1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This is the implementation of the page cache subsystem or "pager". 13 ** 14 ** The pager is used to access a database disk file. It implements 15 ** atomic commit and rollback through the use of a journal file that 16 ** is separate from the database file. The pager also implements file 17 ** locking to prevent two processes from writing the same database 18 ** file simultaneously, or one process from reading the database while 19 ** another is writing. 20 ** 21 ** @(#) $Id: pager.c,v 1.400 2007/12/13 21:54:11 drh Exp $ 22 */ 23 #ifndef SQLITE_OMIT_DISKIO 24 #include "sqliteInt.h" 25 #include <assert.h> 26 #include <string.h> 27 28 /* 29 ** Macros for troubleshooting. Normally turned off 30 */ 31 #if 0 32 #define sqlite3DebugPrintf printf 33 #define PAGERTRACE1(X) sqlite3DebugPrintf(X) 34 #define PAGERTRACE2(X,Y) sqlite3DebugPrintf(X,Y) 35 #define PAGERTRACE3(X,Y,Z) sqlite3DebugPrintf(X,Y,Z) 36 #define PAGERTRACE4(X,Y,Z,W) sqlite3DebugPrintf(X,Y,Z,W) 37 #define PAGERTRACE5(X,Y,Z,W,V) sqlite3DebugPrintf(X,Y,Z,W,V) 38 #else 39 #define PAGERTRACE1(X) 40 #define PAGERTRACE2(X,Y) 41 #define PAGERTRACE3(X,Y,Z) 42 #define PAGERTRACE4(X,Y,Z,W) 43 #define PAGERTRACE5(X,Y,Z,W,V) 44 #endif 45 46 /* 47 ** The following two macros are used within the PAGERTRACEX() macros above 48 ** to print out file-descriptors. 49 ** 50 ** PAGERID() takes a pointer to a Pager struct as its argument. The 51 ** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file 52 ** struct as its argument. 53 */ 54 #define PAGERID(p) ((int)(p->fd)) 55 #define FILEHANDLEID(fd) ((int)fd) 56 57 /* 58 ** The page cache as a whole is always in one of the following 59 ** states: 60 ** 61 ** PAGER_UNLOCK The page cache is not currently reading or 62 ** writing the database file. There is no 63 ** data held in memory. This is the initial 64 ** state. 65 ** 66 ** PAGER_SHARED The page cache is reading the database. 67 ** Writing is not permitted. There can be 68 ** multiple readers accessing the same database 69 ** file at the same time. 70 ** 71 ** PAGER_RESERVED This process has reserved the database for writing 72 ** but has not yet made any changes. Only one process 73 ** at a time can reserve the database. The original 74 ** database file has not been modified so other 75 ** processes may still be reading the on-disk 76 ** database file. 77 ** 78 ** PAGER_EXCLUSIVE The page cache is writing the database. 79 ** Access is exclusive. No other processes or 80 ** threads can be reading or writing while one 81 ** process is writing. 82 ** 83 ** PAGER_SYNCED The pager moves to this state from PAGER_EXCLUSIVE 84 ** after all dirty pages have been written to the 85 ** database file and the file has been synced to 86 ** disk. All that remains to do is to remove or 87 ** truncate the journal file and the transaction 88 ** will be committed. 89 ** 90 ** The page cache comes up in PAGER_UNLOCK. The first time a 91 ** sqlite3PagerGet() occurs, the state transitions to PAGER_SHARED. 92 ** After all pages have been released using sqlite_page_unref(), 93 ** the state transitions back to PAGER_UNLOCK. The first time 94 ** that sqlite3PagerWrite() is called, the state transitions to 95 ** PAGER_RESERVED. (Note that sqlite3PagerWrite() can only be 96 ** called on an outstanding page which means that the pager must 97 ** be in PAGER_SHARED before it transitions to PAGER_RESERVED.) 98 ** PAGER_RESERVED means that there is an open rollback journal. 99 ** The transition to PAGER_EXCLUSIVE occurs before any changes 100 ** are made to the database file, though writes to the rollback 101 ** journal occurs with just PAGER_RESERVED. After an sqlite3PagerRollback() 102 ** or sqlite3PagerCommitPhaseTwo(), the state can go back to PAGER_SHARED, 103 ** or it can stay at PAGER_EXCLUSIVE if we are in exclusive access mode. 104 */ 105 #define PAGER_UNLOCK 0 106 #define PAGER_SHARED 1 /* same as SHARED_LOCK */ 107 #define PAGER_RESERVED 2 /* same as RESERVED_LOCK */ 108 #define PAGER_EXCLUSIVE 4 /* same as EXCLUSIVE_LOCK */ 109 #define PAGER_SYNCED 5 110 111 /* 112 ** If the SQLITE_BUSY_RESERVED_LOCK macro is set to true at compile-time, 113 ** then failed attempts to get a reserved lock will invoke the busy callback. 114 ** This is off by default. To see why, consider the following scenario: 115 ** 116 ** Suppose thread A already has a shared lock and wants a reserved lock. 117 ** Thread B already has a reserved lock and wants an exclusive lock. If 118 ** both threads are using their busy callbacks, it might be a long time 119 ** be for one of the threads give up and allows the other to proceed. 120 ** But if the thread trying to get the reserved lock gives up quickly 121 ** (if it never invokes its busy callback) then the contention will be 122 ** resolved quickly. 123 */ 124 #ifndef SQLITE_BUSY_RESERVED_LOCK 125 # define SQLITE_BUSY_RESERVED_LOCK 0 126 #endif 127 128 /* 129 ** This macro rounds values up so that if the value is an address it 130 ** is guaranteed to be an address that is aligned to an 8-byte boundary. 131 */ 132 #define FORCE_ALIGNMENT(X) (((X)+7)&~7) 133 134 typedef struct PgHdr PgHdr; 135 136 /* 137 ** Each pager stores all currently unreferenced pages in a list sorted 138 ** in least-recently-used (LRU) order (i.e. the first item on the list has 139 ** not been referenced in a long time, the last item has been recently 140 ** used). An instance of this structure is included as part of each 141 ** pager structure for this purpose (variable Pager.lru). 142 ** 143 ** Additionally, if memory-management is enabled, all unreferenced pages 144 ** are stored in a global LRU list (global variable sqlite3LruPageList). 145 ** 146 ** In both cases, the PagerLruList.pFirstSynced variable points to 147 ** the first page in the corresponding list that does not require an 148 ** fsync() operation before its memory can be reclaimed. If no such 149 ** page exists, PagerLruList.pFirstSynced is set to NULL. 150 */ 151 typedef struct PagerLruList PagerLruList; 152 struct PagerLruList { 153 PgHdr *pFirst; /* First page in LRU list */ 154 PgHdr *pLast; /* Last page in LRU list (the most recently used) */ 155 PgHdr *pFirstSynced; /* First page in list with PgHdr.needSync==0 */ 156 }; 157 158 /* 159 ** The following structure contains the next and previous pointers used 160 ** to link a PgHdr structure into a PagerLruList linked list. 161 */ 162 typedef struct PagerLruLink PagerLruLink; 163 struct PagerLruLink { 164 PgHdr *pNext; 165 PgHdr *pPrev; 166 }; 167 168 /* 169 ** Each in-memory image of a page begins with the following header. 170 ** This header is only visible to this pager module. The client 171 ** code that calls pager sees only the data that follows the header. 172 ** 173 ** Client code should call sqlite3PagerWrite() on a page prior to making 174 ** any modifications to that page. The first time sqlite3PagerWrite() 175 ** is called, the original page contents are written into the rollback 176 ** journal and PgHdr.inJournal and PgHdr.needSync are set. Later, once 177 ** the journal page has made it onto the disk surface, PgHdr.needSync 178 ** is cleared. The modified page cannot be written back into the original 179 ** database file until the journal pages has been synced to disk and the 180 ** PgHdr.needSync has been cleared. 181 ** 182 ** The PgHdr.dirty flag is set when sqlite3PagerWrite() is called and 183 ** is cleared again when the page content is written back to the original 184 ** database file. 185 ** 186 ** Details of important structure elements: 187 ** 188 ** needSync 189 ** 190 ** If this is true, this means that it is not safe to write the page 191 ** content to the database because the original content needed 192 ** for rollback has not by synced to the main rollback journal. 193 ** The original content may have been written to the rollback journal 194 ** but it has not yet been synced. So we cannot write to the database 195 ** file because power failure might cause the page in the journal file 196 ** to never reach the disk. It is as if the write to the journal file 197 ** does not occur until the journal file is synced. 198 ** 199 ** This flag is false if the page content exactly matches what 200 ** currently exists in the database file. The needSync flag is also 201 ** false if the original content has been written to the main rollback 202 ** journal and synced. If the page represents a new page that has 203 ** been added onto the end of the database during the current 204 ** transaction, the needSync flag is true until the original database 205 ** size in the journal header has been synced to disk. 206 ** 207 ** inJournal 208 ** 209 ** This is true if the original page has been written into the main 210 ** rollback journal. This is always false for new pages added to 211 ** the end of the database file during the current transaction. 212 ** And this flag says nothing about whether or not the journal 213 ** has been synced to disk. For pages that are in the original 214 ** database file, the following expression should always be true: 215 ** 216 ** inJournal = (pPager->aInJournal[(pgno-1)/8] & (1<<((pgno-1)%8))!=0 217 ** 218 ** The pPager->aInJournal[] array is only valid for the original 219 ** pages of the database, not new pages that are added to the end 220 ** of the database, so obviously the above expression cannot be 221 ** valid for new pages. For new pages inJournal is always 0. 222 ** 223 ** dirty 224 ** 225 ** When true, this means that the content of the page has been 226 ** modified and needs to be written back to the database file. 227 ** If false, it means that either the content of the page is 228 ** unchanged or else the content is unimportant and we do not 229 ** care whether or not it is preserved. 230 ** 231 ** alwaysRollback 232 ** 233 ** This means that the sqlite3PagerDontRollback() API should be 234 ** ignored for this page. The DontRollback() API attempts to say 235 ** that the content of the page on disk is unimportant (it is an 236 ** unused page on the freelist) so that it is unnecessary to 237 ** rollback changes to this page because the content of the page 238 ** can change without changing the meaning of the database. This 239 ** flag overrides any DontRollback() attempt. This flag is set 240 ** when a page that originally contained valid data is added to 241 ** the freelist. Later in the same transaction, this page might 242 ** be pulled from the freelist and reused for something different 243 ** and at that point the DontRollback() API will be called because 244 ** pages taken from the freelist do not need to be protected by 245 ** the rollback journal. But this flag says that the page was 246 ** not originally part of the freelist so that it still needs to 247 ** be rolled back in spite of any subsequent DontRollback() calls. 248 ** 249 ** needRead 250 ** 251 ** This flag means (when true) that the content of the page has 252 ** not yet been loaded from disk. The in-memory content is just 253 ** garbage. (Actually, we zero the content, but you should not 254 ** make any assumptions about the content nevertheless.) If the 255 ** content is needed in the future, it should be read from the 256 ** original database file. 257 */ 258 struct PgHdr { 259 Pager *pPager; /* The pager to which this page belongs */ 260 Pgno pgno; /* The page number for this page */ 261 PgHdr *pNextHash, *pPrevHash; /* Hash collision chain for PgHdr.pgno */ 262 PagerLruLink free; /* Next and previous free pages */ 263 PgHdr *pNextAll; /* A list of all pages */ 264 u8 inJournal; /* TRUE if has been written to journal */ 265 u8 dirty; /* TRUE if we need to write back changes */ 266 u8 needSync; /* Sync journal before writing this page */ 267 u8 alwaysRollback; /* Disable DontRollback() for this page */ 268 u8 needRead; /* Read content if PagerWrite() is called */ 269 short int nRef; /* Number of users of this page */ 270 PgHdr *pDirty, *pPrevDirty; /* Dirty pages */ 271 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 272 PagerLruLink gfree; /* Global list of nRef==0 pages */ 273 #endif 274 #ifdef SQLITE_CHECK_PAGES 275 u32 pageHash; 276 #endif 277 void *pData; /* Page data */ 278 /* Pager.nExtra bytes of local data appended to this header */ 279 }; 280 281 /* 282 ** For an in-memory only database, some extra information is recorded about 283 ** each page so that changes can be rolled back. (Journal files are not 284 ** used for in-memory databases.) The following information is added to 285 ** the end of every EXTRA block for in-memory databases. 286 ** 287 ** This information could have been added directly to the PgHdr structure. 288 ** But then it would take up an extra 8 bytes of storage on every PgHdr 289 ** even for disk-based databases. Splitting it out saves 8 bytes. This 290 ** is only a savings of 0.8% but those percentages add up. 291 */ 292 typedef struct PgHistory PgHistory; 293 struct PgHistory { 294 u8 *pOrig; /* Original page text. Restore to this on a full rollback */ 295 u8 *pStmt; /* Text as it was at the beginning of the current statement */ 296 PgHdr *pNextStmt, *pPrevStmt; /* List of pages in the statement journal */ 297 u8 inStmt; /* TRUE if in the statement subjournal */ 298 }; 299 300 /* 301 ** A macro used for invoking the codec if there is one 302 */ 303 #ifdef SQLITE_HAS_CODEC 304 # define CODEC1(P,D,N,X) if( P->xCodec!=0 ){ P->xCodec(P->pCodecArg,D,N,X); } 305 # define CODEC2(P,D,N,X) ((char*)(P->xCodec!=0?P->xCodec(P->pCodecArg,D,N,X):D)) 306 #else 307 # define CODEC1(P,D,N,X) /* NO-OP */ 308 # define CODEC2(P,D,N,X) ((char*)D) 309 #endif 310 311 /* 312 ** Convert a pointer to a PgHdr into a pointer to its data 313 ** and back again. 314 */ 315 #define PGHDR_TO_DATA(P) ((P)->pData) 316 #define PGHDR_TO_EXTRA(G,P) ((void*)&((G)[1])) 317 #define PGHDR_TO_HIST(P,PGR) \ 318 ((PgHistory*)&((char*)(&(P)[1]))[(PGR)->nExtra]) 319 320 /* 321 ** A open page cache is an instance of the following structure. 322 ** 323 ** Pager.errCode may be set to SQLITE_IOERR, SQLITE_CORRUPT, or 324 ** or SQLITE_FULL. Once one of the first three errors occurs, it persists 325 ** and is returned as the result of every major pager API call. The 326 ** SQLITE_FULL return code is slightly different. It persists only until the 327 ** next successful rollback is performed on the pager cache. Also, 328 ** SQLITE_FULL does not affect the sqlite3PagerGet() and sqlite3PagerLookup() 329 ** APIs, they may still be used successfully. 330 */ 331 struct Pager { 332 sqlite3_vfs *pVfs; /* OS functions to use for IO */ 333 u8 journalOpen; /* True if journal file descriptors is valid */ 334 u8 journalStarted; /* True if header of journal is synced */ 335 u8 useJournal; /* Use a rollback journal on this file */ 336 u8 noReadlock; /* Do not bother to obtain readlocks */ 337 u8 stmtOpen; /* True if the statement subjournal is open */ 338 u8 stmtInUse; /* True we are in a statement subtransaction */ 339 u8 stmtAutoopen; /* Open stmt journal when main journal is opened*/ 340 u8 noSync; /* Do not sync the journal if true */ 341 u8 fullSync; /* Do extra syncs of the journal for robustness */ 342 u8 sync_flags; /* One of SYNC_NORMAL or SYNC_FULL */ 343 u8 state; /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */ 344 u8 tempFile; /* zFilename is a temporary file */ 345 u8 readOnly; /* True for a read-only database */ 346 u8 needSync; /* True if an fsync() is needed on the journal */ 347 u8 dirtyCache; /* True if cached pages have changed */ 348 u8 alwaysRollback; /* Disable DontRollback() for all pages */ 349 u8 memDb; /* True to inhibit all file I/O */ 350 u8 setMaster; /* True if a m-j name has been written to jrnl */ 351 u8 doNotSync; /* Boolean. While true, do not spill the cache */ 352 u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */ 353 u8 changeCountDone; /* Set after incrementing the change-counter */ 354 u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */ 355 int errCode; /* One of several kinds of errors */ 356 int dbSize; /* Number of pages in the file */ 357 int origDbSize; /* dbSize before the current change */ 358 int stmtSize; /* Size of database (in pages) at stmt_begin() */ 359 int nRec; /* Number of pages written to the journal */ 360 u32 cksumInit; /* Quasi-random value added to every checksum */ 361 int stmtNRec; /* Number of records in stmt subjournal */ 362 int nExtra; /* Add this many bytes to each in-memory page */ 363 int pageSize; /* Number of bytes in a page */ 364 int nPage; /* Total number of in-memory pages */ 365 int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */ 366 int mxPage; /* Maximum number of pages to hold in cache */ 367 Pgno mxPgno; /* Maximum allowed size of the database */ 368 u8 *aInJournal; /* One bit for each page in the database file */ 369 u8 *aInStmt; /* One bit for each page in the database */ 370 char *zFilename; /* Name of the database file */ 371 char *zJournal; /* Name of the journal file */ 372 char *zDirectory; /* Directory hold database and journal files */ 373 char *zStmtJrnl; /* Name of the statement journal file */ 374 sqlite3_file *fd, *jfd; /* File descriptors for database and journal */ 375 sqlite3_file *stfd; /* File descriptor for the statement subjournal*/ 376 BusyHandler *pBusyHandler; /* Pointer to sqlite.busyHandler */ 377 PagerLruList lru; /* LRU list of free pages */ 378 PgHdr *pAll; /* List of all pages */ 379 PgHdr *pStmt; /* List of pages in the statement subjournal */ 380 PgHdr *pDirty; /* List of all dirty pages */ 381 i64 journalOff; /* Current byte offset in the journal file */ 382 i64 journalHdr; /* Byte offset to previous journal header */ 383 i64 stmtHdrOff; /* First journal header written this statement */ 384 i64 stmtCksum; /* cksumInit when statement was started */ 385 i64 stmtJSize; /* Size of journal at stmt_begin() */ 386 int sectorSize; /* Assumed sector size during rollback */ 387 #ifdef SQLITE_TEST 388 int nHit, nMiss; /* Cache hits and missing */ 389 int nRead, nWrite; /* Database pages read/written */ 390 #endif 391 void (*xDestructor)(DbPage*,int); /* Call this routine when freeing pages */ 392 void (*xReiniter)(DbPage*,int); /* Call this routine when reloading pages */ 393 #ifdef SQLITE_HAS_CODEC 394 void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */ 395 void *pCodecArg; /* First argument to xCodec() */ 396 #endif 397 int nHash; /* Size of the pager hash table */ 398 PgHdr **aHash; /* Hash table to map page number to PgHdr */ 399 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 400 Pager *pNext; /* Doubly linked list of pagers on which */ 401 Pager *pPrev; /* sqlite3_release_memory() will work */ 402 int iInUseMM; /* Non-zero if unavailable to MM */ 403 int iInUseDB; /* Non-zero if in sqlite3_release_memory() */ 404 #endif 405 char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */ 406 char dbFileVers[16]; /* Changes whenever database file changes */ 407 }; 408 409 /* 410 ** The following global variables hold counters used for 411 ** testing purposes only. These variables do not exist in 412 ** a non-testing build. These variables are not thread-safe. 413 */ 414 #ifdef SQLITE_TEST 415 int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */ 416 int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */ 417 int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */ 418 int sqlite3_pager_pgfree_count = 0; /* Number of cache pages freed */ 419 # define PAGER_INCR(v) v++ 420 #else 421 # define PAGER_INCR(v) 422 #endif 423 424 /* 425 ** The following variable points to the head of a double-linked list 426 ** of all pagers that are eligible for page stealing by the 427 ** sqlite3_release_memory() interface. Access to this list is 428 ** protected by the SQLITE_MUTEX_STATIC_MEM2 mutex. 429 */ 430 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 431 static Pager *sqlite3PagerList = 0; 432 static PagerLruList sqlite3LruPageList = {0, 0, 0}; 433 #endif 434 435 436 /* 437 ** Journal files begin with the following magic string. The data 438 ** was obtained from /dev/random. It is used only as a sanity check. 439 ** 440 ** Since version 2.8.0, the journal format contains additional sanity 441 ** checking information. If the power fails while the journal is begin 442 ** written, semi-random garbage data might appear in the journal 443 ** file after power is restored. If an attempt is then made 444 ** to roll the journal back, the database could be corrupted. The additional 445 ** sanity checking data is an attempt to discover the garbage in the 446 ** journal and ignore it. 447 ** 448 ** The sanity checking information for the new journal format consists 449 ** of a 32-bit checksum on each page of data. The checksum covers both 450 ** the page number and the pPager->pageSize bytes of data for the page. 451 ** This cksum is initialized to a 32-bit random value that appears in the 452 ** journal file right after the header. The random initializer is important, 453 ** because garbage data that appears at the end of a journal is likely 454 ** data that was once in other files that have now been deleted. If the 455 ** garbage data came from an obsolete journal file, the checksums might 456 ** be correct. But by initializing the checksum to random value which 457 ** is different for every journal, we minimize that risk. 458 */ 459 static const unsigned char aJournalMagic[] = { 460 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7, 461 }; 462 463 /* 464 ** The size of the header and of each page in the journal is determined 465 ** by the following macros. 466 */ 467 #define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8) 468 469 /* 470 ** The journal header size for this pager. In the future, this could be 471 ** set to some value read from the disk controller. The important 472 ** characteristic is that it is the same size as a disk sector. 473 */ 474 #define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize) 475 476 /* 477 ** The macro MEMDB is true if we are dealing with an in-memory database. 478 ** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set, 479 ** the value of MEMDB will be a constant and the compiler will optimize 480 ** out code that would never execute. 481 */ 482 #ifdef SQLITE_OMIT_MEMORYDB 483 # define MEMDB 0 484 #else 485 # define MEMDB pPager->memDb 486 #endif 487 488 /* 489 ** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is 490 ** reserved for working around a windows/posix incompatibility). It is 491 ** used in the journal to signify that the remainder of the journal file 492 ** is devoted to storing a master journal name - there are no more pages to 493 ** roll back. See comments for function writeMasterJournal() for details. 494 */ 495 /* #define PAGER_MJ_PGNO(x) (PENDING_BYTE/((x)->pageSize)) */ 496 #define PAGER_MJ_PGNO(x) ((PENDING_BYTE/((x)->pageSize))+1) 497 498 /* 499 ** The maximum legal page number is (2^31 - 1). 500 */ 501 #define PAGER_MAX_PGNO 2147483647 502 503 /* 504 ** The pagerEnter() and pagerLeave() routines acquire and release 505 ** a mutex on each pager. The mutex is recursive. 506 ** 507 ** This is a special-purpose mutex. It only provides mutual exclusion 508 ** between the Btree and the Memory Management sqlite3_release_memory() 509 ** function. It does not prevent, for example, two Btrees from accessing 510 ** the same pager at the same time. Other general-purpose mutexes in 511 ** the btree layer handle that chore. 512 */ 513 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 514 static void pagerEnter(Pager *p){ 515 p->iInUseDB++; 516 if( p->iInUseMM && p->iInUseDB==1 ){ 517 sqlite3_mutex *mutex; 518 mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); 519 p->iInUseDB = 0; 520 sqlite3_mutex_enter(mutex); 521 p->iInUseDB = 1; 522 sqlite3_mutex_leave(mutex); 523 } 524 assert( p->iInUseMM==0 ); 525 } 526 static void pagerLeave(Pager *p){ 527 p->iInUseDB--; 528 assert( p->iInUseDB>=0 ); 529 } 530 #else 531 # define pagerEnter(X) 532 # define pagerLeave(X) 533 #endif 534 535 /* 536 ** Enable reference count tracking (for debugging) here: 537 */ 538 #ifdef SQLITE_DEBUG 539 int pager3_refinfo_enable = 0; 540 static void pager_refinfo(PgHdr *p){ 541 static int cnt = 0; 542 if( !pager3_refinfo_enable ) return; 543 sqlite3DebugPrintf( 544 "REFCNT: %4d addr=%p nRef=%-3d total=%d\n", 545 p->pgno, PGHDR_TO_DATA(p), p->nRef, p->pPager->nRef 546 ); 547 cnt++; /* Something to set a breakpoint on */ 548 } 549 # define REFINFO(X) pager_refinfo(X) 550 #else 551 # define REFINFO(X) 552 #endif 553 554 /* 555 ** Add page pPg to the end of the linked list managed by structure 556 ** pList (pPg becomes the last entry in the list - the most recently 557 ** used). Argument pLink should point to either pPg->free or pPg->gfree, 558 ** depending on whether pPg is being added to the pager-specific or 559 ** global LRU list. 560 */ 561 static void listAdd(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){ 562 pLink->pNext = 0; 563 pLink->pPrev = pList->pLast; 564 565 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 566 assert(pLink==&pPg->free || pLink==&pPg->gfree); 567 assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList); 568 #endif 569 570 if( pList->pLast ){ 571 int iOff = (char *)pLink - (char *)pPg; 572 PagerLruLink *pLastLink = (PagerLruLink *)(&((u8 *)pList->pLast)[iOff]); 573 pLastLink->pNext = pPg; 574 }else{ 575 assert(!pList->pFirst); 576 pList->pFirst = pPg; 577 } 578 579 pList->pLast = pPg; 580 if( !pList->pFirstSynced && pPg->needSync==0 ){ 581 pList->pFirstSynced = pPg; 582 } 583 } 584 585 /* 586 ** Remove pPg from the list managed by the structure pointed to by pList. 587 ** 588 ** Argument pLink should point to either pPg->free or pPg->gfree, depending 589 ** on whether pPg is being added to the pager-specific or global LRU list. 590 */ 591 static void listRemove(PagerLruList *pList, PagerLruLink *pLink, PgHdr *pPg){ 592 int iOff = (char *)pLink - (char *)pPg; 593 594 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 595 assert(pLink==&pPg->free || pLink==&pPg->gfree); 596 assert(pLink==&pPg->gfree || pList!=&sqlite3LruPageList); 597 #endif 598 599 if( pPg==pList->pFirst ){ 600 pList->pFirst = pLink->pNext; 601 } 602 if( pPg==pList->pLast ){ 603 pList->pLast = pLink->pPrev; 604 } 605 if( pLink->pPrev ){ 606 PagerLruLink *pPrevLink = (PagerLruLink *)(&((u8 *)pLink->pPrev)[iOff]); 607 pPrevLink->pNext = pLink->pNext; 608 } 609 if( pLink->pNext ){ 610 PagerLruLink *pNextLink = (PagerLruLink *)(&((u8 *)pLink->pNext)[iOff]); 611 pNextLink->pPrev = pLink->pPrev; 612 } 613 if( pPg==pList->pFirstSynced ){ 614 PgHdr *p = pLink->pNext; 615 while( p && p->needSync ){ 616 PagerLruLink *pL = (PagerLruLink *)(&((u8 *)p)[iOff]); 617 p = pL->pNext; 618 } 619 pList->pFirstSynced = p; 620 } 621 622 pLink->pNext = pLink->pPrev = 0; 623 } 624 625 /* 626 ** Add page pPg to the list of free pages for the pager. If 627 ** memory-management is enabled, also add the page to the global 628 ** list of free pages. 629 */ 630 static void lruListAdd(PgHdr *pPg){ 631 listAdd(&pPg->pPager->lru, &pPg->free, pPg); 632 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 633 if( !pPg->pPager->memDb ){ 634 sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 635 listAdd(&sqlite3LruPageList, &pPg->gfree, pPg); 636 sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 637 } 638 #endif 639 } 640 641 /* 642 ** Remove page pPg from the list of free pages for the associated pager. 643 ** If memory-management is enabled, also remove pPg from the global list 644 ** of free pages. 645 */ 646 static void lruListRemove(PgHdr *pPg){ 647 listRemove(&pPg->pPager->lru, &pPg->free, pPg); 648 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 649 if( !pPg->pPager->memDb ){ 650 sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 651 listRemove(&sqlite3LruPageList, &pPg->gfree, pPg); 652 sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 653 } 654 #endif 655 } 656 657 /* 658 ** This function is called just after the needSync flag has been cleared 659 ** from all pages managed by pPager (usually because the journal file 660 ** has just been synced). It updates the pPager->lru.pFirstSynced variable 661 ** and, if memory-management is enabled, the sqlite3LruPageList.pFirstSynced 662 ** variable also. 663 */ 664 static void lruListSetFirstSynced(Pager *pPager){ 665 pPager->lru.pFirstSynced = pPager->lru.pFirst; 666 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 667 if( !pPager->memDb ){ 668 PgHdr *p; 669 sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 670 for(p=sqlite3LruPageList.pFirst; p && p->needSync; p=p->gfree.pNext); 671 assert(p==pPager->lru.pFirstSynced || p==sqlite3LruPageList.pFirstSynced); 672 sqlite3LruPageList.pFirstSynced = p; 673 sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 674 } 675 #endif 676 } 677 678 /* 679 ** Return true if page *pPg has already been written to the statement 680 ** journal (or statement snapshot has been created, if *pPg is part 681 ** of an in-memory database). 682 */ 683 static int pageInStatement(PgHdr *pPg){ 684 Pager *pPager = pPg->pPager; 685 if( MEMDB ){ 686 return PGHDR_TO_HIST(pPg, pPager)->inStmt; 687 }else{ 688 Pgno pgno = pPg->pgno; 689 u8 *a = pPager->aInStmt; 690 return (a && (int)pgno<=pPager->stmtSize && (a[pgno/8] & (1<<(pgno&7)))); 691 } 692 } 693 694 /* 695 ** Change the size of the pager hash table to N. N must be a power 696 ** of two. 697 */ 698 static void pager_resize_hash_table(Pager *pPager, int N){ 699 PgHdr **aHash, *pPg; 700 assert( N>0 && (N&(N-1))==0 ); 701 pagerLeave(pPager); 702 sqlite3MallocBenignFailure((int)pPager->aHash); 703 aHash = sqlite3MallocZero( sizeof(aHash[0])*N ); 704 pagerEnter(pPager); 705 if( aHash==0 ){ 706 /* Failure to rehash is not an error. It is only a performance hit. */ 707 return; 708 } 709 sqlite3_free(pPager->aHash); 710 pPager->nHash = N; 711 pPager->aHash = aHash; 712 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ 713 int h; 714 if( pPg->pgno==0 ){ 715 assert( pPg->pNextHash==0 && pPg->pPrevHash==0 ); 716 continue; 717 } 718 h = pPg->pgno & (N-1); 719 pPg->pNextHash = aHash[h]; 720 if( aHash[h] ){ 721 aHash[h]->pPrevHash = pPg; 722 } 723 aHash[h] = pPg; 724 pPg->pPrevHash = 0; 725 } 726 } 727 728 /* 729 ** Read a 32-bit integer from the given file descriptor. Store the integer 730 ** that is read in *pRes. Return SQLITE_OK if everything worked, or an 731 ** error code is something goes wrong. 732 ** 733 ** All values are stored on disk as big-endian. 734 */ 735 static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){ 736 unsigned char ac[4]; 737 int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset); 738 if( rc==SQLITE_OK ){ 739 *pRes = sqlite3Get4byte(ac); 740 } 741 return rc; 742 } 743 744 /* 745 ** Write a 32-bit integer into a string buffer in big-endian byte order. 746 */ 747 #define put32bits(A,B) sqlite3Put4byte((u8*)A,B) 748 749 /* 750 ** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK 751 ** on success or an error code is something goes wrong. 752 */ 753 static int write32bits(sqlite3_file *fd, i64 offset, u32 val){ 754 char ac[4]; 755 put32bits(ac, val); 756 return sqlite3OsWrite(fd, ac, 4, offset); 757 } 758 759 /* 760 ** If file pFd is open, call sqlite3OsUnlock() on it. 761 */ 762 static int osUnlock(sqlite3_file *pFd, int eLock){ 763 if( !pFd->pMethods ){ 764 return SQLITE_OK; 765 } 766 return sqlite3OsUnlock(pFd, eLock); 767 } 768 769 /* 770 ** This function determines whether or not the atomic-write optimization 771 ** can be used with this pager. The optimization can be used if: 772 ** 773 ** (a) the value returned by OsDeviceCharacteristics() indicates that 774 ** a database page may be written atomically, and 775 ** (b) the value returned by OsSectorSize() is less than or equal 776 ** to the page size. 777 ** 778 ** If the optimization cannot be used, 0 is returned. If it can be used, 779 ** then the value returned is the size of the journal file when it 780 ** contains rollback data for exactly one page. 781 */ 782 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 783 static int jrnlBufferSize(Pager *pPager){ 784 int dc; /* Device characteristics */ 785 int nSector; /* Sector size */ 786 int nPage; /* Page size */ 787 sqlite3_file *fd = pPager->fd; 788 789 if( fd->pMethods ){ 790 dc = sqlite3OsDeviceCharacteristics(fd); 791 nSector = sqlite3OsSectorSize(fd); 792 nPage = pPager->pageSize; 793 } 794 795 assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); 796 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); 797 798 if( !fd->pMethods || (dc&(SQLITE_IOCAP_ATOMIC|(nPage>>8))&&nSector<=nPage) ){ 799 return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager); 800 } 801 return 0; 802 } 803 #endif 804 805 /* 806 ** This function should be called when an error occurs within the pager 807 ** code. The first argument is a pointer to the pager structure, the 808 ** second the error-code about to be returned by a pager API function. 809 ** The value returned is a copy of the second argument to this function. 810 ** 811 ** If the second argument is SQLITE_IOERR, SQLITE_CORRUPT, or SQLITE_FULL 812 ** the error becomes persistent. Until the persisten error is cleared, 813 ** subsequent API calls on this Pager will immediately return the same 814 ** error code. 815 ** 816 ** A persistent error indicates that the contents of the pager-cache 817 ** cannot be trusted. This state can be cleared by completely discarding 818 ** the contents of the pager-cache. If a transaction was active when 819 ** the persistent error occured, then the rollback journal may need 820 ** to be replayed. 821 */ 822 static void pager_unlock(Pager *pPager); 823 static int pager_error(Pager *pPager, int rc){ 824 int rc2 = rc & 0xff; 825 assert( 826 pPager->errCode==SQLITE_FULL || 827 pPager->errCode==SQLITE_OK || 828 (pPager->errCode & 0xff)==SQLITE_IOERR 829 ); 830 if( 831 rc2==SQLITE_FULL || 832 rc2==SQLITE_IOERR || 833 rc2==SQLITE_CORRUPT 834 ){ 835 pPager->errCode = rc; 836 if( pPager->state==PAGER_UNLOCK && pPager->nRef==0 ){ 837 /* If the pager is already unlocked, call pager_unlock() now to 838 ** clear the error state and ensure that the pager-cache is 839 ** completely empty. 840 */ 841 pager_unlock(pPager); 842 } 843 } 844 return rc; 845 } 846 847 /* 848 ** If SQLITE_CHECK_PAGES is defined then we do some sanity checking 849 ** on the cache using a hash function. This is used for testing 850 ** and debugging only. 851 */ 852 #ifdef SQLITE_CHECK_PAGES 853 /* 854 ** Return a 32-bit hash of the page data for pPage. 855 */ 856 static u32 pager_datahash(int nByte, unsigned char *pData){ 857 u32 hash = 0; 858 int i; 859 for(i=0; i<nByte; i++){ 860 hash = (hash*1039) + pData[i]; 861 } 862 return hash; 863 } 864 static u32 pager_pagehash(PgHdr *pPage){ 865 return pager_datahash(pPage->pPager->pageSize, 866 (unsigned char *)PGHDR_TO_DATA(pPage)); 867 } 868 869 /* 870 ** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES 871 ** is defined, and NDEBUG is not defined, an assert() statement checks 872 ** that the page is either dirty or still matches the calculated page-hash. 873 */ 874 #define CHECK_PAGE(x) checkPage(x) 875 static void checkPage(PgHdr *pPg){ 876 Pager *pPager = pPg->pPager; 877 assert( !pPg->pageHash || pPager->errCode || MEMDB || pPg->dirty || 878 pPg->pageHash==pager_pagehash(pPg) ); 879 } 880 881 #else 882 #define pager_datahash(X,Y) 0 883 #define pager_pagehash(X) 0 884 #define CHECK_PAGE(x) 885 #endif 886 887 /* 888 ** When this is called the journal file for pager pPager must be open. 889 ** The master journal file name is read from the end of the file and 890 ** written into memory supplied by the caller. 891 ** 892 ** zMaster must point to a buffer of at least nMaster bytes allocated by 893 ** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is 894 ** enough space to write the master journal name). If the master journal 895 ** name in the journal is longer than nMaster bytes (including a 896 ** nul-terminator), then this is handled as if no master journal name 897 ** were present in the journal. 898 ** 899 ** If no master journal file name is present zMaster[0] is set to 0 and 900 ** SQLITE_OK returned. 901 */ 902 static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, int nMaster){ 903 int rc; 904 u32 len; 905 i64 szJ; 906 u32 cksum; 907 int i; 908 unsigned char aMagic[8]; /* A buffer to hold the magic header */ 909 910 zMaster[0] = '\0'; 911 912 rc = sqlite3OsFileSize(pJrnl, &szJ); 913 if( rc!=SQLITE_OK || szJ<16 ) return rc; 914 915 rc = read32bits(pJrnl, szJ-16, &len); 916 if( rc!=SQLITE_OK ) return rc; 917 918 if( len>=nMaster ){ 919 return SQLITE_OK; 920 } 921 922 rc = read32bits(pJrnl, szJ-12, &cksum); 923 if( rc!=SQLITE_OK ) return rc; 924 925 rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8); 926 if( rc!=SQLITE_OK || memcmp(aMagic, aJournalMagic, 8) ) return rc; 927 928 rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len); 929 if( rc!=SQLITE_OK ){ 930 return rc; 931 } 932 zMaster[len] = '\0'; 933 934 /* See if the checksum matches the master journal name */ 935 for(i=0; i<len; i++){ 936 cksum -= zMaster[i]; 937 } 938 if( cksum ){ 939 /* If the checksum doesn't add up, then one or more of the disk sectors 940 ** containing the master journal filename is corrupted. This means 941 ** definitely roll back, so just return SQLITE_OK and report a (nul) 942 ** master-journal filename. 943 */ 944 zMaster[0] = '\0'; 945 } 946 947 return SQLITE_OK; 948 } 949 950 /* 951 ** Seek the journal file descriptor to the next sector boundary where a 952 ** journal header may be read or written. Pager.journalOff is updated with 953 ** the new seek offset. 954 ** 955 ** i.e for a sector size of 512: 956 ** 957 ** Input Offset Output Offset 958 ** --------------------------------------- 959 ** 0 0 960 ** 512 512 961 ** 100 512 962 ** 2000 2048 963 ** 964 */ 965 static void seekJournalHdr(Pager *pPager){ 966 i64 offset = 0; 967 i64 c = pPager->journalOff; 968 if( c ){ 969 offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager); 970 } 971 assert( offset%JOURNAL_HDR_SZ(pPager)==0 ); 972 assert( offset>=c ); 973 assert( (offset-c)<JOURNAL_HDR_SZ(pPager) ); 974 pPager->journalOff = offset; 975 } 976 977 /* 978 ** The journal file must be open when this routine is called. A journal 979 ** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the 980 ** current location. 981 ** 982 ** The format for the journal header is as follows: 983 ** - 8 bytes: Magic identifying journal format. 984 ** - 4 bytes: Number of records in journal, or -1 no-sync mode is on. 985 ** - 4 bytes: Random number used for page hash. 986 ** - 4 bytes: Initial database page count. 987 ** - 4 bytes: Sector size used by the process that wrote this journal. 988 ** 989 ** Followed by (JOURNAL_HDR_SZ - 24) bytes of unused space. 990 */ 991 static int writeJournalHdr(Pager *pPager){ 992 char zHeader[sizeof(aJournalMagic)+16]; 993 int rc; 994 995 if( pPager->stmtHdrOff==0 ){ 996 pPager->stmtHdrOff = pPager->journalOff; 997 } 998 999 seekJournalHdr(pPager); 1000 pPager->journalHdr = pPager->journalOff; 1001 1002 memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); 1003 1004 /* 1005 ** Write the nRec Field - the number of page records that follow this 1006 ** journal header. Normally, zero is written to this value at this time. 1007 ** After the records are added to the journal (and the journal synced, 1008 ** if in full-sync mode), the zero is overwritten with the true number 1009 ** of records (see syncJournal()). 1010 ** 1011 ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When 1012 ** reading the journal this value tells SQLite to assume that the 1013 ** rest of the journal file contains valid page records. This assumption 1014 ** is dangerous, as if a failure occured whilst writing to the journal 1015 ** file it may contain some garbage data. There are two scenarios 1016 ** where this risk can be ignored: 1017 ** 1018 ** * When the pager is in no-sync mode. Corruption can follow a 1019 ** power failure in this case anyway. 1020 ** 1021 ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees 1022 ** that garbage data is never appended to the journal file. 1023 */ 1024 assert(pPager->fd->pMethods||pPager->noSync); 1025 if( (pPager->noSync) 1026 || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) 1027 ){ 1028 put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff); 1029 }else{ 1030 put32bits(&zHeader[sizeof(aJournalMagic)], 0); 1031 } 1032 1033 /* The random check-hash initialiser */ 1034 sqlite3Randomness(sizeof(pPager->cksumInit), &pPager->cksumInit); 1035 put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit); 1036 /* The initial database size */ 1037 put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbSize); 1038 /* The assumed sector size for this process */ 1039 put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize); 1040 IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, sizeof(zHeader))) 1041 rc = sqlite3OsWrite(pPager->jfd, zHeader, sizeof(zHeader),pPager->journalOff); 1042 pPager->journalOff += JOURNAL_HDR_SZ(pPager); 1043 1044 /* The journal header has been written successfully. Seek the journal 1045 ** file descriptor to the end of the journal header sector. 1046 */ 1047 if( rc==SQLITE_OK ){ 1048 IOTRACE(("JTAIL %p %lld\n", pPager, pPager->journalOff-1)) 1049 rc = sqlite3OsWrite(pPager->jfd, "\000", 1, pPager->journalOff-1); 1050 } 1051 return rc; 1052 } 1053 1054 /* 1055 ** The journal file must be open when this is called. A journal header file 1056 ** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal 1057 ** file. See comments above function writeJournalHdr() for a description of 1058 ** the journal header format. 1059 ** 1060 ** If the header is read successfully, *nRec is set to the number of 1061 ** page records following this header and *dbSize is set to the size of the 1062 ** database before the transaction began, in pages. Also, pPager->cksumInit 1063 ** is set to the value read from the journal header. SQLITE_OK is returned 1064 ** in this case. 1065 ** 1066 ** If the journal header file appears to be corrupted, SQLITE_DONE is 1067 ** returned and *nRec and *dbSize are not set. If JOURNAL_HDR_SZ bytes 1068 ** cannot be read from the journal file an error code is returned. 1069 */ 1070 static int readJournalHdr( 1071 Pager *pPager, 1072 i64 journalSize, 1073 u32 *pNRec, 1074 u32 *pDbSize 1075 ){ 1076 int rc; 1077 unsigned char aMagic[8]; /* A buffer to hold the magic header */ 1078 i64 jrnlOff; 1079 1080 seekJournalHdr(pPager); 1081 if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){ 1082 return SQLITE_DONE; 1083 } 1084 jrnlOff = pPager->journalOff; 1085 1086 rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), jrnlOff); 1087 if( rc ) return rc; 1088 jrnlOff += sizeof(aMagic); 1089 1090 if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){ 1091 return SQLITE_DONE; 1092 } 1093 1094 rc = read32bits(pPager->jfd, jrnlOff, pNRec); 1095 if( rc ) return rc; 1096 1097 rc = read32bits(pPager->jfd, jrnlOff+4, &pPager->cksumInit); 1098 if( rc ) return rc; 1099 1100 rc = read32bits(pPager->jfd, jrnlOff+8, pDbSize); 1101 if( rc ) return rc; 1102 1103 /* Update the assumed sector-size to match the value used by 1104 ** the process that created this journal. If this journal was 1105 ** created by a process other than this one, then this routine 1106 ** is being called from within pager_playback(). The local value 1107 ** of Pager.sectorSize is restored at the end of that routine. 1108 */ 1109 rc = read32bits(pPager->jfd, jrnlOff+12, (u32 *)&pPager->sectorSize); 1110 if( rc ) return rc; 1111 1112 pPager->journalOff += JOURNAL_HDR_SZ(pPager); 1113 return SQLITE_OK; 1114 } 1115 1116 1117 /* 1118 ** Write the supplied master journal name into the journal file for pager 1119 ** pPager at the current location. The master journal name must be the last 1120 ** thing written to a journal file. If the pager is in full-sync mode, the 1121 ** journal file descriptor is advanced to the next sector boundary before 1122 ** anything is written. The format is: 1123 ** 1124 ** + 4 bytes: PAGER_MJ_PGNO. 1125 ** + N bytes: length of master journal name. 1126 ** + 4 bytes: N 1127 ** + 4 bytes: Master journal name checksum. 1128 ** + 8 bytes: aJournalMagic[]. 1129 ** 1130 ** The master journal page checksum is the sum of the bytes in the master 1131 ** journal name. 1132 ** 1133 ** If zMaster is a NULL pointer (occurs for a single database transaction), 1134 ** this call is a no-op. 1135 */ 1136 static int writeMasterJournal(Pager *pPager, const char *zMaster){ 1137 int rc; 1138 int len; 1139 int i; 1140 i64 jrnlOff; 1141 u32 cksum = 0; 1142 char zBuf[sizeof(aJournalMagic)+2*4]; 1143 1144 if( !zMaster || pPager->setMaster) return SQLITE_OK; 1145 pPager->setMaster = 1; 1146 1147 len = strlen(zMaster); 1148 for(i=0; i<len; i++){ 1149 cksum += zMaster[i]; 1150 } 1151 1152 /* If in full-sync mode, advance to the next disk sector before writing 1153 ** the master journal name. This is in case the previous page written to 1154 ** the journal has already been synced. 1155 */ 1156 if( pPager->fullSync ){ 1157 seekJournalHdr(pPager); 1158 } 1159 jrnlOff = pPager->journalOff; 1160 pPager->journalOff += (len+20); 1161 1162 rc = write32bits(pPager->jfd, jrnlOff, PAGER_MJ_PGNO(pPager)); 1163 if( rc!=SQLITE_OK ) return rc; 1164 jrnlOff += 4; 1165 1166 rc = sqlite3OsWrite(pPager->jfd, zMaster, len, jrnlOff); 1167 if( rc!=SQLITE_OK ) return rc; 1168 jrnlOff += len; 1169 1170 put32bits(zBuf, len); 1171 put32bits(&zBuf[4], cksum); 1172 memcpy(&zBuf[8], aJournalMagic, sizeof(aJournalMagic)); 1173 rc = sqlite3OsWrite(pPager->jfd, zBuf, 8+sizeof(aJournalMagic), jrnlOff); 1174 pPager->needSync = !pPager->noSync; 1175 return rc; 1176 } 1177 1178 /* 1179 ** Add or remove a page from the list of all pages that are in the 1180 ** statement journal. 1181 ** 1182 ** The Pager keeps a separate list of pages that are currently in 1183 ** the statement journal. This helps the sqlite3PagerStmtCommit() 1184 ** routine run MUCH faster for the common case where there are many 1185 ** pages in memory but only a few are in the statement journal. 1186 */ 1187 static void page_add_to_stmt_list(PgHdr *pPg){ 1188 Pager *pPager = pPg->pPager; 1189 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); 1190 assert( MEMDB ); 1191 if( !pHist->inStmt ){ 1192 assert( pHist->pPrevStmt==0 && pHist->pNextStmt==0 ); 1193 if( pPager->pStmt ){ 1194 PGHDR_TO_HIST(pPager->pStmt, pPager)->pPrevStmt = pPg; 1195 } 1196 pHist->pNextStmt = pPager->pStmt; 1197 pPager->pStmt = pPg; 1198 pHist->inStmt = 1; 1199 } 1200 } 1201 1202 /* 1203 ** Find a page in the hash table given its page number. Return 1204 ** a pointer to the page or NULL if not found. 1205 */ 1206 static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){ 1207 PgHdr *p; 1208 if( pPager->aHash==0 ) return 0; 1209 p = pPager->aHash[pgno & (pPager->nHash-1)]; 1210 while( p && p->pgno!=pgno ){ 1211 p = p->pNextHash; 1212 } 1213 return p; 1214 } 1215 1216 /* 1217 ** Clear the in-memory cache. This routine 1218 ** sets the state of the pager back to what it was when it was first 1219 ** opened. Any outstanding pages are invalidated and subsequent attempts 1220 ** to access those pages will likely result in a coredump. 1221 */ 1222 static void pager_reset(Pager *pPager){ 1223 PgHdr *pPg, *pNext; 1224 if( pPager->errCode ) return; 1225 for(pPg=pPager->pAll; pPg; pPg=pNext){ 1226 IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno)); 1227 PAGER_INCR(sqlite3_pager_pgfree_count); 1228 pNext = pPg->pNextAll; 1229 lruListRemove(pPg); 1230 sqlite3_free(pPg); 1231 } 1232 assert(pPager->lru.pFirst==0); 1233 assert(pPager->lru.pFirstSynced==0); 1234 assert(pPager->lru.pLast==0); 1235 pPager->pStmt = 0; 1236 pPager->pAll = 0; 1237 pPager->pDirty = 0; 1238 pPager->nHash = 0; 1239 sqlite3_free(pPager->aHash); 1240 pPager->nPage = 0; 1241 pPager->aHash = 0; 1242 pPager->nRef = 0; 1243 } 1244 1245 /* 1246 ** Unlock the database file. 1247 ** 1248 ** If the pager is currently in error state, discard the contents of 1249 ** the cache and reset the Pager structure internal state. If there is 1250 ** an open journal-file, then the next time a shared-lock is obtained 1251 ** on the pager file (by this or any other process), it will be 1252 ** treated as a hot-journal and rolled back. 1253 */ 1254 static void pager_unlock(Pager *pPager){ 1255 if( !pPager->exclusiveMode ){ 1256 if( !MEMDB ){ 1257 if( pPager->fd->pMethods ){ 1258 osUnlock(pPager->fd, NO_LOCK); 1259 } 1260 pPager->dbSize = -1; 1261 IOTRACE(("UNLOCK %p\n", pPager)) 1262 1263 /* If Pager.errCode is set, the contents of the pager cache cannot be 1264 ** trusted. Now that the pager file is unlocked, the contents of the 1265 ** cache can be discarded and the error code safely cleared. 1266 */ 1267 if( pPager->errCode ){ 1268 pPager->errCode = SQLITE_OK; 1269 pager_reset(pPager); 1270 if( pPager->stmtOpen ){ 1271 sqlite3OsClose(pPager->stfd); 1272 sqlite3_free(pPager->aInStmt); 1273 pPager->aInStmt = 0; 1274 } 1275 if( pPager->journalOpen ){ 1276 sqlite3OsClose(pPager->jfd); 1277 pPager->journalOpen = 0; 1278 sqlite3_free(pPager->aInJournal); 1279 pPager->aInJournal = 0; 1280 } 1281 pPager->stmtOpen = 0; 1282 pPager->stmtInUse = 0; 1283 pPager->journalOff = 0; 1284 pPager->journalStarted = 0; 1285 pPager->stmtAutoopen = 0; 1286 pPager->origDbSize = 0; 1287 } 1288 } 1289 1290 if( !MEMDB || pPager->errCode==SQLITE_OK ){ 1291 pPager->state = PAGER_UNLOCK; 1292 pPager->changeCountDone = 0; 1293 } 1294 } 1295 } 1296 1297 /* 1298 ** Execute a rollback if a transaction is active and unlock the 1299 ** database file. If the pager has already entered the error state, 1300 ** do not attempt the rollback. 1301 */ 1302 static void pagerUnlockAndRollback(Pager *p){ 1303 assert( p->state>=PAGER_RESERVED || p->journalOpen==0 ); 1304 if( p->errCode==SQLITE_OK && p->state>=PAGER_RESERVED ){ 1305 sqlite3PagerRollback(p); 1306 } 1307 pager_unlock(p); 1308 assert( p->errCode || !p->journalOpen || (p->exclusiveMode&&!p->journalOff) ); 1309 assert( p->errCode || !p->stmtOpen || p->exclusiveMode ); 1310 } 1311 1312 /* 1313 ** This routine ends a transaction. A transaction is ended by either 1314 ** a COMMIT or a ROLLBACK. 1315 ** 1316 ** When this routine is called, the pager has the journal file open and 1317 ** a RESERVED or EXCLUSIVE lock on the database. This routine will release 1318 ** the database lock and acquires a SHARED lock in its place if that is 1319 ** the appropriate thing to do. Release locks usually is appropriate, 1320 ** unless we are in exclusive access mode or unless this is a 1321 ** COMMIT AND BEGIN or ROLLBACK AND BEGIN operation. 1322 ** 1323 ** The journal file is either deleted or truncated. 1324 ** 1325 ** TODO: Consider keeping the journal file open for temporary databases. 1326 ** This might give a performance improvement on windows where opening 1327 ** a file is an expensive operation. 1328 */ 1329 static int pager_end_transaction(Pager *pPager){ 1330 PgHdr *pPg; 1331 int rc = SQLITE_OK; 1332 int rc2 = SQLITE_OK; 1333 assert( !MEMDB ); 1334 if( pPager->state<PAGER_RESERVED ){ 1335 return SQLITE_OK; 1336 } 1337 sqlite3PagerStmtCommit(pPager); 1338 if( pPager->stmtOpen && !pPager->exclusiveMode ){ 1339 sqlite3OsClose(pPager->stfd); 1340 pPager->stmtOpen = 0; 1341 } 1342 if( pPager->journalOpen ){ 1343 if( pPager->exclusiveMode 1344 && (rc = sqlite3OsTruncate(pPager->jfd, 0))==SQLITE_OK ){; 1345 pPager->journalOff = 0; 1346 pPager->journalStarted = 0; 1347 }else{ 1348 sqlite3OsClose(pPager->jfd); 1349 pPager->journalOpen = 0; 1350 if( rc==SQLITE_OK ){ 1351 rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); 1352 } 1353 } 1354 sqlite3_free( pPager->aInJournal ); 1355 pPager->aInJournal = 0; 1356 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ 1357 pPg->inJournal = 0; 1358 pPg->dirty = 0; 1359 pPg->needSync = 0; 1360 pPg->alwaysRollback = 0; 1361 #ifdef SQLITE_CHECK_PAGES 1362 pPg->pageHash = pager_pagehash(pPg); 1363 #endif 1364 } 1365 pPager->pDirty = 0; 1366 pPager->dirtyCache = 0; 1367 pPager->nRec = 0; 1368 }else{ 1369 assert( pPager->aInJournal==0 ); 1370 assert( pPager->dirtyCache==0 || pPager->useJournal==0 ); 1371 } 1372 1373 if( !pPager->exclusiveMode ){ 1374 rc2 = osUnlock(pPager->fd, SHARED_LOCK); 1375 pPager->state = PAGER_SHARED; 1376 }else if( pPager->state==PAGER_SYNCED ){ 1377 pPager->state = PAGER_EXCLUSIVE; 1378 } 1379 pPager->origDbSize = 0; 1380 pPager->setMaster = 0; 1381 pPager->needSync = 0; 1382 lruListSetFirstSynced(pPager); 1383 pPager->dbSize = -1; 1384 1385 return (rc==SQLITE_OK?rc2:rc); 1386 } 1387 1388 /* 1389 ** Compute and return a checksum for the page of data. 1390 ** 1391 ** This is not a real checksum. It is really just the sum of the 1392 ** random initial value and the page number. We experimented with 1393 ** a checksum of the entire data, but that was found to be too slow. 1394 ** 1395 ** Note that the page number is stored at the beginning of data and 1396 ** the checksum is stored at the end. This is important. If journal 1397 ** corruption occurs due to a power failure, the most likely scenario 1398 ** is that one end or the other of the record will be changed. It is 1399 ** much less likely that the two ends of the journal record will be 1400 ** correct and the middle be corrupt. Thus, this "checksum" scheme, 1401 ** though fast and simple, catches the mostly likely kind of corruption. 1402 ** 1403 ** FIX ME: Consider adding every 200th (or so) byte of the data to the 1404 ** checksum. That way if a single page spans 3 or more disk sectors and 1405 ** only the middle sector is corrupt, we will still have a reasonable 1406 ** chance of failing the checksum and thus detecting the problem. 1407 */ 1408 static u32 pager_cksum(Pager *pPager, const u8 *aData){ 1409 u32 cksum = pPager->cksumInit; 1410 int i = pPager->pageSize-200; 1411 while( i>0 ){ 1412 cksum += aData[i]; 1413 i -= 200; 1414 } 1415 return cksum; 1416 } 1417 1418 /* Forward declaration */ 1419 static void makeClean(PgHdr*); 1420 1421 /* 1422 ** Read a single page from the journal file opened on file descriptor 1423 ** jfd. Playback this one page. 1424 ** 1425 ** If useCksum==0 it means this journal does not use checksums. Checksums 1426 ** are not used in statement journals because statement journals do not 1427 ** need to survive power failures. 1428 */ 1429 static int pager_playback_one_page( 1430 Pager *pPager, 1431 sqlite3_file *jfd, 1432 i64 offset, 1433 int useCksum 1434 ){ 1435 int rc; 1436 PgHdr *pPg; /* An existing page in the cache */ 1437 Pgno pgno; /* The page number of a page in journal */ 1438 u32 cksum; /* Checksum used for sanity checking */ 1439 u8 *aData = (u8 *)pPager->pTmpSpace; /* Temp storage for a page */ 1440 1441 /* useCksum should be true for the main journal and false for 1442 ** statement journals. Verify that this is always the case 1443 */ 1444 assert( jfd == (useCksum ? pPager->jfd : pPager->stfd) ); 1445 assert( aData ); 1446 1447 rc = read32bits(jfd, offset, &pgno); 1448 if( rc!=SQLITE_OK ) return rc; 1449 rc = sqlite3OsRead(jfd, aData, pPager->pageSize, offset+4); 1450 if( rc!=SQLITE_OK ) return rc; 1451 pPager->journalOff += pPager->pageSize + 4; 1452 1453 /* Sanity checking on the page. This is more important that I originally 1454 ** thought. If a power failure occurs while the journal is being written, 1455 ** it could cause invalid data to be written into the journal. We need to 1456 ** detect this invalid data (with high probability) and ignore it. 1457 */ 1458 if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ 1459 return SQLITE_DONE; 1460 } 1461 if( pgno>(unsigned)pPager->dbSize ){ 1462 return SQLITE_OK; 1463 } 1464 if( useCksum ){ 1465 rc = read32bits(jfd, offset+pPager->pageSize+4, &cksum); 1466 if( rc ) return rc; 1467 pPager->journalOff += 4; 1468 if( pager_cksum(pPager, aData)!=cksum ){ 1469 return SQLITE_DONE; 1470 } 1471 } 1472 1473 assert( pPager->state==PAGER_RESERVED || pPager->state>=PAGER_EXCLUSIVE ); 1474 1475 /* If the pager is in RESERVED state, then there must be a copy of this 1476 ** page in the pager cache. In this case just update the pager cache, 1477 ** not the database file. The page is left marked dirty in this case. 1478 ** 1479 ** An exception to the above rule: If the database is in no-sync mode 1480 ** and a page is moved during an incremental vacuum then the page may 1481 ** not be in the pager cache. Later: if a malloc() or IO error occurs 1482 ** during a Movepage() call, then the page may not be in the cache 1483 ** either. So the condition described in the above paragraph is not 1484 ** assert()able. 1485 ** 1486 ** If in EXCLUSIVE state, then we update the pager cache if it exists 1487 ** and the main file. The page is then marked not dirty. 1488 ** 1489 ** Ticket #1171: The statement journal might contain page content that is 1490 ** different from the page content at the start of the transaction. 1491 ** This occurs when a page is changed prior to the start of a statement 1492 ** then changed again within the statement. When rolling back such a 1493 ** statement we must not write to the original database unless we know 1494 ** for certain that original page contents are synced into the main rollback 1495 ** journal. Otherwise, a power loss might leave modified data in the 1496 ** database file without an entry in the rollback journal that can 1497 ** restore the database to its original form. Two conditions must be 1498 ** met before writing to the database files. (1) the database must be 1499 ** locked. (2) we know that the original page content is fully synced 1500 ** in the main journal either because the page is not in cache or else 1501 ** the page is marked as needSync==0. 1502 */ 1503 pPg = pager_lookup(pPager, pgno); 1504 PAGERTRACE4("PLAYBACK %d page %d hash(%08x)\n", 1505 PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, aData)); 1506 if( pPager->state>=PAGER_EXCLUSIVE && (pPg==0 || pPg->needSync==0) ){ 1507 i64 offset = (pgno-1)*(i64)pPager->pageSize; 1508 rc = sqlite3OsWrite(pPager->fd, aData, pPager->pageSize, offset); 1509 if( pPg ){ 1510 makeClean(pPg); 1511 } 1512 } 1513 if( pPg ){ 1514 /* No page should ever be explicitly rolled back that is in use, except 1515 ** for page 1 which is held in use in order to keep the lock on the 1516 ** database active. However such a page may be rolled back as a result 1517 ** of an internal error resulting in an automatic call to 1518 ** sqlite3PagerRollback(). 1519 */ 1520 void *pData; 1521 /* assert( pPg->nRef==0 || pPg->pgno==1 ); */ 1522 pData = PGHDR_TO_DATA(pPg); 1523 memcpy(pData, aData, pPager->pageSize); 1524 if( pPager->xReiniter ){ 1525 pPager->xReiniter(pPg, pPager->pageSize); 1526 } 1527 #ifdef SQLITE_CHECK_PAGES 1528 pPg->pageHash = pager_pagehash(pPg); 1529 #endif 1530 /* If this was page 1, then restore the value of Pager.dbFileVers. 1531 ** Do this before any decoding. */ 1532 if( pgno==1 ){ 1533 memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers)); 1534 } 1535 1536 /* Decode the page just read from disk */ 1537 CODEC1(pPager, pData, pPg->pgno, 3); 1538 } 1539 return rc; 1540 } 1541 1542 /* 1543 ** Parameter zMaster is the name of a master journal file. A single journal 1544 ** file that referred to the master journal file has just been rolled back. 1545 ** This routine checks if it is possible to delete the master journal file, 1546 ** and does so if it is. 1547 ** 1548 ** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not 1549 ** available for use within this function. 1550 ** 1551 ** 1552 ** The master journal file contains the names of all child journals. 1553 ** To tell if a master journal can be deleted, check to each of the 1554 ** children. If all children are either missing or do not refer to 1555 ** a different master journal, then this master journal can be deleted. 1556 */ 1557 static int pager_delmaster(Pager *pPager, const char *zMaster){ 1558 sqlite3_vfs *pVfs = pPager->pVfs; 1559 int rc; 1560 int master_open = 0; 1561 sqlite3_file *pMaster; 1562 sqlite3_file *pJournal; 1563 char *zMasterJournal = 0; /* Contents of master journal file */ 1564 i64 nMasterJournal; /* Size of master journal file */ 1565 1566 /* Open the master journal file exclusively in case some other process 1567 ** is running this routine also. Not that it makes too much difference. 1568 */ 1569 pMaster = (sqlite3_file *)sqlite3_malloc(pVfs->szOsFile * 2); 1570 pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile); 1571 if( !pMaster ){ 1572 rc = SQLITE_NOMEM; 1573 }else{ 1574 int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL); 1575 rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0); 1576 } 1577 if( rc!=SQLITE_OK ) goto delmaster_out; 1578 master_open = 1; 1579 1580 rc = sqlite3OsFileSize(pMaster, &nMasterJournal); 1581 if( rc!=SQLITE_OK ) goto delmaster_out; 1582 1583 if( nMasterJournal>0 ){ 1584 char *zJournal; 1585 char *zMasterPtr = 0; 1586 int nMasterPtr = pPager->pVfs->mxPathname+1; 1587 1588 /* Load the entire master journal file into space obtained from 1589 ** sqlite3_malloc() and pointed to by zMasterJournal. 1590 */ 1591 zMasterJournal = (char *)sqlite3_malloc(nMasterJournal + nMasterPtr); 1592 if( !zMasterJournal ){ 1593 rc = SQLITE_NOMEM; 1594 goto delmaster_out; 1595 } 1596 zMasterPtr = &zMasterJournal[nMasterJournal]; 1597 rc = sqlite3OsRead(pMaster, zMasterJournal, nMasterJournal, 0); 1598 if( rc!=SQLITE_OK ) goto delmaster_out; 1599 1600 zJournal = zMasterJournal; 1601 while( (zJournal-zMasterJournal)<nMasterJournal ){ 1602 if( sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS) ){ 1603 /* One of the journals pointed to by the master journal exists. 1604 ** Open it and check if it points at the master journal. If 1605 ** so, return without deleting the master journal file. 1606 */ 1607 int c; 1608 int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL); 1609 rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0); 1610 if( rc!=SQLITE_OK ){ 1611 goto delmaster_out; 1612 } 1613 1614 rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr); 1615 sqlite3OsClose(pJournal); 1616 if( rc!=SQLITE_OK ){ 1617 goto delmaster_out; 1618 } 1619 1620 c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0; 1621 if( c ){ 1622 /* We have a match. Do not delete the master journal file. */ 1623 goto delmaster_out; 1624 } 1625 } 1626 zJournal += (strlen(zJournal)+1); 1627 } 1628 } 1629 1630 rc = sqlite3OsDelete(pVfs, zMaster, 0); 1631 1632 delmaster_out: 1633 if( zMasterJournal ){ 1634 sqlite3_free(zMasterJournal); 1635 } 1636 if( master_open ){ 1637 sqlite3OsClose(pMaster); 1638 } 1639 sqlite3_free(pMaster); 1640 return rc; 1641 } 1642 1643 1644 static void pager_truncate_cache(Pager *pPager); 1645 1646 /* 1647 ** Truncate the main file of the given pager to the number of pages 1648 ** indicated. Also truncate the cached representation of the file. 1649 ** 1650 ** Might might be the case that the file on disk is smaller than nPage. 1651 ** This can happen, for example, if we are in the middle of a transaction 1652 ** which has extended the file size and the new pages are still all held 1653 ** in cache, then an INSERT or UPDATE does a statement rollback. Some 1654 ** operating system implementations can get confused if you try to 1655 ** truncate a file to some size that is larger than it currently is, 1656 ** so detect this case and do not do the truncation. 1657 */ 1658 static int pager_truncate(Pager *pPager, int nPage){ 1659 int rc = SQLITE_OK; 1660 if( pPager->state>=PAGER_EXCLUSIVE && pPager->fd->pMethods ){ 1661 i64 currentSize, newSize; 1662 rc = sqlite3OsFileSize(pPager->fd, ¤tSize); 1663 newSize = pPager->pageSize*(i64)nPage; 1664 if( rc==SQLITE_OK && currentSize>newSize ){ 1665 rc = sqlite3OsTruncate(pPager->fd, newSize); 1666 } 1667 } 1668 if( rc==SQLITE_OK ){ 1669 pPager->dbSize = nPage; 1670 pager_truncate_cache(pPager); 1671 } 1672 return rc; 1673 } 1674 1675 /* 1676 ** Set the sectorSize for the given pager. 1677 ** 1678 ** The sector size is the larger of the sector size reported 1679 ** by sqlite3OsSectorSize() and the pageSize. 1680 */ 1681 static void setSectorSize(Pager *pPager){ 1682 assert(pPager->fd->pMethods||pPager->tempFile); 1683 if( !pPager->tempFile ){ 1684 /* Sector size doesn't matter for temporary files. Also, the file 1685 ** may not have been opened yet, in whcih case the OsSectorSize() 1686 ** call will segfault. 1687 */ 1688 pPager->sectorSize = sqlite3OsSectorSize(pPager->fd); 1689 } 1690 if( pPager->sectorSize<pPager->pageSize ){ 1691 pPager->sectorSize = pPager->pageSize; 1692 } 1693 } 1694 1695 /* 1696 ** Playback the journal and thus restore the database file to 1697 ** the state it was in before we started making changes. 1698 ** 1699 ** The journal file format is as follows: 1700 ** 1701 ** (1) 8 byte prefix. A copy of aJournalMagic[]. 1702 ** (2) 4 byte big-endian integer which is the number of valid page records 1703 ** in the journal. If this value is 0xffffffff, then compute the 1704 ** number of page records from the journal size. 1705 ** (3) 4 byte big-endian integer which is the initial value for the 1706 ** sanity checksum. 1707 ** (4) 4 byte integer which is the number of pages to truncate the 1708 ** database to during a rollback. 1709 ** (5) 4 byte integer which is the number of bytes in the master journal 1710 ** name. The value may be zero (indicate that there is no master 1711 ** journal.) 1712 ** (6) N bytes of the master journal name. The name will be nul-terminated 1713 ** and might be shorter than the value read from (5). If the first byte 1714 ** of the name is \000 then there is no master journal. The master 1715 ** journal name is stored in UTF-8. 1716 ** (7) Zero or more pages instances, each as follows: 1717 ** + 4 byte page number. 1718 ** + pPager->pageSize bytes of data. 1719 ** + 4 byte checksum 1720 ** 1721 ** When we speak of the journal header, we mean the first 6 items above. 1722 ** Each entry in the journal is an instance of the 7th item. 1723 ** 1724 ** Call the value from the second bullet "nRec". nRec is the number of 1725 ** valid page entries in the journal. In most cases, you can compute the 1726 ** value of nRec from the size of the journal file. But if a power 1727 ** failure occurred while the journal was being written, it could be the 1728 ** case that the size of the journal file had already been increased but 1729 ** the extra entries had not yet made it safely to disk. In such a case, 1730 ** the value of nRec computed from the file size would be too large. For 1731 ** that reason, we always use the nRec value in the header. 1732 ** 1733 ** If the nRec value is 0xffffffff it means that nRec should be computed 1734 ** from the file size. This value is used when the user selects the 1735 ** no-sync option for the journal. A power failure could lead to corruption 1736 ** in this case. But for things like temporary table (which will be 1737 ** deleted when the power is restored) we don't care. 1738 ** 1739 ** If the file opened as the journal file is not a well-formed 1740 ** journal file then all pages up to the first corrupted page are rolled 1741 ** back (or no pages if the journal header is corrupted). The journal file 1742 ** is then deleted and SQLITE_OK returned, just as if no corruption had 1743 ** been encountered. 1744 ** 1745 ** If an I/O or malloc() error occurs, the journal-file is not deleted 1746 ** and an error code is returned. 1747 */ 1748 static int pager_playback(Pager *pPager, int isHot){ 1749 sqlite3_vfs *pVfs = pPager->pVfs; 1750 i64 szJ; /* Size of the journal file in bytes */ 1751 u32 nRec; /* Number of Records in the journal */ 1752 int i; /* Loop counter */ 1753 Pgno mxPg = 0; /* Size of the original file in pages */ 1754 int rc; /* Result code of a subroutine */ 1755 char *zMaster = 0; /* Name of master journal file if any */ 1756 1757 /* Figure out how many records are in the journal. Abort early if 1758 ** the journal is empty. 1759 */ 1760 assert( pPager->journalOpen ); 1761 rc = sqlite3OsFileSize(pPager->jfd, &szJ); 1762 if( rc!=SQLITE_OK || szJ==0 ){ 1763 goto end_playback; 1764 } 1765 1766 /* Read the master journal name from the journal, if it is present. 1767 ** If a master journal file name is specified, but the file is not 1768 ** present on disk, then the journal is not hot and does not need to be 1769 ** played back. 1770 */ 1771 zMaster = pPager->pTmpSpace; 1772 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); 1773 assert( rc!=SQLITE_DONE ); 1774 if( rc!=SQLITE_OK 1775 || (zMaster[0] && !sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS)) 1776 ){ 1777 zMaster = 0; 1778 if( rc==SQLITE_DONE ) rc = SQLITE_OK; 1779 goto end_playback; 1780 } 1781 pPager->journalOff = 0; 1782 zMaster = 0; 1783 1784 /* This loop terminates either when the readJournalHdr() call returns 1785 ** SQLITE_DONE or an IO error occurs. */ 1786 while( 1 ){ 1787 1788 /* Read the next journal header from the journal file. If there are 1789 ** not enough bytes left in the journal file for a complete header, or 1790 ** it is corrupted, then a process must of failed while writing it. 1791 ** This indicates nothing more needs to be rolled back. 1792 */ 1793 rc = readJournalHdr(pPager, szJ, &nRec, &mxPg); 1794 if( rc!=SQLITE_OK ){ 1795 if( rc==SQLITE_DONE ){ 1796 rc = SQLITE_OK; 1797 } 1798 goto end_playback; 1799 } 1800 1801 /* If nRec is 0xffffffff, then this journal was created by a process 1802 ** working in no-sync mode. This means that the rest of the journal 1803 ** file consists of pages, there are no more journal headers. Compute 1804 ** the value of nRec based on this assumption. 1805 */ 1806 if( nRec==0xffffffff ){ 1807 assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ); 1808 nRec = (szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager); 1809 } 1810 1811 /* If nRec is 0 and this rollback is of a transaction created by this 1812 ** process and if this is the final header in the journal, then it means 1813 ** that this part of the journal was being filled but has not yet been 1814 ** synced to disk. Compute the number of pages based on the remaining 1815 ** size of the file. 1816 ** 1817 ** The third term of the test was added to fix ticket #2565. 1818 */ 1819 if( nRec==0 && !isHot && 1820 pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){ 1821 nRec = (szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager); 1822 } 1823 1824 /* If this is the first header read from the journal, truncate the 1825 ** database file back to its original size. 1826 */ 1827 if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){ 1828 rc = pager_truncate(pPager, mxPg); 1829 if( rc!=SQLITE_OK ){ 1830 goto end_playback; 1831 } 1832 } 1833 1834 /* Copy original pages out of the journal and back into the database file. 1835 */ 1836 for(i=0; i<nRec; i++){ 1837 rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1); 1838 if( rc!=SQLITE_OK ){ 1839 if( rc==SQLITE_DONE ){ 1840 rc = SQLITE_OK; 1841 pPager->journalOff = szJ; 1842 break; 1843 }else{ 1844 goto end_playback; 1845 } 1846 } 1847 } 1848 } 1849 /*NOTREACHED*/ 1850 assert( 0 ); 1851 1852 end_playback: 1853 if( rc==SQLITE_OK ){ 1854 zMaster = pPager->pTmpSpace; 1855 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); 1856 } 1857 if( rc==SQLITE_OK ){ 1858 rc = pager_end_transaction(pPager); 1859 } 1860 if( rc==SQLITE_OK && zMaster[0] ){ 1861 /* If there was a master journal and this routine will return success, 1862 ** see if it is possible to delete the master journal. 1863 */ 1864 rc = pager_delmaster(pPager, zMaster); 1865 } 1866 1867 /* The Pager.sectorSize variable may have been updated while rolling 1868 ** back a journal created by a process with a different sector size 1869 ** value. Reset it to the correct value for this process. 1870 */ 1871 setSectorSize(pPager); 1872 return rc; 1873 } 1874 1875 /* 1876 ** Playback the statement journal. 1877 ** 1878 ** This is similar to playing back the transaction journal but with 1879 ** a few extra twists. 1880 ** 1881 ** (1) The number of pages in the database file at the start of 1882 ** the statement is stored in pPager->stmtSize, not in the 1883 ** journal file itself. 1884 ** 1885 ** (2) In addition to playing back the statement journal, also 1886 ** playback all pages of the transaction journal beginning 1887 ** at offset pPager->stmtJSize. 1888 */ 1889 static int pager_stmt_playback(Pager *pPager){ 1890 i64 szJ; /* Size of the full journal */ 1891 i64 hdrOff; 1892 int nRec; /* Number of Records */ 1893 int i; /* Loop counter */ 1894 int rc; 1895 1896 szJ = pPager->journalOff; 1897 #ifndef NDEBUG 1898 { 1899 i64 os_szJ; 1900 rc = sqlite3OsFileSize(pPager->jfd, &os_szJ); 1901 if( rc!=SQLITE_OK ) return rc; 1902 assert( szJ==os_szJ ); 1903 } 1904 #endif 1905 1906 /* Set hdrOff to be the offset just after the end of the last journal 1907 ** page written before the first journal-header for this statement 1908 ** transaction was written, or the end of the file if no journal 1909 ** header was written. 1910 */ 1911 hdrOff = pPager->stmtHdrOff; 1912 assert( pPager->fullSync || !hdrOff ); 1913 if( !hdrOff ){ 1914 hdrOff = szJ; 1915 } 1916 1917 /* Truncate the database back to its original size. 1918 */ 1919 rc = pager_truncate(pPager, pPager->stmtSize); 1920 assert( pPager->state>=PAGER_SHARED ); 1921 1922 /* Figure out how many records are in the statement journal. 1923 */ 1924 assert( pPager->stmtInUse && pPager->journalOpen ); 1925 nRec = pPager->stmtNRec; 1926 1927 /* Copy original pages out of the statement journal and back into the 1928 ** database file. Note that the statement journal omits checksums from 1929 ** each record since power-failure recovery is not important to statement 1930 ** journals. 1931 */ 1932 for(i=0; i<nRec; i++){ 1933 i64 offset = i*(4+pPager->pageSize); 1934 rc = pager_playback_one_page(pPager, pPager->stfd, offset, 0); 1935 assert( rc!=SQLITE_DONE ); 1936 if( rc!=SQLITE_OK ) goto end_stmt_playback; 1937 } 1938 1939 /* Now roll some pages back from the transaction journal. Pager.stmtJSize 1940 ** was the size of the journal file when this statement was started, so 1941 ** everything after that needs to be rolled back, either into the 1942 ** database, the memory cache, or both. 1943 ** 1944 ** If it is not zero, then Pager.stmtHdrOff is the offset to the start 1945 ** of the first journal header written during this statement transaction. 1946 */ 1947 pPager->journalOff = pPager->stmtJSize; 1948 pPager->cksumInit = pPager->stmtCksum; 1949 while( pPager->journalOff < hdrOff ){ 1950 rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1); 1951 assert( rc!=SQLITE_DONE ); 1952 if( rc!=SQLITE_OK ) goto end_stmt_playback; 1953 } 1954 1955 while( pPager->journalOff < szJ ){ 1956 u32 nJRec; /* Number of Journal Records */ 1957 u32 dummy; 1958 rc = readJournalHdr(pPager, szJ, &nJRec, &dummy); 1959 if( rc!=SQLITE_OK ){ 1960 assert( rc!=SQLITE_DONE ); 1961 goto end_stmt_playback; 1962 } 1963 if( nJRec==0 ){ 1964 nJRec = (szJ - pPager->journalOff) / (pPager->pageSize+8); 1965 } 1966 for(i=nJRec-1; i>=0 && pPager->journalOff < szJ; i--){ 1967 rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1); 1968 assert( rc!=SQLITE_DONE ); 1969 if( rc!=SQLITE_OK ) goto end_stmt_playback; 1970 } 1971 } 1972 1973 pPager->journalOff = szJ; 1974 1975 end_stmt_playback: 1976 if( rc==SQLITE_OK) { 1977 pPager->journalOff = szJ; 1978 /* pager_reload_cache(pPager); */ 1979 } 1980 return rc; 1981 } 1982 1983 /* 1984 ** Change the maximum number of in-memory pages that are allowed. 1985 */ 1986 void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){ 1987 if( mxPage>10 ){ 1988 pPager->mxPage = mxPage; 1989 }else{ 1990 pPager->mxPage = 10; 1991 } 1992 } 1993 1994 /* 1995 ** Adjust the robustness of the database to damage due to OS crashes 1996 ** or power failures by changing the number of syncs()s when writing 1997 ** the rollback journal. There are three levels: 1998 ** 1999 ** OFF sqlite3OsSync() is never called. This is the default 2000 ** for temporary and transient files. 2001 ** 2002 ** NORMAL The journal is synced once before writes begin on the 2003 ** database. This is normally adequate protection, but 2004 ** it is theoretically possible, though very unlikely, 2005 ** that an inopertune power failure could leave the journal 2006 ** in a state which would cause damage to the database 2007 ** when it is rolled back. 2008 ** 2009 ** FULL The journal is synced twice before writes begin on the 2010 ** database (with some additional information - the nRec field 2011 ** of the journal header - being written in between the two 2012 ** syncs). If we assume that writing a 2013 ** single disk sector is atomic, then this mode provides 2014 ** assurance that the journal will not be corrupted to the 2015 ** point of causing damage to the database during rollback. 2016 ** 2017 ** Numeric values associated with these states are OFF==1, NORMAL=2, 2018 ** and FULL=3. 2019 */ 2020 #ifndef SQLITE_OMIT_PAGER_PRAGMAS 2021 void sqlite3PagerSetSafetyLevel(Pager *pPager, int level, int full_fsync){ 2022 pPager->noSync = level==1 || pPager->tempFile; 2023 pPager->fullSync = level==3 && !pPager->tempFile; 2024 pPager->sync_flags = (full_fsync?SQLITE_SYNC_FULL:SQLITE_SYNC_NORMAL); 2025 if( pPager->noSync ) pPager->needSync = 0; 2026 } 2027 #endif 2028 2029 /* 2030 ** The following global variable is incremented whenever the library 2031 ** attempts to open a temporary file. This information is used for 2032 ** testing and analysis only. 2033 */ 2034 #ifdef SQLITE_TEST 2035 int sqlite3_opentemp_count = 0; 2036 #endif 2037 2038 /* 2039 ** Open a temporary file. 2040 ** 2041 ** Write the file descriptor into *fd. Return SQLITE_OK on success or some 2042 ** other error code if we fail. The OS will automatically delete the temporary 2043 ** file when it is closed. 2044 */ 2045 static int sqlite3PagerOpentemp( 2046 sqlite3_vfs *pVfs, /* The virtual file system layer */ 2047 sqlite3_file *pFile, /* Write the file descriptor here */ 2048 char *zFilename, /* Name of the file. Might be NULL */ 2049 int vfsFlags /* Flags passed through to the VFS */ 2050 ){ 2051 int rc; 2052 assert( zFilename!=0 ); 2053 2054 #ifdef SQLITE_TEST 2055 sqlite3_opentemp_count++; /* Used for testing and analysis only */ 2056 #endif 2057 2058 vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | 2059 SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE; 2060 rc = sqlite3OsOpen(pVfs, zFilename, pFile, vfsFlags, 0); 2061 assert( rc!=SQLITE_OK || pFile->pMethods ); 2062 return rc; 2063 } 2064 2065 /* 2066 ** Create a new page cache and put a pointer to the page cache in *ppPager. 2067 ** The file to be cached need not exist. The file is not locked until 2068 ** the first call to sqlite3PagerGet() and is only held open until the 2069 ** last page is released using sqlite3PagerUnref(). 2070 ** 2071 ** If zFilename is NULL then a randomly-named temporary file is created 2072 ** and used as the file to be cached. The file will be deleted 2073 ** automatically when it is closed. 2074 ** 2075 ** If zFilename is ":memory:" then all information is held in cache. 2076 ** It is never written to disk. This can be used to implement an 2077 ** in-memory database. 2078 */ 2079 int sqlite3PagerOpen( 2080 sqlite3_vfs *pVfs, /* The virtual file system to use */ 2081 Pager **ppPager, /* Return the Pager structure here */ 2082 const char *zFilename, /* Name of the database file to open */ 2083 int nExtra, /* Extra bytes append to each in-memory page */ 2084 int flags, /* flags controlling this file */ 2085 int vfsFlags /* flags passed through to sqlite3_vfs.xOpen() */ 2086 ){ 2087 u8 *pPtr; 2088 Pager *pPager = 0; 2089 int rc = SQLITE_OK; 2090 int i; 2091 int tempFile = 0; 2092 int memDb = 0; 2093 int readOnly = 0; 2094 int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; 2095 int noReadlock = (flags & PAGER_NO_READLOCK)!=0; 2096 int journalFileSize = sqlite3JournalSize(pVfs); 2097 int nDefaultPage = SQLITE_DEFAULT_PAGE_SIZE; 2098 char *zPathname; 2099 int nPathname; 2100 2101 /* The default return is a NULL pointer */ 2102 *ppPager = 0; 2103 2104 /* Compute the full pathname */ 2105 nPathname = pVfs->mxPathname+1; 2106 zPathname = sqlite3_malloc(nPathname); 2107 if( zPathname==0 ){ 2108 return SQLITE_NOMEM; 2109 } 2110 if( zFilename && zFilename[0] ){ 2111 #ifndef SQLITE_OMIT_MEMORYDB 2112 if( strcmp(zFilename,":memory:")==0 ){ 2113 memDb = 1; 2114 zPathname[0] = 0; 2115 }else 2116 #endif 2117 { 2118 rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname); 2119 } 2120 }else{ 2121 rc = sqlite3OsGetTempname(pVfs, nPathname, zPathname); 2122 } 2123 if( rc!=SQLITE_OK ){ 2124 sqlite3_free(zPathname); 2125 return rc; 2126 } 2127 nPathname = strlen(zPathname); 2128 2129 /* Allocate memory for the pager structure */ 2130 pPager = sqlite3MallocZero( 2131 sizeof(*pPager) + /* Pager structure */ 2132 journalFileSize + /* The journal file structure */ 2133 pVfs->szOsFile * 2 + /* The db and stmt journal files */ 2134 4*nPathname + 40 /* zFilename, zDirectory, zJournal, zStmtJrnl */ 2135 ); 2136 if( !pPager ){ 2137 sqlite3_free(zPathname); 2138 return SQLITE_NOMEM; 2139 } 2140 pPtr = (u8 *)&pPager[1]; 2141 pPager->vfsFlags = vfsFlags; 2142 pPager->fd = (sqlite3_file*)&pPtr[pVfs->szOsFile*0]; 2143 pPager->stfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*1]; 2144 pPager->jfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*2]; 2145 pPager->zFilename = (char*)&pPtr[pVfs->szOsFile*2+journalFileSize]; 2146 pPager->zDirectory = &pPager->zFilename[nPathname+1]; 2147 pPager->zJournal = &pPager->zDirectory[nPathname+1]; 2148 pPager->zStmtJrnl = &pPager->zJournal[nPathname+10]; 2149 pPager->pVfs = pVfs; 2150 memcpy(pPager->zFilename, zPathname, nPathname+1); 2151 sqlite3_free(zPathname); 2152 2153 /* Open the pager file. 2154 */ 2155 if( zFilename && zFilename[0] && !memDb ){ 2156 if( nPathname>(pVfs->mxPathname - sizeof("-journal")) ){ 2157 rc = SQLITE_CANTOPEN; 2158 }else{ 2159 int fout = 0; 2160 rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, 2161 pPager->vfsFlags, &fout); 2162 readOnly = (fout&SQLITE_OPEN_READONLY); 2163 2164 /* If the file was successfully opened for read/write access, 2165 ** choose a default page size in case we have to create the 2166 ** database file. The default page size is the maximum of: 2167 ** 2168 ** + SQLITE_DEFAULT_PAGE_SIZE, 2169 ** + The value returned by sqlite3OsSectorSize() 2170 ** + The largest page size that can be written atomically. 2171 */ 2172 if( rc==SQLITE_OK && !readOnly ){ 2173 int iSectorSize = sqlite3OsSectorSize(pPager->fd); 2174 if( nDefaultPage<iSectorSize ){ 2175 nDefaultPage = iSectorSize; 2176 } 2177 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 2178 { 2179 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); 2180 int ii; 2181 assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); 2182 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); 2183 assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536); 2184 for(ii=nDefaultPage; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){ 2185 if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ) nDefaultPage = ii; 2186 } 2187 } 2188 #endif 2189 if( nDefaultPage>SQLITE_MAX_DEFAULT_PAGE_SIZE ){ 2190 nDefaultPage = SQLITE_MAX_DEFAULT_PAGE_SIZE; 2191 } 2192 } 2193 } 2194 }else if( !memDb ){ 2195 /* If a temporary file is requested, it is not opened immediately. 2196 ** In this case we accept the default page size and delay actually 2197 ** opening the file until the first call to OsWrite(). 2198 */ 2199 tempFile = 1; 2200 pPager->state = PAGER_EXCLUSIVE; 2201 } 2202 2203 if( pPager && rc==SQLITE_OK ){ 2204 pPager->pTmpSpace = (char *)sqlite3_malloc(nDefaultPage); 2205 } 2206 2207 /* If an error occured in either of the blocks above. 2208 ** Free the Pager structure and close the file. 2209 ** Since the pager is not allocated there is no need to set 2210 ** any Pager.errMask variables. 2211 */ 2212 if( !pPager || !pPager->pTmpSpace ){ 2213 sqlite3OsClose(pPager->fd); 2214 sqlite3_free(pPager); 2215 return ((rc==SQLITE_OK)?SQLITE_NOMEM:rc); 2216 } 2217 2218 PAGERTRACE3("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename); 2219 IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename)) 2220 2221 /* Fill in Pager.zDirectory[] */ 2222 memcpy(pPager->zDirectory, pPager->zFilename, nPathname+1); 2223 for(i=strlen(pPager->zDirectory); i>0 && pPager->zDirectory[i-1]!='/'; i--){} 2224 if( i>0 ) pPager->zDirectory[i-1] = 0; 2225 2226 /* Fill in Pager.zJournal[] and Pager.zStmtJrnl[] */ 2227 memcpy(pPager->zJournal, pPager->zFilename, nPathname); 2228 memcpy(&pPager->zJournal[nPathname], "-journal", 9); 2229 memcpy(pPager->zStmtJrnl, pPager->zFilename, nPathname); 2230 memcpy(&pPager->zStmtJrnl[nPathname], "-stmtjrnl", 10); 2231 2232 /* pPager->journalOpen = 0; */ 2233 pPager->useJournal = useJournal && !memDb; 2234 pPager->noReadlock = noReadlock && readOnly; 2235 /* pPager->stmtOpen = 0; */ 2236 /* pPager->stmtInUse = 0; */ 2237 /* pPager->nRef = 0; */ 2238 pPager->dbSize = memDb-1; 2239 pPager->pageSize = nDefaultPage; 2240 /* pPager->stmtSize = 0; */ 2241 /* pPager->stmtJSize = 0; */ 2242 /* pPager->nPage = 0; */ 2243 pPager->mxPage = 100; 2244 pPager->mxPgno = SQLITE_MAX_PAGE_COUNT; 2245 /* pPager->state = PAGER_UNLOCK; */ 2246 assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) ); 2247 /* pPager->errMask = 0; */ 2248 pPager->tempFile = tempFile; 2249 assert( tempFile==PAGER_LOCKINGMODE_NORMAL 2250 || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE ); 2251 assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 ); 2252 pPager->exclusiveMode = tempFile; 2253 pPager->memDb = memDb; 2254 pPager->readOnly = readOnly; 2255 /* pPager->needSync = 0; */ 2256 pPager->noSync = pPager->tempFile || !useJournal; 2257 pPager->fullSync = (pPager->noSync?0:1); 2258 pPager->sync_flags = SQLITE_SYNC_NORMAL; 2259 /* pPager->pFirst = 0; */ 2260 /* pPager->pFirstSynced = 0; */ 2261 /* pPager->pLast = 0; */ 2262 pPager->nExtra = FORCE_ALIGNMENT(nExtra); 2263 assert(pPager->fd->pMethods||memDb||tempFile); 2264 if( !memDb ){ 2265 setSectorSize(pPager); 2266 } 2267 /* pPager->pBusyHandler = 0; */ 2268 /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */ 2269 *ppPager = pPager; 2270 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 2271 pPager->iInUseMM = 0; 2272 pPager->iInUseDB = 0; 2273 if( !memDb ){ 2274 sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); 2275 sqlite3_mutex_enter(mutex); 2276 pPager->pNext = sqlite3PagerList; 2277 if( sqlite3PagerList ){ 2278 assert( sqlite3PagerList->pPrev==0 ); 2279 sqlite3PagerList->pPrev = pPager; 2280 } 2281 pPager->pPrev = 0; 2282 sqlite3PagerList = pPager; 2283 sqlite3_mutex_leave(mutex); 2284 } 2285 #endif 2286 return SQLITE_OK; 2287 } 2288 2289 /* 2290 ** Set the busy handler function. 2291 */ 2292 void sqlite3PagerSetBusyhandler(Pager *pPager, BusyHandler *pBusyHandler){ 2293 pPager->pBusyHandler = pBusyHandler; 2294 } 2295 2296 /* 2297 ** Set the destructor for this pager. If not NULL, the destructor is called 2298 ** when the reference count on each page reaches zero. The destructor can 2299 ** be used to clean up information in the extra segment appended to each page. 2300 ** 2301 ** The destructor is not called as a result sqlite3PagerClose(). 2302 ** Destructors are only called by sqlite3PagerUnref(). 2303 */ 2304 void sqlite3PagerSetDestructor(Pager *pPager, void (*xDesc)(DbPage*,int)){ 2305 pPager->xDestructor = xDesc; 2306 } 2307 2308 /* 2309 ** Set the reinitializer for this pager. If not NULL, the reinitializer 2310 ** is called when the content of a page in cache is restored to its original 2311 ** value as a result of a rollback. The callback gives higher-level code 2312 ** an opportunity to restore the EXTRA section to agree with the restored 2313 ** page data. 2314 */ 2315 void sqlite3PagerSetReiniter(Pager *pPager, void (*xReinit)(DbPage*,int)){ 2316 pPager->xReiniter = xReinit; 2317 } 2318 2319 /* 2320 ** Set the page size to *pPageSize. If the suggest new page size is 2321 ** inappropriate, then an alternative page size is set to that 2322 ** value before returning. 2323 */ 2324 int sqlite3PagerSetPagesize(Pager *pPager, u16 *pPageSize){ 2325 int rc = SQLITE_OK; 2326 u16 pageSize = *pPageSize; 2327 assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) ); 2328 if( pageSize && pageSize!=pPager->pageSize 2329 && !pPager->memDb && pPager->nRef==0 2330 ){ 2331 char *pNew = (char *)sqlite3_malloc(pageSize); 2332 if( !pNew ){ 2333 rc = SQLITE_NOMEM; 2334 }else{ 2335 pagerEnter(pPager); 2336 pager_reset(pPager); 2337 pPager->pageSize = pageSize; 2338 setSectorSize(pPager); 2339 sqlite3_free(pPager->pTmpSpace); 2340 pPager->pTmpSpace = pNew; 2341 pagerLeave(pPager); 2342 } 2343 } 2344 *pPageSize = pPager->pageSize; 2345 return rc; 2346 } 2347 2348 /* 2349 ** Return a pointer to the "temporary page" buffer held internally 2350 ** by the pager. This is a buffer that is big enough to hold the 2351 ** entire content of a database page. This buffer is used internally 2352 ** during rollback and will be overwritten whenever a rollback 2353 ** occurs. But other modules are free to use it too, as long as 2354 ** no rollbacks are happening. 2355 */ 2356 void *sqlite3PagerTempSpace(Pager *pPager){ 2357 return pPager->pTmpSpace; 2358 } 2359 2360 /* 2361 ** Attempt to set the maximum database page count if mxPage is positive. 2362 ** Make no changes if mxPage is zero or negative. And never reduce the 2363 ** maximum page count below the current size of the database. 2364 ** 2365 ** Regardless of mxPage, return the current maximum page count. 2366 */ 2367 int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){ 2368 if( mxPage>0 ){ 2369 pPager->mxPgno = mxPage; 2370 } 2371 sqlite3PagerPagecount(pPager); 2372 return pPager->mxPgno; 2373 } 2374 2375 /* 2376 ** The following set of routines are used to disable the simulated 2377 ** I/O error mechanism. These routines are used to avoid simulated 2378 ** errors in places where we do not care about errors. 2379 ** 2380 ** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops 2381 ** and generate no code. 2382 */ 2383 #ifdef SQLITE_TEST 2384 extern int sqlite3_io_error_pending; 2385 extern int sqlite3_io_error_hit; 2386 static int saved_cnt; 2387 void disable_simulated_io_errors(void){ 2388 saved_cnt = sqlite3_io_error_pending; 2389 sqlite3_io_error_pending = -1; 2390 } 2391 void enable_simulated_io_errors(void){ 2392 sqlite3_io_error_pending = saved_cnt; 2393 } 2394 #else 2395 # define disable_simulated_io_errors() 2396 # define enable_simulated_io_errors() 2397 #endif 2398 2399 /* 2400 ** Read the first N bytes from the beginning of the file into memory 2401 ** that pDest points to. 2402 ** 2403 ** No error checking is done. The rational for this is that this function 2404 ** may be called even if the file does not exist or contain a header. In 2405 ** these cases sqlite3OsRead() will return an error, to which the correct 2406 ** response is to zero the memory at pDest and continue. A real IO error 2407 ** will presumably recur and be picked up later (Todo: Think about this). 2408 */ 2409 int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){ 2410 int rc = SQLITE_OK; 2411 memset(pDest, 0, N); 2412 assert(MEMDB||pPager->fd->pMethods||pPager->tempFile); 2413 if( pPager->fd->pMethods ){ 2414 IOTRACE(("DBHDR %p 0 %d\n", pPager, N)) 2415 rc = sqlite3OsRead(pPager->fd, pDest, N, 0); 2416 if( rc==SQLITE_IOERR_SHORT_READ ){ 2417 rc = SQLITE_OK; 2418 } 2419 } 2420 return rc; 2421 } 2422 2423 /* 2424 ** Return the total number of pages in the disk file associated with 2425 ** pPager. 2426 ** 2427 ** If the PENDING_BYTE lies on the page directly after the end of the 2428 ** file, then consider this page part of the file too. For example, if 2429 ** PENDING_BYTE is byte 4096 (the first byte of page 5) and the size of the 2430 ** file is 4096 bytes, 5 is returned instead of 4. 2431 */ 2432 int sqlite3PagerPagecount(Pager *pPager){ 2433 i64 n = 0; 2434 int rc; 2435 assert( pPager!=0 ); 2436 if( pPager->errCode ){ 2437 return 0; 2438 } 2439 if( pPager->dbSize>=0 ){ 2440 n = pPager->dbSize; 2441 } else { 2442 assert(pPager->fd->pMethods||pPager->tempFile); 2443 if( (pPager->fd->pMethods) 2444 && (rc = sqlite3OsFileSize(pPager->fd, &n))!=SQLITE_OK ){ 2445 pPager->nRef++; 2446 pager_error(pPager, rc); 2447 pPager->nRef--; 2448 return 0; 2449 } 2450 if( n>0 && n<pPager->pageSize ){ 2451 n = 1; 2452 }else{ 2453 n /= pPager->pageSize; 2454 } 2455 if( pPager->state!=PAGER_UNLOCK ){ 2456 pPager->dbSize = n; 2457 } 2458 } 2459 if( n==(PENDING_BYTE/pPager->pageSize) ){ 2460 n++; 2461 } 2462 if( n>pPager->mxPgno ){ 2463 pPager->mxPgno = n; 2464 } 2465 return n; 2466 } 2467 2468 2469 #ifndef SQLITE_OMIT_MEMORYDB 2470 /* 2471 ** Clear a PgHistory block 2472 */ 2473 static void clearHistory(PgHistory *pHist){ 2474 sqlite3_free(pHist->pOrig); 2475 sqlite3_free(pHist->pStmt); 2476 pHist->pOrig = 0; 2477 pHist->pStmt = 0; 2478 } 2479 #else 2480 #define clearHistory(x) 2481 #endif 2482 2483 /* 2484 ** Forward declaration 2485 */ 2486 static int syncJournal(Pager*); 2487 2488 /* 2489 ** Unlink pPg from its hash chain. Also set the page number to 0 to indicate 2490 ** that the page is not part of any hash chain. This is required because the 2491 ** sqlite3PagerMovepage() routine can leave a page in the 2492 ** pNextFree/pPrevFree list that is not a part of any hash-chain. 2493 */ 2494 static void unlinkHashChain(Pager *pPager, PgHdr *pPg){ 2495 if( pPg->pgno==0 ){ 2496 assert( pPg->pNextHash==0 && pPg->pPrevHash==0 ); 2497 return; 2498 } 2499 if( pPg->pNextHash ){ 2500 pPg->pNextHash->pPrevHash = pPg->pPrevHash; 2501 } 2502 if( pPg->pPrevHash ){ 2503 assert( pPager->aHash[pPg->pgno & (pPager->nHash-1)]!=pPg ); 2504 pPg->pPrevHash->pNextHash = pPg->pNextHash; 2505 }else{ 2506 int h = pPg->pgno & (pPager->nHash-1); 2507 pPager->aHash[h] = pPg->pNextHash; 2508 } 2509 if( MEMDB ){ 2510 clearHistory(PGHDR_TO_HIST(pPg, pPager)); 2511 } 2512 pPg->pgno = 0; 2513 pPg->pNextHash = pPg->pPrevHash = 0; 2514 } 2515 2516 /* 2517 ** Unlink a page from the free list (the list of all pages where nRef==0) 2518 ** and from its hash collision chain. 2519 */ 2520 static void unlinkPage(PgHdr *pPg){ 2521 Pager *pPager = pPg->pPager; 2522 2523 /* Unlink from free page list */ 2524 lruListRemove(pPg); 2525 2526 /* Unlink from the pgno hash table */ 2527 unlinkHashChain(pPager, pPg); 2528 } 2529 2530 /* 2531 ** This routine is used to truncate the cache when a database 2532 ** is truncated. Drop from the cache all pages whose pgno is 2533 ** larger than pPager->dbSize and is unreferenced. 2534 ** 2535 ** Referenced pages larger than pPager->dbSize are zeroed. 2536 ** 2537 ** Actually, at the point this routine is called, it would be 2538 ** an error to have a referenced page. But rather than delete 2539 ** that page and guarantee a subsequent segfault, it seems better 2540 ** to zero it and hope that we error out sanely. 2541 */ 2542 static void pager_truncate_cache(Pager *pPager){ 2543 PgHdr *pPg; 2544 PgHdr **ppPg; 2545 int dbSize = pPager->dbSize; 2546 2547 ppPg = &pPager->pAll; 2548 while( (pPg = *ppPg)!=0 ){ 2549 if( pPg->pgno<=dbSize ){ 2550 ppPg = &pPg->pNextAll; 2551 }else if( pPg->nRef>0 ){ 2552 memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize); 2553 ppPg = &pPg->pNextAll; 2554 }else{ 2555 *ppPg = pPg->pNextAll; 2556 IOTRACE(("PGFREE %p %d\n", pPager, pPg->pgno)); 2557 PAGER_INCR(sqlite3_pager_pgfree_count); 2558 unlinkPage(pPg); 2559 makeClean(pPg); 2560 sqlite3_free(pPg); 2561 pPager->nPage--; 2562 } 2563 } 2564 } 2565 2566 /* 2567 ** Try to obtain a lock on a file. Invoke the busy callback if the lock 2568 ** is currently not available. Repeat until the busy callback returns 2569 ** false or until the lock succeeds. 2570 ** 2571 ** Return SQLITE_OK on success and an error code if we cannot obtain 2572 ** the lock. 2573 */ 2574 static int pager_wait_on_lock(Pager *pPager, int locktype){ 2575 int rc; 2576 2577 /* The OS lock values must be the same as the Pager lock values */ 2578 assert( PAGER_SHARED==SHARED_LOCK ); 2579 assert( PAGER_RESERVED==RESERVED_LOCK ); 2580 assert( PAGER_EXCLUSIVE==EXCLUSIVE_LOCK ); 2581 2582 /* If the file is currently unlocked then the size must be unknown */ 2583 assert( pPager->state>=PAGER_SHARED || pPager->dbSize<0 || MEMDB ); 2584 2585 if( pPager->state>=locktype ){ 2586 rc = SQLITE_OK; 2587 }else{ 2588 do { 2589 rc = sqlite3OsLock(pPager->fd, locktype); 2590 }while( rc==SQLITE_BUSY && sqlite3InvokeBusyHandler(pPager->pBusyHandler) ); 2591 if( rc==SQLITE_OK ){ 2592 pPager->state = locktype; 2593 IOTRACE(("LOCK %p %d\n", pPager, locktype)) 2594 } 2595 } 2596 return rc; 2597 } 2598 2599 /* 2600 ** Truncate the file to the number of pages specified. 2601 */ 2602 int sqlite3PagerTruncate(Pager *pPager, Pgno nPage){ 2603 int rc; 2604 assert( pPager->state>=PAGER_SHARED || MEMDB ); 2605 sqlite3PagerPagecount(pPager); 2606 if( pPager->errCode ){ 2607 rc = pPager->errCode; 2608 return rc; 2609 } 2610 if( nPage>=(unsigned)pPager->dbSize ){ 2611 return SQLITE_OK; 2612 } 2613 if( MEMDB ){ 2614 pPager->dbSize = nPage; 2615 pager_truncate_cache(pPager); 2616 return SQLITE_OK; 2617 } 2618 pagerEnter(pPager); 2619 rc = syncJournal(pPager); 2620 pagerLeave(pPager); 2621 if( rc!=SQLITE_OK ){ 2622 return rc; 2623 } 2624 2625 /* Get an exclusive lock on the database before truncating. */ 2626 pagerEnter(pPager); 2627 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); 2628 pagerLeave(pPager); 2629 if( rc!=SQLITE_OK ){ 2630 return rc; 2631 } 2632 2633 rc = pager_truncate(pPager, nPage); 2634 return rc; 2635 } 2636 2637 /* 2638 ** Shutdown the page cache. Free all memory and close all files. 2639 ** 2640 ** If a transaction was in progress when this routine is called, that 2641 ** transaction is rolled back. All outstanding pages are invalidated 2642 ** and their memory is freed. Any attempt to use a page associated 2643 ** with this page cache after this function returns will likely 2644 ** result in a coredump. 2645 ** 2646 ** This function always succeeds. If a transaction is active an attempt 2647 ** is made to roll it back. If an error occurs during the rollback 2648 ** a hot journal may be left in the filesystem but no error is returned 2649 ** to the caller. 2650 */ 2651 int sqlite3PagerClose(Pager *pPager){ 2652 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 2653 if( !MEMDB ){ 2654 sqlite3_mutex *mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); 2655 sqlite3_mutex_enter(mutex); 2656 if( pPager->pPrev ){ 2657 pPager->pPrev->pNext = pPager->pNext; 2658 }else{ 2659 sqlite3PagerList = pPager->pNext; 2660 } 2661 if( pPager->pNext ){ 2662 pPager->pNext->pPrev = pPager->pPrev; 2663 } 2664 sqlite3_mutex_leave(mutex); 2665 } 2666 #endif 2667 2668 disable_simulated_io_errors(); 2669 pPager->errCode = 0; 2670 pPager->exclusiveMode = 0; 2671 pager_reset(pPager); 2672 pagerUnlockAndRollback(pPager); 2673 enable_simulated_io_errors(); 2674 PAGERTRACE2("CLOSE %d\n", PAGERID(pPager)); 2675 IOTRACE(("CLOSE %p\n", pPager)) 2676 assert( pPager->errCode || (pPager->journalOpen==0 && pPager->stmtOpen==0) ); 2677 if( pPager->journalOpen ){ 2678 sqlite3OsClose(pPager->jfd); 2679 } 2680 sqlite3_free(pPager->aInJournal); 2681 if( pPager->stmtOpen ){ 2682 sqlite3OsClose(pPager->stfd); 2683 } 2684 sqlite3OsClose(pPager->fd); 2685 /* Temp files are automatically deleted by the OS 2686 ** if( pPager->tempFile ){ 2687 ** sqlite3OsDelete(pPager->zFilename); 2688 ** } 2689 */ 2690 2691 sqlite3_free(pPager->aHash); 2692 sqlite3_free(pPager->pTmpSpace); 2693 sqlite3_free(pPager); 2694 return SQLITE_OK; 2695 } 2696 2697 #if !defined(NDEBUG) || defined(SQLITE_TEST) 2698 /* 2699 ** Return the page number for the given page data. 2700 */ 2701 Pgno sqlite3PagerPagenumber(DbPage *p){ 2702 return p->pgno; 2703 } 2704 #endif 2705 2706 /* 2707 ** The page_ref() function increments the reference count for a page. 2708 ** If the page is currently on the freelist (the reference count is zero) then 2709 ** remove it from the freelist. 2710 ** 2711 ** For non-test systems, page_ref() is a macro that calls _page_ref() 2712 ** online of the reference count is zero. For test systems, page_ref() 2713 ** is a real function so that we can set breakpoints and trace it. 2714 */ 2715 static void _page_ref(PgHdr *pPg){ 2716 if( pPg->nRef==0 ){ 2717 /* The page is currently on the freelist. Remove it. */ 2718 lruListRemove(pPg); 2719 pPg->pPager->nRef++; 2720 } 2721 pPg->nRef++; 2722 REFINFO(pPg); 2723 } 2724 #ifdef SQLITE_DEBUG 2725 static void page_ref(PgHdr *pPg){ 2726 if( pPg->nRef==0 ){ 2727 _page_ref(pPg); 2728 }else{ 2729 pPg->nRef++; 2730 REFINFO(pPg); 2731 } 2732 } 2733 #else 2734 # define page_ref(P) ((P)->nRef==0?_page_ref(P):(void)(P)->nRef++) 2735 #endif 2736 2737 /* 2738 ** Increment the reference count for a page. The input pointer is 2739 ** a reference to the page data. 2740 */ 2741 int sqlite3PagerRef(DbPage *pPg){ 2742 pagerEnter(pPg->pPager); 2743 page_ref(pPg); 2744 pagerLeave(pPg->pPager); 2745 return SQLITE_OK; 2746 } 2747 2748 /* 2749 ** Sync the journal. In other words, make sure all the pages that have 2750 ** been written to the journal have actually reached the surface of the 2751 ** disk. It is not safe to modify the original database file until after 2752 ** the journal has been synced. If the original database is modified before 2753 ** the journal is synced and a power failure occurs, the unsynced journal 2754 ** data would be lost and we would be unable to completely rollback the 2755 ** database changes. Database corruption would occur. 2756 ** 2757 ** This routine also updates the nRec field in the header of the journal. 2758 ** (See comments on the pager_playback() routine for additional information.) 2759 ** If the sync mode is FULL, two syncs will occur. First the whole journal 2760 ** is synced, then the nRec field is updated, then a second sync occurs. 2761 ** 2762 ** For temporary databases, we do not care if we are able to rollback 2763 ** after a power failure, so no sync occurs. 2764 ** 2765 ** If the IOCAP_SEQUENTIAL flag is set for the persistent media on which 2766 ** the database is stored, then OsSync() is never called on the journal 2767 ** file. In this case all that is required is to update the nRec field in 2768 ** the journal header. 2769 ** 2770 ** This routine clears the needSync field of every page current held in 2771 ** memory. 2772 */ 2773 static int syncJournal(Pager *pPager){ 2774 PgHdr *pPg; 2775 int rc = SQLITE_OK; 2776 2777 2778 /* Sync the journal before modifying the main database 2779 ** (assuming there is a journal and it needs to be synced.) 2780 */ 2781 if( pPager->needSync ){ 2782 if( !pPager->tempFile ){ 2783 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); 2784 assert( pPager->journalOpen ); 2785 2786 /* assert( !pPager->noSync ); // noSync might be set if synchronous 2787 ** was turned off after the transaction was started. Ticket #615 */ 2788 #ifndef NDEBUG 2789 { 2790 /* Make sure the pPager->nRec counter we are keeping agrees 2791 ** with the nRec computed from the size of the journal file. 2792 */ 2793 i64 jSz; 2794 rc = sqlite3OsFileSize(pPager->jfd, &jSz); 2795 if( rc!=0 ) return rc; 2796 assert( pPager->journalOff==jSz ); 2797 } 2798 #endif 2799 if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ 2800 /* Write the nRec value into the journal file header. If in 2801 ** full-synchronous mode, sync the journal first. This ensures that 2802 ** all data has really hit the disk before nRec is updated to mark 2803 ** it as a candidate for rollback. 2804 ** 2805 ** This is not required if the persistent media supports the 2806 ** SAFE_APPEND property. Because in this case it is not possible 2807 ** for garbage data to be appended to the file, the nRec field 2808 ** is populated with 0xFFFFFFFF when the journal header is written 2809 ** and never needs to be updated. 2810 */ 2811 i64 jrnlOff; 2812 if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ 2813 PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager)); 2814 IOTRACE(("JSYNC %p\n", pPager)) 2815 rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags); 2816 if( rc!=0 ) return rc; 2817 } 2818 2819 jrnlOff = pPager->journalHdr + sizeof(aJournalMagic); 2820 IOTRACE(("JHDR %p %lld %d\n", pPager, jrnlOff, 4)); 2821 rc = write32bits(pPager->jfd, jrnlOff, pPager->nRec); 2822 if( rc ) return rc; 2823 } 2824 if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ 2825 PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager)); 2826 IOTRACE(("JSYNC %p\n", pPager)) 2827 rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags| 2828 (pPager->sync_flags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0) 2829 ); 2830 if( rc!=0 ) return rc; 2831 } 2832 pPager->journalStarted = 1; 2833 } 2834 pPager->needSync = 0; 2835 2836 /* Erase the needSync flag from every page. 2837 */ 2838 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ 2839 pPg->needSync = 0; 2840 } 2841 lruListSetFirstSynced(pPager); 2842 } 2843 2844 #ifndef NDEBUG 2845 /* If the Pager.needSync flag is clear then the PgHdr.needSync 2846 ** flag must also be clear for all pages. Verify that this 2847 ** invariant is true. 2848 */ 2849 else{ 2850 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ 2851 assert( pPg->needSync==0 ); 2852 } 2853 assert( pPager->lru.pFirstSynced==pPager->lru.pFirst ); 2854 } 2855 #endif 2856 2857 return rc; 2858 } 2859 2860 /* 2861 ** Merge two lists of pages connected by pDirty and in pgno order. 2862 ** Do not both fixing the pPrevDirty pointers. 2863 */ 2864 static PgHdr *merge_pagelist(PgHdr *pA, PgHdr *pB){ 2865 PgHdr result, *pTail; 2866 pTail = &result; 2867 while( pA && pB ){ 2868 if( pA->pgno<pB->pgno ){ 2869 pTail->pDirty = pA; 2870 pTail = pA; 2871 pA = pA->pDirty; 2872 }else{ 2873 pTail->pDirty = pB; 2874 pTail = pB; 2875 pB = pB->pDirty; 2876 } 2877 } 2878 if( pA ){ 2879 pTail->pDirty = pA; 2880 }else if( pB ){ 2881 pTail->pDirty = pB; 2882 }else{ 2883 pTail->pDirty = 0; 2884 } 2885 return result.pDirty; 2886 } 2887 2888 /* 2889 ** Sort the list of pages in accending order by pgno. Pages are 2890 ** connected by pDirty pointers. The pPrevDirty pointers are 2891 ** corrupted by this sort. 2892 */ 2893 #define N_SORT_BUCKET_ALLOC 25 2894 #define N_SORT_BUCKET 25 2895 #ifdef SQLITE_TEST 2896 int sqlite3_pager_n_sort_bucket = 0; 2897 #undef N_SORT_BUCKET 2898 #define N_SORT_BUCKET \ 2899 (sqlite3_pager_n_sort_bucket?sqlite3_pager_n_sort_bucket:N_SORT_BUCKET_ALLOC) 2900 #endif 2901 static PgHdr *sort_pagelist(PgHdr *pIn){ 2902 PgHdr *a[N_SORT_BUCKET_ALLOC], *p; 2903 int i; 2904 memset(a, 0, sizeof(a)); 2905 while( pIn ){ 2906 p = pIn; 2907 pIn = p->pDirty; 2908 p->pDirty = 0; 2909 for(i=0; i<N_SORT_BUCKET-1; i++){ 2910 if( a[i]==0 ){ 2911 a[i] = p; 2912 break; 2913 }else{ 2914 p = merge_pagelist(a[i], p); 2915 a[i] = 0; 2916 } 2917 } 2918 if( i==N_SORT_BUCKET-1 ){ 2919 /* Coverage: To get here, there need to be 2^(N_SORT_BUCKET) 2920 ** elements in the input list. This is possible, but impractical. 2921 ** Testing this line is the point of global variable 2922 ** sqlite3_pager_n_sort_bucket. 2923 */ 2924 a[i] = merge_pagelist(a[i], p); 2925 } 2926 } 2927 p = a[0]; 2928 for(i=1; i<N_SORT_BUCKET; i++){ 2929 p = merge_pagelist(p, a[i]); 2930 } 2931 return p; 2932 } 2933 2934 /* 2935 ** Given a list of pages (connected by the PgHdr.pDirty pointer) write 2936 ** every one of those pages out to the database file and mark them all 2937 ** as clean. 2938 */ 2939 static int pager_write_pagelist(PgHdr *pList){ 2940 Pager *pPager; 2941 PgHdr *p; 2942 int rc; 2943 2944 if( pList==0 ) return SQLITE_OK; 2945 pPager = pList->pPager; 2946 2947 /* At this point there may be either a RESERVED or EXCLUSIVE lock on the 2948 ** database file. If there is already an EXCLUSIVE lock, the following 2949 ** calls to sqlite3OsLock() are no-ops. 2950 ** 2951 ** Moving the lock from RESERVED to EXCLUSIVE actually involves going 2952 ** through an intermediate state PENDING. A PENDING lock prevents new 2953 ** readers from attaching to the database but is unsufficient for us to 2954 ** write. The idea of a PENDING lock is to prevent new readers from 2955 ** coming in while we wait for existing readers to clear. 2956 ** 2957 ** While the pager is in the RESERVED state, the original database file 2958 ** is unchanged and we can rollback without having to playback the 2959 ** journal into the original database file. Once we transition to 2960 ** EXCLUSIVE, it means the database file has been changed and any rollback 2961 ** will require a journal playback. 2962 */ 2963 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); 2964 if( rc!=SQLITE_OK ){ 2965 return rc; 2966 } 2967 2968 pList = sort_pagelist(pList); 2969 for(p=pList; p; p=p->pDirty){ 2970 assert( p->dirty ); 2971 p->dirty = 0; 2972 } 2973 while( pList ){ 2974 2975 /* If the file has not yet been opened, open it now. */ 2976 if( !pPager->fd->pMethods ){ 2977 assert(pPager->tempFile); 2978 rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->fd, pPager->zFilename, 2979 pPager->vfsFlags); 2980 if( rc ) return rc; 2981 } 2982 2983 /* If there are dirty pages in the page cache with page numbers greater 2984 ** than Pager.dbSize, this means sqlite3PagerTruncate() was called to 2985 ** make the file smaller (presumably by auto-vacuum code). Do not write 2986 ** any such pages to the file. 2987 */ 2988 if( pList->pgno<=pPager->dbSize ){ 2989 i64 offset = (pList->pgno-1)*(i64)pPager->pageSize; 2990 char *pData = CODEC2(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6); 2991 PAGERTRACE4("STORE %d page %d hash(%08x)\n", 2992 PAGERID(pPager), pList->pgno, pager_pagehash(pList)); 2993 IOTRACE(("PGOUT %p %d\n", pPager, pList->pgno)); 2994 rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset); 2995 PAGER_INCR(sqlite3_pager_writedb_count); 2996 PAGER_INCR(pPager->nWrite); 2997 if( pList->pgno==1 ){ 2998 memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers)); 2999 } 3000 } 3001 #ifndef NDEBUG 3002 else{ 3003 PAGERTRACE3("NOSTORE %d page %d\n", PAGERID(pPager), pList->pgno); 3004 } 3005 #endif 3006 if( rc ) return rc; 3007 #ifdef SQLITE_CHECK_PAGES 3008 pList->pageHash = pager_pagehash(pList); 3009 #endif 3010 pList = pList->pDirty; 3011 } 3012 return SQLITE_OK; 3013 } 3014 3015 /* 3016 ** Collect every dirty page into a dirty list and 3017 ** return a pointer to the head of that list. All pages are 3018 ** collected even if they are still in use. 3019 */ 3020 static PgHdr *pager_get_all_dirty_pages(Pager *pPager){ 3021 return pPager->pDirty; 3022 } 3023 3024 /* 3025 ** Return TRUE if there is a hot journal on the given pager. 3026 ** A hot journal is one that needs to be played back. 3027 ** 3028 ** If the current size of the database file is 0 but a journal file 3029 ** exists, that is probably an old journal left over from a prior 3030 ** database with the same name. Just delete the journal. 3031 */ 3032 static int hasHotJournal(Pager *pPager){ 3033 sqlite3_vfs *pVfs = pPager->pVfs; 3034 if( !pPager->useJournal ) return 0; 3035 if( !pPager->fd->pMethods ) return 0; 3036 if( !sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS) ){ 3037 return 0; 3038 } 3039 if( sqlite3OsCheckReservedLock(pPager->fd) ){ 3040 return 0; 3041 } 3042 if( sqlite3PagerPagecount(pPager)==0 ){ 3043 sqlite3OsDelete(pVfs, pPager->zJournal, 0); 3044 return 0; 3045 }else{ 3046 return 1; 3047 } 3048 } 3049 3050 /* 3051 ** Try to find a page in the cache that can be recycled. 3052 ** 3053 ** This routine may return SQLITE_IOERR, SQLITE_FULL or SQLITE_OK. It 3054 ** does not set the pPager->errCode variable. 3055 */ 3056 static int pager_recycle(Pager *pPager, PgHdr **ppPg){ 3057 PgHdr *pPg; 3058 *ppPg = 0; 3059 3060 /* It is illegal to call this function unless the pager object 3061 ** pointed to by pPager has at least one free page (page with nRef==0). 3062 */ 3063 assert(!MEMDB); 3064 assert(pPager->lru.pFirst); 3065 3066 /* Find a page to recycle. Try to locate a page that does not 3067 ** require us to do an fsync() on the journal. 3068 */ 3069 pPg = pPager->lru.pFirstSynced; 3070 3071 /* If we could not find a page that does not require an fsync() 3072 ** on the journal file then fsync the journal file. This is a 3073 ** very slow operation, so we work hard to avoid it. But sometimes 3074 ** it can't be helped. 3075 */ 3076 if( pPg==0 && pPager->lru.pFirst){ 3077 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); 3078 int rc = syncJournal(pPager); 3079 if( rc!=0 ){ 3080 return rc; 3081 } 3082 if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ 3083 /* If in full-sync mode, write a new journal header into the 3084 ** journal file. This is done to avoid ever modifying a journal 3085 ** header that is involved in the rollback of pages that have 3086 ** already been written to the database (in case the header is 3087 ** trashed when the nRec field is updated). 3088 */ 3089 pPager->nRec = 0; 3090 assert( pPager->journalOff > 0 ); 3091 assert( pPager->doNotSync==0 ); 3092 rc = writeJournalHdr(pPager); 3093 if( rc!=0 ){ 3094 return rc; 3095 } 3096 } 3097 pPg = pPager->lru.pFirst; 3098 } 3099 3100 assert( pPg->nRef==0 ); 3101 3102 /* Write the page to the database file if it is dirty. 3103 */ 3104 if( pPg->dirty ){ 3105 int rc; 3106 assert( pPg->needSync==0 ); 3107 makeClean(pPg); 3108 pPg->dirty = 1; 3109 pPg->pDirty = 0; 3110 rc = pager_write_pagelist( pPg ); 3111 pPg->dirty = 0; 3112 if( rc!=SQLITE_OK ){ 3113 return rc; 3114 } 3115 } 3116 assert( pPg->dirty==0 ); 3117 3118 /* If the page we are recycling is marked as alwaysRollback, then 3119 ** set the global alwaysRollback flag, thus disabling the 3120 ** sqlite3PagerDontRollback() optimization for the rest of this transaction. 3121 ** It is necessary to do this because the page marked alwaysRollback 3122 ** might be reloaded at a later time but at that point we won't remember 3123 ** that is was marked alwaysRollback. This means that all pages must 3124 ** be marked as alwaysRollback from here on out. 3125 */ 3126 if( pPg->alwaysRollback ){ 3127 IOTRACE(("ALWAYS_ROLLBACK %p\n", pPager)) 3128 pPager->alwaysRollback = 1; 3129 } 3130 3131 /* Unlink the old page from the free list and the hash table 3132 */ 3133 unlinkPage(pPg); 3134 assert( pPg->pgno==0 ); 3135 3136 *ppPg = pPg; 3137 return SQLITE_OK; 3138 } 3139 3140 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 3141 /* 3142 ** This function is called to free superfluous dynamically allocated memory 3143 ** held by the pager system. Memory in use by any SQLite pager allocated 3144 ** by the current thread may be sqlite3_free()ed. 3145 ** 3146 ** nReq is the number of bytes of memory required. Once this much has 3147 ** been released, the function returns. The return value is the total number 3148 ** of bytes of memory released. 3149 */ 3150 int sqlite3PagerReleaseMemory(int nReq){ 3151 int nReleased = 0; /* Bytes of memory released so far */ 3152 sqlite3_mutex *mutex; /* The MEM2 mutex */ 3153 Pager *pPager; /* For looping over pagers */ 3154 BusyHandler *savedBusy; /* Saved copy of the busy handler */ 3155 int rc = SQLITE_OK; 3156 3157 /* Acquire the memory-management mutex 3158 */ 3159 mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM2); 3160 sqlite3_mutex_enter(mutex); 3161 3162 /* Signal all database connections that memory management wants 3163 ** to have access to the pagers. 3164 */ 3165 for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){ 3166 pPager->iInUseMM = 1; 3167 } 3168 3169 while( rc==SQLITE_OK && (nReq<0 || nReleased<nReq) ){ 3170 PgHdr *pPg; 3171 PgHdr *pRecycled; 3172 3173 /* Try to find a page to recycle that does not require a sync(). If 3174 ** this is not possible, find one that does require a sync(). 3175 */ 3176 sqlite3_mutex_enter(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 3177 pPg = sqlite3LruPageList.pFirstSynced; 3178 while( pPg && (pPg->needSync || pPg->pPager->iInUseDB) ){ 3179 pPg = pPg->gfree.pNext; 3180 } 3181 if( !pPg ){ 3182 pPg = sqlite3LruPageList.pFirst; 3183 while( pPg && pPg->pPager->iInUseDB ){ 3184 pPg = pPg->gfree.pNext; 3185 } 3186 } 3187 sqlite3_mutex_leave(sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU)); 3188 3189 /* If pPg==0, then the block above has failed to find a page to 3190 ** recycle. In this case return early - no further memory will 3191 ** be released. 3192 */ 3193 if( !pPg ) break; 3194 3195 pPager = pPg->pPager; 3196 assert(!pPg->needSync || pPg==pPager->lru.pFirst); 3197 assert(pPg->needSync || pPg==pPager->lru.pFirstSynced); 3198 3199 savedBusy = pPager->pBusyHandler; 3200 pPager->pBusyHandler = 0; 3201 rc = pager_recycle(pPager, &pRecycled); 3202 pPager->pBusyHandler = savedBusy; 3203 assert(pRecycled==pPg || rc!=SQLITE_OK); 3204 if( rc==SQLITE_OK ){ 3205 /* We've found a page to free. At this point the page has been 3206 ** removed from the page hash-table, free-list and synced-list 3207 ** (pFirstSynced). It is still in the all pages (pAll) list. 3208 ** Remove it from this list before freeing. 3209 ** 3210 ** Todo: Check the Pager.pStmt list to make sure this is Ok. It 3211 ** probably is though. 3212 */ 3213 PgHdr *pTmp; 3214 assert( pPg ); 3215 if( pPg==pPager->pAll ){ 3216 pPager->pAll = pPg->pNextAll; 3217 }else{ 3218 for( pTmp=pPager->pAll; pTmp->pNextAll!=pPg; pTmp=pTmp->pNextAll ){} 3219 pTmp->pNextAll = pPg->pNextAll; 3220 } 3221 nReleased += ( 3222 sizeof(*pPg) + pPager->pageSize 3223 + sizeof(u32) + pPager->nExtra 3224 + MEMDB*sizeof(PgHistory) 3225 ); 3226 IOTRACE(("PGFREE %p %d *\n", pPager, pPg->pgno)); 3227 PAGER_INCR(sqlite3_pager_pgfree_count); 3228 sqlite3_free(pPg); 3229 pPager->nPage--; 3230 }else{ 3231 /* An error occured whilst writing to the database file or 3232 ** journal in pager_recycle(). The error is not returned to the 3233 ** caller of this function. Instead, set the Pager.errCode variable. 3234 ** The error will be returned to the user (or users, in the case 3235 ** of a shared pager cache) of the pager for which the error occured. 3236 */ 3237 assert( 3238 (rc&0xff)==SQLITE_IOERR || 3239 rc==SQLITE_FULL || 3240 rc==SQLITE_BUSY 3241 ); 3242 assert( pPager->state>=PAGER_RESERVED ); 3243 pager_error(pPager, rc); 3244 } 3245 } 3246 3247 /* Clear the memory management flags and release the mutex 3248 */ 3249 for(pPager=sqlite3PagerList; pPager; pPager=pPager->pNext){ 3250 pPager->iInUseMM = 0; 3251 } 3252 sqlite3_mutex_leave(mutex); 3253 3254 /* Return the number of bytes released 3255 */ 3256 return nReleased; 3257 } 3258 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ 3259 3260 /* 3261 ** Read the content of page pPg out of the database file. 3262 */ 3263 static int readDbPage(Pager *pPager, PgHdr *pPg, Pgno pgno){ 3264 int rc; 3265 i64 offset; 3266 assert( MEMDB==0 ); 3267 assert(pPager->fd->pMethods||pPager->tempFile); 3268 if( !pPager->fd->pMethods ){ 3269 return SQLITE_IOERR_SHORT_READ; 3270 } 3271 offset = (pgno-1)*(i64)pPager->pageSize; 3272 rc = sqlite3OsRead(pPager->fd, PGHDR_TO_DATA(pPg), pPager->pageSize, offset); 3273 PAGER_INCR(sqlite3_pager_readdb_count); 3274 PAGER_INCR(pPager->nRead); 3275 IOTRACE(("PGIN %p %d\n", pPager, pgno)); 3276 if( pgno==1 ){ 3277 memcpy(&pPager->dbFileVers, &((u8*)PGHDR_TO_DATA(pPg))[24], 3278 sizeof(pPager->dbFileVers)); 3279 } 3280 CODEC1(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3); 3281 PAGERTRACE4("FETCH %d page %d hash(%08x)\n", 3282 PAGERID(pPager), pPg->pgno, pager_pagehash(pPg)); 3283 return rc; 3284 } 3285 3286 3287 /* 3288 ** This function is called to obtain the shared lock required before 3289 ** data may be read from the pager cache. If the shared lock has already 3290 ** been obtained, this function is a no-op. 3291 ** 3292 ** Immediately after obtaining the shared lock (if required), this function 3293 ** checks for a hot-journal file. If one is found, an emergency rollback 3294 ** is performed immediately. 3295 */ 3296 static int pagerSharedLock(Pager *pPager){ 3297 int rc = SQLITE_OK; 3298 int isHot = 0; 3299 3300 /* If this database is opened for exclusive access, has no outstanding 3301 ** page references and is in an error-state, now is the chance to clear 3302 ** the error. Discard the contents of the pager-cache and treat any 3303 ** open journal file as a hot-journal. 3304 */ 3305 if( !MEMDB && pPager->exclusiveMode && pPager->nRef==0 && pPager->errCode ){ 3306 if( pPager->journalOpen ){ 3307 isHot = 1; 3308 } 3309 pager_reset(pPager); 3310 pPager->errCode = SQLITE_OK; 3311 } 3312 3313 /* If the pager is still in an error state, do not proceed. The error 3314 ** state will be cleared at some point in the future when all page 3315 ** references are dropped and the cache can be discarded. 3316 */ 3317 if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){ 3318 return pPager->errCode; 3319 } 3320 3321 if( pPager->state==PAGER_UNLOCK || isHot ){ 3322 sqlite3_vfs *pVfs = pPager->pVfs; 3323 if( !MEMDB ){ 3324 assert( pPager->nRef==0 ); 3325 if( !pPager->noReadlock ){ 3326 rc = pager_wait_on_lock(pPager, SHARED_LOCK); 3327 if( rc!=SQLITE_OK ){ 3328 return pager_error(pPager, rc); 3329 } 3330 assert( pPager->state>=SHARED_LOCK ); 3331 } 3332 3333 /* If a journal file exists, and there is no RESERVED lock on the 3334 ** database file, then it either needs to be played back or deleted. 3335 */ 3336 if( hasHotJournal(pPager) || isHot ){ 3337 /* Get an EXCLUSIVE lock on the database file. At this point it is 3338 ** important that a RESERVED lock is not obtained on the way to the 3339 ** EXCLUSIVE lock. If it were, another process might open the 3340 ** database file, detect the RESERVED lock, and conclude that the 3341 ** database is safe to read while this process is still rolling it 3342 ** back. 3343 ** 3344 ** Because the intermediate RESERVED lock is not requested, the 3345 ** second process will get to this point in the code and fail to 3346 ** obtain its own EXCLUSIVE lock on the database file. 3347 */ 3348 if( pPager->state<EXCLUSIVE_LOCK ){ 3349 rc = sqlite3OsLock(pPager->fd, EXCLUSIVE_LOCK); 3350 if( rc!=SQLITE_OK ){ 3351 pager_unlock(pPager); 3352 return pager_error(pPager, rc); 3353 } 3354 pPager->state = PAGER_EXCLUSIVE; 3355 } 3356 3357 /* Open the journal for reading only. Return SQLITE_BUSY if 3358 ** we are unable to open the journal file. 3359 ** 3360 ** The journal file does not need to be locked itself. The 3361 ** journal file is never open unless the main database file holds 3362 ** a write lock, so there is never any chance of two or more 3363 ** processes opening the journal at the same time. 3364 ** 3365 ** Open the journal for read/write access. This is because in 3366 ** exclusive-access mode the file descriptor will be kept open and 3367 ** possibly used for a transaction later on. On some systems, the 3368 ** OsTruncate() call used in exclusive-access mode also requires 3369 ** a read/write file handle. 3370 */ 3371 if( !isHot ){ 3372 rc = SQLITE_BUSY; 3373 if( sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS) ){ 3374 int fout = 0; 3375 int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL; 3376 assert( !pPager->tempFile ); 3377 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout); 3378 assert( rc!=SQLITE_OK || pPager->jfd->pMethods ); 3379 if( fout&SQLITE_OPEN_READONLY ){ 3380 rc = SQLITE_BUSY; 3381 sqlite3OsClose(pPager->jfd); 3382 } 3383 } 3384 } 3385 if( rc!=SQLITE_OK ){ 3386 pager_unlock(pPager); 3387 return ((rc==SQLITE_NOMEM||rc==SQLITE_IOERR_NOMEM)?rc:SQLITE_BUSY); 3388 } 3389 pPager->journalOpen = 1; 3390 pPager->journalStarted = 0; 3391 pPager->journalOff = 0; 3392 pPager->setMaster = 0; 3393 pPager->journalHdr = 0; 3394 3395 /* Playback and delete the journal. Drop the database write 3396 ** lock and reacquire the read lock. 3397 */ 3398 rc = pager_playback(pPager, 1); 3399 if( rc!=SQLITE_OK ){ 3400 return pager_error(pPager, rc); 3401 } 3402 assert(pPager->state==PAGER_SHARED || 3403 (pPager->exclusiveMode && pPager->state>PAGER_SHARED) 3404 ); 3405 } 3406 3407 if( pPager->pAll ){ 3408 /* The shared-lock has just been acquired on the database file 3409 ** and there are already pages in the cache (from a previous 3410 ** read or write transaction). Check to see if the database 3411 ** has been modified. If the database has changed, flush the 3412 ** cache. 3413 ** 3414 ** Database changes is detected by looking at 15 bytes beginning 3415 ** at offset 24 into the file. The first 4 of these 16 bytes are 3416 ** a 32-bit counter that is incremented with each change. The 3417 ** other bytes change randomly with each file change when 3418 ** a codec is in use. 3419 ** 3420 ** There is a vanishingly small chance that a change will not be 3421 ** detected. The chance of an undetected change is so small that 3422 ** it can be neglected. 3423 */ 3424 char dbFileVers[sizeof(pPager->dbFileVers)]; 3425 sqlite3PagerPagecount(pPager); 3426 3427 if( pPager->errCode ){ 3428 return pPager->errCode; 3429 } 3430 3431 if( pPager->dbSize>0 ){ 3432 IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers))); 3433 rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24); 3434 if( rc!=SQLITE_OK ){ 3435 return rc; 3436 } 3437 }else{ 3438 memset(dbFileVers, 0, sizeof(dbFileVers)); 3439 } 3440 3441 if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){ 3442 pager_reset(pPager); 3443 } 3444 } 3445 } 3446 assert( pPager->exclusiveMode || pPager->state<=PAGER_SHARED ); 3447 if( pPager->state==PAGER_UNLOCK ){ 3448 pPager->state = PAGER_SHARED; 3449 } 3450 } 3451 3452 return rc; 3453 } 3454 3455 /* 3456 ** Allocate a PgHdr object. Either create a new one or reuse 3457 ** an existing one that is not otherwise in use. 3458 ** 3459 ** A new PgHdr structure is created if any of the following are 3460 ** true: 3461 ** 3462 ** (1) We have not exceeded our maximum allocated cache size 3463 ** as set by the "PRAGMA cache_size" command. 3464 ** 3465 ** (2) There are no unused PgHdr objects available at this time. 3466 ** 3467 ** (3) This is an in-memory database. 3468 ** 3469 ** (4) There are no PgHdr objects that do not require a journal 3470 ** file sync and a sync of the journal file is currently 3471 ** prohibited. 3472 ** 3473 ** Otherwise, reuse an existing PgHdr. In other words, reuse an 3474 ** existing PgHdr if all of the following are true: 3475 ** 3476 ** (1) We have reached or exceeded the maximum cache size 3477 ** allowed by "PRAGMA cache_size". 3478 ** 3479 ** (2) There is a PgHdr available with PgHdr->nRef==0 3480 ** 3481 ** (3) We are not in an in-memory database 3482 ** 3483 ** (4) Either there is an available PgHdr that does not need 3484 ** to be synced to disk or else disk syncing is currently 3485 ** allowed. 3486 */ 3487 static int pagerAllocatePage(Pager *pPager, PgHdr **ppPg){ 3488 int rc = SQLITE_OK; 3489 PgHdr *pPg; 3490 int nByteHdr; 3491 3492 /* Create a new PgHdr if any of the four conditions defined 3493 ** above are met: */ 3494 if( pPager->nPage<pPager->mxPage 3495 || pPager->lru.pFirst==0 3496 || MEMDB 3497 || (pPager->lru.pFirstSynced==0 && pPager->doNotSync) 3498 ){ 3499 if( pPager->nPage>=pPager->nHash ){ 3500 pager_resize_hash_table(pPager, 3501 pPager->nHash<256 ? 256 : pPager->nHash*2); 3502 if( pPager->nHash==0 ){ 3503 rc = SQLITE_NOMEM; 3504 goto pager_allocate_out; 3505 } 3506 } 3507 pagerLeave(pPager); 3508 nByteHdr = sizeof(*pPg) + sizeof(u32) + pPager->nExtra 3509 + MEMDB*sizeof(PgHistory); 3510 pPg = sqlite3_malloc( nByteHdr + pPager->pageSize ); 3511 pagerEnter(pPager); 3512 if( pPg==0 ){ 3513 rc = SQLITE_NOMEM; 3514 goto pager_allocate_out; 3515 } 3516 memset(pPg, 0, nByteHdr); 3517 pPg->pData = (void*)(nByteHdr + (char*)pPg); 3518 pPg->pPager = pPager; 3519 pPg->pNextAll = pPager->pAll; 3520 pPager->pAll = pPg; 3521 pPager->nPage++; 3522 }else{ 3523 /* Recycle an existing page with a zero ref-count. */ 3524 rc = pager_recycle(pPager, &pPg); 3525 if( rc==SQLITE_BUSY ){ 3526 rc = SQLITE_IOERR_BLOCKED; 3527 } 3528 if( rc!=SQLITE_OK ){ 3529 goto pager_allocate_out; 3530 } 3531 assert( pPager->state>=SHARED_LOCK ); 3532 assert(pPg); 3533 } 3534 *ppPg = pPg; 3535 3536 pager_allocate_out: 3537 return rc; 3538 } 3539 3540 /* 3541 ** Make sure we have the content for a page. If the page was 3542 ** previously acquired with noContent==1, then the content was 3543 ** just initialized to zeros instead of being read from disk. 3544 ** But now we need the real data off of disk. So make sure we 3545 ** have it. Read it in if we do not have it already. 3546 */ 3547 static int pager_get_content(PgHdr *pPg){ 3548 if( pPg->needRead ){ 3549 int rc = readDbPage(pPg->pPager, pPg, pPg->pgno); 3550 if( rc==SQLITE_OK ){ 3551 pPg->needRead = 0; 3552 }else{ 3553 return rc; 3554 } 3555 } 3556 return SQLITE_OK; 3557 } 3558 3559 /* 3560 ** Acquire a page. 3561 ** 3562 ** A read lock on the disk file is obtained when the first page is acquired. 3563 ** This read lock is dropped when the last page is released. 3564 ** 3565 ** This routine works for any page number greater than 0. If the database 3566 ** file is smaller than the requested page, then no actual disk 3567 ** read occurs and the memory image of the page is initialized to 3568 ** all zeros. The extra data appended to a page is always initialized 3569 ** to zeros the first time a page is loaded into memory. 3570 ** 3571 ** The acquisition might fail for several reasons. In all cases, 3572 ** an appropriate error code is returned and *ppPage is set to NULL. 3573 ** 3574 ** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt 3575 ** to find a page in the in-memory cache first. If the page is not already 3576 ** in memory, this routine goes to disk to read it in whereas Lookup() 3577 ** just returns 0. This routine acquires a read-lock the first time it 3578 ** has to go to disk, and could also playback an old journal if necessary. 3579 ** Since Lookup() never goes to disk, it never has to deal with locks 3580 ** or journal files. 3581 ** 3582 ** If noContent is false, the page contents are actually read from disk. 3583 ** If noContent is true, it means that we do not care about the contents 3584 ** of the page at this time, so do not do a disk read. Just fill in the 3585 ** page content with zeros. But mark the fact that we have not read the 3586 ** content by setting the PgHdr.needRead flag. Later on, if 3587 ** sqlite3PagerWrite() is called on this page or if this routine is 3588 ** called again with noContent==0, that means that the content is needed 3589 ** and the disk read should occur at that point. 3590 */ 3591 static int pagerAcquire( 3592 Pager *pPager, /* The pager open on the database file */ 3593 Pgno pgno, /* Page number to fetch */ 3594 DbPage **ppPage, /* Write a pointer to the page here */ 3595 int noContent /* Do not bother reading content from disk if true */ 3596 ){ 3597 PgHdr *pPg; 3598 int rc; 3599 3600 assert( pPager->state==PAGER_UNLOCK || pPager->nRef>0 || pgno==1 ); 3601 3602 /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page 3603 ** number greater than this, or zero, is requested. 3604 */ 3605 if( pgno>PAGER_MAX_PGNO || pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ 3606 return SQLITE_CORRUPT_BKPT; 3607 } 3608 3609 /* Make sure we have not hit any critical errors. 3610 */ 3611 assert( pPager!=0 ); 3612 *ppPage = 0; 3613 3614 /* If this is the first page accessed, then get a SHARED lock 3615 ** on the database file. pagerSharedLock() is a no-op if 3616 ** a database lock is already held. 3617 */ 3618 rc = pagerSharedLock(pPager); 3619 if( rc!=SQLITE_OK ){ 3620 return rc; 3621 } 3622 assert( pPager->state!=PAGER_UNLOCK ); 3623 3624 pPg = pager_lookup(pPager, pgno); 3625 if( pPg==0 ){ 3626 /* The requested page is not in the page cache. */ 3627 int nMax; 3628 int h; 3629 PAGER_INCR(pPager->nMiss); 3630 rc = pagerAllocatePage(pPager, &pPg); 3631 if( rc!=SQLITE_OK ){ 3632 return rc; 3633 } 3634 3635 pPg->pgno = pgno; 3636 assert( !MEMDB || pgno>pPager->stmtSize ); 3637 if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){ 3638 #if 0 3639 sqlite3CheckMemory(pPager->aInJournal, pgno/8); 3640 #endif 3641 assert( pPager->journalOpen ); 3642 pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0; 3643 pPg->needSync = 0; 3644 }else{ 3645 pPg->inJournal = 0; 3646 pPg->needSync = 0; 3647 } 3648 3649 makeClean(pPg); 3650 pPg->nRef = 1; 3651 REFINFO(pPg); 3652 3653 pPager->nRef++; 3654 if( pPager->nExtra>0 ){ 3655 memset(PGHDR_TO_EXTRA(pPg, pPager), 0, pPager->nExtra); 3656 } 3657 nMax = sqlite3PagerPagecount(pPager); 3658 if( pPager->errCode ){ 3659 rc = pPager->errCode; 3660 sqlite3PagerUnref(pPg); 3661 return rc; 3662 } 3663 3664 /* Populate the page with data, either by reading from the database 3665 ** file, or by setting the entire page to zero. 3666 */ 3667 if( nMax<(int)pgno || MEMDB || (noContent && !pPager->alwaysRollback) ){ 3668 if( pgno>pPager->mxPgno ){ 3669 sqlite3PagerUnref(pPg); 3670 return SQLITE_FULL; 3671 } 3672 memset(PGHDR_TO_DATA(pPg), 0, pPager->pageSize); 3673 pPg->needRead = noContent && !pPager->alwaysRollback; 3674 IOTRACE(("ZERO %p %d\n", pPager, pgno)); 3675 }else{ 3676 rc = readDbPage(pPager, pPg, pgno); 3677 if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){ 3678 pPg->pgno = 0; 3679 sqlite3PagerUnref(pPg); 3680 return rc; 3681 } 3682 pPg->needRead = 0; 3683 } 3684 3685 /* Link the page into the page hash table */ 3686 h = pgno & (pPager->nHash-1); 3687 assert( pgno!=0 ); 3688 pPg->pNextHash = pPager->aHash[h]; 3689 pPager->aHash[h] = pPg; 3690 if( pPg->pNextHash ){ 3691 assert( pPg->pNextHash->pPrevHash==0 ); 3692 pPg->pNextHash->pPrevHash = pPg; 3693 } 3694 3695 #ifdef SQLITE_CHECK_PAGES 3696 pPg->pageHash = pager_pagehash(pPg); 3697 #endif 3698 }else{ 3699 /* The requested page is in the page cache. */ 3700 assert(pPager->nRef>0 || pgno==1); 3701 PAGER_INCR(pPager->nHit); 3702 if( !noContent ){ 3703 rc = pager_get_content(pPg); 3704 if( rc ){ 3705 return rc; 3706 } 3707 } 3708 page_ref(pPg); 3709 } 3710 *ppPage = pPg; 3711 return SQLITE_OK; 3712 } 3713 int sqlite3PagerAcquire( 3714 Pager *pPager, /* The pager open on the database file */ 3715 Pgno pgno, /* Page number to fetch */ 3716 DbPage **ppPage, /* Write a pointer to the page here */ 3717 int noContent /* Do not bother reading content from disk if true */ 3718 ){ 3719 int rc; 3720 pagerEnter(pPager); 3721 rc = pagerAcquire(pPager, pgno, ppPage, noContent); 3722 pagerLeave(pPager); 3723 return rc; 3724 } 3725 3726 3727 /* 3728 ** Acquire a page if it is already in the in-memory cache. Do 3729 ** not read the page from disk. Return a pointer to the page, 3730 ** or 0 if the page is not in cache. 3731 ** 3732 ** See also sqlite3PagerGet(). The difference between this routine 3733 ** and sqlite3PagerGet() is that _get() will go to the disk and read 3734 ** in the page if the page is not already in cache. This routine 3735 ** returns NULL if the page is not in cache or if a disk I/O error 3736 ** has ever happened. 3737 */ 3738 DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ 3739 PgHdr *pPg = 0; 3740 3741 assert( pPager!=0 ); 3742 assert( pgno!=0 ); 3743 3744 pagerEnter(pPager); 3745 if( pPager->state==PAGER_UNLOCK ){ 3746 assert( !pPager->pAll || pPager->exclusiveMode ); 3747 }else if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){ 3748 /* Do nothing */ 3749 }else if( (pPg = pager_lookup(pPager, pgno))!=0 ){ 3750 page_ref(pPg); 3751 } 3752 pagerLeave(pPager); 3753 return pPg; 3754 } 3755 3756 /* 3757 ** Release a page. 3758 ** 3759 ** If the number of references to the page drop to zero, then the 3760 ** page is added to the LRU list. When all references to all pages 3761 ** are released, a rollback occurs and the lock on the database is 3762 ** removed. 3763 */ 3764 int sqlite3PagerUnref(DbPage *pPg){ 3765 Pager *pPager = pPg->pPager; 3766 3767 /* Decrement the reference count for this page 3768 */ 3769 assert( pPg->nRef>0 ); 3770 pagerEnter(pPg->pPager); 3771 pPg->nRef--; 3772 REFINFO(pPg); 3773 3774 CHECK_PAGE(pPg); 3775 3776 /* When the number of references to a page reach 0, call the 3777 ** destructor and add the page to the freelist. 3778 */ 3779 if( pPg->nRef==0 ){ 3780 3781 lruListAdd(pPg); 3782 if( pPager->xDestructor ){ 3783 pPager->xDestructor(pPg, pPager->pageSize); 3784 } 3785 3786 /* When all pages reach the freelist, drop the read lock from 3787 ** the database file. 3788 */ 3789 pPager->nRef--; 3790 assert( pPager->nRef>=0 ); 3791 if( pPager->nRef==0 && (!pPager->exclusiveMode || pPager->journalOff>0) ){ 3792 pagerUnlockAndRollback(pPager); 3793 } 3794 } 3795 pagerLeave(pPager); 3796 return SQLITE_OK; 3797 } 3798 3799 /* 3800 ** Create a journal file for pPager. There should already be a RESERVED 3801 ** or EXCLUSIVE lock on the database file when this routine is called. 3802 ** 3803 ** Return SQLITE_OK if everything. Return an error code and release the 3804 ** write lock if anything goes wrong. 3805 */ 3806 static int pager_open_journal(Pager *pPager){ 3807 sqlite3_vfs *pVfs = pPager->pVfs; 3808 int flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_CREATE); 3809 3810 int rc; 3811 assert( !MEMDB ); 3812 assert( pPager->state>=PAGER_RESERVED ); 3813 assert( pPager->journalOpen==0 ); 3814 assert( pPager->useJournal ); 3815 assert( pPager->aInJournal==0 ); 3816 sqlite3PagerPagecount(pPager); 3817 pagerLeave(pPager); 3818 pPager->aInJournal = sqlite3MallocZero( pPager->dbSize/8 + 1 ); 3819 pagerEnter(pPager); 3820 if( pPager->aInJournal==0 ){ 3821 rc = SQLITE_NOMEM; 3822 goto failed_to_open_journal; 3823 } 3824 3825 if( pPager->tempFile ){ 3826 flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL); 3827 }else{ 3828 flags |= (SQLITE_OPEN_MAIN_JOURNAL); 3829 } 3830 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 3831 rc = sqlite3JournalOpen( 3832 pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager) 3833 ); 3834 #else 3835 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0); 3836 #endif 3837 assert( rc!=SQLITE_OK || pPager->jfd->pMethods ); 3838 pPager->journalOff = 0; 3839 pPager->setMaster = 0; 3840 pPager->journalHdr = 0; 3841 if( rc!=SQLITE_OK ){ 3842 if( rc==SQLITE_NOMEM ){ 3843 sqlite3OsDelete(pVfs, pPager->zJournal, 0); 3844 } 3845 goto failed_to_open_journal; 3846 } 3847 pPager->journalOpen = 1; 3848 pPager->journalStarted = 0; 3849 pPager->needSync = 0; 3850 pPager->alwaysRollback = 0; 3851 pPager->nRec = 0; 3852 if( pPager->errCode ){ 3853 rc = pPager->errCode; 3854 goto failed_to_open_journal; 3855 } 3856 pPager->origDbSize = pPager->dbSize; 3857 3858 rc = writeJournalHdr(pPager); 3859 3860 if( pPager->stmtAutoopen && rc==SQLITE_OK ){ 3861 rc = sqlite3PagerStmtBegin(pPager); 3862 } 3863 if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && rc!=SQLITE_IOERR_NOMEM ){ 3864 rc = pager_end_transaction(pPager); 3865 if( rc==SQLITE_OK ){ 3866 rc = SQLITE_FULL; 3867 } 3868 } 3869 return rc; 3870 3871 failed_to_open_journal: 3872 sqlite3_free(pPager->aInJournal); 3873 pPager->aInJournal = 0; 3874 return rc; 3875 } 3876 3877 /* 3878 ** Acquire a write-lock on the database. The lock is removed when 3879 ** the any of the following happen: 3880 ** 3881 ** * sqlite3PagerCommitPhaseTwo() is called. 3882 ** * sqlite3PagerRollback() is called. 3883 ** * sqlite3PagerClose() is called. 3884 ** * sqlite3PagerUnref() is called to on every outstanding page. 3885 ** 3886 ** The first parameter to this routine is a pointer to any open page of the 3887 ** database file. Nothing changes about the page - it is used merely to 3888 ** acquire a pointer to the Pager structure and as proof that there is 3889 ** already a read-lock on the database. 3890 ** 3891 ** The second parameter indicates how much space in bytes to reserve for a 3892 ** master journal file-name at the start of the journal when it is created. 3893 ** 3894 ** A journal file is opened if this is not a temporary file. For temporary 3895 ** files, the opening of the journal file is deferred until there is an 3896 ** actual need to write to the journal. 3897 ** 3898 ** If the database is already reserved for writing, this routine is a no-op. 3899 ** 3900 ** If exFlag is true, go ahead and get an EXCLUSIVE lock on the file 3901 ** immediately instead of waiting until we try to flush the cache. The 3902 ** exFlag is ignored if a transaction is already active. 3903 */ 3904 int sqlite3PagerBegin(DbPage *pPg, int exFlag){ 3905 Pager *pPager = pPg->pPager; 3906 int rc = SQLITE_OK; 3907 pagerEnter(pPager); 3908 assert( pPg->nRef>0 ); 3909 assert( pPager->state!=PAGER_UNLOCK ); 3910 if( pPager->state==PAGER_SHARED ){ 3911 assert( pPager->aInJournal==0 ); 3912 if( MEMDB ){ 3913 pPager->state = PAGER_EXCLUSIVE; 3914 pPager->origDbSize = pPager->dbSize; 3915 }else{ 3916 rc = sqlite3OsLock(pPager->fd, RESERVED_LOCK); 3917 if( rc==SQLITE_OK ){ 3918 pPager->state = PAGER_RESERVED; 3919 if( exFlag ){ 3920 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); 3921 } 3922 } 3923 if( rc!=SQLITE_OK ){ 3924 pagerLeave(pPager); 3925 return rc; 3926 } 3927 pPager->dirtyCache = 0; 3928 PAGERTRACE2("TRANSACTION %d\n", PAGERID(pPager)); 3929 if( pPager->useJournal && !pPager->tempFile ){ 3930 rc = pager_open_journal(pPager); 3931 } 3932 } 3933 }else if( pPager->journalOpen && pPager->journalOff==0 ){ 3934 /* This happens when the pager was in exclusive-access mode last 3935 ** time a (read or write) transaction was successfully concluded 3936 ** by this connection. Instead of deleting the journal file it was 3937 ** kept open and truncated to 0 bytes. 3938 */ 3939 assert( pPager->nRec==0 ); 3940 assert( pPager->origDbSize==0 ); 3941 assert( pPager->aInJournal==0 ); 3942 sqlite3PagerPagecount(pPager); 3943 pagerLeave(pPager); 3944 pPager->aInJournal = sqlite3MallocZero( pPager->dbSize/8 + 1 ); 3945 pagerEnter(pPager); 3946 if( !pPager->aInJournal ){ 3947 rc = SQLITE_NOMEM; 3948 }else{ 3949 pPager->origDbSize = pPager->dbSize; 3950 rc = writeJournalHdr(pPager); 3951 } 3952 } 3953 assert( !pPager->journalOpen || pPager->journalOff>0 || rc!=SQLITE_OK ); 3954 pagerLeave(pPager); 3955 return rc; 3956 } 3957 3958 /* 3959 ** Make a page dirty. Set its dirty flag and add it to the dirty 3960 ** page list. 3961 */ 3962 static void makeDirty(PgHdr *pPg){ 3963 if( pPg->dirty==0 ){ 3964 Pager *pPager = pPg->pPager; 3965 pPg->dirty = 1; 3966 pPg->pDirty = pPager->pDirty; 3967 if( pPager->pDirty ){ 3968 pPager->pDirty->pPrevDirty = pPg; 3969 } 3970 pPg->pPrevDirty = 0; 3971 pPager->pDirty = pPg; 3972 } 3973 } 3974 3975 /* 3976 ** Make a page clean. Clear its dirty bit and remove it from the 3977 ** dirty page list. 3978 */ 3979 static void makeClean(PgHdr *pPg){ 3980 if( pPg->dirty ){ 3981 pPg->dirty = 0; 3982 if( pPg->pDirty ){ 3983 assert( pPg->pDirty->pPrevDirty==pPg ); 3984 pPg->pDirty->pPrevDirty = pPg->pPrevDirty; 3985 } 3986 if( pPg->pPrevDirty ){ 3987 assert( pPg->pPrevDirty->pDirty==pPg ); 3988 pPg->pPrevDirty->pDirty = pPg->pDirty; 3989 }else{ 3990 assert( pPg->pPager->pDirty==pPg ); 3991 pPg->pPager->pDirty = pPg->pDirty; 3992 } 3993 } 3994 } 3995 3996 3997 /* 3998 ** Mark a data page as writeable. The page is written into the journal 3999 ** if it is not there already. This routine must be called before making 4000 ** changes to a page. 4001 ** 4002 ** The first time this routine is called, the pager creates a new 4003 ** journal and acquires a RESERVED lock on the database. If the RESERVED 4004 ** lock could not be acquired, this routine returns SQLITE_BUSY. The 4005 ** calling routine must check for that return value and be careful not to 4006 ** change any page data until this routine returns SQLITE_OK. 4007 ** 4008 ** If the journal file could not be written because the disk is full, 4009 ** then this routine returns SQLITE_FULL and does an immediate rollback. 4010 ** All subsequent write attempts also return SQLITE_FULL until there 4011 ** is a call to sqlite3PagerCommit() or sqlite3PagerRollback() to 4012 ** reset. 4013 */ 4014 static int pager_write(PgHdr *pPg){ 4015 void *pData = PGHDR_TO_DATA(pPg); 4016 Pager *pPager = pPg->pPager; 4017 int rc = SQLITE_OK; 4018 4019 /* Check for errors 4020 */ 4021 if( pPager->errCode ){ 4022 return pPager->errCode; 4023 } 4024 if( pPager->readOnly ){ 4025 return SQLITE_PERM; 4026 } 4027 4028 assert( !pPager->setMaster ); 4029 4030 CHECK_PAGE(pPg); 4031 4032 /* If this page was previously acquired with noContent==1, that means 4033 ** we didn't really read in the content of the page. This can happen 4034 ** (for example) when the page is being moved to the freelist. But 4035 ** now we are (perhaps) moving the page off of the freelist for 4036 ** reuse and we need to know its original content so that content 4037 ** can be stored in the rollback journal. So do the read at this 4038 ** time. 4039 */ 4040 rc = pager_get_content(pPg); 4041 if( rc ){ 4042 return rc; 4043 } 4044 4045 /* Mark the page as dirty. If the page has already been written 4046 ** to the journal then we can return right away. 4047 */ 4048 makeDirty(pPg); 4049 if( pPg->inJournal && (pageInStatement(pPg) || pPager->stmtInUse==0) ){ 4050 pPager->dirtyCache = 1; 4051 }else{ 4052 4053 /* If we get this far, it means that the page needs to be 4054 ** written to the transaction journal or the ckeckpoint journal 4055 ** or both. 4056 ** 4057 ** First check to see that the transaction journal exists and 4058 ** create it if it does not. 4059 */ 4060 assert( pPager->state!=PAGER_UNLOCK ); 4061 rc = sqlite3PagerBegin(pPg, 0); 4062 if( rc!=SQLITE_OK ){ 4063 return rc; 4064 } 4065 assert( pPager->state>=PAGER_RESERVED ); 4066 if( !pPager->journalOpen && pPager->useJournal ){ 4067 rc = pager_open_journal(pPager); 4068 if( rc!=SQLITE_OK ) return rc; 4069 } 4070 assert( pPager->journalOpen || !pPager->useJournal ); 4071 pPager->dirtyCache = 1; 4072 4073 /* The transaction journal now exists and we have a RESERVED or an 4074 ** EXCLUSIVE lock on the main database file. Write the current page to 4075 ** the transaction journal if it is not there already. 4076 */ 4077 if( !pPg->inJournal && (pPager->useJournal || MEMDB) ){ 4078 if( (int)pPg->pgno <= pPager->origDbSize ){ 4079 if( MEMDB ){ 4080 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); 4081 PAGERTRACE3("JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); 4082 assert( pHist->pOrig==0 ); 4083 pHist->pOrig = sqlite3_malloc( pPager->pageSize ); 4084 if( !pHist->pOrig ){ 4085 return SQLITE_NOMEM; 4086 } 4087 memcpy(pHist->pOrig, PGHDR_TO_DATA(pPg), pPager->pageSize); 4088 }else{ 4089 u32 cksum; 4090 char *pData2; 4091 4092 /* We should never write to the journal file the page that 4093 ** contains the database locks. The following assert verifies 4094 ** that we do not. */ 4095 assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) ); 4096 pData2 = CODEC2(pPager, pData, pPg->pgno, 7); 4097 cksum = pager_cksum(pPager, (u8*)pData2); 4098 rc = write32bits(pPager->jfd, pPager->journalOff, pPg->pgno); 4099 if( rc==SQLITE_OK ){ 4100 rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, 4101 pPager->journalOff + 4); 4102 pPager->journalOff += pPager->pageSize+4; 4103 } 4104 if( rc==SQLITE_OK ){ 4105 rc = write32bits(pPager->jfd, pPager->journalOff, cksum); 4106 pPager->journalOff += 4; 4107 } 4108 IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, 4109 pPager->journalOff, pPager->pageSize)); 4110 PAGER_INCR(sqlite3_pager_writej_count); 4111 PAGERTRACE5("JOURNAL %d page %d needSync=%d hash(%08x)\n", 4112 PAGERID(pPager), pPg->pgno, pPg->needSync, pager_pagehash(pPg)); 4113 4114 /* An error has occured writing to the journal file. The 4115 ** transaction will be rolled back by the layer above. 4116 */ 4117 if( rc!=SQLITE_OK ){ 4118 return rc; 4119 } 4120 4121 pPager->nRec++; 4122 assert( pPager->aInJournal!=0 ); 4123 pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7); 4124 pPg->needSync = !pPager->noSync; 4125 if( pPager->stmtInUse ){ 4126 pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); 4127 } 4128 } 4129 }else{ 4130 pPg->needSync = !pPager->journalStarted && !pPager->noSync; 4131 PAGERTRACE4("APPEND %d page %d needSync=%d\n", 4132 PAGERID(pPager), pPg->pgno, pPg->needSync); 4133 } 4134 if( pPg->needSync ){ 4135 pPager->needSync = 1; 4136 } 4137 pPg->inJournal = 1; 4138 } 4139 4140 /* If the statement journal is open and the page is not in it, 4141 ** then write the current page to the statement journal. Note that 4142 ** the statement journal format differs from the standard journal format 4143 ** in that it omits the checksums and the header. 4144 */ 4145 if( pPager->stmtInUse 4146 && !pageInStatement(pPg) 4147 && (int)pPg->pgno<=pPager->stmtSize 4148 ){ 4149 assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize ); 4150 if( MEMDB ){ 4151 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); 4152 assert( pHist->pStmt==0 ); 4153 pHist->pStmt = sqlite3_malloc( pPager->pageSize ); 4154 if( pHist->pStmt ){ 4155 memcpy(pHist->pStmt, PGHDR_TO_DATA(pPg), pPager->pageSize); 4156 } 4157 PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); 4158 page_add_to_stmt_list(pPg); 4159 }else{ 4160 i64 offset = pPager->stmtNRec*(4+pPager->pageSize); 4161 char *pData2 = CODEC2(pPager, pData, pPg->pgno, 7); 4162 rc = write32bits(pPager->stfd, offset, pPg->pgno); 4163 if( rc==SQLITE_OK ){ 4164 rc = sqlite3OsWrite(pPager->stfd, pData2, pPager->pageSize, offset+4); 4165 } 4166 PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); 4167 if( rc!=SQLITE_OK ){ 4168 return rc; 4169 } 4170 pPager->stmtNRec++; 4171 assert( pPager->aInStmt!=0 ); 4172 pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); 4173 } 4174 } 4175 } 4176 4177 /* Update the database size and return. 4178 */ 4179 assert( pPager->state>=PAGER_SHARED ); 4180 if( pPager->dbSize<(int)pPg->pgno ){ 4181 pPager->dbSize = pPg->pgno; 4182 if( !MEMDB && pPager->dbSize==PENDING_BYTE/pPager->pageSize ){ 4183 pPager->dbSize++; 4184 } 4185 } 4186 return rc; 4187 } 4188 4189 /* 4190 ** This function is used to mark a data-page as writable. It uses 4191 ** pager_write() to open a journal file (if it is not already open) 4192 ** and write the page *pData to the journal. 4193 ** 4194 ** The difference between this function and pager_write() is that this 4195 ** function also deals with the special case where 2 or more pages 4196 ** fit on a single disk sector. In this case all co-resident pages 4197 ** must have been written to the journal file before returning. 4198 */ 4199 int sqlite3PagerWrite(DbPage *pDbPage){ 4200 int rc = SQLITE_OK; 4201 4202 PgHdr *pPg = pDbPage; 4203 Pager *pPager = pPg->pPager; 4204 Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize); 4205 4206 pagerEnter(pPager); 4207 if( !MEMDB && nPagePerSector>1 ){ 4208 Pgno nPageCount; /* Total number of pages in database file */ 4209 Pgno pg1; /* First page of the sector pPg is located on. */ 4210 int nPage; /* Number of pages starting at pg1 to journal */ 4211 int ii; 4212 int needSync = 0; 4213 4214 /* Set the doNotSync flag to 1. This is because we cannot allow a journal 4215 ** header to be written between the pages journaled by this function. 4216 */ 4217 assert( pPager->doNotSync==0 ); 4218 pPager->doNotSync = 1; 4219 4220 /* This trick assumes that both the page-size and sector-size are 4221 ** an integer power of 2. It sets variable pg1 to the identifier 4222 ** of the first page of the sector pPg is located on. 4223 */ 4224 pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1; 4225 4226 nPageCount = sqlite3PagerPagecount(pPager); 4227 if( pPg->pgno>nPageCount ){ 4228 nPage = (pPg->pgno - pg1)+1; 4229 }else if( (pg1+nPagePerSector-1)>nPageCount ){ 4230 nPage = nPageCount+1-pg1; 4231 }else{ 4232 nPage = nPagePerSector; 4233 } 4234 assert(nPage>0); 4235 assert(pg1<=pPg->pgno); 4236 assert((pg1+nPage)>pPg->pgno); 4237 4238 for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){ 4239 Pgno pg = pg1+ii; 4240 PgHdr *pPage; 4241 if( !pPager->aInJournal || pg==pPg->pgno || 4242 pg>pPager->origDbSize || !(pPager->aInJournal[pg/8]&(1<<(pg&7))) 4243 ) { 4244 if( pg!=PAGER_MJ_PGNO(pPager) ){ 4245 rc = sqlite3PagerGet(pPager, pg, &pPage); 4246 if( rc==SQLITE_OK ){ 4247 rc = pager_write(pPage); 4248 if( pPage->needSync ){ 4249 needSync = 1; 4250 } 4251 sqlite3PagerUnref(pPage); 4252 } 4253 } 4254 }else if( (pPage = pager_lookup(pPager, pg)) ){ 4255 if( pPage->needSync ){ 4256 needSync = 1; 4257 } 4258 } 4259 } 4260 4261 /* If the PgHdr.needSync flag is set for any of the nPage pages 4262 ** starting at pg1, then it needs to be set for all of them. Because 4263 ** writing to any of these nPage pages may damage the others, the 4264 ** journal file must contain sync()ed copies of all of them 4265 ** before any of them can be written out to the database file. 4266 */ 4267 if( needSync ){ 4268 for(ii=0; ii<nPage && needSync; ii++){ 4269 PgHdr *pPage = pager_lookup(pPager, pg1+ii); 4270 if( pPage ) pPage->needSync = 1; 4271 } 4272 assert(pPager->needSync); 4273 } 4274 4275 assert( pPager->doNotSync==1 ); 4276 pPager->doNotSync = 0; 4277 }else{ 4278 rc = pager_write(pDbPage); 4279 } 4280 pagerLeave(pPager); 4281 return rc; 4282 } 4283 4284 /* 4285 ** Return TRUE if the page given in the argument was previously passed 4286 ** to sqlite3PagerWrite(). In other words, return TRUE if it is ok 4287 ** to change the content of the page. 4288 */ 4289 #ifndef NDEBUG 4290 int sqlite3PagerIswriteable(DbPage *pPg){ 4291 return pPg->dirty; 4292 } 4293 #endif 4294 4295 #ifndef SQLITE_OMIT_VACUUM 4296 /* 4297 ** Replace the content of a single page with the information in the third 4298 ** argument. 4299 */ 4300 int sqlite3PagerOverwrite(Pager *pPager, Pgno pgno, void *pData){ 4301 PgHdr *pPg; 4302 int rc; 4303 4304 pagerEnter(pPager); 4305 rc = sqlite3PagerGet(pPager, pgno, &pPg); 4306 if( rc==SQLITE_OK ){ 4307 rc = sqlite3PagerWrite(pPg); 4308 if( rc==SQLITE_OK ){ 4309 memcpy(sqlite3PagerGetData(pPg), pData, pPager->pageSize); 4310 } 4311 sqlite3PagerUnref(pPg); 4312 } 4313 pagerLeave(pPager); 4314 return rc; 4315 } 4316 #endif 4317 4318 /* 4319 ** A call to this routine tells the pager that it is not necessary to 4320 ** write the information on page pPg back to the disk, even though 4321 ** that page might be marked as dirty. 4322 ** 4323 ** The overlying software layer calls this routine when all of the data 4324 ** on the given page is unused. The pager marks the page as clean so 4325 ** that it does not get written to disk. 4326 ** 4327 ** Tests show that this optimization, together with the 4328 ** sqlite3PagerDontRollback() below, more than double the speed 4329 ** of large INSERT operations and quadruple the speed of large DELETEs. 4330 ** 4331 ** When this routine is called, set the alwaysRollback flag to true. 4332 ** Subsequent calls to sqlite3PagerDontRollback() for the same page 4333 ** will thereafter be ignored. This is necessary to avoid a problem 4334 ** where a page with data is added to the freelist during one part of 4335 ** a transaction then removed from the freelist during a later part 4336 ** of the same transaction and reused for some other purpose. When it 4337 ** is first added to the freelist, this routine is called. When reused, 4338 ** the sqlite3PagerDontRollback() routine is called. But because the 4339 ** page contains critical data, we still need to be sure it gets 4340 ** rolled back in spite of the sqlite3PagerDontRollback() call. 4341 */ 4342 void sqlite3PagerDontWrite(DbPage *pDbPage){ 4343 PgHdr *pPg = pDbPage; 4344 Pager *pPager = pPg->pPager; 4345 4346 if( MEMDB ) return; 4347 pagerEnter(pPager); 4348 pPg->alwaysRollback = 1; 4349 if( pPg->dirty && !pPager->stmtInUse ){ 4350 assert( pPager->state>=PAGER_SHARED ); 4351 if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){ 4352 /* If this pages is the last page in the file and the file has grown 4353 ** during the current transaction, then do NOT mark the page as clean. 4354 ** When the database file grows, we must make sure that the last page 4355 ** gets written at least once so that the disk file will be the correct 4356 ** size. If you do not write this page and the size of the file 4357 ** on the disk ends up being too small, that can lead to database 4358 ** corruption during the next transaction. 4359 */ 4360 }else{ 4361 PAGERTRACE3("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager)); 4362 IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) 4363 makeClean(pPg); 4364 #ifdef SQLITE_CHECK_PAGES 4365 pPg->pageHash = pager_pagehash(pPg); 4366 #endif 4367 } 4368 } 4369 pagerLeave(pPager); 4370 } 4371 4372 /* 4373 ** A call to this routine tells the pager that if a rollback occurs, 4374 ** it is not necessary to restore the data on the given page. This 4375 ** means that the pager does not have to record the given page in the 4376 ** rollback journal. 4377 ** 4378 ** If we have not yet actually read the content of this page (if 4379 ** the PgHdr.needRead flag is set) then this routine acts as a promise 4380 ** that we will never need to read the page content in the future. 4381 ** so the needRead flag can be cleared at this point. 4382 */ 4383 void sqlite3PagerDontRollback(DbPage *pPg){ 4384 Pager *pPager = pPg->pPager; 4385 4386 pagerEnter(pPager); 4387 assert( pPager->state>=PAGER_RESERVED ); 4388 if( pPager->journalOpen==0 ) return; 4389 if( pPg->alwaysRollback || pPager->alwaysRollback || MEMDB ) return; 4390 if( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ){ 4391 assert( pPager->aInJournal!=0 ); 4392 pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7); 4393 pPg->inJournal = 1; 4394 pPg->needRead = 0; 4395 if( pPager->stmtInUse ){ 4396 pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); 4397 } 4398 PAGERTRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, PAGERID(pPager)); 4399 IOTRACE(("GARBAGE %p %d\n", pPager, pPg->pgno)) 4400 } 4401 if( pPager->stmtInUse 4402 && !pageInStatement(pPg) 4403 && (int)pPg->pgno<=pPager->stmtSize 4404 ){ 4405 assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize ); 4406 assert( pPager->aInStmt!=0 ); 4407 pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); 4408 } 4409 pagerLeave(pPager); 4410 } 4411 4412 4413 /* 4414 ** This routine is called to increment the database file change-counter, 4415 ** stored at byte 24 of the pager file. 4416 */ 4417 static int pager_incr_changecounter(Pager *pPager, int isDirect){ 4418 PgHdr *pPgHdr; 4419 u32 change_counter; 4420 int rc = SQLITE_OK; 4421 4422 if( !pPager->changeCountDone ){ 4423 /* Open page 1 of the file for writing. */ 4424 rc = sqlite3PagerGet(pPager, 1, &pPgHdr); 4425 if( rc!=SQLITE_OK ) return rc; 4426 4427 if( !isDirect ){ 4428 rc = sqlite3PagerWrite(pPgHdr); 4429 if( rc!=SQLITE_OK ){ 4430 sqlite3PagerUnref(pPgHdr); 4431 return rc; 4432 } 4433 } 4434 4435 /* Increment the value just read and write it back to byte 24. */ 4436 change_counter = sqlite3Get4byte((u8*)pPager->dbFileVers); 4437 change_counter++; 4438 put32bits(((char*)PGHDR_TO_DATA(pPgHdr))+24, change_counter); 4439 4440 if( isDirect && pPager->fd->pMethods ){ 4441 const void *zBuf = PGHDR_TO_DATA(pPgHdr); 4442 rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0); 4443 } 4444 4445 /* Release the page reference. */ 4446 sqlite3PagerUnref(pPgHdr); 4447 pPager->changeCountDone = 1; 4448 } 4449 return rc; 4450 } 4451 4452 /* 4453 ** Sync the database file for the pager pPager. zMaster points to the name 4454 ** of a master journal file that should be written into the individual 4455 ** journal file. zMaster may be NULL, which is interpreted as no master 4456 ** journal (a single database transaction). 4457 ** 4458 ** This routine ensures that the journal is synced, all dirty pages written 4459 ** to the database file and the database file synced. The only thing that 4460 ** remains to commit the transaction is to delete the journal file (or 4461 ** master journal file if specified). 4462 ** 4463 ** Note that if zMaster==NULL, this does not overwrite a previous value 4464 ** passed to an sqlite3PagerCommitPhaseOne() call. 4465 ** 4466 ** If parameter nTrunc is non-zero, then the pager file is truncated to 4467 ** nTrunc pages (this is used by auto-vacuum databases). 4468 */ 4469 int sqlite3PagerCommitPhaseOne(Pager *pPager, const char *zMaster, Pgno nTrunc){ 4470 int rc = SQLITE_OK; 4471 4472 PAGERTRACE4("DATABASE SYNC: File=%s zMaster=%s nTrunc=%d\n", 4473 pPager->zFilename, zMaster, nTrunc); 4474 pagerEnter(pPager); 4475 4476 /* If this is an in-memory db, or no pages have been written to, or this 4477 ** function has already been called, it is a no-op. 4478 */ 4479 if( pPager->state!=PAGER_SYNCED && !MEMDB && pPager->dirtyCache ){ 4480 PgHdr *pPg; 4481 4482 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 4483 /* The atomic-write optimization can be used if all of the 4484 ** following are true: 4485 ** 4486 ** + The file-system supports the atomic-write property for 4487 ** blocks of size page-size, and 4488 ** + This commit is not part of a multi-file transaction, and 4489 ** + Exactly one page has been modified and store in the journal file. 4490 ** 4491 ** If the optimization can be used, then the journal file will never 4492 ** be created for this transaction. 4493 */ 4494 int useAtomicWrite = ( 4495 !zMaster && 4496 pPager->journalOff==jrnlBufferSize(pPager) && 4497 nTrunc==0 && 4498 (0==pPager->pDirty || 0==pPager->pDirty->pDirty) 4499 ); 4500 if( useAtomicWrite ){ 4501 /* Update the nRec field in the journal file. */ 4502 int offset = pPager->journalHdr + sizeof(aJournalMagic); 4503 assert(pPager->nRec==1); 4504 rc = write32bits(pPager->jfd, offset, pPager->nRec); 4505 4506 /* Update the db file change counter. The following call will modify 4507 ** the in-memory representation of page 1 to include the updated 4508 ** change counter and then write page 1 directly to the database 4509 ** file. Because of the atomic-write property of the host file-system, 4510 ** this is safe. 4511 */ 4512 if( rc==SQLITE_OK ){ 4513 rc = pager_incr_changecounter(pPager, 1); 4514 } 4515 }else{ 4516 rc = sqlite3JournalCreate(pPager->jfd); 4517 } 4518 4519 if( !useAtomicWrite && rc==SQLITE_OK ) 4520 #endif 4521 4522 /* If a master journal file name has already been written to the 4523 ** journal file, then no sync is required. This happens when it is 4524 ** written, then the process fails to upgrade from a RESERVED to an 4525 ** EXCLUSIVE lock. The next time the process tries to commit the 4526 ** transaction the m-j name will have already been written. 4527 */ 4528 if( !pPager->setMaster ){ 4529 assert( pPager->journalOpen ); 4530 rc = pager_incr_changecounter(pPager, 0); 4531 if( rc!=SQLITE_OK ) goto sync_exit; 4532 #ifndef SQLITE_OMIT_AUTOVACUUM 4533 if( nTrunc!=0 ){ 4534 /* If this transaction has made the database smaller, then all pages 4535 ** being discarded by the truncation must be written to the journal 4536 ** file. 4537 */ 4538 Pgno i; 4539 int iSkip = PAGER_MJ_PGNO(pPager); 4540 for( i=nTrunc+1; i<=pPager->origDbSize; i++ ){ 4541 if( !(pPager->aInJournal[i/8] & (1<<(i&7))) && i!=iSkip ){ 4542 rc = sqlite3PagerGet(pPager, i, &pPg); 4543 if( rc!=SQLITE_OK ) goto sync_exit; 4544 rc = sqlite3PagerWrite(pPg); 4545 sqlite3PagerUnref(pPg); 4546 if( rc!=SQLITE_OK ) goto sync_exit; 4547 } 4548 } 4549 } 4550 #endif 4551 rc = writeMasterJournal(pPager, zMaster); 4552 if( rc!=SQLITE_OK ) goto sync_exit; 4553 rc = syncJournal(pPager); 4554 } 4555 if( rc!=SQLITE_OK ) goto sync_exit; 4556 4557 #ifndef SQLITE_OMIT_AUTOVACUUM 4558 if( nTrunc!=0 ){ 4559 rc = sqlite3PagerTruncate(pPager, nTrunc); 4560 if( rc!=SQLITE_OK ) goto sync_exit; 4561 } 4562 #endif 4563 4564 /* Write all dirty pages to the database file */ 4565 pPg = pager_get_all_dirty_pages(pPager); 4566 rc = pager_write_pagelist(pPg); 4567 if( rc!=SQLITE_OK ){ 4568 while( pPg && !pPg->dirty ){ pPg = pPg->pDirty; } 4569 pPager->pDirty = pPg; 4570 goto sync_exit; 4571 } 4572 pPager->pDirty = 0; 4573 4574 /* Sync the database file. */ 4575 if( !pPager->noSync ){ 4576 rc = sqlite3OsSync(pPager->fd, pPager->sync_flags); 4577 } 4578 IOTRACE(("DBSYNC %p\n", pPager)) 4579 4580 pPager->state = PAGER_SYNCED; 4581 }else if( MEMDB && nTrunc!=0 ){ 4582 rc = sqlite3PagerTruncate(pPager, nTrunc); 4583 } 4584 4585 sync_exit: 4586 if( rc==SQLITE_IOERR_BLOCKED ){ 4587 /* pager_incr_changecounter() may attempt to obtain an exclusive 4588 * lock to spill the cache and return IOERR_BLOCKED. But since 4589 * there is no chance the cache is inconsistent, it is 4590 * better to return SQLITE_BUSY. 4591 */ 4592 rc = SQLITE_BUSY; 4593 } 4594 pagerLeave(pPager); 4595 return rc; 4596 } 4597 4598 4599 /* 4600 ** Commit all changes to the database and release the write lock. 4601 ** 4602 ** If the commit fails for any reason, a rollback attempt is made 4603 ** and an error code is returned. If the commit worked, SQLITE_OK 4604 ** is returned. 4605 */ 4606 int sqlite3PagerCommitPhaseTwo(Pager *pPager){ 4607 int rc; 4608 PgHdr *pPg; 4609 4610 if( pPager->errCode ){ 4611 return pPager->errCode; 4612 } 4613 if( pPager->state<PAGER_RESERVED ){ 4614 return SQLITE_ERROR; 4615 } 4616 pagerEnter(pPager); 4617 PAGERTRACE2("COMMIT %d\n", PAGERID(pPager)); 4618 if( MEMDB ){ 4619 pPg = pager_get_all_dirty_pages(pPager); 4620 while( pPg ){ 4621 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); 4622 clearHistory(pHist); 4623 pPg->dirty = 0; 4624 pPg->inJournal = 0; 4625 pHist->inStmt = 0; 4626 pPg->needSync = 0; 4627 pHist->pPrevStmt = pHist->pNextStmt = 0; 4628 pPg = pPg->pDirty; 4629 } 4630 pPager->pDirty = 0; 4631 #ifndef NDEBUG 4632 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ 4633 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); 4634 assert( !pPg->alwaysRollback ); 4635 assert( !pHist->pOrig ); 4636 assert( !pHist->pStmt ); 4637 } 4638 #endif 4639 pPager->pStmt = 0; 4640 pPager->state = PAGER_SHARED; 4641 return SQLITE_OK; 4642 } 4643 assert( pPager->journalOpen || !pPager->dirtyCache ); 4644 assert( pPager->state==PAGER_SYNCED || !pPager->dirtyCache ); 4645 rc = pager_end_transaction(pPager); 4646 rc = pager_error(pPager, rc); 4647 pagerLeave(pPager); 4648 return rc; 4649 } 4650 4651 /* 4652 ** Rollback all changes. The database falls back to PAGER_SHARED mode. 4653 ** All in-memory cache pages revert to their original data contents. 4654 ** The journal is deleted. 4655 ** 4656 ** This routine cannot fail unless some other process is not following 4657 ** the correct locking protocol or unless some other 4658 ** process is writing trash into the journal file (SQLITE_CORRUPT) or 4659 ** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error 4660 ** codes are returned for all these occasions. Otherwise, 4661 ** SQLITE_OK is returned. 4662 */ 4663 int sqlite3PagerRollback(Pager *pPager){ 4664 int rc; 4665 PAGERTRACE2("ROLLBACK %d\n", PAGERID(pPager)); 4666 if( MEMDB ){ 4667 PgHdr *p; 4668 for(p=pPager->pAll; p; p=p->pNextAll){ 4669 PgHistory *pHist; 4670 assert( !p->alwaysRollback ); 4671 if( !p->dirty ){ 4672 assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pOrig ); 4673 assert( !((PgHistory *)PGHDR_TO_HIST(p, pPager))->pStmt ); 4674 continue; 4675 } 4676 4677 pHist = PGHDR_TO_HIST(p, pPager); 4678 if( pHist->pOrig ){ 4679 memcpy(PGHDR_TO_DATA(p), pHist->pOrig, pPager->pageSize); 4680 PAGERTRACE3("ROLLBACK-PAGE %d of %d\n", p->pgno, PAGERID(pPager)); 4681 }else{ 4682 PAGERTRACE3("PAGE %d is clean on %d\n", p->pgno, PAGERID(pPager)); 4683 } 4684 clearHistory(pHist); 4685 p->dirty = 0; 4686 p->inJournal = 0; 4687 pHist->inStmt = 0; 4688 pHist->pPrevStmt = pHist->pNextStmt = 0; 4689 if( pPager->xReiniter ){ 4690 pPager->xReiniter(p, pPager->pageSize); 4691 } 4692 } 4693 pPager->pDirty = 0; 4694 pPager->pStmt = 0; 4695 pPager->dbSize = pPager->origDbSize; 4696 pager_truncate_cache(pPager); 4697 pPager->stmtInUse = 0; 4698 pPager->state = PAGER_SHARED; 4699 return SQLITE_OK; 4700 } 4701 4702 pagerEnter(pPager); 4703 if( !pPager->dirtyCache || !pPager->journalOpen ){ 4704 rc = pager_end_transaction(pPager); 4705 pagerLeave(pPager); 4706 return rc; 4707 } 4708 4709 if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){ 4710 if( pPager->state>=PAGER_EXCLUSIVE ){ 4711 pager_playback(pPager, 0); 4712 } 4713 pagerLeave(pPager); 4714 return pPager->errCode; 4715 } 4716 if( pPager->state==PAGER_RESERVED ){ 4717 int rc2; 4718 rc = pager_playback(pPager, 0); 4719 rc2 = pager_end_transaction(pPager); 4720 if( rc==SQLITE_OK ){ 4721 rc = rc2; 4722 } 4723 }else{ 4724 rc = pager_playback(pPager, 0); 4725 } 4726 /* pager_reset(pPager); */ 4727 pPager->dbSize = -1; 4728 4729 /* If an error occurs during a ROLLBACK, we can no longer trust the pager 4730 ** cache. So call pager_error() on the way out to make any error 4731 ** persistent. 4732 */ 4733 rc = pager_error(pPager, rc); 4734 pagerLeave(pPager); 4735 return rc; 4736 } 4737 4738 /* 4739 ** Return TRUE if the database file is opened read-only. Return FALSE 4740 ** if the database is (in theory) writable. 4741 */ 4742 int sqlite3PagerIsreadonly(Pager *pPager){ 4743 return pPager->readOnly; 4744 } 4745 4746 /* 4747 ** Return the number of references to the pager. 4748 */ 4749 int sqlite3PagerRefcount(Pager *pPager){ 4750 return pPager->nRef; 4751 } 4752 4753 #ifdef SQLITE_TEST 4754 /* 4755 ** This routine is used for testing and analysis only. 4756 */ 4757 int *sqlite3PagerStats(Pager *pPager){ 4758 static int a[11]; 4759 a[0] = pPager->nRef; 4760 a[1] = pPager->nPage; 4761 a[2] = pPager->mxPage; 4762 a[3] = pPager->dbSize; 4763 a[4] = pPager->state; 4764 a[5] = pPager->errCode; 4765 a[6] = pPager->nHit; 4766 a[7] = pPager->nMiss; 4767 a[8] = 0; /* Used to be pPager->nOvfl */ 4768 a[9] = pPager->nRead; 4769 a[10] = pPager->nWrite; 4770 return a; 4771 } 4772 #endif 4773 4774 /* 4775 ** Set the statement rollback point. 4776 ** 4777 ** This routine should be called with the transaction journal already 4778 ** open. A new statement journal is created that can be used to rollback 4779 ** changes of a single SQL command within a larger transaction. 4780 */ 4781 static int pagerStmtBegin(Pager *pPager){ 4782 int rc; 4783 assert( !pPager->stmtInUse ); 4784 assert( pPager->state>=PAGER_SHARED ); 4785 assert( pPager->dbSize>=0 ); 4786 PAGERTRACE2("STMT-BEGIN %d\n", PAGERID(pPager)); 4787 if( MEMDB ){ 4788 pPager->stmtInUse = 1; 4789 pPager->stmtSize = pPager->dbSize; 4790 return SQLITE_OK; 4791 } 4792 if( !pPager->journalOpen ){ 4793 pPager->stmtAutoopen = 1; 4794 return SQLITE_OK; 4795 } 4796 assert( pPager->journalOpen ); 4797 pagerLeave(pPager); 4798 assert( pPager->aInStmt==0 ); 4799 pPager->aInStmt = sqlite3MallocZero( pPager->dbSize/8 + 1 ); 4800 pagerEnter(pPager); 4801 if( pPager->aInStmt==0 ){ 4802 /* sqlite3OsLock(pPager->fd, SHARED_LOCK); */ 4803 return SQLITE_NOMEM; 4804 } 4805 #ifndef NDEBUG 4806 rc = sqlite3OsFileSize(pPager->jfd, &pPager->stmtJSize); 4807 if( rc ) goto stmt_begin_failed; 4808 assert( pPager->stmtJSize == pPager->journalOff ); 4809 #endif 4810 pPager->stmtJSize = pPager->journalOff; 4811 pPager->stmtSize = pPager->dbSize; 4812 pPager->stmtHdrOff = 0; 4813 pPager->stmtCksum = pPager->cksumInit; 4814 if( !pPager->stmtOpen ){ 4815 rc = sqlite3PagerOpentemp(pPager->pVfs, pPager->stfd, pPager->zStmtJrnl, 4816 SQLITE_OPEN_SUBJOURNAL); 4817 if( rc ){ 4818 goto stmt_begin_failed; 4819 } 4820 pPager->stmtOpen = 1; 4821 pPager->stmtNRec = 0; 4822 } 4823 pPager->stmtInUse = 1; 4824 return SQLITE_OK; 4825 4826 stmt_begin_failed: 4827 if( pPager->aInStmt ){ 4828 sqlite3_free(pPager->aInStmt); 4829 pPager->aInStmt = 0; 4830 } 4831 return rc; 4832 } 4833 int sqlite3PagerStmtBegin(Pager *pPager){ 4834 int rc; 4835 pagerEnter(pPager); 4836 rc = pagerStmtBegin(pPager); 4837 pagerLeave(pPager); 4838 return rc; 4839 } 4840 4841 /* 4842 ** Commit a statement. 4843 */ 4844 int sqlite3PagerStmtCommit(Pager *pPager){ 4845 pagerEnter(pPager); 4846 if( pPager->stmtInUse ){ 4847 PgHdr *pPg, *pNext; 4848 PAGERTRACE2("STMT-COMMIT %d\n", PAGERID(pPager)); 4849 if( !MEMDB ){ 4850 /* sqlite3OsTruncate(pPager->stfd, 0); */ 4851 sqlite3_free( pPager->aInStmt ); 4852 pPager->aInStmt = 0; 4853 }else{ 4854 for(pPg=pPager->pStmt; pPg; pPg=pNext){ 4855 PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); 4856 pNext = pHist->pNextStmt; 4857 assert( pHist->inStmt ); 4858 pHist->inStmt = 0; 4859 pHist->pPrevStmt = pHist->pNextStmt = 0; 4860 sqlite3_free(pHist->pStmt); 4861 pHist->pStmt = 0; 4862 } 4863 } 4864 pPager->stmtNRec = 0; 4865 pPager->stmtInUse = 0; 4866 pPager->pStmt = 0; 4867 } 4868 pPager->stmtAutoopen = 0; 4869 pagerLeave(pPager); 4870 return SQLITE_OK; 4871 } 4872 4873 /* 4874 ** Rollback a statement. 4875 */ 4876 int sqlite3PagerStmtRollback(Pager *pPager){ 4877 int rc; 4878 pagerEnter(pPager); 4879 if( pPager->stmtInUse ){ 4880 PAGERTRACE2("STMT-ROLLBACK %d\n", PAGERID(pPager)); 4881 if( MEMDB ){ 4882 PgHdr *pPg; 4883 PgHistory *pHist; 4884 for(pPg=pPager->pStmt; pPg; pPg=pHist->pNextStmt){ 4885 pHist = PGHDR_TO_HIST(pPg, pPager); 4886 if( pHist->pStmt ){ 4887 memcpy(PGHDR_TO_DATA(pPg), pHist->pStmt, pPager->pageSize); 4888 sqlite3_free(pHist->pStmt); 4889 pHist->pStmt = 0; 4890 } 4891 } 4892 pPager->dbSize = pPager->stmtSize; 4893 pager_truncate_cache(pPager); 4894 rc = SQLITE_OK; 4895 }else{ 4896 rc = pager_stmt_playback(pPager); 4897 } 4898 sqlite3PagerStmtCommit(pPager); 4899 }else{ 4900 rc = SQLITE_OK; 4901 } 4902 pPager->stmtAutoopen = 0; 4903 pagerLeave(pPager); 4904 return rc; 4905 } 4906 4907 /* 4908 ** Return the full pathname of the database file. 4909 */ 4910 const char *sqlite3PagerFilename(Pager *pPager){ 4911 return pPager->zFilename; 4912 } 4913 4914 /* 4915 ** Return the VFS structure for the pager. 4916 */ 4917 const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){ 4918 return pPager->pVfs; 4919 } 4920 4921 /* 4922 ** Return the file handle for the database file associated 4923 ** with the pager. This might return NULL if the file has 4924 ** not yet been opened. 4925 */ 4926 sqlite3_file *sqlite3PagerFile(Pager *pPager){ 4927 return pPager->fd; 4928 } 4929 4930 /* 4931 ** Return the directory of the database file. 4932 */ 4933 const char *sqlite3PagerDirname(Pager *pPager){ 4934 return pPager->zDirectory; 4935 } 4936 4937 /* 4938 ** Return the full pathname of the journal file. 4939 */ 4940 const char *sqlite3PagerJournalname(Pager *pPager){ 4941 return pPager->zJournal; 4942 } 4943 4944 /* 4945 ** Return true if fsync() calls are disabled for this pager. Return FALSE 4946 ** if fsync()s are executed normally. 4947 */ 4948 int sqlite3PagerNosync(Pager *pPager){ 4949 return pPager->noSync; 4950 } 4951 4952 #ifdef SQLITE_HAS_CODEC 4953 /* 4954 ** Set the codec for this pager 4955 */ 4956 void sqlite3PagerSetCodec( 4957 Pager *pPager, 4958 void *(*xCodec)(void*,void*,Pgno,int), 4959 void *pCodecArg 4960 ){ 4961 pPager->xCodec = xCodec; 4962 pPager->pCodecArg = pCodecArg; 4963 } 4964 #endif 4965 4966 #ifndef SQLITE_OMIT_AUTOVACUUM 4967 /* 4968 ** Move the page pPg to location pgno in the file. 4969 ** 4970 ** There must be no references to the page previously located at 4971 ** pgno (which we call pPgOld) though that page is allowed to be 4972 ** in cache. If the page previous located at pgno is not already 4973 ** in the rollback journal, it is not put there by by this routine. 4974 ** 4975 ** References to the page pPg remain valid. Updating any 4976 ** meta-data associated with pPg (i.e. data stored in the nExtra bytes 4977 ** allocated along with the page) is the responsibility of the caller. 4978 ** 4979 ** A transaction must be active when this routine is called. It used to be 4980 ** required that a statement transaction was not active, but this restriction 4981 ** has been removed (CREATE INDEX needs to move a page when a statement 4982 ** transaction is active). 4983 */ 4984 int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno){ 4985 PgHdr *pPgOld; /* The page being overwritten. */ 4986 int h; 4987 Pgno needSyncPgno = 0; 4988 4989 pagerEnter(pPager); 4990 assert( pPg->nRef>0 ); 4991 4992 PAGERTRACE5("MOVE %d page %d (needSync=%d) moves to %d\n", 4993 PAGERID(pPager), pPg->pgno, pPg->needSync, pgno); 4994 IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno)) 4995 4996 pager_get_content(pPg); 4997 if( pPg->needSync ){ 4998 needSyncPgno = pPg->pgno; 4999 assert( pPg->inJournal || (int)pgno>pPager->origDbSize ); 5000 assert( pPg->dirty ); 5001 assert( pPager->needSync ); 5002 } 5003 5004 /* Unlink pPg from its hash-chain */ 5005 unlinkHashChain(pPager, pPg); 5006 5007 /* If the cache contains a page with page-number pgno, remove it 5008 ** from its hash chain. Also, if the PgHdr.needSync was set for 5009 ** page pgno before the 'move' operation, it needs to be retained 5010 ** for the page moved there. 5011 */ 5012 pPg->needSync = 0; 5013 pPgOld = pager_lookup(pPager, pgno); 5014 if( pPgOld ){ 5015 assert( pPgOld->nRef==0 ); 5016 unlinkHashChain(pPager, pPgOld); 5017 makeClean(pPgOld); 5018 pPg->needSync = pPgOld->needSync; 5019 }else{ 5020 pPg->needSync = 0; 5021 } 5022 if( pPager->aInJournal && (int)pgno<=pPager->origDbSize ){ 5023 pPg->inJournal = (pPager->aInJournal[pgno/8] & (1<<(pgno&7)))!=0; 5024 }else{ 5025 pPg->inJournal = 0; 5026 assert( pPg->needSync==0 || (int)pgno>pPager->origDbSize ); 5027 } 5028 5029 /* Change the page number for pPg and insert it into the new hash-chain. */ 5030 assert( pgno!=0 ); 5031 pPg->pgno = pgno; 5032 h = pgno & (pPager->nHash-1); 5033 if( pPager->aHash[h] ){ 5034 assert( pPager->aHash[h]->pPrevHash==0 ); 5035 pPager->aHash[h]->pPrevHash = pPg; 5036 } 5037 pPg->pNextHash = pPager->aHash[h]; 5038 pPager->aHash[h] = pPg; 5039 pPg->pPrevHash = 0; 5040 5041 makeDirty(pPg); 5042 pPager->dirtyCache = 1; 5043 5044 if( needSyncPgno ){ 5045 /* If needSyncPgno is non-zero, then the journal file needs to be 5046 ** sync()ed before any data is written to database file page needSyncPgno. 5047 ** Currently, no such page exists in the page-cache and the 5048 ** Pager.aInJournal bit has been set. This needs to be remedied by loading 5049 ** the page into the pager-cache and setting the PgHdr.needSync flag. 5050 ** 5051 ** The sqlite3PagerGet() call may cause the journal to sync. So make 5052 ** sure the Pager.needSync flag is set too. 5053 */ 5054 int rc; 5055 PgHdr *pPgHdr; 5056 assert( pPager->needSync ); 5057 rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr); 5058 if( rc!=SQLITE_OK ) return rc; 5059 pPager->needSync = 1; 5060 pPgHdr->needSync = 1; 5061 pPgHdr->inJournal = 1; 5062 makeDirty(pPgHdr); 5063 sqlite3PagerUnref(pPgHdr); 5064 } 5065 5066 pagerLeave(pPager); 5067 return SQLITE_OK; 5068 } 5069 #endif 5070 5071 /* 5072 ** Return a pointer to the data for the specified page. 5073 */ 5074 void *sqlite3PagerGetData(DbPage *pPg){ 5075 return PGHDR_TO_DATA(pPg); 5076 } 5077 5078 /* 5079 ** Return a pointer to the Pager.nExtra bytes of "extra" space 5080 ** allocated along with the specified page. 5081 */ 5082 void *sqlite3PagerGetExtra(DbPage *pPg){ 5083 Pager *pPager = pPg->pPager; 5084 return (pPager?PGHDR_TO_EXTRA(pPg, pPager):0); 5085 } 5086 5087 /* 5088 ** Get/set the locking-mode for this pager. Parameter eMode must be one 5089 ** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or 5090 ** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then 5091 ** the locking-mode is set to the value specified. 5092 ** 5093 ** The returned value is either PAGER_LOCKINGMODE_NORMAL or 5094 ** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated) 5095 ** locking-mode. 5096 */ 5097 int sqlite3PagerLockingMode(Pager *pPager, int eMode){ 5098 assert( eMode==PAGER_LOCKINGMODE_QUERY 5099 || eMode==PAGER_LOCKINGMODE_NORMAL 5100 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); 5101 assert( PAGER_LOCKINGMODE_QUERY<0 ); 5102 assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 ); 5103 if( eMode>=0 && !pPager->tempFile ){ 5104 pPager->exclusiveMode = eMode; 5105 } 5106 return (int)pPager->exclusiveMode; 5107 } 5108 5109 #ifdef SQLITE_TEST 5110 /* 5111 ** Print a listing of all referenced pages and their ref count. 5112 */ 5113 void sqlite3PagerRefdump(Pager *pPager){ 5114 PgHdr *pPg; 5115 for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ 5116 if( pPg->nRef<=0 ) continue; 5117 sqlite3DebugPrintf("PAGE %3d addr=%p nRef=%d\n", 5118 pPg->pgno, PGHDR_TO_DATA(pPg), pPg->nRef); 5119 } 5120 } 5121 #endif 5122 5123 #endif /* SQLITE_OMIT_DISKIO */ 5124