1 /* 2 ** 2005 November 29 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ****************************************************************************** 12 ** 13 ** This file contains OS interface code that is common to all 14 ** architectures. 15 */ 16 #include "sqliteInt.h" 17 18 /* 19 ** If we compile with the SQLITE_TEST macro set, then the following block 20 ** of code will give us the ability to simulate a disk I/O error. This 21 ** is used for testing the I/O recovery logic. 22 */ 23 #if defined(SQLITE_TEST) 24 int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */ 25 int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */ 26 int sqlite3_io_error_pending = 0; /* Count down to first I/O error */ 27 int sqlite3_io_error_persist = 0; /* True if I/O errors persist */ 28 int sqlite3_io_error_benign = 0; /* True if errors are benign */ 29 int sqlite3_diskfull_pending = 0; 30 int sqlite3_diskfull = 0; 31 #endif /* defined(SQLITE_TEST) */ 32 33 /* 34 ** When testing, also keep a count of the number of open files. 35 */ 36 #if defined(SQLITE_TEST) 37 int sqlite3_open_file_count = 0; 38 #endif /* defined(SQLITE_TEST) */ 39 40 /* 41 ** The default SQLite sqlite3_vfs implementations do not allocate 42 ** memory (actually, os_unix.c allocates a small amount of memory 43 ** from within OsOpen()), but some third-party implementations may. 44 ** So we test the effects of a malloc() failing and the sqlite3OsXXX() 45 ** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro. 46 ** 47 ** The following functions are instrumented for malloc() failure 48 ** testing: 49 ** 50 ** sqlite3OsRead() 51 ** sqlite3OsWrite() 52 ** sqlite3OsSync() 53 ** sqlite3OsFileSize() 54 ** sqlite3OsLock() 55 ** sqlite3OsCheckReservedLock() 56 ** sqlite3OsFileControl() 57 ** sqlite3OsShmMap() 58 ** sqlite3OsOpen() 59 ** sqlite3OsDelete() 60 ** sqlite3OsAccess() 61 ** sqlite3OsFullPathname() 62 ** 63 */ 64 #if defined(SQLITE_TEST) 65 int sqlite3_memdebug_vfs_oom_test = 1; 66 #define DO_OS_MALLOC_TEST(x) \ 67 if (sqlite3_memdebug_vfs_oom_test && (!x || !sqlite3JournalIsInMemory(x))) { \ 68 void *pTstAlloc = sqlite3Malloc(10); \ 69 if (!pTstAlloc) return SQLITE_IOERR_NOMEM_BKPT; \ 70 sqlite3_free(pTstAlloc); \ 71 } 72 #else 73 #define DO_OS_MALLOC_TEST(x) 74 #endif 75 76 /* 77 ** The following routines are convenience wrappers around methods 78 ** of the sqlite3_file object. This is mostly just syntactic sugar. All 79 ** of this would be completely automatic if SQLite were coded using 80 ** C++ instead of plain old C. 81 */ 82 void sqlite3OsClose(sqlite3_file *pId){ 83 if( pId->pMethods ){ 84 pId->pMethods->xClose(pId); 85 pId->pMethods = 0; 86 } 87 } 88 int sqlite3OsRead(sqlite3_file *id, void *pBuf, int amt, i64 offset){ 89 DO_OS_MALLOC_TEST(id); 90 return id->pMethods->xRead(id, pBuf, amt, offset); 91 } 92 int sqlite3OsWrite(sqlite3_file *id, const void *pBuf, int amt, i64 offset){ 93 DO_OS_MALLOC_TEST(id); 94 return id->pMethods->xWrite(id, pBuf, amt, offset); 95 } 96 int sqlite3OsTruncate(sqlite3_file *id, i64 size){ 97 return id->pMethods->xTruncate(id, size); 98 } 99 int sqlite3OsSync(sqlite3_file *id, int flags){ 100 DO_OS_MALLOC_TEST(id); 101 return flags ? id->pMethods->xSync(id, flags) : SQLITE_OK; 102 } 103 int sqlite3OsFileSize(sqlite3_file *id, i64 *pSize){ 104 DO_OS_MALLOC_TEST(id); 105 return id->pMethods->xFileSize(id, pSize); 106 } 107 int sqlite3OsLock(sqlite3_file *id, int lockType){ 108 DO_OS_MALLOC_TEST(id); 109 return id->pMethods->xLock(id, lockType); 110 } 111 int sqlite3OsUnlock(sqlite3_file *id, int lockType){ 112 return id->pMethods->xUnlock(id, lockType); 113 } 114 int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut){ 115 DO_OS_MALLOC_TEST(id); 116 return id->pMethods->xCheckReservedLock(id, pResOut); 117 } 118 119 /* 120 ** Use sqlite3OsFileControl() when we are doing something that might fail 121 ** and we need to know about the failures. Use sqlite3OsFileControlHint() 122 ** when simply tossing information over the wall to the VFS and we do not 123 ** really care if the VFS receives and understands the information since it 124 ** is only a hint and can be safely ignored. The sqlite3OsFileControlHint() 125 ** routine has no return value since the return value would be meaningless. 126 */ 127 int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){ 128 if( id->pMethods==0 ) return SQLITE_NOTFOUND; 129 #ifdef SQLITE_TEST 130 if( op!=SQLITE_FCNTL_COMMIT_PHASETWO 131 && op!=SQLITE_FCNTL_LOCK_TIMEOUT 132 ){ 133 /* Faults are not injected into COMMIT_PHASETWO because, assuming SQLite 134 ** is using a regular VFS, it is called after the corresponding 135 ** transaction has been committed. Injecting a fault at this point 136 ** confuses the test scripts - the COMMIT comand returns SQLITE_NOMEM 137 ** but the transaction is committed anyway. 138 ** 139 ** The core must call OsFileControl() though, not OsFileControlHint(), 140 ** as if a custom VFS (e.g. zipvfs) returns an error here, it probably 141 ** means the commit really has failed and an error should be returned 142 ** to the user. */ 143 DO_OS_MALLOC_TEST(id); 144 } 145 #endif 146 return id->pMethods->xFileControl(id, op, pArg); 147 } 148 void sqlite3OsFileControlHint(sqlite3_file *id, int op, void *pArg){ 149 if( id->pMethods ) (void)id->pMethods->xFileControl(id, op, pArg); 150 } 151 152 int sqlite3OsSectorSize(sqlite3_file *id){ 153 int (*xSectorSize)(sqlite3_file*) = id->pMethods->xSectorSize; 154 return (xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE); 155 } 156 int sqlite3OsDeviceCharacteristics(sqlite3_file *id){ 157 return id->pMethods->xDeviceCharacteristics(id); 158 } 159 #ifndef SQLITE_OMIT_WAL 160 int sqlite3OsShmLock(sqlite3_file *id, int offset, int n, int flags){ 161 return id->pMethods->xShmLock(id, offset, n, flags); 162 } 163 void sqlite3OsShmBarrier(sqlite3_file *id){ 164 id->pMethods->xShmBarrier(id); 165 } 166 int sqlite3OsShmUnmap(sqlite3_file *id, int deleteFlag){ 167 return id->pMethods->xShmUnmap(id, deleteFlag); 168 } 169 int sqlite3OsShmMap( 170 sqlite3_file *id, /* Database file handle */ 171 int iPage, 172 int pgsz, 173 int bExtend, /* True to extend file if necessary */ 174 void volatile **pp /* OUT: Pointer to mapping */ 175 ){ 176 DO_OS_MALLOC_TEST(id); 177 return id->pMethods->xShmMap(id, iPage, pgsz, bExtend, pp); 178 } 179 #endif /* SQLITE_OMIT_WAL */ 180 181 #if SQLITE_MAX_MMAP_SIZE>0 182 /* The real implementation of xFetch and xUnfetch */ 183 int sqlite3OsFetch(sqlite3_file *id, i64 iOff, int iAmt, void **pp){ 184 DO_OS_MALLOC_TEST(id); 185 return id->pMethods->xFetch(id, iOff, iAmt, pp); 186 } 187 int sqlite3OsUnfetch(sqlite3_file *id, i64 iOff, void *p){ 188 return id->pMethods->xUnfetch(id, iOff, p); 189 } 190 #else 191 /* No-op stubs to use when memory-mapped I/O is disabled */ 192 int sqlite3OsFetch(sqlite3_file *id, i64 iOff, int iAmt, void **pp){ 193 *pp = 0; 194 return SQLITE_OK; 195 } 196 int sqlite3OsUnfetch(sqlite3_file *id, i64 iOff, void *p){ 197 return SQLITE_OK; 198 } 199 #endif 200 201 /* 202 ** The next group of routines are convenience wrappers around the 203 ** VFS methods. 204 */ 205 int sqlite3OsOpen( 206 sqlite3_vfs *pVfs, 207 const char *zPath, 208 sqlite3_file *pFile, 209 int flags, 210 int *pFlagsOut 211 ){ 212 int rc; 213 DO_OS_MALLOC_TEST(0); 214 /* 0x87f7f is a mask of SQLITE_OPEN_ flags that are valid to be passed 215 ** down into the VFS layer. Some SQLITE_OPEN_ flags (for example, 216 ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before 217 ** reaching the VFS. */ 218 rc = pVfs->xOpen(pVfs, zPath, pFile, flags & 0x1087f7f, pFlagsOut); 219 assert( rc==SQLITE_OK || pFile->pMethods==0 ); 220 return rc; 221 } 222 int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ 223 DO_OS_MALLOC_TEST(0); 224 assert( dirSync==0 || dirSync==1 ); 225 return pVfs->xDelete(pVfs, zPath, dirSync); 226 } 227 int sqlite3OsAccess( 228 sqlite3_vfs *pVfs, 229 const char *zPath, 230 int flags, 231 int *pResOut 232 ){ 233 DO_OS_MALLOC_TEST(0); 234 return pVfs->xAccess(pVfs, zPath, flags, pResOut); 235 } 236 int sqlite3OsFullPathname( 237 sqlite3_vfs *pVfs, 238 const char *zPath, 239 int nPathOut, 240 char *zPathOut 241 ){ 242 DO_OS_MALLOC_TEST(0); 243 zPathOut[0] = 0; 244 return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut); 245 } 246 #ifndef SQLITE_OMIT_LOAD_EXTENSION 247 void *sqlite3OsDlOpen(sqlite3_vfs *pVfs, const char *zPath){ 248 return pVfs->xDlOpen(pVfs, zPath); 249 } 250 void sqlite3OsDlError(sqlite3_vfs *pVfs, int nByte, char *zBufOut){ 251 pVfs->xDlError(pVfs, nByte, zBufOut); 252 } 253 void (*sqlite3OsDlSym(sqlite3_vfs *pVfs, void *pHdle, const char *zSym))(void){ 254 return pVfs->xDlSym(pVfs, pHdle, zSym); 255 } 256 void sqlite3OsDlClose(sqlite3_vfs *pVfs, void *pHandle){ 257 pVfs->xDlClose(pVfs, pHandle); 258 } 259 #endif /* SQLITE_OMIT_LOAD_EXTENSION */ 260 int sqlite3OsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){ 261 if( sqlite3Config.iPrngSeed ){ 262 memset(zBufOut, 0, nByte); 263 if( ALWAYS(nByte>(signed)sizeof(unsigned)) ) nByte = sizeof(unsigned int); 264 memcpy(zBufOut, &sqlite3Config.iPrngSeed, nByte); 265 return SQLITE_OK; 266 }else{ 267 return pVfs->xRandomness(pVfs, nByte, zBufOut); 268 } 269 270 } 271 int sqlite3OsSleep(sqlite3_vfs *pVfs, int nMicro){ 272 return pVfs->xSleep(pVfs, nMicro); 273 } 274 int sqlite3OsGetLastError(sqlite3_vfs *pVfs){ 275 return pVfs->xGetLastError ? pVfs->xGetLastError(pVfs, 0, 0) : 0; 276 } 277 int sqlite3OsCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *pTimeOut){ 278 int rc; 279 /* IMPLEMENTATION-OF: R-49045-42493 SQLite will use the xCurrentTimeInt64() 280 ** method to get the current date and time if that method is available 281 ** (if iVersion is 2 or greater and the function pointer is not NULL) and 282 ** will fall back to xCurrentTime() if xCurrentTimeInt64() is 283 ** unavailable. 284 */ 285 if( pVfs->iVersion>=2 && pVfs->xCurrentTimeInt64 ){ 286 rc = pVfs->xCurrentTimeInt64(pVfs, pTimeOut); 287 }else{ 288 double r; 289 rc = pVfs->xCurrentTime(pVfs, &r); 290 *pTimeOut = (sqlite3_int64)(r*86400000.0); 291 } 292 return rc; 293 } 294 295 int sqlite3OsOpenMalloc( 296 sqlite3_vfs *pVfs, 297 const char *zFile, 298 sqlite3_file **ppFile, 299 int flags, 300 int *pOutFlags 301 ){ 302 int rc; 303 sqlite3_file *pFile; 304 pFile = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile); 305 if( pFile ){ 306 rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags); 307 if( rc!=SQLITE_OK ){ 308 sqlite3_free(pFile); 309 }else{ 310 *ppFile = pFile; 311 } 312 }else{ 313 rc = SQLITE_NOMEM_BKPT; 314 } 315 return rc; 316 } 317 void sqlite3OsCloseFree(sqlite3_file *pFile){ 318 assert( pFile ); 319 sqlite3OsClose(pFile); 320 sqlite3_free(pFile); 321 } 322 323 /* 324 ** This function is a wrapper around the OS specific implementation of 325 ** sqlite3_os_init(). The purpose of the wrapper is to provide the 326 ** ability to simulate a malloc failure, so that the handling of an 327 ** error in sqlite3_os_init() by the upper layers can be tested. 328 */ 329 int sqlite3OsInit(void){ 330 void *p = sqlite3_malloc(10); 331 if( p==0 ) return SQLITE_NOMEM_BKPT; 332 sqlite3_free(p); 333 return sqlite3_os_init(); 334 } 335 336 /* 337 ** The list of all registered VFS implementations. 338 */ 339 static sqlite3_vfs * SQLITE_WSD vfsList = 0; 340 #define vfsList GLOBAL(sqlite3_vfs *, vfsList) 341 342 /* 343 ** Locate a VFS by name. If no name is given, simply return the 344 ** first VFS on the list. 345 */ 346 sqlite3_vfs *sqlite3_vfs_find(const char *zVfs){ 347 sqlite3_vfs *pVfs = 0; 348 #if SQLITE_THREADSAFE 349 sqlite3_mutex *mutex; 350 #endif 351 #ifndef SQLITE_OMIT_AUTOINIT 352 int rc = sqlite3_initialize(); 353 if( rc ) return 0; 354 #endif 355 #if SQLITE_THREADSAFE 356 mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); 357 #endif 358 sqlite3_mutex_enter(mutex); 359 for(pVfs = vfsList; pVfs; pVfs=pVfs->pNext){ 360 if( zVfs==0 ) break; 361 if( strcmp(zVfs, pVfs->zName)==0 ) break; 362 } 363 sqlite3_mutex_leave(mutex); 364 return pVfs; 365 } 366 367 /* 368 ** Unlink a VFS from the linked list 369 */ 370 static void vfsUnlink(sqlite3_vfs *pVfs){ 371 assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)) ); 372 if( pVfs==0 ){ 373 /* No-op */ 374 }else if( vfsList==pVfs ){ 375 vfsList = pVfs->pNext; 376 }else if( vfsList ){ 377 sqlite3_vfs *p = vfsList; 378 while( p->pNext && p->pNext!=pVfs ){ 379 p = p->pNext; 380 } 381 if( p->pNext==pVfs ){ 382 p->pNext = pVfs->pNext; 383 } 384 } 385 } 386 387 /* 388 ** Register a VFS with the system. It is harmless to register the same 389 ** VFS multiple times. The new VFS becomes the default if makeDflt is 390 ** true. 391 */ 392 int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){ 393 MUTEX_LOGIC(sqlite3_mutex *mutex;) 394 #ifndef SQLITE_OMIT_AUTOINIT 395 int rc = sqlite3_initialize(); 396 if( rc ) return rc; 397 #endif 398 #ifdef SQLITE_ENABLE_API_ARMOR 399 if( pVfs==0 ) return SQLITE_MISUSE_BKPT; 400 #endif 401 402 MUTEX_LOGIC( mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) 403 sqlite3_mutex_enter(mutex); 404 vfsUnlink(pVfs); 405 if( makeDflt || vfsList==0 ){ 406 pVfs->pNext = vfsList; 407 vfsList = pVfs; 408 }else{ 409 pVfs->pNext = vfsList->pNext; 410 vfsList->pNext = pVfs; 411 } 412 assert(vfsList); 413 sqlite3_mutex_leave(mutex); 414 return SQLITE_OK; 415 } 416 417 /* 418 ** Unregister a VFS so that it is no longer accessible. 419 */ 420 int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){ 421 MUTEX_LOGIC(sqlite3_mutex *mutex;) 422 #ifndef SQLITE_OMIT_AUTOINIT 423 int rc = sqlite3_initialize(); 424 if( rc ) return rc; 425 #endif 426 MUTEX_LOGIC( mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) 427 sqlite3_mutex_enter(mutex); 428 vfsUnlink(pVfs); 429 sqlite3_mutex_leave(mutex); 430 return SQLITE_OK; 431 } 432