction is ended by either 1317 ** a COMMIT or a ROLLBACK. 1318 ** 1319 ** When this routine is called, the pager has the journal file open and 1320 ** a RESERVED or EXCLUSIVE lock on the database. This routine will release 1321 ** the database lock and acquires a SHARED lock in its place if that is 1322 ** the appropriate thing to do. Release locks usually is appropriate, 1323 ** unless we are in exclusive access mode or unless this is a 1324 ** COMMIT AND BEGIN or ROLLBACK AND BEGIN operation. 1325 ** 1326 ** The journal file is either deleted or truncated. 1327 ** 1328 ** TODO: Consider keeping the journal file open for temporary databases. 1329 ** This might give a performance improvement on windows where opening 1330 ** a file is an expensive operation. 1331 */ 1332 static int pager_end_transaction(Pager *pPager){ 1333 PgHdr *pPg; 1334 int rc = SQLITE_OK; 1335 int rc2 = SQLITE_OK; 1336 assert( !MEMDB ); 1337 if( pPager->state<PAGER_RESERVED ){ 1338 return SQLITE_OK; 1339 } 1340 sqlite3PagerStmtCommit(pPager); 1341 if( pPager->stmtOpen && !pPager->exclusiveMode ){ 1342 sqlite3OsClose(pPager->stfd); 1343 pPager->stmtOpen = 0; 1344 } 1345 if( pPager->journalOpen ){ 1346 if( pPager->exclusiveMode 1347 && (rc = sqlite3OsTruncate(pPager->jfd, 0))==SQLITE_OK ){; 1348 pPager->journalOff = 0; 1349 pPager->journalStarted = 0; 1350 }else{ 1351 sqlite3OsClose(pPager->jfd); 1352 pPager->journalOpen = 0; 1353 if( rc==SQLITE_OK ){ 1354 rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); 1355 } 1356 } 1357 sqlite3BitvecDestroy(pPager->pInJournal); 1358 pPager->pInJournal = 0; 1359 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ 1360 pPg->inJournal = 0; 1361 pPg->dirty = 0; 1362 pPg->needSync = 0; 1363 pPg->alwaysRollback = 0; 1364 #ifdef SQLITE_CHECK_PAGES 1365 pPg->pageHash = pager_pagehash(pPg); 1366 #endif 1367 } 1368 pPager->pDirty = 0; 1369 pPager->dirtyCache = 0; 1370 pPager->nRec = 0; 1371 }else{ 1372 assert( pPager->pInJournal==0 ); 1373 assert( pPager->dirtyCache==0 || pPager->useJournal==0 ); 1374 } 1375 1376 if( !pPager->exclusiveMode ){ 1377 rc2 = osUnlock(pPager->fd, SHARED_LOCK); 1378 pPager->state = PAGER_SHARED; 1379 }else if( pPager->state==PAGER_SYNCED ){ 1380 pPager->state = PAGER_EXCLUSIVE; 1381 } 1382 pPager->origDbSize = 0; 1383 pPager->setMaster = 0; 1384 pPager->needSync = 0; 1385 lruListSetFirstSynced(pPager); 1386 pPager->dbSize = -1; 1387 1388 return (rc==SQLITE_OK?rc2:rc); 1389 } 1390 1391 /* 1392 ** Compute and return a checksum for the page of data. 1393 ** 1394 ** This is not a real checksum. It is really just the sum of the 1395 ** random initial value and the page number. We experimented with 1396 ** a checksum of the entire data, but that was found to be too slow. 1397 ** 1398 ** Note that the page number is stored at the beginning of data and 1399 ** the checksum is stored at the end. This is important. If journal 1400 ** corruption occurs due to a power failure, the most likely scenario 1401 ** is that one end or the other of the record will be changed. It is 1402 ** much less likely that the two ends of the journal record will be 1403 ** correct and the middle be corrupt. Thus, this "checksum" scheme, 1404 ** though fast and simple, catches the mostly likely kind of corruption. 1405 ** 1406 ** FIX ME: Consider adding every 200th (or so) byte of the data to the 1407 ** checksum. That way if a single page spans 3 or more disk sectors and 1408 ** only the middle sector is corrupt, we will still have a reasonable 1409 ** chance of failing the checksum and thus detecting the problem. 1410 */ 1411 static u32 pager_cksum(Pager *pPager, const u8 *aData){ 1412 u32 cksum = pPager->cksumInit; 1413 int i = pPager->pageSize-200; 1414 while( i>0 ){ 1415 cksum += aData[i]; 1416 i -= 200; 1417 } 1418 return cksum; 1419 } 1420 1421 /* Forward declaration */ 1422 static void makeClean(PgHdr*); 1423 1424 /* 1425 ** Read a single page from the journal file opened on file descriptor 1426 ** jfd. Playback this one page. 1427 ** 1428 ** If useCksum==0 it means this journal does not use checksums. Checksums 1429 ** are not used in statement journals because statement journals do not 1430 ** need to survive power failures. 1431 */ 1432 static int pager_playback_one_page( 1433 Pager *pPager, 1434 sqlite3_file *jfd, 1435 i64 offset, 1436 int useCksum 1437 ){ 1438 int rc; 1439 PgHdr *pPg; /* An existing page in the cache */ 1440 Pgno pgno; /* The page number of a page in journal */ 1441 u32 cksum; /* Checksum used for sanity checking */ 1442 u8 *aData = (u8 *)pPager->pTmpSpace; /* Temp storage for a page */ 1443 1444 /* useCksum should be true for the main journal and false for 1445 ** statement journals. Verify that this is always the case 1446 */ 1447 assert( jfd == (useCksum ? pPager->jfd : pPager->stfd) ); 1448 assert( aData ); 1449 1450 rc = read32bits(jfd, offset, &pgno); 1451 if( rc!=SQLITE_OK ) return rc; 1452 rc = sqlite3OsRead(jfd, aData, pPager->pageSize, offset+4); 1453 if( rc!=SQLITE_OK ) return rc; 1454 pPager->journalOff += pPager->pageSize + 4; 1455 1456 /* Sanity checking on the page. This is more important that I originally 1457 ** thought. If a power failure occurs while the journal is being written, 1458 ** it could cause invalid data to be written into the journal. We need to 1459 ** detect this invalid data (with high probability) and ignore it. 1460 */ 1461 if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ 1462 return SQLITE_DONE; 1463 } 1464 if( pgno>(unsigned)pPager->dbSize ){ 1465 return SQLITE_OK; 1466 } 1467 if( useCksum ){ 1468 rc = read32bits(jfd, offset+pPager->pageSize+4, &cksum); 1469 if( rc ) return rc; 1470 pPager->journalOff += 4; 1471 if( pager_cksum(pPager, aData)!=cksum ){ 1472 return SQLITE_DONE; 1473 } 1474 } 1475 1476 assert( pPager->state==PAGER_RESERVED || pPager->state>=PAGER_EXCLUSIVE ); 1477 1478 /* If the pager is in RESERVED state, then there must be a copy of this 1479 ** page in the pager cache. In this case just update the pager cache, 1480 ** not the database file. The page is left marked dirty in this case. 1481 ** 1482 ** An exception to the above rule: If the database is in no-sync mode 1483 ** and a page is moved during an incremental vacuum then the page may 1484 ** not be in the pager cache. Later: if a malloc() or IO error occurs 1485 ** during a Movepage() call, then the page may not be in the cache 1486 ** either. So the condition described in the above paragraph is not 1487 ** assert()able. 1488 ** 1489 ** If in EXCLUSIVE state, then we update the pager cache if it exists 1490 ** and the main file. The page is then marked not dirty. 1491 ** 1492 ** Ticket #1171: The statement journal might contain page content that is 1493 ** different from the page content at the start of the transaction. 1494 ** This occurs when a page is changed prior to the start of a statement 1495 ** then changed again within the statement. When rolling back such a 1496 ** statement we must not write to the original database unless we know 1497 ** for certain that original page contents are synced into the main rollback 1498 ** journal. Otherwise, a power loss might leave modified data in the 1499 ** database file without an entry in the rollback journal that can 1500 ** restore the database to its original form. Two conditions must be 1501 ** met before writing to the database files. (1) the database must be 1502 ** locked. (2) we know that the original page content is fully synced 1503 ** in the main journal either because the page is not in cache or else 1504 ** the page is marked as needSync==0. 1505 */ 1506 pPg = pager_lookup(pPager, pgno); 1507 PAGERTRACE4("PLAYBACK %d page %d hash(%08x)\n", 1508 PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, aData)); 1509 if( pPager->state>=PAGER_EXCLUSIVE && (pPg==0 || pPg->needSync==0) ){ 1510 i64 offset = (pgno-1)*(i64)pPager->pageSize; 1511 rc = sqlite3OsWrite(pPager->fd, aData, pPager->pageSize, offset); 1512 if( pPg ){ 1513 makeClean(pPg); 1514 } 1515 } 1516 if( pPg ){ 1517 /* No page should ever be explicitly rolled back that is in use, except 1518 ** for page 1 which is held in use in order to keep the lock on the 1519 ** database active. However such a page may be rolled back as a result 1520 ** of an internal error resulting in an automatic call to 1521 ** sqlite3PagerRollback(). 1522 */ 1523 void *pData; 1524 /* assert( pPg->nRef==0 || pPg->pgno==1 ); */ 1525 pData = PGHDR_TO_DATA(pPg); 1526 memcpy(pData, aData, pPager->pageSize); 1527 if( pPager->xReiniter ){ 1528 pPager->xReiniter(pPg, pPager->pageSize); 1529 } 1530 #ifdef SQLITE_CHECK_PAGES 1531 pPg->pageHash = pager_pagehash(pPg); 1532 #endif 1533 /* If this was page 1, then restore the value of Pager.dbFileVers. 1534 ** Do this before any decoding. */ 1535 if( pgno==1 ){ 1536 memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers)); 1537 } 1538 1539 /* Decode the page just read from disk */ 1540 CODEC1(pPager, pData, pPg->pgno, 3); 1541 } 1542 return rc; 1543 } 1544 1545 /* 1546 ** Parameter zMaster is the name of a master journal file. A single journal 1547 ** file that referred to the master journal file has just been rolled back. 1548 ** This routine checks if it is possible to delete the master journal file, 1549 ** and does so if it is. 1550 ** 1551 ** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not 1552 ** available for use within this function. 1553 ** 1554 ** 1555 ** The master journal file contains the names of all child journals. 1556 ** To tell if a master journal can be deleted, check to each of the 1557 ** children. If all children are either missing or do not refer to 1558 ** a different master journal, then this master journal can be deleted. 1559 */ 1560 static int pager_delmaster(Pager *pPager, const char *zMaster){ 1561 sqlite3_vfs *pVfs = pPager->pVfs; 1562 int rc; 1563 int master_open = 0; 1564 sqlite3_file *pMaster; 1565 sqlite3_file *pJournal; 1566 char *zMasterJournal = 0; /* Contents of master journal file */ 1567 i64 nMasterJournal; /* Size of master journal file */ 1568 1569 /* Open the master journal file exclusively in case some other process 1570 ** is running this routine also. Not that it makes too much difference. 1571 */ 1572 pMaster = (sqlite3_file *)sqlite3_malloc(pVfs->szOsFile * 2); 1573 pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile); 1574 if( !pMaster ){ 1575 rc = SQLITE_NOMEM; 1576 }else{ 1577 int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL); 1578 rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0); 1579 } 1580 if( rc!=SQLITE_OK ) goto delmaster_out; 1581 master_open = 1; 1582 1583 rc = sqlite3OsFileSize(pMaster, &nMasterJournal); 1584 if( rc!=SQLITE_OK ) goto delmaster_out; 1585 1586 if( nMasterJournal>0 ){ 1587 char *zJournal; 1588 char *zMasterPtr = 0; 1589 int nMasterPtr = pPager->pVfs->mxPathname+1; 1590 1591 /* Load the entire master journal file into space obtained from 1592 ** sqlite3_malloc() and pointed to by zMasterJournal. 1593 */ 1594 zMasterJournal = (char *)sqlite3_malloc(nMasterJournal + nMasterPtr); 1595 if( !zMasterJournal ){ 1596 rc = SQLITE_NOMEM; 1597 goto delmaster_out; 1598 } 1599 zMasterPtr = &zMasterJournal[nMasterJournal]; 1600 rc = sqlite3OsRead(pMaster, zMasterJournal, nMasterJournal, 0); 1601 if( rc!=SQLITE_OK ) goto delmaster_out; 1602 1603 zJournal = zMasterJournal; 1604 while( (zJournal-zMasterJournal)<nMasterJournal ){ 1605 rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS); 1606 if( rc!=0 && rc!=1 ){ 1607 rc = SQLITE_IOERR_NOMEM; 1608 goto delmaster_out; 1609 } 1610 if( rc==1 ){ 1611 /* One of the journals pointed to by the master journal exists. 1612 ** Open it and check if it points at the master journal. If 1613 ** so, return without deleting the master journal file. 1614 */ 1615 int c; 1616 int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL); 1617 rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0); 1618 if( rc!=SQLITE_OK ){ 1619 goto delmaster_out; 1620 } 1621 1622 rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr); 1623 sqlite3OsClose(pJournal); 1624 if( rc!=SQLITE_OK ){ 1625 goto delmaster_out; 1626 } 1627 1628 c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0; 1629 if( c ){ 1630 /* We have a match. Do not delete the master journal file. */ 1631 goto delmaster_out; 1632 } 1633 } 1634 zJournal += (strlen(zJournal)+1); 1635 } 1636 } 1637 1638 rc = sqlite3OsDelete(pVfs, zMaster, 0); 1639 1640 delmaster_out: 1641 if( zMasterJournal ){ 1642 sqlite3_free(zMasterJournal); 1643 } 1644 if( master_open ){ 1645 sqlite3OsClose(pMaster); 1646 } 1647 sqlite3_free(pMaster); 1648 return rc; 1649 } 1650 1651 1652 static void pager_truncate_cache(Pager *pPager); 1653 1654 /* 1655 ** Truncate the main file of the given pager to the number of pages 1656 ** indicated. Also truncate the cached representation of the file. 1657 ** 1658 ** Might might be the case that the file on disk is smaller than nPage. 1659 ** This can happen, for example, if we are in the middle of a transaction 1660 ** which has extended the file size and the new pages are still all held 1661 ** in cache, then an INSERT or UPDATE does a statement rollback. Some 1662 ** operating system implementations can get confused if you try to 1663 ** truncate a file to some size that is larger than it currently is, 1664 ** so detect this case and do not do the truncation. 1665 */ 1666 static int pager_truncate(Pager *pPager, int nPage){ 1667 int rc = SQLITE_OK; 1668 if( pPager->state>=PAGER_EXCLUSIVE && pPager->fd->pMethods ){ 1669 i64 currentSize, newSize; 1670 rc = sqlite3OsFileSize(pPager->fd, ¤tSize); 1671 newSize = pPager->pageSize*(i64)nPage; 1672 if( rc==SQLITE_OK && currentSize>newSize ){ 1673 rc = sqlite3OsTruncate(pPager->fd, newSize); 1674 } 1675 } 1676 if( rc==SQLITE_OK ){ 1677 pPager->dbSize = nPage; 1678 pager_truncate_cache(pPager); 1679 } 1680 return rc; 1681 } 1682 1683 /* 1684 ** Set the sectorSize for the given pager. 1685 ** 1686 ** The sector size is at least as big as the sector size reported 1687 ** by sqlite3OsSectorSize(). The minimum sector size is 512. 1688 */ 1689 static void setSectorSize(Pager *pPager){ 1690 assert(pPager->fd->pMethods||pPager->tempFile); 1691 if( !pPager->tempFile ){ 1692 /* Sector size doesn't matter for temporary files. Also, the file 1693 ** may not have been opened yet, in whcih case the OsSectorSize() 1694 ** call will segfault. 1695 */ 1696 pPager->sectorSize = sqlite3OsSectorSize(pPager->fd); 1697 } 1698 if( pPager->sectorSize<512 ){ 1699 pPager->sectorSize = 512; 1700 } 1701 } 1702 1703 /* 1704 ** Playback the journal and thus restore the database file to 1705 ** the state it was in before we started making changes. 1706 ** 1707 ** The journal file format is as follows: 1708 ** 1709 ** (1) 8 byte prefix. A copy of aJournalMagic[]. 1710 ** (2) 4 byte big-endian integer which is the number of valid page records 1711 ** in the journal. If this value is 0xffffffff, then compute the 1712 ** number of page records from the journal size. 1713 ** (3) 4 byte big-endian integer which is the initial value for the 1714 ** sanity checksum. 1715 ** (4) 4 byte integer which is the number of pages to truncate the 1716 ** database to during a rollback. 1717 ** (5) 4 byte big-endian integer which is the sector size. The header 1718 ** is this many bytes in size. 1719 ** (6) 4 byte big-endian integer which is the page case. 1720 ** (7) 4 byte integer which is the number of bytes in the master journal 1721 ** name. The value may be zero (indicate that there is no master 1722 ** journal.) 1723 ** (8) N bytes of the master journal name. The name will be nul-terminated 1724 ** and might be shorter than the value read from (5). If the first byte 1725 ** of the name is \000 then there is no master journal. The master 1726 ** journal name is stored in UTF-8. 1727 ** (9) Zero or more pages instances, each as follows: 1728 ** + 4 byte page number. 1729 ** + pPager->pageSize bytes of data. 1730 ** + 4 byte checksum 1731 ** 1732 ** When we speak of the journal header, we mean the first 8 items above. 1733 ** Each entry in the journal is an instance of the 9th item. 1734 ** 1735 ** Call the value from the second bullet "nRec". nRec is the number of 1736 ** valid page entries in the journal. In most cases, you can compute the 1737 ** value of nRec from the size of the journal file. But if a power 1738 ** failure occurred while the journal was being written, it could be the 1739 ** case that the size of the journal file had already been increased but 1740 ** the extra entries had not yet made it safely to disk. In such a case, 1741 ** the value of nRec computed from the file size would be too large. For 1742 ** that reason, we always use the nRec value in the header. 1743 ** 1744 ** If the nRec value is 0xffffffff it means that nRec should be computed 1745 ** from the file size. This value is used when the user selects the 1746 ** no-sync option for the journal. A power failure could lead to corruption 1747 ** in this case. But for things like temporary table (which will be 1748 ** deleted when the power is restored) we don't care. 1749 ** 1750 ** If the file opened as the journal file is not a well-formed 1751 ** journal file then all pages up to the first corrupted page are rolled 1752 ** back (or no pages if the journal header is corrupted). The journal file 1753 ** is then deleted and SQLITE_OK returned, just as if no corruption had 1754 ** been encountered. 1755 ** 1756 ** If an I/O or malloc() error occurs, the journal-file is not deleted 1757 ** and an error code is returned. 1758 */ 1759 static int pager_playback(Pager *pPager, int isHot){ 1760 sqlite3_vfs *pVfs = pPager->pVfs; 1761 i64 szJ; /* Size of the journal file in bytes */ 1762 u32 nRec; /* Number of Records in the journal */ 1763 int i; /* Loop counter */ 1764 Pgno mxPg = 0; /* Size of the original file in pages */ 1765 int rc; /* Result code of a subroutine */ 1766 int res = 0; /* Value returned by sqlite3OsAccess() */ 1767 char *zMaster = 0; /* Name of master journal file if any */ 1768 1769 /* Figure out how many records are in the journal. Abort early if 1770 ** the journal is empty. 1771 */ 1772 assert( pPager->journalOpen ); 1773 rc = sqlite3OsFileSize(pPager->jfd, &szJ); 1774 if( rc!=SQLITE_OK || szJ==0 ){ 1775 goto end_playback; 1776 } 1777 1778 /* Read the master journal name from the journal, if it is present. 1779 ** If a master journal file name is specified, but the file is not 1780 ** present on disk, then the journal is not hot and does not need to be 1781 ** played back. 1782 */ 1783 zMaster = pPager->pTmpSpace; 1784 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); 1785 if( rc!=SQLITE_OK || (zMaster[0] 1786 && (res=sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS))==0 ) 1787 ){ 1788 zMaster = 0; 1789 goto end_playback; 1790 } 1791 zMaster = 0; 1792 if( res<0 ){ 1793 rc = SQLITE_IOERR_NOMEM; 1794 goto end_playback; 1795 } 1796 pPager->journalOff = 0; 1797 1798 /* This loop terminates either when the readJournalHdr() call returns 1799 ** SQLITE_DONE or an IO error occurs. */ 1800 while( 1 ){ 1801 1802 /* Read the next journal header from the journal file. If there are 1803 ** not enough bytes left in the journal file for a complete header, or 1804 ** it is corrupted, then a process must of failed while writing it. 1805 ** This indicates nothing more needs to be rolled back. 1806 */ 1807 rc = readJournalHdr(pPager, szJ, &nRec, &mxPg); 1808 if( rc!=SQLITE_OK ){ 1809 if( rc==SQLITE_DONE ){ 1810 rc = SQLITE_OK; 1811 } 1812 goto end_playback; 1813 } 1814 1815 /* If nRec is 0xffffffff, then this journal was created by a process 1816 ** working in no-sync mode. This means that the rest of the journal 1817 ** file consists of pages, there are no more journal headers. Compute 1818 ** the value of nRec based on this assumption. 1819 */ 1820 if( nRec==0xffffffff ){ 1821 assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ); 1822 nRec = (szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager); 1823 } 1824 1825 /* If nRec is 0 and this rollback is of a transaction created by this 1826 ** process and if this is the final header in the journal, then it means 1827 ** that this part of the journal was being filled but has not yet been 1828 ** synced to disk. Compute the number of pages based on the remaining 1829 ** size of the file. 1830 ** 1831 ** The third term of the test was added to fix ticket #2565. 1832 */ 1833 if( nRec==0 && !isHot && 1834 pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){ 1835 nRec = (szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager); 1836 } 1837 1838 /* If this is the first header read from the journal, truncate the 1839 ** database file back to its original size. 1840 */ 1841 if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){ 1842 rc = pager_truncate(pPager, mxPg); 1843 if( rc!=SQLITE_OK ){ 1844 goto end_playback; 1845 } 1846 } 1847 1848 /* Copy original pages out of the journal and back into the database file. 1849 */ 1850 for(i=0; i<nRec; i++){ 1851 rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1); 1852 if( rc!=SQLITE_OK ){ 1853 if( rc==SQLITE_DONE ){ 1854 rc = SQLITE_OK; 1855 pPager->journalOff = szJ; 1856 break; 1857 }else{ 1858 goto end_playback; 1859 } 1860 } 1861 } 1862 } 1863 /*NOTREACHED*/ 1864 assert( 0 ); 1865 1866 end_playback: 1867 if( rc==SQLITE_OK ){ 1868 zMaster = pPager->pTmpSpace; 1869 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); 1870 } 1871 if( rc==SQLITE_OK ){ 1872 rc = pager_end_transaction(pPager); 1873 } 1874 if( rc==SQLITE_OK && zMaster[0] ){ 1875 /* If there was a master journal and this routine will return success, 1876 ** see if it is possible to delete the master journal. 1877 */ 1878 rc = pager_delmaster(pPager, zMaster); 1879 } 1880 1881 /* The Pager.sectorSize variable may have been updated while rolling 1882 ** back a journal created by a process with a different sector size 1883 ** value. Reset it to the correct value for this process. 1884 */ 1885 setSectorSize(pPager); 1886 return rc; 1887 } 1888 1889 /* 1890 ** Playback the statement journal. 1891 ** 1892 ** This is similar to playing back the transaction journal but with 1893 ** a few extra twists. 1894 ** 1895 ** (1) The number of pages in the database file at the start of 1896 ** the statement is stored in pPager->stmtSize, not in the 1897 ** journal file itself. 1898 ** 1899 ** (2) In addition to playing back the statement journal, also 1900 ** playback all pages of the transaction journal beginning 1901 ** at offset pPager->stmtJSize. 1902 */ 1903 static int pager_stmt_playback(Pager *pPager){ 1904 i64 szJ; /* Size of the full journal */ 1905 i64 hdrOff; 1906 int nRec; /* Number of Records */ 1907 int i; /* Loop counter */ 1908 int rc; 1909 1910 szJ = pPager->journalOff; 1911 #ifndef NDEBUG 1912 { 1913 i64 os_szJ; 1914 rc = sqlite3OsFileSize(pPager->jfd, &os_szJ); 1915 if( rc!=SQLITE_OK ) return rc; 1916 assert( szJ==os_szJ ); 1917 } 1918 #endif 1919 1920 /* Set hdrOff to be the offset just after the end of the last journal 1921 ** page written before the first journal-header for this statement 1922 ** transaction was written, or the end of the file if no journal 1923 ** header was written. 1924 */ 1925 hdrOff = pPager->stmtHdrOff; 1926 assert( pPager->fullSync || !hdrOff ); 1927 if( !hdrOff ){ 1928 hdrOff = szJ; 1929 } 1930 1931 /* Truncate the database back to its original size. 1932 */ 1933 rc = pager_truncate(pPager, pPager->stmtSize); 1934 assert( pPager->state>=PAGER_SHARED ); 1935 1936 /* Figure out how many records are in the statement journal. 1937 */ 1938 assert( pPager->stmtInUse && pPager->journalOpen ); 1939 nRec = pPager->stmtNRec; 1940 1941 /* Copy original pages out of the statement journal and back into the 1942 ** database file. Note that the statement journal omits checksums from 1943 ** each record since power-failure recovery is not important to statement 1944 ** journals. 1945 */ 1946 for(i=0; i<nRec; i++){ 1947 i64 offset = i*(4+pPager->pageSize); 1948 rc = pager_playback_one_page(pPager, pPager->stfd, offset, 0); 1949 assert( rc!=SQLITE_DONE ); 1950 if( rc!=SQLITE_OK ) goto end_stmt_playback; 1951 } 1952 1953 /* Now roll some pages back from the transaction journal. Pager.stmtJSize 1954 ** was the size of the journal file when this statement was started, so 1955 ** everything after that needs to be rolled back, either into the 1956 ** database, the memory cache, or both. 1957 ** 1958 ** If it is not zero, then Pager.stmtHdrOff is the offset to the start 1959 ** of the first journal header written during this statement transaction. 1960 */ 1961 pPager->journalOff = pPager->stmtJSize; 1962 pPager->cksumInit = pPager->stmtCksum; 1963 while( pPager->journalOff < hdrOff ){ 1964 rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1); 1965 assert( rc!=SQLITE_DONE ); 1966 if( rc!=SQLITE_OK ) goto end_stmt_playback; 1967 } 1968 1969 while( pPager->journalOff < szJ ){ 1970 u32 nJRec; /* Number of Journal Records */ 1971 u32 dummy; 1972 rc = readJournalHdr(pPager, szJ, &nJRec, &dummy); 1973 if( rc!=SQLITE_OK ){ 1974 assert( rc!=SQLITE_DONE ); 1975 goto end_stmt_playback; 1976 } 1977 if( nJRec==0 ){ 1978 nJRec = (szJ - pPager->journalOff) / (pPager->pageSize+8); 1979 } 1980 for(i=nJRec-1; i>=0 && pPager->journalOff < szJ; i--){ 1981 rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1); 1982 assert( rc!=SQLITE_DONE ); 1983 if( rc!=SQLITE_OK ) goto end_stmt_playback; 1984 } 1985 } 1986 1987 pPager->journalOff = szJ; 1988 1989 end_stmt_playback: 1990 if( rc==SQLITE_OK) { 1991 pPager->journalOff = szJ; 1992 /* pager_reload_cache(pPager); */ 1993 } 1994 return rc; 1995 } 1996 1997 /* 1998 ** Change the maximum number of in-memory pages that are allowed. 1999 */ 2000 void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){ 2001 if( mxPage>10 ){ 2002 pPager->mxPage = mxPage; 2003 }else{ 2004 pPager->mxPage = 10; 2005 } 2006 } 2007 2008 /* 2009 ** Adjust the robustness of the database to damage due to OS crashes 2010 ** or power failures by changing the number of syncs()s when writing 2011 ** the rollback journal. There are three levels: 2012 ** 2013 ** OFF sqlite3OsSync() is never called. This is the default 2014 ** for temporary and transient files. 2015 ** 2016 ** NORMAL The journal is synced once before writes begin on the 2017 ** database. This is normally adequate protection, but 2018 ** it is theoretically possible, though very unlikely, 2019 ** that an inopertune power failure could leave the journal 2020 ** in a state which would cause damage to the database 2021 ** when it is rolled back. 2022 ** 2023 ** FULL The journal is synced twice before writes begin on the 2024 ** database (with some additional information - the nRec field 2025 ** of the journal header - being written in between the two 2026 ** syncs). If we assume that writing a 2027 ** single disk sector is atomic, then this mode provides 2028 ** assurance that the journal will not be corrupted to the 2029 ** point of causing damage to the database during rollback. 2030 ** 2031 ** Numeric values associated with these states are OFF==1, NORMAL=2, 2032 ** and FULL=3. 2033 */ 2034 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 2035 void sqlite3PagerSetSafetyLevel(Pager *pPager, int level, int full_fsync){ 2036 pPager->noSync = level==1 || pPager->tempFile; 2037 pPager->fullSync = level==3 && !pPager->tempFile; 2038 pPager->sync_flags = (full_fsync?SQLITE_SYNC_FULL:SQLITE_SYNC_NORMAL); 2039 if( pPager->noSync ) pPager->needSync = 0; 2040 } 2041 #endif 2042 2043 /* 2044 ** The following global variable is incremented whenever the library 2045 ** attempts to open a temporary file. This information is used for 2046 ** testing and analysis only. 2047 */ 2048 #ifdef SQLITE_TEST 2049 int sqlite3_opentemp_count = 0; 2050 #endif 2051 2052 /* 2053 ** Open a temporary file. 2054 ** 2055 ** Write the file descriptor into *fd. Return SQLITE_OK on success or some 2056 ** other error code if we fail. The OS will automatically delete the temporary 2057 ** file when it is closed. 2058 */ 2059 static int sqlite3PagerOpentemp( 2060 sqlite3_vfs *pVfs, /* The virtual file system layer */ 2061 sqlite3_file *pFile, /* Write the file descriptor here */ 2062 char *zFilename, /* Name of the file. Might be NULL */ 2063 int vfsFlags /* Flags passed through to the VFS */ 2064 ){ 2065 int rc; 2066 assert( zFilename!=0 ); 2067 2068 #ifdef SQLITE_TEST 2069 sqlite3_opentemp_count++; /* Used for testing and analysis only */ 2070 #endif 2071 2072 vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | 2073 SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE; 2074 rc = sqlite3OsOpen(pVfs, zFilename, pFile, vfsFlags, 0); 2075 assert( rc!=SQLITE_OK || pFile->pMethods ); 2076 return rc; 2077 } 2078 2079 /* 2080 ** Create a new page cache and put a pointer to the page cache in *ppPager. 2081 ** The file to be cached need not exist. The file is not locked until 2082 ** the first call to sqlite3PagerGet() and is only held open until the 2083 ** last page is released using sqlite3PagerUnref(). 2084 ** 2085 ** If zFilename is NULL then a randomly-named temporary file is created 2086 ** and used as the file to be cached. The file will be deleted 2087 ** automatically when it is closed. 2088 ** 2089 ** If zFilename is ":memory:" then all information is held in cache. 2090 ** It is never written to disk. This can be used to implement an 2091 ** in-memory database. 2092 */ 2093 int sqlite3PagerOpen( 2094 sqlite3_vfs *pVfs, /* The virtual file system to use */ 2095 Pager **ppPager, /* Return the Pager structure here */ 2096 const char *zFilename, /* Name of the database file to open */ 2097 int nExtra, /* Extra bytes append to each in-memory page */ 2098 int flags, /* flags controlling this file */ 2099 int vfsFlags /* flags passed through to sqlite3_vfs.xOpen() */ 2100 ){ 2101 u8 *pPtr; 2102 Pager *pPager = 0; 2103 int rc = SQLITE_OK; 2104 int i; 2105 int tempFile = 0; 2106 int memDb = 0; 2107 int readOnly = 0; 2108 int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; 2109 int noReadlock = (flags & PAGER_NO_READLOCK)!=0; 2110 int journalFileSize = sqlite3JournalSize(pVfs); 2111 int nDefaultPage = SQLITE_DEFAULT_PAGE_SIZE; 2112 char *zPathname; 2113 int nPathname; 2114 char *zStmtJrnl; 2115 int nStmtJrnl; 2116 2117 /* The default return is a NULL pointer */ 2118 *ppPager = 0; 2119 2120 /* Compute the full pathname */ 2121 nPathname = pVfs->mxPathname+1; 2122 zPathname = sqlite3_malloc(nPathname*2); 2123 if( zPathname==0 ){ 2124 return SQLITE_NOMEM; 2125 } 2126 if( zFilename && zFilename[0] ){ 2127 #ifndef SQLITE_OMIT_MEMORYDB 2128 if( strcmp(zFilename,":memory:")==0 ){ 2129 memDb = 1; 2130 zPathname[0] = 0; 2131 }else 2132 #endif 2133 { 2134 rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname); 2135 } 2136 }else{ 2137 rc = sqlite3OsGetTempname(pVfs, nPathname, zPathname); 2138 } 2139 if( rc!=SQLITE_OK ){ 2140 sqlite3_free(zPathname); 2141 return rc; 2142 } 2143 nPathname = strlen(zPathname); 2144 2145 /* Put the statement journal in temporary disk space since this is 2146 ** sometimes RAM disk or other optimized storage. Unlikely the main 2147 ** main journal file, the statement journal does not need to be 2148 ** colocated with the database nor does it need to be persistent. 2149 */ 2150 zStmtJrnl = &zPathname[nPathname+1]; 2151 rc = sqlite3OsGetTempname(pVfs, pVfs->mxPathname+1, zStmtJrnl); 2152 if( rc!=SQLITE_OK ){ 2153 sqlite3_free(zPathname); 2154 return rc; 2155 } 2156 nStmtJrnl = strlen(zStmtJrnl); 2157 2158 /* Allocate memory for the pager structure */ 2159 pPager = sqlite3MallocZero( 2160 sizeof(*pPager) + /* Pager structure */ 2161 journalFileSize + /* The journal file structure */ 2162 pVfs->szOsFile * 3 + /* The main db and two journal files */ 2163 3*nPathname + 40 + /* zFilename, zDirectory, zJournal */ 2164 nStmtJrnl /* zStmtJrnl */ 2165 ); 2166 if( !pPager ){ 2167 sqlite3_free(zPathname); 2168 return SQLITE_NOMEM; 2169 } 2170 pPtr = (u8 *)&pPager[1]; 2171 pPager->vfsFlags = vfsFlags; 2172 pPager->fd = (sqlite3_file*)&pPtr[pVfs->szOsFile*0]; 2173 pPager->stfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*1]; 2174 pPager->jfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*2]; 2175 pPager->zFilename = (char*)&pPtr[pVfs->szOsFile*2+journalFileSize]; 2176 pPager->zDirectory = &pPager->zFilename[nPathname+1]; 2177 pPager->zJournal = &pPager->zDirectory[nPathname+1]; 2178 pPager->zStmtJrnl = &pPager->zJournal[nPathname+10]; 2179 pPager->pVfs = pVfs; 2180 memcpy(pPager->zFilename, zPathname, nPathname+1); 2181 memcpy(pPager->zStmtJrnl, zStmtJrnl, nStmtJrnl+1); 2182 sqlite3_free(zPathname); 2183 2184 /* Open the pager file. 2185 */ 2186 if( zFilename && zFilename[0] && !memDb ){ 2187 if( nPathname>(pVfs->mxPathname - sizeof("-journal")) ){ 2188 rc = SQLITE_CANTOPEN; 2189 }else{ 2190 int fout = 0; 2191 rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, 2192 pPager->vfsFlags, &fout); 2193 readOnly = (fout&SQLITE_OPEN_READONLY); 2194 2195 /* If the file was successfully opened for read/write access, 2196 ** choose a default page size in case we have to create the 2197 ** database file. The default page size is the maximum of: 2198 ** 2199 ** + SQLITE_DEFAULT_PAGE_SIZE, 2200 ** + The value returned by sqlite3OsSectorSize() 2201 ** + The largest page size that can be written atomically. 2202 */ 2203 if( rc==SQLITE_OK && !readOnly ){ 2204 int iSectorSize = sqlite3OsSectorSize(pPager->fd); 2205 if( nDefaultPage<iSectorSize ){ 2206 nDefaultPage = iSectorSize; 2207 } 2208 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 2209 { 2210 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); 2211 int ii; 2212 assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); 2213 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); 2214 assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536); 2215 for(ii=nDefaultPage; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){ 2216 if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ) nDefaultPage = ii; 2217 } 2218 } 2219 #endif 2220 if( nDefaultPage>SQLITE_MAX_DEFAULT_PAGE_SIZE ){ 2221 nDefaultPage = SQLITE_MAX_DEFAULT_PAGE_SIZE; 2222 } 2223 } 2224 } 2225 }else if( !memDb ){ 2226 /* If a temporary file is requested, it is not opened immediately. 2227 ** In this case we accept the default page size and delay actually 2228 ** opening the file until the first call to OsWrite(). 2229 */ 2230 tempFile = 1; 2231 pPager->state = PAGER_EXCLUSIVE; 2232 } 2233 2234 if( pPager && rc==SQLITE_OK ){ 2235 pPager->pTmpSpace = (char *)sqlite3_malloc(nDefaultPage); 2236 } 2237 2238 /* If an error occured in either of the blocks above. 2239 ** Free the Pager structure and close the file. 2240 ** Since the pager is not allocated there is no need to set 2241 ** any Pager.errMask variables. 2242 */ 2243 if( !pPager || !pPager->pTmpSpace ){ 2244 sqlite3OsClose(pPager->fd); 2245 sqlite3_free(pPager); 2246 return ((rc==SQLITE_OK)?SQLITE_NOMEM:rc); 2247 } 2248 2249 PAGERTRACE3("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename); 2250 IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename)) 2251 2252 /* Fill in Pager.zDirectory[] */ 2253 memcpy(pPager->zDirectory, pPager->zFilename, nPathname+1); 2254 for(i=strlen(pPager->zDirectory); i>0 && pPager->zDirectory[i-1]!='/'; i--){} 2255 if( i>0 ) pPager->zDirectory[i-1] = 0; 2256 2257 /* Fill in Pager.zJournal[] */ 2258 memcpy(pPager->zJournal, pPager->zFilename, nPathname); 2259 memcpy(&pPager->zJournal[nPathname], "-journal", 9); 2260 2261 /* pPager->journalOpen = 0; */ 2262 pPager->useJournal = useJournal && !memDb; 2263 pPager->noReadlock = noReadlock && readOnly; 2264 /* pPager->stmtOpen = 0; */ 2265 /* pPager->stmtInUse = 0; */ 2266 /* pPager->nRef = 0; */ 2267 pPager->dbSize = memDb-1; 2268 pPager->pageSize = nDefaultPage; 2269 /* pPager->stmtSize = 0; */ 2270 /* pPager->stmtJSize = 0; */ 2271 /* pPager->nPage = 0; */ 2272 pPager->mxPage = 100; 2273 pPager->mxPgno = SQLITE_MAX_PAGE_COUNT; 2274 /* pPager->state = PAGER_UNLOCK; */ 2275 assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) ); 2276 /* pPager->errMask = 0; */ 2277 pPager->tempFile = tempFile; 2278 assert( tempFile==PAGER_LOCKINGMODE_NORMAL 2279 || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE ); 2280 assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 ); 2281 pPager->exclusiveMode = tempFile; 2282 pPager->memDb = memDb; 2283 pPager->readOnly = readOnly; 2284 /* pPager->needSync = 0; */ 2285 pPager->noSync = pPager->tempFile || !useJournal; 2286 pPager->fullSync = (pPager->noSync?0:1); 2287 pPager->sync_flags = SQLITE_SYNC_NORMAL; 2288 /* pPager->pFirst = 0; */ 2289 /* pPager->pFirstSynced = 0; */ 2290 /* pPager->pLast = 0; */ 2291 pPager->nExtra = FORCE_ALIGNMENT(nExtra); 2292 assert(pPager->fd->pMethods||memDb||tempFile); 2293 if( !memDb ){ 2294 setSectorSize(pPager); 2295 } 2296 /* pPager->pBusyHandler = 0; */ 2297 /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */ 2298 *ppPager = pPager; 2299 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 2300 pPager->iInUseMM = 0; 2301 pPager->iInUseDB = 0; 2302 if( !memDb ){ 2303 sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); 2304 sqlite3_mutex_enter(mutex); 2305 pPager->pNext = sqlite3PagerList; 2306 if( sqlite3PagerList ){ 2307 assert( sqlite3PagerList->pPrev==0 ); 2308 sqlite3PagerList->pPrev = pPager; 2309 } 2310 pPager->pPrev = 0; 2311 sqlite3PagerList = pPager; 2312 sqlite3_mutex_leave(mutex); 2313 } 2314 #endif 2315 return SQLITE_OK; 2316 } 2317 2318 /* 2319 ** Set the busy handler function. 2320 */ 2321 void sqlite3PagerSetBusyhandler(Pager *pPager, BusyHandler *pBusyHandler){ 2322 pPager->pBusyHandler = pBusyHandler; 2323 } 2324 2325 /* 2326 ** Set the destructor for this pager. If not NULL, the destructor is called 2327 ** when the reference count on each page reaches zero. The destructor can 2328 ** be used to clean up information in the extra segment appended to each page. 2329 ** 2330 ** The destructor is not called as a result sqlite3PagerClose(). 2331 ** Destructors are only called by sqlite3PagerUnref(). 2332 */ 2333 void sqlite3PagerSetDestructor(Pager *pPager, void (*xDesc)(DbPage*,int)){ 2334 pPager->xDestructor = xDesc; 2335 } 2336 2337 /* 2338 ** Set the reinitializer for this pager. If not NULL, the reinitializer 2339 ** is called when the content of a page in cache is restored to its original 2340 ** value as a result of a rollback. The callback gives higher-level code 2341 ** an opportunity to restore the EXTRA section to agree with the restored 2342 ** page data. 2343 */ 2344 void sqlite3PagerSetReiniter(Pager *pPager, void (*xReinit)(DbPage*,int)){ 2345 pPager->xReiniter = xReinit; 2346 } 2347 2348 /* 2349 ** Set the page size to *pPageSize. If the suggest new page size is 2350 ** inappropriate, then an alternative page size is set to that 2351 ** value before returning. 2352 */ 2353 int sqlite3PagerSetPagesize(Pager *pPager, u16 *pPageSize){ 2354 int rc = SQLITE_OK; 2355 u16 pageSize = *pPageSize; 2356 assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) ); 2357 if( pageSize && pageSize!=pPager->pageSize 2358 && !pPager->memDb && pPager->nRef==0 2359 ){ 2360 char *pNew = (char *)sqlite3_malloc(pageSize); 2361 if( !pNew ){ 2362 rc = SQLITE_NOMEM; 2363 }else{ 2364 pagerEnter(pPager); 2365 pager_reset(pPager); 2366 pPager->pageSize = pageSize; 2367 setSectorSize(pPager); 2368 sqlite3_free(pPager->pTmpSpace); 2369 pPager->pTmpSpace = pNew; 2370 pagerLeave(pPager); 2371 } 2372 } 2373 *pPageSize = pPager->pageSize; 2374 return rc; 2375 } 2376 2377 /* 2378 ** Return a pointer to the "temporary page" buffer held internally 2379 ** by the pager. This is a buffer that is big enough to hold the 2380 ** entire content of a database page. This buffer is used internally 2381 ** during rollback and will be overwritten whenever a rollback 2382 ** occurs. But other modules are free to use it too, as long as 2383 ** no rollbacks are happening. 2384 */ 2385 void *sqlite3PagerTempSpace(Pager *pPager){ 2386 return pPager->pTmpSpace; 2387 } 2388 2389 /* 2390 ** Attempt to set the maximum database page count if mxPage is positive. 2391 ** Make no changes if mxPage is zero or negative. And never reduce the 2392 ** maximum page count below the current size of the database. 2393 ** 2394 ** Regardless of mxPage, return the current maximum page count. 2395 */ 2396 int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){ 2397 if( mxPage>0 ){ 2398 pPager->mxPgno = mxPage; 2399 } 2400 sqlite3PagerPagecount(pPager); 2401 return pPager->mxPgno; 2402 } 2403 2404 /* 2405 ** The following set of routines are used to disable the simulated 2406 ** I/O error mechanism. These routines are used to avoid simulated 2407 ** errors in places where we do not care about errors. 2408 ** 2409 ** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops 2410 ** and generate no code. 2411 */ 2412 #ifdef SQLITE_TEST 2413 extern int sqlite3_io_error_pending; 2414 extern int sqlite3_io_error_hit; 2415 static int saved_cnt; 2416 void disable_simulated_io_errors(void){ 2417 saved_cnt = sqlite3_io_error_pending; 2418 sqlite3_io_error_pending = -1; 2419 } 2420 void enable_simulated_io_errors(void){ 2421 sqlite3_io_error_pending = saved_cnt; 2422 } 2423 #else 2424 # define disable_simulated_io_errors() 2425 # define enable_simulated_io_errors() 2426 #endif 2427 2428 /* 2429 ** Read the first N bytes from the beginning of the file into memory 2430 ** that pDest points to. 2431 ** 2432 ** No error checking is done. The rational for this is that this function 2433 ** may be called even if the file does not exist or contain a header. In 2434 ** these cases sqlite3OsRead() will return an error, to which the correct 2435 ** response is to zero the memory at pDest and continue. A real IO error 2436 ** will presumably recur and be picked up later (Todo: Think about this). 2437 */ 2438 int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){ 2439 int rc = SQLITE_OK; 2440 memset(pDest, 0, N); 2441 assert(MEMDB||pPager->fd->pMethods||pPager->tempFile); 2442 if( pPager->fd->pMethods ){ 2443 IOTRACE(("DBHDR %p 0 %d\n", pPager, N)) 2444 rc = sqlite3OsRead(pPager->fd, pDest, N, 0); 2445 if( rc==SQLITE_IOERR_SHORT_READ ){ 2446 rc = SQLITE_OK; 2447 } 2448 } 2449 return rc; 2450 } 2451 2452 /* 2453 ** Return the total number of pages in the disk file associated with 2454 ** pPager. 2455 ** 2456 ** If the PENDING_BYTE lies on the page directly after the end of the 2457 ** file, then consider this page part of the file too. For example, if 2458 ** PENDING_BYTE is byte 4096 (the first byte of page 5) and the size of the 2459 ** file is 4096 bytes, 5 is returned instead of 4. 2460 */ 2461 int sqlite3PagerPagecount(Pager *pPager){ 2462 i64 n = 0; 2463 int rc; 2464 assert( pPager!=0 ); 2465 if( pPager->errCode ){ 2466 return -1; 2467 } 2468 if( pPager->dbSize>=0 ){ 2469 n = pPager->dbSize; 2470 } else { 2471 assert(pPager->fd->pMethods||pPager->tempFile); 2472 if( (pPager->fd->pMethods) 2473 && (rc = sqlite3OsFileSize(pPager->fd, &n))!=SQLITE_OK ){ 2474 pPager->nRef++; 2475 pager_error(pPager, rc); 2476 pPager->nRef--; 2477 return -1; 2478 } 2479 if( n>0 && n<pPager->pageSize ){ 2480 n = 1; 2481 }else{ 2482 n /= pPager->pageSize; 2483 } 2484 if( pPager->state!=PAGER_UNLOCK ){ 2485 pPager->dbSize = n; 2486 } 2487 } 2488 if( n==(PENDING_BYTE/pPager->pageSize) ){ 2489 n++; 2490 } 2491 if( n>pPager->mxPgno ){ 2492 pPager->mxPgno = n; 2493 } 2494 return n; 2495 } 2496 2497 2498 #ifndef SQLITE_OMIT_MEMORYDB 2499 /* 2500 ** Clear a PgHistory block 2501 */ 2502 static void clearHistory(PgHistory *pHist){ 2503 sqlite3_free(pHist->pOrig); 2504 sqlite3_free(pHist->pStmt); 2505 pHist->pOrig = 0; 2506 pHist->pStmt = 0; 2507 } 2508 #else 2509 #define clearHistory(x) 2510 #endif 2511 2512 /* 2513 ** Forward declaration 2514 */ 2515 static int syncJournal(Pager*); 2516 2517 /* 2518 ** Unlink pPg from its hash chain. Also set the page number to 0 to indicate 2519 ** that the page is not part of any hash chain. This is required because the 2520 ** sqlite3PagerMovepage() routine can leave a page in the 2521 ** pNextFree/pPrevFree list that is not a part of any hash-chain. 2522 */ 2523 static void unlinkHashChain(Pager *pPager, PgHdr *pPg){ 2524 if( pPg->pgno==0 ){ 2525 assert( pPg->pNextHash==0 && pPg->pPrevHash==0 ); 2526 return; 2527 } 2528 if( pPg->pNextHash ){ 2529 pPg->pNextHash->pPrevHash = pPg->pPrevHash; 2530 } 2531 if( pPg->pPrevHash ){ 2532 assert( pPager->aHash[pPg->pgno & (pPager->nHash-1)]!=pPg ); 2533 pPg->pPrevHash->pNextHash = pPg->pNextHash; 2534 }else{ 2535 int h = pPg->pgno & (pPager->nHash-1); 2536 pPager->aHash[h] = pPg->pNextHash; 2537 } 2538 if( MEMDB ){ 2539 clearHistory(PGHDR_TO_HIST(pPg, pPager)); 2540 } 2541 pPg->pgno = 0; 2542 pPg->pNextHash = pPg->pPrevHash = 0; 2543 } 2544 2545 /* 2546 ** Unlink a page from the free list (the list of all pages where nRef==0) 2547 ** and from its hash collision chain. 2548 */ 2549 static void unlinkPage(PgHdr *pPg){ 2550 Pager *pPager = pPg->pPager; 2551 2552 /* Unlink from free page list */ 2553 lruListRemove(pPg); 2554 2555 /* Unlink from the pgno hash table */ 2556 unlinkHashChain(pPager, pPg); 2557 } 2558 2559 /* 2560 ** This routine is used to truncate the cache when a database 2561 ** is truncated. Drop from the cache all pages whose pgno is 2562 ** larger than pPager->dbSize and is unreferenced. 2563 ** 2564 ** Referenced pages larger than pPager->dbSize are zeroed. 2565 ** 2566 ** Actually, at the point this routine is called, it would be 2567 ** an error to have a referenced page. But rather than delete 2568 ** that page and guarantee a subsequent segfault, it seems better 2569 ** to zero it and hope that we error out sanely. 2570 */ 2571 static void pager_truncate_cache(Pager *pPager){ 2572 PgHdr *pPg; 2573 PgHdr **ppPg; 2574 int dbSize = pPager->dbSize; 2575 2576 ppPg = &pPager->pAll; 2577 while( (pPg = *ppPg)!=0 ){ 2578 if( pPg->pgno<=dbSize ){ 2579 ppPg = &pPg->pNextAll; 2580 }else if( pPg->nRef>0 ){ 2581 memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize); 2582 ppPg = &pPg->pNextAll; 2583 }else{ 2584 *ppPg = pPg->pNextAll; 2585 IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno)); 2586 PAGER_INCR(sqlite3_pager_pgfree_count); 2587 unlinkPage(pPg); 2588 makeClean(pPg); 2589 sqlite3_free(pPg->pData); 2590 sqlite3_free(pPg); 2591 pPager->nPage--; 2592 } 2593 } 2594 } 2595 2596 /* 2597 ** Try to obtain a lock on a file. Invoke the busy callback if the lock 2598 ** is currently not available. Repeat until the busy callback returns 2599 ** false or until the lock succeeds. 2600 ** 2601 ** Return SQLITE_OK on success and an error code if we cannot obtain 2602 ** the lock. 2603 */ 2604 static int pager_wait_on_lock(Pager *pPager, int locktype){ 2605 int rc; 2606 2607 /* The OS lock values must be the same as the Pager lock values */ 2608 assert( PAGER_SHARED==SHARED_LOCK ); 2609 assert( PAGER_RESERVED==RESERVED_LOCK ); 2610 assert( PAGER_EXCLUSIVE==EXCLUSIVE_LOCK ); 2611 2612 /* If the file is currently unlocked then the size must be unknown */ 2613 assert( pPager->state>=PAGER_SHARED || pPager->dbSize<0 || MEMDB ); 2614 2615 if( pPager->state>=locktype ){ 2616 rc = SQLITE_OK; 2617 }else{ 2618 if( pPager->pBusyHandler ) pPager->pBusyHandler->nBusy = 0; 2619 do { 2620 rc = sqlite3OsLock(pPager->fd, locktype); 2621 }while( rc==SQLITE_BUSY && sqlite3InvokeBusyHandler(pPager->pBusyHandler) ); 2622 if( rc==SQLITE_OK ){ 2623 pPager->state = locktype; 2624 IOTRACE(("LOCK %p %d\n", pPager, locktype)) 2625 } 2626 } 2627 return rc; 2628 } 2629 2630 /* 2631 ** Truncate the file to the number of pages specified. 2632 */ 2633 int sqlite3PagerTruncate(Pager *pPager, Pgno nPage){ 2634 int rc; 2635 assert( pPager->state>=PAGER_SHARED || MEMDB ); 2636 sqlite3PagerPagecount(pPager); 2637 if( pPager->errCode ){ 2638 rc = pPager->errCode; 2639 return rc; 2640 } 2641 if( nPage>=(unsigned)pPager->dbSize ){ 2642 return SQLITE_OK; 2643 } 2644 if( MEMDB ){ 2645 pPager->dbSize = nPage; 2646 pager_truncate_cache(pPager); 2647 return SQLITE_OK; 2648 } 2649 pagerEnter(pPager); 2650 rc = syncJournal(pPager); 2651 pagerLeave(pPager); 2652 if( rc!=SQLITE_OK ){ 2653 return rc; 2654 } 2655 2656 /* Get an exclusive lock on the database before truncating. */ 2657 pagerEnter(pPager); 2658 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); 2659 pagerLeave(pPager); 2660 if( rc!=SQLITE_OK ){ 2661 return rc; 2662 } 2663 2664 rc = pager_truncate(pPager, nPage); 2665 return rc; 2666 } 2667 2668 /* 2669 ** Shutdown the page cache. Free all memory and close all files. 2670 ** 2671 ** If a transaction was in progress when this routine is called, that 2672 ** transaction is rolled back. All outstanding pages are invalidated 2673 ** and their memory is freed. Any attempt to use a page associated 2674 ** with this page cache after this function returns will likely 2675 ** result in a coredump. 2676 ** 2677 ** This function always succeeds. If a transaction is active an attempt 2678 ** is made to roll it back. If an error occurs during the rollback 2679 ** a hot journal may be left in the filesystem but no error is returned 2680 ** to the caller. 2681 */ 2682 int sqlite3PagerClose(Pager *pPager){ 2683 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 2684 if( !MEMDB ){ 2685 sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); 2686 sqlite3_mutex_enter(mutex); 2687 if( pPager->pPrev ){ 2688 pPager->pPrev->pNext = pPager->pNext; 2689 }else{ 2690 sqlite3PagerList = pPager->pNext; 2691 } 2692 if( pPager->pNext ){ 2693 pPager->pNext->pPrev = pPager->pPrev; 2694 } 2695 sqlite3_mutex_leave(mutex); 2696 } 2697 #endif 2698 2699 disable_simulated_io_errors(); 2700 pPager->errCode = 0; 2701 pPager->exclusiveMode = 0; 2702 pager_reset(pPager); 2703 pagerUnlockAndRollback(pPager); 2704 enable_simulated_io_errors(); 2705 PAGERTRACE2("CLOSE %d\n", PAGERID(pPager)); 2706 IOTRACE(("CLOSE %p\n", pPager)) 2707 assert( pPager->errCode || (pPager->journalOpen==0 && pPager->stmtOpen==0) ); 2708 if( pPager->journalOpen ){ 2709 sqlite3OsClose(pPager->jfd); 2710 } 2711 sqlite3BitvecDestroy(pPager->pInJournal); 2712 if( pPager->stmtOpen ){ 2713 sqlite3OsClose(pPager->stfd); 2714 } 2715 sqlite3OsClose(pPager->fd); 2716 /* Temp files are automatically deleted by the OS 2717 ** if( pPager->tempFile ){ 2718 ** sqlite3OsDelete(pPager->zFilename); 2719 ** } 2720 */ 2721 2722 sqlite3_free(pPager->aHash); 2723 sqlite3_free(pPager->pTmpSpace); 2724 sqlite3_free(pPager); 2725 return SQLITE_OK; 2726 } 2727 2728 #if !defined(NDEBUG) || defined(SQLITE_TEST) 2729 /* 2730 ** Return the page number for the given page data. 2731 */ 2732 Pgno sqlite3PagerPagenumber(DbPage *p){ 2733 return p->pgno; 2734 } 2735 #endif 2736 2737 /* 2738 ** The page_ref() function increments the reference count for a page. 2739 ** If the page is currently on the freelist (the reference count is zero) then 2740 ** remove it from the freelist. 2741 ** 2742 ** For non-test systems, page_ref() is a macro that calls _page_ref() 2743 ** online of the reference count is zero. For test systems, page_ref() 2744 ** is a real function so that we can set breakpoints and trace it. 2745 */ 2746 static void _page_ref(PgHdr *pPg){ 2747 if( pPg->nRef==0 ){ 2748 /* The page is currently on the freelist. Remove it. */ 2749 lruListRemove(pPg); 2750 pPg->pPager->nRef++; 2751 } 2752 pPg->nRef++; 2753 } 2754 #ifdef SQLITE_DEBUG 2755 static void page_ref(PgHdr *pPg){ 2756 if( pPg->nRef==0 ){ 2757 _page_ref(pPg); 2758 }else{ 2759 pPg->nRef++; 2760 } 2761 } 2762 #else 2763 # define page_ref(P) ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++) 2764 #endif 2765 2766 /* 2767 ** Increment the reference count for a page. The input pointer is 2768 ** a reference to the page data. 2769 */ 2770 int sqlite3PagerRef(DbPage *pPg){ 2771 pagerEnter(pPg->pPager); 2772 page_ref(pPg); 2773 pagerLeave(pPg->pPager); 2774 return SQLITE_OK; 2775 } 2776 2777 /* 2778 ** Sync the journal. In other words, make sure all the pages that have 2779 ** been written to the journal have actually reached the surface of the 2780 ** disk. It is not safe to modify the original database file until after 2781 ** the journal has been synced. If the original database is modified before 2782 ** the journal is synced and a power failure occurs, the unsynced journal 2783 ** data would be lost and we would be unable to completely rollback the 2784 ** database changes. Database corruption would occur. 2785 ** 2786 ** This routine also updates the nRec field in the header of the journal. 2787 ** (See comments on the pager_playback() routine for additional information.) 2788 ** If the sync mode is FULL, two syncs will occur. First the whole journal 2789 ** is synced, then the nRec field is updated, then a second sync occurs. 2790 ** 2791 ** For temporary databases, we do not care if we are able to rollback 2792 ** after a power failure, so no sync occurs. 2793 ** 2794 ** If the IOCAP_SEQUENTIAL flag is set for the persistent media on which 2795 ** the database is stored, then OsSync() is never called on the journal 2796 ** file. In this case all that is required is to update the nRec field in 2797 ** the journal header. 2798 ** 2799 ** This routine clears the needSync field of every page current held in 2800 ** memory. 2801 */ 2802 static int syncJournal(Pager *pPager){ 2803 PgHdr *pPg; 2804 int rc = SQLITE_OK; 2805 2806 2807 /* Sync the journal before modifying the main database 2808 ** (assuming there is a journal and it needs to be synced.) 2809 */ 2810 if( pPager->needSync ){ 2811 if( !pPager->tempFile ){ 2812 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); 2813 assert( pPager->journalOpen ); 2814 2815 /* assert( !pPager->noSync ); // noSync might be set if synchronous 2816 ** was turned off after the transaction was started. Ticket #615 */ 2817 #ifndef NDEBUG 2818 { 2819 /* Make sure the pPager->nRec counter we are keeping agrees 2820 ** with the nRec computed from the size of the journal file. 2821 */ 2822 i64 jSz; 2823 rc = sqlite3OsFileSize(pPager->jfd, &jSz); 2824 if( rc!=0 ) return rc; 2825 assert( pPager->journalOff==jSz ); 2826 } 2827 #endif 2828 if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ 2829 /* Write the nRec value into the journal file header. If in 2830 ** full-synchronous mode, sync the journal first. This ensures that 2831 ** all data has really hit the disk before nRec is updated to mark 2832 ** it as a candidate for rollback. 2833 ** 2834 ** This is not required if the persistent media supports the 2835 ** SAFE_APPEND property. Because in this case it is not possible 2836 ** for garbage data to be appended to the file, the nRec field 2837 ** is populated with 0xFFFFFFFF when the journal header is written 2838 ** and never needs to be updated. 2839 */ 2840 i64 jrnlOff; 2841 if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ 2842 PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager)); 2843 IOTRACE(("JSYNC %p\n", pPager)) 2844 rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags); 2845 if( rc!=0 ) return rc; 2846 } 2847 2848 jrnlOff = pPager->journalHdr + sizeof(aJournalMagic); 2849 IOTRACE(("JHDR %p %lld %d\n", pPager, jrnlOff, 4)); 2850 rc = write32bits(pPager->jfd, jrnlOff, pPager->nRec); 2851 if( rc ) return rc; 2852 } 2853 if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ 2854 PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager)); 2855 IOTRACE(("JSYNC %p\n", pPager)) 2856 rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags| 2857 (pPager->sync_flags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0) 2858 ); 2859 if( rc!=0 ) return rc; 2860 } 2861 pPager->journalStarted = 1; 2862 } 2863 pPager->needSync = 0; 2864 2865 /* Erase the needSync flag from every page. 2866 */ 2867 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ 2868 pPg->needSync = 0; 2869 } 2870 lruListSetFirstSynced(pPager); 2871 } 2872 2873 #ifndef NDEBUG 2874 /* If the Pager.needSync flag is clear then the PgHdr.needSync 2875 ** flag must also be clear for all pages. Verify that this 2876 ** invariant is true. 2877 */ 2878 else{ 2879 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ 2880 assert( pPg->needSync==0 ); 2881 } 2882 assert( pPager->lru.pFirstSynced==pPager->lru.pFirst ); 2883 } 2884 #endif 2885 2886 return rc; 2887 } 2888 2889 /* 2890 ** Merge two lists of pages connected by pDirty and in pgno order. 2891 ** Do not both fixing the pPrevDirty pointers. 2892 */ 2893 static PgHdr *merge_pagelist(PgHdr *pA, PgHdr *pB){ 2894 PgHdr result, *pTail; 2895 pTail = &result; 2896 while( pA && pB ){ 2897 if( pA->pgno<pB->pgno ){ 2898 pTail->pDirty = pA; 2899 pTail = pA; 2900 pA = pA->pDirty; 2901 }else{ 2902 pTail->pDirty = pB; 2903 pTail = pB; 2904 pB = pB->pDirty; 2905 } 2906 } 2907 if( pA ){ 2908 pTail->pDirty = pA; 2909 }else if( pB ){ 2910 pTail->pDirty = pB; 2911 }else{ 2912 pTail->pDirty = 0; 2913 } 2914 return result.pDirty; 2915 } 2916 2917 /* 2918 ** Sort the list of pages in accending order by pgno. Pages are 2919 ** connected by pDirty pointers. The pPrevDirty pointers are 2920 ** corrupted by this sort. 2921 */ 2922 #define N_SORT_BUCKET_ALLOC 25 2923 #define N_SORT_BUCKET 25 2924 #ifdef SQLITE_TEST 2925 int sqlite3_pager_n_sort_bucket = 0; 2926 #undef N_SORT_BUCKET 2927 #define N_SORT_BUCKET \ 2928 (sqlite3_pager_n_sort_bucket?sqlite3_pager_n_sort_bucket:N_SORT_BUCKET_ALLOC) 2929 #endif 2930 static PgHdr *sort_pagelist(PgHdr *pIn){ 2931 PgHdr *a[N_SORT_BUCKET_ALLOC], *p; 2932 int i; 2933 memset(a, 0, sizeof(a)); 2934 while( pIn ){ 2935 p = pIn; 2936 pIn = p->pDirty; 2937 p->pDirty = 0; 2938 for(i=0; i<N_SORT_BUCKET-1; i++){ 2939 if( a[i]==0 ){ 2940 a[i] = p; 2941 break; 2942 }else{ 2943 p = merge_pagelist(a[i], p); 2944 a[i] = 0; 2945 } 2946 } 2947 if( i==N_SORT_BUCKET-1 ){ 2948 /* Coverage: To get here, there need to be 2^(N_SORT_BUCKET) 2949 ** elements in the input list. This is possible, but impractical. 2950 ** Testing this line is the point of global variable 2951 ** sqlite3_pager_n_sort_bucket. 2952 */ 2953 a[i] = merge_pagelist(a[i], p); 2954 } 2955 } 2956 p = a[0]; 2957 for(i=1; i<N_SORT_BUCKET; i++){ 2958 p = merge_pagelist(p, a[i]); 2959 } 2960 return p; 2961 } 2962 2963 /* 2964 ** Given a list of pages (connected by the PgHdr.pDirty pointer) write 2965 ** every one of those pages out to the database file and mark them all 2966 ** as clean. 2967 */ 2968 static int pager_write_pagelist(PgHdr *pList){ 2969 Pager *pPager; 2970 PgHdr *p; 2971 int rc; 2972 2973 if( pList==0 ) return SQLITE_OK; 2974 pPager = pList->pPager; 2975 2976 /* At this point there may be either a RESERVED or EXCLUSIVE lock on the 2977 ** database file. If there is already an EXCLUSIVE lock, the following 2978 ** calls to sqlite3OsLock() are no-ops. 2979 ** 2980 ** Moving the lock from RESERVED to EXCLUSIVE actually involves going 2981 ** through an intermediate state PENDING. A PENDING lock prevents new 2982 ** readers from attaching to the database but is unsufficient for us to 2983 ** write. The idea of a PENDING lock is to prevent new readers from 2984 ** coming in while we wait for existing readers to clear. 2985 ** 2986 ** While the pager is in the RESERVED state, the original database file 2987 ** is unchanged and we can rollback without having to playback the 2988 ** journal into the original database file. Once we transition to 2989 ** EXCLUSIVE, it means the database file has been changed and any rollback 2990 ** will require a journal playback. 2991 */ 2992 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); 2993 if( rc!=SQLITE_OK ){ 2994 return rc; 2995 } 2996 2997 pList = sort_pagelist(pList); 2998 for(p=pList; p; p=p->pDirty){ 2999 assert( p->dirty ); 3000 p->dirty = 0; 3001 } 3002 while( pList ){ 3003 3004 /* If the file has not yet been opened, open it now. */ 3005 if( !pPager->fd->pMethods ){ 3006 assert(pPager->tempFile); 3007 rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->fd, pPager->zFilename, 3008 pPager->vfsFlags); 3009 if( rc ) return rc; 3010 } 3011 3012 /* If there are dirty pages in the page cache with page numbers greater 3013 ** than Pager.dbSize, this means sqlite3PagerTruncate() was called to 3014 ** make the file smaller (presumably by auto-vacuum code). Do not write 3015 ** any such pages to the file. 3016 */ 3017 if( pList->pgno<=pPager->dbSize ){ 3018 i64 offset = (pList->pgno-1)*(i64)pPager->pageSize; 3019 char *pData = CODEC2(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6); 3020 PAGERTRACE4("STORE %d page %d hash(%08x)\n", 3021 PAGERID(pPager), pList->pgno, pager_pagehash(pList)); 3022 IOTRACE(("PGOUT %p %d\n", pPager, pList->pgno)); 3023 rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset); 3024 PAGER_INCR(sqlite3_pager_writedb_count); 3025 PAGER_INCR(pPager->nWrite); 3026 if( pList->pgno==1 ){ 3027 memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers)); 3028 } 3029 } 3030 #ifndef NDEBUG 3031 else{ 3032 PAGERTRACE3("NOSTORE %d page %d\n", PAGERID(pPager), pList->pgno); 3033 } 3034 #endif 3035 if( rc ) return rc; 3036 #ifdef SQLITE_CHECK_PAGES 3037 pList->pageHash = pager_pagehash(pList); 3038 #endif 3039 pList = pList->pDirty; 3040 } 3041 return SQLITE_OK; 3042 } 3043 3044 /* 3045 ** Collect every dirty page into a dirty list and 3046 ** return a pointer to the head of that list. All pages are 3047 ** collected even if they are still in use. 3048 */ 3049 static PgHdr *pager_get_all_dirty_pages(Pager *pPager){ 3050 3051 #ifndef NDEBUG 3052 /* Verify the sanity of the dirty list when we are running 3053 ** in debugging mode. This is expensive, so do not 3054 ** do this on a normal build. */ 3055 int n1 = 0; 3056 int n2 = 0; 3057 PgHdr *p; 3058 for(p=pPager->pAll; p; p=p->pNextAll){ if( p->dirty ) n1++; } 3059 for(p=pPager->pDirty; p; p=p->pDirty){ n2++; } 3060 assert( n1==n2 ); 3061 #endif 3062 3063 return pPager->pDirty; 3064 } 3065 3066 /* 3067 ** Return 1 if there is a hot journal on the given pager. 3068 ** A hot journal is one that needs to be played back. 3069 ** 3070 ** If the current size of the database file is 0 but a journal file 3071 ** exists, that is probably an old journal left over from a prior 3072 ** database with the same name. Just delete the journal. 3073 ** 3074 ** Return negative if unable to determine the status of the journal. 3075 */ 3076 static int hasHotJournal(Pager *pPager){ 3077 sqlite3_vfs *pVfs = pPager->pVfs; 3078 int rc; 3079 if( !pPager->useJournal ) return 0; 3080 if( !pPager->fd->pMethods ) return 0; 3081 rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS); 3082 if( rc<=0 ){ 3083 return rc; 3084 } 3085 if( sqlite3OsCheckReservedLock(pPager->fd) ){ 3086 return 0; 3087 } 3088 if( sqlite3PagerPagecount(pPager)==0 ){ 3089 sqlite3OsDelete(pVfs, pPager->zJournal, 0); 3090 return 0; 3091 }else{ 3092 return 1; 3093 } 3094 } 3095 3096 /* 3097 ** Try to find a page in the cache that can be recycled. 3098 ** 3099 ** This routine may return SQLITE_IOERR, SQLITE_FULL or SQLITE_OK. It 3100 ** does not set the pPager->errCode variable. 3101 */ 3102 static int pager_recycle(Pager *pPager, PgHdr **ppPg){ 3103 PgHdr *pPg; 3104 *ppPg = 0; 3105 3106 /* It is illegal to call this function unless the pager object 3107 ** pointed to by pPager has at least one free page (page with nRef==0). 3108 */ 3109 assert(!MEMDB); 3110 assert(pPager->lru.pFirst); 3111 3112 /* Find a page to recycle. Try to locate a page that does not 3113 ** require us to do an fsync() on the journal. 3114 */ 3115 pPg = pPager->lru.pFirstSynced; 3116 3117 /* If we could not find a page that does not require an fsync() 3118 ** on the journal file then fsync the journal file. This is a 3119 ** very slow operation, so we work hard to avoid it. But sometimes 3120 ** it can't be helped. 3121 */ 3122 if( pPg==0 && pPager->lru.pFirst){ 3123 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); 3124 int rc = syncJournal(pPager); 3125 if( rc!=0 ){ 3126 return rc; 3127 } 3128 if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ 3129 /* If in full-sync mode, write a new journal header into the 3130 ** journal file. This is done to avoid ever modifying a journal 3131 ** header that is involved in the rollback of pages that have 3132 ** already been written to the database (in case the header is 3133 ** trashed when the nRec field is updated). 3134 */ 3135 pPager->nRec = 0; 3136 assert( pPager->journalOff > 0 ); 3137 assert( pPager->doNotSync==0 ); 3138 rc = writeJournalHdr(pPager); 3139 if( rc!=0 ){ 3140 return rc; 3141 } 3142 } 3143 pPg = pPager->lru.pFirst; 3144 } 3145 3146 assert( pPg->nRef==0 ); 3147 3148 /* Write the page to the database file if it is dirty. 3149 */ 3150 if( pPg->dirty ){ 3151 int rc; 3152 assert( pPg->needSync==0 ); 3153 makeClean(pPg); 3154 pPg->dirty = 1; 3155 pPg->pDirty = 0; 3156 rc = pager_write_pagelist( pPg ); 3157 pPg->dirty = 0; 3158 if( rc!=SQLITE_OK ){ 3159 return rc; 3160 } 3161 } 3162 assert( pPg->dirty==0 ); 3163 3164 /* If the page we are recycling is marked as alwaysRollback, then 3165 ** set the global alwaysRollback flag, thus disabling the 3166 ** sqlite3PagerDontRollback() optimization for the rest of this transaction. 3167 ** It is necessary to do this because the page marked alwaysRollback 3168 ** might be reloaded at a later time but at that point we won't remember 3169 ** that is was marked alwaysRollback. This means that all pages must 3170 ** be marked as alwaysRollback from here on out. 3171 */ 3172 if( pPg->alwaysRollback ){ 3173 IOTRACE(("ALWAYS_ROLLBACK %p\n", pPager)) 3174 pPager->alwaysRollback = 1; 3175 } 3176 3177 /* Unlink the old page from the free list and the hash table 3178 */ 3179 unlinkPage(pPg); 3180 assert( pPg->pgno==0 ); 3181 3182 *ppPg = pPg; 3183 return SQLITE_OK; 3184 } 3185 3186 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 3187 /* 3188 ** This function is called to free superfluous dynamically allocated memory 3189 ** held by the pager system. Memory in use by any SQLite pager allocated 3190 ** by the current thread may be sqlite3_free()ed. 3191 ** 3192 ** nReq is the number of bytes of memory required. Once this much has 3193 ** been released, the function returns. The return value is the total number 3194 ** of bytes of memory released. 3195 */ 3196 int sqlite3PagerReleaseMemory(int nReq){ 3197 int nReleased = 0; /* Bytes of memory released so far */ 3198 sqlite3_mutex *mutex; /* The MEM2 mutex */ 3199 Pager *pPager; /* For looping over pagers */ 3200 BusyHandler *savedBusy; /* Saved copy of the busy handler */ 3201 int rc = SQLITE_OK; 3202 3203 /* Acquire the memory-management mutex 3204 */ 3205 mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); 3206 sqlite3_mutex_enter(mutex); 3207 3208 /* Signal all database connections that memory management wants 3209 ** to have access to the pagers. 3210 */ 3211 for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){ 3212 pPager->iInUseMM = 1; 3213 } 3214 3215 while( rc==SQLITE_OK && (nReq<0 || nReleased<nReq) ){ 3216 PgHdr *pPg; 3217 PgHdr *pRecycled; 3218 3219 /* Try to find a page to recycle that does not require a sync(). If 3220 ** this is not possible, find one that does require a sync(). 3221 */ 3222 sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 3223 pPg = sqlite3LruPageList.pFirstSynced; 3224 while( pPg && (pPg->needSync || pPg->pPager->iInUseDB) ){ 3225 pPg = pPg->gfree.pNext; 3226 } 3227 if( !pPg ){ 3228 pPg = sqlite3LruPageList.pFirst; 3229 while( pPg && pPg->pPager->iInUseDB ){ 3230 pPg = pPg->gfree.pNext; 3231 } 3232 } 3233 sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 3234 3235 /* If pPg==0, then the block above has failed to find a page to 3236 ** recycle. In this case return early - no further memory will 3237 ** be released. 3238 */ 3239 if( !pPg ) break; 3240 3241 pPager = pPg->pPager; 3242 assert(!pPg->needSync || pPg==pPager->lru.pFirst); 3243 assert(pPg->needSync || pPg==pPager->lru.pFirstSynced); 3244 3245 savedBusy = pPager->pBusyHandler; 3246 pPager->pBusyHandler = 0; 3247 rc = pager_recycle(pPager, &pRecycled); 3248 pPager->pBusyHandler = savedBusy; 3249 assert(pRecycled==pPg || rc!=SQLITE_OK); 3250 if( rc==SQLITE_OK ){ 3251 /* We've found a page to free. At this point the page has been 3252 ** removed from the page hash-table, free-list and synced-list 3253 ** (pFirstSynced). It is still in the all pages (pAll) list. 3254 ** Remove it from this list before freeing. 3255 ** 3256 ** Todo: Check the Pager.pStmt list to make sure this is Ok. It 3257 ** probably is though. 3258 */ 3259 PgHdr *pTmp; 3260 assert( pPg ); 3261 if( pPg==pPager->pAll ){ 3262 pPager->pAll = pPg->pNextAll; 3263 }else{ 3264 for( pTmp=pPager->pAll; pTmp->pNextAll!=pPg; pTmp=pTmp->pNextAll ){} 3265 pTmp->pNextAll = pPg->pNextAll; 3266 } 3267 nReleased += ( 3268 sizeof(*pPg) + pPager->pageSize 3269 + sizeof(u32) + pPager->nExtra 3270 + MEMDB*sizeof(PgHistory) 3271 ); 3272 IOTRACE(("PGFREE %p %d *\n", pPager, pPg->pgno)); 3273 PAGER_INCR(sqlite3_pager_pgfree_count); 3274 sqlite3_free(pPg->pData); 3275 sqlite3_free(pPg); 3276 pPager->nPage--; 3277 }else{ 3278 /* An error occured whilst writing to the database file or 3279 ** journal in pager_recycle(). The error is not returned to the 3280 ** caller of this function. Instead, set the Pager.errCode variable. 3281 ** The error will be returned to the user (or users, in the case 3282 ** of a shared pager cache) of the pager for which the error occured. 3283 */ 3284 assert( 3285 (rc&0xff)==SQLITE_IOERR || 3286 rc==SQLITE_FULL || 3287 rc==SQLITE_BUSY 3288 ); 3289 assert( pPager->state>=PAGER_RESERVED ); 3290 pager_error(pPager, rc); 3291 } 3292 } 3293 3294 /* Clear the memory management flags and release the mutex 3295 */ 3296 for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){ 3297 pPager->iInUseMM = 0; 3298 } 3299 sqlite3_mutex_leave(mutex); 3300 3301 /* Return the number of bytes released 3302 */ 3303 return nReleased; 3304 } 3305 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 3306 3307 /* 3308 ** Read the content of page pPg out of the database file. 3309 */ 3310 static int readDbPage(Pager *pPager, PgHdr *pPg, Pgno pgno){ 3311 int rc; 3312 i64 offset; 3313 assert( MEMDB==0 ); 3314 assert(pPager->fd->pMethods||pPager->tempFile); 3315 if( !pPager->fd->pMethods ){ 3316 return SQLITE_IOERR_SHORT_READ; 3317 } 3318 offset = (pgno-1)*(i64)pPager->pageSize; 3319 rc = sqlite3OsRead(pPager->fd, PGHDR_TO_DATA(pPg), pPager->pageSize, offset); 3320 PAGER_INCR(sqlite3_pager_readdb_count); 3321 PAGER_INCR(pPager->nRead); 3322 IOTRACE(("PGIN %p %d\n", pPager, pgno)); 3323 if( pgno==1 ){ 3324 memcpy(&pPager->dbFileVers, &((u8*)PGHDR_TO_DATA(pPg))[24], 3325 sizeof(pPager->dbFileVers)); 3326 } 3327 CODEC1(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3); 3328 PAGERTRACE4("FETCH %d page %d hash(%08x)\n", 3329 PAGERID(pPager), pPg->pgno, pager_pagehash(pPg)); 3330 return rc; 3331 } 3332 3333 3334 /* 3335 ** This function is called to obtain the shared lock required before 3336 ** data may be read from the pager cache. If the shared lock has already 3337 ** been obtained, this function is a no-op. 3338 ** 3339 ** Immediately after obtaining the shared lock (if required), this function 3340 ** checks for a hot-journal file. If one is found, an emergency rollback 3341 ** is performed immediately. 3342 */ 3343 static int pagerSharedLock(Pager *pPager){ 3344 int rc = SQLITE_OK; 3345 int isHot = 0; 3346 3347 /* If this database is opened for exclusive access, has no outstanding 3348 ** page references and is in an error-state, now is the chance to clear 3349 ** the error. Discard the contents of the pager-cache and treat any 3350 ** open journal file as a hot-journal. 3351 */ 3352 if( !MEMDB && pPager->exclusiveMode && pPager->nRef==0 && pPager->errCode ){ 3353 if( pPager->journalOpen ){ 3354 isHot = 1; 3355 } 3356 pager_reset(pPager); 3357 pPager->errCode = SQLITE_OK; 3358 } 3359 3360 /* If the pager is still in an error state, do not proceed. The error 3361 ** state will be cleared at some point in the future when all page 3362 ** references are dropped and the cache can be discarded. 3363 */ 3364 if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){ 3365 return pPager->errCode; 3366 } 3367 3368 if( pPager->state==PAGER_UNLOCK || isHot ){ 3369 sqlite3_vfs *pVfs = pPager->pVfs; 3370 if( !MEMDB ){ 3371 assert( pPager->nRef==0 ); 3372 if( !pPager->noReadlock ){ 3373 rc = pager_wait_on_lock(pPager, SHARED_LOCK); 3374 if( rc!=SQLITE_OK ){ 3375 return pager_error(pPager, rc); 3376 } 3377 assert( pPager->state>=SHARED_LOCK ); 3378 } 3379 3380 /* If a journal file exists, and there is no RESERVED lock on the 3381 ** database file, then it either needs to be played back or deleted. 3382 */ 3383 rc = hasHotJournal(pPager); 3384 if( rc<0 ){ 3385 return pager_error(pPager, SQLITE_IOERR_NOMEM); 3386 } 3387 if( rc==1 || isHot ){ 3388 /* Get an EXCLUSIVE lock on the database file. At this point it is 3389 ** important that a RESERVED lock is not obtained on the way to the 3390 ** EXCLUSIVE lock. If it were, another process might open the 3391 ** database file, detect the RESERVED lock, and conclude that the 3392 ** database is safe to read while this process is still rolling it 3393 ** back. 3394 ** 3395 ** Because the intermediate RESERVED lock is not requested, the 3396 ** second process will get to this point in the code and fail to 3397 ** obtain its own EXCLUSIVE lock on the database file. 3398 */ 3399 if( pPager->state<EXCLUSIVE_LOCK ){ 3400 rc = sqlite3OsLock(pPager->fd, EXCLUSIVE_LOCK); 3401 if( rc!=SQLITE_OK ){ 3402 pager_unlock(pPager); 3403 return pager_error(pPager, rc); 3404 } 3405 pPager->state = PAGER_EXCLUSIVE; 3406 } 3407 3408 /* Open the journal for reading only. Return SQLITE_BUSY if 3409 ** we are unable to open the journal file. 3410 ** 3411 ** The journal file does not need to be locked itself. The 3412 ** journal file is never open unless the main database file holds 3413 ** a write lock, so there is never any chance of two or more 3414 ** processes opening the journal at the same time. 3415 ** 3416 ** Open the journal for read/write access. This is because in 3417 ** exclusive-access mode the file descriptor will be kept open and 3418 ** possibly used for a transaction later on. On some systems, the 3419 ** OsTruncate() call used in exclusive-access mode also requires 3420 ** a read/write file handle. 3421 */ 3422 if( !isHot ){ 3423 int res = sqlite3OsAccess(pVfs,pPager->zJournal,SQLITE_ACCESS_EXISTS); 3424 if( res==1 ){ 3425 int fout = 0; 3426 int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL; 3427 assert( !pPager->tempFile ); 3428 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout); 3429 assert( rc!=SQLITE_OK || pPager->jfd->pMethods ); 3430 if( fout&SQLITE_OPEN_READONLY ){ 3431 rc = SQLITE_BUSY; 3432 sqlite3OsClose(pPager->jfd); 3433 } 3434 }else{ 3435 rc = (res==0?SQLITE_BUSY:SQLITE_IOERR_NOMEM); 3436 } 3437 } 3438 if( rc!=SQLITE_OK ){ 3439 pager_unlock(pPager); 3440 switch( rc ){ 3441 case SQLITE_NOMEM: 3442 case SQLITE_IOERR_UNLOCK: 3443 case SQLITE_IOERR_NOMEM: 3444 return rc; 3445 default: 3446 return SQLITE_BUSY; 3447 } 3448 } 3449 pPager->journalOpen = 1; 3450 pPager->journalStarted = 0; 3451 pPager->journalOff = 0; 3452 pPager->setMaster = 0; 3453 pPager->journalHdr = 0; 3454 3455 /* Playback and delete the journal. Drop the database write 3456 ** lock and reacquire the read lock. 3457 */ 3458 rc = pager_playback(pPager, 1); 3459 if( rc!=SQLITE_OK ){ 3460 return pager_error(pPager, rc); 3461 } 3462 assert(pPager->state==PAGER_SHARED || 3463 (pPager->exclusiveMode && pPager->state>PAGER_SHARED) 3464 ); 3465 } 3466 3467 if( pPager->pAll ){ 3468 /* The shared-lock has just been acquired on the database file 3469 ** and there are already pages in the cache (from a previous 3470 ** read or write transaction). Check to see if the database 3471 ** has been modified. If the database has changed, flush the 3472 ** cache. 3473 ** 3474 ** Database changes is detected by looking at 15 bytes beginning 3475 ** at offset 24 into the file. The first 4 of these 16 bytes are 3476 ** a 32-bit counter that is incremented with each change. The 3477 ** other bytes change randomly with each file change when 3478 ** a codec is in use. 3479 ** 3480 ** There is a vanishingly small chance that a change will not be 3481 ** detected. The chance of an undetected change is so small that 3482 ** it can be neglected. 3483 */ 3484 char dbFileVers[sizeof(pPager->dbFileVers)]; 3485 sqlite3PagerPagecount(pPager); 3486 3487 if( pPager->errCode ){ 3488 return pPager->errCode; 3489 } 3490 3491 if( pPager->dbSize>0 ){ 3492 IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers))); 3493 rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24); 3494 if( rc!=SQLITE_OK ){ 3495 return rc; 3496 } 3497 }else{ 3498 memset(dbFileVers, 0, sizeof(dbFileVers)); 3499 } 3500 3501 if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){ 3502 pager_reset(pPager); 3503 } 3504 } 3505 } 3506 assert( pPager->exclusiveMode || pPager->state<=PAGER_SHARED ); 3507 if( pPager->state==PAGER_UNLOCK ){ 3508 pPager->state = PAGER_SHARED; 3509 } 3510 } 3511 3512 return rc; 3513 } 3514 3515 /* 3516 ** Allocate a PgHdr object. Either create a new one or reuse 3517 ** an existing one that is not otherwise in use. 3518 ** 3519 ** A new PgHdr structure is created if any of the following are 3520 ** true: 3521 ** 3522 ** (1) We have not exceeded our maximum allocated cache size 3523 ** as set by the "PRAGMA cache_size" command. 3524 ** 3525 ** (2) There are no unused PgHdr objects available at this time. 3526 ** 3527 ** (3) This is an in-memory database. 3528 ** 3529 ** (4) There are no PgHdr objects that do not require a journal 3530 ** file sync and a sync of the journal file is currently 3531 ** prohibited. 3532 ** 3533 ** Otherwise, reuse an existing PgHdr. In other words, reuse an 3534 ** existing PgHdr if all of the following are true: 3535 ** 3536 ** (1) We have reached or exceeded the maximum cache size 3537 ** allowed by "PRAGMA cache_size". 3538 ** 3539 ** (2) There is a PgHdr available with PgHdr->nRef==0 3540 ** 3541 ** (3) We are not in an in-memory database 3542 ** 3543 ** (4) Either there is an available PgHdr that does not need 3544 ** to be synced to disk or else disk syncing is currently 3545 ** allowed. 3546 */ 3547 static int pagerAllocatePage(Pager *pPager, PgHdr **ppPg){ 3548 int rc = SQLITE_OK; 3549 PgHdr *pPg; 3550 int nByteHdr; 3551 3552 /* Create a new PgHdr if any of the four conditions defined 3553 ** above are met: */ 3554 if( pPager->nPage<pPager->mxPage 3555 || pPager->lru.pFirst==0 3556 || MEMDB 3557 || (pPager->lru.pFirstSynced==0 && pPager->doNotSync) 3558 ){ 3559 void *pData; 3560 if( pPager->nPage>=pPager->nHash ){ 3561 pager_resize_hash_table(pPager, 3562 pPager->nHash<256 ? 256 : pPager->nHash*2); 3563 if( pPager->nHash==0 ){ 3564 rc = SQLITE_NOMEM; 3565 goto pager_allocate_out; 3566 } 3567 } 3568 pagerLeave(pPager); 3569 nByteHdr = sizeof(*pPg) + sizeof(u32) + pPager->nExtra 3570 + MEMDB*sizeof(PgHistory); 3571 pPg = sqlite3_malloc( nByteHdr ); 3572 if( pPg ){ 3573 pData = sqlite3_malloc( pPager->pageSize ); 3574 if( pData==0 ){ 3575 sqlite3_free(pPg); 3576 pPg = 0; 3577 } 3578 } 3579 pagerEnter(pPager); 3580 if( pPg==0 ){ 3581 rc = SQLITE_NOMEM; 3582 goto pager_allocate_out; 3583 } 3584 memset(pPg, 0, nByteHdr); 3585 pPg->pData = pData; 3586 pPg->pPager = pPager; 3587 pPg->pNextAll = pPager->pAll; 3588 pPager->pAll = pPg; 3589 pPager->nPage++; 3590 }else{ 3591 /* Recycle an existing page with a zero ref-count. */ 3592 rc = pager_recycle(pPager, &pPg); 3593 if( rc==SQLITE_BUSY ){ 3594 rc = SQLITE_IOERR_BLOCKED; 3595 } 3596 if( rc!=SQLITE_OK ){ 3597 goto pager_allocate_out; 3598 } 3599 assert( pPager->state>=SHARED_LOCK ); 3600 assert(pPg); 3601 } 3602 *ppPg = pPg; 3603 3604 pager_allocate_out: 3605 return rc; 3606 } 3607 3608 /* 3609 ** Make sure we have the content for a page. If the page was 3610 ** previously acquired with noContent==1, then the content was 3611 ** just initialized to zeros instead of being read from disk. 3612 ** But now we need the real data off of disk. So make sure we 3613 ** have it. Read it in if we do not have it already. 3614 */ 3615 static int pager_get_content(PgHdr *pPg){ 3616 if( pPg->needRead ){ 3617 int rc = readDbPage(pPg->pPager, pPg, pPg->pgno); 3618 if( rc==SQLITE_OK ){ 3619 pPg->needRead = 0; 3620 }else{ 3621 return rc; 3622 } 3623 } 3624 return SQLITE_OK; 3625 } 3626 3627 /* 3628 ** Acquire a page. 3629 ** 3630 ** A read lock on the disk file is obtained when the first page is acquired. 3631 ** This read lock is dropped when the last page is released. 3632 ** 3633 ** This routine works for any page number greater than 0. If the database 3634 ** file is smaller than the requested page, then no actual disk 3635 ** read occurs and the memory image of the page is initialized to 3636 ** all zeros. The extra data appended to a page is always initialized 3637 ** to zeros the first time a page is loaded into memory. 3638 ** 3639 ** The acquisition might fail for several reasons. In all cases, 3640 ** an appropriate error code is returned and *ppPage is set to NULL. 3641 ** 3642 ** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt 3643 ** to find a page in the in-memory cache first. If the page is not already 3644 ** in memory, this routine goes to disk to read it in whereas Lookup() 3645 ** just returns 0. This routine acquires a read-lock the first time it 3646 ** has to go to disk, and could also playback an old journal if necessary. 3647 ** Since Lookup() never goes to disk, it never has to deal with locks 3648 ** or journal files. 3649 ** 3650 ** If noContent is false, the page contents are actually read from disk. 3651 ** If noContent is true, it means that we do not care about the contents 3652 ** of the page at this time, so do not do a disk read. Just fill in the 3653 ** page content with zeros. But mark the fact that we have not read the 3654 ** content by setting the PgHdr.needRead flag. Later on, if 3655 ** sqlite3PagerWrite() is called on this page or if this routine is 3656 ** called again with noContent==0, that means that the content is needed 3657 ** and the disk read should occur at that point. 3658 */ 3659 static int pagerAcquire( 3660 Pager *pPager, /* The pager open on the database file */ 3661 Pgno pgno, /* Page number to fetch */ 3662 DbPage **ppPage, /* Write a pointer to the page here */ 3663 int noContent /* Do not bother reading content from disk if true */ 3664 ){ 3665 PgHdr *pPg; 3666 int rc; 3667 3668 assert( pPager->state==PAGER_UNLOCK || pPager->nRef>0 || pgno==1 ); 3669 3670 /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page 3671 ** number greater than this, or zero, is requested. 3672 */ 3673 if( pgno>PAGER_MAX_PGNO || pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ 3674 return SQLITE_CORRUPT_BKPT; 3675 } 3676 3677 /* Make sure we have not hit any critical errors. 3678 */ 3679 assert( pPager!=0 ); 3680 *ppPage = 0; 3681 3682 /* If this is the first page accessed, then get a SHARED lock 3683 ** on the database file. pagerSharedLock() is a no-op if 3684 ** a database lock is already held. 3685 */ 3686 rc = pagerSharedLock(pPager); 3687 if( rc!=SQLITE_OK ){ 3688 return rc; 3689 } 3690 assert( pPager->state!=PAGER_UNLOCK ); 3691 3692 pPg = pager_lookup(pPager, pgno); 3693 if( pPg==0 ){ 3694 /* The requested page is not in the page cache. */ 3695 int nMax; 3696 int h; 3697 PAGER_INCR(pPager->nMiss); 3698 rc = pagerAllocatePage(pPager, &pPg); 3699 if( rc!=SQLITE_OK ){ 3700 return rc; 3701 } 3702 3703 pPg->pgno = pgno; 3704 assert( !MEMDB || pgno>pPager->stmtSize ); 3705 pPg->inJournal = sqlite3BitvecTest(pPager->pInJournal, pgno); 3706 pPg->needSync = 0; 3707 3708 makeClean(pPg); 3709 pPg->nRef = 1; 3710 3711 pPager->nRef++; 3712 if( pPager->nExtra>0 ){ 3713 memset(PGHDR_TO_EXTRA(pPg, pPager), 0, pPager->nExtra); 3714 } 3715 nMax = sqlite3PagerPagecount(pPager); 3716 if( pPager->errCode ){ 3717 rc = pPager->errCode; 3718 sqlite3PagerUnref(pPg); 3719 return rc; 3720 } 3721 3722 /* Populate the page with data, either by reading from the database 3723 ** file, or by setting the entire page to zero. 3724 */ 3725 if( nMax<(int)pgno || MEMDB || (noContent && !pPager->alwaysRollback) ){ 3726 if( pgno>pPager->mxPgno ){ 3727 sqlite3PagerUnref(pPg); 3728 return SQLITE_FULL; 3729 } 3730 memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize); 3731 pPg->needRead = noContent && !pPager->alwaysRollback; 3732 IOTRACE(("ZERO %p %d\n", pPager, pgno)); 3733 }else{ 3734 rc = readDbPage(pPager, pPg, pgno); 3735 if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){ 3736 pPg->pgno = 0; 3737 sqlite3PagerUnref(pPg); 3738 return rc; 3739 } 3740 pPg->needRead = 0; 3741 } 3742 3743 /* Link the page into the page hash table */ 3744 h = pgno & (pPager->nHash-1); 3745 assert( pgno!=0 ); 3746 pPg->pNextHash = pPager->aHash[h]; 3747 pPager->aHash[h] = pPg; 3748 if( pPg->pNextHash ){ 3749 assert( pPg->pNextHash->pPrevHash==0 ); 3750 pPg->pNextHash->pPrevHash = pPg; 3751 } 3752 3753 #ifdef SQLITE_CHECK_PAGES 3754 pPg->pageHash = pager_pagehash(pPg); 3755 #endif 3756 }else{ 3757 /* The requested page is in the page cache. */ 3758 assert(pPager->nRef>0 || pgno==1); 3759 PAGER_INCR(pPager->nHit); 3760 if( !noContent ){ 3761 rc = pager_get_content(pPg); 3762 if( rc ){ 3763 return rc; 3764 } 3765 } 3766 page_ref(pPg); 3767 } 3768 *ppPage = pPg; 3769 return SQLITE_OK; 3770 } 3771 int sqlite3PagerAcquire( 3772 Pager *pPager, /* The pager open on the database file */ 3773 Pgno pgno, /* Page number to fetch */ 3774 DbPage **ppPage, /* Write a pointer to the page here */ 3775 int noContent /* Do not bother reading content from disk if true */ 3776 ){ 3777 int rc; 3778 pagerEnter(pPager); 3779 rc = pagerAcquire(pPager, pgno, ppPage, noContent); 3780 pagerLeave(pPager); 3781 return rc; 3782 } 3783 3784 3785 /* 3786 ** Acquire a page if it is already in the in-memory cache. Do 3787 ** not read the page from disk. Return a pointer to the page, 3788 ** or 0 if the page is not in cache. 3789 ** 3790 ** See also sqlite3PagerGet(). The difference between this routine 3791 ** and sqlite3PagerGet() is that _get() will go to the disk and read 3792 ** in the page if the page is not already in cache. This routine 3793 ** returns NULL if the page is not in cache or if a disk I/O error 3794 ** has ever happened. 3795 */ 3796 DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ 3797 PgHdr *pPg = 0; 3798 3799 assert( pPager!=0 ); 3800 assert( pgno!=0 ); 3801 3802 pagerEnter(pPager); 3803 if( pPager->state==PAGER_UNLOCK ){ 3804 assert( !pPager->pAll || pPager->exclusiveMode ); 3805 }else if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){ 3806 /* Do nothing */ 3807 }else if( (pPg = pager_lookup(pPager, pgno))!=0 ){ 3808 page_ref(pPg); 3809 } 3810 pagerLeave(pPager); 3811 return pPg; 3812 } 3813 3814 /* 3815 ** Release a page. 3816 ** 3817 ** If the number of references to the page drop to zero, then the 3818 ** page is added to the LRU list. When all references to all pages 3819 ** are released, a rollback occurs and the lock on the database is 3820 ** removed. 3821 */ 3822 int sqlite3PagerUnref(DbPage *pPg){ 3823 Pager *pPager = pPg->pPager; 3824 3825 /* Decrement the reference count for this page 3826 */ 3827 assert( pPg->nRef>0 ); 3828 pagerEnter(pPg->pPager); 3829 pPg->nRef--; 3830 3831 CHECK_PAGE(pPg); 3832 3833 /* When the number of references to a page reach 0, call the 3834 ** destructor and add the page to the freelist. 3835 */ 3836 if( pPg->nRef==0 ){ 3837 3838 lruListAdd(pPg); 3839 if( pPager->xDestructor ){ 3840 pPager->xDestructor(pPg, pPager->pageSize); 3841 } 3842 3843 /* When all pages reach the freelist, drop the read lock from 3844 ** the database file. 3845 */ 3846 pPager->nRef--; 3847 assert( pPager->nRef>=0 ); 3848 if( pPager->nRef==0 && (!pPager->exclusiveMode || pPager->journalOff>0) ){ 3849 pagerUnlockAndRollback(pPager); 3850 } 3851 } 3852 pagerLeave(pPager); 3853 return SQLITE_OK; 3854 } 3855 3856 /* 3857 ** Create a journal file for pPager. There should already be a RESERVED 3858 ** or EXCLUSIVE lock on the database file when this routine is called. 3859 ** 3860 ** Return SQLITE_OK if everything. Return an error code and release the 3861 ** write lock if anything goes wrong. 3862 */ 3863 static int pager_open_journal(Pager *pPager){ 3864 sqlite3_vfs *pVfs = pPager->pVfs; 3865 int flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_CREATE); 3866 3867 int rc; 3868 assert( !MEMDB ); 3869 assert( pPager->state>=PAGER_RESERVED ); 3870 assert( pPager->journalOpen==0 ); 3871 assert( pPager->useJournal ); 3872 assert( pPager->pInJournal==0 ); 3873 sqlite3PagerPagecount(pPager); 3874 pagerLeave(pPager); 3875 pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize); 3876 pagerEnter(pPager); 3877 if( pPager->pInJournal==0 ){ 3878 rc = SQLITE_NOMEM; 3879 goto failed_to_open_journal; 3880 } 3881 3882 if( pPager->tempFile ){ 3883 flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL); 3884 }else{ 3885 flags |= (SQLITE_OPEN_MAIN_JOURNAL); 3886 } 3887 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3888 rc = sqlite3JournalOpen( 3889 pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager) 3890 ); 3891 #else 3892 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0); 3893 #endif 3894 assert( rc!=SQLITE_OK || pPager->jfd->pMethods ); 3895 pPager->journalOff = 0; 3896 pPager->setMaster = 0; 3897 pPager->journalHdr = 0; 3898 if( rc!=SQLITE_OK ){ 3899 if( rc==SQLITE_NOMEM ){ 3900 sqlite3OsDelete(pVfs, pPager->zJournal, 0); 3901 } 3902 goto failed_to_open_journal; 3903 } 3904 pPager->journalOpen = 1; 3905 pPager->journalStarted = 0; 3906 pPager->needSync = 0; 3907 pPager->alwaysRollback = 0; 3908 pPager->nRec = 0; 3909 if( pPager->errCode ){ 3910 rc = pPager->errCode; 3911 goto failed_to_open_journal; 3912 } 3913 pPager->origDbSize = pPager->dbSize; 3914 3915 rc = writeJournalHdr(pPager); 3916 3917 if( pPager->stmtAutoopen && rc==SQLITE_OK ){ 3918 rc = sqlite3PagerStmtBegin(pPager); 3919 } 3920 if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && rc!=SQLITE_IOERR_NOMEM ){ 3921 rc = pager_end_transaction(pPager); 3922 if( rc==SQLITE_OK ){ 3923 rc = SQLITE_FULL; 3924 } 3925 } 3926 return rc; 3927 3928 failed_to_open_journal: 3929 sqlite3BitvecDestroy(pPager->pInJournal); 3930 pPager->pInJournal = 0; 3931 return rc; 3932 } 3933 3934 /* 3935 ** Acquire a write-lock on the database. The lock is removed when 3936 ** the any of the following happen: 3937 ** 3938 ** * sqlite3PagerCommitPhaseTwo() is called. 3939 ** * sqlite3PagerRollback() is called. 3940 ** * sqlite3PagerClose() is called. 3941 ** * sqlite3PagerUnref() is called to on every outstanding page. 3942 ** 3943 ** The first parameter to this routine is a pointer to any open page of the 3944 ** database file. Nothing changes about the page - it is used merely to 3945 ** acquire a pointer to the Pager structure and as proof that there is 3946 ** already a read-lock on the database. 3947 ** 3948 ** The second parameter indicates how much space in bytes to reserve for a 3949 ** master journal file-name at the start of the journal when it is created. 3950 ** 3951 ** A journal file is opened if this is not a temporary file. For temporary 3952 ** files, the opening of the journal file is deferred until there is an 3953 ** actual need to write to the journal. 3954 ** 3955 ** If the database is already reserved for writing, this routine is a no-op. 3956 ** 3957 ** If exFlag is true, go ahead and get an EXCLUSIVE lock on the file 3958 ** immediately instead of waiting until we try to flush the cache. The 3959 ** exFlag is ignored if a transaction is already active. 3960 */ 3961 int sqlite3PagerBegin(DbPage *pPg, int exFlag){ 3962 Pager *pPager = pPg->pPager; 3963 int rc = SQLITE_OK; 3964 pagerEnter(pPager); 3965 assert( pPg->nRef>0 ); 3966 assert( pPager->state!=PAGER_UNLOCK ); 3967 if( pPager->state==PAGER_SHARED ){ 3968 assert( pPager->pInJournal==0 ); 3969 if( MEMDB ){ 3970 pPager->state = PAGER_EXCLUSIVE; 3971 pPager->origDbSize = pPager->dbSize; 3972 }else{ 3973 rc = sqlite3OsLock(pPager->fd, RESERVED_LOCK); 3974 if( rc==SQLITE_OK ){ 3975 pPager->state = PAGER_RESERVED; 3976 if( exFlag ){ 3977 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); 3978 } 3979 } 3980 if( rc!=SQLITE_OK ){ 3981 pagerLeave(pPager); 3982 return rc; 3983 } 3984 pPager->dirtyCache = 0; 3985 PAGERTRACE2("TRANSACTION %d\n", PAGERID(pPager)); 3986 if( pPager->useJournal && !pPager->tempFile ){ 3987 rc = pager_open_journal(pPager); 3988 } 3989 } 3990 }else if( pPager->journalOpen && pPager->journalOff==0 ){ 3991 /* This happens when the pager was in exclusive-access mode last 3992 ** time a (read or write) transaction was successfully concluded 3993 ** by this connection. Instead of deleting the journal file it was 3994 ** kept open and truncated to 0 bytes. 3995 */ 3996 assert( pPager->nRec==0 ); 3997 assert( pPager->origDbSize==0 ); 3998 assert( pPager->pInJournal==0 ); 3999 sqlite3PagerPagecount(pPager); 4000 pagerLeave(pPager); 4001 pPager->pInJournal = sqlite3BitvecCreate( pPager->dbSize ); 4002 pagerEnter(pPager); 4003 if( !pPager->pInJournal ){ 4004 rc = SQLITE_NOMEM; 4005 }else{ 4006 pPager->origDbSize = pPager->dbSize; 4007 rc = writeJournalHdr(pPager); 4008 } 4009 } 4010 assert( !pPager->journalOpen || pPager->journalOff>0 || rc!=SQLITE_OK ); 4011 pagerLeave(pPager); 4012 return rc; 4013 } 4014 4015 /* 4016 ** Make a page dirty. Set its dirty flag and add it to the dirty 4017 ** page list. 4018 */ 4019 static void makeDirty(PgHdr *pPg){ 4020 if( pPg->dirty==0 ){ 4021 Pager *pPager = pPg->pPager; 4022 pPg->dirty = 1; 4023 pPg->pDirty = pPager->pDirty; 4024 if( pPager->pDirty ){ 4025 pPager->pDirty->pPrevDirty = pPg; 4026 } 4027 pPg->pPrevDirty = 0; 4028 pPager->pDirty = pPg; 4029 } 4030 } 4031 4032 /* 4033 ** Make a page clean. Clear its dirty bit and remove it from the 4034 ** dirty page list. 4035 */ 4036 static void makeClean(PgHdr *pPg){ 4037 if( pPg->dirty ){ 4038 pPg->dirty = 0; 4039 if( pPg->pDirty ){ 4040 assert( pPg->pDirty->pPrevDirty==pPg ); 4041 pPg->pDirty->pPrevDirty = pPg->pPrevDirty; 4042 } 4043 if( pPg->pPrevDirty ){ 4044 assert( pPg->pPrevDirty->pDirty==pPg ); 4045 pPg->pPrevDirty->pDirty = pPg->pDirty; 4046 }else{ 4047 assert( pPg->pPager->pDirty==pPg ); 4048 pPg->pPager->pDirty = pPg->pDirty; 4049 } 4050 } 4051 } 4052 4053 4054 /* 4055 ** Mark a data page as writeable. The page is written into the journal 4056 ** if it is not there already. This routine must be called before making 4057 ** changes to a page. 4058 ** 4059 ** The first time this routine is called, the pager creates a new 4060 ** journal and acquires a RESERVED lock on the database. If the RESERVED 4061 ** lock could not be acquired, this routine returns SQLITE_BUSY. The 4062 ** calling routine must check for that return value and be careful not to 4063 ** change any page data until this routine returns SQLITE_OK. 4064 ** 4065 ** If the journal file could not be written because the disk is full, 4066 ** then this routine returns SQLITE_FULL and does an immediate rollback. 4067 ** All subsequent write attempts also return SQLITE_FULL until there 4068 ** is a call to sqlite3PagerCommit() or sqlite3PagerRollback() to 4069 ** reset. 4070 */ 4071 static int pager_write(PgHdr *pPg){ 4072 void *pData = PGHDR_TO_DATA(pPg); 4073 Pager *pPager = pPg->pPager; 4074 int rc = SQLITE_OK; 4075 4076 /* Check for errors 4077 */ 4078 if( pPager->errCode ){ 4079 return pPager->errCode; 4080 } 4081 if( pPager->readOnly ){ 4082 return SQLITE_PERM; 4083 } 4084 4085 assert( !pPager->setMaster ); 4086 4087 CHECK_PAGE(pPg); 4088 4089 /* If this page was previously acquired with noContent==1, that means 4090 ** we didn't really read in the content of the page. This can happen 4091 ** (for example) when the page is being moved to the freelist. But 4092 ** now we are (perhaps) moving the page off of the freelist for 4093 ** reuse and we need to know its original content so that content 4094 ** can be stored in the rollback journal. So do the read at this 4095 ** time. 4096 */ 4097 rc = pager_get_content(pPg); 4098 if( rc ){ 4099 return rc; 4100 } 4101 4102 /* Mark the page as dirty. If the page has already been written 4103 ** to the journal then we can return right away. 4104 */ 4105 makeDirty(pPg); 4106 if( pPg->inJournal && (pageInStatement(pPg) || pPager->stmtInUse==0) ){ 4107 pPager->dirtyCache = 1; 4108 }else{ 4109 4110 /* If we get this far, it means that the page needs to be 4111 ** written to the transaction journal or the ckeckpoint journal 4112 ** or both. 4113 ** 4114 ** First check to see that the transaction journal exists and 4115 ** create it if it does not. 4116 */ 4117 assert( pPager->state!=PAGER_UNLOCK ); 4118 rc = sqlite3PagerBegin(pPg, 0); 4119 if( rc!=SQLITE_OK ){ 4120 return rc; 4121 } 4122 assert( pPager->state>=PAGER_RESERVED ); 4123 if( !pPager->journalOpen && pPager->useJournal ){ 4124 rc = pager_open_journal(pPager); 4125 if( rc!=SQLITE_OK ) return rc; 4126 } 4127 assert( pPager->journalOpen || !pPager->useJournal ); 4128 pPager->dirtyCache = 1; 4129 4130 /* The transaction journal now exists and we have a RESERVED or an 4131 ** EXCLUSIVE lock on the main database file. Write the current page to 4132 ** the transaction journal if it is not there already. 4133 */ 4134 if( !pPg->inJournal && (pPager->useJournal || MEMDB) ){ 4135 if( (int)pPg->pgno <= pPager->origDbSize ){ 4136 if( MEMDB ){ 4137 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); 4138 PAGERTRACE3("JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); 4139 assert( pHist->pOrig==0 ); 4140 pHist->pOrig = sqlite3_malloc( pPager->pageSize ); 4141 if( !pHist->pOrig ){ 4142 return SQLITE_NOMEM; 4143 } 4144 memcpy(pHist->pOrig, PGHDR_TO_DATA(pPg), pPager->pageSize); 4145 }else{ 4146 u32 cksum; 4147 char *pData2; 4148 4149 /* We should never write to the journal file the page that 4150 ** contains the database locks. The following assert verifies 4151 ** that we do not. */ 4152 assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) ); 4153 pData2 = CODEC2(pPager, pData, pPg->pgno, 7); 4154 cksum = pager_cksum(pPager, (u8*)pData2); 4155 rc = write32bits(pPager->jfd, pPager->journalOff, pPg->pgno); 4156 if( rc==SQLITE_OK ){ 4157 rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, 4158 pPager->journalOff + 4); 4159 pPager->journalOff += pPager->pageSize+4; 4160 } 4161 if( rc==SQLITE_OK ){ 4162 rc = write32bits(pPager->jfd, pPager->journalOff, cksum); 4163 pPager->journalOff += 4; 4164 } 4165 IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, 4166 pPager->journalOff, pPager->pageSize)); 4167 PAGER_INCR(sqlite3_pager_writej_count); 4168 PAGERTRACE5("JOURNAL %d page %d needSync=%d hash(%08x)\n", 4169 PAGERID(pPager), pPg->pgno, pPg->needSync, pager_pagehash(pPg)); 4170 4171 /* An error has occured writing to the journal file. The 4172 ** transaction will be rolled back by the layer above. 4173 */ 4174 if( rc!=SQLITE_OK ){ 4175 return rc; 4176 } 4177 4178 pPager->nRec++; 4179 assert( pPager->pInJournal!=0 ); 4180 sqlite3BitvecSet(pPager->pInJournal, pPg->pgno); 4181 pPg->needSync = !pPager->noSync; 4182 if( pPager->stmtInUse ){ 4183 sqlite3BitvecSet(pPager->pInStmt, pPg->pgno); 4184 } 4185 } 4186 }else{ 4187 pPg->needSync = !pPager->journalStarted && !pPager->noSync; 4188 PAGERTRACE4("APPEND %d page %d needSync=%d\n", 4189 PAGERID(pPager), pPg->pgno, pPg->needSync); 4190 } 4191 if( pPg->needSync ){ 4192 pPager->needSync = 1; 4193 } 4194 pPg->inJournal = 1; 4195 } 4196 4197 /* If the statement journal is open and the page is not in it, 4198 ** then write the current page to the statement journal. Note that 4199 ** the statement journal format differs from the standard journal format 4200 ** in that it omits the checksums and the header. 4201 */ 4202 if( pPager->stmtInUse 4203 && !pageInStatement(pPg) 4204 && (int)pPg->pgno<=pPager->stmtSize 4205 ){ 4206 assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize ); 4207 if( MEMDB ){ 4208 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); 4209 assert( pHist->pStmt==0 ); 4210 pHist->pStmt = sqlite3_malloc( pPager->pageSize ); 4211 if( pHist->pStmt ){ 4212 memcpy(pHist->pStmt, PGHDR_TO_DATA(pPg), pPager->pageSize); 4213 } 4214 PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); 4215 page_add_to_stmt_list(pPg); 4216 }else{ 4217 i64 offset = pPager->stmtNRec*(4+pPager->pageSize); 4218 char *pData2 = CODEC2(pPager, pData, pPg->pgno, 7); 4219 rc = write32bits(pPager->stfd, offset, pPg->pgno); 4220 if( rc==SQLITE_OK ){ 4221 rc = sqlite3OsWrite(pPager->stfd, pData2, pPager->pageSize, offset+4); 4222 } 4223 PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); 4224 if( rc!=SQLITE_OK ){ 4225 return rc; 4226 } 4227 pPager->stmtNRec++; 4228 assert( pPager->pInStmt!=0 ); 4229 sqlite3BitvecSet(pPager->pInStmt, pPg->pgno); 4230 } 4231 } 4232 } 4233 4234 /* Update the database size and return. 4235 */ 4236 assert( pPager->state>=PAGER_SHARED ); 4237 if( pPager->dbSize<(int)pPg->pgno ){ 4238 pPager->dbSize = pPg->pgno; 4239 if( !MEMDB && pPager->dbSize==PENDING_BYTE/pPager->pageSize ){ 4240 pPager->dbSize++; 4241 } 4242 } 4243 return rc; 4244 } 4245 4246 /* 4247 ** This function is used to mark a data-page as writable. It uses 4248 ** pager_write() to open a journal file (if it is not already open) 4249 ** and write the page *pData to the journal. 4250 ** 4251 ** The difference between this function and pager_write() is that this 4252 ** function also deals with the special case where 2 or more pages 4253 ** fit on a single disk sector. In this case all co-resident pages 4254 ** must have been written to the journal file before returning. 4255 */ 4256 int sqlite3PagerWrite(DbPage *pDbPage){ 4257 int rc = SQLITE_OK; 4258 4259 PgHdr *pPg = pDbPage; 4260 Pager *pPager = pPg->pPager; 4261 Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize); 4262 4263 pagerEnter(pPager); 4264 if( !MEMDB && nPagePerSector>1 ){ 4265 Pgno nPageCount; /* Total number of pages in database file */ 4266 Pgno pg1; /* First page of the sector pPg is located on. */ 4267 int nPage; /* Number of pages starting at pg1 to journal */ 4268 int ii; 4269 int needSync = 0; 4270 4271 /* Set the doNotSync flag to 1. This is because we cannot allow a journal 4272 ** header to be written between the pages journaled by this function. 4273 */ 4274 assert( pPager->doNotSync==0 ); 4275 pPager->doNotSync = 1; 4276 4277 /* This trick assumes that both the page-size and sector-size are 4278 ** an integer power of 2. It sets variable pg1 to the identifier 4279 ** of the first page of the sector pPg is located on. 4280 */ 4281 pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1; 4282 4283 nPageCount = sqlite3PagerPagecount(pPager); 4284 if( pPg->pgno>nPageCount ){ 4285 nPage = (pPg->pgno - pg1)+1; 4286 }else if( (pg1+nPagePerSector-1)>nPageCount ){ 4287 nPage = nPageCount+1-pg1; 4288 }else{ 4289 nPage = nPagePerSector; 4290 } 4291 assert(nPage>0); 4292 assert(pg1<=pPg->pgno); 4293 assert((pg1+nPage)>pPg->pgno); 4294 4295 for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){ 4296 Pgno pg = pg1+ii; 4297 PgHdr *pPage; 4298 if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){ 4299 if( pg!=PAGER_MJ_PGNO(pPager) ){ 4300 rc = sqlite3PagerGet(pPager, pg, &pPage); 4301 if( rc==SQLITE_OK ){ 4302 rc = pager_write(pPage); 4303 if( pPage->needSync ){ 4304 needSync = 1; 4305 } 4306 sqlite3PagerUnref(pPage); 4307 } 4308 } 4309 }else if( (pPage = pager_lookup(pPager, pg))!=0 ){ 4310 if( pPage->needSync ){ 4311 needSync = 1; 4312 } 4313 } 4314 } 4315 4316 /* If the PgHdr.needSync flag is set for any of the nPage pages 4317 ** starting at pg1, then it needs to be set for all of them. Because 4318 ** writing to any of these nPage pages may damage the others, the 4319 ** journal file must contain sync()ed copies of all of them 4320 ** before any of them can be written out to the database file. 4321 */ 4322 if( needSync ){ 4323 for(ii=0; ii<nPage && needSync; ii++){ 4324 PgHdr *pPage = pager_lookup(pPager, pg1+ii); 4325 if( pPage ) pPage->needSync = 1; 4326 } 4327 assert(pPager->needSync); 4328 } 4329 4330 assert( pPager->doNotSync==1 ); 4331 pPager->doNotSync = 0; 4332 }else{ 4333 rc = pager_write(pDbPage); 4334 } 4335 pagerLeave(pPager); 4336 return rc; 4337 } 4338 4339 /* 4340 ** Return TRUE if the page given in the argument was previously passed 4341 ** to sqlite3PagerWrite(). In other words, return TRUE if it is ok 4342 ** to change the content of the page. 4343 */ 4344 #ifndef NDEBUG 4345 int sqlite3PagerIswriteable(DbPage *pPg){ 4346 return pPg->dirty; 4347 } 4348 #endif 4349 4350 #ifndef SQLITE_OMIT_VACUUM 4351 /* 4352 ** Replace the content of a single page with the information in the third 4353 ** argument. 4354 */ 4355 int sqlite3PagerOverwrite(Pager *pPager, Pgno pgno, void *pData){ 4356 PgHdr *pPg; 4357 int rc; 4358 4359 pagerEnter(pPager); 4360 rc = sqlite3PagerGet(pPager, pgno, &pPg); 4361 if( rc==SQLITE_OK ){ 4362 rc = sqlite3PagerWrite(pPg); 4363 if( rc==SQLITE_OK ){ 4364 memcpy(sqlite3PagerGetData(pPg), pData, pPager->pageSize); 4365 } 4366 sqlite3PagerUnref(pPg); 4367 } 4368 pagerLeave(pPager); 4369 return rc; 4370 } 4371 #endif 4372 4373 /* 4374 ** A call to this routine tells the pager that it is not necessary to 4375 ** write the information on page pPg back to the disk, even though 4376 ** that page might be marked as dirty. 4377 ** 4378 ** The overlying software layer calls this routine when all of the data 4379 ** on the given page is unused. The pager marks the page as clean so 4380 ** that it does not get written to disk. 4381 ** 4382 ** Tests show that this optimization, together with the 4383 ** sqlite3PagerDontRollback() below, more than double the speed 4384 ** of large INSERT operations and quadruple the speed of large DELETEs. 4385 ** 4386 ** When this routine is called, set the alwaysRollback flag to true. 4387 ** Subsequent calls to sqlite3PagerDontRollback() for the same page 4388 ** will thereafter be ignored. This is necessary to avoid a problem 4389 ** where a page with data is added to the freelist during one part of 4390 ** a transaction then removed from the freelist during a later part 4391 ** of the same transaction and reused for some other purpose. When it 4392 ** is first added to the freelist, this routine is called. When reused, 4393 ** the sqlite3PagerDontRollback() routine is called. But because the 4394 ** page contains critical data, we still need to be sure it gets 4395 ** rolled back in spite of the sqlite3PagerDontRollback() call. 4396 */ 4397 void sqlite3PagerDontWrite(DbPage *pDbPage){ 4398 PgHdr *pPg = pDbPage; 4399 Pager *pPager = pPg->pPager; 4400 4401 if( MEMDB ) return; 4402 pagerEnter(pPager); 4403 pPg->alwaysRollback = 1; 4404 if( pPg->dirty && !pPager->stmtInUse ){ 4405 assert( pPager->state>=PAGER_SHARED ); 4406 if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){ 4407 /* If this pages is the last page in the file and the file has grown 4408 ** during the current transaction, then do NOT mark the page as clean. 4409 ** When the database file grows, we must make sure that the last page 4410 ** gets written at least once so that the disk file will be the correct 4411 ** size. If you do not write this page and the size of the file 4412 ** on the disk ends up being too small, that can lead to database 4413 ** corruption during the next transaction. 4414 */ 4415 }else{ 4416 PAGERTRACE3("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager)); 4417 IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) 4418 makeClean(pPg); 4419 #ifdef SQLITE_CHECK_PAGES 4420 pPg->pageHash = pager_pagehash(pPg); 4421 #endif 4422 } 4423 } 4424 pagerLeave(pPager); 4425 } 4426 4427 /* 4428 ** A call to this routine tells the pager that if a rollback occurs, 4429 ** it is not necessary to restore the data on the given page. This 4430 ** means that the pager does not have to record the given page in the 4431 ** rollback journal. 4432 ** 4433 ** If we have not yet actually read the content of this page (if 4434 ** the PgHdr.needRead flag is set) then this routine acts as a promise 4435 ** that we will never need to read the page content in the future. 4436 ** so the needRead flag can be cleared at this point. 4437 ** 4438 ** This routine is only called from a single place in the sqlite btree 4439 ** code (when a leaf is removed from the free-list). This allows the 4440 ** following assumptions to be made about pPg: 4441 ** 4442 ** 1. PagerDontWrite() has been called on the page, OR 4443 ** PagerWrite() has not yet been called on the page. 4444 ** 4445 ** 2. The page existed when the transaction was started. 4446 ** 4447 ** Details: DontRollback() (this routine) is only called when a leaf is 4448 ** removed from the free list. DontWrite() is called whenever a page 4449 ** becomes a free-list leaf. 4450 */ 4451 void sqlite3PagerDontRollback(DbPage *pPg){ 4452 Pager *pPager = pPg->pPager; 4453 4454 pagerEnter(pPager); 4455 assert( pPager->state>=PAGER_RESERVED ); 4456 4457 /* If the journal file is not open, or DontWrite() has been called on 4458 ** this page (DontWrite() sets the alwaysRollback flag), then this 4459 ** function is a no-op. 4460 */ 4461 if( pPager->journalOpen==0 || pPg->alwaysRollback || pPager->alwaysRollback ){ 4462 pagerLeave(pPager); 4463 return; 4464 } 4465 assert( !MEMDB ); /* For a memdb, pPager->journalOpen is always 0 */ 4466 4467 /* Check that PagerWrite() has not yet been called on this page, and 4468 ** that the page existed when the transaction started. 4469 */ 4470 assert( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ); 4471 4472 assert( pPager->pInJournal!=0 ); 4473 sqlite3BitvecSet(pPager->pInJournal, pPg->pgno); 4474 pPg->inJournal = 1; 4475 pPg->needRead = 0; 4476 if( pPager->stmtInUse ){ 4477 assert( pPager->stmtSize <= pPager->origDbSize ); 4478 sqlite3BitvecSet(pPager->pInStmt, pPg->pgno); 4479 } 4480 PAGERTRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, PAGERID(pPager)); 4481 IOTRACE(("GARBAGE %p %d\n", pPager, pPg->pgno)) 4482 pagerLeave(pPager); 4483 } 4484 4485 4486 /* 4487 ** This routine is called to increment the database file change-counter, 4488 ** stored at byte 24 of the pager file. 4489 */ 4490 static int pager_incr_changecounter(Pager *pPager, int isDirect){ 4491 PgHdr *pPgHdr; 4492 u32 change_counter; 4493 int rc = SQLITE_OK; 4494 4495 if( !pPager->changeCountDone ){ 4496 /* Open page 1 of the file for writing. */ 4497 rc = sqlite3PagerGet(pPager, 1, &pPgHdr); 4498 if( rc!=SQLITE_OK ) return rc; 4499 4500 if( !isDirect ){ 4501 rc = sqlite3PagerWrite(pPgHdr); 4502 if( rc!=SQLITE_OK ){ 4503 sqlite3PagerUnref(pPgHdr); 4504 return rc; 4505 } 4506 } 4507 4508 /* Increment the value just read and write it back to byte 24. */ 4509 change_counter = sqlite3Get4byte((u8*)pPager->dbFileVers); 4510 change_counter++; 4511 put32bits(((char*)PGHDR_TO_DATA(pPgHdr))+24, change_counter); 4512 4513 if( isDirect && pPager->fd->pMethods ){ 4514 const void *zBuf = PGHDR_TO_DATA(pPgHdr); 4515 rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0); 4516 } 4517 4518 /* Release the page reference. */ 4519 sqlite3PagerUnref(pPgHdr); 4520 pPager->changeCountDone = 1; 4521 } 4522 return rc; 4523 } 4524 4525 /* 4526 ** Sync the pager file to disk. 4527 */ 4528 int sqlite3PagerSync(Pager *pPager){ 4529 int rc; 4530 pagerEnter(pPager); 4531 rc = sqlite3OsSync(pPager->fd, pPager->sync_flags); 4532 pagerLeave(pPager); 4533 return rc; 4534 } 4535 4536 /* 4537 ** Sync the database file for the pager pPager. zMaster points to the name 4538 ** of a master journal file that should be written into the individual 4539 ** journal file. zMaster may be NULL, which is interpreted as no master 4540 ** journal (a single database transaction). 4541 ** 4542 ** This routine ensures that the journal is synced, all dirty pages written 4543 ** to the database file and the database file synced. The only thing that 4544 ** remains to commit the transaction is to delete the journal file (or 4545 ** master journal file if specified). 4546 ** 4547 ** Note that if zMaster==NULL, this does not overwrite a previous value 4548 ** passed to an sqlite3PagerCommitPhaseOne() call. 4549 ** 4550 ** If parameter nTrunc is non-zero, then the pager file is truncated to 4551 ** nTrunc pages (this is used by auto-vacuum databases). 4552 ** 4553 ** If the final parameter - noSync - is true, then the database file itself 4554 ** is not synced. The caller must call sqlite3PagerSync() directly to 4555 ** sync the database file before calling CommitPhaseTwo() to delete the 4556 ** journal file in this case. 4557 */ 4558 int sqlite3PagerCommitPhaseOne( 4559 Pager *pPager, 4560 const char *zMaster, 4561 Pgno nTrunc, 4562 int noSync 4563 ){ 4564 int rc = SQLITE_OK; 4565 4566 PAGERTRACE4("DATABASE SYNC: File=%s zMaster=%s nTrunc=%d\n", 4567 pPager->zFilename, zMaster, nTrunc); 4568 pagerEnter(pPager); 4569 4570 /* If this is an in-memory db, or no pages have been written to, or this 4571 ** function has already been called, it is a no-op. 4572 */ 4573 if( pPager->state!=PAGER_SYNCED && !MEMDB && pPager->dirtyCache ){ 4574 PgHdr *pPg; 4575 4576 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 4577 /* The atomic-write optimization can be used if all of the 4578 ** following are true: 4579 ** 4580 ** + The file-system supports the atomic-write property for 4581 ** blocks of size page-size, and 4582 ** + This commit is not part of a multi-file transaction, and 4583 ** + Exactly one page has been modified and store in the journal file. 4584 ** 4585 ** If the optimization can be used, then the journal file will never 4586 ** be created for this transaction. 4587 */ 4588 int useAtomicWrite = ( 4589 !zMaster && 4590 pPager->journalOff==jrnlBufferSize(pPager) && 4591 nTrunc==0 && 4592 (0==pPager->pDirty || 0==pPager->pDirty->pDirty) 4593 ); 4594 if( useAtomicWrite ){ 4595 /* Update the nRec field in the journal file. */ 4596 int offset = pPager->journalHdr + sizeof(aJournalMagic); 4597 assert(pPager->nRec==1); 4598 rc = write32bits(pPager->jfd, offset, pPager->nRec); 4599 4600 /* Update the db file change counter. The following call will modify 4601 ** the in-memory representation of page 1 to include the updated 4602 ** change counter and then write page 1 directly to the database 4603 ** file. Because of the atomic-write property of the host file-system, 4604 ** this is safe. 4605 */ 4606 if( rc==SQLITE_OK ){ 4607 rc = pager_incr_changecounter(pPager, 1); 4608 } 4609 }else{ 4610 rc = sqlite3JournalCreate(pPager->jfd); 4611 } 4612 4613 if( !useAtomicWrite && rc==SQLITE_OK ) 4614 #endif 4615 4616 /* If a master journal file name has already been written to the 4617 ** journal file, then no sync is required. This happens when it is 4618 ** written, then the process fails to upgrade from a RESERVED to an 4619 ** EXCLUSIVE lock. The next time the process tries to commit the 4620 ** transaction the m-j name will have already been written. 4621 */ 4622 if( !pPager->setMaster ){ 4623 assert( pPager->journalOpen ); 4624 rc = pager_incr_changecounter(pPager, 0); 4625 if( rc!=SQLITE_OK ) goto sync_exit; 4626 #ifndef SQLITE_OMIT_AUTOVACUUM 4627 if( nTrunc!=0 ){ 4628 /* If this transaction has made the database smaller, then all pages 4629 ** being discarded by the truncation must be written to the journal 4630 ** file. 4631 */ 4632 Pgno i; 4633 int iSkip = PAGER_MJ_PGNO(pPager); 4634 for( i=nTrunc+1; i<=pPager->origDbSize; i++ ){ 4635 if( !sqlite3BitvecTest(pPager->pInJournal, i) && i!=iSkip ){ 4636 rc = sqlite3PagerGet(pPager, i, &pPg); 4637 if( rc!=SQLITE_OK ) goto sync_exit; 4638 rc = sqlite3PagerWrite(pPg); 4639 sqlite3PagerUnref(pPg); 4640 if( rc!=SQLITE_OK ) goto sync_exit; 4641 } 4642 } 4643 } 4644 #endif 4645 rc = writeMasterJournal(pPager, zMaster); 4646 if( rc!=SQLITE_OK ) goto sync_exit; 4647 rc = syncJournal(pPager); 4648 } 4649 if( rc!=SQLITE_OK ) goto sync_exit; 4650 4651 #ifndef SQLITE_OMIT_AUTOVACUUM 4652 if( nTrunc!=0 ){ 4653 rc = sqlite3PagerTruncate(pPager, nTrunc); 4654 if( rc!=SQLITE_OK ) goto sync_exit; 4655 } 4656 #endif 4657 4658 /* Write all dirty pages to the database file */ 4659 pPg = pager_get_all_dirty_pages(pPager); 4660 rc = pager_write_pagelist(pPg); 4661 if( rc!=SQLITE_OK ){ 4662 assert( rc!=SQLITE_IOERR_BLOCKED ); 4663 /* The error might have left the dirty list all fouled up here, 4664 ** but that does not matter because if the if the dirty list did 4665 ** get corrupted, then the transaction will roll back and 4666 ** discard the dirty list. There is an assert in 4667 ** pager_get_all_dirty_pages() that verifies that no attempt 4668 ** is made to use an invalid dirty list. 4669 */ 4670 goto sync_exit; 4671 } 4672 pPager->pDirty = 0; 4673 4674 /* Sync the database file. */ 4675 if( !pPager->noSync && !noSync ){ 4676 rc = sqlite3OsSync(pPager->fd, pPager->sync_flags); 4677 } 4678 IOTRACE(("DBSYNC %p\n", pPager)) 4679 4680 pPager->state = PAGER_SYNCED; 4681 }else if( MEMDB && nTrunc!=0 ){ 4682 rc = sqlite3PagerTruncate(pPager, nTrunc); 4683 } 4684 4685 sync_exit: 4686 if( rc==SQLITE_IOERR_BLOCKED ){ 4687 /* pager_incr_changecounter() may attempt to obtain an exclusive 4688 * lock to spill the cache and return IOERR_BLOCKED. But since 4689 * there is no chance the cache is inconsistent, it is 4690 * better to return SQLITE_BUSY. 4691 */ 4692 rc = SQLITE_BUSY; 4693 } 4694 pagerLeave(pPager); 4695 return rc; 4696 } 4697 4698 4699 /* 4700 ** Commit all changes to the database and release the write lock. 4701 ** 4702 ** If the commit fails for any reason, a rollback attempt is made 4703 ** and an error code is returned. If the commit worked, SQLITE_OK 4704 ** is returned. 4705 */ 4706 int sqlite3PagerCommitPhaseTwo(Pager *pPager){ 4707 int rc; 4708 PgHdr *pPg; 4709 4710 if( pPager->errCode ){ 4711 return pPager->errCode; 4712 } 4713 if( pPager->state<PAGER_RESERVED ){ 4714 return SQLITE_ERROR; 4715 } 4716 pagerEnter(pPager); 4717 PAGERTRACE2("COMMIT %d\n", PAGERID(pPager)); 4718 if( MEMDB ){ 4719 pPg = pager_get_all_dirty_pages(pPager); 4720 while( pPg ){ 4721 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); 4722 clearHistory(pHist); 4723 pPg->dirty = 0; 4724 pPg->inJournal = 0; 4725 pHist->inStmt = 0; 4726 pPg->needSync = 0; 4727 pHist->pPrevStmt = pHist->pNextStmt = 0; 4728 pPg = pPg->pDirty; 4729 } 4730 pPager->pDirty = 0; 4731 #ifndef NDEBUG 4732 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ 4733 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); 4734 assert( !pPg->alwaysRollback ); 4735 assert( !pHist->pOrig ); 4736 assert( !pHist->pStmt ); 4737 } 4738 #endif 4739 pPager->pStmt = 0; 4740 pPager->state = PAGER_SHARED; 4741 pagerLeave(pPager); 4742 return SQLITE_OK; 4743 } 4744 assert( pPager->journalOpen || !pPager->dirtyCache ); 4745 assert( pPager->state==PAGER_SYNCED || !pPager->dirtyCache ); 4746 rc = pager_end_transaction(pPager); 4747 rc = pager_error(pPager, rc); 4748 pagerLeave(pPager); 4749 return rc; 4750 } 4751 4752 /* 4753 ** Rollback all changes. The database falls back to PAGER_SHARED mode. 4754 ** All in-memory cache pages revert to their original data contents. 4755 ** The journal is deleted. 4756 ** 4757 ** This routine cannot fail unless some other process is not following 4758 ** the correct locking protocol or unless some other 4759 ** process is writing trash into the journal file (SQLITE_CORRUPT) or 4760 ** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error 4761 ** codes are returned for all these occasions. Otherwise, 4762 ** SQLITE_OK is returned. 4763 */ 4764 int sqlite3PagerRollback(Pager *pPager){ 4765 int rc; 4766 PAGERTRACE2("ROLLBACK %d\n", PAGERID(pPager)); 4767 if( MEMDB ){ 4768 PgHdr *p; 4769 for(p=pPager->pAll; p; p=p->pNextAll){ 4770 PgHistory *pHist; 4771 assert( !p->alwaysRollback ); 4772 if( !p->dirty ){ 4773 assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pOrig ); 4774 assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pStmt ); 4775 continue; 4776 } 4777 4778 pHist = PGHDR_TO_HIST(p, pPager); 4779 if( pHist->pOrig ){ 4780 memcpy(PGHDR_TO_DATA(p), pHist->pOrig, pPager->pageSize); 4781 PAGERTRACE3("ROLLBACK-PAGE %d of %d\n", p->pgno, PAGERID(pPager)); 4782 }else{ 4783 PAGERTRACE3("PAGE %d is clean on %d\n", p->pgno, PAGERID(pPager)); 4784 } 4785 clearHistory(pHist); 4786 p->dirty = 0; 4787 p->inJournal = 0; 4788 pHist->inStmt = 0; 4789 pHist->pPrevStmt = pHist->pNextStmt = 0; 4790 if( pPager->xReiniter ){ 4791 pPager->xReiniter(p, pPager->pageSize); 4792 } 4793 } 4794 pPager->pDirty = 0; 4795 pPager->pStmt = 0; 4796 pPager->dbSize = pPager->origDbSize; 4797 pager_truncate_cache(pPager); 4798 pPager->stmtInUse = 0; 4799 pPager->state = PAGER_SHARED; 4800 return SQLITE_OK; 4801 } 4802 4803 pagerEnter(pPager); 4804 if( !pPager->dirtyCache || !pPager->journalOpen ){ 4805 rc = pager_end_transaction(pPager); 4806 pagerLeave(pPager); 4807 return rc; 4808 } 4809 4810 if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){ 4811 if( pPager->state>=PAGER_EXCLUSIVE ){ 4812 pager_playback(pPager, 0); 4813 } 4814 pagerLeave(pPager); 4815 return pPager->errCode; 4816 } 4817 if( pPager->state==PAGER_RESERVED ){ 4818 int rc2; 4819 rc = pager_playback(pPager, 0); 4820 rc2 = pager_end_transaction(pPager); 4821 if( rc==SQLITE_OK ){ 4822 rc = rc2; 4823 } 4824 }else{ 4825 rc = pager_playback(pPager, 0); 4826 } 4827 /* pager_reset(pPager); */ 4828 pPager->dbSize = -1; 4829 4830 /* If an error occurs during a ROLLBACK, we can no longer trust the pager 4831 ** cache. So call pager_error() on the way out to make any error 4832 ** persistent. 4833 */ 4834 rc = pager_error(pPager, rc); 4835 pagerLeave(pPager); 4836 return rc; 4837 } 4838 4839 /* 4840 ** Return TRUE if the database file is opened read-only. Return FALSE 4841 ** if the database is (in theory) writable. 4842 */ 4843 int sqlite3PagerIsreadonly(Pager *pPager){ 4844 return pPager->readOnly; 4845 } 4846 4847 /* 4848 ** Return the number of references to the pager. 4849 */ 4850 int sqlite3PagerRefcount(Pager *pPager){ 4851 return pPager->nRef; 4852 } 4853 4854 #ifdef SQLITE_TEST 4855 /* 4856 ** This routine is used for testing and analysis only. 4857 */ 4858 int *sqlite3PagerStats(Pager *pPager){ 4859 static int a[11]; 4860 a[0] = pPager->nRef; 4861 a[1] = pPager->nPage; 4862 a[2] = pPager->mxPage; 4863 a[3] = pPager->dbSize; 4864 a[4] = pPager->state; 4865 a[5] = pPager->errCode; 4866 a[6] = pPager->nHit; 4867 a[7] = pPager->nMiss; 4868 a[8] = 0; /* Used to be pPager->nOvfl */ 4869 a[9] = pPager->nRead; 4870 a[10] = pPager->nWrite; 4871 return a; 4872 } 4873 #endif 4874 4875 /* 4876 ** Set the statement rollback point. 4877 ** 4878 ** This routine should be called with the transaction journal already 4879 ** open. A new statement journal is created that can be used to rollback 4880 ** changes of a single SQL command within a larger transaction. 4881 */ 4882 static int pagerStmtBegin(Pager *pPager){ 4883 int rc; 4884 assert( !pPager->stmtInUse ); 4885 assert( pPager->state>=PAGER_SHARED ); 4886 assert( pPager->dbSize>=0 ); 4887 PAGERTRACE2("STMT-BEGIN %d\n", PAGERID(pPager)); 4888 if( MEMDB ){ 4889 pPager->stmtInUse = 1; 4890 pPager->stmtSize = pPager->dbSize; 4891 return SQLITE_OK; 4892 } 4893 if( !pPager->journalOpen ){ 4894 pPager->stmtAutoopen = 1; 4895 return SQLITE_OK; 4896 } 4897 assert( pPager->journalOpen ); 4898 pagerLeave(pPager); 4899 assert( pPager->pInStmt==0 ); 4900 pPager->pInStmt = sqlite3BitvecCreate(pPager->dbSize); 4901 pagerEnter(pPager); 4902 if( pPager->pInStmt==0 ){ 4903 /* sqlite3OsLock(pPager->fd, SHARED_LOCK); */ 4904 return SQLITE_NOMEM; 4905 } 4906 #ifndef NDEBUG 4907 rc = sqlite3OsFileSize(pPager->jfd, &pPager->stmtJSize); 4908 if( rc ) goto stmt_begin_failed; 4909 assert( pPager->stmtJSize == pPager->journalOff ); 4910 #endif 4911 pPager->stmtJSize = pPager->journalOff; 4912 pPager->stmtSize = pPager->dbSize; 4913 pPager->stmtHdrOff = 0; 4914 pPager->stmtCksum = pPager->cksumInit; 4915 if( !pPager->stmtOpen ){ 4916 rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->stfd, pPager->zStmtJrnl, 4917 SQLITE_OPEN_SUBJOURNAL); 4918 if( rc ){ 4919 goto stmt_begin_failed; 4920 } 4921 pPager->stmtOpen = 1; 4922 pPager->stmtNRec = 0; 4923 } 4924 pPager->stmtInUse = 1; 4925 return SQLITE_OK; 4926 4927 stmt_begin_failed: 4928 if( pPager->pInStmt ){ 4929 sqlite3BitvecDestroy(pPager->pInStmt); 4930 pPager->pInStmt = 0; 4931 } 4932 return rc; 4933 } 4934 int sqlite3PagerStmtBegin(Pager *pPager){ 4935 int rc; 4936 pagerEnter(pPager); 4937 rc = pagerStmtBegin(pPager); 4938 pagerLeave(pPager); 4939 return rc; 4940 } 4941 4942 /* 4943 ** Commit a statement. 4944 */ 4945 int sqlite3PagerStmtCommit(Pager *pPager){ 4946 pagerEnter(pPager); 4947 if( pPager->stmtInUse ){ 4948 PgHdr *pPg, *pNext; 4949 PAGERTRACE2("STMT-COMMIT %d\n", PAGERID(pPager)); 4950 if( !MEMDB ){ 4951 /* sqlite3OsTruncate(pPager->stfd, 0); */ 4952 sqlite3BitvecDestroy(pPager->pInStmt); 4953 pPager->pInStmt = 0; 4954 }else{ 4955 for(pPg=pPager->pStmt; pPg; pPg=pNext){ 4956 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); 4957 pNext = pHist->pNextStmt; 4958 assert( pHist->inStmt ); 4959 pHist->inStmt = 0; 4960 pHist->pPrevStmt = pHist->pNextStmt = 0; 4961 sqlite3_free(pHist->pStmt); 4962 pHist->pStmt = 0; 4963 } 4964 } 4965 pPager->stmtNRec = 0; 4966 pPager->stmtInUse = 0; 4967 pPager->pStmt = 0; 4968 } 4969 pPager->stmtAutoopen = 0; 4970 pagerLeave(pPager); 4971 return SQLITE_OK; 4972 } 4973 4974 /* 4975 ** Rollback a statement. 4976 */ 4977 int sqlite3PagerStmtRollback(Pager *pPager){ 4978 int rc; 4979 pagerEnter(pPager); 4980 if( pPager->stmtInUse ){ 4981 PAGERTRACE2("STMT-ROLLBACK %d\n", PAGERID(pPager)); 4982 if( MEMDB ){ 4983 PgHdr *pPg; 4984 PgHistory *pHist; 4985 for(pPg=pPager->pStmt; pPg; pPg=pHist->pNextStmt){ 4986 pHist = PGHDR_TO_HIST(pPg, pPager); 4987 if( pHist->pStmt ){ 4988 memcpy(PGHDR_TO_DATA(pPg), pHist->pStmt, pPager->pageSize); 4989 sqlite3_free(pHist->pStmt); 4990 pHist->pStmt = 0; 4991 } 4992 } 4993 pPager->dbSize = pPager->stmtSize; 4994 pager_truncate_cache(pPager); 4995 rc = SQLITE_OK; 4996 }else{ 4997 rc = pager_stmt_playback(pPager); 4998 } 4999 sqlite3PagerStmtCommit(pPager); 5000 }else{ 5001 rc = SQLITE_OK; 5002 } 5003 pPager->stmtAutoopen = 0; 5004 pagerLeave(pPager); 5005 return rc; 5006 } 5007 5008 /* 5009 ** Return the full pathname of the database file. 5010 */ 5011 const char *sqlite3PagerFilename(Pager *pPager){ 5012 return pPager->zFilename; 5013 } 5014 5015 /* 5016 ** Return the VFS structure for the pager. 5017 */ 5018 const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){ 5019 return pPager->pVfs; 5020 } 5021 5022 /* 5023 ** Return the file handle for the database file associated 5024 ** with the pager. This might return NULL if the file has 5025 ** not yet been opened. 5026 */ 5027 sqlite3_file *sqlite3PagerFile(Pager *pPager){ 5028 return pPager->fd; 5029 } 5030 5031 /* 5032 ** Return the directory of the database file. 5033 */ 5034 const char *sqlite3PagerDirname(Pager *pPager){ 5035 return pPager->zDirectory; 5036 } 5037 5038 /* 5039 ** Return the full pathname of the journal file. 5040 */ 5041 const char *sqlite3PagerJournalname(Pager *pPager){ 5042 return pPager->zJournal; 5043 } 5044 5045 /* 5046 ** Return true if fsync() calls are disabled for this pager. Return FALSE 5047 ** if fsync()s are executed normally. 5048 */ 5049 int sqlite3PagerNosync(Pager *pPager){ 5050 return pPager->noSync; 5051 } 5052 5053 #ifdef SQLITE_HAS_CODEC 5054 /* 5055 ** Set the codec for this pager 5056 */ 5057 void sqlite3PagerSetCodec( 5058 Pager *pPager, 5059 void *(*xCodec)(void*,void*,Pgno,int), 5060 void *pCodecArg 5061 ){ 5062 pPager->xCodec = xCodec; 5063 pPager->pCodecArg = pCodecArg; 5064 } 5065 #endif 5066 5067 #ifndef SQLITE_OMIT_AUTOVACUUM 5068 /* 5069 ** Move the page pPg to location pgno in the file. 5070 ** 5071 ** There must be no references to the page previously located at 5072 ** pgno (which we call pPgOld) though that page is allowed to be 5073 ** in cache. If the page previous located at pgno is not already 5074 ** in the rollback journal, it is not put there by by this routine. 5075 ** 5076 ** References to the page pPg remain valid. Updating any 5077 ** meta-data associated with pPg (i.e. data stored in the nExtra bytes 5078 ** allocated along with the page) is the responsibility of the caller. 5079 ** 5080 ** A transaction must be active when this routine is called. It used to be 5081 ** required that a statement transaction was not active, but this restriction 5082 ** has been removed (CREATE INDEX needs to move a page when a statement 5083 ** transaction is active). 5084 */ 5085 int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno){ 5086 PgHdr *pPgOld; /* The page being overwritten. */ 5087 int h; 5088 Pgno needSyncPgno = 0; 5089 5090 pagerEnter(pPager); 5091 assert( pPg->nRef>0 ); 5092 5093 PAGERTRACE5("MOVE %d page %d (needSync=%d) moves to %d\n", 5094 PAGERID(pPager), pPg->pgno, pPg->needSync, pgno); 5095 IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno)) 5096 5097 pager_get_content(pPg); 5098 if( pPg->needSync ){ 5099 needSyncPgno = pPg->pgno; 5100 assert( pPg->inJournal || (int)pgno>pPager->origDbSize ); 5101 assert( pPg->dirty ); 5102 assert( pPager->needSync ); 5103 } 5104 5105 /* Unlink pPg from its hash-chain */ 5106 unlinkHashChain(pPager, pPg); 5107 5108 /* If the cache contains a page with page-number pgno, remove it 5109 ** from its hash chain. Also, if the PgHdr.needSync was set for 5110 ** page pgno before the 'move' operation, it needs to be retained 5111 ** for the page moved there. 5112 */ 5113 pPg->needSync = 0; 5114 pPgOld = pager_lookup(pPager, pgno); 5115 if( pPgOld ){ 5116 assert( pPgOld->nRef==0 ); 5117 unlinkHashChain(pPager, pPgOld); 5118 makeClean(pPgOld); 5119 pPg->needSync = pPgOld->needSync; 5120 }else{ 5121 pPg->needSync = 0; 5122 } 5123 pPg->inJournal = sqlite3BitvecTest(pPager->pInJournal, pgno); 5124 5125 /* Change the page number for pPg and insert it into the new hash-chain. */ 5126 assert( pgno!=0 ); 5127 pPg->pgno = pgno; 5128 h = pgno & (pPager->nHash-1); 5129 if( pPager->aHash[h] ){ 5130 assert( pPager->aHash[h]->pPrevHash==0 ); 5131 pPager->aHash[h]->pPrevHash = pPg; 5132 } 5133 pPg->pNextHash = pPager->aHash[h]; 5134 pPager->aHash[h] = pPg; 5135 pPg->pPrevHash = 0; 5136 5137 makeDirty(pPg); 5138 pPager->dirtyCache = 1; 5139 5140 if( needSyncPgno ){ 5141 /* If needSyncPgno is non-zero, then the journal file needs to be 5142 ** sync()ed before any data is written to database file page needSyncPgno. 5143 ** Currently, no such page exists in the page-cache and the 5144 ** Pager.pInJournal bit has been set. This needs to be remedied by loading 5145 ** the page into the pager-cache and setting the PgHdr.needSync flag. 5146 ** 5147 ** If the attempt to load the page into the page-cache fails, (due 5148 ** to a malloc() or IO failure), clear the bit in the pInJournal[] 5149 ** array. Otherwise, if the page is loaded and written again in 5150 ** this transaction, it may be written to the database file before 5151 ** it is synced into the journal file. This way, it may end up in 5152 ** the journal file twice, but that is not a problem. 5153 ** 5154 ** The sqlite3PagerGet() call may cause the journal to sync. So make 5155 ** sure the Pager.needSync flag is set too. 5156 */ 5157 int rc; 5158 PgHdr *pPgHdr; 5159 assert( pPager->needSync ); 5160 rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr); 5161 if( rc!=SQLITE_OK ){ 5162 if( pPager->pInJournal && (int)needSyncPgno<=pPager->origDbSize ){ 5163 sqlite3BitvecClear(pPager->pInJournal, needSyncPgno); 5164 } 5165 pagerLeave(pPager); 5166 return rc; 5167 } 5168 pPager->needSync = 1; 5169 pPgHdr->needSync = 1; 5170 pPgHdr->inJournal = 1; 5171 makeDirty(pPgHdr); 5172 sqlite3PagerUnref(pPgHdr); 5173 } 5174 5175 pagerLeave(pPager); 5176 return SQLITE_OK; 5177 } 5178 #endif 5179 5180 /* 5181 ** Return a pointer to the data for the specified page. 5182 */ 5183 void *sqlite3PagerGetData(DbPage *pPg){ 5184 return PGHDR_TO_DATA(pPg); 5185 } 5186 5187 /* 5188 ** Return a pointer to the Pager.nExtra bytes of "extra" space 5189 ** allocated along with the specified page. 5190 */ 5191 void *sqlite3PagerGetExtra(DbPage *pPg){ 5192 Pager *pPager = pPg->pPager; 5193 return (pPager?PGHDR_TO_EXTRA(pPg, pPager):0); 5194 } 5195 5196 /* 5197 ** Get/set the locking-mode for this pager. Parameter eMode must be one 5198 ** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or 5199 ** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then 5200 ** the locking-mode is set to the value specified. 5201 ** 5202 ** The returned value is either PAGER_LOCKINGMODE_NORMAL or 5203 ** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated) 5204 ** locking-mode. 5205 */ 5206 int sqlite3PagerLockingMode(Pager *pPager, int eMode){ 5207 assert( eMode==PAGER_LOCKINGMODE_QUERY 5208 || eMode==PAGER_LOCKINGMODE_NORMAL 5209 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); 5210 assert( PAGER_LOCKINGMODE_QUERY<0 ); 5211 assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 ); 5212 if( eMode>=0 && !pPager->tempFile ){ 5213 pPager->exclusiveMode = eMode; 5214 } 5215 return (int)pPager->exclusiveMode; 5216 } 5217 5218 #ifdef SQLITE_TEST 5219 /* 5220 ** Print a listing of all referenced pages and their ref count. 5221 */ 5222 void sqlite3PagerRefdump(Pager *pPager){ 5223 PgHdr *pPg; 5224 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ 5225 if( pPg->nRef<=0 ) continue; 5226 sqlite3DebugPrintf("PAGE %3d addr=%p nRef=%d\n", 5227 pPg->pgno, PGHDR_TO_DATA(pPg), pPg->nRef); 5228 } 5229 } 5230 #endif 5231 5232 #endif /* SQLITE_OMIT_DISKIO */ 5233