1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This is the implementation of the page cache subsystem or "pager". 13 ** 14 ** The pager is used to access a database disk file. It implements 15 ** atomic commit and rollback through the use of a journal file that 16 ** is separate from the database file. The pager also implements file 17 ** locking to prevent two processes from writing the same database 18 ** file simultaneously, or one process from reading the database while 19 ** another is writing. 20 */ 21 #ifndef SQLITE_OMIT_DISKIO 22 #include "sqliteInt.h" 23 #include "wal.h" 24 25 26 /******************* NOTES ON THE DESIGN OF THE PAGER ************************ 27 ** 28 ** This comment block describes invariants that hold when using a rollback 29 ** journal. These invariants do not apply for journal_mode=WAL, 30 ** journal_mode=MEMORY, or journal_mode=OFF. 31 ** 32 ** Within this comment block, a page is deemed to have been synced 33 ** automatically as soon as it is written when PRAGMA synchronous=OFF. 34 ** Otherwise, the page is not synced until the xSync method of the VFS 35 ** is called successfully on the file containing the page. 36 ** 37 ** Definition: A page of the database file is said to be "overwriteable" if 38 ** one or more of the following are true about the page: 39 ** 40 ** (a) The original content of the page as it was at the beginning of 41 ** the transaction has been written into the rollback journal and 42 ** synced. 43 ** 44 ** (b) The page was a freelist leaf page at the start of the transaction. 45 ** 46 ** (c) The page number is greater than the largest page that existed in 47 ** the database file at the start of the transaction. 48 ** 49 ** (1) A page of the database file is never overwritten unless one of the 50 ** following are true: 51 ** 52 ** (a) The page and all other pages on the same sector are overwriteable. 53 ** 54 ** (b) The atomic page write optimization is enabled, and the entire 55 ** transaction other than the update of the transaction sequence 56 ** number consists of a single page change. 57 ** 58 ** (2) The content of a page written into the rollback journal exactly matches 59 ** both the content in the database when the rollback journal was written 60 ** and the content in the database at the beginning of the current 61 ** transaction. 62 ** 63 ** (3) Writes to the database file are an integer multiple of the page size 64 ** in length and are aligned on a page boundary. 65 ** 66 ** (4) Reads from the database file are either aligned on a page boundary and 67 ** an integer multiple of the page size in length or are taken from the 68 ** first 100 bytes of the database file. 69 ** 70 ** (5) All writes to the database file are synced prior to the rollback journal 71 ** being deleted, truncated, or zeroed. 72 ** 73 ** (6) If a master journal file is used, then all writes to the database file 74 ** are synced prior to the master journal being deleted. 75 ** 76 ** Definition: Two databases (or the same database at two points it time) 77 ** are said to be "logically equivalent" if they give the same answer to 78 ** all queries. Note in particular the content of freelist leaf 79 ** pages can be changed arbitarily without effecting the logical equivalence 80 ** of the database. 81 ** 82 ** (7) At any time, if any subset, including the empty set and the total set, 83 ** of the unsynced changes to a rollback journal are removed and the 84 ** journal is rolled back, the resulting database file will be logical 85 ** equivalent to the database file at the beginning of the transaction. 86 ** 87 ** (8) When a transaction is rolled back, the xTruncate method of the VFS 88 ** is called to restore the database file to the same size it was at 89 ** the beginning of the transaction. (In some VFSes, the xTruncate 90 ** method is a no-op, but that does not change the fact the SQLite will 91 ** invoke it.) 92 ** 93 ** (9) Whenever the database file is modified, at least one bit in the range 94 ** of bytes from 24 through 39 inclusive will be changed prior to releasing 95 ** the EXCLUSIVE lock, thus signaling other connections on the same 96 ** database to flush their caches. 97 ** 98 ** (10) The pattern of bits in bytes 24 through 39 shall not repeat in less 99 ** than one billion transactions. 100 ** 101 ** (11) A database file is well-formed at the beginning and at the conclusion 102 ** of every transaction. 103 ** 104 ** (12) An EXCLUSIVE lock is held on the database file when writing to 105 ** the database file. 106 ** 107 ** (13) A SHARED lock is held on the database file while reading any 108 ** content out of the database file. 109 ** 110 ******************************************************************************/ 111 112 /* 113 ** Macros for troubleshooting. Normally turned off 114 */ 115 #if 0 116 int sqlite3PagerTrace=1; /* True to enable tracing */ 117 #define sqlite3DebugPrintf printf 118 #define PAGERTRACE(X) if( sqlite3PagerTrace ){ sqlite3DebugPrintf X; } 119 #else 120 #define PAGERTRACE(X) 121 #endif 122 123 /* 124 ** The following two macros are used within the PAGERTRACE() macros above 125 ** to print out file-descriptors. 126 ** 127 ** PAGERID() takes a pointer to a Pager struct as its argument. The 128 ** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file 129 ** struct as its argument. 130 */ 131 #define PAGERID(p) ((int)(p->fd)) 132 #define FILEHANDLEID(fd) ((int)fd) 133 134 /* 135 ** The Pager.eState variable stores the current 'state' of a pager. A 136 ** pager may be in any one of the seven states shown in the following 137 ** state diagram. 138 ** 139 ** OPEN <------+------+ 140 ** | | | 141 ** V | | 142 ** +---------> READER-------+ | 143 ** | | | 144 ** | V | 145 ** |<-------WRITER_LOCKED------> ERROR 146 ** | | ^ 147 ** | V | 148 ** |<------WRITER_CACHEMOD-------->| 149 ** | | | 150 ** | V | 151 ** |<-------WRITER_DBMOD---------->| 152 ** | | | 153 ** | V | 154 ** +<------WRITER_FINISHED-------->+ 155 ** 156 ** 157 ** List of state transitions and the C [function] that performs each: 158 ** 159 ** OPEN -> READER [sqlite3PagerSharedLock] 160 ** READER -> OPEN [pager_unlock] 161 ** 162 ** READER -> WRITER_LOCKED [sqlite3PagerBegin] 163 ** WRITER_LOCKED -> WRITER_CACHEMOD [pager_open_journal] 164 ** WRITER_CACHEMOD -> WRITER_DBMOD [syncJournal] 165 ** WRITER_DBMOD -> WRITER_FINISHED [sqlite3PagerCommitPhaseOne] 166 ** WRITER_*** -> READER [pager_end_transaction] 167 ** 168 ** WRITER_*** -> ERROR [pager_error] 169 ** ERROR -> OPEN [pager_unlock] 170 ** 171 ** 172 ** OPEN: 173 ** 174 ** The pager starts up in this state. Nothing is guaranteed in this 175 ** state - the file may or may not be locked and the database size is 176 ** unknown. The database may not be read or written. 177 ** 178 ** * No read or write transaction is active. 179 ** * Any lock, or no lock at all, may be held on the database file. 180 ** * The dbSize, dbOrigSize and dbFileSize variables may not be trusted. 181 ** 182 ** READER: 183 ** 184 ** In this state all the requirements for reading the database in 185 ** rollback (non-WAL) mode are met. Unless the pager is (or recently 186 ** was) in exclusive-locking mode, a user-level read transaction is 187 ** open. The database size is known in this state. 188 ** 189 ** A connection running with locking_mode=normal enters this state when 190 ** it opens a read-transaction on the database and returns to state 191 ** OPEN after the read-transaction is completed. However a connection 192 ** running in locking_mode=exclusive (including temp databases) remains in 193 ** this state even after the read-transaction is closed. The only way 194 ** a locking_mode=exclusive connection can transition from READER to OPEN 195 ** is via the ERROR state (see below). 196 ** 197 ** * A read transaction may be active (but a write-transaction cannot). 198 ** * A SHARED or greater lock is held on the database file. 199 ** * The dbSize variable may be trusted (even if a user-level read 200 ** transaction is not active). The dbOrigSize and dbFileSize variables 201 ** may not be trusted at this point. 202 ** * If the database is a WAL database, then the WAL connection is open. 203 ** * Even if a read-transaction is not open, it is guaranteed that 204 ** there is no hot-journal in the file-system. 205 ** 206 ** WRITER_LOCKED: 207 ** 208 ** The pager moves to this state from READER when a write-transaction 209 ** is first opened on the database. In WRITER_LOCKED state, all locks 210 ** required to start a write-transaction are held, but no actual 211 ** modifications to the cache or database have taken place. 212 ** 213 ** In rollback mode, a RESERVED or (if the transaction was opened with 214 ** BEGIN EXCLUSIVE) EXCLUSIVE lock is obtained on the database file when 215 ** moving to this state, but the journal file is not written to or opened 216 ** to in this state. If the transaction is committed or rolled back while 217 ** in WRITER_LOCKED state, all that is required is to unlock the database 218 ** file. 219 ** 220 ** IN WAL mode, WalBeginWriteTransaction() is called to lock the log file. 221 ** If the connection is running with locking_mode=exclusive, an attempt 222 ** is made to obtain an EXCLUSIVE lock on the database file. 223 ** 224 ** * A write transaction is active. 225 ** * If the connection is open in rollback-mode, a RESERVED or greater 226 ** lock is held on the database file. 227 ** * If the connection is open in WAL-mode, a WAL write transaction 228 ** is open (i.e. sqlite3WalBeginWriteTransaction() has been successfully 229 ** called). 230 ** * The dbSize, dbOrigSize and dbFileSize variables are all valid. 231 ** * The contents of the pager cache have not been modified. 232 ** * The journal file may or may not be open. 233 ** * Nothing (not even the first header) has been written to the journal. 234 ** 235 ** WRITER_CACHEMOD: 236 ** 237 ** A pager moves from WRITER_LOCKED state to this state when a page is 238 ** first modified by the upper layer. In rollback mode the journal file 239 ** is opened (if it is not already open) and a header written to the 240 ** start of it. The database file on disk has not been modified. 241 ** 242 ** * A write transaction is active. 243 ** * A RESERVED or greater lock is held on the database file. 244 ** * The journal file is open and the first header has been written 245 ** to it, but the header has not been synced to disk. 246 ** * The contents of the page cache have been modified. 247 ** 248 ** WRITER_DBMOD: 249 ** 250 ** The pager transitions from WRITER_CACHEMOD into WRITER_DBMOD state 251 ** when it modifies the contents of the database file. WAL connections 252 ** never enter this state (since they do not modify the database file, 253 ** just the log file). 254 ** 255 ** * A write transaction is active. 256 ** * An EXCLUSIVE or greater lock is held on the database file. 257 ** * The journal file is open and the first header has been written 258 ** and synced to disk. 259 ** * The contents of the page cache have been modified (and possibly 260 ** written to disk). 261 ** 262 ** WRITER_FINISHED: 263 ** 264 ** It is not possible for a WAL connection to enter this state. 265 ** 266 ** A rollback-mode pager changes to WRITER_FINISHED state from WRITER_DBMOD 267 ** state after the entire transaction has been successfully written into the 268 ** database file. In this state the transaction may be committed simply 269 ** by finalizing the journal file. Once in WRITER_FINISHED state, it is 270 ** not possible to modify the database further. At this point, the upper 271 ** layer must either commit or rollback the transaction. 272 ** 273 ** * A write transaction is active. 274 ** * An EXCLUSIVE or greater lock is held on the database file. 275 ** * All writing and syncing of journal and database data has finished. 276 ** If no error occurred, all that remains is to finalize the journal to 277 ** commit the transaction. If an error did occur, the caller will need 278 ** to rollback the transaction. 279 ** 280 ** ERROR: 281 ** 282 ** The ERROR state is entered when an IO or disk-full error (including 283 ** SQLITE_IOERR_NOMEM) occurs at a point in the code that makes it 284 ** difficult to be sure that the in-memory pager state (cache contents, 285 ** db size etc.) are consistent with the contents of the file-system. 286 ** 287 ** Temporary pager files may enter the ERROR state, but in-memory pagers 288 ** cannot. 289 ** 290 ** For example, if an IO error occurs while performing a rollback, 291 ** the contents of the page-cache may be left in an inconsistent state. 292 ** At this point it would be dangerous to change back to READER state 293 ** (as usually happens after a rollback). Any subsequent readers might 294 ** report database corruption (due to the inconsistent cache), and if 295 ** they upgrade to writers, they may inadvertently corrupt the database 296 ** file. To avoid this hazard, the pager switches into the ERROR state 297 ** instead of READER following such an error. 298 ** 299 ** Once it has entered the ERROR state, any attempt to use the pager 300 ** to read or write data returns an error. Eventually, once all 301 ** outstanding transactions have been abandoned, the pager is able to 302 ** transition back to OPEN state, discarding the contents of the 303 ** page-cache and any other in-memory state at the same time. Everything 304 ** is reloaded from disk (and, if necessary, hot-journal rollback peformed) 305 ** when a read-transaction is next opened on the pager (transitioning 306 ** the pager into READER state). At that point the system has recovered 307 ** from the error. 308 ** 309 ** Specifically, the pager jumps into the ERROR state if: 310 ** 311 ** 1. An error occurs while attempting a rollback. This happens in 312 ** function sqlite3PagerRollback(). 313 ** 314 ** 2. An error occurs while attempting to finalize a journal file 315 ** following a commit in function sqlite3PagerCommitPhaseTwo(). 316 ** 317 ** 3. An error occurs while attempting to write to the journal or 318 ** database file in function pagerStress() in order to free up 319 ** memory. 320 ** 321 ** In other cases, the error is returned to the b-tree layer. The b-tree 322 ** layer then attempts a rollback operation. If the error condition 323 ** persists, the pager enters the ERROR state via condition (1) above. 324 ** 325 ** Condition (3) is necessary because it can be triggered by a read-only 326 ** statement executed within a transaction. In this case, if the error 327 ** code were simply returned to the user, the b-tree layer would not 328 ** automatically attempt a rollback, as it assumes that an error in a 329 ** read-only statement cannot leave the pager in an internally inconsistent 330 ** state. 331 ** 332 ** * The Pager.errCode variable is set to something other than SQLITE_OK. 333 ** * There are one or more outstanding references to pages (after the 334 ** last reference is dropped the pager should move back to OPEN state). 335 ** * The pager is not an in-memory pager. 336 ** 337 ** 338 ** Notes: 339 ** 340 ** * A pager is never in WRITER_DBMOD or WRITER_FINISHED state if the 341 ** connection is open in WAL mode. A WAL connection is always in one 342 ** of the first four states. 343 ** 344 ** * Normally, a connection open in exclusive mode is never in PAGER_OPEN 345 ** state. There are two exceptions: immediately after exclusive-mode has 346 ** been turned on (and before any read or write transactions are 347 ** executed), and when the pager is leaving the "error state". 348 ** 349 ** * See also: assert_pager_state(). 350 */ 351 #define PAGER_OPEN 0 352 #define PAGER_READER 1 353 #define PAGER_WRITER_LOCKED 2 354 #define PAGER_WRITER_CACHEMOD 3 355 #define PAGER_WRITER_DBMOD 4 356 #define PAGER_WRITER_FINISHED 5 357 #define PAGER_ERROR 6 358 359 /* 360 ** The Pager.eLock variable is almost always set to one of the 361 ** following locking-states, according to the lock currently held on 362 ** the database file: NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. 363 ** This variable is kept up to date as locks are taken and released by 364 ** the pagerLockDb() and pagerUnlockDb() wrappers. 365 ** 366 ** If the VFS xLock() or xUnlock() returns an error other than SQLITE_BUSY 367 ** (i.e. one of the SQLITE_IOERR subtypes), it is not clear whether or not 368 ** the operation was successful. In these circumstances pagerLockDb() and 369 ** pagerUnlockDb() take a conservative approach - eLock is always updated 370 ** when unlocking the file, and only updated when locking the file if the 371 ** VFS call is successful. This way, the Pager.eLock variable may be set 372 ** to a less exclusive (lower) value than the lock that is actually held 373 ** at the system level, but it is never set to a more exclusive value. 374 ** 375 ** This is usually safe. If an xUnlock fails or appears to fail, there may 376 ** be a few redundant xLock() calls or a lock may be held for longer than 377 ** required, but nothing really goes wrong. 378 ** 379 ** The exception is when the database file is unlocked as the pager moves 380 ** from ERROR to OPEN state. At this point there may be a hot-journal file 381 ** in the file-system that needs to be rolled back (as part of a OPEN->SHARED 382 ** transition, by the same pager or any other). If the call to xUnlock() 383 ** fails at this point and the pager is left holding an EXCLUSIVE lock, this 384 ** can confuse the call to xCheckReservedLock() call made later as part 385 ** of hot-journal detection. 386 ** 387 ** xCheckReservedLock() is defined as returning true "if there is a RESERVED 388 ** lock held by this process or any others". So xCheckReservedLock may 389 ** return true because the caller itself is holding an EXCLUSIVE lock (but 390 ** doesn't know it because of a previous error in xUnlock). If this happens 391 ** a hot-journal may be mistaken for a journal being created by an active 392 ** transaction in another process, causing SQLite to read from the database 393 ** without rolling it back. 394 ** 395 ** To work around this, if a call to xUnlock() fails when unlocking the 396 ** database in the ERROR state, Pager.eLock is set to UNKNOWN_LOCK. It 397 ** is only changed back to a real locking state after a successful call 398 ** to xLock(EXCLUSIVE). Also, the code to do the OPEN->SHARED state transition 399 ** omits the check for a hot-journal if Pager.eLock is set to UNKNOWN_LOCK 400 ** lock. Instead, it assumes a hot-journal exists and obtains an EXCLUSIVE 401 ** lock on the database file before attempting to roll it back. See function 402 ** PagerSharedLock() for more detail. 403 ** 404 ** Pager.eLock may only be set to UNKNOWN_LOCK when the pager is in 405 ** PAGER_OPEN state. 406 */ 407 #define UNKNOWN_LOCK (EXCLUSIVE_LOCK+1) 408 409 /* 410 ** A macro used for invoking the codec if there is one 411 */ 412 #ifdef SQLITE_HAS_CODEC 413 # define CODEC1(P,D,N,X,E) \ 414 if( P->xCodec && P->xCodec(P->pCodec,D,N,X)==0 ){ E; } 415 # define CODEC2(P,D,N,X,E,O) \ 416 if( P->xCodec==0 ){ O=(char*)D; }else \ 417 if( (O=(char*)(P->xCodec(P->pCodec,D,N,X)))==0 ){ E; } 418 #else 419 # define CODEC1(P,D,N,X,E) /* NO-OP */ 420 # define CODEC2(P,D,N,X,E,O) O=(char*)D 421 #endif 422 423 /* 424 ** The maximum allowed sector size. 64KiB. If the xSectorsize() method 425 ** returns a value larger than this, then MAX_SECTOR_SIZE is used instead. 426 ** This could conceivably cause corruption following a power failure on 427 ** such a system. This is currently an undocumented limit. 428 */ 429 #define MAX_SECTOR_SIZE 0x10000 430 431 /* 432 ** An instance of the following structure is allocated for each active 433 ** savepoint and statement transaction in the system. All such structures 434 ** are stored in the Pager.aSavepoint[] array, which is allocated and 435 ** resized using sqlite3Realloc(). 436 ** 437 ** When a savepoint is created, the PagerSavepoint.iHdrOffset field is 438 ** set to 0. If a journal-header is written into the main journal while 439 ** the savepoint is active, then iHdrOffset is set to the byte offset 440 ** immediately following the last journal record written into the main 441 ** journal before the journal-header. This is required during savepoint 442 ** rollback (see pagerPlaybackSavepoint()). 443 */ 444 typedef struct PagerSavepoint PagerSavepoint; 445 struct PagerSavepoint { 446 i64 iOffset; /* Starting offset in main journal */ 447 i64 iHdrOffset; /* See above */ 448 Bitvec *pInSavepoint; /* Set of pages in this savepoint */ 449 Pgno nOrig; /* Original number of pages in file */ 450 Pgno iSubRec; /* Index of first record in sub-journal */ 451 #ifndef SQLITE_OMIT_WAL 452 u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */ 453 #endif 454 }; 455 456 /* 457 ** A open page cache is an instance of struct Pager. A description of 458 ** some of the more important member variables follows: 459 ** 460 ** eState 461 ** 462 ** The current 'state' of the pager object. See the comment and state 463 ** diagram above for a description of the pager state. 464 ** 465 ** eLock 466 ** 467 ** For a real on-disk database, the current lock held on the database file - 468 ** NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK. 469 ** 470 ** For a temporary or in-memory database (neither of which require any 471 ** locks), this variable is always set to EXCLUSIVE_LOCK. Since such 472 ** databases always have Pager.exclusiveMode==1, this tricks the pager 473 ** logic into thinking that it already has all the locks it will ever 474 ** need (and no reason to release them). 475 ** 476 ** In some (obscure) circumstances, this variable may also be set to 477 ** UNKNOWN_LOCK. See the comment above the #define of UNKNOWN_LOCK for 478 ** details. 479 ** 480 ** changeCountDone 481 ** 482 ** This boolean variable is used to make sure that the change-counter 483 ** (the 4-byte header field at byte offset 24 of the database file) is 484 ** not updated more often than necessary. 485 ** 486 ** It is set to true when the change-counter field is updated, which 487 ** can only happen if an exclusive lock is held on the database file. 488 ** It is cleared (set to false) whenever an exclusive lock is 489 ** relinquished on the database file. Each time a transaction is committed, 490 ** The changeCountDone flag is inspected. If it is true, the work of 491 ** updating the change-counter is omitted for the current transaction. 492 ** 493 ** This mechanism means that when running in exclusive mode, a connection 494 ** need only update the change-counter once, for the first transaction 495 ** committed. 496 ** 497 ** setMaster 498 ** 499 ** When PagerCommitPhaseOne() is called to commit a transaction, it may 500 ** (or may not) specify a master-journal name to be written into the 501 ** journal file before it is synced to disk. 502 ** 503 ** Whether or not a journal file contains a master-journal pointer affects 504 ** the way in which the journal file is finalized after the transaction is 505 ** committed or rolled back when running in "journal_mode=PERSIST" mode. 506 ** If a journal file does not contain a master-journal pointer, it is 507 ** finalized by overwriting the first journal header with zeroes. If 508 ** it does contain a master-journal pointer the journal file is finalized 509 ** by truncating it to zero bytes, just as if the connection were 510 ** running in "journal_mode=truncate" mode. 511 ** 512 ** Journal files that contain master journal pointers cannot be finalized 513 ** simply by overwriting the first journal-header with zeroes, as the 514 ** master journal pointer could interfere with hot-journal rollback of any 515 ** subsequently interrupted transaction that reuses the journal file. 516 ** 517 ** The flag is cleared as soon as the journal file is finalized (either 518 ** by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the 519 ** journal file from being successfully finalized, the setMaster flag 520 ** is cleared anyway (and the pager will move to ERROR state). 521 ** 522 ** doNotSpill, doNotSyncSpill 523 ** 524 ** These two boolean variables control the behavior of cache-spills 525 ** (calls made by the pcache module to the pagerStress() routine to 526 ** write cached data to the file-system in order to free up memory). 527 ** 528 ** When doNotSpill is non-zero, writing to the database from pagerStress() 529 ** is disabled altogether. This is done in a very obscure case that 530 ** comes up during savepoint rollback that requires the pcache module 531 ** to allocate a new page to prevent the journal file from being written 532 ** while it is being traversed by code in pager_playback(). 533 ** 534 ** If doNotSyncSpill is non-zero, writing to the database from pagerStress() 535 ** is permitted, but syncing the journal file is not. This flag is set 536 ** by sqlite3PagerWrite() when the file-system sector-size is larger than 537 ** the database page-size in order to prevent a journal sync from happening 538 ** in between the journalling of two pages on the same sector. 539 ** 540 ** subjInMemory 541 ** 542 ** This is a boolean variable. If true, then any required sub-journal 543 ** is opened as an in-memory journal file. If false, then in-memory 544 ** sub-journals are only used for in-memory pager files. 545 ** 546 ** This variable is updated by the upper layer each time a new 547 ** write-transaction is opened. 548 ** 549 ** dbSize, dbOrigSize, dbFileSize 550 ** 551 ** Variable dbSize is set to the number of pages in the database file. 552 ** It is valid in PAGER_READER and higher states (all states except for 553 ** OPEN and ERROR). 554 ** 555 ** dbSize is set based on the size of the database file, which may be 556 ** larger than the size of the database (the value stored at offset 557 ** 28 of the database header by the btree). If the size of the file 558 ** is not an integer multiple of the page-size, the value stored in 559 ** dbSize is rounded down (i.e. a 5KB file with 2K page-size has dbSize==2). 560 ** Except, any file that is greater than 0 bytes in size is considered 561 ** to have at least one page. (i.e. a 1KB file with 2K page-size leads 562 ** to dbSize==1). 563 ** 564 ** During a write-transaction, if pages with page-numbers greater than 565 ** dbSize are modified in the cache, dbSize is updated accordingly. 566 ** Similarly, if the database is truncated using PagerTruncateImage(), 567 ** dbSize is updated. 568 ** 569 ** Variables dbOrigSize and dbFileSize are valid in states 570 ** PAGER_WRITER_LOCKED and higher. dbOrigSize is a copy of the dbSize 571 ** variable at the start of the transaction. It is used during rollback, 572 ** and to determine whether or not pages need to be journalled before 573 ** being modified. 574 ** 575 ** Throughout a write-transaction, dbFileSize contains the size of 576 ** the file on disk in pages. It is set to a copy of dbSize when the 577 ** write-transaction is first opened, and updated when VFS calls are made 578 ** to write or truncate the database file on disk. 579 ** 580 ** The only reason the dbFileSize variable is required is to suppress 581 ** unnecessary calls to xTruncate() after committing a transaction. If, 582 ** when a transaction is committed, the dbFileSize variable indicates 583 ** that the database file is larger than the database image (Pager.dbSize), 584 ** pager_truncate() is called. The pager_truncate() call uses xFilesize() 585 ** to measure the database file on disk, and then truncates it if required. 586 ** dbFileSize is not used when rolling back a transaction. In this case 587 ** pager_truncate() is called unconditionally (which means there may be 588 ** a call to xFilesize() that is not strictly required). In either case, 589 ** pager_truncate() may cause the file to become smaller or larger. 590 ** 591 ** dbHintSize 592 ** 593 ** The dbHintSize variable is used to limit the number of calls made to 594 ** the VFS xFileControl(FCNTL_SIZE_HINT) method. 595 ** 596 ** dbHintSize is set to a copy of the dbSize variable when a 597 ** write-transaction is opened (at the same time as dbFileSize and 598 ** dbOrigSize). If the xFileControl(FCNTL_SIZE_HINT) method is called, 599 ** dbHintSize is increased to the number of pages that correspond to the 600 ** size-hint passed to the method call. See pager_write_pagelist() for 601 ** details. 602 ** 603 ** errCode 604 ** 605 ** The Pager.errCode variable is only ever used in PAGER_ERROR state. It 606 ** is set to zero in all other states. In PAGER_ERROR state, Pager.errCode 607 ** is always set to SQLITE_FULL, SQLITE_IOERR or one of the SQLITE_IOERR_XXX 608 ** sub-codes. 609 */ 610 struct Pager { 611 sqlite3_vfs *pVfs; /* OS functions to use for IO */ 612 u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */ 613 u8 journalMode; /* One of the PAGER_JOURNALMODE_* values */ 614 u8 useJournal; /* Use a rollback journal on this file */ 615 u8 noSync; /* Do not sync the journal if true */ 616 u8 fullSync; /* Do extra syncs of the journal for robustness */ 617 u8 ckptSyncFlags; /* SYNC_NORMAL or SYNC_FULL for checkpoint */ 618 u8 walSyncFlags; /* SYNC_NORMAL or SYNC_FULL for wal writes */ 619 u8 syncFlags; /* SYNC_NORMAL or SYNC_FULL otherwise */ 620 u8 tempFile; /* zFilename is a temporary file */ 621 u8 readOnly; /* True for a read-only database */ 622 u8 memDb; /* True to inhibit all file I/O */ 623 624 /************************************************************************** 625 ** The following block contains those class members that change during 626 ** routine opertion. Class members not in this block are either fixed 627 ** when the pager is first created or else only change when there is a 628 ** significant mode change (such as changing the page_size, locking_mode, 629 ** or the journal_mode). From another view, these class members describe 630 ** the "state" of the pager, while other class members describe the 631 ** "configuration" of the pager. 632 */ 633 u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */ 634 u8 eLock; /* Current lock held on database file */ 635 u8 changeCountDone; /* Set after incrementing the change-counter */ 636 u8 setMaster; /* True if a m-j name has been written to jrnl */ 637 u8 doNotSpill; /* Do not spill the cache when non-zero */ 638 u8 doNotSyncSpill; /* Do not do a spill that requires jrnl sync */ 639 u8 subjInMemory; /* True to use in-memory sub-journals */ 640 Pgno dbSize; /* Number of pages in the database */ 641 Pgno dbOrigSize; /* dbSize before the current transaction */ 642 Pgno dbFileSize; /* Number of pages in the database file */ 643 Pgno dbHintSize; /* Value passed to FCNTL_SIZE_HINT call */ 644 int errCode; /* One of several kinds of errors */ 645 int nRec; /* Pages journalled since last j-header written */ 646 u32 cksumInit; /* Quasi-random value added to every checksum */ 647 u32 nSubRec; /* Number of records written to sub-journal */ 648 Bitvec *pInJournal; /* One bit for each page in the database file */ 649 sqlite3_file *fd; /* File descriptor for database */ 650 sqlite3_file *jfd; /* File descriptor for main journal */ 651 sqlite3_file *sjfd; /* File descriptor for sub-journal */ 652 i64 journalOff; /* Current write offset in the journal file */ 653 i64 journalHdr; /* Byte offset to previous journal header */ 654 sqlite3_backup *pBackup; /* Pointer to list of ongoing backup processes */ 655 PagerSavepoint *aSavepoint; /* Array of active savepoints */ 656 int nSavepoint; /* Number of elements in aSavepoint[] */ 657 char dbFileVers[16]; /* Changes whenever database file changes */ 658 659 u8 bUseFetch; /* True to use xFetch() */ 660 int nMmapOut; /* Number of mmap pages currently outstanding */ 661 sqlite3_int64 szMmap; /* Desired maximum mmap size */ 662 PgHdr *pMmapFreelist; /* List of free mmap page headers (pDirty) */ 663 /* 664 ** End of the routinely-changing class members 665 ***************************************************************************/ 666 667 u16 nExtra; /* Add this many bytes to each in-memory page */ 668 i16 nReserve; /* Number of unused bytes at end of each page */ 669 u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */ 670 u32 sectorSize; /* Assumed sector size during rollback */ 671 int pageSize; /* Number of bytes in a page */ 672 Pgno mxPgno; /* Maximum allowed size of the database */ 673 i64 journalSizeLimit; /* Size limit for persistent journal files */ 674 char *zFilename; /* Name of the database file */ 675 char *zJournal; /* Name of the journal file */ 676 int (*xBusyHandler)(void*); /* Function to call when busy */ 677 void *pBusyHandlerArg; /* Context argument for xBusyHandler */ 678 int aStat[3]; /* Total cache hits, misses and writes */ 679 #ifdef SQLITE_TEST 680 int nRead; /* Database pages read */ 681 #endif 682 void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */ 683 #ifdef SQLITE_HAS_CODEC 684 void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */ 685 void (*xCodecSizeChng)(void*,int,int); /* Notify of page size changes */ 686 void (*xCodecFree)(void*); /* Destructor for the codec */ 687 void *pCodec; /* First argument to xCodec... methods */ 688 #endif 689 char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */ 690 PCache *pPCache; /* Pointer to page cache object */ 691 #ifndef SQLITE_OMIT_WAL 692 Wal *pWal; /* Write-ahead log used by "journal_mode=wal" */ 693 char *zWal; /* File name for write-ahead log */ 694 #endif 695 }; 696 697 /* 698 ** Indexes for use with Pager.aStat[]. The Pager.aStat[] array contains 699 ** the values accessed by passing SQLITE_DBSTATUS_CACHE_HIT, CACHE_MISS 700 ** or CACHE_WRITE to sqlite3_db_status(). 701 */ 702 #define PAGER_STAT_HIT 0 703 #define PAGER_STAT_MISS 1 704 #define PAGER_STAT_WRITE 2 705 706 /* 707 ** The following global variables hold counters used for 708 ** testing purposes only. These variables do not exist in 709 ** a non-testing build. These variables are not thread-safe. 710 */ 711 #ifdef SQLITE_TEST 712 int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */ 713 int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */ 714 int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */ 715 # define PAGER_INCR(v) v++ 716 #else 717 # define PAGER_INCR(v) 718 #endif 719 720 721 722 /* 723 ** Journal files begin with the following magic string. The data 724 ** was obtained from /dev/random. It is used only as a sanity check. 725 ** 726 ** Since version 2.8.0, the journal format contains additional sanity 727 ** checking information. If the power fails while the journal is being 728 ** written, semi-random garbage data might appear in the journal 729 ** file after power is restored. If an attempt is then made 730 ** to roll the journal back, the database could be corrupted. The additional 731 ** sanity checking data is an attempt to discover the garbage in the 732 ** journal and ignore it. 733 ** 734 ** The sanity checking information for the new journal format consists 735 ** of a 32-bit checksum on each page of data. The checksum covers both 736 ** the page number and the pPager->pageSize bytes of data for the page. 737 ** This cksum is initialized to a 32-bit random value that appears in the 738 ** journal file right after the header. The random initializer is important, 739 ** because garbage data that appears at the end of a journal is likely 740 ** data that was once in other files that have now been deleted. If the 741 ** garbage data came from an obsolete journal file, the checksums might 742 ** be correct. But by initializing the checksum to random value which 743 ** is different for every journal, we minimize that risk. 744 */ 745 static const unsigned char aJournalMagic[] = { 746 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7, 747 }; 748 749 /* 750 ** The size of the of each page record in the journal is given by 751 ** the following macro. 752 */ 753 #define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8) 754 755 /* 756 ** The journal header size for this pager. This is usually the same 757 ** size as a single disk sector. See also setSectorSize(). 758 */ 759 #define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize) 760 761 /* 762 ** The macro MEMDB is true if we are dealing with an in-memory database. 763 ** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set, 764 ** the value of MEMDB will be a constant and the compiler will optimize 765 ** out code that would never execute. 766 */ 767 #ifdef SQLITE_OMIT_MEMORYDB 768 # define MEMDB 0 769 #else 770 # define MEMDB pPager->memDb 771 #endif 772 773 /* 774 ** The macro USEFETCH is true if we are allowed to use the xFetch and xUnfetch 775 ** interfaces to access the database using memory-mapped I/O. 776 */ 777 #if SQLITE_MAX_MMAP_SIZE>0 778 # define USEFETCH(x) ((x)->bUseFetch) 779 #else 780 # define USEFETCH(x) 0 781 #endif 782 783 /* 784 ** The maximum legal page number is (2^31 - 1). 785 */ 786 #define PAGER_MAX_PGNO 2147483647 787 788 /* 789 ** The argument to this macro is a file descriptor (type sqlite3_file*). 790 ** Return 0 if it is not open, or non-zero (but not 1) if it is. 791 ** 792 ** This is so that expressions can be written as: 793 ** 794 ** if( isOpen(pPager->jfd) ){ ... 795 ** 796 ** instead of 797 ** 798 ** if( pPager->jfd->pMethods ){ ... 799 */ 800 #define isOpen(pFd) ((pFd)->pMethods) 801 802 /* 803 ** Return true if this pager uses a write-ahead log instead of the usual 804 ** rollback journal. Otherwise false. 805 */ 806 #ifndef SQLITE_OMIT_WAL 807 static int pagerUseWal(Pager *pPager){ 808 return (pPager->pWal!=0); 809 } 810 #else 811 # define pagerUseWal(x) 0 812 # define pagerRollbackWal(x) 0 813 # define pagerWalFrames(v,w,x,y) 0 814 # define pagerOpenWalIfPresent(z) SQLITE_OK 815 # define pagerBeginReadTransaction(z) SQLITE_OK 816 #endif 817 818 #ifndef NDEBUG 819 /* 820 ** Usage: 821 ** 822 ** assert( assert_pager_state(pPager) ); 823 ** 824 ** This function runs many asserts to try to find inconsistencies in 825 ** the internal state of the Pager object. 826 */ 827 static int assert_pager_state(Pager *p){ 828 Pager *pPager = p; 829 830 /* State must be valid. */ 831 assert( p->eState==PAGER_OPEN 832 || p->eState==PAGER_READER 833 || p->eState==PAGER_WRITER_LOCKED 834 || p->eState==PAGER_WRITER_CACHEMOD 835 || p->eState==PAGER_WRITER_DBMOD 836 || p->eState==PAGER_WRITER_FINISHED 837 || p->eState==PAGER_ERROR 838 ); 839 840 /* Regardless of the current state, a temp-file connection always behaves 841 ** as if it has an exclusive lock on the database file. It never updates 842 ** the change-counter field, so the changeCountDone flag is always set. 843 */ 844 assert( p->tempFile==0 || p->eLock==EXCLUSIVE_LOCK ); 845 assert( p->tempFile==0 || pPager->changeCountDone ); 846 847 /* If the useJournal flag is clear, the journal-mode must be "OFF". 848 ** And if the journal-mode is "OFF", the journal file must not be open. 849 */ 850 assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->useJournal ); 851 assert( p->journalMode!=PAGER_JOURNALMODE_OFF || !isOpen(p->jfd) ); 852 853 /* Check that MEMDB implies noSync. And an in-memory journal. Since 854 ** this means an in-memory pager performs no IO at all, it cannot encounter 855 ** either SQLITE_IOERR or SQLITE_FULL during rollback or while finalizing 856 ** a journal file. (although the in-memory journal implementation may 857 ** return SQLITE_IOERR_NOMEM while the journal file is being written). It 858 ** is therefore not possible for an in-memory pager to enter the ERROR 859 ** state. 860 */ 861 if( MEMDB ){ 862 assert( p->noSync ); 863 assert( p->journalMode==PAGER_JOURNALMODE_OFF 864 || p->journalMode==PAGER_JOURNALMODE_MEMORY 865 ); 866 assert( p->eState!=PAGER_ERROR && p->eState!=PAGER_OPEN ); 867 assert( pagerUseWal(p)==0 ); 868 } 869 870 /* If changeCountDone is set, a RESERVED lock or greater must be held 871 ** on the file. 872 */ 873 assert( pPager->changeCountDone==0 || pPager->eLock>=RESERVED_LOCK ); 874 assert( p->eLock!=PENDING_LOCK ); 875 876 switch( p->eState ){ 877 case PAGER_OPEN: 878 assert( !MEMDB ); 879 assert( pPager->errCode==SQLITE_OK ); 880 assert( sqlite3PcacheRefCount(pPager->pPCache)==0 || pPager->tempFile ); 881 break; 882 883 case PAGER_READER: 884 assert( pPager->errCode==SQLITE_OK ); 885 assert( p->eLock!=UNKNOWN_LOCK ); 886 assert( p->eLock>=SHARED_LOCK ); 887 break; 888 889 case PAGER_WRITER_LOCKED: 890 assert( p->eLock!=UNKNOWN_LOCK ); 891 assert( pPager->errCode==SQLITE_OK ); 892 if( !pagerUseWal(pPager) ){ 893 assert( p->eLock>=RESERVED_LOCK ); 894 } 895 assert( pPager->dbSize==pPager->dbOrigSize ); 896 assert( pPager->dbOrigSize==pPager->dbFileSize ); 897 assert( pPager->dbOrigSize==pPager->dbHintSize ); 898 assert( pPager->setMaster==0 ); 899 break; 900 901 case PAGER_WRITER_CACHEMOD: 902 assert( p->eLock!=UNKNOWN_LOCK ); 903 assert( pPager->errCode==SQLITE_OK ); 904 if( !pagerUseWal(pPager) ){ 905 /* It is possible that if journal_mode=wal here that neither the 906 ** journal file nor the WAL file are open. This happens during 907 ** a rollback transaction that switches from journal_mode=off 908 ** to journal_mode=wal. 909 */ 910 assert( p->eLock>=RESERVED_LOCK ); 911 assert( isOpen(p->jfd) 912 || p->journalMode==PAGER_JOURNALMODE_OFF 913 || p->journalMode==PAGER_JOURNALMODE_WAL 914 ); 915 } 916 assert( pPager->dbOrigSize==pPager->dbFileSize ); 917 assert( pPager->dbOrigSize==pPager->dbHintSize ); 918 break; 919 920 case PAGER_WRITER_DBMOD: 921 assert( p->eLock==EXCLUSIVE_LOCK ); 922 assert( pPager->errCode==SQLITE_OK ); 923 assert( !pagerUseWal(pPager) ); 924 assert( p->eLock>=EXCLUSIVE_LOCK ); 925 assert( isOpen(p->jfd) 926 || p->journalMode==PAGER_JOURNALMODE_OFF 927 || p->journalMode==PAGER_JOURNALMODE_WAL 928 ); 929 assert( pPager->dbOrigSize<=pPager->dbHintSize ); 930 break; 931 932 case PAGER_WRITER_FINISHED: 933 assert( p->eLock==EXCLUSIVE_LOCK ); 934 assert( pPager->errCode==SQLITE_OK ); 935 assert( !pagerUseWal(pPager) ); 936 assert( isOpen(p->jfd) 937 || p->journalMode==PAGER_JOURNALMODE_OFF 938 || p->journalMode==PAGER_JOURNALMODE_WAL 939 ); 940 break; 941 942 case PAGER_ERROR: 943 /* There must be at least one outstanding reference to the pager if 944 ** in ERROR state. Otherwise the pager should have already dropped 945 ** back to OPEN state. 946 */ 947 assert( pPager->errCode!=SQLITE_OK ); 948 assert( sqlite3PcacheRefCount(pPager->pPCache)>0 ); 949 break; 950 } 951 952 return 1; 953 } 954 #endif /* ifndef NDEBUG */ 955 956 #ifdef SQLITE_DEBUG 957 /* 958 ** Return a pointer to a human readable string in a static buffer 959 ** containing the state of the Pager object passed as an argument. This 960 ** is intended to be used within debuggers. For example, as an alternative 961 ** to "print *pPager" in gdb: 962 ** 963 ** (gdb) printf "%s", print_pager_state(pPager) 964 */ 965 static char *print_pager_state(Pager *p){ 966 static char zRet[1024]; 967 968 sqlite3_snprintf(1024, zRet, 969 "Filename: %s\n" 970 "State: %s errCode=%d\n" 971 "Lock: %s\n" 972 "Locking mode: locking_mode=%s\n" 973 "Journal mode: journal_mode=%s\n" 974 "Backing store: tempFile=%d memDb=%d useJournal=%d\n" 975 "Journal: journalOff=%lld journalHdr=%lld\n" 976 "Size: dbsize=%d dbOrigSize=%d dbFileSize=%d\n" 977 , p->zFilename 978 , p->eState==PAGER_OPEN ? "OPEN" : 979 p->eState==PAGER_READER ? "READER" : 980 p->eState==PAGER_WRITER_LOCKED ? "WRITER_LOCKED" : 981 p->eState==PAGER_WRITER_CACHEMOD ? "WRITER_CACHEMOD" : 982 p->eState==PAGER_WRITER_DBMOD ? "WRITER_DBMOD" : 983 p->eState==PAGER_WRITER_FINISHED ? "WRITER_FINISHED" : 984 p->eState==PAGER_ERROR ? "ERROR" : "?error?" 985 , (int)p->errCode 986 , p->eLock==NO_LOCK ? "NO_LOCK" : 987 p->eLock==RESERVED_LOCK ? "RESERVED" : 988 p->eLock==EXCLUSIVE_LOCK ? "EXCLUSIVE" : 989 p->eLock==SHARED_LOCK ? "SHARED" : 990 p->eLock==UNKNOWN_LOCK ? "UNKNOWN" : "?error?" 991 , p->exclusiveMode ? "exclusive" : "normal" 992 , p->journalMode==PAGER_JOURNALMODE_MEMORY ? "memory" : 993 p->journalMode==PAGER_JOURNALMODE_OFF ? "off" : 994 p->journalMode==PAGER_JOURNALMODE_DELETE ? "delete" : 995 p->journalMode==PAGER_JOURNALMODE_PERSIST ? "persist" : 996 p->journalMode==PAGER_JOURNALMODE_TRUNCATE ? "truncate" : 997 p->journalMode==PAGER_JOURNALMODE_WAL ? "wal" : "?error?" 998 , (int)p->tempFile, (int)p->memDb, (int)p->useJournal 999 , p->journalOff, p->journalHdr 1000 , (int)p->dbSize, (int)p->dbOrigSize, (int)p->dbFileSize 1001 ); 1002 1003 return zRet; 1004 } 1005 #endif 1006 1007 /* 1008 ** Return true if it is necessary to write page *pPg into the sub-journal. 1009 ** A page needs to be written into the sub-journal if there exists one 1010 ** or more open savepoints for which: 1011 ** 1012 ** * The page-number is less than or equal to PagerSavepoint.nOrig, and 1013 ** * The bit corresponding to the page-number is not set in 1014 ** PagerSavepoint.pInSavepoint. 1015 */ 1016 static int subjRequiresPage(PgHdr *pPg){ 1017 Pgno pgno = pPg->pgno; 1018 Pager *pPager = pPg->pPager; 1019 int i; 1020 for(i=0; i<pPager->nSavepoint; i++){ 1021 PagerSavepoint *p = &pPager->aSavepoint[i]; 1022 if( p->nOrig>=pgno && 0==sqlite3BitvecTest(p->pInSavepoint, pgno) ){ 1023 return 1; 1024 } 1025 } 1026 return 0; 1027 } 1028 1029 /* 1030 ** Return true if the page is already in the journal file. 1031 */ 1032 static int pageInJournal(PgHdr *pPg){ 1033 return sqlite3BitvecTest(pPg->pPager->pInJournal, pPg->pgno); 1034 } 1035 1036 /* 1037 ** Read a 32-bit integer from the given file descriptor. Store the integer 1038 ** that is read in *pRes. Return SQLITE_OK if everything worked, or an 1039 ** error code is something goes wrong. 1040 ** 1041 ** All values are stored on disk as big-endian. 1042 */ 1043 static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){ 1044 unsigned char ac[4]; 1045 int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset); 1046 if( rc==SQLITE_OK ){ 1047 *pRes = sqlite3Get4byte(ac); 1048 } 1049 return rc; 1050 } 1051 1052 /* 1053 ** Write a 32-bit integer into a string buffer in big-endian byte order. 1054 */ 1055 #define put32bits(A,B) sqlite3Put4byte((u8*)A,B) 1056 1057 1058 /* 1059 ** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK 1060 ** on success or an error code is something goes wrong. 1061 */ 1062 static int write32bits(sqlite3_file *fd, i64 offset, u32 val){ 1063 char ac[4]; 1064 put32bits(ac, val); 1065 return sqlite3OsWrite(fd, ac, 4, offset); 1066 } 1067 1068 /* 1069 ** Unlock the database file to level eLock, which must be either NO_LOCK 1070 ** or SHARED_LOCK. Regardless of whether or not the call to xUnlock() 1071 ** succeeds, set the Pager.eLock variable to match the (attempted) new lock. 1072 ** 1073 ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is 1074 ** called, do not modify it. See the comment above the #define of 1075 ** UNKNOWN_LOCK for an explanation of this. 1076 */ 1077 static int pagerUnlockDb(Pager *pPager, int eLock){ 1078 int rc = SQLITE_OK; 1079 1080 assert( !pPager->exclusiveMode || pPager->eLock==eLock ); 1081 assert( eLock==NO_LOCK || eLock==SHARED_LOCK ); 1082 assert( eLock!=NO_LOCK || pagerUseWal(pPager)==0 ); 1083 if( isOpen(pPager->fd) ){ 1084 assert( pPager->eLock>=eLock ); 1085 rc = sqlite3OsUnlock(pPager->fd, eLock); 1086 if( pPager->eLock!=UNKNOWN_LOCK ){ 1087 pPager->eLock = (u8)eLock; 1088 } 1089 IOTRACE(("UNLOCK %p %d\n", pPager, eLock)) 1090 } 1091 return rc; 1092 } 1093 1094 /* 1095 ** Lock the database file to level eLock, which must be either SHARED_LOCK, 1096 ** RESERVED_LOCK or EXCLUSIVE_LOCK. If the caller is successful, set the 1097 ** Pager.eLock variable to the new locking state. 1098 ** 1099 ** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is 1100 ** called, do not modify it unless the new locking state is EXCLUSIVE_LOCK. 1101 ** See the comment above the #define of UNKNOWN_LOCK for an explanation 1102 ** of this. 1103 */ 1104 static int pagerLockDb(Pager *pPager, int eLock){ 1105 int rc = SQLITE_OK; 1106 1107 assert( eLock==SHARED_LOCK || eLock==RESERVED_LOCK || eLock==EXCLUSIVE_LOCK ); 1108 if( pPager->eLock<eLock || pPager->eLock==UNKNOWN_LOCK ){ 1109 rc = sqlite3OsLock(pPager->fd, eLock); 1110 if( rc==SQLITE_OK && (pPager->eLock!=UNKNOWN_LOCK||eLock==EXCLUSIVE_LOCK) ){ 1111 pPager->eLock = (u8)eLock; 1112 IOTRACE(("LOCK %p %d\n", pPager, eLock)) 1113 } 1114 } 1115 return rc; 1116 } 1117 1118 /* 1119 ** This function determines whether or not the atomic-write optimization 1120 ** can be used with this pager. The optimization can be used if: 1121 ** 1122 ** (a) the value returned by OsDeviceCharacteristics() indicates that 1123 ** a database page may be written atomically, and 1124 ** (b) the value returned by OsSectorSize() is less than or equal 1125 ** to the page size. 1126 ** 1127 ** The optimization is also always enabled for temporary files. It is 1128 ** an error to call this function if pPager is opened on an in-memory 1129 ** database. 1130 ** 1131 ** If the optimization cannot be used, 0 is returned. If it can be used, 1132 ** then the value returned is the size of the journal file when it 1133 ** contains rollback data for exactly one page. 1134 */ 1135 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 1136 static int jrnlBufferSize(Pager *pPager){ 1137 assert( !MEMDB ); 1138 if( !pPager->tempFile ){ 1139 int dc; /* Device characteristics */ 1140 int nSector; /* Sector size */ 1141 int szPage; /* Page size */ 1142 1143 assert( isOpen(pPager->fd) ); 1144 dc = sqlite3OsDeviceCharacteristics(pPager->fd); 1145 nSector = pPager->sectorSize; 1146 szPage = pPager->pageSize; 1147 1148 assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); 1149 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); 1150 if( 0==(dc&(SQLITE_IOCAP_ATOMIC|(szPage>>8)) || nSector>szPage) ){ 1151 return 0; 1152 } 1153 } 1154 1155 return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager); 1156 } 1157 #endif 1158 1159 /* 1160 ** If SQLITE_CHECK_PAGES is defined then we do some sanity checking 1161 ** on the cache using a hash function. This is used for testing 1162 ** and debugging only. 1163 */ 1164 #ifdef SQLITE_CHECK_PAGES 1165 /* 1166 ** Return a 32-bit hash of the page data for pPage. 1167 */ 1168 static u32 pager_datahash(int nByte, unsigned char *pData){ 1169 u32 hash = 0; 1170 int i; 1171 for(i=0; i<nByte; i++){ 1172 hash = (hash*1039) + pData[i]; 1173 } 1174 return hash; 1175 } 1176 static u32 pager_pagehash(PgHdr *pPage){ 1177 return pager_datahash(pPage->pPager->pageSize, (unsigned char *)pPage->pData); 1178 } 1179 static void pager_set_pagehash(PgHdr *pPage){ 1180 pPage->pageHash = pager_pagehash(pPage); 1181 } 1182 1183 /* 1184 ** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES 1185 ** is defined, and NDEBUG is not defined, an assert() statement checks 1186 ** that the page is either dirty or still matches the calculated page-hash. 1187 */ 1188 #define CHECK_PAGE(x) checkPage(x) 1189 static void checkPage(PgHdr *pPg){ 1190 Pager *pPager = pPg->pPager; 1191 assert( pPager->eState!=PAGER_ERROR ); 1192 assert( (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) ); 1193 } 1194 1195 #else 1196 #define pager_datahash(X,Y) 0 1197 #define pager_pagehash(X) 0 1198 #define pager_set_pagehash(X) 1199 #define CHECK_PAGE(x) 1200 #endif /* SQLITE_CHECK_PAGES */ 1201 1202 /* 1203 ** When this is called the journal file for pager pPager must be open. 1204 ** This function attempts to read a master journal file name from the 1205 ** end of the file and, if successful, copies it into memory supplied 1206 ** by the caller. See comments above writeMasterJournal() for the format 1207 ** used to store a master journal file name at the end of a journal file. 1208 ** 1209 ** zMaster must point to a buffer of at least nMaster bytes allocated by 1210 ** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is 1211 ** enough space to write the master journal name). If the master journal 1212 ** name in the journal is longer than nMaster bytes (including a 1213 ** nul-terminator), then this is handled as if no master journal name 1214 ** were present in the journal. 1215 ** 1216 ** If a master journal file name is present at the end of the journal 1217 ** file, then it is copied into the buffer pointed to by zMaster. A 1218 ** nul-terminator byte is appended to the buffer following the master 1219 ** journal file name. 1220 ** 1221 ** If it is determined that no master journal file name is present 1222 ** zMaster[0] is set to 0 and SQLITE_OK returned. 1223 ** 1224 ** If an error occurs while reading from the journal file, an SQLite 1225 ** error code is returned. 1226 */ 1227 static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, u32 nMaster){ 1228 int rc; /* Return code */ 1229 u32 len; /* Length in bytes of master journal name */ 1230 i64 szJ; /* Total size in bytes of journal file pJrnl */ 1231 u32 cksum; /* MJ checksum value read from journal */ 1232 u32 u; /* Unsigned loop counter */ 1233 unsigned char aMagic[8]; /* A buffer to hold the magic header */ 1234 zMaster[0] = '\0'; 1235 1236 if( SQLITE_OK!=(rc = sqlite3OsFileSize(pJrnl, &szJ)) 1237 || szJ<16 1238 || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-16, &len)) 1239 || len>=nMaster 1240 || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-12, &cksum)) 1241 || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8)) 1242 || memcmp(aMagic, aJournalMagic, 8) 1243 || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len)) 1244 ){ 1245 return rc; 1246 } 1247 1248 /* See if the checksum matches the master journal name */ 1249 for(u=0; u<len; u++){ 1250 cksum -= zMaster[u]; 1251 } 1252 if( cksum ){ 1253 /* If the checksum doesn't add up, then one or more of the disk sectors 1254 ** containing the master journal filename is corrupted. This means 1255 ** definitely roll back, so just return SQLITE_OK and report a (nul) 1256 ** master-journal filename. 1257 */ 1258 len = 0; 1259 } 1260 zMaster[len] = '\0'; 1261 1262 return SQLITE_OK; 1263 } 1264 1265 /* 1266 ** Return the offset of the sector boundary at or immediately 1267 ** following the value in pPager->journalOff, assuming a sector 1268 ** size of pPager->sectorSize bytes. 1269 ** 1270 ** i.e for a sector size of 512: 1271 ** 1272 ** Pager.journalOff Return value 1273 ** --------------------------------------- 1274 ** 0 0 1275 ** 512 512 1276 ** 100 512 1277 ** 2000 2048 1278 ** 1279 */ 1280 static i64 journalHdrOffset(Pager *pPager){ 1281 i64 offset = 0; 1282 i64 c = pPager->journalOff; 1283 if( c ){ 1284 offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager); 1285 } 1286 assert( offset%JOURNAL_HDR_SZ(pPager)==0 ); 1287 assert( offset>=c ); 1288 assert( (offset-c)<JOURNAL_HDR_SZ(pPager) ); 1289 return offset; 1290 } 1291 1292 /* 1293 ** The journal file must be open when this function is called. 1294 ** 1295 ** This function is a no-op if the journal file has not been written to 1296 ** within the current transaction (i.e. if Pager.journalOff==0). 1297 ** 1298 ** If doTruncate is non-zero or the Pager.journalSizeLimit variable is 1299 ** set to 0, then truncate the journal file to zero bytes in size. Otherwise, 1300 ** zero the 28-byte header at the start of the journal file. In either case, 1301 ** if the pager is not in no-sync mode, sync the journal file immediately 1302 ** after writing or truncating it. 1303 ** 1304 ** If Pager.journalSizeLimit is set to a positive, non-zero value, and 1305 ** following the truncation or zeroing described above the size of the 1306 ** journal file in bytes is larger than this value, then truncate the 1307 ** journal file to Pager.journalSizeLimit bytes. The journal file does 1308 ** not need to be synced following this operation. 1309 ** 1310 ** If an IO error occurs, abandon processing and return the IO error code. 1311 ** Otherwise, return SQLITE_OK. 1312 */ 1313 static int zeroJournalHdr(Pager *pPager, int doTruncate){ 1314 int rc = SQLITE_OK; /* Return code */ 1315 assert( isOpen(pPager->jfd) ); 1316 if( pPager->journalOff ){ 1317 const i64 iLimit = pPager->journalSizeLimit; /* Local cache of jsl */ 1318 1319 IOTRACE(("JZEROHDR %p\n", pPager)) 1320 if( doTruncate || iLimit==0 ){ 1321 rc = sqlite3OsTruncate(pPager->jfd, 0); 1322 }else{ 1323 static const char zeroHdr[28] = {0}; 1324 rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0); 1325 } 1326 if( rc==SQLITE_OK && !pPager->noSync ){ 1327 rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->syncFlags); 1328 } 1329 1330 /* At this point the transaction is committed but the write lock 1331 ** is still held on the file. If there is a size limit configured for 1332 ** the persistent journal and the journal file currently consumes more 1333 ** space than that limit allows for, truncate it now. There is no need 1334 ** to sync the file following this operation. 1335 */ 1336 if( rc==SQLITE_OK && iLimit>0 ){ 1337 i64 sz; 1338 rc = sqlite3OsFileSize(pPager->jfd, &sz); 1339 if( rc==SQLITE_OK && sz>iLimit ){ 1340 rc = sqlite3OsTruncate(pPager->jfd, iLimit); 1341 } 1342 } 1343 } 1344 return rc; 1345 } 1346 1347 /* 1348 ** The journal file must be open when this routine is called. A journal 1349 ** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the 1350 ** current location. 1351 ** 1352 ** The format for the journal header is as follows: 1353 ** - 8 bytes: Magic identifying journal format. 1354 ** - 4 bytes: Number of records in journal, or -1 no-sync mode is on. 1355 ** - 4 bytes: Random number used for page hash. 1356 ** - 4 bytes: Initial database page count. 1357 ** - 4 bytes: Sector size used by the process that wrote this journal. 1358 ** - 4 bytes: Database page size. 1359 ** 1360 ** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space. 1361 */ 1362 static int writeJournalHdr(Pager *pPager){ 1363 int rc = SQLITE_OK; /* Return code */ 1364 char *zHeader = pPager->pTmpSpace; /* Temporary space used to build header */ 1365 u32 nHeader = (u32)pPager->pageSize;/* Size of buffer pointed to by zHeader */ 1366 u32 nWrite; /* Bytes of header sector written */ 1367 int ii; /* Loop counter */ 1368 1369 assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ 1370 1371 if( nHeader>JOURNAL_HDR_SZ(pPager) ){ 1372 nHeader = JOURNAL_HDR_SZ(pPager); 1373 } 1374 1375 /* If there are active savepoints and any of them were created 1376 ** since the most recent journal header was written, update the 1377 ** PagerSavepoint.iHdrOffset fields now. 1378 */ 1379 for(ii=0; ii<pPager->nSavepoint; ii++){ 1380 if( pPager->aSavepoint[ii].iHdrOffset==0 ){ 1381 pPager->aSavepoint[ii].iHdrOffset = pPager->journalOff; 1382 } 1383 } 1384 1385 pPager->journalHdr = pPager->journalOff = journalHdrOffset(pPager); 1386 1387 /* 1388 ** Write the nRec Field - the number of page records that follow this 1389 ** journal header. Normally, zero is written to this value at this time. 1390 ** After the records are added to the journal (and the journal synced, 1391 ** if in full-sync mode), the zero is overwritten with the true number 1392 ** of records (see syncJournal()). 1393 ** 1394 ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When 1395 ** reading the journal this value tells SQLite to assume that the 1396 ** rest of the journal file contains valid page records. This assumption 1397 ** is dangerous, as if a failure occurred whilst writing to the journal 1398 ** file it may contain some garbage data. There are two scenarios 1399 ** where this risk can be ignored: 1400 ** 1401 ** * When the pager is in no-sync mode. Corruption can follow a 1402 ** power failure in this case anyway. 1403 ** 1404 ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees 1405 ** that garbage data is never appended to the journal file. 1406 */ 1407 assert( isOpen(pPager->fd) || pPager->noSync ); 1408 if( pPager->noSync || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY) 1409 || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) 1410 ){ 1411 memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); 1412 put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff); 1413 }else{ 1414 memset(zHeader, 0, sizeof(aJournalMagic)+4); 1415 } 1416 1417 /* The random check-hash initializer */ 1418 sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit); 1419 put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit); 1420 /* The initial database size */ 1421 put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbOrigSize); 1422 /* The assumed sector size for this process */ 1423 put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize); 1424 1425 /* The page size */ 1426 put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize); 1427 1428 /* Initializing the tail of the buffer is not necessary. Everything 1429 ** works find if the following memset() is omitted. But initializing 1430 ** the memory prevents valgrind from complaining, so we are willing to 1431 ** take the performance hit. 1432 */ 1433 memset(&zHeader[sizeof(aJournalMagic)+20], 0, 1434 nHeader-(sizeof(aJournalMagic)+20)); 1435 1436 /* In theory, it is only necessary to write the 28 bytes that the 1437 ** journal header consumes to the journal file here. Then increment the 1438 ** Pager.journalOff variable by JOURNAL_HDR_SZ so that the next 1439 ** record is written to the following sector (leaving a gap in the file 1440 ** that will be implicitly filled in by the OS). 1441 ** 1442 ** However it has been discovered that on some systems this pattern can 1443 ** be significantly slower than contiguously writing data to the file, 1444 ** even if that means explicitly writing data to the block of 1445 ** (JOURNAL_HDR_SZ - 28) bytes that will not be used. So that is what 1446 ** is done. 1447 ** 1448 ** The loop is required here in case the sector-size is larger than the 1449 ** database page size. Since the zHeader buffer is only Pager.pageSize 1450 ** bytes in size, more than one call to sqlite3OsWrite() may be required 1451 ** to populate the entire journal header sector. 1452 */ 1453 for(nWrite=0; rc==SQLITE_OK&&nWrite<JOURNAL_HDR_SZ(pPager); nWrite+=nHeader){ 1454 IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, nHeader)) 1455 rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff); 1456 assert( pPager->journalHdr <= pPager->journalOff ); 1457 pPager->journalOff += nHeader; 1458 } 1459 1460 return rc; 1461 } 1462 1463 /* 1464 ** The journal file must be open when this is called. A journal header file 1465 ** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal 1466 ** file. The current location in the journal file is given by 1467 ** pPager->journalOff. See comments above function writeJournalHdr() for 1468 ** a description of the journal header format. 1469 ** 1470 ** If the header is read successfully, *pNRec is set to the number of 1471 ** page records following this header and *pDbSize is set to the size of the 1472 ** database before the transaction began, in pages. Also, pPager->cksumInit 1473 ** is set to the value read from the journal header. SQLITE_OK is returned 1474 ** in this case. 1475 ** 1476 ** If the journal header file appears to be corrupted, SQLITE_DONE is 1477 ** returned and *pNRec and *PDbSize are undefined. If JOURNAL_HDR_SZ bytes 1478 ** cannot be read from the journal file an error code is returned. 1479 */ 1480 static int readJournalHdr( 1481 Pager *pPager, /* Pager object */ 1482 int isHot, 1483 i64 journalSize, /* Size of the open journal file in bytes */ 1484 u32 *pNRec, /* OUT: Value read from the nRec field */ 1485 u32 *pDbSize /* OUT: Value of original database size field */ 1486 ){ 1487 int rc; /* Return code */ 1488 unsigned char aMagic[8]; /* A buffer to hold the magic header */ 1489 i64 iHdrOff; /* Offset of journal header being read */ 1490 1491 assert( isOpen(pPager->jfd) ); /* Journal file must be open. */ 1492 1493 /* Advance Pager.journalOff to the start of the next sector. If the 1494 ** journal file is too small for there to be a header stored at this 1495 ** point, return SQLITE_DONE. 1496 */ 1497 pPager->journalOff = journalHdrOffset(pPager); 1498 if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){ 1499 return SQLITE_DONE; 1500 } 1501 iHdrOff = pPager->journalOff; 1502 1503 /* Read in the first 8 bytes of the journal header. If they do not match 1504 ** the magic string found at the start of each journal header, return 1505 ** SQLITE_DONE. If an IO error occurs, return an error code. Otherwise, 1506 ** proceed. 1507 */ 1508 if( isHot || iHdrOff!=pPager->journalHdr ){ 1509 rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), iHdrOff); 1510 if( rc ){ 1511 return rc; 1512 } 1513 if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){ 1514 return SQLITE_DONE; 1515 } 1516 } 1517 1518 /* Read the first three 32-bit fields of the journal header: The nRec 1519 ** field, the checksum-initializer and the database size at the start 1520 ** of the transaction. Return an error code if anything goes wrong. 1521 */ 1522 if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+8, pNRec)) 1523 || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+12, &pPager->cksumInit)) 1524 || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+16, pDbSize)) 1525 ){ 1526 return rc; 1527 } 1528 1529 if( pPager->journalOff==0 ){ 1530 u32 iPageSize; /* Page-size field of journal header */ 1531 u32 iSectorSize; /* Sector-size field of journal header */ 1532 1533 /* Read the page-size and sector-size journal header fields. */ 1534 if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+20, &iSectorSize)) 1535 || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+24, &iPageSize)) 1536 ){ 1537 return rc; 1538 } 1539 1540 /* Versions of SQLite prior to 3.5.8 set the page-size field of the 1541 ** journal header to zero. In this case, assume that the Pager.pageSize 1542 ** variable is already set to the correct page size. 1543 */ 1544 if( iPageSize==0 ){ 1545 iPageSize = pPager->pageSize; 1546 } 1547 1548 /* Check that the values read from the page-size and sector-size fields 1549 ** are within range. To be 'in range', both values need to be a power 1550 ** of two greater than or equal to 512 or 32, and not greater than their 1551 ** respective compile time maximum limits. 1552 */ 1553 if( iPageSize<512 || iSectorSize<32 1554 || iPageSize>SQLITE_MAX_PAGE_SIZE || iSectorSize>MAX_SECTOR_SIZE 1555 || ((iPageSize-1)&iPageSize)!=0 || ((iSectorSize-1)&iSectorSize)!=0 1556 ){ 1557 /* If the either the page-size or sector-size in the journal-header is 1558 ** invalid, then the process that wrote the journal-header must have 1559 ** crashed before the header was synced. In this case stop reading 1560 ** the journal file here. 1561 */ 1562 return SQLITE_DONE; 1563 } 1564 1565 /* Update the page-size to match the value read from the journal. 1566 ** Use a testcase() macro to make sure that malloc failure within 1567 ** PagerSetPagesize() is tested. 1568 */ 1569 rc = sqlite3PagerSetPagesize(pPager, &iPageSize, -1); 1570 testcase( rc!=SQLITE_OK ); 1571 1572 /* Update the assumed sector-size to match the value used by 1573 ** the process that created this journal. If this journal was 1574 ** created by a process other than this one, then this routine 1575 ** is being called from within pager_playback(). The local value 1576 ** of Pager.sectorSize is restored at the end of that routine. 1577 */ 1578 pPager->sectorSize = iSectorSize; 1579 } 1580 1581 pPager->journalOff += JOURNAL_HDR_SZ(pPager); 1582 return rc; 1583 } 1584 1585 1586 /* 1587 ** Write the supplied master journal name into the journal file for pager 1588 ** pPager at the current location. The master journal name must be the last 1589 ** thing written to a journal file. If the pager is in full-sync mode, the 1590 ** journal file descriptor is advanced to the next sector boundary before 1591 ** anything is written. The format is: 1592 ** 1593 ** + 4 bytes: PAGER_MJ_PGNO. 1594 ** + N bytes: Master journal filename in utf-8. 1595 ** + 4 bytes: N (length of master journal name in bytes, no nul-terminator). 1596 ** + 4 bytes: Master journal name checksum. 1597 ** + 8 bytes: aJournalMagic[]. 1598 ** 1599 ** The master journal page checksum is the sum of the bytes in the master 1600 ** journal name, where each byte is interpreted as a signed 8-bit integer. 1601 ** 1602 ** If zMaster is a NULL pointer (occurs for a single database transaction), 1603 ** this call is a no-op. 1604 */ 1605 static int writeMasterJournal(Pager *pPager, const char *zMaster){ 1606 int rc; /* Return code */ 1607 int nMaster; /* Length of string zMaster */ 1608 i64 iHdrOff; /* Offset of header in journal file */ 1609 i64 jrnlSize; /* Size of journal file on disk */ 1610 u32 cksum = 0; /* Checksum of string zMaster */ 1611 1612 assert( pPager->setMaster==0 ); 1613 assert( !pagerUseWal(pPager) ); 1614 1615 if( !zMaster 1616 || pPager->journalMode==PAGER_JOURNALMODE_MEMORY 1617 || pPager->journalMode==PAGER_JOURNALMODE_OFF 1618 ){ 1619 return SQLITE_OK; 1620 } 1621 pPager->setMaster = 1; 1622 assert( isOpen(pPager->jfd) ); 1623 assert( pPager->journalHdr <= pPager->journalOff ); 1624 1625 /* Calculate the length in bytes and the checksum of zMaster */ 1626 for(nMaster=0; zMaster[nMaster]; nMaster++){ 1627 cksum += zMaster[nMaster]; 1628 } 1629 1630 /* If in full-sync mode, advance to the next disk sector before writing 1631 ** the master journal name. This is in case the previous page written to 1632 ** the journal has already been synced. 1633 */ 1634 if( pPager->fullSync ){ 1635 pPager->journalOff = journalHdrOffset(pPager); 1636 } 1637 iHdrOff = pPager->journalOff; 1638 1639 /* Write the master journal data to the end of the journal file. If 1640 ** an error occurs, return the error code to the caller. 1641 */ 1642 if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_MJ_PGNO(pPager)))) 1643 || (0 != (rc = sqlite3OsWrite(pPager->jfd, zMaster, nMaster, iHdrOff+4))) 1644 || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster, nMaster))) 1645 || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster+4, cksum))) 1646 || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8, iHdrOff+4+nMaster+8))) 1647 ){ 1648 return rc; 1649 } 1650 pPager->journalOff += (nMaster+20); 1651 1652 /* If the pager is in peristent-journal mode, then the physical 1653 ** journal-file may extend past the end of the master-journal name 1654 ** and 8 bytes of magic data just written to the file. This is 1655 ** dangerous because the code to rollback a hot-journal file 1656 ** will not be able to find the master-journal name to determine 1657 ** whether or not the journal is hot. 1658 ** 1659 ** Easiest thing to do in this scenario is to truncate the journal 1660 ** file to the required size. 1661 */ 1662 if( SQLITE_OK==(rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize)) 1663 && jrnlSize>pPager->journalOff 1664 ){ 1665 rc = sqlite3OsTruncate(pPager->jfd, pPager->journalOff); 1666 } 1667 return rc; 1668 } 1669 1670 /* 1671 ** Find a page in the hash table given its page number. Return 1672 ** a pointer to the page or NULL if the requested page is not 1673 ** already in memory. 1674 */ 1675 static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){ 1676 PgHdr *p; /* Return value */ 1677 1678 /* It is not possible for a call to PcacheFetch() with createFlag==0 to 1679 ** fail, since no attempt to allocate dynamic memory will be made. 1680 */ 1681 (void)sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &p); 1682 return p; 1683 } 1684 1685 /* 1686 ** Discard the entire contents of the in-memory page-cache. 1687 */ 1688 static void pager_reset(Pager *pPager){ 1689 sqlite3BackupRestart(pPager->pBackup); 1690 sqlite3PcacheClear(pPager->pPCache); 1691 } 1692 1693 /* 1694 ** Free all structures in the Pager.aSavepoint[] array and set both 1695 ** Pager.aSavepoint and Pager.nSavepoint to zero. Close the sub-journal 1696 ** if it is open and the pager is not in exclusive mode. 1697 */ 1698 static void releaseAllSavepoints(Pager *pPager){ 1699 int ii; /* Iterator for looping through Pager.aSavepoint */ 1700 for(ii=0; ii<pPager->nSavepoint; ii++){ 1701 sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); 1702 } 1703 if( !pPager->exclusiveMode || sqlite3IsMemJournal(pPager->sjfd) ){ 1704 sqlite3OsClose(pPager->sjfd); 1705 } 1706 sqlite3_free(pPager->aSavepoint); 1707 pPager->aSavepoint = 0; 1708 pPager->nSavepoint = 0; 1709 pPager->nSubRec = 0; 1710 } 1711 1712 /* 1713 ** Set the bit number pgno in the PagerSavepoint.pInSavepoint 1714 ** bitvecs of all open savepoints. Return SQLITE_OK if successful 1715 ** or SQLITE_NOMEM if a malloc failure occurs. 1716 */ 1717 static int addToSavepointBitvecs(Pager *pPager, Pgno pgno){ 1718 int ii; /* Loop counter */ 1719 int rc = SQLITE_OK; /* Result code */ 1720 1721 for(ii=0; ii<pPager->nSavepoint; ii++){ 1722 PagerSavepoint *p = &pPager->aSavepoint[ii]; 1723 if( pgno<=p->nOrig ){ 1724 rc |= sqlite3BitvecSet(p->pInSavepoint, pgno); 1725 testcase( rc==SQLITE_NOMEM ); 1726 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 1727 } 1728 } 1729 return rc; 1730 } 1731 1732 /* 1733 ** This function is a no-op if the pager is in exclusive mode and not 1734 ** in the ERROR state. Otherwise, it switches the pager to PAGER_OPEN 1735 ** state. 1736 ** 1737 ** If the pager is not in exclusive-access mode, the database file is 1738 ** completely unlocked. If the file is unlocked and the file-system does 1739 ** not exhibit the UNDELETABLE_WHEN_OPEN property, the journal file is 1740 ** closed (if it is open). 1741 ** 1742 ** If the pager is in ERROR state when this function is called, the 1743 ** contents of the pager cache are discarded before switching back to 1744 ** the OPEN state. Regardless of whether the pager is in exclusive-mode 1745 ** or not, any journal file left in the file-system will be treated 1746 ** as a hot-journal and rolled back the next time a read-transaction 1747 ** is opened (by this or by any other connection). 1748 */ 1749 static void pager_unlock(Pager *pPager){ 1750 1751 assert( pPager->eState==PAGER_READER 1752 || pPager->eState==PAGER_OPEN 1753 || pPager->eState==PAGER_ERROR 1754 ); 1755 1756 sqlite3BitvecDestroy(pPager->pInJournal); 1757 pPager->pInJournal = 0; 1758 releaseAllSavepoints(pPager); 1759 1760 if( pagerUseWal(pPager) ){ 1761 assert( !isOpen(pPager->jfd) ); 1762 sqlite3WalEndReadTransaction(pPager->pWal); 1763 pPager->eState = PAGER_OPEN; 1764 }else if( !pPager->exclusiveMode ){ 1765 int rc; /* Error code returned by pagerUnlockDb() */ 1766 int iDc = isOpen(pPager->fd)?sqlite3OsDeviceCharacteristics(pPager->fd):0; 1767 1768 /* If the operating system support deletion of open files, then 1769 ** close the journal file when dropping the database lock. Otherwise 1770 ** another connection with journal_mode=delete might delete the file 1771 ** out from under us. 1772 */ 1773 assert( (PAGER_JOURNALMODE_MEMORY & 5)!=1 ); 1774 assert( (PAGER_JOURNALMODE_OFF & 5)!=1 ); 1775 assert( (PAGER_JOURNALMODE_WAL & 5)!=1 ); 1776 assert( (PAGER_JOURNALMODE_DELETE & 5)!=1 ); 1777 assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); 1778 assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); 1779 if( 0==(iDc & SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN) 1780 || 1!=(pPager->journalMode & 5) 1781 ){ 1782 sqlite3OsClose(pPager->jfd); 1783 } 1784 1785 /* If the pager is in the ERROR state and the call to unlock the database 1786 ** file fails, set the current lock to UNKNOWN_LOCK. See the comment 1787 ** above the #define for UNKNOWN_LOCK for an explanation of why this 1788 ** is necessary. 1789 */ 1790 rc = pagerUnlockDb(pPager, NO_LOCK); 1791 if( rc!=SQLITE_OK && pPager->eState==PAGER_ERROR ){ 1792 pPager->eLock = UNKNOWN_LOCK; 1793 } 1794 1795 /* The pager state may be changed from PAGER_ERROR to PAGER_OPEN here 1796 ** without clearing the error code. This is intentional - the error 1797 ** code is cleared and the cache reset in the block below. 1798 */ 1799 assert( pPager->errCode || pPager->eState!=PAGER_ERROR ); 1800 pPager->changeCountDone = 0; 1801 pPager->eState = PAGER_OPEN; 1802 } 1803 1804 /* If Pager.errCode is set, the contents of the pager cache cannot be 1805 ** trusted. Now that there are no outstanding references to the pager, 1806 ** it can safely move back to PAGER_OPEN state. This happens in both 1807 ** normal and exclusive-locking mode. 1808 */ 1809 if( pPager->errCode ){ 1810 assert( !MEMDB ); 1811 pager_reset(pPager); 1812 pPager->changeCountDone = pPager->tempFile; 1813 pPager->eState = PAGER_OPEN; 1814 pPager->errCode = SQLITE_OK; 1815 } 1816 1817 pPager->journalOff = 0; 1818 pPager->journalHdr = 0; 1819 pPager->setMaster = 0; 1820 } 1821 1822 /* 1823 ** This function is called whenever an IOERR or FULL error that requires 1824 ** the pager to transition into the ERROR state may ahve occurred. 1825 ** The first argument is a pointer to the pager structure, the second 1826 ** the error-code about to be returned by a pager API function. The 1827 ** value returned is a copy of the second argument to this function. 1828 ** 1829 ** If the second argument is SQLITE_FULL, SQLITE_IOERR or one of the 1830 ** IOERR sub-codes, the pager enters the ERROR state and the error code 1831 ** is stored in Pager.errCode. While the pager remains in the ERROR state, 1832 ** all major API calls on the Pager will immediately return Pager.errCode. 1833 ** 1834 ** The ERROR state indicates that the contents of the pager-cache 1835 ** cannot be trusted. This state can be cleared by completely discarding 1836 ** the contents of the pager-cache. If a transaction was active when 1837 ** the persistent error occurred, then the rollback journal may need 1838 ** to be replayed to restore the contents of the database file (as if 1839 ** it were a hot-journal). 1840 */ 1841 static int pager_error(Pager *pPager, int rc){ 1842 int rc2 = rc & 0xff; 1843 assert( rc==SQLITE_OK || !MEMDB ); 1844 assert( 1845 pPager->errCode==SQLITE_FULL || 1846 pPager->errCode==SQLITE_OK || 1847 (pPager->errCode & 0xff)==SQLITE_IOERR 1848 ); 1849 if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR ){ 1850 pPager->errCode = rc; 1851 pPager->eState = PAGER_ERROR; 1852 } 1853 return rc; 1854 } 1855 1856 static int pager_truncate(Pager *pPager, Pgno nPage); 1857 1858 /* 1859 ** This routine ends a transaction. A transaction is usually ended by 1860 ** either a COMMIT or a ROLLBACK operation. This routine may be called 1861 ** after rollback of a hot-journal, or if an error occurs while opening 1862 ** the journal file or writing the very first journal-header of a 1863 ** database transaction. 1864 ** 1865 ** This routine is never called in PAGER_ERROR state. If it is called 1866 ** in PAGER_NONE or PAGER_SHARED state and the lock held is less 1867 ** exclusive than a RESERVED lock, it is a no-op. 1868 ** 1869 ** Otherwise, any active savepoints are released. 1870 ** 1871 ** If the journal file is open, then it is "finalized". Once a journal 1872 ** file has been finalized it is not possible to use it to roll back a 1873 ** transaction. Nor will it be considered to be a hot-journal by this 1874 ** or any other database connection. Exactly how a journal is finalized 1875 ** depends on whether or not the pager is running in exclusive mode and 1876 ** the current journal-mode (Pager.journalMode value), as follows: 1877 ** 1878 ** journalMode==MEMORY 1879 ** Journal file descriptor is simply closed. This destroys an 1880 ** in-memory journal. 1881 ** 1882 ** journalMode==TRUNCATE 1883 ** Journal file is truncated to zero bytes in size. 1884 ** 1885 ** journalMode==PERSIST 1886 ** The first 28 bytes of the journal file are zeroed. This invalidates 1887 ** the first journal header in the file, and hence the entire journal 1888 ** file. An invalid journal file cannot be rolled back. 1889 ** 1890 ** journalMode==DELETE 1891 ** The journal file is closed and deleted using sqlite3OsDelete(). 1892 ** 1893 ** If the pager is running in exclusive mode, this method of finalizing 1894 ** the journal file is never used. Instead, if the journalMode is 1895 ** DELETE and the pager is in exclusive mode, the method described under 1896 ** journalMode==PERSIST is used instead. 1897 ** 1898 ** After the journal is finalized, the pager moves to PAGER_READER state. 1899 ** If running in non-exclusive rollback mode, the lock on the file is 1900 ** downgraded to a SHARED_LOCK. 1901 ** 1902 ** SQLITE_OK is returned if no error occurs. If an error occurs during 1903 ** any of the IO operations to finalize the journal file or unlock the 1904 ** database then the IO error code is returned to the user. If the 1905 ** operation to finalize the journal file fails, then the code still 1906 ** tries to unlock the database file if not in exclusive mode. If the 1907 ** unlock operation fails as well, then the first error code related 1908 ** to the first error encountered (the journal finalization one) is 1909 ** returned. 1910 */ 1911 static int pager_end_transaction(Pager *pPager, int hasMaster, int bCommit){ 1912 int rc = SQLITE_OK; /* Error code from journal finalization operation */ 1913 int rc2 = SQLITE_OK; /* Error code from db file unlock operation */ 1914 1915 /* Do nothing if the pager does not have an open write transaction 1916 ** or at least a RESERVED lock. This function may be called when there 1917 ** is no write-transaction active but a RESERVED or greater lock is 1918 ** held under two circumstances: 1919 ** 1920 ** 1. After a successful hot-journal rollback, it is called with 1921 ** eState==PAGER_NONE and eLock==EXCLUSIVE_LOCK. 1922 ** 1923 ** 2. If a connection with locking_mode=exclusive holding an EXCLUSIVE 1924 ** lock switches back to locking_mode=normal and then executes a 1925 ** read-transaction, this function is called with eState==PAGER_READER 1926 ** and eLock==EXCLUSIVE_LOCK when the read-transaction is closed. 1927 */ 1928 assert( assert_pager_state(pPager) ); 1929 assert( pPager->eState!=PAGER_ERROR ); 1930 if( pPager->eState<PAGER_WRITER_LOCKED && pPager->eLock<RESERVED_LOCK ){ 1931 return SQLITE_OK; 1932 } 1933 1934 releaseAllSavepoints(pPager); 1935 assert( isOpen(pPager->jfd) || pPager->pInJournal==0 ); 1936 if( isOpen(pPager->jfd) ){ 1937 assert( !pagerUseWal(pPager) ); 1938 1939 /* Finalize the journal file. */ 1940 if( sqlite3IsMemJournal(pPager->jfd) ){ 1941 assert( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ); 1942 sqlite3OsClose(pPager->jfd); 1943 }else if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE ){ 1944 if( pPager->journalOff==0 ){ 1945 rc = SQLITE_OK; 1946 }else{ 1947 rc = sqlite3OsTruncate(pPager->jfd, 0); 1948 } 1949 pPager->journalOff = 0; 1950 }else if( pPager->journalMode==PAGER_JOURNALMODE_PERSIST 1951 || (pPager->exclusiveMode && pPager->journalMode!=PAGER_JOURNALMODE_WAL) 1952 ){ 1953 rc = zeroJournalHdr(pPager, hasMaster); 1954 pPager->journalOff = 0; 1955 }else{ 1956 /* This branch may be executed with Pager.journalMode==MEMORY if 1957 ** a hot-journal was just rolled back. In this case the journal 1958 ** file should be closed and deleted. If this connection writes to 1959 ** the database file, it will do so using an in-memory journal. 1960 */ 1961 int bDelete = (!pPager->tempFile && sqlite3JournalExists(pPager->jfd)); 1962 assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE 1963 || pPager->journalMode==PAGER_JOURNALMODE_MEMORY 1964 || pPager->journalMode==PAGER_JOURNALMODE_WAL 1965 ); 1966 sqlite3OsClose(pPager->jfd); 1967 if( bDelete ){ 1968 rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); 1969 } 1970 } 1971 } 1972 1973 #ifdef SQLITE_CHECK_PAGES 1974 sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash); 1975 if( pPager->dbSize==0 && sqlite3PcacheRefCount(pPager->pPCache)>0 ){ 1976 PgHdr *p = pager_lookup(pPager, 1); 1977 if( p ){ 1978 p->pageHash = 0; 1979 sqlite3PagerUnref(p); 1980 } 1981 } 1982 #endif 1983 1984 sqlite3BitvecDestroy(pPager->pInJournal); 1985 pPager->pInJournal = 0; 1986 pPager->nRec = 0; 1987 sqlite3PcacheCleanAll(pPager->pPCache); 1988 sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize); 1989 1990 if( pagerUseWal(pPager) ){ 1991 /* Drop the WAL write-lock, if any. Also, if the connection was in 1992 ** locking_mode=exclusive mode but is no longer, drop the EXCLUSIVE 1993 ** lock held on the database file. 1994 */ 1995 rc2 = sqlite3WalEndWriteTransaction(pPager->pWal); 1996 assert( rc2==SQLITE_OK ); 1997 }else if( rc==SQLITE_OK && bCommit && pPager->dbFileSize>pPager->dbSize ){ 1998 /* This branch is taken when committing a transaction in rollback-journal 1999 ** mode if the database file on disk is larger than the database image. 2000 ** At this point the journal has been finalized and the transaction 2001 ** successfully committed, but the EXCLUSIVE lock is still held on the 2002 ** file. So it is safe to truncate the database file to its minimum 2003 ** required size. */ 2004 assert( pPager->eLock==EXCLUSIVE_LOCK ); 2005 rc = pager_truncate(pPager, pPager->dbSize); 2006 } 2007 2008 if( !pPager->exclusiveMode 2009 && (!pagerUseWal(pPager) || sqlite3WalExclusiveMode(pPager->pWal, 0)) 2010 ){ 2011 rc2 = pagerUnlockDb(pPager, SHARED_LOCK); 2012 pPager->changeCountDone = 0; 2013 } 2014 pPager->eState = PAGER_READER; 2015 pPager->setMaster = 0; 2016 2017 return (rc==SQLITE_OK?rc2:rc); 2018 } 2019 2020 /* 2021 ** Execute a rollback if a transaction is active and unlock the 2022 ** database file. 2023 ** 2024 ** If the pager has already entered the ERROR state, do not attempt 2025 ** the rollback at this time. Instead, pager_unlock() is called. The 2026 ** call to pager_unlock() will discard all in-memory pages, unlock 2027 ** the database file and move the pager back to OPEN state. If this 2028 ** means that there is a hot-journal left in the file-system, the next 2029 ** connection to obtain a shared lock on the pager (which may be this one) 2030 ** will roll it back. 2031 ** 2032 ** If the pager has not already entered the ERROR state, but an IO or 2033 ** malloc error occurs during a rollback, then this will itself cause 2034 ** the pager to enter the ERROR state. Which will be cleared by the 2035 ** call to pager_unlock(), as described above. 2036 */ 2037 static void pagerUnlockAndRollback(Pager *pPager){ 2038 if( pPager->eState!=PAGER_ERROR && pPager->eState!=PAGER_OPEN ){ 2039 assert( assert_pager_state(pPager) ); 2040 if( pPager->eState>=PAGER_WRITER_LOCKED ){ 2041 sqlite3BeginBenignMalloc(); 2042 sqlite3PagerRollback(pPager); 2043 sqlite3EndBenignMalloc(); 2044 }else if( !pPager->exclusiveMode ){ 2045 assert( pPager->eState==PAGER_READER ); 2046 pager_end_transaction(pPager, 0, 0); 2047 } 2048 } 2049 pager_unlock(pPager); 2050 } 2051 2052 /* 2053 ** Parameter aData must point to a buffer of pPager->pageSize bytes 2054 ** of data. Compute and return a checksum based ont the contents of the 2055 ** page of data and the current value of pPager->cksumInit. 2056 ** 2057 ** This is not a real checksum. It is really just the sum of the 2058 ** random initial value (pPager->cksumInit) and every 200th byte 2059 ** of the page data, starting with byte offset (pPager->pageSize%200). 2060 ** Each byte is interpreted as an 8-bit unsigned integer. 2061 ** 2062 ** Changing the formula used to compute this checksum results in an 2063 ** incompatible journal file format. 2064 ** 2065 ** If journal corruption occurs due to a power failure, the most likely 2066 ** scenario is that one end or the other of the record will be changed. 2067 ** It is much less likely that the two ends of the journal record will be 2068 ** correct and the middle be corrupt. Thus, this "checksum" scheme, 2069 ** though fast and simple, catches the mostly likely kind of corruption. 2070 */ 2071 static u32 pager_cksum(Pager *pPager, const u8 *aData){ 2072 u32 cksum = pPager->cksumInit; /* Checksum value to return */ 2073 int i = pPager->pageSize-200; /* Loop counter */ 2074 while( i>0 ){ 2075 cksum += aData[i]; 2076 i -= 200; 2077 } 2078 return cksum; 2079 } 2080 2081 /* 2082 ** Report the current page size and number of reserved bytes back 2083 ** to the codec. 2084 */ 2085 #ifdef SQLITE_HAS_CODEC 2086 static void pagerReportSize(Pager *pPager){ 2087 if( pPager->xCodecSizeChng ){ 2088 pPager->xCodecSizeChng(pPager->pCodec, pPager->pageSize, 2089 (int)pPager->nReserve); 2090 } 2091 } 2092 #else 2093 # define pagerReportSize(X) /* No-op if we do not support a codec */ 2094 #endif 2095 2096 /* 2097 ** Read a single page from either the journal file (if isMainJrnl==1) or 2098 ** from the sub-journal (if isMainJrnl==0) and playback that page. 2099 ** The page begins at offset *pOffset into the file. The *pOffset 2100 ** value is increased to the start of the next page in the journal. 2101 ** 2102 ** The main rollback journal uses checksums - the statement journal does 2103 ** not. 2104 ** 2105 ** If the page number of the page record read from the (sub-)journal file 2106 ** is greater than the current value of Pager.dbSize, then playback is 2107 ** skipped and SQLITE_OK is returned. 2108 ** 2109 ** If pDone is not NULL, then it is a record of pages that have already 2110 ** been played back. If the page at *pOffset has already been played back 2111 ** (if the corresponding pDone bit is set) then skip the playback. 2112 ** Make sure the pDone bit corresponding to the *pOffset page is set 2113 ** prior to returning. 2114 ** 2115 ** If the page record is successfully read from the (sub-)journal file 2116 ** and played back, then SQLITE_OK is returned. If an IO error occurs 2117 ** while reading the record from the (sub-)journal file or while writing 2118 ** to the database file, then the IO error code is returned. If data 2119 ** is successfully read from the (sub-)journal file but appears to be 2120 ** corrupted, SQLITE_DONE is returned. Data is considered corrupted in 2121 ** two circumstances: 2122 ** 2123 ** * If the record page-number is illegal (0 or PAGER_MJ_PGNO), or 2124 ** * If the record is being rolled back from the main journal file 2125 ** and the checksum field does not match the record content. 2126 ** 2127 ** Neither of these two scenarios are possible during a savepoint rollback. 2128 ** 2129 ** If this is a savepoint rollback, then memory may have to be dynamically 2130 ** allocated by this function. If this is the case and an allocation fails, 2131 ** SQLITE_NOMEM is returned. 2132 */ 2133 static int pager_playback_one_page( 2134 Pager *pPager, /* The pager being played back */ 2135 i64 *pOffset, /* Offset of record to playback */ 2136 Bitvec *pDone, /* Bitvec of pages already played back */ 2137 int isMainJrnl, /* 1 -> main journal. 0 -> sub-journal. */ 2138 int isSavepnt /* True for a savepoint rollback */ 2139 ){ 2140 int rc; 2141 PgHdr *pPg; /* An existing page in the cache */ 2142 Pgno pgno; /* The page number of a page in journal */ 2143 u32 cksum; /* Checksum used for sanity checking */ 2144 char *aData; /* Temporary storage for the page */ 2145 sqlite3_file *jfd; /* The file descriptor for the journal file */ 2146 int isSynced; /* True if journal page is synced */ 2147 2148 assert( (isMainJrnl&~1)==0 ); /* isMainJrnl is 0 or 1 */ 2149 assert( (isSavepnt&~1)==0 ); /* isSavepnt is 0 or 1 */ 2150 assert( isMainJrnl || pDone ); /* pDone always used on sub-journals */ 2151 assert( isSavepnt || pDone==0 ); /* pDone never used on non-savepoint */ 2152 2153 aData = pPager->pTmpSpace; 2154 assert( aData ); /* Temp storage must have already been allocated */ 2155 assert( pagerUseWal(pPager)==0 || (!isMainJrnl && isSavepnt) ); 2156 2157 /* Either the state is greater than PAGER_WRITER_CACHEMOD (a transaction 2158 ** or savepoint rollback done at the request of the caller) or this is 2159 ** a hot-journal rollback. If it is a hot-journal rollback, the pager 2160 ** is in state OPEN and holds an EXCLUSIVE lock. Hot-journal rollback 2161 ** only reads from the main journal, not the sub-journal. 2162 */ 2163 assert( pPager->eState>=PAGER_WRITER_CACHEMOD 2164 || (pPager->eState==PAGER_OPEN && pPager->eLock==EXCLUSIVE_LOCK) 2165 ); 2166 assert( pPager->eState>=PAGER_WRITER_CACHEMOD || isMainJrnl ); 2167 2168 /* Read the page number and page data from the journal or sub-journal 2169 ** file. Return an error code to the caller if an IO error occurs. 2170 */ 2171 jfd = isMainJrnl ? pPager->jfd : pPager->sjfd; 2172 rc = read32bits(jfd, *pOffset, &pgno); 2173 if( rc!=SQLITE_OK ) return rc; 2174 rc = sqlite3OsRead(jfd, (u8*)aData, pPager->pageSize, (*pOffset)+4); 2175 if( rc!=SQLITE_OK ) return rc; 2176 *pOffset += pPager->pageSize + 4 + isMainJrnl*4; 2177 2178 /* Sanity checking on the page. This is more important that I originally 2179 ** thought. If a power failure occurs while the journal is being written, 2180 ** it could cause invalid data to be written into the journal. We need to 2181 ** detect this invalid data (with high probability) and ignore it. 2182 */ 2183 if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ 2184 assert( !isSavepnt ); 2185 return SQLITE_DONE; 2186 } 2187 if( pgno>(Pgno)pPager->dbSize || sqlite3BitvecTest(pDone, pgno) ){ 2188 return SQLITE_OK; 2189 } 2190 if( isMainJrnl ){ 2191 rc = read32bits(jfd, (*pOffset)-4, &cksum); 2192 if( rc ) return rc; 2193 if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){ 2194 return SQLITE_DONE; 2195 } 2196 } 2197 2198 /* If this page has already been played by before during the current 2199 ** rollback, then don't bother to play it back again. 2200 */ 2201 if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){ 2202 return rc; 2203 } 2204 2205 /* When playing back page 1, restore the nReserve setting 2206 */ 2207 if( pgno==1 && pPager->nReserve!=((u8*)aData)[20] ){ 2208 pPager->nReserve = ((u8*)aData)[20]; 2209 pagerReportSize(pPager); 2210 } 2211 2212 /* If the pager is in CACHEMOD state, then there must be a copy of this 2213 ** page in the pager cache. In this case just update the pager cache, 2214 ** not the database file. The page is left marked dirty in this case. 2215 ** 2216 ** An exception to the above rule: If the database is in no-sync mode 2217 ** and a page is moved during an incremental vacuum then the page may 2218 ** not be in the pager cache. Later: if a malloc() or IO error occurs 2219 ** during a Movepage() call, then the page may not be in the cache 2220 ** either. So the condition described in the above paragraph is not 2221 ** assert()able. 2222 ** 2223 ** If in WRITER_DBMOD, WRITER_FINISHED or OPEN state, then we update the 2224 ** pager cache if it exists and the main file. The page is then marked 2225 ** not dirty. Since this code is only executed in PAGER_OPEN state for 2226 ** a hot-journal rollback, it is guaranteed that the page-cache is empty 2227 ** if the pager is in OPEN state. 2228 ** 2229 ** Ticket #1171: The statement journal might contain page content that is 2230 ** different from the page content at the start of the transaction. 2231 ** This occurs when a page is changed prior to the start of a statement 2232 ** then changed again within the statement. When rolling back such a 2233 ** statement we must not write to the original database unless we know 2234 ** for certain that original page contents are synced into the main rollback 2235 ** journal. Otherwise, a power loss might leave modified data in the 2236 ** database file without an entry in the rollback journal that can 2237 ** restore the database to its original form. Two conditions must be 2238 ** met before writing to the database files. (1) the database must be 2239 ** locked. (2) we know that the original page content is fully synced 2240 ** in the main journal either because the page is not in cache or else 2241 ** the page is marked as needSync==0. 2242 ** 2243 ** 2008-04-14: When attempting to vacuum a corrupt database file, it 2244 ** is possible to fail a statement on a database that does not yet exist. 2245 ** Do not attempt to write if database file has never been opened. 2246 */ 2247 if( pagerUseWal(pPager) ){ 2248 pPg = 0; 2249 }else{ 2250 pPg = pager_lookup(pPager, pgno); 2251 } 2252 assert( pPg || !MEMDB ); 2253 assert( pPager->eState!=PAGER_OPEN || pPg==0 ); 2254 PAGERTRACE(("PLAYBACK %d page %d hash(%08x) %s\n", 2255 PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, (u8*)aData), 2256 (isMainJrnl?"main-journal":"sub-journal") 2257 )); 2258 if( isMainJrnl ){ 2259 isSynced = pPager->noSync || (*pOffset <= pPager->journalHdr); 2260 }else{ 2261 isSynced = (pPg==0 || 0==(pPg->flags & PGHDR_NEED_SYNC)); 2262 } 2263 if( isOpen(pPager->fd) 2264 && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) 2265 && isSynced 2266 ){ 2267 i64 ofst = (pgno-1)*(i64)pPager->pageSize; 2268 testcase( !isSavepnt && pPg!=0 && (pPg->flags&PGHDR_NEED_SYNC)!=0 ); 2269 assert( !pagerUseWal(pPager) ); 2270 rc = sqlite3OsWrite(pPager->fd, (u8 *)aData, pPager->pageSize, ofst); 2271 if( pgno>pPager->dbFileSize ){ 2272 pPager->dbFileSize = pgno; 2273 } 2274 if( pPager->pBackup ){ 2275 CODEC1(pPager, aData, pgno, 3, rc=SQLITE_NOMEM); 2276 sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData); 2277 CODEC2(pPager, aData, pgno, 7, rc=SQLITE_NOMEM, aData); 2278 } 2279 }else if( !isMainJrnl && pPg==0 ){ 2280 /* If this is a rollback of a savepoint and data was not written to 2281 ** the database and the page is not in-memory, there is a potential 2282 ** problem. When the page is next fetched by the b-tree layer, it 2283 ** will be read from the database file, which may or may not be 2284 ** current. 2285 ** 2286 ** There are a couple of different ways this can happen. All are quite 2287 ** obscure. When running in synchronous mode, this can only happen 2288 ** if the page is on the free-list at the start of the transaction, then 2289 ** populated, then moved using sqlite3PagerMovepage(). 2290 ** 2291 ** The solution is to add an in-memory page to the cache containing 2292 ** the data just read from the sub-journal. Mark the page as dirty 2293 ** and if the pager requires a journal-sync, then mark the page as 2294 ** requiring a journal-sync before it is written. 2295 */ 2296 assert( isSavepnt ); 2297 assert( pPager->doNotSpill==0 ); 2298 pPager->doNotSpill++; 2299 rc = sqlite3PagerAcquire(pPager, pgno, &pPg, 1); 2300 assert( pPager->doNotSpill==1 ); 2301 pPager->doNotSpill--; 2302 if( rc!=SQLITE_OK ) return rc; 2303 pPg->flags &= ~PGHDR_NEED_READ; 2304 sqlite3PcacheMakeDirty(pPg); 2305 } 2306 if( pPg ){ 2307 /* No page should ever be explicitly rolled back that is in use, except 2308 ** for page 1 which is held in use in order to keep the lock on the 2309 ** database active. However such a page may be rolled back as a result 2310 ** of an internal error resulting in an automatic call to 2311 ** sqlite3PagerRollback(). 2312 */ 2313 void *pData; 2314 pData = pPg->pData; 2315 memcpy(pData, (u8*)aData, pPager->pageSize); 2316 pPager->xReiniter(pPg); 2317 if( isMainJrnl && (!isSavepnt || *pOffset<=pPager->journalHdr) ){ 2318 /* If the contents of this page were just restored from the main 2319 ** journal file, then its content must be as they were when the 2320 ** transaction was first opened. In this case we can mark the page 2321 ** as clean, since there will be no need to write it out to the 2322 ** database. 2323 ** 2324 ** There is one exception to this rule. If the page is being rolled 2325 ** back as part of a savepoint (or statement) rollback from an 2326 ** unsynced portion of the main journal file, then it is not safe 2327 ** to mark the page as clean. This is because marking the page as 2328 ** clean will clear the PGHDR_NEED_SYNC flag. Since the page is 2329 ** already in the journal file (recorded in Pager.pInJournal) and 2330 ** the PGHDR_NEED_SYNC flag is cleared, if the page is written to 2331 ** again within this transaction, it will be marked as dirty but 2332 ** the PGHDR_NEED_SYNC flag will not be set. It could then potentially 2333 ** be written out into the database file before its journal file 2334 ** segment is synced. If a crash occurs during or following this, 2335 ** database corruption may ensue. 2336 */ 2337 assert( !pagerUseWal(pPager) ); 2338 sqlite3PcacheMakeClean(pPg); 2339 } 2340 pager_set_pagehash(pPg); 2341 2342 /* If this was page 1, then restore the value of Pager.dbFileVers. 2343 ** Do this before any decoding. */ 2344 if( pgno==1 ){ 2345 memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers)); 2346 } 2347 2348 /* Decode the page just read from disk */ 2349 CODEC1(pPager, pData, pPg->pgno, 3, rc=SQLITE_NOMEM); 2350 sqlite3PcacheRelease(pPg); 2351 } 2352 return rc; 2353 } 2354 2355 /* 2356 ** Parameter zMaster is the name of a master journal file. A single journal 2357 ** file that referred to the master journal file has just been rolled back. 2358 ** This routine checks if it is possible to delete the master journal file, 2359 ** and does so if it is. 2360 ** 2361 ** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not 2362 ** available for use within this function. 2363 ** 2364 ** When a master journal file is created, it is populated with the names 2365 ** of all of its child journals, one after another, formatted as utf-8 2366 ** encoded text. The end of each child journal file is marked with a 2367 ** nul-terminator byte (0x00). i.e. the entire contents of a master journal 2368 ** file for a transaction involving two databases might be: 2369 ** 2370 ** "/home/bill/a.db-journal\x00/home/bill/b.db-journal\x00" 2371 ** 2372 ** A master journal file may only be deleted once all of its child 2373 ** journals have been rolled back. 2374 ** 2375 ** This function reads the contents of the master-journal file into 2376 ** memory and loops through each of the child journal names. For 2377 ** each child journal, it checks if: 2378 ** 2379 ** * if the child journal exists, and if so 2380 ** * if the child journal contains a reference to master journal 2381 ** file zMaster 2382 ** 2383 ** If a child journal can be found that matches both of the criteria 2384 ** above, this function returns without doing anything. Otherwise, if 2385 ** no such child journal can be found, file zMaster is deleted from 2386 ** the file-system using sqlite3OsDelete(). 2387 ** 2388 ** If an IO error within this function, an error code is returned. This 2389 ** function allocates memory by calling sqlite3Malloc(). If an allocation 2390 ** fails, SQLITE_NOMEM is returned. Otherwise, if no IO or malloc errors 2391 ** occur, SQLITE_OK is returned. 2392 ** 2393 ** TODO: This function allocates a single block of memory to load 2394 ** the entire contents of the master journal file. This could be 2395 ** a couple of kilobytes or so - potentially larger than the page 2396 ** size. 2397 */ 2398 static int pager_delmaster(Pager *pPager, const char *zMaster){ 2399 sqlite3_vfs *pVfs = pPager->pVfs; 2400 int rc; /* Return code */ 2401 sqlite3_file *pMaster; /* Malloc'd master-journal file descriptor */ 2402 sqlite3_file *pJournal; /* Malloc'd child-journal file descriptor */ 2403 char *zMasterJournal = 0; /* Contents of master journal file */ 2404 i64 nMasterJournal; /* Size of master journal file */ 2405 char *zJournal; /* Pointer to one journal within MJ file */ 2406 char *zMasterPtr; /* Space to hold MJ filename from a journal file */ 2407 int nMasterPtr; /* Amount of space allocated to zMasterPtr[] */ 2408 2409 /* Allocate space for both the pJournal and pMaster file descriptors. 2410 ** If successful, open the master journal file for reading. 2411 */ 2412 pMaster = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile * 2); 2413 pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile); 2414 if( !pMaster ){ 2415 rc = SQLITE_NOMEM; 2416 }else{ 2417 const int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL); 2418 rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0); 2419 } 2420 if( rc!=SQLITE_OK ) goto delmaster_out; 2421 2422 /* Load the entire master journal file into space obtained from 2423 ** sqlite3_malloc() and pointed to by zMasterJournal. Also obtain 2424 ** sufficient space (in zMasterPtr) to hold the names of master 2425 ** journal files extracted from regular rollback-journals. 2426 */ 2427 rc = sqlite3OsFileSize(pMaster, &nMasterJournal); 2428 if( rc!=SQLITE_OK ) goto delmaster_out; 2429 nMasterPtr = pVfs->mxPathname+1; 2430 zMasterJournal = sqlite3Malloc((int)nMasterJournal + nMasterPtr + 1); 2431 if( !zMasterJournal ){ 2432 rc = SQLITE_NOMEM; 2433 goto delmaster_out; 2434 } 2435 zMasterPtr = &zMasterJournal[nMasterJournal+1]; 2436 rc = sqlite3OsRead(pMaster, zMasterJournal, (int)nMasterJournal, 0); 2437 if( rc!=SQLITE_OK ) goto delmaster_out; 2438 zMasterJournal[nMasterJournal] = 0; 2439 2440 zJournal = zMasterJournal; 2441 while( (zJournal-zMasterJournal)<nMasterJournal ){ 2442 int exists; 2443 rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS, &exists); 2444 if( rc!=SQLITE_OK ){ 2445 goto delmaster_out; 2446 } 2447 if( exists ){ 2448 /* One of the journals pointed to by the master journal exists. 2449 ** Open it and check if it points at the master journal. If 2450 ** so, return without deleting the master journal file. 2451 */ 2452 int c; 2453 int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL); 2454 rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0); 2455 if( rc!=SQLITE_OK ){ 2456 goto delmaster_out; 2457 } 2458 2459 rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr); 2460 sqlite3OsClose(pJournal); 2461 if( rc!=SQLITE_OK ){ 2462 goto delmaster_out; 2463 } 2464 2465 c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0; 2466 if( c ){ 2467 /* We have a match. Do not delete the master journal file. */ 2468 goto delmaster_out; 2469 } 2470 } 2471 zJournal += (sqlite3Strlen30(zJournal)+1); 2472 } 2473 2474 sqlite3OsClose(pMaster); 2475 rc = sqlite3OsDelete(pVfs, zMaster, 0); 2476 2477 delmaster_out: 2478 sqlite3_free(zMasterJournal); 2479 if( pMaster ){ 2480 sqlite3OsClose(pMaster); 2481 assert( !isOpen(pJournal) ); 2482 sqlite3_free(pMaster); 2483 } 2484 return rc; 2485 } 2486 2487 2488 /* 2489 ** This function is used to change the actual size of the database 2490 ** file in the file-system. This only happens when committing a transaction, 2491 ** or rolling back a transaction (including rolling back a hot-journal). 2492 ** 2493 ** If the main database file is not open, or the pager is not in either 2494 ** DBMOD or OPEN state, this function is a no-op. Otherwise, the size 2495 ** of the file is changed to nPage pages (nPage*pPager->pageSize bytes). 2496 ** If the file on disk is currently larger than nPage pages, then use the VFS 2497 ** xTruncate() method to truncate it. 2498 ** 2499 ** Or, it might might be the case that the file on disk is smaller than 2500 ** nPage pages. Some operating system implementations can get confused if 2501 ** you try to truncate a file to some size that is larger than it 2502 ** currently is, so detect this case and write a single zero byte to 2503 ** the end of the new file instead. 2504 ** 2505 ** If successful, return SQLITE_OK. If an IO error occurs while modifying 2506 ** the database file, return the error code to the caller. 2507 */ 2508 static int pager_truncate(Pager *pPager, Pgno nPage){ 2509 int rc = SQLITE_OK; 2510 assert( pPager->eState!=PAGER_ERROR ); 2511 assert( pPager->eState!=PAGER_READER ); 2512 2513 if( isOpen(pPager->fd) 2514 && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) 2515 ){ 2516 i64 currentSize, newSize; 2517 int szPage = pPager->pageSize; 2518 assert( pPager->eLock==EXCLUSIVE_LOCK ); 2519 /* TODO: Is it safe to use Pager.dbFileSize here? */ 2520 rc = sqlite3OsFileSize(pPager->fd, ¤tSize); 2521 newSize = szPage*(i64)nPage; 2522 if( rc==SQLITE_OK && currentSize!=newSize ){ 2523 if( currentSize>newSize ){ 2524 rc = sqlite3OsTruncate(pPager->fd, newSize); 2525 }else if( (currentSize+szPage)<=newSize ){ 2526 char *pTmp = pPager->pTmpSpace; 2527 memset(pTmp, 0, szPage); 2528 testcase( (newSize-szPage) == currentSize ); 2529 testcase( (newSize-szPage) > currentSize ); 2530 rc = sqlite3OsWrite(pPager->fd, pTmp, szPage, newSize-szPage); 2531 } 2532 if( rc==SQLITE_OK ){ 2533 pPager->dbFileSize = nPage; 2534 } 2535 } 2536 } 2537 return rc; 2538 } 2539 2540 /* 2541 ** Return a sanitized version of the sector-size of OS file pFile. The 2542 ** return value is guaranteed to lie between 32 and MAX_SECTOR_SIZE. 2543 */ 2544 int sqlite3SectorSize(sqlite3_file *pFile){ 2545 int iRet = sqlite3OsSectorSize(pFile); 2546 if( iRet<32 ){ 2547 iRet = 512; 2548 }else if( iRet>MAX_SECTOR_SIZE ){ 2549 assert( MAX_SECTOR_SIZE>=512 ); 2550 iRet = MAX_SECTOR_SIZE; 2551 } 2552 return iRet; 2553 } 2554 2555 /* 2556 ** Set the value of the Pager.sectorSize variable for the given 2557 ** pager based on the value returned by the xSectorSize method 2558 ** of the open database file. The sector size will be used used 2559 ** to determine the size and alignment of journal header and 2560 ** master journal pointers within created journal files. 2561 ** 2562 ** For temporary files the effective sector size is always 512 bytes. 2563 ** 2564 ** Otherwise, for non-temporary files, the effective sector size is 2565 ** the value returned by the xSectorSize() method rounded up to 32 if 2566 ** it is less than 32, or rounded down to MAX_SECTOR_SIZE if it 2567 ** is greater than MAX_SECTOR_SIZE. 2568 ** 2569 ** If the file has the SQLITE_IOCAP_POWERSAFE_OVERWRITE property, then set 2570 ** the effective sector size to its minimum value (512). The purpose of 2571 ** pPager->sectorSize is to define the "blast radius" of bytes that 2572 ** might change if a crash occurs while writing to a single byte in 2573 ** that range. But with POWERSAFE_OVERWRITE, the blast radius is zero 2574 ** (that is what POWERSAFE_OVERWRITE means), so we minimize the sector 2575 ** size. For backwards compatibility of the rollback journal file format, 2576 ** we cannot reduce the effective sector size below 512. 2577 */ 2578 static void setSectorSize(Pager *pPager){ 2579 assert( isOpen(pPager->fd) || pPager->tempFile ); 2580 2581 if( pPager->tempFile 2582 || (sqlite3OsDeviceCharacteristics(pPager->fd) & 2583 SQLITE_IOCAP_POWERSAFE_OVERWRITE)!=0 2584 ){ 2585 /* Sector size doesn't matter for temporary files. Also, the file 2586 ** may not have been opened yet, in which case the OsSectorSize() 2587 ** call will segfault. */ 2588 pPager->sectorSize = 512; 2589 }else{ 2590 pPager->sectorSize = sqlite3SectorSize(pPager->fd); 2591 } 2592 } 2593 2594 /* 2595 ** Playback the journal and thus restore the database file to 2596 ** the state it was in before we started making changes. 2597 ** 2598 ** The journal file format is as follows: 2599 ** 2600 ** (1) 8 byte prefix. A copy of aJournalMagic[]. 2601 ** (2) 4 byte big-endian integer which is the number of valid page records 2602 ** in the journal. If this value is 0xffffffff, then compute the 2603 ** number of page records from the journal size. 2604 ** (3) 4 byte big-endian integer which is the initial value for the 2605 ** sanity checksum. 2606 ** (4) 4 byte integer which is the number of pages to truncate the 2607 ** database to during a rollback. 2608 ** (5) 4 byte big-endian integer which is the sector size. The header 2609 ** is this many bytes in size. 2610 ** (6) 4 byte big-endian integer which is the page size. 2611 ** (7) zero padding out to the next sector size. 2612 ** (8) Zero or more pages instances, each as follows: 2613 ** + 4 byte page number. 2614 ** + pPager->pageSize bytes of data. 2615 ** + 4 byte checksum 2616 ** 2617 ** When we speak of the journal header, we mean the first 7 items above. 2618 ** Each entry in the journal is an instance of the 8th item. 2619 ** 2620 ** Call the value from the second bullet "nRec". nRec is the number of 2621 ** valid page entries in the journal. In most cases, you can compute the 2622 ** value of nRec from the size of the journal file. But if a power 2623 ** failure occurred while the journal was being written, it could be the 2624 ** case that the size of the journal file had already been increased but 2625 ** the extra entries had not yet made it safely to disk. In such a case, 2626 ** the value of nRec computed from the file size would be too large. For 2627 ** that reason, we always use the nRec value in the header. 2628 ** 2629 ** If the nRec value is 0xffffffff it means that nRec should be computed 2630 ** from the file size. This value is used when the user selects the 2631 ** no-sync option for the journal. A power failure could lead to corruption 2632 ** in this case. But for things like temporary table (which will be 2633 ** deleted when the power is restored) we don't care. 2634 ** 2635 ** If the file opened as the journal file is not a well-formed 2636 ** journal file then all pages up to the first corrupted page are rolled 2637 ** back (or no pages if the journal header is corrupted). The journal file 2638 ** is then deleted and SQLITE_OK returned, just as if no corruption had 2639 ** been encountered. 2640 ** 2641 ** If an I/O or malloc() error occurs, the journal-file is not deleted 2642 ** and an error code is returned. 2643 ** 2644 ** The isHot parameter indicates that we are trying to rollback a journal 2645 ** that might be a hot journal. Or, it could be that the journal is 2646 ** preserved because of JOURNALMODE_PERSIST or JOURNALMODE_TRUNCATE. 2647 ** If the journal really is hot, reset the pager cache prior rolling 2648 ** back any content. If the journal is merely persistent, no reset is 2649 ** needed. 2650 */ 2651 static int pager_playback(Pager *pPager, int isHot){ 2652 sqlite3_vfs *pVfs = pPager->pVfs; 2653 i64 szJ; /* Size of the journal file in bytes */ 2654 u32 nRec; /* Number of Records in the journal */ 2655 u32 u; /* Unsigned loop counter */ 2656 Pgno mxPg = 0; /* Size of the original file in pages */ 2657 int rc; /* Result code of a subroutine */ 2658 int res = 1; /* Value returned by sqlite3OsAccess() */ 2659 char *zMaster = 0; /* Name of master journal file if any */ 2660 int needPagerReset; /* True to reset page prior to first page rollback */ 2661 int nPlayback = 0; /* Total number of pages restored from journal */ 2662 2663 /* Figure out how many records are in the journal. Abort early if 2664 ** the journal is empty. 2665 */ 2666 assert( isOpen(pPager->jfd) ); 2667 rc = sqlite3OsFileSize(pPager->jfd, &szJ); 2668 if( rc!=SQLITE_OK ){ 2669 goto end_playback; 2670 } 2671 2672 /* Read the master journal name from the journal, if it is present. 2673 ** If a master journal file name is specified, but the file is not 2674 ** present on disk, then the journal is not hot and does not need to be 2675 ** played back. 2676 ** 2677 ** TODO: Technically the following is an error because it assumes that 2678 ** buffer Pager.pTmpSpace is (mxPathname+1) bytes or larger. i.e. that 2679 ** (pPager->pageSize >= pPager->pVfs->mxPathname+1). Using os_unix.c, 2680 ** mxPathname is 512, which is the same as the minimum allowable value 2681 ** for pageSize. 2682 */ 2683 zMaster = pPager->pTmpSpace; 2684 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); 2685 if( rc==SQLITE_OK && zMaster[0] ){ 2686 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); 2687 } 2688 zMaster = 0; 2689 if( rc!=SQLITE_OK || !res ){ 2690 goto end_playback; 2691 } 2692 pPager->journalOff = 0; 2693 needPagerReset = isHot; 2694 2695 /* This loop terminates either when a readJournalHdr() or 2696 ** pager_playback_one_page() call returns SQLITE_DONE or an IO error 2697 ** occurs. 2698 */ 2699 while( 1 ){ 2700 /* Read the next journal header from the journal file. If there are 2701 ** not enough bytes left in the journal file for a complete header, or 2702 ** it is corrupted, then a process must have failed while writing it. 2703 ** This indicates nothing more needs to be rolled back. 2704 */ 2705 rc = readJournalHdr(pPager, isHot, szJ, &nRec, &mxPg); 2706 if( rc!=SQLITE_OK ){ 2707 if( rc==SQLITE_DONE ){ 2708 rc = SQLITE_OK; 2709 } 2710 goto end_playback; 2711 } 2712 2713 /* If nRec is 0xffffffff, then this journal was created by a process 2714 ** working in no-sync mode. This means that the rest of the journal 2715 ** file consists of pages, there are no more journal headers. Compute 2716 ** the value of nRec based on this assumption. 2717 */ 2718 if( nRec==0xffffffff ){ 2719 assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ); 2720 nRec = (int)((szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager)); 2721 } 2722 2723 /* If nRec is 0 and this rollback is of a transaction created by this 2724 ** process and if this is the final header in the journal, then it means 2725 ** that this part of the journal was being filled but has not yet been 2726 ** synced to disk. Compute the number of pages based on the remaining 2727 ** size of the file. 2728 ** 2729 ** The third term of the test was added to fix ticket #2565. 2730 ** When rolling back a hot journal, nRec==0 always means that the next 2731 ** chunk of the journal contains zero pages to be rolled back. But 2732 ** when doing a ROLLBACK and the nRec==0 chunk is the last chunk in 2733 ** the journal, it means that the journal might contain additional 2734 ** pages that need to be rolled back and that the number of pages 2735 ** should be computed based on the journal file size. 2736 */ 2737 if( nRec==0 && !isHot && 2738 pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){ 2739 nRec = (int)((szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager)); 2740 } 2741 2742 /* If this is the first header read from the journal, truncate the 2743 ** database file back to its original size. 2744 */ 2745 if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){ 2746 rc = pager_truncate(pPager, mxPg); 2747 if( rc!=SQLITE_OK ){ 2748 goto end_playback; 2749 } 2750 pPager->dbSize = mxPg; 2751 } 2752 2753 /* Copy original pages out of the journal and back into the 2754 ** database file and/or page cache. 2755 */ 2756 for(u=0; u<nRec; u++){ 2757 if( needPagerReset ){ 2758 pager_reset(pPager); 2759 needPagerReset = 0; 2760 } 2761 rc = pager_playback_one_page(pPager,&pPager->journalOff,0,1,0); 2762 if( rc==SQLITE_OK ){ 2763 nPlayback++; 2764 }else{ 2765 if( rc==SQLITE_DONE ){ 2766 pPager->journalOff = szJ; 2767 break; 2768 }else if( rc==SQLITE_IOERR_SHORT_READ ){ 2769 /* If the journal has been truncated, simply stop reading and 2770 ** processing the journal. This might happen if the journal was 2771 ** not completely written and synced prior to a crash. In that 2772 ** case, the database should have never been written in the 2773 ** first place so it is OK to simply abandon the rollback. */ 2774 rc = SQLITE_OK; 2775 goto end_playback; 2776 }else{ 2777 /* If we are unable to rollback, quit and return the error 2778 ** code. This will cause the pager to enter the error state 2779 ** so that no further harm will be done. Perhaps the next 2780 ** process to come along will be able to rollback the database. 2781 */ 2782 goto end_playback; 2783 } 2784 } 2785 } 2786 } 2787 /*NOTREACHED*/ 2788 assert( 0 ); 2789 2790 end_playback: 2791 /* Following a rollback, the database file should be back in its original 2792 ** state prior to the start of the transaction, so invoke the 2793 ** SQLITE_FCNTL_DB_UNCHANGED file-control method to disable the 2794 ** assertion that the transaction counter was modified. 2795 */ 2796 #ifdef SQLITE_DEBUG 2797 if( pPager->fd->pMethods ){ 2798 sqlite3OsFileControlHint(pPager->fd,SQLITE_FCNTL_DB_UNCHANGED,0); 2799 } 2800 #endif 2801 2802 /* If this playback is happening automatically as a result of an IO or 2803 ** malloc error that occurred after the change-counter was updated but 2804 ** before the transaction was committed, then the change-counter 2805 ** modification may just have been reverted. If this happens in exclusive 2806 ** mode, then subsequent transactions performed by the connection will not 2807 ** update the change-counter at all. This may lead to cache inconsistency 2808 ** problems for other processes at some point in the future. So, just 2809 ** in case this has happened, clear the changeCountDone flag now. 2810 */ 2811 pPager->changeCountDone = pPager->tempFile; 2812 2813 if( rc==SQLITE_OK ){ 2814 zMaster = pPager->pTmpSpace; 2815 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); 2816 testcase( rc!=SQLITE_OK ); 2817 } 2818 if( rc==SQLITE_OK 2819 && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN) 2820 ){ 2821 rc = sqlite3PagerSync(pPager); 2822 } 2823 if( rc==SQLITE_OK ){ 2824 rc = pager_end_transaction(pPager, zMaster[0]!='\0', 0); 2825 testcase( rc!=SQLITE_OK ); 2826 } 2827 if( rc==SQLITE_OK && zMaster[0] && res ){ 2828 /* If there was a master journal and this routine will return success, 2829 ** see if it is possible to delete the master journal. 2830 */ 2831 rc = pager_delmaster(pPager, zMaster); 2832 testcase( rc!=SQLITE_OK ); 2833 } 2834 if( isHot && nPlayback ){ 2835 sqlite3_log(SQLITE_NOTICE_RECOVER_ROLLBACK, "recovered %d pages from %s", 2836 nPlayback, pPager->zJournal); 2837 } 2838 2839 /* The Pager.sectorSize variable may have been updated while rolling 2840 ** back a journal created by a process with a different sector size 2841 ** value. Reset it to the correct value for this process. 2842 */ 2843 setSectorSize(pPager); 2844 return rc; 2845 } 2846 2847 2848 /* 2849 ** Read the content for page pPg out of the database file and into 2850 ** pPg->pData. A shared lock or greater must be held on the database 2851 ** file before this function is called. 2852 ** 2853 ** If page 1 is read, then the value of Pager.dbFileVers[] is set to 2854 ** the value read from the database file. 2855 ** 2856 ** If an IO error occurs, then the IO error is returned to the caller. 2857 ** Otherwise, SQLITE_OK is returned. 2858 */ 2859 static int readDbPage(PgHdr *pPg, u32 iFrame){ 2860 Pager *pPager = pPg->pPager; /* Pager object associated with page pPg */ 2861 Pgno pgno = pPg->pgno; /* Page number to read */ 2862 int rc = SQLITE_OK; /* Return code */ 2863 int pgsz = pPager->pageSize; /* Number of bytes to read */ 2864 2865 assert( pPager->eState>=PAGER_READER && !MEMDB ); 2866 assert( isOpen(pPager->fd) ); 2867 2868 if( NEVER(!isOpen(pPager->fd)) ){ 2869 assert( pPager->tempFile ); 2870 memset(pPg->pData, 0, pPager->pageSize); 2871 return SQLITE_OK; 2872 } 2873 2874 if( iFrame ){ 2875 /* Try to pull the page from the write-ahead log. */ 2876 rc = sqlite3WalReadFrame(pPager->pWal, iFrame, pgsz, pPg->pData); 2877 }else{ 2878 i64 iOffset = (pgno-1)*(i64)pPager->pageSize; 2879 rc = sqlite3OsRead(pPager->fd, pPg->pData, pgsz, iOffset); 2880 if( rc==SQLITE_IOERR_SHORT_READ ){ 2881 rc = SQLITE_OK; 2882 } 2883 } 2884 2885 if( pgno==1 ){ 2886 if( rc ){ 2887 /* If the read is unsuccessful, set the dbFileVers[] to something 2888 ** that will never be a valid file version. dbFileVers[] is a copy 2889 ** of bytes 24..39 of the database. Bytes 28..31 should always be 2890 ** zero or the size of the database in page. Bytes 32..35 and 35..39 2891 ** should be page numbers which are never 0xffffffff. So filling 2892 ** pPager->dbFileVers[] with all 0xff bytes should suffice. 2893 ** 2894 ** For an encrypted database, the situation is more complex: bytes 2895 ** 24..39 of the database are white noise. But the probability of 2896 ** white noising equaling 16 bytes of 0xff is vanishingly small so 2897 ** we should still be ok. 2898 */ 2899 memset(pPager->dbFileVers, 0xff, sizeof(pPager->dbFileVers)); 2900 }else{ 2901 u8 *dbFileVers = &((u8*)pPg->pData)[24]; 2902 memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers)); 2903 } 2904 } 2905 CODEC1(pPager, pPg->pData, pgno, 3, rc = SQLITE_NOMEM); 2906 2907 PAGER_INCR(sqlite3_pager_readdb_count); 2908 PAGER_INCR(pPager->nRead); 2909 IOTRACE(("PGIN %p %d\n", pPager, pgno)); 2910 PAGERTRACE(("FETCH %d page %d hash(%08x)\n", 2911 PAGERID(pPager), pgno, pager_pagehash(pPg))); 2912 2913 return rc; 2914 } 2915 2916 /* 2917 ** Update the value of the change-counter at offsets 24 and 92 in 2918 ** the header and the sqlite version number at offset 96. 2919 ** 2920 ** This is an unconditional update. See also the pager_incr_changecounter() 2921 ** routine which only updates the change-counter if the update is actually 2922 ** needed, as determined by the pPager->changeCountDone state variable. 2923 */ 2924 static void pager_write_changecounter(PgHdr *pPg){ 2925 u32 change_counter; 2926 2927 /* Increment the value just read and write it back to byte 24. */ 2928 change_counter = sqlite3Get4byte((u8*)pPg->pPager->dbFileVers)+1; 2929 put32bits(((char*)pPg->pData)+24, change_counter); 2930 2931 /* Also store the SQLite version number in bytes 96..99 and in 2932 ** bytes 92..95 store the change counter for which the version number 2933 ** is valid. */ 2934 put32bits(((char*)pPg->pData)+92, change_counter); 2935 put32bits(((char*)pPg->pData)+96, SQLITE_VERSION_NUMBER); 2936 } 2937 2938 #ifndef SQLITE_OMIT_WAL 2939 /* 2940 ** This function is invoked once for each page that has already been 2941 ** written into the log file when a WAL transaction is rolled back. 2942 ** Parameter iPg is the page number of said page. The pCtx argument 2943 ** is actually a pointer to the Pager structure. 2944 ** 2945 ** If page iPg is present in the cache, and has no outstanding references, 2946 ** it is discarded. Otherwise, if there are one or more outstanding 2947 ** references, the page content is reloaded from the database. If the 2948 ** attempt to reload content from the database is required and fails, 2949 ** return an SQLite error code. Otherwise, SQLITE_OK. 2950 */ 2951 static int pagerUndoCallback(void *pCtx, Pgno iPg){ 2952 int rc = SQLITE_OK; 2953 Pager *pPager = (Pager *)pCtx; 2954 PgHdr *pPg; 2955 2956 assert( pagerUseWal(pPager) ); 2957 pPg = sqlite3PagerLookup(pPager, iPg); 2958 if( pPg ){ 2959 if( sqlite3PcachePageRefcount(pPg)==1 ){ 2960 sqlite3PcacheDrop(pPg); 2961 }else{ 2962 u32 iFrame = 0; 2963 rc = sqlite3WalFindFrame(pPager->pWal, pPg->pgno, &iFrame); 2964 if( rc==SQLITE_OK ){ 2965 rc = readDbPage(pPg, iFrame); 2966 } 2967 if( rc==SQLITE_OK ){ 2968 pPager->xReiniter(pPg); 2969 } 2970 sqlite3PagerUnref(pPg); 2971 } 2972 } 2973 2974 /* Normally, if a transaction is rolled back, any backup processes are 2975 ** updated as data is copied out of the rollback journal and into the 2976 ** database. This is not generally possible with a WAL database, as 2977 ** rollback involves simply truncating the log file. Therefore, if one 2978 ** or more frames have already been written to the log (and therefore 2979 ** also copied into the backup databases) as part of this transaction, 2980 ** the backups must be restarted. 2981 */ 2982 sqlite3BackupRestart(pPager->pBackup); 2983 2984 return rc; 2985 } 2986 2987 /* 2988 ** This function is called to rollback a transaction on a WAL database. 2989 */ 2990 static int pagerRollbackWal(Pager *pPager){ 2991 int rc; /* Return Code */ 2992 PgHdr *pList; /* List of dirty pages to revert */ 2993 2994 /* For all pages in the cache that are currently dirty or have already 2995 ** been written (but not committed) to the log file, do one of the 2996 ** following: 2997 ** 2998 ** + Discard the cached page (if refcount==0), or 2999 ** + Reload page content from the database (if refcount>0). 3000 */ 3001 pPager->dbSize = pPager->dbOrigSize; 3002 rc = sqlite3WalUndo(pPager->pWal, pagerUndoCallback, (void *)pPager); 3003 pList = sqlite3PcacheDirtyList(pPager->pPCache); 3004 while( pList && rc==SQLITE_OK ){ 3005 PgHdr *pNext = pList->pDirty; 3006 rc = pagerUndoCallback((void *)pPager, pList->pgno); 3007 pList = pNext; 3008 } 3009 3010 return rc; 3011 } 3012 3013 /* 3014 ** This function is a wrapper around sqlite3WalFrames(). As well as logging 3015 ** the contents of the list of pages headed by pList (connected by pDirty), 3016 ** this function notifies any active backup processes that the pages have 3017 ** changed. 3018 ** 3019 ** The list of pages passed into this routine is always sorted by page number. 3020 ** Hence, if page 1 appears anywhere on the list, it will be the first page. 3021 */ 3022 static int pagerWalFrames( 3023 Pager *pPager, /* Pager object */ 3024 PgHdr *pList, /* List of frames to log */ 3025 Pgno nTruncate, /* Database size after this commit */ 3026 int isCommit /* True if this is a commit */ 3027 ){ 3028 int rc; /* Return code */ 3029 int nList; /* Number of pages in pList */ 3030 #if defined(SQLITE_DEBUG) || defined(SQLITE_CHECK_PAGES) 3031 PgHdr *p; /* For looping over pages */ 3032 #endif 3033 3034 assert( pPager->pWal ); 3035 assert( pList ); 3036 #ifdef SQLITE_DEBUG 3037 /* Verify that the page list is in accending order */ 3038 for(p=pList; p && p->pDirty; p=p->pDirty){ 3039 assert( p->pgno < p->pDirty->pgno ); 3040 } 3041 #endif 3042 3043 assert( pList->pDirty==0 || isCommit ); 3044 if( isCommit ){ 3045 /* If a WAL transaction is being committed, there is no point in writing 3046 ** any pages with page numbers greater than nTruncate into the WAL file. 3047 ** They will never be read by any client. So remove them from the pDirty 3048 ** list here. */ 3049 PgHdr *p; 3050 PgHdr **ppNext = &pList; 3051 nList = 0; 3052 for(p=pList; (*ppNext = p)!=0; p=p->pDirty){ 3053 if( p->pgno<=nTruncate ){ 3054 ppNext = &p->pDirty; 3055 nList++; 3056 } 3057 } 3058 assert( pList ); 3059 }else{ 3060 nList = 1; 3061 } 3062 pPager->aStat[PAGER_STAT_WRITE] += nList; 3063 3064 if( pList->pgno==1 ) pager_write_changecounter(pList); 3065 rc = sqlite3WalFrames(pPager->pWal, 3066 pPager->pageSize, pList, nTruncate, isCommit, pPager->walSyncFlags 3067 ); 3068 if( rc==SQLITE_OK && pPager->pBackup ){ 3069 PgHdr *p; 3070 for(p=pList; p; p=p->pDirty){ 3071 sqlite3BackupUpdate(pPager->pBackup, p->pgno, (u8 *)p->pData); 3072 } 3073 } 3074 3075 #ifdef SQLITE_CHECK_PAGES 3076 pList = sqlite3PcacheDirtyList(pPager->pPCache); 3077 for(p=pList; p; p=p->pDirty){ 3078 pager_set_pagehash(p); 3079 } 3080 #endif 3081 3082 return rc; 3083 } 3084 3085 /* 3086 ** Begin a read transaction on the WAL. 3087 ** 3088 ** This routine used to be called "pagerOpenSnapshot()" because it essentially 3089 ** makes a snapshot of the database at the current point in time and preserves 3090 ** that snapshot for use by the reader in spite of concurrently changes by 3091 ** other writers or checkpointers. 3092 */ 3093 static int pagerBeginReadTransaction(Pager *pPager){ 3094 int rc; /* Return code */ 3095 int changed = 0; /* True if cache must be reset */ 3096 3097 assert( pagerUseWal(pPager) ); 3098 assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); 3099 3100 /* sqlite3WalEndReadTransaction() was not called for the previous 3101 ** transaction in locking_mode=EXCLUSIVE. So call it now. If we 3102 ** are in locking_mode=NORMAL and EndRead() was previously called, 3103 ** the duplicate call is harmless. 3104 */ 3105 sqlite3WalEndReadTransaction(pPager->pWal); 3106 3107 rc = sqlite3WalBeginReadTransaction(pPager->pWal, &changed); 3108 if( rc!=SQLITE_OK || changed ){ 3109 pager_reset(pPager); 3110 if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0); 3111 } 3112 3113 return rc; 3114 } 3115 #endif 3116 3117 /* 3118 ** This function is called as part of the transition from PAGER_OPEN 3119 ** to PAGER_READER state to determine the size of the database file 3120 ** in pages (assuming the page size currently stored in Pager.pageSize). 3121 ** 3122 ** If no error occurs, SQLITE_OK is returned and the size of the database 3123 ** in pages is stored in *pnPage. Otherwise, an error code (perhaps 3124 ** SQLITE_IOERR_FSTAT) is returned and *pnPage is left unmodified. 3125 */ 3126 static int pagerPagecount(Pager *pPager, Pgno *pnPage){ 3127 Pgno nPage; /* Value to return via *pnPage */ 3128 3129 /* Query the WAL sub-system for the database size. The WalDbsize() 3130 ** function returns zero if the WAL is not open (i.e. Pager.pWal==0), or 3131 ** if the database size is not available. The database size is not 3132 ** available from the WAL sub-system if the log file is empty or 3133 ** contains no valid committed transactions. 3134 */ 3135 assert( pPager->eState==PAGER_OPEN ); 3136 assert( pPager->eLock>=SHARED_LOCK ); 3137 nPage = sqlite3WalDbsize(pPager->pWal); 3138 3139 /* If the database size was not available from the WAL sub-system, 3140 ** determine it based on the size of the database file. If the size 3141 ** of the database file is not an integer multiple of the page-size, 3142 ** round down to the nearest page. Except, any file larger than 0 3143 ** bytes in size is considered to contain at least one page. 3144 */ 3145 if( nPage==0 ){ 3146 i64 n = 0; /* Size of db file in bytes */ 3147 assert( isOpen(pPager->fd) || pPager->tempFile ); 3148 if( isOpen(pPager->fd) ){ 3149 int rc = sqlite3OsFileSize(pPager->fd, &n); 3150 if( rc!=SQLITE_OK ){ 3151 return rc; 3152 } 3153 } 3154 nPage = (Pgno)((n+pPager->pageSize-1) / pPager->pageSize); 3155 } 3156 3157 /* If the current number of pages in the file is greater than the 3158 ** configured maximum pager number, increase the allowed limit so 3159 ** that the file can be read. 3160 */ 3161 if( nPage>pPager->mxPgno ){ 3162 pPager->mxPgno = (Pgno)nPage; 3163 } 3164 3165 *pnPage = nPage; 3166 return SQLITE_OK; 3167 } 3168 3169 #ifndef SQLITE_OMIT_WAL 3170 /* 3171 ** Check if the *-wal file that corresponds to the database opened by pPager 3172 ** exists if the database is not empy, or verify that the *-wal file does 3173 ** not exist (by deleting it) if the database file is empty. 3174 ** 3175 ** If the database is not empty and the *-wal file exists, open the pager 3176 ** in WAL mode. If the database is empty or if no *-wal file exists and 3177 ** if no error occurs, make sure Pager.journalMode is not set to 3178 ** PAGER_JOURNALMODE_WAL. 3179 ** 3180 ** Return SQLITE_OK or an error code. 3181 ** 3182 ** The caller must hold a SHARED lock on the database file to call this 3183 ** function. Because an EXCLUSIVE lock on the db file is required to delete 3184 ** a WAL on a none-empty database, this ensures there is no race condition 3185 ** between the xAccess() below and an xDelete() being executed by some 3186 ** other connection. 3187 */ 3188 static int pagerOpenWalIfPresent(Pager *pPager){ 3189 int rc = SQLITE_OK; 3190 assert( pPager->eState==PAGER_OPEN ); 3191 assert( pPager->eLock>=SHARED_LOCK ); 3192 3193 if( !pPager->tempFile ){ 3194 int isWal; /* True if WAL file exists */ 3195 Pgno nPage; /* Size of the database file */ 3196 3197 rc = pagerPagecount(pPager, &nPage); 3198 if( rc ) return rc; 3199 if( nPage==0 ){ 3200 rc = sqlite3OsDelete(pPager->pVfs, pPager->zWal, 0); 3201 if( rc==SQLITE_IOERR_DELETE_NOENT ) rc = SQLITE_OK; 3202 isWal = 0; 3203 }else{ 3204 rc = sqlite3OsAccess( 3205 pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &isWal 3206 ); 3207 } 3208 if( rc==SQLITE_OK ){ 3209 if( isWal ){ 3210 testcase( sqlite3PcachePagecount(pPager->pPCache)==0 ); 3211 rc = sqlite3PagerOpenWal(pPager, 0); 3212 }else if( pPager->journalMode==PAGER_JOURNALMODE_WAL ){ 3213 pPager->journalMode = PAGER_JOURNALMODE_DELETE; 3214 } 3215 } 3216 } 3217 return rc; 3218 } 3219 #endif 3220 3221 /* 3222 ** Playback savepoint pSavepoint. Or, if pSavepoint==NULL, then playback 3223 ** the entire master journal file. The case pSavepoint==NULL occurs when 3224 ** a ROLLBACK TO command is invoked on a SAVEPOINT that is a transaction 3225 ** savepoint. 3226 ** 3227 ** When pSavepoint is not NULL (meaning a non-transaction savepoint is 3228 ** being rolled back), then the rollback consists of up to three stages, 3229 ** performed in the order specified: 3230 ** 3231 ** * Pages are played back from the main journal starting at byte 3232 ** offset PagerSavepoint.iOffset and continuing to 3233 ** PagerSavepoint.iHdrOffset, or to the end of the main journal 3234 ** file if PagerSavepoint.iHdrOffset is zero. 3235 ** 3236 ** * If PagerSavepoint.iHdrOffset is not zero, then pages are played 3237 ** back starting from the journal header immediately following 3238 ** PagerSavepoint.iHdrOffset to the end of the main journal file. 3239 ** 3240 ** * Pages are then played back from the sub-journal file, starting 3241 ** with the PagerSavepoint.iSubRec and continuing to the end of 3242 ** the journal file. 3243 ** 3244 ** Throughout the rollback process, each time a page is rolled back, the 3245 ** corresponding bit is set in a bitvec structure (variable pDone in the 3246 ** implementation below). This is used to ensure that a page is only 3247 ** rolled back the first time it is encountered in either journal. 3248 ** 3249 ** If pSavepoint is NULL, then pages are only played back from the main 3250 ** journal file. There is no need for a bitvec in this case. 3251 ** 3252 ** In either case, before playback commences the Pager.dbSize variable 3253 ** is reset to the value that it held at the start of the savepoint 3254 ** (or transaction). No page with a page-number greater than this value 3255 ** is played back. If one is encountered it is simply skipped. 3256 */ 3257 static int pagerPlaybackSavepoint(Pager *pPager, PagerSavepoint *pSavepoint){ 3258 i64 szJ; /* Effective size of the main journal */ 3259 i64 iHdrOff; /* End of first segment of main-journal records */ 3260 int rc = SQLITE_OK; /* Return code */ 3261 Bitvec *pDone = 0; /* Bitvec to ensure pages played back only once */ 3262 3263 assert( pPager->eState!=PAGER_ERROR ); 3264 assert( pPager->eState>=PAGER_WRITER_LOCKED ); 3265 3266 /* Allocate a bitvec to use to store the set of pages rolled back */ 3267 if( pSavepoint ){ 3268 pDone = sqlite3BitvecCreate(pSavepoint->nOrig); 3269 if( !pDone ){ 3270 return SQLITE_NOMEM; 3271 } 3272 } 3273 3274 /* Set the database size back to the value it was before the savepoint 3275 ** being reverted was opened. 3276 */ 3277 pPager->dbSize = pSavepoint ? pSavepoint->nOrig : pPager->dbOrigSize; 3278 pPager->changeCountDone = pPager->tempFile; 3279 3280 if( !pSavepoint && pagerUseWal(pPager) ){ 3281 return pagerRollbackWal(pPager); 3282 } 3283 3284 /* Use pPager->journalOff as the effective size of the main rollback 3285 ** journal. The actual file might be larger than this in 3286 ** PAGER_JOURNALMODE_TRUNCATE or PAGER_JOURNALMODE_PERSIST. But anything 3287 ** past pPager->journalOff is off-limits to us. 3288 */ 3289 szJ = pPager->journalOff; 3290 assert( pagerUseWal(pPager)==0 || szJ==0 ); 3291 3292 /* Begin by rolling back records from the main journal starting at 3293 ** PagerSavepoint.iOffset and continuing to the next journal header. 3294 ** There might be records in the main journal that have a page number 3295 ** greater than the current database size (pPager->dbSize) but those 3296 ** will be skipped automatically. Pages are added to pDone as they 3297 ** are played back. 3298 */ 3299 if( pSavepoint && !pagerUseWal(pPager) ){ 3300 iHdrOff = pSavepoint->iHdrOffset ? pSavepoint->iHdrOffset : szJ; 3301 pPager->journalOff = pSavepoint->iOffset; 3302 while( rc==SQLITE_OK && pPager->journalOff<iHdrOff ){ 3303 rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1); 3304 } 3305 assert( rc!=SQLITE_DONE ); 3306 }else{ 3307 pPager->journalOff = 0; 3308 } 3309 3310 /* Continue rolling back records out of the main journal starting at 3311 ** the first journal header seen and continuing until the effective end 3312 ** of the main journal file. Continue to skip out-of-range pages and 3313 ** continue adding pages rolled back to pDone. 3314 */ 3315 while( rc==SQLITE_OK && pPager->journalOff<szJ ){ 3316 u32 ii; /* Loop counter */ 3317 u32 nJRec = 0; /* Number of Journal Records */ 3318 u32 dummy; 3319 rc = readJournalHdr(pPager, 0, szJ, &nJRec, &dummy); 3320 assert( rc!=SQLITE_DONE ); 3321 3322 /* 3323 ** The "pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff" 3324 ** test is related to ticket #2565. See the discussion in the 3325 ** pager_playback() function for additional information. 3326 */ 3327 if( nJRec==0 3328 && pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff 3329 ){ 3330 nJRec = (u32)((szJ - pPager->journalOff)/JOURNAL_PG_SZ(pPager)); 3331 } 3332 for(ii=0; rc==SQLITE_OK && ii<nJRec && pPager->journalOff<szJ; ii++){ 3333 rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1); 3334 } 3335 assert( rc!=SQLITE_DONE ); 3336 } 3337 assert( rc!=SQLITE_OK || pPager->journalOff>=szJ ); 3338 3339 /* Finally, rollback pages from the sub-journal. Page that were 3340 ** previously rolled back out of the main journal (and are hence in pDone) 3341 ** will be skipped. Out-of-range pages are also skipped. 3342 */ 3343 if( pSavepoint ){ 3344 u32 ii; /* Loop counter */ 3345 i64 offset = (i64)pSavepoint->iSubRec*(4+pPager->pageSize); 3346 3347 if( pagerUseWal(pPager) ){ 3348 rc = sqlite3WalSavepointUndo(pPager->pWal, pSavepoint->aWalData); 3349 } 3350 for(ii=pSavepoint->iSubRec; rc==SQLITE_OK && ii<pPager->nSubRec; ii++){ 3351 assert( offset==(i64)ii*(4+pPager->pageSize) ); 3352 rc = pager_playback_one_page(pPager, &offset, pDone, 0, 1); 3353 } 3354 assert( rc!=SQLITE_DONE ); 3355 } 3356 3357 sqlite3BitvecDestroy(pDone); 3358 if( rc==SQLITE_OK ){ 3359 pPager->journalOff = szJ; 3360 } 3361 3362 return rc; 3363 } 3364 3365 /* 3366 ** Change the maximum number of in-memory pages that are allowed. 3367 */ 3368 void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){ 3369 sqlite3PcacheSetCachesize(pPager->pPCache, mxPage); 3370 } 3371 3372 /* 3373 ** Invoke SQLITE_FCNTL_MMAP_SIZE based on the current value of szMmap. 3374 */ 3375 static void pagerFixMaplimit(Pager *pPager){ 3376 #if SQLITE_MAX_MMAP_SIZE>0 3377 sqlite3_file *fd = pPager->fd; 3378 if( isOpen(fd) ){ 3379 sqlite3_int64 sz; 3380 pPager->bUseFetch = (fd->pMethods->iVersion>=3) && pPager->szMmap>0; 3381 sz = pPager->szMmap; 3382 sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_MMAP_SIZE, &sz); 3383 } 3384 #endif 3385 } 3386 3387 /* 3388 ** Change the maximum size of any memory mapping made of the database file. 3389 */ 3390 void sqlite3PagerSetMmapLimit(Pager *pPager, sqlite3_int64 szMmap){ 3391 pPager->szMmap = szMmap; 3392 pagerFixMaplimit(pPager); 3393 } 3394 3395 /* 3396 ** Free as much memory as possible from the pager. 3397 */ 3398 void sqlite3PagerShrink(Pager *pPager){ 3399 sqlite3PcacheShrink(pPager->pPCache); 3400 } 3401 3402 /* 3403 ** Adjust the robustness of the database to damage due to OS crashes 3404 ** or power failures by changing the number of syncs()s when writing 3405 ** the rollback journal. There are three levels: 3406 ** 3407 ** OFF sqlite3OsSync() is never called. This is the default 3408 ** for temporary and transient files. 3409 ** 3410 ** NORMAL The journal is synced once before writes begin on the 3411 ** database. This is normally adequate protection, but 3412 ** it is theoretically possible, though very unlikely, 3413 ** that an inopertune power failure could leave the journal 3414 ** in a state which would cause damage to the database 3415 ** when it is rolled back. 3416 ** 3417 ** FULL The journal is synced twice before writes begin on the 3418 ** database (with some additional information - the nRec field 3419 ** of the journal header - being written in between the two 3420 ** syncs). If we assume that writing a 3421 ** single disk sector is atomic, then this mode provides 3422 ** assurance that the journal will not be corrupted to the 3423 ** point of causing damage to the database during rollback. 3424 ** 3425 ** The above is for a rollback-journal mode. For WAL mode, OFF continues 3426 ** to mean that no syncs ever occur. NORMAL means that the WAL is synced 3427 ** prior to the start of checkpoint and that the database file is synced 3428 ** at the conclusion of the checkpoint if the entire content of the WAL 3429 ** was written back into the database. But no sync operations occur for 3430 ** an ordinary commit in NORMAL mode with WAL. FULL means that the WAL 3431 ** file is synced following each commit operation, in addition to the 3432 ** syncs associated with NORMAL. 3433 ** 3434 ** Do not confuse synchronous=FULL with SQLITE_SYNC_FULL. The 3435 ** SQLITE_SYNC_FULL macro means to use the MacOSX-style full-fsync 3436 ** using fcntl(F_FULLFSYNC). SQLITE_SYNC_NORMAL means to do an 3437 ** ordinary fsync() call. There is no difference between SQLITE_SYNC_FULL 3438 ** and SQLITE_SYNC_NORMAL on platforms other than MacOSX. But the 3439 ** synchronous=FULL versus synchronous=NORMAL setting determines when 3440 ** the xSync primitive is called and is relevant to all platforms. 3441 ** 3442 ** Numeric values associated with these states are OFF==1, NORMAL=2, 3443 ** and FULL=3. 3444 */ 3445 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 3446 void sqlite3PagerSetSafetyLevel( 3447 Pager *pPager, /* The pager to set safety level for */ 3448 int level, /* PRAGMA synchronous. 1=OFF, 2=NORMAL, 3=FULL */ 3449 int bFullFsync, /* PRAGMA fullfsync */ 3450 int bCkptFullFsync /* PRAGMA checkpoint_fullfsync */ 3451 ){ 3452 assert( level>=1 && level<=3 ); 3453 pPager->noSync = (level==1 || pPager->tempFile) ?1:0; 3454 pPager->fullSync = (level==3 && !pPager->tempFile) ?1:0; 3455 if( pPager->noSync ){ 3456 pPager->syncFlags = 0; 3457 pPager->ckptSyncFlags = 0; 3458 }else if( bFullFsync ){ 3459 pPager->syncFlags = SQLITE_SYNC_FULL; 3460 pPager->ckptSyncFlags = SQLITE_SYNC_FULL; 3461 }else if( bCkptFullFsync ){ 3462 pPager->syncFlags = SQLITE_SYNC_NORMAL; 3463 pPager->ckptSyncFlags = SQLITE_SYNC_FULL; 3464 }else{ 3465 pPager->syncFlags = SQLITE_SYNC_NORMAL; 3466 pPager->ckptSyncFlags = SQLITE_SYNC_NORMAL; 3467 } 3468 pPager->walSyncFlags = pPager->syncFlags; 3469 if( pPager->fullSync ){ 3470 pPager->walSyncFlags |= WAL_SYNC_TRANSACTIONS; 3471 } 3472 } 3473 #endif 3474 3475 /* 3476 ** The following global variable is incremented whenever the library 3477 ** attempts to open a temporary file. This information is used for 3478 ** testing and analysis only. 3479 */ 3480 #ifdef SQLITE_TEST 3481 int sqlite3_opentemp_count = 0; 3482 #endif 3483 3484 /* 3485 ** Open a temporary file. 3486 ** 3487 ** Write the file descriptor into *pFile. Return SQLITE_OK on success 3488 ** or some other error code if we fail. The OS will automatically 3489 ** delete the temporary file when it is closed. 3490 ** 3491 ** The flags passed to the VFS layer xOpen() call are those specified 3492 ** by parameter vfsFlags ORed with the following: 3493 ** 3494 ** SQLITE_OPEN_READWRITE 3495 ** SQLITE_OPEN_CREATE 3496 ** SQLITE_OPEN_EXCLUSIVE 3497 ** SQLITE_OPEN_DELETEONCLOSE 3498 */ 3499 static int pagerOpentemp( 3500 Pager *pPager, /* The pager object */ 3501 sqlite3_file *pFile, /* Write the file descriptor here */ 3502 int vfsFlags /* Flags passed through to the VFS */ 3503 ){ 3504 int rc; /* Return code */ 3505 3506 #ifdef SQLITE_TEST 3507 sqlite3_opentemp_count++; /* Used for testing and analysis only */ 3508 #endif 3509 3510 vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | 3511 SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE; 3512 rc = sqlite3OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0); 3513 assert( rc!=SQLITE_OK || isOpen(pFile) ); 3514 return rc; 3515 } 3516 3517 /* 3518 ** Set the busy handler function. 3519 ** 3520 ** The pager invokes the busy-handler if sqlite3OsLock() returns 3521 ** SQLITE_BUSY when trying to upgrade from no-lock to a SHARED lock, 3522 ** or when trying to upgrade from a RESERVED lock to an EXCLUSIVE 3523 ** lock. It does *not* invoke the busy handler when upgrading from 3524 ** SHARED to RESERVED, or when upgrading from SHARED to EXCLUSIVE 3525 ** (which occurs during hot-journal rollback). Summary: 3526 ** 3527 ** Transition | Invokes xBusyHandler 3528 ** -------------------------------------------------------- 3529 ** NO_LOCK -> SHARED_LOCK | Yes 3530 ** SHARED_LOCK -> RESERVED_LOCK | No 3531 ** SHARED_LOCK -> EXCLUSIVE_LOCK | No 3532 ** RESERVED_LOCK -> EXCLUSIVE_LOCK | Yes 3533 ** 3534 ** If the busy-handler callback returns non-zero, the lock is 3535 ** retried. If it returns zero, then the SQLITE_BUSY error is 3536 ** returned to the caller of the pager API function. 3537 */ 3538 void sqlite3PagerSetBusyhandler( 3539 Pager *pPager, /* Pager object */ 3540 int (*xBusyHandler)(void *), /* Pointer to busy-handler function */ 3541 void *pBusyHandlerArg /* Argument to pass to xBusyHandler */ 3542 ){ 3543 pPager->xBusyHandler = xBusyHandler; 3544 pPager->pBusyHandlerArg = pBusyHandlerArg; 3545 3546 if( isOpen(pPager->fd) ){ 3547 void **ap = (void **)&pPager->xBusyHandler; 3548 assert( ((int(*)(void *))(ap[0]))==xBusyHandler ); 3549 assert( ap[1]==pBusyHandlerArg ); 3550 sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_BUSYHANDLER, (void *)ap); 3551 } 3552 } 3553 3554 /* 3555 ** Change the page size used by the Pager object. The new page size 3556 ** is passed in *pPageSize. 3557 ** 3558 ** If the pager is in the error state when this function is called, it 3559 ** is a no-op. The value returned is the error state error code (i.e. 3560 ** one of SQLITE_IOERR, an SQLITE_IOERR_xxx sub-code or SQLITE_FULL). 3561 ** 3562 ** Otherwise, if all of the following are true: 3563 ** 3564 ** * the new page size (value of *pPageSize) is valid (a power 3565 ** of two between 512 and SQLITE_MAX_PAGE_SIZE, inclusive), and 3566 ** 3567 ** * there are no outstanding page references, and 3568 ** 3569 ** * the database is either not an in-memory database or it is 3570 ** an in-memory database that currently consists of zero pages. 3571 ** 3572 ** then the pager object page size is set to *pPageSize. 3573 ** 3574 ** If the page size is changed, then this function uses sqlite3PagerMalloc() 3575 ** to obtain a new Pager.pTmpSpace buffer. If this allocation attempt 3576 ** fails, SQLITE_NOMEM is returned and the page size remains unchanged. 3577 ** In all other cases, SQLITE_OK is returned. 3578 ** 3579 ** If the page size is not changed, either because one of the enumerated 3580 ** conditions above is not true, the pager was in error state when this 3581 ** function was called, or because the memory allocation attempt failed, 3582 ** then *pPageSize is set to the old, retained page size before returning. 3583 */ 3584 int sqlite3PagerSetPagesize(Pager *pPager, u32 *pPageSize, int nReserve){ 3585 int rc = SQLITE_OK; 3586 3587 /* It is not possible to do a full assert_pager_state() here, as this 3588 ** function may be called from within PagerOpen(), before the state 3589 ** of the Pager object is internally consistent. 3590 ** 3591 ** At one point this function returned an error if the pager was in 3592 ** PAGER_ERROR state. But since PAGER_ERROR state guarantees that 3593 ** there is at least one outstanding page reference, this function 3594 ** is a no-op for that case anyhow. 3595 */ 3596 3597 u32 pageSize = *pPageSize; 3598 assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) ); 3599 if( (pPager->memDb==0 || pPager->dbSize==0) 3600 && sqlite3PcacheRefCount(pPager->pPCache)==0 3601 && pageSize && pageSize!=(u32)pPager->pageSize 3602 ){ 3603 char *pNew = NULL; /* New temp space */ 3604 i64 nByte = 0; 3605 3606 if( pPager->eState>PAGER_OPEN && isOpen(pPager->fd) ){ 3607 rc = sqlite3OsFileSize(pPager->fd, &nByte); 3608 } 3609 if( rc==SQLITE_OK ){ 3610 pNew = (char *)sqlite3PageMalloc(pageSize); 3611 if( !pNew ) rc = SQLITE_NOMEM; 3612 } 3613 3614 if( rc==SQLITE_OK ){ 3615 pager_reset(pPager); 3616 pPager->dbSize = (Pgno)((nByte+pageSize-1)/pageSize); 3617 pPager->pageSize = pageSize; 3618 sqlite3PageFree(pPager->pTmpSpace); 3619 pPager->pTmpSpace = pNew; 3620 sqlite3PcacheSetPageSize(pPager->pPCache, pageSize); 3621 } 3622 } 3623 3624 *pPageSize = pPager->pageSize; 3625 if( rc==SQLITE_OK ){ 3626 if( nReserve<0 ) nReserve = pPager->nReserve; 3627 assert( nReserve>=0 && nReserve<1000 ); 3628 pPager->nReserve = (i16)nReserve; 3629 pagerReportSize(pPager); 3630 pagerFixMaplimit(pPager); 3631 } 3632 return rc; 3633 } 3634 3635 /* 3636 ** Return a pointer to the "temporary page" buffer held internally 3637 ** by the pager. This is a buffer that is big enough to hold the 3638 ** entire content of a database page. This buffer is used internally 3639 ** during rollback and will be overwritten whenever a rollback 3640 ** occurs. But other modules are free to use it too, as long as 3641 ** no rollbacks are happening. 3642 */ 3643 void *sqlite3PagerTempSpace(Pager *pPager){ 3644 return pPager->pTmpSpace; 3645 } 3646 3647 /* 3648 ** Attempt to set the maximum database page count if mxPage is positive. 3649 ** Make no changes if mxPage is zero or negative. And never reduce the 3650 ** maximum page count below the current size of the database. 3651 ** 3652 ** Regardless of mxPage, return the current maximum page count. 3653 */ 3654 int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){ 3655 if( mxPage>0 ){ 3656 pPager->mxPgno = mxPage; 3657 } 3658 assert( pPager->eState!=PAGER_OPEN ); /* Called only by OP_MaxPgcnt */ 3659 assert( pPager->mxPgno>=pPager->dbSize ); /* OP_MaxPgcnt enforces this */ 3660 return pPager->mxPgno; 3661 } 3662 3663 /* 3664 ** The following set of routines are used to disable the simulated 3665 ** I/O error mechanism. These routines are used to avoid simulated 3666 ** errors in places where we do not care about errors. 3667 ** 3668 ** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops 3669 ** and generate no code. 3670 */ 3671 #ifdef SQLITE_TEST 3672 extern int sqlite3_io_error_pending; 3673 extern int sqlite3_io_error_hit; 3674 static int saved_cnt; 3675 void disable_simulated_io_errors(void){ 3676 saved_cnt = sqlite3_io_error_pending; 3677 sqlite3_io_error_pending = -1; 3678 } 3679 void enable_simulated_io_errors(void){ 3680 sqlite3_io_error_pending = saved_cnt; 3681 } 3682 #else 3683 # define disable_simulated_io_errors() 3684 # define enable_simulated_io_errors() 3685 #endif 3686 3687 /* 3688 ** Read the first N bytes from the beginning of the file into memory 3689 ** that pDest points to. 3690 ** 3691 ** If the pager was opened on a transient file (zFilename==""), or 3692 ** opened on a file less than N bytes in size, the output buffer is 3693 ** zeroed and SQLITE_OK returned. The rationale for this is that this 3694 ** function is used to read database headers, and a new transient or 3695 ** zero sized database has a header than consists entirely of zeroes. 3696 ** 3697 ** If any IO error apart from SQLITE_IOERR_SHORT_READ is encountered, 3698 ** the error code is returned to the caller and the contents of the 3699 ** output buffer undefined. 3700 */ 3701 int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){ 3702 int rc = SQLITE_OK; 3703 memset(pDest, 0, N); 3704 assert( isOpen(pPager->fd) || pPager->tempFile ); 3705 3706 /* This routine is only called by btree immediately after creating 3707 ** the Pager object. There has not been an opportunity to transition 3708 ** to WAL mode yet. 3709 */ 3710 assert( !pagerUseWal(pPager) ); 3711 3712 if( isOpen(pPager->fd) ){ 3713 IOTRACE(("DBHDR %p 0 %d\n", pPager, N)) 3714 rc = sqlite3OsRead(pPager->fd, pDest, N, 0); 3715 if( rc==SQLITE_IOERR_SHORT_READ ){ 3716 rc = SQLITE_OK; 3717 } 3718 } 3719 return rc; 3720 } 3721 3722 /* 3723 ** This function may only be called when a read-transaction is open on 3724 ** the pager. It returns the total number of pages in the database. 3725 ** 3726 ** However, if the file is between 1 and <page-size> bytes in size, then 3727 ** this is considered a 1 page file. 3728 */ 3729 void sqlite3PagerPagecount(Pager *pPager, int *pnPage){ 3730 assert( pPager->eState>=PAGER_READER ); 3731 assert( pPager->eState!=PAGER_WRITER_FINISHED ); 3732 *pnPage = (int)pPager->dbSize; 3733 } 3734 3735 3736 /* 3737 ** Try to obtain a lock of type locktype on the database file. If 3738 ** a similar or greater lock is already held, this function is a no-op 3739 ** (returning SQLITE_OK immediately). 3740 ** 3741 ** Otherwise, attempt to obtain the lock using sqlite3OsLock(). Invoke 3742 ** the busy callback if the lock is currently not available. Repeat 3743 ** until the busy callback returns false or until the attempt to 3744 ** obtain the lock succeeds. 3745 ** 3746 ** Return SQLITE_OK on success and an error code if we cannot obtain 3747 ** the lock. If the lock is obtained successfully, set the Pager.state 3748 ** variable to locktype before returning. 3749 */ 3750 static int pager_wait_on_lock(Pager *pPager, int locktype){ 3751 int rc; /* Return code */ 3752 3753 /* Check that this is either a no-op (because the requested lock is 3754 ** already held, or one of the transistions that the busy-handler 3755 ** may be invoked during, according to the comment above 3756 ** sqlite3PagerSetBusyhandler(). 3757 */ 3758 assert( (pPager->eLock>=locktype) 3759 || (pPager->eLock==NO_LOCK && locktype==SHARED_LOCK) 3760 || (pPager->eLock==RESERVED_LOCK && locktype==EXCLUSIVE_LOCK) 3761 ); 3762 3763 do { 3764 rc = pagerLockDb(pPager, locktype); 3765 }while( rc==SQLITE_BUSY && pPager->xBusyHandler(pPager->pBusyHandlerArg) ); 3766 return rc; 3767 } 3768 3769 /* 3770 ** Function assertTruncateConstraint(pPager) checks that one of the 3771 ** following is true for all dirty pages currently in the page-cache: 3772 ** 3773 ** a) The page number is less than or equal to the size of the 3774 ** current database image, in pages, OR 3775 ** 3776 ** b) if the page content were written at this time, it would not 3777 ** be necessary to write the current content out to the sub-journal 3778 ** (as determined by function subjRequiresPage()). 3779 ** 3780 ** If the condition asserted by this function were not true, and the 3781 ** dirty page were to be discarded from the cache via the pagerStress() 3782 ** routine, pagerStress() would not write the current page content to 3783 ** the database file. If a savepoint transaction were rolled back after 3784 ** this happened, the correct behavior would be to restore the current 3785 ** content of the page. However, since this content is not present in either 3786 ** the database file or the portion of the rollback journal and 3787 ** sub-journal rolled back the content could not be restored and the 3788 ** database image would become corrupt. It is therefore fortunate that 3789 ** this circumstance cannot arise. 3790 */ 3791 #if defined(SQLITE_DEBUG) 3792 static void assertTruncateConstraintCb(PgHdr *pPg){ 3793 assert( pPg->flags&PGHDR_DIRTY ); 3794 assert( !subjRequiresPage(pPg) || pPg->pgno<=pPg->pPager->dbSize ); 3795 } 3796 static void assertTruncateConstraint(Pager *pPager){ 3797 sqlite3PcacheIterateDirty(pPager->pPCache, assertTruncateConstraintCb); 3798 } 3799 #else 3800 # define assertTruncateConstraint(pPager) 3801 #endif 3802 3803 /* 3804 ** Truncate the in-memory database file image to nPage pages. This 3805 ** function does not actually modify the database file on disk. It 3806 ** just sets the internal state of the pager object so that the 3807 ** truncation will be done when the current transaction is committed. 3808 ** 3809 ** This function is only called right before committing a transaction. 3810 ** Once this function has been called, the transaction must either be 3811 ** rolled back or committed. It is not safe to call this function and 3812 ** then continue writing to the database. 3813 */ 3814 void sqlite3PagerTruncateImage(Pager *pPager, Pgno nPage){ 3815 assert( pPager->dbSize>=nPage ); 3816 assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); 3817 pPager->dbSize = nPage; 3818 3819 /* At one point the code here called assertTruncateConstraint() to 3820 ** ensure that all pages being truncated away by this operation are, 3821 ** if one or more savepoints are open, present in the savepoint 3822 ** journal so that they can be restored if the savepoint is rolled 3823 ** back. This is no longer necessary as this function is now only 3824 ** called right before committing a transaction. So although the 3825 ** Pager object may still have open savepoints (Pager.nSavepoint!=0), 3826 ** they cannot be rolled back. So the assertTruncateConstraint() call 3827 ** is no longer correct. */ 3828 } 3829 3830 3831 /* 3832 ** This function is called before attempting a hot-journal rollback. It 3833 ** syncs the journal file to disk, then sets pPager->journalHdr to the 3834 ** size of the journal file so that the pager_playback() routine knows 3835 ** that the entire journal file has been synced. 3836 ** 3837 ** Syncing a hot-journal to disk before attempting to roll it back ensures 3838 ** that if a power-failure occurs during the rollback, the process that 3839 ** attempts rollback following system recovery sees the same journal 3840 ** content as this process. 3841 ** 3842 ** If everything goes as planned, SQLITE_OK is returned. Otherwise, 3843 ** an SQLite error code. 3844 */ 3845 static int pagerSyncHotJournal(Pager *pPager){ 3846 int rc = SQLITE_OK; 3847 if( !pPager->noSync ){ 3848 rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_NORMAL); 3849 } 3850 if( rc==SQLITE_OK ){ 3851 rc = sqlite3OsFileSize(pPager->jfd, &pPager->journalHdr); 3852 } 3853 return rc; 3854 } 3855 3856 /* 3857 ** Obtain a reference to a memory mapped page object for page number pgno. 3858 ** The new object will use the pointer pData, obtained from xFetch(). 3859 ** If successful, set *ppPage to point to the new page reference 3860 ** and return SQLITE_OK. Otherwise, return an SQLite error code and set 3861 ** *ppPage to zero. 3862 ** 3863 ** Page references obtained by calling this function should be released 3864 ** by calling pagerReleaseMapPage(). 3865 */ 3866 static int pagerAcquireMapPage( 3867 Pager *pPager, /* Pager object */ 3868 Pgno pgno, /* Page number */ 3869 void *pData, /* xFetch()'d data for this page */ 3870 PgHdr **ppPage /* OUT: Acquired page object */ 3871 ){ 3872 PgHdr *p; /* Memory mapped page to return */ 3873 3874 if( pPager->pMmapFreelist ){ 3875 *ppPage = p = pPager->pMmapFreelist; 3876 pPager->pMmapFreelist = p->pDirty; 3877 p->pDirty = 0; 3878 memset(p->pExtra, 0, pPager->nExtra); 3879 }else{ 3880 *ppPage = p = (PgHdr *)sqlite3MallocZero(sizeof(PgHdr) + pPager->nExtra); 3881 if( p==0 ){ 3882 sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1) * pPager->pageSize, pData); 3883 return SQLITE_NOMEM; 3884 } 3885 p->pExtra = (void *)&p[1]; 3886 p->flags = PGHDR_MMAP; 3887 p->nRef = 1; 3888 p->pPager = pPager; 3889 } 3890 3891 assert( p->pExtra==(void *)&p[1] ); 3892 assert( p->pPage==0 ); 3893 assert( p->flags==PGHDR_MMAP ); 3894 assert( p->pPager==pPager ); 3895 assert( p->nRef==1 ); 3896 3897 p->pgno = pgno; 3898 p->pData = pData; 3899 pPager->nMmapOut++; 3900 3901 return SQLITE_OK; 3902 } 3903 3904 /* 3905 ** Release a reference to page pPg. pPg must have been returned by an 3906 ** earlier call to pagerAcquireMapPage(). 3907 */ 3908 static void pagerReleaseMapPage(PgHdr *pPg){ 3909 Pager *pPager = pPg->pPager; 3910 pPager->nMmapOut--; 3911 pPg->pDirty = pPager->pMmapFreelist; 3912 pPager->pMmapFreelist = pPg; 3913 3914 assert( pPager->fd->pMethods->iVersion>=3 ); 3915 sqlite3OsUnfetch(pPager->fd, (i64)(pPg->pgno-1)*pPager->pageSize, pPg->pData); 3916 } 3917 3918 /* 3919 ** Free all PgHdr objects stored in the Pager.pMmapFreelist list. 3920 */ 3921 static void pagerFreeMapHdrs(Pager *pPager){ 3922 PgHdr *p; 3923 PgHdr *pNext; 3924 for(p=pPager->pMmapFreelist; p; p=pNext){ 3925 pNext = p->pDirty; 3926 sqlite3_free(p); 3927 } 3928 } 3929 3930 3931 /* 3932 ** Shutdown the page cache. Free all memory and close all files. 3933 ** 3934 ** If a transaction was in progress when this routine is called, that 3935 ** transaction is rolled back. All outstanding pages are invalidated 3936 ** and their memory is freed. Any attempt to use a page associated 3937 ** with this page cache after this function returns will likely 3938 ** result in a coredump. 3939 ** 3940 ** This function always succeeds. If a transaction is active an attempt 3941 ** is made to roll it back. If an error occurs during the rollback 3942 ** a hot journal may be left in the filesystem but no error is returned 3943 ** to the caller. 3944 */ 3945 int sqlite3PagerClose(Pager *pPager){ 3946 u8 *pTmp = (u8 *)pPager->pTmpSpace; 3947 3948 assert( assert_pager_state(pPager) ); 3949 disable_simulated_io_errors(); 3950 sqlite3BeginBenignMalloc(); 3951 pagerFreeMapHdrs(pPager); 3952 /* pPager->errCode = 0; */ 3953 pPager->exclusiveMode = 0; 3954 #ifndef SQLITE_OMIT_WAL 3955 sqlite3WalClose(pPager->pWal, pPager->ckptSyncFlags, pPager->pageSize, pTmp); 3956 pPager->pWal = 0; 3957 #endif 3958 pager_reset(pPager); 3959 if( MEMDB ){ 3960 pager_unlock(pPager); 3961 }else{ 3962 /* If it is open, sync the journal file before calling UnlockAndRollback. 3963 ** If this is not done, then an unsynced portion of the open journal 3964 ** file may be played back into the database. If a power failure occurs 3965 ** while this is happening, the database could become corrupt. 3966 ** 3967 ** If an error occurs while trying to sync the journal, shift the pager 3968 ** into the ERROR state. This causes UnlockAndRollback to unlock the 3969 ** database and close the journal file without attempting to roll it 3970 ** back or finalize it. The next database user will have to do hot-journal 3971 ** rollback before accessing the database file. 3972 */ 3973 if( isOpen(pPager->jfd) ){ 3974 pager_error(pPager, pagerSyncHotJournal(pPager)); 3975 } 3976 pagerUnlockAndRollback(pPager); 3977 } 3978 sqlite3EndBenignMalloc(); 3979 enable_simulated_io_errors(); 3980 PAGERTRACE(("CLOSE %d\n", PAGERID(pPager))); 3981 IOTRACE(("CLOSE %p\n", pPager)) 3982 sqlite3OsClose(pPager->jfd); 3983 sqlite3OsClose(pPager->fd); 3984 sqlite3PageFree(pTmp); 3985 sqlite3PcacheClose(pPager->pPCache); 3986 3987 #ifdef SQLITE_HAS_CODEC 3988 if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec); 3989 #endif 3990 3991 assert( !pPager->aSavepoint && !pPager->pInJournal ); 3992 assert( !isOpen(pPager->jfd) && !isOpen(pPager->sjfd) ); 3993 3994 sqlite3_free(pPager); 3995 return SQLITE_OK; 3996 } 3997 3998 #if !defined(NDEBUG) || defined(SQLITE_TEST) 3999 /* 4000 ** Return the page number for page pPg. 4001 */ 4002 Pgno sqlite3PagerPagenumber(DbPage *pPg){ 4003 return pPg->pgno; 4004 } 4005 #endif 4006 4007 /* 4008 ** Increment the reference count for page pPg. 4009 */ 4010 void sqlite3PagerRef(DbPage *pPg){ 4011 sqlite3PcacheRef(pPg); 4012 } 4013 4014 /* 4015 ** Sync the journal. In other words, make sure all the pages that have 4016 ** been written to the journal have actually reached the surface of the 4017 ** disk and can be restored in the event of a hot-journal rollback. 4018 ** 4019 ** If the Pager.noSync flag is set, then this function is a no-op. 4020 ** Otherwise, the actions required depend on the journal-mode and the 4021 ** device characteristics of the file-system, as follows: 4022 ** 4023 ** * If the journal file is an in-memory journal file, no action need 4024 ** be taken. 4025 ** 4026 ** * Otherwise, if the device does not support the SAFE_APPEND property, 4027 ** then the nRec field of the most recently written journal header 4028 ** is updated to contain the number of journal records that have 4029 ** been written following it. If the pager is operating in full-sync 4030 ** mode, then the journal file is synced before this field is updated. 4031 ** 4032 ** * If the device does not support the SEQUENTIAL property, then 4033 ** journal file is synced. 4034 ** 4035 ** Or, in pseudo-code: 4036 ** 4037 ** if( NOT <in-memory journal> ){ 4038 ** if( NOT SAFE_APPEND ){ 4039 ** if( <full-sync mode> ) xSync(<journal file>); 4040 ** <update nRec field> 4041 ** } 4042 ** if( NOT SEQUENTIAL ) xSync(<journal file>); 4043 ** } 4044 ** 4045 ** If successful, this routine clears the PGHDR_NEED_SYNC flag of every 4046 ** page currently held in memory before returning SQLITE_OK. If an IO 4047 ** error is encountered, then the IO error code is returned to the caller. 4048 */ 4049 static int syncJournal(Pager *pPager, int newHdr){ 4050 int rc; /* Return code */ 4051 4052 assert( pPager->eState==PAGER_WRITER_CACHEMOD 4053 || pPager->eState==PAGER_WRITER_DBMOD 4054 ); 4055 assert( assert_pager_state(pPager) ); 4056 assert( !pagerUseWal(pPager) ); 4057 4058 rc = sqlite3PagerExclusiveLock(pPager); 4059 if( rc!=SQLITE_OK ) return rc; 4060 4061 if( !pPager->noSync ){ 4062 assert( !pPager->tempFile ); 4063 if( isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){ 4064 const int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); 4065 assert( isOpen(pPager->jfd) ); 4066 4067 if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ 4068 /* This block deals with an obscure problem. If the last connection 4069 ** that wrote to this database was operating in persistent-journal 4070 ** mode, then the journal file may at this point actually be larger 4071 ** than Pager.journalOff bytes. If the next thing in the journal 4072 ** file happens to be a journal-header (written as part of the 4073 ** previous connection's transaction), and a crash or power-failure 4074 ** occurs after nRec is updated but before this connection writes 4075 ** anything else to the journal file (or commits/rolls back its 4076 ** transaction), then SQLite may become confused when doing the 4077 ** hot-journal rollback following recovery. It may roll back all 4078 ** of this connections data, then proceed to rolling back the old, 4079 ** out-of-date data that follows it. Database corruption. 4080 ** 4081 ** To work around this, if the journal file does appear to contain 4082 ** a valid header following Pager.journalOff, then write a 0x00 4083 ** byte to the start of it to prevent it from being recognized. 4084 ** 4085 ** Variable iNextHdrOffset is set to the offset at which this 4086 ** problematic header will occur, if it exists. aMagic is used 4087 ** as a temporary buffer to inspect the first couple of bytes of 4088 ** the potential journal header. 4089 */ 4090 i64 iNextHdrOffset; 4091 u8 aMagic[8]; 4092 u8 zHeader[sizeof(aJournalMagic)+4]; 4093 4094 memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); 4095 put32bits(&zHeader[sizeof(aJournalMagic)], pPager->nRec); 4096 4097 iNextHdrOffset = journalHdrOffset(pPager); 4098 rc = sqlite3OsRead(pPager->jfd, aMagic, 8, iNextHdrOffset); 4099 if( rc==SQLITE_OK && 0==memcmp(aMagic, aJournalMagic, 8) ){ 4100 static const u8 zerobyte = 0; 4101 rc = sqlite3OsWrite(pPager->jfd, &zerobyte, 1, iNextHdrOffset); 4102 } 4103 if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){ 4104 return rc; 4105 } 4106 4107 /* Write the nRec value into the journal file header. If in 4108 ** full-synchronous mode, sync the journal first. This ensures that 4109 ** all data has really hit the disk before nRec is updated to mark 4110 ** it as a candidate for rollback. 4111 ** 4112 ** This is not required if the persistent media supports the 4113 ** SAFE_APPEND property. Because in this case it is not possible 4114 ** for garbage data to be appended to the file, the nRec field 4115 ** is populated with 0xFFFFFFFF when the journal header is written 4116 ** and never needs to be updated. 4117 */ 4118 if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ 4119 PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); 4120 IOTRACE(("JSYNC %p\n", pPager)) 4121 rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags); 4122 if( rc!=SQLITE_OK ) return rc; 4123 } 4124 IOTRACE(("JHDR %p %lld\n", pPager, pPager->journalHdr)); 4125 rc = sqlite3OsWrite( 4126 pPager->jfd, zHeader, sizeof(zHeader), pPager->journalHdr 4127 ); 4128 if( rc!=SQLITE_OK ) return rc; 4129 } 4130 if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ 4131 PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager))); 4132 IOTRACE(("JSYNC %p\n", pPager)) 4133 rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags| 4134 (pPager->syncFlags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0) 4135 ); 4136 if( rc!=SQLITE_OK ) return rc; 4137 } 4138 4139 pPager->journalHdr = pPager->journalOff; 4140 if( newHdr && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ 4141 pPager->nRec = 0; 4142 rc = writeJournalHdr(pPager); 4143 if( rc!=SQLITE_OK ) return rc; 4144 } 4145 }else{ 4146 pPager->journalHdr = pPager->journalOff; 4147 } 4148 } 4149 4150 /* Unless the pager is in noSync mode, the journal file was just 4151 ** successfully synced. Either way, clear the PGHDR_NEED_SYNC flag on 4152 ** all pages. 4153 */ 4154 sqlite3PcacheClearSyncFlags(pPager->pPCache); 4155 pPager->eState = PAGER_WRITER_DBMOD; 4156 assert( assert_pager_state(pPager) ); 4157 return SQLITE_OK; 4158 } 4159 4160 /* 4161 ** The argument is the first in a linked list of dirty pages connected 4162 ** by the PgHdr.pDirty pointer. This function writes each one of the 4163 ** in-memory pages in the list to the database file. The argument may 4164 ** be NULL, representing an empty list. In this case this function is 4165 ** a no-op. 4166 ** 4167 ** The pager must hold at least a RESERVED lock when this function 4168 ** is called. Before writing anything to the database file, this lock 4169 ** is upgraded to an EXCLUSIVE lock. If the lock cannot be obtained, 4170 ** SQLITE_BUSY is returned and no data is written to the database file. 4171 ** 4172 ** If the pager is a temp-file pager and the actual file-system file 4173 ** is not yet open, it is created and opened before any data is 4174 ** written out. 4175 ** 4176 ** Once the lock has been upgraded and, if necessary, the file opened, 4177 ** the pages are written out to the database file in list order. Writing 4178 ** a page is skipped if it meets either of the following criteria: 4179 ** 4180 ** * The page number is greater than Pager.dbSize, or 4181 ** * The PGHDR_DONT_WRITE flag is set on the page. 4182 ** 4183 ** If writing out a page causes the database file to grow, Pager.dbFileSize 4184 ** is updated accordingly. If page 1 is written out, then the value cached 4185 ** in Pager.dbFileVers[] is updated to match the new value stored in 4186 ** the database file. 4187 ** 4188 ** If everything is successful, SQLITE_OK is returned. If an IO error 4189 ** occurs, an IO error code is returned. Or, if the EXCLUSIVE lock cannot 4190 ** be obtained, SQLITE_BUSY is returned. 4191 */ 4192 static int pager_write_pagelist(Pager *pPager, PgHdr *pList){ 4193 int rc = SQLITE_OK; /* Return code */ 4194 4195 /* This function is only called for rollback pagers in WRITER_DBMOD state. */ 4196 assert( !pagerUseWal(pPager) ); 4197 assert( pPager->eState==PAGER_WRITER_DBMOD ); 4198 assert( pPager->eLock==EXCLUSIVE_LOCK ); 4199 4200 /* If the file is a temp-file has not yet been opened, open it now. It 4201 ** is not possible for rc to be other than SQLITE_OK if this branch 4202 ** is taken, as pager_wait_on_lock() is a no-op for temp-files. 4203 */ 4204 if( !isOpen(pPager->fd) ){ 4205 assert( pPager->tempFile && rc==SQLITE_OK ); 4206 rc = pagerOpentemp(pPager, pPager->fd, pPager->vfsFlags); 4207 } 4208 4209 /* Before the first write, give the VFS a hint of what the final 4210 ** file size will be. 4211 */ 4212 assert( rc!=SQLITE_OK || isOpen(pPager->fd) ); 4213 if( rc==SQLITE_OK 4214 && (pList->pDirty ? pPager->dbSize : pList->pgno+1)>pPager->dbHintSize 4215 ){ 4216 sqlite3_int64 szFile = pPager->pageSize * (sqlite3_int64)pPager->dbSize; 4217 sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile); 4218 pPager->dbHintSize = pPager->dbSize; 4219 } 4220 4221 while( rc==SQLITE_OK && pList ){ 4222 Pgno pgno = pList->pgno; 4223 4224 /* If there are dirty pages in the page cache with page numbers greater 4225 ** than Pager.dbSize, this means sqlite3PagerTruncateImage() was called to 4226 ** make the file smaller (presumably by auto-vacuum code). Do not write 4227 ** any such pages to the file. 4228 ** 4229 ** Also, do not write out any page that has the PGHDR_DONT_WRITE flag 4230 ** set (set by sqlite3PagerDontWrite()). 4231 */ 4232 if( pgno<=pPager->dbSize && 0==(pList->flags&PGHDR_DONT_WRITE) ){ 4233 i64 offset = (pgno-1)*(i64)pPager->pageSize; /* Offset to write */ 4234 char *pData; /* Data to write */ 4235 4236 assert( (pList->flags&PGHDR_NEED_SYNC)==0 ); 4237 if( pList->pgno==1 ) pager_write_changecounter(pList); 4238 4239 /* Encode the database */ 4240 CODEC2(pPager, pList->pData, pgno, 6, return SQLITE_NOMEM, pData); 4241 4242 /* Write out the page data. */ 4243 rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset); 4244 4245 /* If page 1 was just written, update Pager.dbFileVers to match 4246 ** the value now stored in the database file. If writing this 4247 ** page caused the database file to grow, update dbFileSize. 4248 */ 4249 if( pgno==1 ){ 4250 memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers)); 4251 } 4252 if( pgno>pPager->dbFileSize ){ 4253 pPager->dbFileSize = pgno; 4254 } 4255 pPager->aStat[PAGER_STAT_WRITE]++; 4256 4257 /* Update any backup objects copying the contents of this pager. */ 4258 sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)pList->pData); 4259 4260 PAGERTRACE(("STORE %d page %d hash(%08x)\n", 4261 PAGERID(pPager), pgno, pager_pagehash(pList))); 4262 IOTRACE(("PGOUT %p %d\n", pPager, pgno)); 4263 PAGER_INCR(sqlite3_pager_writedb_count); 4264 }else{ 4265 PAGERTRACE(("NOSTORE %d page %d\n", PAGERID(pPager), pgno)); 4266 } 4267 pager_set_pagehash(pList); 4268 pList = pList->pDirty; 4269 } 4270 4271 return rc; 4272 } 4273 4274 /* 4275 ** Ensure that the sub-journal file is open. If it is already open, this 4276 ** function is a no-op. 4277 ** 4278 ** SQLITE_OK is returned if everything goes according to plan. An 4279 ** SQLITE_IOERR_XXX error code is returned if a call to sqlite3OsOpen() 4280 ** fails. 4281 */ 4282 static int openSubJournal(Pager *pPager){ 4283 int rc = SQLITE_OK; 4284 if( !isOpen(pPager->sjfd) ){ 4285 if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->subjInMemory ){ 4286 sqlite3MemJournalOpen(pPager->sjfd); 4287 }else{ 4288 rc = pagerOpentemp(pPager, pPager->sjfd, SQLITE_OPEN_SUBJOURNAL); 4289 } 4290 } 4291 return rc; 4292 } 4293 4294 /* 4295 ** Append a record of the current state of page pPg to the sub-journal. 4296 ** It is the callers responsibility to use subjRequiresPage() to check 4297 ** that it is really required before calling this function. 4298 ** 4299 ** If successful, set the bit corresponding to pPg->pgno in the bitvecs 4300 ** for all open savepoints before returning. 4301 ** 4302 ** This function returns SQLITE_OK if everything is successful, an IO 4303 ** error code if the attempt to write to the sub-journal fails, or 4304 ** SQLITE_NOMEM if a malloc fails while setting a bit in a savepoint 4305 ** bitvec. 4306 */ 4307 static int subjournalPage(PgHdr *pPg){ 4308 int rc = SQLITE_OK; 4309 Pager *pPager = pPg->pPager; 4310 if( pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ 4311 4312 /* Open the sub-journal, if it has not already been opened */ 4313 assert( pPager->useJournal ); 4314 assert( isOpen(pPager->jfd) || pagerUseWal(pPager) ); 4315 assert( isOpen(pPager->sjfd) || pPager->nSubRec==0 ); 4316 assert( pagerUseWal(pPager) 4317 || pageInJournal(pPg) 4318 || pPg->pgno>pPager->dbOrigSize 4319 ); 4320 rc = openSubJournal(pPager); 4321 4322 /* If the sub-journal was opened successfully (or was already open), 4323 ** write the journal record into the file. */ 4324 if( rc==SQLITE_OK ){ 4325 void *pData = pPg->pData; 4326 i64 offset = (i64)pPager->nSubRec*(4+pPager->pageSize); 4327 char *pData2; 4328 4329 CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM, pData2); 4330 PAGERTRACE(("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno)); 4331 rc = write32bits(pPager->sjfd, offset, pPg->pgno); 4332 if( rc==SQLITE_OK ){ 4333 rc = sqlite3OsWrite(pPager->sjfd, pData2, pPager->pageSize, offset+4); 4334 } 4335 } 4336 } 4337 if( rc==SQLITE_OK ){ 4338 pPager->nSubRec++; 4339 assert( pPager->nSavepoint>0 ); 4340 rc = addToSavepointBitvecs(pPager, pPg->pgno); 4341 } 4342 return rc; 4343 } 4344 4345 /* 4346 ** This function is called by the pcache layer when it has reached some 4347 ** soft memory limit. The first argument is a pointer to a Pager object 4348 ** (cast as a void*). The pager is always 'purgeable' (not an in-memory 4349 ** database). The second argument is a reference to a page that is 4350 ** currently dirty but has no outstanding references. The page 4351 ** is always associated with the Pager object passed as the first 4352 ** argument. 4353 ** 4354 ** The job of this function is to make pPg clean by writing its contents 4355 ** out to the database file, if possible. This may involve syncing the 4356 ** journal file. 4357 ** 4358 ** If successful, sqlite3PcacheMakeClean() is called on the page and 4359 ** SQLITE_OK returned. If an IO error occurs while trying to make the 4360 ** page clean, the IO error code is returned. If the page cannot be 4361 ** made clean for some other reason, but no error occurs, then SQLITE_OK 4362 ** is returned by sqlite3PcacheMakeClean() is not called. 4363 */ 4364 static int pagerStress(void *p, PgHdr *pPg){ 4365 Pager *pPager = (Pager *)p; 4366 int rc = SQLITE_OK; 4367 4368 assert( pPg->pPager==pPager ); 4369 assert( pPg->flags&PGHDR_DIRTY ); 4370 4371 /* The doNotSyncSpill flag is set during times when doing a sync of 4372 ** journal (and adding a new header) is not allowed. This occurs 4373 ** during calls to sqlite3PagerWrite() while trying to journal multiple 4374 ** pages belonging to the same sector. 4375 ** 4376 ** The doNotSpill flag inhibits all cache spilling regardless of whether 4377 ** or not a sync is required. This is set during a rollback. 4378 ** 4379 ** Spilling is also prohibited when in an error state since that could 4380 ** lead to database corruption. In the current implementaton it 4381 ** is impossible for sqlite3PcacheFetch() to be called with createFlag==1 4382 ** while in the error state, hence it is impossible for this routine to 4383 ** be called in the error state. Nevertheless, we include a NEVER() 4384 ** test for the error state as a safeguard against future changes. 4385 */ 4386 if( NEVER(pPager->errCode) ) return SQLITE_OK; 4387 if( pPager->doNotSpill ) return SQLITE_OK; 4388 if( pPager->doNotSyncSpill && (pPg->flags & PGHDR_NEED_SYNC)!=0 ){ 4389 return SQLITE_OK; 4390 } 4391 4392 pPg->pDirty = 0; 4393 if( pagerUseWal(pPager) ){ 4394 /* Write a single frame for this page to the log. */ 4395 if( subjRequiresPage(pPg) ){ 4396 rc = subjournalPage(pPg); 4397 } 4398 if( rc==SQLITE_OK ){ 4399 rc = pagerWalFrames(pPager, pPg, 0, 0); 4400 } 4401 }else{ 4402 4403 /* Sync the journal file if required. */ 4404 if( pPg->flags&PGHDR_NEED_SYNC 4405 || pPager->eState==PAGER_WRITER_CACHEMOD 4406 ){ 4407 rc = syncJournal(pPager, 1); 4408 } 4409 4410 /* If the page number of this page is larger than the current size of 4411 ** the database image, it may need to be written to the sub-journal. 4412 ** This is because the call to pager_write_pagelist() below will not 4413 ** actually write data to the file in this case. 4414 ** 4415 ** Consider the following sequence of events: 4416 ** 4417 ** BEGIN; 4418 ** <journal page X> 4419 ** <modify page X> 4420 ** SAVEPOINT sp; 4421 ** <shrink database file to Y pages> 4422 ** pagerStress(page X) 4423 ** ROLLBACK TO sp; 4424 ** 4425 ** If (X>Y), then when pagerStress is called page X will not be written 4426 ** out to the database file, but will be dropped from the cache. Then, 4427 ** following the "ROLLBACK TO sp" statement, reading page X will read 4428 ** data from the database file. This will be the copy of page X as it 4429 ** was when the transaction started, not as it was when "SAVEPOINT sp" 4430 ** was executed. 4431 ** 4432 ** The solution is to write the current data for page X into the 4433 ** sub-journal file now (if it is not already there), so that it will 4434 ** be restored to its current value when the "ROLLBACK TO sp" is 4435 ** executed. 4436 */ 4437 if( NEVER( 4438 rc==SQLITE_OK && pPg->pgno>pPager->dbSize && subjRequiresPage(pPg) 4439 ) ){ 4440 rc = subjournalPage(pPg); 4441 } 4442 4443 /* Write the contents of the page out to the database file. */ 4444 if( rc==SQLITE_OK ){ 4445 assert( (pPg->flags&PGHDR_NEED_SYNC)==0 ); 4446 rc = pager_write_pagelist(pPager, pPg); 4447 } 4448 } 4449 4450 /* Mark the page as clean. */ 4451 if( rc==SQLITE_OK ){ 4452 PAGERTRACE(("STRESS %d page %d\n", PAGERID(pPager), pPg->pgno)); 4453 sqlite3PcacheMakeClean(pPg); 4454 } 4455 4456 return pager_error(pPager, rc); 4457 } 4458 4459 4460 /* 4461 ** Allocate and initialize a new Pager object and put a pointer to it 4462 ** in *ppPager. The pager should eventually be freed by passing it 4463 ** to sqlite3PagerClose(). 4464 ** 4465 ** The zFilename argument is the path to the database file to open. 4466 ** If zFilename is NULL then a randomly-named temporary file is created 4467 ** and used as the file to be cached. Temporary files are be deleted 4468 ** automatically when they are closed. If zFilename is ":memory:" then 4469 ** all information is held in cache. It is never written to disk. 4470 ** This can be used to implement an in-memory database. 4471 ** 4472 ** The nExtra parameter specifies the number of bytes of space allocated 4473 ** along with each page reference. This space is available to the user 4474 ** via the sqlite3PagerGetExtra() API. 4475 ** 4476 ** The flags argument is used to specify properties that affect the 4477 ** operation of the pager. It should be passed some bitwise combination 4478 ** of the PAGER_* flags. 4479 ** 4480 ** The vfsFlags parameter is a bitmask to pass to the flags parameter 4481 ** of the xOpen() method of the supplied VFS when opening files. 4482 ** 4483 ** If the pager object is allocated and the specified file opened 4484 ** successfully, SQLITE_OK is returned and *ppPager set to point to 4485 ** the new pager object. If an error occurs, *ppPager is set to NULL 4486 ** and error code returned. This function may return SQLITE_NOMEM 4487 ** (sqlite3Malloc() is used to allocate memory), SQLITE_CANTOPEN or 4488 ** various SQLITE_IO_XXX errors. 4489 */ 4490 int sqlite3PagerOpen( 4491 sqlite3_vfs *pVfs, /* The virtual file system to use */ 4492 Pager **ppPager, /* OUT: Return the Pager structure here */ 4493 const char *zFilename, /* Name of the database file to open */ 4494 int nExtra, /* Extra bytes append to each in-memory page */ 4495 int flags, /* flags controlling this file */ 4496 int vfsFlags, /* flags passed through to sqlite3_vfs.xOpen() */ 4497 void (*xReinit)(DbPage*) /* Function to reinitialize pages */ 4498 ){ 4499 u8 *pPtr; 4500 Pager *pPager = 0; /* Pager object to allocate and return */ 4501 int rc = SQLITE_OK; /* Return code */ 4502 int tempFile = 0; /* True for temp files (incl. in-memory files) */ 4503 int memDb = 0; /* True if this is an in-memory file */ 4504 int readOnly = 0; /* True if this is a read-only file */ 4505 int journalFileSize; /* Bytes to allocate for each journal fd */ 4506 char *zPathname = 0; /* Full path to database file */ 4507 int nPathname = 0; /* Number of bytes in zPathname */ 4508 int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; /* False to omit journal */ 4509 int pcacheSize = sqlite3PcacheSize(); /* Bytes to allocate for PCache */ 4510 u32 szPageDflt = SQLITE_DEFAULT_PAGE_SIZE; /* Default page size */ 4511 const char *zUri = 0; /* URI args to copy */ 4512 int nUri = 0; /* Number of bytes of URI args at *zUri */ 4513 4514 /* Figure out how much space is required for each journal file-handle 4515 ** (there are two of them, the main journal and the sub-journal). This 4516 ** is the maximum space required for an in-memory journal file handle 4517 ** and a regular journal file-handle. Note that a "regular journal-handle" 4518 ** may be a wrapper capable of caching the first portion of the journal 4519 ** file in memory to implement the atomic-write optimization (see 4520 ** source file journal.c). 4521 */ 4522 if( sqlite3JournalSize(pVfs)>sqlite3MemJournalSize() ){ 4523 journalFileSize = ROUND8(sqlite3JournalSize(pVfs)); 4524 }else{ 4525 journalFileSize = ROUND8(sqlite3MemJournalSize()); 4526 } 4527 4528 /* Set the output variable to NULL in case an error occurs. */ 4529 *ppPager = 0; 4530 4531 #ifndef SQLITE_OMIT_MEMORYDB 4532 if( flags & PAGER_MEMORY ){ 4533 memDb = 1; 4534 if( zFilename && zFilename[0] ){ 4535 zPathname = sqlite3DbStrDup(0, zFilename); 4536 if( zPathname==0 ) return SQLITE_NOMEM; 4537 nPathname = sqlite3Strlen30(zPathname); 4538 zFilename = 0; 4539 } 4540 } 4541 #endif 4542 4543 /* Compute and store the full pathname in an allocated buffer pointed 4544 ** to by zPathname, length nPathname. Or, if this is a temporary file, 4545 ** leave both nPathname and zPathname set to 0. 4546 */ 4547 if( zFilename && zFilename[0] ){ 4548 const char *z; 4549 nPathname = pVfs->mxPathname+1; 4550 zPathname = sqlite3DbMallocRaw(0, nPathname*2); 4551 if( zPathname==0 ){ 4552 return SQLITE_NOMEM; 4553 } 4554 zPathname[0] = 0; /* Make sure initialized even if FullPathname() fails */ 4555 rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname); 4556 nPathname = sqlite3Strlen30(zPathname); 4557 z = zUri = &zFilename[sqlite3Strlen30(zFilename)+1]; 4558 while( *z ){ 4559 z += sqlite3Strlen30(z)+1; 4560 z += sqlite3Strlen30(z)+1; 4561 } 4562 nUri = (int)(&z[1] - zUri); 4563 assert( nUri>=0 ); 4564 if( rc==SQLITE_OK && nPathname+8>pVfs->mxPathname ){ 4565 /* This branch is taken when the journal path required by 4566 ** the database being opened will be more than pVfs->mxPathname 4567 ** bytes in length. This means the database cannot be opened, 4568 ** as it will not be possible to open the journal file or even 4569 ** check for a hot-journal before reading. 4570 */ 4571 rc = SQLITE_CANTOPEN_BKPT; 4572 } 4573 if( rc!=SQLITE_OK ){ 4574 sqlite3DbFree(0, zPathname); 4575 return rc; 4576 } 4577 } 4578 4579 /* Allocate memory for the Pager structure, PCache object, the 4580 ** three file descriptors, the database file name and the journal 4581 ** file name. The layout in memory is as follows: 4582 ** 4583 ** Pager object (sizeof(Pager) bytes) 4584 ** PCache object (sqlite3PcacheSize() bytes) 4585 ** Database file handle (pVfs->szOsFile bytes) 4586 ** Sub-journal file handle (journalFileSize bytes) 4587 ** Main journal file handle (journalFileSize bytes) 4588 ** Database file name (nPathname+1 bytes) 4589 ** Journal file name (nPathname+8+1 bytes) 4590 */ 4591 pPtr = (u8 *)sqlite3MallocZero( 4592 ROUND8(sizeof(*pPager)) + /* Pager structure */ 4593 ROUND8(pcacheSize) + /* PCache object */ 4594 ROUND8(pVfs->szOsFile) + /* The main db file */ 4595 journalFileSize * 2 + /* The two journal files */ 4596 nPathname + 1 + nUri + /* zFilename */ 4597 nPathname + 8 + 2 /* zJournal */ 4598 #ifndef SQLITE_OMIT_WAL 4599 + nPathname + 4 + 2 /* zWal */ 4600 #endif 4601 ); 4602 assert( EIGHT_BYTE_ALIGNMENT(SQLITE_INT_TO_PTR(journalFileSize)) ); 4603 if( !pPtr ){ 4604 sqlite3DbFree(0, zPathname); 4605 return SQLITE_NOMEM; 4606 } 4607 pPager = (Pager*)(pPtr); 4608 pPager->pPCache = (PCache*)(pPtr += ROUND8(sizeof(*pPager))); 4609 pPager->fd = (sqlite3_file*)(pPtr += ROUND8(pcacheSize)); 4610 pPager->sjfd = (sqlite3_file*)(pPtr += ROUND8(pVfs->szOsFile)); 4611 pPager->jfd = (sqlite3_file*)(pPtr += journalFileSize); 4612 pPager->zFilename = (char*)(pPtr += journalFileSize); 4613 assert( EIGHT_BYTE_ALIGNMENT(pPager->jfd) ); 4614 4615 /* Fill in the Pager.zFilename and Pager.zJournal buffers, if required. */ 4616 if( zPathname ){ 4617 assert( nPathname>0 ); 4618 pPager->zJournal = (char*)(pPtr += nPathname + 1 + nUri); 4619 memcpy(pPager->zFilename, zPathname, nPathname); 4620 if( nUri ) memcpy(&pPager->zFilename[nPathname+1], zUri, nUri); 4621 memcpy(pPager->zJournal, zPathname, nPathname); 4622 memcpy(&pPager->zJournal[nPathname], "-journal\000", 8+2); 4623 sqlite3FileSuffix3(pPager->zFilename, pPager->zJournal); 4624 #ifndef SQLITE_OMIT_WAL 4625 pPager->zWal = &pPager->zJournal[nPathname+8+1]; 4626 memcpy(pPager->zWal, zPathname, nPathname); 4627 memcpy(&pPager->zWal[nPathname], "-wal\000", 4+1); 4628 sqlite3FileSuffix3(pPager->zFilename, pPager->zWal); 4629 #endif 4630 sqlite3DbFree(0, zPathname); 4631 } 4632 pPager->pVfs = pVfs; 4633 pPager->vfsFlags = vfsFlags; 4634 4635 /* Open the pager file. 4636 */ 4637 if( zFilename && zFilename[0] ){ 4638 int fout = 0; /* VFS flags returned by xOpen() */ 4639 rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, vfsFlags, &fout); 4640 assert( !memDb ); 4641 readOnly = (fout&SQLITE_OPEN_READONLY); 4642 4643 /* If the file was successfully opened for read/write access, 4644 ** choose a default page size in case we have to create the 4645 ** database file. The default page size is the maximum of: 4646 ** 4647 ** + SQLITE_DEFAULT_PAGE_SIZE, 4648 ** + The value returned by sqlite3OsSectorSize() 4649 ** + The largest page size that can be written atomically. 4650 */ 4651 if( rc==SQLITE_OK && !readOnly ){ 4652 setSectorSize(pPager); 4653 assert(SQLITE_DEFAULT_PAGE_SIZE<=SQLITE_MAX_DEFAULT_PAGE_SIZE); 4654 if( szPageDflt<pPager->sectorSize ){ 4655 if( pPager->sectorSize>SQLITE_MAX_DEFAULT_PAGE_SIZE ){ 4656 szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE; 4657 }else{ 4658 szPageDflt = (u32)pPager->sectorSize; 4659 } 4660 } 4661 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 4662 { 4663 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); 4664 int ii; 4665 assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); 4666 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); 4667 assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536); 4668 for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){ 4669 if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ){ 4670 szPageDflt = ii; 4671 } 4672 } 4673 } 4674 #endif 4675 } 4676 }else{ 4677 /* If a temporary file is requested, it is not opened immediately. 4678 ** In this case we accept the default page size and delay actually 4679 ** opening the file until the first call to OsWrite(). 4680 ** 4681 ** This branch is also run for an in-memory database. An in-memory 4682 ** database is the same as a temp-file that is never written out to 4683 ** disk and uses an in-memory rollback journal. 4684 */ 4685 tempFile = 1; 4686 pPager->eState = PAGER_READER; 4687 pPager->eLock = EXCLUSIVE_LOCK; 4688 readOnly = (vfsFlags&SQLITE_OPEN_READONLY); 4689 } 4690 4691 /* The following call to PagerSetPagesize() serves to set the value of 4692 ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer. 4693 */ 4694 if( rc==SQLITE_OK ){ 4695 assert( pPager->memDb==0 ); 4696 rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1); 4697 testcase( rc!=SQLITE_OK ); 4698 } 4699 4700 /* If an error occurred in either of the blocks above, free the 4701 ** Pager structure and close the file. 4702 */ 4703 if( rc!=SQLITE_OK ){ 4704 assert( !pPager->pTmpSpace ); 4705 sqlite3OsClose(pPager->fd); 4706 sqlite3_free(pPager); 4707 return rc; 4708 } 4709 4710 /* Initialize the PCache object. */ 4711 assert( nExtra<1000 ); 4712 nExtra = ROUND8(nExtra); 4713 sqlite3PcacheOpen(szPageDflt, nExtra, !memDb, 4714 !memDb?pagerStress:0, (void *)pPager, pPager->pPCache); 4715 4716 PAGERTRACE(("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename)); 4717 IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename)) 4718 4719 pPager->useJournal = (u8)useJournal; 4720 /* pPager->stmtOpen = 0; */ 4721 /* pPager->stmtInUse = 0; */ 4722 /* pPager->nRef = 0; */ 4723 /* pPager->stmtSize = 0; */ 4724 /* pPager->stmtJSize = 0; */ 4725 /* pPager->nPage = 0; */ 4726 pPager->mxPgno = SQLITE_MAX_PAGE_COUNT; 4727 /* pPager->state = PAGER_UNLOCK; */ 4728 #if 0 4729 assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) ); 4730 #endif 4731 /* pPager->errMask = 0; */ 4732 pPager->tempFile = (u8)tempFile; 4733 assert( tempFile==PAGER_LOCKINGMODE_NORMAL 4734 || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE ); 4735 assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 ); 4736 pPager->exclusiveMode = (u8)tempFile; 4737 pPager->changeCountDone = pPager->tempFile; 4738 pPager->memDb = (u8)memDb; 4739 pPager->readOnly = (u8)readOnly; 4740 assert( useJournal || pPager->tempFile ); 4741 pPager->noSync = pPager->tempFile; 4742 if( pPager->noSync ){ 4743 assert( pPager->fullSync==0 ); 4744 assert( pPager->syncFlags==0 ); 4745 assert( pPager->walSyncFlags==0 ); 4746 assert( pPager->ckptSyncFlags==0 ); 4747 }else{ 4748 pPager->fullSync = 1; 4749 pPager->syncFlags = SQLITE_SYNC_NORMAL; 4750 pPager->walSyncFlags = SQLITE_SYNC_NORMAL | WAL_SYNC_TRANSACTIONS; 4751 pPager->ckptSyncFlags = SQLITE_SYNC_NORMAL; 4752 } 4753 /* pPager->pFirst = 0; */ 4754 /* pPager->pFirstSynced = 0; */ 4755 /* pPager->pLast = 0; */ 4756 pPager->nExtra = (u16)nExtra; 4757 pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT; 4758 assert( isOpen(pPager->fd) || tempFile ); 4759 setSectorSize(pPager); 4760 if( !useJournal ){ 4761 pPager->journalMode = PAGER_JOURNALMODE_OFF; 4762 }else if( memDb ){ 4763 pPager->journalMode = PAGER_JOURNALMODE_MEMORY; 4764 } 4765 /* pPager->xBusyHandler = 0; */ 4766 /* pPager->pBusyHandlerArg = 0; */ 4767 pPager->xReiniter = xReinit; 4768 /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */ 4769 /* pPager->szMmap = SQLITE_DEFAULT_MMAP_SIZE // will be set by btree.c */ 4770 4771 *ppPager = pPager; 4772 return SQLITE_OK; 4773 } 4774 4775 4776 4777 /* 4778 ** This function is called after transitioning from PAGER_UNLOCK to 4779 ** PAGER_SHARED state. It tests if there is a hot journal present in 4780 ** the file-system for the given pager. A hot journal is one that 4781 ** needs to be played back. According to this function, a hot-journal 4782 ** file exists if the following criteria are met: 4783 ** 4784 ** * The journal file exists in the file system, and 4785 ** * No process holds a RESERVED or greater lock on the database file, and 4786 ** * The database file itself is greater than 0 bytes in size, and 4787 ** * The first byte of the journal file exists and is not 0x00. 4788 ** 4789 ** If the current size of the database file is 0 but a journal file 4790 ** exists, that is probably an old journal left over from a prior 4791 ** database with the same name. In this case the journal file is 4792 ** just deleted using OsDelete, *pExists is set to 0 and SQLITE_OK 4793 ** is returned. 4794 ** 4795 ** This routine does not check if there is a master journal filename 4796 ** at the end of the file. If there is, and that master journal file 4797 ** does not exist, then the journal file is not really hot. In this 4798 ** case this routine will return a false-positive. The pager_playback() 4799 ** routine will discover that the journal file is not really hot and 4800 ** will not roll it back. 4801 ** 4802 ** If a hot-journal file is found to exist, *pExists is set to 1 and 4803 ** SQLITE_OK returned. If no hot-journal file is present, *pExists is 4804 ** set to 0 and SQLITE_OK returned. If an IO error occurs while trying 4805 ** to determine whether or not a hot-journal file exists, the IO error 4806 ** code is returned and the value of *pExists is undefined. 4807 */ 4808 static int hasHotJournal(Pager *pPager, int *pExists){ 4809 sqlite3_vfs * const pVfs = pPager->pVfs; 4810 int rc = SQLITE_OK; /* Return code */ 4811 int exists = 1; /* True if a journal file is present */ 4812 int jrnlOpen = !!isOpen(pPager->jfd); 4813 4814 assert( pPager->useJournal ); 4815 assert( isOpen(pPager->fd) ); 4816 assert( pPager->eState==PAGER_OPEN ); 4817 4818 assert( jrnlOpen==0 || ( sqlite3OsDeviceCharacteristics(pPager->jfd) & 4819 SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN 4820 )); 4821 4822 *pExists = 0; 4823 if( !jrnlOpen ){ 4824 rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists); 4825 } 4826 if( rc==SQLITE_OK && exists ){ 4827 int locked = 0; /* True if some process holds a RESERVED lock */ 4828 4829 /* Race condition here: Another process might have been holding the 4830 ** the RESERVED lock and have a journal open at the sqlite3OsAccess() 4831 ** call above, but then delete the journal and drop the lock before 4832 ** we get to the following sqlite3OsCheckReservedLock() call. If that 4833 ** is the case, this routine might think there is a hot journal when 4834 ** in fact there is none. This results in a false-positive which will 4835 ** be dealt with by the playback routine. Ticket #3883. 4836 */ 4837 rc = sqlite3OsCheckReservedLock(pPager->fd, &locked); 4838 if( rc==SQLITE_OK && !locked ){ 4839 Pgno nPage; /* Number of pages in database file */ 4840 4841 /* Check the size of the database file. If it consists of 0 pages, 4842 ** then delete the journal file. See the header comment above for 4843 ** the reasoning here. Delete the obsolete journal file under 4844 ** a RESERVED lock to avoid race conditions and to avoid violating 4845 ** [H33020]. 4846 */ 4847 rc = pagerPagecount(pPager, &nPage); 4848 if( rc==SQLITE_OK ){ 4849 if( nPage==0 ){ 4850 sqlite3BeginBenignMalloc(); 4851 if( pagerLockDb(pPager, RESERVED_LOCK)==SQLITE_OK ){ 4852 sqlite3OsDelete(pVfs, pPager->zJournal, 0); 4853 if( !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK); 4854 } 4855 sqlite3EndBenignMalloc(); 4856 }else{ 4857 /* The journal file exists and no other connection has a reserved 4858 ** or greater lock on the database file. Now check that there is 4859 ** at least one non-zero bytes at the start of the journal file. 4860 ** If there is, then we consider this journal to be hot. If not, 4861 ** it can be ignored. 4862 */ 4863 if( !jrnlOpen ){ 4864 int f = SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL; 4865 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &f); 4866 } 4867 if( rc==SQLITE_OK ){ 4868 u8 first = 0; 4869 rc = sqlite3OsRead(pPager->jfd, (void *)&first, 1, 0); 4870 if( rc==SQLITE_IOERR_SHORT_READ ){ 4871 rc = SQLITE_OK; 4872 } 4873 if( !jrnlOpen ){ 4874 sqlite3OsClose(pPager->jfd); 4875 } 4876 *pExists = (first!=0); 4877 }else if( rc==SQLITE_CANTOPEN ){ 4878 /* If we cannot open the rollback journal file in order to see if 4879 ** its has a zero header, that might be due to an I/O error, or 4880 ** it might be due to the race condition described above and in 4881 ** ticket #3883. Either way, assume that the journal is hot. 4882 ** This might be a false positive. But if it is, then the 4883 ** automatic journal playback and recovery mechanism will deal 4884 ** with it under an EXCLUSIVE lock where we do not need to 4885 ** worry so much with race conditions. 4886 */ 4887 *pExists = 1; 4888 rc = SQLITE_OK; 4889 } 4890 } 4891 } 4892 } 4893 } 4894 4895 return rc; 4896 } 4897 4898 /* 4899 ** This function is called to obtain a shared lock on the database file. 4900 ** It is illegal to call sqlite3PagerAcquire() until after this function 4901 ** has been successfully called. If a shared-lock is already held when 4902 ** this function is called, it is a no-op. 4903 ** 4904 ** The following operations are also performed by this function. 4905 ** 4906 ** 1) If the pager is currently in PAGER_OPEN state (no lock held 4907 ** on the database file), then an attempt is made to obtain a 4908 ** SHARED lock on the database file. Immediately after obtaining 4909 ** the SHARED lock, the file-system is checked for a hot-journal, 4910 ** which is played back if present. Following any hot-journal 4911 ** rollback, the contents of the cache are validated by checking 4912 ** the 'change-counter' field of the database file header and 4913 ** discarded if they are found to be invalid. 4914 ** 4915 ** 2) If the pager is running in exclusive-mode, and there are currently 4916 ** no outstanding references to any pages, and is in the error state, 4917 ** then an attempt is made to clear the error state by discarding 4918 ** the contents of the page cache and rolling back any open journal 4919 ** file. 4920 ** 4921 ** If everything is successful, SQLITE_OK is returned. If an IO error 4922 ** occurs while locking the database, checking for a hot-journal file or 4923 ** rolling back a journal file, the IO error code is returned. 4924 */ 4925 int sqlite3PagerSharedLock(Pager *pPager){ 4926 int rc = SQLITE_OK; /* Return code */ 4927 4928 /* This routine is only called from b-tree and only when there are no 4929 ** outstanding pages. This implies that the pager state should either 4930 ** be OPEN or READER. READER is only possible if the pager is or was in 4931 ** exclusive access mode. 4932 */ 4933 assert( sqlite3PcacheRefCount(pPager->pPCache)==0 ); 4934 assert( assert_pager_state(pPager) ); 4935 assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER ); 4936 if( NEVER(MEMDB && pPager->errCode) ){ return pPager->errCode; } 4937 4938 if( !pagerUseWal(pPager) && pPager->eState==PAGER_OPEN ){ 4939 int bHotJournal = 1; /* True if there exists a hot journal-file */ 4940 4941 assert( !MEMDB ); 4942 4943 rc = pager_wait_on_lock(pPager, SHARED_LOCK); 4944 if( rc!=SQLITE_OK ){ 4945 assert( pPager->eLock==NO_LOCK || pPager->eLock==UNKNOWN_LOCK ); 4946 goto failed; 4947 } 4948 4949 /* If a journal file exists, and there is no RESERVED lock on the 4950 ** database file, then it either needs to be played back or deleted. 4951 */ 4952 if( pPager->eLock<=SHARED_LOCK ){ 4953 rc = hasHotJournal(pPager, &bHotJournal); 4954 } 4955 if( rc!=SQLITE_OK ){ 4956 goto failed; 4957 } 4958 if( bHotJournal ){ 4959 if( pPager->readOnly ){ 4960 rc = SQLITE_READONLY_ROLLBACK; 4961 goto failed; 4962 } 4963 4964 /* Get an EXCLUSIVE lock on the database file. At this point it is 4965 ** important that a RESERVED lock is not obtained on the way to the 4966 ** EXCLUSIVE lock. If it were, another process might open the 4967 ** database file, detect the RESERVED lock, and conclude that the 4968 ** database is safe to read while this process is still rolling the 4969 ** hot-journal back. 4970 ** 4971 ** Because the intermediate RESERVED lock is not requested, any 4972 ** other process attempting to access the database file will get to 4973 ** this point in the code and fail to obtain its own EXCLUSIVE lock 4974 ** on the database file. 4975 ** 4976 ** Unless the pager is in locking_mode=exclusive mode, the lock is 4977 ** downgraded to SHARED_LOCK before this function returns. 4978 */ 4979 rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); 4980 if( rc!=SQLITE_OK ){ 4981 goto failed; 4982 } 4983 4984 /* If it is not already open and the file exists on disk, open the 4985 ** journal for read/write access. Write access is required because 4986 ** in exclusive-access mode the file descriptor will be kept open 4987 ** and possibly used for a transaction later on. Also, write-access 4988 ** is usually required to finalize the journal in journal_mode=persist 4989 ** mode (and also for journal_mode=truncate on some systems). 4990 ** 4991 ** If the journal does not exist, it usually means that some 4992 ** other connection managed to get in and roll it back before 4993 ** this connection obtained the exclusive lock above. Or, it 4994 ** may mean that the pager was in the error-state when this 4995 ** function was called and the journal file does not exist. 4996 */ 4997 if( !isOpen(pPager->jfd) ){ 4998 sqlite3_vfs * const pVfs = pPager->pVfs; 4999 int bExists; /* True if journal file exists */ 5000 rc = sqlite3OsAccess( 5001 pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &bExists); 5002 if( rc==SQLITE_OK && bExists ){ 5003 int fout = 0; 5004 int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL; 5005 assert( !pPager->tempFile ); 5006 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout); 5007 assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); 5008 if( rc==SQLITE_OK && fout&SQLITE_OPEN_READONLY ){ 5009 rc = SQLITE_CANTOPEN_BKPT; 5010 sqlite3OsClose(pPager->jfd); 5011 } 5012 } 5013 } 5014 5015 /* Playback and delete the journal. Drop the database write 5016 ** lock and reacquire the read lock. Purge the cache before 5017 ** playing back the hot-journal so that we don't end up with 5018 ** an inconsistent cache. Sync the hot journal before playing 5019 ** it back since the process that crashed and left the hot journal 5020 ** probably did not sync it and we are required to always sync 5021 ** the journal before playing it back. 5022 */ 5023 if( isOpen(pPager->jfd) ){ 5024 assert( rc==SQLITE_OK ); 5025 rc = pagerSyncHotJournal(pPager); 5026 if( rc==SQLITE_OK ){ 5027 rc = pager_playback(pPager, 1); 5028 pPager->eState = PAGER_OPEN; 5029 } 5030 }else if( !pPager->exclusiveMode ){ 5031 pagerUnlockDb(pPager, SHARED_LOCK); 5032 } 5033 5034 if( rc!=SQLITE_OK ){ 5035 /* This branch is taken if an error occurs while trying to open 5036 ** or roll back a hot-journal while holding an EXCLUSIVE lock. The 5037 ** pager_unlock() routine will be called before returning to unlock 5038 ** the file. If the unlock attempt fails, then Pager.eLock must be 5039 ** set to UNKNOWN_LOCK (see the comment above the #define for 5040 ** UNKNOWN_LOCK above for an explanation). 5041 ** 5042 ** In order to get pager_unlock() to do this, set Pager.eState to 5043 ** PAGER_ERROR now. This is not actually counted as a transition 5044 ** to ERROR state in the state diagram at the top of this file, 5045 ** since we know that the same call to pager_unlock() will very 5046 ** shortly transition the pager object to the OPEN state. Calling 5047 ** assert_pager_state() would fail now, as it should not be possible 5048 ** to be in ERROR state when there are zero outstanding page 5049 ** references. 5050 */ 5051 pager_error(pPager, rc); 5052 goto failed; 5053 } 5054 5055 assert( pPager->eState==PAGER_OPEN ); 5056 assert( (pPager->eLock==SHARED_LOCK) 5057 || (pPager->exclusiveMode && pPager->eLock>SHARED_LOCK) 5058 ); 5059 } 5060 5061 if( !pPager->tempFile && ( 5062 pPager->pBackup 5063 || sqlite3PcachePagecount(pPager->pPCache)>0 5064 || USEFETCH(pPager) 5065 )){ 5066 /* The shared-lock has just been acquired on the database file 5067 ** and there are already pages in the cache (from a previous 5068 ** read or write transaction). Check to see if the database 5069 ** has been modified. If the database has changed, flush the 5070 ** cache. 5071 ** 5072 ** Database changes is detected by looking at 15 bytes beginning 5073 ** at offset 24 into the file. The first 4 of these 16 bytes are 5074 ** a 32-bit counter that is incremented with each change. The 5075 ** other bytes change randomly with each file change when 5076 ** a codec is in use. 5077 ** 5078 ** There is a vanishingly small chance that a change will not be 5079 ** detected. The chance of an undetected change is so small that 5080 ** it can be neglected. 5081 */ 5082 Pgno nPage = 0; 5083 char dbFileVers[sizeof(pPager->dbFileVers)]; 5084 5085 rc = pagerPagecount(pPager, &nPage); 5086 if( rc ) goto failed; 5087 5088 if( nPage>0 ){ 5089 IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers))); 5090 rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24); 5091 if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){ 5092 goto failed; 5093 } 5094 }else{ 5095 memset(dbFileVers, 0, sizeof(dbFileVers)); 5096 } 5097 5098 if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){ 5099 pager_reset(pPager); 5100 5101 /* Unmap the database file. It is possible that external processes 5102 ** may have truncated the database file and then extended it back 5103 ** to its original size while this process was not holding a lock. 5104 ** In this case there may exist a Pager.pMap mapping that appears 5105 ** to be the right size but is not actually valid. Avoid this 5106 ** possibility by unmapping the db here. */ 5107 if( USEFETCH(pPager) ){ 5108 sqlite3OsUnfetch(pPager->fd, 0, 0); 5109 } 5110 } 5111 } 5112 5113 /* If there is a WAL file in the file-system, open this database in WAL 5114 ** mode. Otherwise, the following function call is a no-op. 5115 */ 5116 rc = pagerOpenWalIfPresent(pPager); 5117 #ifndef SQLITE_OMIT_WAL 5118 assert( pPager->pWal==0 || rc==SQLITE_OK ); 5119 #endif 5120 } 5121 5122 if( pagerUseWal(pPager) ){ 5123 assert( rc==SQLITE_OK ); 5124 rc = pagerBeginReadTransaction(pPager); 5125 } 5126 5127 if( pPager->eState==PAGER_OPEN && rc==SQLITE_OK ){ 5128 rc = pagerPagecount(pPager, &pPager->dbSize); 5129 } 5130 5131 failed: 5132 if( rc!=SQLITE_OK ){ 5133 assert( !MEMDB ); 5134 pager_unlock(pPager); 5135 assert( pPager->eState==PAGER_OPEN ); 5136 }else{ 5137 pPager->eState = PAGER_READER; 5138 } 5139 return rc; 5140 } 5141 5142 /* 5143 ** If the reference count has reached zero, rollback any active 5144 ** transaction and unlock the pager. 5145 ** 5146 ** Except, in locking_mode=EXCLUSIVE when there is nothing to in 5147 ** the rollback journal, the unlock is not performed and there is 5148 ** nothing to rollback, so this routine is a no-op. 5149 */ 5150 static void pagerUnlockIfUnused(Pager *pPager){ 5151 if( pPager->nMmapOut==0 && (sqlite3PcacheRefCount(pPager->pPCache)==0) ){ 5152 pagerUnlockAndRollback(pPager); 5153 } 5154 } 5155 5156 /* 5157 ** Acquire a reference to page number pgno in pager pPager (a page 5158 ** reference has type DbPage*). If the requested reference is 5159 ** successfully obtained, it is copied to *ppPage and SQLITE_OK returned. 5160 ** 5161 ** If the requested page is already in the cache, it is returned. 5162 ** Otherwise, a new page object is allocated and populated with data 5163 ** read from the database file. In some cases, the pcache module may 5164 ** choose not to allocate a new page object and may reuse an existing 5165 ** object with no outstanding references. 5166 ** 5167 ** The extra data appended to a page is always initialized to zeros the 5168 ** first time a page is loaded into memory. If the page requested is 5169 ** already in the cache when this function is called, then the extra 5170 ** data is left as it was when the page object was last used. 5171 ** 5172 ** If the database image is smaller than the requested page or if a 5173 ** non-zero value is passed as the noContent parameter and the 5174 ** requested page is not already stored in the cache, then no 5175 ** actual disk read occurs. In this case the memory image of the 5176 ** page is initialized to all zeros. 5177 ** 5178 ** If noContent is true, it means that we do not care about the contents 5179 ** of the page. This occurs in two seperate scenarios: 5180 ** 5181 ** a) When reading a free-list leaf page from the database, and 5182 ** 5183 ** b) When a savepoint is being rolled back and we need to load 5184 ** a new page into the cache to be filled with the data read 5185 ** from the savepoint journal. 5186 ** 5187 ** If noContent is true, then the data returned is zeroed instead of 5188 ** being read from the database. Additionally, the bits corresponding 5189 ** to pgno in Pager.pInJournal (bitvec of pages already written to the 5190 ** journal file) and the PagerSavepoint.pInSavepoint bitvecs of any open 5191 ** savepoints are set. This means if the page is made writable at any 5192 ** point in the future, using a call to sqlite3PagerWrite(), its contents 5193 ** will not be journaled. This saves IO. 5194 ** 5195 ** The acquisition might fail for several reasons. In all cases, 5196 ** an appropriate error code is returned and *ppPage is set to NULL. 5197 ** 5198 ** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt 5199 ** to find a page in the in-memory cache first. If the page is not already 5200 ** in memory, this routine goes to disk to read it in whereas Lookup() 5201 ** just returns 0. This routine acquires a read-lock the first time it 5202 ** has to go to disk, and could also playback an old journal if necessary. 5203 ** Since Lookup() never goes to disk, it never has to deal with locks 5204 ** or journal files. 5205 */ 5206 int sqlite3PagerAcquire( 5207 Pager *pPager, /* The pager open on the database file */ 5208 Pgno pgno, /* Page number to fetch */ 5209 DbPage **ppPage, /* Write a pointer to the page here */ 5210 int flags /* PAGER_ACQUIRE_XXX flags */ 5211 ){ 5212 int rc = SQLITE_OK; 5213 PgHdr *pPg = 0; 5214 u32 iFrame = 0; /* Frame to read from WAL file */ 5215 const int noContent = (flags & PAGER_ACQUIRE_NOCONTENT); 5216 5217 /* It is acceptable to use a read-only (mmap) page for any page except 5218 ** page 1 if there is no write-transaction open or the ACQUIRE_READONLY 5219 ** flag was specified by the caller. And so long as the db is not a 5220 ** temporary or in-memory database. */ 5221 const int bMmapOk = (pgno!=1 && USEFETCH(pPager) 5222 && (pPager->eState==PAGER_READER || (flags & PAGER_ACQUIRE_READONLY)) 5223 #ifdef SQLITE_HAS_CODEC 5224 && pPager->xCodec==0 5225 #endif 5226 ); 5227 5228 assert( pPager->eState>=PAGER_READER ); 5229 assert( assert_pager_state(pPager) ); 5230 assert( noContent==0 || bMmapOk==0 ); 5231 5232 if( pgno==0 ){ 5233 return SQLITE_CORRUPT_BKPT; 5234 } 5235 5236 /* If the pager is in the error state, return an error immediately. 5237 ** Otherwise, request the page from the PCache layer. */ 5238 if( pPager->errCode!=SQLITE_OK ){ 5239 rc = pPager->errCode; 5240 }else{ 5241 5242 if( bMmapOk && pagerUseWal(pPager) ){ 5243 rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iFrame); 5244 if( rc!=SQLITE_OK ) goto pager_acquire_err; 5245 } 5246 5247 if( iFrame==0 && bMmapOk ){ 5248 void *pData = 0; 5249 5250 rc = sqlite3OsFetch(pPager->fd, 5251 (i64)(pgno-1) * pPager->pageSize, pPager->pageSize, &pData 5252 ); 5253 5254 if( rc==SQLITE_OK && pData ){ 5255 if( pPager->eState>PAGER_READER ){ 5256 (void)sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &pPg); 5257 } 5258 if( pPg==0 ){ 5259 rc = pagerAcquireMapPage(pPager, pgno, pData, &pPg); 5260 }else{ 5261 sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1)*pPager->pageSize, pData); 5262 } 5263 if( pPg ){ 5264 assert( rc==SQLITE_OK ); 5265 *ppPage = pPg; 5266 return SQLITE_OK; 5267 } 5268 } 5269 if( rc!=SQLITE_OK ){ 5270 goto pager_acquire_err; 5271 } 5272 } 5273 5274 rc = sqlite3PcacheFetch(pPager->pPCache, pgno, 1, ppPage); 5275 } 5276 5277 if( rc!=SQLITE_OK ){ 5278 /* Either the call to sqlite3PcacheFetch() returned an error or the 5279 ** pager was already in the error-state when this function was called. 5280 ** Set pPg to 0 and jump to the exception handler. */ 5281 pPg = 0; 5282 goto pager_acquire_err; 5283 } 5284 assert( (*ppPage)->pgno==pgno ); 5285 assert( (*ppPage)->pPager==pPager || (*ppPage)->pPager==0 ); 5286 5287 if( (*ppPage)->pPager && !noContent ){ 5288 /* In this case the pcache already contains an initialized copy of 5289 ** the page. Return without further ado. */ 5290 assert( pgno<=PAGER_MAX_PGNO && pgno!=PAGER_MJ_PGNO(pPager) ); 5291 pPager->aStat[PAGER_STAT_HIT]++; 5292 return SQLITE_OK; 5293 5294 }else{ 5295 /* The pager cache has created a new page. Its content needs to 5296 ** be initialized. */ 5297 5298 pPg = *ppPage; 5299 pPg->pPager = pPager; 5300 5301 /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page 5302 ** number greater than this, or the unused locking-page, is requested. */ 5303 if( pgno>PAGER_MAX_PGNO || pgno==PAGER_MJ_PGNO(pPager) ){ 5304 rc = SQLITE_CORRUPT_BKPT; 5305 goto pager_acquire_err; 5306 } 5307 5308 if( MEMDB || pPager->dbSize<pgno || noContent || !isOpen(pPager->fd) ){ 5309 if( pgno>pPager->mxPgno ){ 5310 rc = SQLITE_FULL; 5311 goto pager_acquire_err; 5312 } 5313 if( noContent ){ 5314 /* Failure to set the bits in the InJournal bit-vectors is benign. 5315 ** It merely means that we might do some extra work to journal a 5316 ** page that does not need to be journaled. Nevertheless, be sure 5317 ** to test the case where a malloc error occurs while trying to set 5318 ** a bit in a bit vector. 5319 */ 5320 sqlite3BeginBenignMalloc(); 5321 if( pgno<=pPager->dbOrigSize ){ 5322 TESTONLY( rc = ) sqlite3BitvecSet(pPager->pInJournal, pgno); 5323 testcase( rc==SQLITE_NOMEM ); 5324 } 5325 TESTONLY( rc = ) addToSavepointBitvecs(pPager, pgno); 5326 testcase( rc==SQLITE_NOMEM ); 5327 sqlite3EndBenignMalloc(); 5328 } 5329 memset(pPg->pData, 0, pPager->pageSize); 5330 IOTRACE(("ZERO %p %d\n", pPager, pgno)); 5331 }else{ 5332 if( pagerUseWal(pPager) && bMmapOk==0 ){ 5333 rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iFrame); 5334 if( rc!=SQLITE_OK ) goto pager_acquire_err; 5335 } 5336 assert( pPg->pPager==pPager ); 5337 pPager->aStat[PAGER_STAT_MISS]++; 5338 rc = readDbPage(pPg, iFrame); 5339 if( rc!=SQLITE_OK ){ 5340 goto pager_acquire_err; 5341 } 5342 } 5343 pager_set_pagehash(pPg); 5344 } 5345 5346 return SQLITE_OK; 5347 5348 pager_acquire_err: 5349 assert( rc!=SQLITE_OK ); 5350 if( pPg ){ 5351 sqlite3PcacheDrop(pPg); 5352 } 5353 pagerUnlockIfUnused(pPager); 5354 5355 *ppPage = 0; 5356 return rc; 5357 } 5358 5359 /* 5360 ** Acquire a page if it is already in the in-memory cache. Do 5361 ** not read the page from disk. Return a pointer to the page, 5362 ** or 0 if the page is not in cache. 5363 ** 5364 ** See also sqlite3PagerGet(). The difference between this routine 5365 ** and sqlite3PagerGet() is that _get() will go to the disk and read 5366 ** in the page if the page is not already in cache. This routine 5367 ** returns NULL if the page is not in cache or if a disk I/O error 5368 ** has ever happened. 5369 */ 5370 DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ 5371 PgHdr *pPg = 0; 5372 assert( pPager!=0 ); 5373 assert( pgno!=0 ); 5374 assert( pPager->pPCache!=0 ); 5375 assert( pPager->eState>=PAGER_READER && pPager->eState!=PAGER_ERROR ); 5376 sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &pPg); 5377 return pPg; 5378 } 5379 5380 /* 5381 ** Release a page reference. 5382 ** 5383 ** If the number of references to the page drop to zero, then the 5384 ** page is added to the LRU list. When all references to all pages 5385 ** are released, a rollback occurs and the lock on the database is 5386 ** removed. 5387 */ 5388 void sqlite3PagerUnref(DbPage *pPg){ 5389 if( pPg ){ 5390 Pager *pPager = pPg->pPager; 5391 if( pPg->flags & PGHDR_MMAP ){ 5392 pagerReleaseMapPage(pPg); 5393 }else{ 5394 sqlite3PcacheRelease(pPg); 5395 } 5396 pagerUnlockIfUnused(pPager); 5397 } 5398 } 5399 5400 /* 5401 ** This function is called at the start of every write transaction. 5402 ** There must already be a RESERVED or EXCLUSIVE lock on the database 5403 ** file when this routine is called. 5404 ** 5405 ** Open the journal file for pager pPager and write a journal header 5406 ** to the start of it. If there are active savepoints, open the sub-journal 5407 ** as well. This function is only used when the journal file is being 5408 ** opened to write a rollback log for a transaction. It is not used 5409 ** when opening a hot journal file to roll it back. 5410 ** 5411 ** If the journal file is already open (as it may be in exclusive mode), 5412 ** then this function just writes a journal header to the start of the 5413 ** already open file. 5414 ** 5415 ** Whether or not the journal file is opened by this function, the 5416 ** Pager.pInJournal bitvec structure is allocated. 5417 ** 5418 ** Return SQLITE_OK if everything is successful. Otherwise, return 5419 ** SQLITE_NOMEM if the attempt to allocate Pager.pInJournal fails, or 5420 ** an IO error code if opening or writing the journal file fails. 5421 */ 5422 static int pager_open_journal(Pager *pPager){ 5423 int rc = SQLITE_OK; /* Return code */ 5424 sqlite3_vfs * const pVfs = pPager->pVfs; /* Local cache of vfs pointer */ 5425 5426 assert( pPager->eState==PAGER_WRITER_LOCKED ); 5427 assert( assert_pager_state(pPager) ); 5428 assert( pPager->pInJournal==0 ); 5429 5430 /* If already in the error state, this function is a no-op. But on 5431 ** the other hand, this routine is never called if we are already in 5432 ** an error state. */ 5433 if( NEVER(pPager->errCode) ) return pPager->errCode; 5434 5435 if( !pagerUseWal(pPager) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ 5436 pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize); 5437 if( pPager->pInJournal==0 ){ 5438 return SQLITE_NOMEM; 5439 } 5440 5441 /* Open the journal file if it is not already open. */ 5442 if( !isOpen(pPager->jfd) ){ 5443 if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ){ 5444 sqlite3MemJournalOpen(pPager->jfd); 5445 }else{ 5446 const int flags = /* VFS flags to open journal file */ 5447 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| 5448 (pPager->tempFile ? 5449 (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL): 5450 (SQLITE_OPEN_MAIN_JOURNAL) 5451 ); 5452 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 5453 rc = sqlite3JournalOpen( 5454 pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager) 5455 ); 5456 #else 5457 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0); 5458 #endif 5459 } 5460 assert( rc!=SQLITE_OK || isOpen(pPager->jfd) ); 5461 } 5462 5463 5464 /* Write the first journal header to the journal file and open 5465 ** the sub-journal if necessary. 5466 */ 5467 if( rc==SQLITE_OK ){ 5468 /* TODO: Check if all of these are really required. */ 5469 pPager->nRec = 0; 5470 pPager->journalOff = 0; 5471 pPager->setMaster = 0; 5472 pPager->journalHdr = 0; 5473 rc = writeJournalHdr(pPager); 5474 } 5475 } 5476 5477 if( rc!=SQLITE_OK ){ 5478 sqlite3BitvecDestroy(pPager->pInJournal); 5479 pPager->pInJournal = 0; 5480 }else{ 5481 assert( pPager->eState==PAGER_WRITER_LOCKED ); 5482 pPager->eState = PAGER_WRITER_CACHEMOD; 5483 } 5484 5485 return rc; 5486 } 5487 5488 /* 5489 ** Begin a write-transaction on the specified pager object. If a 5490 ** write-transaction has already been opened, this function is a no-op. 5491 ** 5492 ** If the exFlag argument is false, then acquire at least a RESERVED 5493 ** lock on the database file. If exFlag is true, then acquire at least 5494 ** an EXCLUSIVE lock. If such a lock is already held, no locking 5495 ** functions need be called. 5496 ** 5497 ** If the subjInMemory argument is non-zero, then any sub-journal opened 5498 ** within this transaction will be opened as an in-memory file. This 5499 ** has no effect if the sub-journal is already opened (as it may be when 5500 ** running in exclusive mode) or if the transaction does not require a 5501 ** sub-journal. If the subjInMemory argument is zero, then any required 5502 ** sub-journal is implemented in-memory if pPager is an in-memory database, 5503 ** or using a temporary file otherwise. 5504 */ 5505 int sqlite3PagerBegin(Pager *pPager, int exFlag, int subjInMemory){ 5506 int rc = SQLITE_OK; 5507 5508 if( pPager->errCode ) return pPager->errCode; 5509 assert( pPager->eState>=PAGER_READER && pPager->eState<PAGER_ERROR ); 5510 pPager->subjInMemory = (u8)subjInMemory; 5511 5512 if( ALWAYS(pPager->eState==PAGER_READER) ){ 5513 assert( pPager->pInJournal==0 ); 5514 5515 if( pagerUseWal(pPager) ){ 5516 /* If the pager is configured to use locking_mode=exclusive, and an 5517 ** exclusive lock on the database is not already held, obtain it now. 5518 */ 5519 if( pPager->exclusiveMode && sqlite3WalExclusiveMode(pPager->pWal, -1) ){ 5520 rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); 5521 if( rc!=SQLITE_OK ){ 5522 return rc; 5523 } 5524 sqlite3WalExclusiveMode(pPager->pWal, 1); 5525 } 5526 5527 /* Grab the write lock on the log file. If successful, upgrade to 5528 ** PAGER_RESERVED state. Otherwise, return an error code to the caller. 5529 ** The busy-handler is not invoked if another connection already 5530 ** holds the write-lock. If possible, the upper layer will call it. 5531 */ 5532 rc = sqlite3WalBeginWriteTransaction(pPager->pWal); 5533 }else{ 5534 /* Obtain a RESERVED lock on the database file. If the exFlag parameter 5535 ** is true, then immediately upgrade this to an EXCLUSIVE lock. The 5536 ** busy-handler callback can be used when upgrading to the EXCLUSIVE 5537 ** lock, but not when obtaining the RESERVED lock. 5538 */ 5539 rc = pagerLockDb(pPager, RESERVED_LOCK); 5540 if( rc==SQLITE_OK && exFlag ){ 5541 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); 5542 } 5543 } 5544 5545 if( rc==SQLITE_OK ){ 5546 /* Change to WRITER_LOCKED state. 5547 ** 5548 ** WAL mode sets Pager.eState to PAGER_WRITER_LOCKED or CACHEMOD 5549 ** when it has an open transaction, but never to DBMOD or FINISHED. 5550 ** This is because in those states the code to roll back savepoint 5551 ** transactions may copy data from the sub-journal into the database 5552 ** file as well as into the page cache. Which would be incorrect in 5553 ** WAL mode. 5554 */ 5555 pPager->eState = PAGER_WRITER_LOCKED; 5556 pPager->dbHintSize = pPager->dbSize; 5557 pPager->dbFileSize = pPager->dbSize; 5558 pPager->dbOrigSize = pPager->dbSize; 5559 pPager->journalOff = 0; 5560 } 5561 5562 assert( rc==SQLITE_OK || pPager->eState==PAGER_READER ); 5563 assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED ); 5564 assert( assert_pager_state(pPager) ); 5565 } 5566 5567 PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager))); 5568 return rc; 5569 } 5570 5571 /* 5572 ** Mark a single data page as writeable. The page is written into the 5573 ** main journal or sub-journal as required. If the page is written into 5574 ** one of the journals, the corresponding bit is set in the 5575 ** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs 5576 ** of any open savepoints as appropriate. 5577 */ 5578 static int pager_write(PgHdr *pPg){ 5579 void *pData = pPg->pData; 5580 Pager *pPager = pPg->pPager; 5581 int rc = SQLITE_OK; 5582 5583 /* This routine is not called unless a write-transaction has already 5584 ** been started. The journal file may or may not be open at this point. 5585 ** It is never called in the ERROR state. 5586 */ 5587 assert( pPager->eState==PAGER_WRITER_LOCKED 5588 || pPager->eState==PAGER_WRITER_CACHEMOD 5589 || pPager->eState==PAGER_WRITER_DBMOD 5590 ); 5591 assert( assert_pager_state(pPager) ); 5592 5593 /* If an error has been previously detected, report the same error 5594 ** again. This should not happen, but the check provides robustness. */ 5595 if( NEVER(pPager->errCode) ) return pPager->errCode; 5596 5597 /* Higher-level routines never call this function if database is not 5598 ** writable. But check anyway, just for robustness. */ 5599 if( NEVER(pPager->readOnly) ) return SQLITE_PERM; 5600 5601 CHECK_PAGE(pPg); 5602 5603 /* The journal file needs to be opened. Higher level routines have already 5604 ** obtained the necessary locks to begin the write-transaction, but the 5605 ** rollback journal might not yet be open. Open it now if this is the case. 5606 ** 5607 ** This is done before calling sqlite3PcacheMakeDirty() on the page. 5608 ** Otherwise, if it were done after calling sqlite3PcacheMakeDirty(), then 5609 ** an error might occur and the pager would end up in WRITER_LOCKED state 5610 ** with pages marked as dirty in the cache. 5611 */ 5612 if( pPager->eState==PAGER_WRITER_LOCKED ){ 5613 rc = pager_open_journal(pPager); 5614 if( rc!=SQLITE_OK ) return rc; 5615 } 5616 assert( pPager->eState>=PAGER_WRITER_CACHEMOD ); 5617 assert( assert_pager_state(pPager) ); 5618 5619 /* Mark the page as dirty. If the page has already been written 5620 ** to the journal then we can return right away. 5621 */ 5622 sqlite3PcacheMakeDirty(pPg); 5623 if( pageInJournal(pPg) && !subjRequiresPage(pPg) ){ 5624 assert( !pagerUseWal(pPager) ); 5625 }else{ 5626 5627 /* The transaction journal now exists and we have a RESERVED or an 5628 ** EXCLUSIVE lock on the main database file. Write the current page to 5629 ** the transaction journal if it is not there already. 5630 */ 5631 if( !pageInJournal(pPg) && !pagerUseWal(pPager) ){ 5632 assert( pagerUseWal(pPager)==0 ); 5633 if( pPg->pgno<=pPager->dbOrigSize && isOpen(pPager->jfd) ){ 5634 u32 cksum; 5635 char *pData2; 5636 i64 iOff = pPager->journalOff; 5637 5638 /* We should never write to the journal file the page that 5639 ** contains the database locks. The following assert verifies 5640 ** that we do not. */ 5641 assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) ); 5642 5643 assert( pPager->journalHdr<=pPager->journalOff ); 5644 CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM, pData2); 5645 cksum = pager_cksum(pPager, (u8*)pData2); 5646 5647 /* Even if an IO or diskfull error occurs while journalling the 5648 ** page in the block above, set the need-sync flag for the page. 5649 ** Otherwise, when the transaction is rolled back, the logic in 5650 ** playback_one_page() will think that the page needs to be restored 5651 ** in the database file. And if an IO error occurs while doing so, 5652 ** then corruption may follow. 5653 */ 5654 pPg->flags |= PGHDR_NEED_SYNC; 5655 5656 rc = write32bits(pPager->jfd, iOff, pPg->pgno); 5657 if( rc!=SQLITE_OK ) return rc; 5658 rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4); 5659 if( rc!=SQLITE_OK ) return rc; 5660 rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum); 5661 if( rc!=SQLITE_OK ) return rc; 5662 5663 IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, 5664 pPager->journalOff, pPager->pageSize)); 5665 PAGER_INCR(sqlite3_pager_writej_count); 5666 PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n", 5667 PAGERID(pPager), pPg->pgno, 5668 ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg))); 5669 5670 pPager->journalOff += 8 + pPager->pageSize; 5671 pPager->nRec++; 5672 assert( pPager->pInJournal!=0 ); 5673 rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno); 5674 testcase( rc==SQLITE_NOMEM ); 5675 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM ); 5676 rc |= addToSavepointBitvecs(pPager, pPg->pgno); 5677 if( rc!=SQLITE_OK ){ 5678 assert( rc==SQLITE_NOMEM ); 5679 return rc; 5680 } 5681 }else{ 5682 if( pPager->eState!=PAGER_WRITER_DBMOD ){ 5683 pPg->flags |= PGHDR_NEED_SYNC; 5684 } 5685 PAGERTRACE(("APPEND %d page %d needSync=%d\n", 5686 PAGERID(pPager), pPg->pgno, 5687 ((pPg->flags&PGHDR_NEED_SYNC)?1:0))); 5688 } 5689 } 5690 5691 /* If the statement journal is open and the page is not in it, 5692 ** then write the current page to the statement journal. Note that 5693 ** the statement journal format differs from the standard journal format 5694 ** in that it omits the checksums and the header. 5695 */ 5696 if( subjRequiresPage(pPg) ){ 5697 rc = subjournalPage(pPg); 5698 } 5699 } 5700 5701 /* Update the database size and return. 5702 */ 5703 if( pPager->dbSize<pPg->pgno ){ 5704 pPager->dbSize = pPg->pgno; 5705 } 5706 return rc; 5707 } 5708 5709 /* 5710 ** Mark a data page as writeable. This routine must be called before 5711 ** making changes to a page. The caller must check the return value 5712 ** of this function and be careful not to change any page data unless 5713 ** this routine returns SQLITE_OK. 5714 ** 5715 ** The difference between this function and pager_write() is that this 5716 ** function also deals with the special case where 2 or more pages 5717 ** fit on a single disk sector. In this case all co-resident pages 5718 ** must have been written to the journal file before returning. 5719 ** 5720 ** If an error occurs, SQLITE_NOMEM or an IO error code is returned 5721 ** as appropriate. Otherwise, SQLITE_OK. 5722 */ 5723 int sqlite3PagerWrite(DbPage *pDbPage){ 5724 int rc = SQLITE_OK; 5725 5726 PgHdr *pPg = pDbPage; 5727 Pager *pPager = pPg->pPager; 5728 Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize); 5729 5730 assert( (pPg->flags & PGHDR_MMAP)==0 ); 5731 assert( pPager->eState>=PAGER_WRITER_LOCKED ); 5732 assert( pPager->eState!=PAGER_ERROR ); 5733 assert( assert_pager_state(pPager) ); 5734 5735 if( nPagePerSector>1 ){ 5736 Pgno nPageCount; /* Total number of pages in database file */ 5737 Pgno pg1; /* First page of the sector pPg is located on. */ 5738 int nPage = 0; /* Number of pages starting at pg1 to journal */ 5739 int ii; /* Loop counter */ 5740 int needSync = 0; /* True if any page has PGHDR_NEED_SYNC */ 5741 5742 /* Set the doNotSyncSpill flag to 1. This is because we cannot allow 5743 ** a journal header to be written between the pages journaled by 5744 ** this function. 5745 */ 5746 assert( !MEMDB ); 5747 assert( pPager->doNotSyncSpill==0 ); 5748 pPager->doNotSyncSpill++; 5749 5750 /* This trick assumes that both the page-size and sector-size are 5751 ** an integer power of 2. It sets variable pg1 to the identifier 5752 ** of the first page of the sector pPg is located on. 5753 */ 5754 pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1; 5755 5756 nPageCount = pPager->dbSize; 5757 if( pPg->pgno>nPageCount ){ 5758 nPage = (pPg->pgno - pg1)+1; 5759 }else if( (pg1+nPagePerSector-1)>nPageCount ){ 5760 nPage = nPageCount+1-pg1; 5761 }else{ 5762 nPage = nPagePerSector; 5763 } 5764 assert(nPage>0); 5765 assert(pg1<=pPg->pgno); 5766 assert((pg1+nPage)>pPg->pgno); 5767 5768 for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){ 5769 Pgno pg = pg1+ii; 5770 PgHdr *pPage; 5771 if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){ 5772 if( pg!=PAGER_MJ_PGNO(pPager) ){ 5773 rc = sqlite3PagerGet(pPager, pg, &pPage); 5774 if( rc==SQLITE_OK ){ 5775 rc = pager_write(pPage); 5776 if( pPage->flags&PGHDR_NEED_SYNC ){ 5777 needSync = 1; 5778 } 5779 sqlite3PagerUnref(pPage); 5780 } 5781 } 5782 }else if( (pPage = pager_lookup(pPager, pg))!=0 ){ 5783 if( pPage->flags&PGHDR_NEED_SYNC ){ 5784 needSync = 1; 5785 } 5786 sqlite3PagerUnref(pPage); 5787 } 5788 } 5789 5790 /* If the PGHDR_NEED_SYNC flag is set for any of the nPage pages 5791 ** starting at pg1, then it needs to be set for all of them. Because 5792 ** writing to any of these nPage pages may damage the others, the 5793 ** journal file must contain sync()ed copies of all of them 5794 ** before any of them can be written out to the database file. 5795 */ 5796 if( rc==SQLITE_OK && needSync ){ 5797 assert( !MEMDB ); 5798 for(ii=0; ii<nPage; ii++){ 5799 PgHdr *pPage = pager_lookup(pPager, pg1+ii); 5800 if( pPage ){ 5801 pPage->flags |= PGHDR_NEED_SYNC; 5802 sqlite3PagerUnref(pPage); 5803 } 5804 } 5805 } 5806 5807 assert( pPager->doNotSyncSpill==1 ); 5808 pPager->doNotSyncSpill--; 5809 }else{ 5810 rc = pager_write(pDbPage); 5811 } 5812 return rc; 5813 } 5814 5815 /* 5816 ** Return TRUE if the page given in the argument was previously passed 5817 ** to sqlite3PagerWrite(). In other words, return TRUE if it is ok 5818 ** to change the content of the page. 5819 */ 5820 #ifndef NDEBUG 5821 int sqlite3PagerIswriteable(DbPage *pPg){ 5822 return pPg->flags&PGHDR_DIRTY; 5823 } 5824 #endif 5825 5826 /* 5827 ** A call to this routine tells the pager that it is not necessary to 5828 ** write the information on page pPg back to the disk, even though 5829 ** that page might be marked as dirty. This happens, for example, when 5830 ** the page has been added as a leaf of the freelist and so its 5831 ** content no longer matters. 5832 ** 5833 ** The overlying software layer calls this routine when all of the data 5834 ** on the given page is unused. The pager marks the page as clean so 5835 ** that it does not get written to disk. 5836 ** 5837 ** Tests show that this optimization can quadruple the speed of large 5838 ** DELETE operations. 5839 */ 5840 void sqlite3PagerDontWrite(PgHdr *pPg){ 5841 Pager *pPager = pPg->pPager; 5842 if( (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){ 5843 PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager))); 5844 IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) 5845 pPg->flags |= PGHDR_DONT_WRITE; 5846 pager_set_pagehash(pPg); 5847 } 5848 } 5849 5850 /* 5851 ** This routine is called to increment the value of the database file 5852 ** change-counter, stored as a 4-byte big-endian integer starting at 5853 ** byte offset 24 of the pager file. The secondary change counter at 5854 ** 92 is also updated, as is the SQLite version number at offset 96. 5855 ** 5856 ** But this only happens if the pPager->changeCountDone flag is false. 5857 ** To avoid excess churning of page 1, the update only happens once. 5858 ** See also the pager_write_changecounter() routine that does an 5859 ** unconditional update of the change counters. 5860 ** 5861 ** If the isDirectMode flag is zero, then this is done by calling 5862 ** sqlite3PagerWrite() on page 1, then modifying the contents of the 5863 ** page data. In this case the file will be updated when the current 5864 ** transaction is committed. 5865 ** 5866 ** The isDirectMode flag may only be non-zero if the library was compiled 5867 ** with the SQLITE_ENABLE_ATOMIC_WRITE macro defined. In this case, 5868 ** if isDirect is non-zero, then the database file is updated directly 5869 ** by writing an updated version of page 1 using a call to the 5870 ** sqlite3OsWrite() function. 5871 */ 5872 static int pager_incr_changecounter(Pager *pPager, int isDirectMode){ 5873 int rc = SQLITE_OK; 5874 5875 assert( pPager->eState==PAGER_WRITER_CACHEMOD 5876 || pPager->eState==PAGER_WRITER_DBMOD 5877 ); 5878 assert( assert_pager_state(pPager) ); 5879 5880 /* Declare and initialize constant integer 'isDirect'. If the 5881 ** atomic-write optimization is enabled in this build, then isDirect 5882 ** is initialized to the value passed as the isDirectMode parameter 5883 ** to this function. Otherwise, it is always set to zero. 5884 ** 5885 ** The idea is that if the atomic-write optimization is not 5886 ** enabled at compile time, the compiler can omit the tests of 5887 ** 'isDirect' below, as well as the block enclosed in the 5888 ** "if( isDirect )" condition. 5889 */ 5890 #ifndef SQLITE_ENABLE_ATOMIC_WRITE 5891 # define DIRECT_MODE 0 5892 assert( isDirectMode==0 ); 5893 UNUSED_PARAMETER(isDirectMode); 5894 #else 5895 # define DIRECT_MODE isDirectMode 5896 #endif 5897 5898 if( !pPager->changeCountDone && ALWAYS(pPager->dbSize>0) ){ 5899 PgHdr *pPgHdr; /* Reference to page 1 */ 5900 5901 assert( !pPager->tempFile && isOpen(pPager->fd) ); 5902 5903 /* Open page 1 of the file for writing. */ 5904 rc = sqlite3PagerGet(pPager, 1, &pPgHdr); 5905 assert( pPgHdr==0 || rc==SQLITE_OK ); 5906 5907 /* If page one was fetched successfully, and this function is not 5908 ** operating in direct-mode, make page 1 writable. When not in 5909 ** direct mode, page 1 is always held in cache and hence the PagerGet() 5910 ** above is always successful - hence the ALWAYS on rc==SQLITE_OK. 5911 */ 5912 if( !DIRECT_MODE && ALWAYS(rc==SQLITE_OK) ){ 5913 rc = sqlite3PagerWrite(pPgHdr); 5914 } 5915 5916 if( rc==SQLITE_OK ){ 5917 /* Actually do the update of the change counter */ 5918 pager_write_changecounter(pPgHdr); 5919 5920 /* If running in direct mode, write the contents of page 1 to the file. */ 5921 if( DIRECT_MODE ){ 5922 const void *zBuf; 5923 assert( pPager->dbFileSize>0 ); 5924 CODEC2(pPager, pPgHdr->pData, 1, 6, rc=SQLITE_NOMEM, zBuf); 5925 if( rc==SQLITE_OK ){ 5926 rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0); 5927 pPager->aStat[PAGER_STAT_WRITE]++; 5928 } 5929 if( rc==SQLITE_OK ){ 5930 pPager->changeCountDone = 1; 5931 } 5932 }else{ 5933 pPager->changeCountDone = 1; 5934 } 5935 } 5936 5937 /* Release the page reference. */ 5938 sqlite3PagerUnref(pPgHdr); 5939 } 5940 return rc; 5941 } 5942 5943 /* 5944 ** Sync the database file to disk. This is a no-op for in-memory databases 5945 ** or pages with the Pager.noSync flag set. 5946 ** 5947 ** If successful, or if called on a pager for which it is a no-op, this 5948 ** function returns SQLITE_OK. Otherwise, an IO error code is returned. 5949 */ 5950 int sqlite3PagerSync(Pager *pPager){ 5951 int rc = SQLITE_OK; 5952 if( !pPager->noSync ){ 5953 assert( !MEMDB ); 5954 rc = sqlite3OsSync(pPager->fd, pPager->syncFlags); 5955 }else if( isOpen(pPager->fd) ){ 5956 assert( !MEMDB ); 5957 rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SYNC_OMITTED, 0); 5958 if( rc==SQLITE_NOTFOUND ){ 5959 rc = SQLITE_OK; 5960 } 5961 } 5962 return rc; 5963 } 5964 5965 /* 5966 ** This function may only be called while a write-transaction is active in 5967 ** rollback. If the connection is in WAL mode, this call is a no-op. 5968 ** Otherwise, if the connection does not already have an EXCLUSIVE lock on 5969 ** the database file, an attempt is made to obtain one. 5970 ** 5971 ** If the EXCLUSIVE lock is already held or the attempt to obtain it is 5972 ** successful, or the connection is in WAL mode, SQLITE_OK is returned. 5973 ** Otherwise, either SQLITE_BUSY or an SQLITE_IOERR_XXX error code is 5974 ** returned. 5975 */ 5976 int sqlite3PagerExclusiveLock(Pager *pPager){ 5977 int rc = SQLITE_OK; 5978 assert( pPager->eState==PAGER_WRITER_CACHEMOD 5979 || pPager->eState==PAGER_WRITER_DBMOD 5980 || pPager->eState==PAGER_WRITER_LOCKED 5981 ); 5982 assert( assert_pager_state(pPager) ); 5983 if( 0==pagerUseWal(pPager) ){ 5984 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); 5985 } 5986 return rc; 5987 } 5988 5989 /* 5990 ** Sync the database file for the pager pPager. zMaster points to the name 5991 ** of a master journal file that should be written into the individual 5992 ** journal file. zMaster may be NULL, which is interpreted as no master 5993 ** journal (a single database transaction). 5994 ** 5995 ** This routine ensures that: 5996 ** 5997 ** * The database file change-counter is updated, 5998 ** * the journal is synced (unless the atomic-write optimization is used), 5999 ** * all dirty pages are written to the database file, 6000 ** * the database file is truncated (if required), and 6001 ** * the database file synced. 6002 ** 6003 ** The only thing that remains to commit the transaction is to finalize 6004 ** (delete, truncate or zero the first part of) the journal file (or 6005 ** delete the master journal file if specified). 6006 ** 6007 ** Note that if zMaster==NULL, this does not overwrite a previous value 6008 ** passed to an sqlite3PagerCommitPhaseOne() call. 6009 ** 6010 ** If the final parameter - noSync - is true, then the database file itself 6011 ** is not synced. The caller must call sqlite3PagerSync() directly to 6012 ** sync the database file before calling CommitPhaseTwo() to delete the 6013 ** journal file in this case. 6014 */ 6015 int sqlite3PagerCommitPhaseOne( 6016 Pager *pPager, /* Pager object */ 6017 const char *zMaster, /* If not NULL, the master journal name */ 6018 int noSync /* True to omit the xSync on the db file */ 6019 ){ 6020 int rc = SQLITE_OK; /* Return code */ 6021 6022 assert( pPager->eState==PAGER_WRITER_LOCKED 6023 || pPager->eState==PAGER_WRITER_CACHEMOD 6024 || pPager->eState==PAGER_WRITER_DBMOD 6025 || pPager->eState==PAGER_ERROR 6026 ); 6027 assert( assert_pager_state(pPager) ); 6028 6029 /* If a prior error occurred, report that error again. */ 6030 if( NEVER(pPager->errCode) ) return pPager->errCode; 6031 6032 PAGERTRACE(("DATABASE SYNC: File=%s zMaster=%s nSize=%d\n", 6033 pPager->zFilename, zMaster, pPager->dbSize)); 6034 6035 /* If no database changes have been made, return early. */ 6036 if( pPager->eState<PAGER_WRITER_CACHEMOD ) return SQLITE_OK; 6037 6038 if( MEMDB ){ 6039 /* If this is an in-memory db, or no pages have been written to, or this 6040 ** function has already been called, it is mostly a no-op. However, any 6041 ** backup in progress needs to be restarted. 6042 */ 6043 sqlite3BackupRestart(pPager->pBackup); 6044 }else{ 6045 if( pagerUseWal(pPager) ){ 6046 PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache); 6047 PgHdr *pPageOne = 0; 6048 if( pList==0 ){ 6049 /* Must have at least one page for the WAL commit flag. 6050 ** Ticket [2d1a5c67dfc2363e44f29d9bbd57f] 2011-05-18 */ 6051 rc = sqlite3PagerGet(pPager, 1, &pPageOne); 6052 pList = pPageOne; 6053 pList->pDirty = 0; 6054 } 6055 assert( rc==SQLITE_OK ); 6056 if( ALWAYS(pList) ){ 6057 rc = pagerWalFrames(pPager, pList, pPager->dbSize, 1); 6058 } 6059 sqlite3PagerUnref(pPageOne); 6060 if( rc==SQLITE_OK ){ 6061 sqlite3PcacheCleanAll(pPager->pPCache); 6062 } 6063 }else{ 6064 /* The following block updates the change-counter. Exactly how it 6065 ** does this depends on whether or not the atomic-update optimization 6066 ** was enabled at compile time, and if this transaction meets the 6067 ** runtime criteria to use the operation: 6068 ** 6069 ** * The file-system supports the atomic-write property for 6070 ** blocks of size page-size, and 6071 ** * This commit is not part of a multi-file transaction, and 6072 ** * Exactly one page has been modified and store in the journal file. 6073 ** 6074 ** If the optimization was not enabled at compile time, then the 6075 ** pager_incr_changecounter() function is called to update the change 6076 ** counter in 'indirect-mode'. If the optimization is compiled in but 6077 ** is not applicable to this transaction, call sqlite3JournalCreate() 6078 ** to make sure the journal file has actually been created, then call 6079 ** pager_incr_changecounter() to update the change-counter in indirect 6080 ** mode. 6081 ** 6082 ** Otherwise, if the optimization is both enabled and applicable, 6083 ** then call pager_incr_changecounter() to update the change-counter 6084 ** in 'direct' mode. In this case the journal file will never be 6085 ** created for this transaction. 6086 */ 6087 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 6088 PgHdr *pPg; 6089 assert( isOpen(pPager->jfd) 6090 || pPager->journalMode==PAGER_JOURNALMODE_OFF 6091 || pPager->journalMode==PAGER_JOURNALMODE_WAL 6092 ); 6093 if( !zMaster && isOpen(pPager->jfd) 6094 && pPager->journalOff==jrnlBufferSize(pPager) 6095 && pPager->dbSize>=pPager->dbOrigSize 6096 && (0==(pPg = sqlite3PcacheDirtyList(pPager->pPCache)) || 0==pPg->pDirty) 6097 ){ 6098 /* Update the db file change counter via the direct-write method. The 6099 ** following call will modify the in-memory representation of page 1 6100 ** to include the updated change counter and then write page 1 6101 ** directly to the database file. Because of the atomic-write 6102 ** property of the host file-system, this is safe. 6103 */ 6104 rc = pager_incr_changecounter(pPager, 1); 6105 }else{ 6106 rc = sqlite3JournalCreate(pPager->jfd); 6107 if( rc==SQLITE_OK ){ 6108 rc = pager_incr_changecounter(pPager, 0); 6109 } 6110 } 6111 #else 6112 rc = pager_incr_changecounter(pPager, 0); 6113 #endif 6114 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6115 6116 /* Write the master journal name into the journal file. If a master 6117 ** journal file name has already been written to the journal file, 6118 ** or if zMaster is NULL (no master journal), then this call is a no-op. 6119 */ 6120 rc = writeMasterJournal(pPager, zMaster); 6121 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6122 6123 /* Sync the journal file and write all dirty pages to the database. 6124 ** If the atomic-update optimization is being used, this sync will not 6125 ** create the journal file or perform any real IO. 6126 ** 6127 ** Because the change-counter page was just modified, unless the 6128 ** atomic-update optimization is used it is almost certain that the 6129 ** journal requires a sync here. However, in locking_mode=exclusive 6130 ** on a system under memory pressure it is just possible that this is 6131 ** not the case. In this case it is likely enough that the redundant 6132 ** xSync() call will be changed to a no-op by the OS anyhow. 6133 */ 6134 rc = syncJournal(pPager, 0); 6135 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6136 6137 rc = pager_write_pagelist(pPager,sqlite3PcacheDirtyList(pPager->pPCache)); 6138 if( rc!=SQLITE_OK ){ 6139 assert( rc!=SQLITE_IOERR_BLOCKED ); 6140 goto commit_phase_one_exit; 6141 } 6142 sqlite3PcacheCleanAll(pPager->pPCache); 6143 6144 /* If the file on disk is smaller than the database image, use 6145 ** pager_truncate to grow the file here. This can happen if the database 6146 ** image was extended as part of the current transaction and then the 6147 ** last page in the db image moved to the free-list. In this case the 6148 ** last page is never written out to disk, leaving the database file 6149 ** undersized. Fix this now if it is the case. */ 6150 if( pPager->dbSize>pPager->dbFileSize ){ 6151 Pgno nNew = pPager->dbSize - (pPager->dbSize==PAGER_MJ_PGNO(pPager)); 6152 assert( pPager->eState==PAGER_WRITER_DBMOD ); 6153 rc = pager_truncate(pPager, nNew); 6154 if( rc!=SQLITE_OK ) goto commit_phase_one_exit; 6155 } 6156 6157 /* Finally, sync the database file. */ 6158 if( !noSync ){ 6159 rc = sqlite3PagerSync(pPager); 6160 } 6161 IOTRACE(("DBSYNC %p\n", pPager)) 6162 } 6163 } 6164 6165 commit_phase_one_exit: 6166 if( rc==SQLITE_OK && !pagerUseWal(pPager) ){ 6167 pPager->eState = PAGER_WRITER_FINISHED; 6168 } 6169 return rc; 6170 } 6171 6172 6173 /* 6174 ** When this function is called, the database file has been completely 6175 ** updated to reflect the changes made by the current transaction and 6176 ** synced to disk. The journal file still exists in the file-system 6177 ** though, and if a failure occurs at this point it will eventually 6178 ** be used as a hot-journal and the current transaction rolled back. 6179 ** 6180 ** This function finalizes the journal file, either by deleting, 6181 ** truncating or partially zeroing it, so that it cannot be used 6182 ** for hot-journal rollback. Once this is done the transaction is 6183 ** irrevocably committed. 6184 ** 6185 ** If an error occurs, an IO error code is returned and the pager 6186 ** moves into the error state. Otherwise, SQLITE_OK is returned. 6187 */ 6188 int sqlite3PagerCommitPhaseTwo(Pager *pPager){ 6189 int rc = SQLITE_OK; /* Return code */ 6190 6191 /* This routine should not be called if a prior error has occurred. 6192 ** But if (due to a coding error elsewhere in the system) it does get 6193 ** called, just return the same error code without doing anything. */ 6194 if( NEVER(pPager->errCode) ) return pPager->errCode; 6195 6196 assert( pPager->eState==PAGER_WRITER_LOCKED 6197 || pPager->eState==PAGER_WRITER_FINISHED 6198 || (pagerUseWal(pPager) && pPager->eState==PAGER_WRITER_CACHEMOD) 6199 ); 6200 assert( assert_pager_state(pPager) ); 6201 6202 /* An optimization. If the database was not actually modified during 6203 ** this transaction, the pager is running in exclusive-mode and is 6204 ** using persistent journals, then this function is a no-op. 6205 ** 6206 ** The start of the journal file currently contains a single journal 6207 ** header with the nRec field set to 0. If such a journal is used as 6208 ** a hot-journal during hot-journal rollback, 0 changes will be made 6209 ** to the database file. So there is no need to zero the journal 6210 ** header. Since the pager is in exclusive mode, there is no need 6211 ** to drop any locks either. 6212 */ 6213 if( pPager->eState==PAGER_WRITER_LOCKED 6214 && pPager->exclusiveMode 6215 && pPager->journalMode==PAGER_JOURNALMODE_PERSIST 6216 ){ 6217 assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff ); 6218 pPager->eState = PAGER_READER; 6219 return SQLITE_OK; 6220 } 6221 6222 PAGERTRACE(("COMMIT %d\n", PAGERID(pPager))); 6223 rc = pager_end_transaction(pPager, pPager->setMaster, 1); 6224 return pager_error(pPager, rc); 6225 } 6226 6227 /* 6228 ** If a write transaction is open, then all changes made within the 6229 ** transaction are reverted and the current write-transaction is closed. 6230 ** The pager falls back to PAGER_READER state if successful, or PAGER_ERROR 6231 ** state if an error occurs. 6232 ** 6233 ** If the pager is already in PAGER_ERROR state when this function is called, 6234 ** it returns Pager.errCode immediately. No work is performed in this case. 6235 ** 6236 ** Otherwise, in rollback mode, this function performs two functions: 6237 ** 6238 ** 1) It rolls back the journal file, restoring all database file and 6239 ** in-memory cache pages to the state they were in when the transaction 6240 ** was opened, and 6241 ** 6242 ** 2) It finalizes the journal file, so that it is not used for hot 6243 ** rollback at any point in the future. 6244 ** 6245 ** Finalization of the journal file (task 2) is only performed if the 6246 ** rollback is successful. 6247 ** 6248 ** In WAL mode, all cache-entries containing data modified within the 6249 ** current transaction are either expelled from the cache or reverted to 6250 ** their pre-transaction state by re-reading data from the database or 6251 ** WAL files. The WAL transaction is then closed. 6252 */ 6253 int sqlite3PagerRollback(Pager *pPager){ 6254 int rc = SQLITE_OK; /* Return code */ 6255 PAGERTRACE(("ROLLBACK %d\n", PAGERID(pPager))); 6256 6257 /* PagerRollback() is a no-op if called in READER or OPEN state. If 6258 ** the pager is already in the ERROR state, the rollback is not 6259 ** attempted here. Instead, the error code is returned to the caller. 6260 */ 6261 assert( assert_pager_state(pPager) ); 6262 if( pPager->eState==PAGER_ERROR ) return pPager->errCode; 6263 if( pPager->eState<=PAGER_READER ) return SQLITE_OK; 6264 6265 if( pagerUseWal(pPager) ){ 6266 int rc2; 6267 rc = sqlite3PagerSavepoint(pPager, SAVEPOINT_ROLLBACK, -1); 6268 rc2 = pager_end_transaction(pPager, pPager->setMaster, 0); 6269 if( rc==SQLITE_OK ) rc = rc2; 6270 }else if( !isOpen(pPager->jfd) || pPager->eState==PAGER_WRITER_LOCKED ){ 6271 int eState = pPager->eState; 6272 rc = pager_end_transaction(pPager, 0, 0); 6273 if( !MEMDB && eState>PAGER_WRITER_LOCKED ){ 6274 /* This can happen using journal_mode=off. Move the pager to the error 6275 ** state to indicate that the contents of the cache may not be trusted. 6276 ** Any active readers will get SQLITE_ABORT. 6277 */ 6278 pPager->errCode = SQLITE_ABORT; 6279 pPager->eState = PAGER_ERROR; 6280 return rc; 6281 } 6282 }else{ 6283 rc = pager_playback(pPager, 0); 6284 } 6285 6286 assert( pPager->eState==PAGER_READER || rc!=SQLITE_OK ); 6287 assert( rc==SQLITE_OK || rc==SQLITE_FULL || rc==SQLITE_CORRUPT 6288 || rc==SQLITE_NOMEM || (rc&0xFF)==SQLITE_IOERR ); 6289 6290 /* If an error occurs during a ROLLBACK, we can no longer trust the pager 6291 ** cache. So call pager_error() on the way out to make any error persistent. 6292 */ 6293 return pager_error(pPager, rc); 6294 } 6295 6296 /* 6297 ** Return TRUE if the database file is opened read-only. Return FALSE 6298 ** if the database is (in theory) writable. 6299 */ 6300 u8 sqlite3PagerIsreadonly(Pager *pPager){ 6301 return pPager->readOnly; 6302 } 6303 6304 /* 6305 ** Return the number of references to the pager. 6306 */ 6307 int sqlite3PagerRefcount(Pager *pPager){ 6308 return sqlite3PcacheRefCount(pPager->pPCache); 6309 } 6310 6311 /* 6312 ** Return the approximate number of bytes of memory currently 6313 ** used by the pager and its associated cache. 6314 */ 6315 int sqlite3PagerMemUsed(Pager *pPager){ 6316 int perPageSize = pPager->pageSize + pPager->nExtra + sizeof(PgHdr) 6317 + 5*sizeof(void*); 6318 return perPageSize*sqlite3PcachePagecount(pPager->pPCache) 6319 + sqlite3MallocSize(pPager) 6320 + pPager->pageSize; 6321 } 6322 6323 /* 6324 ** Return the number of references to the specified page. 6325 */ 6326 int sqlite3PagerPageRefcount(DbPage *pPage){ 6327 return sqlite3PcachePageRefcount(pPage); 6328 } 6329 6330 #ifdef SQLITE_TEST 6331 /* 6332 ** This routine is used for testing and analysis only. 6333 */ 6334 int *sqlite3PagerStats(Pager *pPager){ 6335 static int a[11]; 6336 a[0] = sqlite3PcacheRefCount(pPager->pPCache); 6337 a[1] = sqlite3PcachePagecount(pPager->pPCache); 6338 a[2] = sqlite3PcacheGetCachesize(pPager->pPCache); 6339 a[3] = pPager->eState==PAGER_OPEN ? -1 : (int) pPager->dbSize; 6340 a[4] = pPager->eState; 6341 a[5] = pPager->errCode; 6342 a[6] = pPager->aStat[PAGER_STAT_HIT]; 6343 a[7] = pPager->aStat[PAGER_STAT_MISS]; 6344 a[8] = 0; /* Used to be pPager->nOvfl */ 6345 a[9] = pPager->nRead; 6346 a[10] = pPager->aStat[PAGER_STAT_WRITE]; 6347 return a; 6348 } 6349 #endif 6350 6351 /* 6352 ** Parameter eStat must be either SQLITE_DBSTATUS_CACHE_HIT or 6353 ** SQLITE_DBSTATUS_CACHE_MISS. Before returning, *pnVal is incremented by the 6354 ** current cache hit or miss count, according to the value of eStat. If the 6355 ** reset parameter is non-zero, the cache hit or miss count is zeroed before 6356 ** returning. 6357 */ 6358 void sqlite3PagerCacheStat(Pager *pPager, int eStat, int reset, int *pnVal){ 6359 6360 assert( eStat==SQLITE_DBSTATUS_CACHE_HIT 6361 || eStat==SQLITE_DBSTATUS_CACHE_MISS 6362 || eStat==SQLITE_DBSTATUS_CACHE_WRITE 6363 ); 6364 6365 assert( SQLITE_DBSTATUS_CACHE_HIT+1==SQLITE_DBSTATUS_CACHE_MISS ); 6366 assert( SQLITE_DBSTATUS_CACHE_HIT+2==SQLITE_DBSTATUS_CACHE_WRITE ); 6367 assert( PAGER_STAT_HIT==0 && PAGER_STAT_MISS==1 && PAGER_STAT_WRITE==2 ); 6368 6369 *pnVal += pPager->aStat[eStat - SQLITE_DBSTATUS_CACHE_HIT]; 6370 if( reset ){ 6371 pPager->aStat[eStat - SQLITE_DBSTATUS_CACHE_HIT] = 0; 6372 } 6373 } 6374 6375 /* 6376 ** Return true if this is an in-memory pager. 6377 */ 6378 int sqlite3PagerIsMemdb(Pager *pPager){ 6379 return MEMDB; 6380 } 6381 6382 /* 6383 ** Check that there are at least nSavepoint savepoints open. If there are 6384 ** currently less than nSavepoints open, then open one or more savepoints 6385 ** to make up the difference. If the number of savepoints is already 6386 ** equal to nSavepoint, then this function is a no-op. 6387 ** 6388 ** If a memory allocation fails, SQLITE_NOMEM is returned. If an error 6389 ** occurs while opening the sub-journal file, then an IO error code is 6390 ** returned. Otherwise, SQLITE_OK. 6391 */ 6392 int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){ 6393 int rc = SQLITE_OK; /* Return code */ 6394 int nCurrent = pPager->nSavepoint; /* Current number of savepoints */ 6395 6396 assert( pPager->eState>=PAGER_WRITER_LOCKED ); 6397 assert( assert_pager_state(pPager) ); 6398 6399 if( nSavepoint>nCurrent && pPager->useJournal ){ 6400 int ii; /* Iterator variable */ 6401 PagerSavepoint *aNew; /* New Pager.aSavepoint array */ 6402 6403 /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM 6404 ** if the allocation fails. Otherwise, zero the new portion in case a 6405 ** malloc failure occurs while populating it in the for(...) loop below. 6406 */ 6407 aNew = (PagerSavepoint *)sqlite3Realloc( 6408 pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint 6409 ); 6410 if( !aNew ){ 6411 return SQLITE_NOMEM; 6412 } 6413 memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint)); 6414 pPager->aSavepoint = aNew; 6415 6416 /* Populate the PagerSavepoint structures just allocated. */ 6417 for(ii=nCurrent; ii<nSavepoint; ii++){ 6418 aNew[ii].nOrig = pPager->dbSize; 6419 if( isOpen(pPager->jfd) && pPager->journalOff>0 ){ 6420 aNew[ii].iOffset = pPager->journalOff; 6421 }else{ 6422 aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager); 6423 } 6424 aNew[ii].iSubRec = pPager->nSubRec; 6425 aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize); 6426 if( !aNew[ii].pInSavepoint ){ 6427 return SQLITE_NOMEM; 6428 } 6429 if( pagerUseWal(pPager) ){ 6430 sqlite3WalSavepoint(pPager->pWal, aNew[ii].aWalData); 6431 } 6432 pPager->nSavepoint = ii+1; 6433 } 6434 assert( pPager->nSavepoint==nSavepoint ); 6435 assertTruncateConstraint(pPager); 6436 } 6437 6438 return rc; 6439 } 6440 6441 /* 6442 ** This function is called to rollback or release (commit) a savepoint. 6443 ** The savepoint to release or rollback need not be the most recently 6444 ** created savepoint. 6445 ** 6446 ** Parameter op is always either SAVEPOINT_ROLLBACK or SAVEPOINT_RELEASE. 6447 ** If it is SAVEPOINT_RELEASE, then release and destroy the savepoint with 6448 ** index iSavepoint. If it is SAVEPOINT_ROLLBACK, then rollback all changes 6449 ** that have occurred since the specified savepoint was created. 6450 ** 6451 ** The savepoint to rollback or release is identified by parameter 6452 ** iSavepoint. A value of 0 means to operate on the outermost savepoint 6453 ** (the first created). A value of (Pager.nSavepoint-1) means operate 6454 ** on the most recently created savepoint. If iSavepoint is greater than 6455 ** (Pager.nSavepoint-1), then this function is a no-op. 6456 ** 6457 ** If a negative value is passed to this function, then the current 6458 ** transaction is rolled back. This is different to calling 6459 ** sqlite3PagerRollback() because this function does not terminate 6460 ** the transaction or unlock the database, it just restores the 6461 ** contents of the database to its original state. 6462 ** 6463 ** In any case, all savepoints with an index greater than iSavepoint 6464 ** are destroyed. If this is a release operation (op==SAVEPOINT_RELEASE), 6465 ** then savepoint iSavepoint is also destroyed. 6466 ** 6467 ** This function may return SQLITE_NOMEM if a memory allocation fails, 6468 ** or an IO error code if an IO error occurs while rolling back a 6469 ** savepoint. If no errors occur, SQLITE_OK is returned. 6470 */ 6471 int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint){ 6472 int rc = pPager->errCode; /* Return code */ 6473 6474 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); 6475 assert( iSavepoint>=0 || op==SAVEPOINT_ROLLBACK ); 6476 6477 if( rc==SQLITE_OK && iSavepoint<pPager->nSavepoint ){ 6478 int ii; /* Iterator variable */ 6479 int nNew; /* Number of remaining savepoints after this op. */ 6480 6481 /* Figure out how many savepoints will still be active after this 6482 ** operation. Store this value in nNew. Then free resources associated 6483 ** with any savepoints that are destroyed by this operation. 6484 */ 6485 nNew = iSavepoint + (( op==SAVEPOINT_RELEASE ) ? 0 : 1); 6486 for(ii=nNew; ii<pPager->nSavepoint; ii++){ 6487 sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint); 6488 } 6489 pPager->nSavepoint = nNew; 6490 6491 /* If this is a release of the outermost savepoint, truncate 6492 ** the sub-journal to zero bytes in size. */ 6493 if( op==SAVEPOINT_RELEASE ){ 6494 if( nNew==0 && isOpen(pPager->sjfd) ){ 6495 /* Only truncate if it is an in-memory sub-journal. */ 6496 if( sqlite3IsMemJournal(pPager->sjfd) ){ 6497 rc = sqlite3OsTruncate(pPager->sjfd, 0); 6498 assert( rc==SQLITE_OK ); 6499 } 6500 pPager->nSubRec = 0; 6501 } 6502 } 6503 /* Else this is a rollback operation, playback the specified savepoint. 6504 ** If this is a temp-file, it is possible that the journal file has 6505 ** not yet been opened. In this case there have been no changes to 6506 ** the database file, so the playback operation can be skipped. 6507 */ 6508 else if( pagerUseWal(pPager) || isOpen(pPager->jfd) ){ 6509 PagerSavepoint *pSavepoint = (nNew==0)?0:&pPager->aSavepoint[nNew-1]; 6510 rc = pagerPlaybackSavepoint(pPager, pSavepoint); 6511 assert(rc!=SQLITE_DONE); 6512 } 6513 } 6514 6515 return rc; 6516 } 6517 6518 /* 6519 ** Return the full pathname of the database file. 6520 ** 6521 ** Except, if the pager is in-memory only, then return an empty string if 6522 ** nullIfMemDb is true. This routine is called with nullIfMemDb==1 when 6523 ** used to report the filename to the user, for compatibility with legacy 6524 ** behavior. But when the Btree needs to know the filename for matching to 6525 ** shared cache, it uses nullIfMemDb==0 so that in-memory databases can 6526 ** participate in shared-cache. 6527 */ 6528 const char *sqlite3PagerFilename(Pager *pPager, int nullIfMemDb){ 6529 return (nullIfMemDb && pPager->memDb) ? "" : pPager->zFilename; 6530 } 6531 6532 /* 6533 ** Return the VFS structure for the pager. 6534 */ 6535 const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){ 6536 return pPager->pVfs; 6537 } 6538 6539 /* 6540 ** Return the file handle for the database file associated 6541 ** with the pager. This might return NULL if the file has 6542 ** not yet been opened. 6543 */ 6544 sqlite3_file *sqlite3PagerFile(Pager *pPager){ 6545 return pPager->fd; 6546 } 6547 6548 /* 6549 ** Return the full pathname of the journal file. 6550 */ 6551 const char *sqlite3PagerJournalname(Pager *pPager){ 6552 return pPager->zJournal; 6553 } 6554 6555 /* 6556 ** Return true if fsync() calls are disabled for this pager. Return FALSE 6557 ** if fsync()s are executed normally. 6558 */ 6559 int sqlite3PagerNosync(Pager *pPager){ 6560 return pPager->noSync; 6561 } 6562 6563 #ifdef SQLITE_HAS_CODEC 6564 /* 6565 ** Set or retrieve the codec for this pager 6566 */ 6567 void sqlite3PagerSetCodec( 6568 Pager *pPager, 6569 void *(*xCodec)(void*,void*,Pgno,int), 6570 void (*xCodecSizeChng)(void*,int,int), 6571 void (*xCodecFree)(void*), 6572 void *pCodec 6573 ){ 6574 if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec); 6575 pPager->xCodec = pPager->memDb ? 0 : xCodec; 6576 pPager->xCodecSizeChng = xCodecSizeChng; 6577 pPager->xCodecFree = xCodecFree; 6578 pPager->pCodec = pCodec; 6579 pagerReportSize(pPager); 6580 } 6581 void *sqlite3PagerGetCodec(Pager *pPager){ 6582 return pPager->pCodec; 6583 } 6584 #endif 6585 6586 #ifndef SQLITE_OMIT_AUTOVACUUM 6587 /* 6588 ** Move the page pPg to location pgno in the file. 6589 ** 6590 ** There must be no references to the page previously located at 6591 ** pgno (which we call pPgOld) though that page is allowed to be 6592 ** in cache. If the page previously located at pgno is not already 6593 ** in the rollback journal, it is not put there by by this routine. 6594 ** 6595 ** References to the page pPg remain valid. Updating any 6596 ** meta-data associated with pPg (i.e. data stored in the nExtra bytes 6597 ** allocated along with the page) is the responsibility of the caller. 6598 ** 6599 ** A transaction must be active when this routine is called. It used to be 6600 ** required that a statement transaction was not active, but this restriction 6601 ** has been removed (CREATE INDEX needs to move a page when a statement 6602 ** transaction is active). 6603 ** 6604 ** If the fourth argument, isCommit, is non-zero, then this page is being 6605 ** moved as part of a database reorganization just before the transaction 6606 ** is being committed. In this case, it is guaranteed that the database page 6607 ** pPg refers to will not be written to again within this transaction. 6608 ** 6609 ** This function may return SQLITE_NOMEM or an IO error code if an error 6610 ** occurs. Otherwise, it returns SQLITE_OK. 6611 */ 6612 int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){ 6613 PgHdr *pPgOld; /* The page being overwritten. */ 6614 Pgno needSyncPgno = 0; /* Old value of pPg->pgno, if sync is required */ 6615 int rc; /* Return code */ 6616 Pgno origPgno; /* The original page number */ 6617 6618 assert( pPg->nRef>0 ); 6619 assert( pPager->eState==PAGER_WRITER_CACHEMOD 6620 || pPager->eState==PAGER_WRITER_DBMOD 6621 ); 6622 assert( assert_pager_state(pPager) ); 6623 6624 /* In order to be able to rollback, an in-memory database must journal 6625 ** the page we are moving from. 6626 */ 6627 if( MEMDB ){ 6628 rc = sqlite3PagerWrite(pPg); 6629 if( rc ) return rc; 6630 } 6631 6632 /* If the page being moved is dirty and has not been saved by the latest 6633 ** savepoint, then save the current contents of the page into the 6634 ** sub-journal now. This is required to handle the following scenario: 6635 ** 6636 ** BEGIN; 6637 ** <journal page X, then modify it in memory> 6638 ** SAVEPOINT one; 6639 ** <Move page X to location Y> 6640 ** ROLLBACK TO one; 6641 ** 6642 ** If page X were not written to the sub-journal here, it would not 6643 ** be possible to restore its contents when the "ROLLBACK TO one" 6644 ** statement were is processed. 6645 ** 6646 ** subjournalPage() may need to allocate space to store pPg->pgno into 6647 ** one or more savepoint bitvecs. This is the reason this function 6648 ** may return SQLITE_NOMEM. 6649 */ 6650 if( pPg->flags&PGHDR_DIRTY 6651 && subjRequiresPage(pPg) 6652 && SQLITE_OK!=(rc = subjournalPage(pPg)) 6653 ){ 6654 return rc; 6655 } 6656 6657 PAGERTRACE(("MOVE %d page %d (needSync=%d) moves to %d\n", 6658 PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno)); 6659 IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno)) 6660 6661 /* If the journal needs to be sync()ed before page pPg->pgno can 6662 ** be written to, store pPg->pgno in local variable needSyncPgno. 6663 ** 6664 ** If the isCommit flag is set, there is no need to remember that 6665 ** the journal needs to be sync()ed before database page pPg->pgno 6666 ** can be written to. The caller has already promised not to write to it. 6667 */ 6668 if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){ 6669 needSyncPgno = pPg->pgno; 6670 assert( pPager->journalMode==PAGER_JOURNALMODE_OFF || 6671 pageInJournal(pPg) || pPg->pgno>pPager->dbOrigSize ); 6672 assert( pPg->flags&PGHDR_DIRTY ); 6673 } 6674 6675 /* If the cache contains a page with page-number pgno, remove it 6676 ** from its hash chain. Also, if the PGHDR_NEED_SYNC flag was set for 6677 ** page pgno before the 'move' operation, it needs to be retained 6678 ** for the page moved there. 6679 */ 6680 pPg->flags &= ~PGHDR_NEED_SYNC; 6681 pPgOld = pager_lookup(pPager, pgno); 6682 assert( !pPgOld || pPgOld->nRef==1 ); 6683 if( pPgOld ){ 6684 pPg->flags |= (pPgOld->flags&PGHDR_NEED_SYNC); 6685 if( MEMDB ){ 6686 /* Do not discard pages from an in-memory database since we might 6687 ** need to rollback later. Just move the page out of the way. */ 6688 sqlite3PcacheMove(pPgOld, pPager->dbSize+1); 6689 }else{ 6690 sqlite3PcacheDrop(pPgOld); 6691 } 6692 } 6693 6694 origPgno = pPg->pgno; 6695 sqlite3PcacheMove(pPg, pgno); 6696 sqlite3PcacheMakeDirty(pPg); 6697 6698 /* For an in-memory database, make sure the original page continues 6699 ** to exist, in case the transaction needs to roll back. Use pPgOld 6700 ** as the original page since it has already been allocated. 6701 */ 6702 if( MEMDB ){ 6703 assert( pPgOld ); 6704 sqlite3PcacheMove(pPgOld, origPgno); 6705 sqlite3PagerUnref(pPgOld); 6706 } 6707 6708 if( needSyncPgno ){ 6709 /* If needSyncPgno is non-zero, then the journal file needs to be 6710 ** sync()ed before any data is written to database file page needSyncPgno. 6711 ** Currently, no such page exists in the page-cache and the 6712 ** "is journaled" bitvec flag has been set. This needs to be remedied by 6713 ** loading the page into the pager-cache and setting the PGHDR_NEED_SYNC 6714 ** flag. 6715 ** 6716 ** If the attempt to load the page into the page-cache fails, (due 6717 ** to a malloc() or IO failure), clear the bit in the pInJournal[] 6718 ** array. Otherwise, if the page is loaded and written again in 6719 ** this transaction, it may be written to the database file before 6720 ** it is synced into the journal file. This way, it may end up in 6721 ** the journal file twice, but that is not a problem. 6722 */ 6723 PgHdr *pPgHdr; 6724 rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr); 6725 if( rc!=SQLITE_OK ){ 6726 if( needSyncPgno<=pPager->dbOrigSize ){ 6727 assert( pPager->pTmpSpace!=0 ); 6728 sqlite3BitvecClear(pPager->pInJournal, needSyncPgno, pPager->pTmpSpace); 6729 } 6730 return rc; 6731 } 6732 pPgHdr->flags |= PGHDR_NEED_SYNC; 6733 sqlite3PcacheMakeDirty(pPgHdr); 6734 sqlite3PagerUnref(pPgHdr); 6735 } 6736 6737 return SQLITE_OK; 6738 } 6739 #endif 6740 6741 /* 6742 ** Return a pointer to the data for the specified page. 6743 */ 6744 void *sqlite3PagerGetData(DbPage *pPg){ 6745 assert( pPg->nRef>0 || pPg->pPager->memDb ); 6746 return pPg->pData; 6747 } 6748 6749 /* 6750 ** Return a pointer to the Pager.nExtra bytes of "extra" space 6751 ** allocated along with the specified page. 6752 */ 6753 void *sqlite3PagerGetExtra(DbPage *pPg){ 6754 return pPg->pExtra; 6755 } 6756 6757 /* 6758 ** Get/set the locking-mode for this pager. Parameter eMode must be one 6759 ** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or 6760 ** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then 6761 ** the locking-mode is set to the value specified. 6762 ** 6763 ** The returned value is either PAGER_LOCKINGMODE_NORMAL or 6764 ** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated) 6765 ** locking-mode. 6766 */ 6767 int sqlite3PagerLockingMode(Pager *pPager, int eMode){ 6768 assert( eMode==PAGER_LOCKINGMODE_QUERY 6769 || eMode==PAGER_LOCKINGMODE_NORMAL 6770 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); 6771 assert( PAGER_LOCKINGMODE_QUERY<0 ); 6772 assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 ); 6773 assert( pPager->exclusiveMode || 0==sqlite3WalHeapMemory(pPager->pWal) ); 6774 if( eMode>=0 && !pPager->tempFile && !sqlite3WalHeapMemory(pPager->pWal) ){ 6775 pPager->exclusiveMode = (u8)eMode; 6776 } 6777 return (int)pPager->exclusiveMode; 6778 } 6779 6780 /* 6781 ** Set the journal-mode for this pager. Parameter eMode must be one of: 6782 ** 6783 ** PAGER_JOURNALMODE_DELETE 6784 ** PAGER_JOURNALMODE_TRUNCATE 6785 ** PAGER_JOURNALMODE_PERSIST 6786 ** PAGER_JOURNALMODE_OFF 6787 ** PAGER_JOURNALMODE_MEMORY 6788 ** PAGER_JOURNALMODE_WAL 6789 ** 6790 ** The journalmode is set to the value specified if the change is allowed. 6791 ** The change may be disallowed for the following reasons: 6792 ** 6793 ** * An in-memory database can only have its journal_mode set to _OFF 6794 ** or _MEMORY. 6795 ** 6796 ** * Temporary databases cannot have _WAL journalmode. 6797 ** 6798 ** The returned indicate the current (possibly updated) journal-mode. 6799 */ 6800 int sqlite3PagerSetJournalMode(Pager *pPager, int eMode){ 6801 u8 eOld = pPager->journalMode; /* Prior journalmode */ 6802 6803 #ifdef SQLITE_DEBUG 6804 /* The print_pager_state() routine is intended to be used by the debugger 6805 ** only. We invoke it once here to suppress a compiler warning. */ 6806 print_pager_state(pPager); 6807 #endif 6808 6809 6810 /* The eMode parameter is always valid */ 6811 assert( eMode==PAGER_JOURNALMODE_DELETE 6812 || eMode==PAGER_JOURNALMODE_TRUNCATE 6813 || eMode==PAGER_JOURNALMODE_PERSIST 6814 || eMode==PAGER_JOURNALMODE_OFF 6815 || eMode==PAGER_JOURNALMODE_WAL 6816 || eMode==PAGER_JOURNALMODE_MEMORY ); 6817 6818 /* This routine is only called from the OP_JournalMode opcode, and 6819 ** the logic there will never allow a temporary file to be changed 6820 ** to WAL mode. 6821 */ 6822 assert( pPager->tempFile==0 || eMode!=PAGER_JOURNALMODE_WAL ); 6823 6824 /* Do allow the journalmode of an in-memory database to be set to 6825 ** anything other than MEMORY or OFF 6826 */ 6827 if( MEMDB ){ 6828 assert( eOld==PAGER_JOURNALMODE_MEMORY || eOld==PAGER_JOURNALMODE_OFF ); 6829 if( eMode!=PAGER_JOURNALMODE_MEMORY && eMode!=PAGER_JOURNALMODE_OFF ){ 6830 eMode = eOld; 6831 } 6832 } 6833 6834 if( eMode!=eOld ){ 6835 6836 /* Change the journal mode. */ 6837 assert( pPager->eState!=PAGER_ERROR ); 6838 pPager->journalMode = (u8)eMode; 6839 6840 /* When transistioning from TRUNCATE or PERSIST to any other journal 6841 ** mode except WAL, unless the pager is in locking_mode=exclusive mode, 6842 ** delete the journal file. 6843 */ 6844 assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 ); 6845 assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 ); 6846 assert( (PAGER_JOURNALMODE_DELETE & 5)==0 ); 6847 assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 ); 6848 assert( (PAGER_JOURNALMODE_OFF & 5)==0 ); 6849 assert( (PAGER_JOURNALMODE_WAL & 5)==5 ); 6850 6851 assert( isOpen(pPager->fd) || pPager->exclusiveMode ); 6852 if( !pPager->exclusiveMode && (eOld & 5)==1 && (eMode & 1)==0 ){ 6853 6854 /* In this case we would like to delete the journal file. If it is 6855 ** not possible, then that is not a problem. Deleting the journal file 6856 ** here is an optimization only. 6857 ** 6858 ** Before deleting the journal file, obtain a RESERVED lock on the 6859 ** database file. This ensures that the journal file is not deleted 6860 ** while it is in use by some other client. 6861 */ 6862 sqlite3OsClose(pPager->jfd); 6863 if( pPager->eLock>=RESERVED_LOCK ){ 6864 sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); 6865 }else{ 6866 int rc = SQLITE_OK; 6867 int state = pPager->eState; 6868 assert( state==PAGER_OPEN || state==PAGER_READER ); 6869 if( state==PAGER_OPEN ){ 6870 rc = sqlite3PagerSharedLock(pPager); 6871 } 6872 if( pPager->eState==PAGER_READER ){ 6873 assert( rc==SQLITE_OK ); 6874 rc = pagerLockDb(pPager, RESERVED_LOCK); 6875 } 6876 if( rc==SQLITE_OK ){ 6877 sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); 6878 } 6879 if( rc==SQLITE_OK && state==PAGER_READER ){ 6880 pagerUnlockDb(pPager, SHARED_LOCK); 6881 }else if( state==PAGER_OPEN ){ 6882 pager_unlock(pPager); 6883 } 6884 assert( state==pPager->eState ); 6885 } 6886 } 6887 } 6888 6889 /* Return the new journal mode */ 6890 return (int)pPager->journalMode; 6891 } 6892 6893 /* 6894 ** Return the current journal mode. 6895 */ 6896 int sqlite3PagerGetJournalMode(Pager *pPager){ 6897 return (int)pPager->journalMode; 6898 } 6899 6900 /* 6901 ** Return TRUE if the pager is in a state where it is OK to change the 6902 ** journalmode. Journalmode changes can only happen when the database 6903 ** is unmodified. 6904 */ 6905 int sqlite3PagerOkToChangeJournalMode(Pager *pPager){ 6906 assert( assert_pager_state(pPager) ); 6907 if( pPager->eState>=PAGER_WRITER_CACHEMOD ) return 0; 6908 if( NEVER(isOpen(pPager->jfd) && pPager->journalOff>0) ) return 0; 6909 return 1; 6910 } 6911 6912 /* 6913 ** Get/set the size-limit used for persistent journal files. 6914 ** 6915 ** Setting the size limit to -1 means no limit is enforced. 6916 ** An attempt to set a limit smaller than -1 is a no-op. 6917 */ 6918 i64 sqlite3PagerJournalSizeLimit(Pager *pPager, i64 iLimit){ 6919 if( iLimit>=-1 ){ 6920 pPager->journalSizeLimit = iLimit; 6921 sqlite3WalLimit(pPager->pWal, iLimit); 6922 } 6923 return pPager->journalSizeLimit; 6924 } 6925 6926 /* 6927 ** Return a pointer to the pPager->pBackup variable. The backup module 6928 ** in backup.c maintains the content of this variable. This module 6929 ** uses it opaquely as an argument to sqlite3BackupRestart() and 6930 ** sqlite3BackupUpdate() only. 6931 */ 6932 sqlite3_backup **sqlite3PagerBackupPtr(Pager *pPager){ 6933 return &pPager->pBackup; 6934 } 6935 6936 #ifndef SQLITE_OMIT_VACUUM 6937 /* 6938 ** Unless this is an in-memory or temporary database, clear the pager cache. 6939 */ 6940 void sqlite3PagerClearCache(Pager *pPager){ 6941 if( !MEMDB && pPager->tempFile==0 ) pager_reset(pPager); 6942 } 6943 #endif 6944 6945 #ifndef SQLITE_OMIT_WAL 6946 /* 6947 ** This function is called when the user invokes "PRAGMA wal_checkpoint", 6948 ** "PRAGMA wal_blocking_checkpoint" or calls the sqlite3_wal_checkpoint() 6949 ** or wal_blocking_checkpoint() API functions. 6950 ** 6951 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. 6952 */ 6953 int sqlite3PagerCheckpoint(Pager *pPager, int eMode, int *pnLog, int *pnCkpt){ 6954 int rc = SQLITE_OK; 6955 if( pPager->pWal ){ 6956 rc = sqlite3WalCheckpoint(pPager->pWal, eMode, 6957 pPager->xBusyHandler, pPager->pBusyHandlerArg, 6958 pPager->ckptSyncFlags, pPager->pageSize, (u8 *)pPager->pTmpSpace, 6959 pnLog, pnCkpt 6960 ); 6961 } 6962 return rc; 6963 } 6964 6965 int sqlite3PagerWalCallback(Pager *pPager){ 6966 return sqlite3WalCallback(pPager->pWal); 6967 } 6968 6969 /* 6970 ** Return true if the underlying VFS for the given pager supports the 6971 ** primitives necessary for write-ahead logging. 6972 */ 6973 int sqlite3PagerWalSupported(Pager *pPager){ 6974 const sqlite3_io_methods *pMethods = pPager->fd->pMethods; 6975 return pPager->exclusiveMode || (pMethods->iVersion>=2 && pMethods->xShmMap); 6976 } 6977 6978 /* 6979 ** Attempt to take an exclusive lock on the database file. If a PENDING lock 6980 ** is obtained instead, immediately release it. 6981 */ 6982 static int pagerExclusiveLock(Pager *pPager){ 6983 int rc; /* Return code */ 6984 6985 assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); 6986 rc = pagerLockDb(pPager, EXCLUSIVE_LOCK); 6987 if( rc!=SQLITE_OK ){ 6988 /* If the attempt to grab the exclusive lock failed, release the 6989 ** pending lock that may have been obtained instead. */ 6990 pagerUnlockDb(pPager, SHARED_LOCK); 6991 } 6992 6993 return rc; 6994 } 6995 6996 /* 6997 ** Call sqlite3WalOpen() to open the WAL handle. If the pager is in 6998 ** exclusive-locking mode when this function is called, take an EXCLUSIVE 6999 ** lock on the database file and use heap-memory to store the wal-index 7000 ** in. Otherwise, use the normal shared-memory. 7001 */ 7002 static int pagerOpenWal(Pager *pPager){ 7003 int rc = SQLITE_OK; 7004 7005 assert( pPager->pWal==0 && pPager->tempFile==0 ); 7006 assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK ); 7007 7008 /* If the pager is already in exclusive-mode, the WAL module will use 7009 ** heap-memory for the wal-index instead of the VFS shared-memory 7010 ** implementation. Take the exclusive lock now, before opening the WAL 7011 ** file, to make sure this is safe. 7012 */ 7013 if( pPager->exclusiveMode ){ 7014 rc = pagerExclusiveLock(pPager); 7015 } 7016 7017 /* Open the connection to the log file. If this operation fails, 7018 ** (e.g. due to malloc() failure), return an error code. 7019 */ 7020 if( rc==SQLITE_OK ){ 7021 rc = sqlite3WalOpen(pPager->pVfs, 7022 pPager->fd, pPager->zWal, pPager->exclusiveMode, 7023 pPager->journalSizeLimit, &pPager->pWal 7024 ); 7025 } 7026 pagerFixMaplimit(pPager); 7027 7028 return rc; 7029 } 7030 7031 7032 /* 7033 ** The caller must be holding a SHARED lock on the database file to call 7034 ** this function. 7035 ** 7036 ** If the pager passed as the first argument is open on a real database 7037 ** file (not a temp file or an in-memory database), and the WAL file 7038 ** is not already open, make an attempt to open it now. If successful, 7039 ** return SQLITE_OK. If an error occurs or the VFS used by the pager does 7040 ** not support the xShmXXX() methods, return an error code. *pbOpen is 7041 ** not modified in either case. 7042 ** 7043 ** If the pager is open on a temp-file (or in-memory database), or if 7044 ** the WAL file is already open, set *pbOpen to 1 and return SQLITE_OK 7045 ** without doing anything. 7046 */ 7047 int sqlite3PagerOpenWal( 7048 Pager *pPager, /* Pager object */ 7049 int *pbOpen /* OUT: Set to true if call is a no-op */ 7050 ){ 7051 int rc = SQLITE_OK; /* Return code */ 7052 7053 assert( assert_pager_state(pPager) ); 7054 assert( pPager->eState==PAGER_OPEN || pbOpen ); 7055 assert( pPager->eState==PAGER_READER || !pbOpen ); 7056 assert( pbOpen==0 || *pbOpen==0 ); 7057 assert( pbOpen!=0 || (!pPager->tempFile && !pPager->pWal) ); 7058 7059 if( !pPager->tempFile && !pPager->pWal ){ 7060 if( !sqlite3PagerWalSupported(pPager) ) return SQLITE_CANTOPEN; 7061 7062 /* Close any rollback journal previously open */ 7063 sqlite3OsClose(pPager->jfd); 7064 7065 rc = pagerOpenWal(pPager); 7066 if( rc==SQLITE_OK ){ 7067 pPager->journalMode = PAGER_JOURNALMODE_WAL; 7068 pPager->eState = PAGER_OPEN; 7069 } 7070 }else{ 7071 *pbOpen = 1; 7072 } 7073 7074 return rc; 7075 } 7076 7077 /* 7078 ** This function is called to close the connection to the log file prior 7079 ** to switching from WAL to rollback mode. 7080 ** 7081 ** Before closing the log file, this function attempts to take an 7082 ** EXCLUSIVE lock on the database file. If this cannot be obtained, an 7083 ** error (SQLITE_BUSY) is returned and the log connection is not closed. 7084 ** If successful, the EXCLUSIVE lock is not released before returning. 7085 */ 7086 int sqlite3PagerCloseWal(Pager *pPager){ 7087 int rc = SQLITE_OK; 7088 7089 assert( pPager->journalMode==PAGER_JOURNALMODE_WAL ); 7090 7091 /* If the log file is not already open, but does exist in the file-system, 7092 ** it may need to be checkpointed before the connection can switch to 7093 ** rollback mode. Open it now so this can happen. 7094 */ 7095 if( !pPager->pWal ){ 7096 int logexists = 0; 7097 rc = pagerLockDb(pPager, SHARED_LOCK); 7098 if( rc==SQLITE_OK ){ 7099 rc = sqlite3OsAccess( 7100 pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &logexists 7101 ); 7102 } 7103 if( rc==SQLITE_OK && logexists ){ 7104 rc = pagerOpenWal(pPager); 7105 } 7106 } 7107 7108 /* Checkpoint and close the log. Because an EXCLUSIVE lock is held on 7109 ** the database file, the log and log-summary files will be deleted. 7110 */ 7111 if( rc==SQLITE_OK && pPager->pWal ){ 7112 rc = pagerExclusiveLock(pPager); 7113 if( rc==SQLITE_OK ){ 7114 rc = sqlite3WalClose(pPager->pWal, pPager->ckptSyncFlags, 7115 pPager->pageSize, (u8*)pPager->pTmpSpace); 7116 pPager->pWal = 0; 7117 pagerFixMaplimit(pPager); 7118 } 7119 } 7120 return rc; 7121 } 7122 7123 #endif /* !SQLITE_OMIT_WAL */ 7124 7125 #ifdef SQLITE_ENABLE_ZIPVFS 7126 /* 7127 ** A read-lock must be held on the pager when this function is called. If 7128 ** the pager is in WAL mode and the WAL file currently contains one or more 7129 ** frames, return the size in bytes of the page images stored within the 7130 ** WAL frames. Otherwise, if this is not a WAL database or the WAL file 7131 ** is empty, return 0. 7132 */ 7133 int sqlite3PagerWalFramesize(Pager *pPager){ 7134 assert( pPager->eState==PAGER_READER ); 7135 return sqlite3WalFramesize(pPager->pWal); 7136 } 7137 #endif 7138 7139 #ifdef SQLITE_HAS_CODEC 7140 /* 7141 ** This function is called by the wal module when writing page content 7142 ** into the log file. 7143 ** 7144 ** This function returns a pointer to a buffer containing the encrypted 7145 ** page content. If a malloc fails, this function may return NULL. 7146 */ 7147 void *sqlite3PagerCodec(PgHdr *pPg){ 7148 void *aData = 0; 7149 CODEC2(pPg->pPager, pPg->pData, pPg->pgno, 6, return 0, aData); 7150 return aData; 7151 } 7152 #endif /* SQLITE_HAS_CODEC */ 7153 7154 #endif /* SQLITE_OMIT_DISKIO */ 7155