1 /* 2 ** 2005 November 29 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ****************************************************************************** 12 ** 13 ** This file contains OS interface code that is common to all 14 ** architectures. 15 */ 16 #include "sqliteInt.h" 17 18 /* 19 ** If we compile with the SQLITE_TEST macro set, then the following block 20 ** of code will give us the ability to simulate a disk I/O error. This 21 ** is used for testing the I/O recovery logic. 22 */ 23 #if defined(SQLITE_TEST) 24 int sqlite3_io_error_hit = 0; /* Total number of I/O Errors */ 25 int sqlite3_io_error_hardhit = 0; /* Number of non-benign errors */ 26 int sqlite3_io_error_pending = 0; /* Count down to first I/O error */ 27 int sqlite3_io_error_persist = 0; /* True if I/O errors persist */ 28 int sqlite3_io_error_benign = 0; /* True if errors are benign */ 29 int sqlite3_diskfull_pending = 0; 30 int sqlite3_diskfull = 0; 31 #endif /* defined(SQLITE_TEST) */ 32 33 /* 34 ** When testing, also keep a count of the number of open files. 35 */ 36 #if defined(SQLITE_TEST) 37 int sqlite3_open_file_count = 0; 38 #endif /* defined(SQLITE_TEST) */ 39 40 /* 41 ** The default SQLite sqlite3_vfs implementations do not allocate 42 ** memory (actually, os_unix.c allocates a small amount of memory 43 ** from within OsOpen()), but some third-party implementations may. 44 ** So we test the effects of a malloc() failing and the sqlite3OsXXX() 45 ** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro. 46 ** 47 ** The following functions are instrumented for malloc() failure 48 ** testing: 49 ** 50 ** sqlite3OsRead() 51 ** sqlite3OsWrite() 52 ** sqlite3OsSync() 53 ** sqlite3OsFileSize() 54 ** sqlite3OsLock() 55 ** sqlite3OsCheckReservedLock() 56 ** sqlite3OsFileControl() 57 ** sqlite3OsShmMap() 58 ** sqlite3OsOpen() 59 ** sqlite3OsDelete() 60 ** sqlite3OsAccess() 61 ** sqlite3OsFullPathname() 62 ** 63 */ 64 #if defined(SQLITE_TEST) 65 int sqlite3_memdebug_vfs_oom_test = 1; 66 #define DO_OS_MALLOC_TEST(x) \ 67 if (sqlite3_memdebug_vfs_oom_test && (!x || !sqlite3JournalIsInMemory(x))) { \ 68 void *pTstAlloc = sqlite3Malloc(10); \ 69 if (!pTstAlloc) return SQLITE_IOERR_NOMEM_BKPT; \ 70 sqlite3_free(pTstAlloc); \ 71 } 72 #else 73 #define DO_OS_MALLOC_TEST(x) 74 #endif 75 76 /* 77 ** The following routines are convenience wrappers around methods 78 ** of the sqlite3_file object. This is mostly just syntactic sugar. All 79 ** of this would be completely automatic if SQLite were coded using 80 ** C++ instead of plain old C. 81 */ 82 void sqlite3OsClose(sqlite3_file *pId){ 83 if( pId->pMethods ){ 84 pId->pMethods->xClose(pId); 85 pId->pMethods = 0; 86 } 87 } 88 int sqlite3OsRead(sqlite3_file *id, void *pBuf, int amt, i64 offset){ 89 DO_OS_MALLOC_TEST(id); 90 return id->pMethods->xRead(id, pBuf, amt, offset); 91 } 92 int sqlite3OsWrite(sqlite3_file *id, const void *pBuf, int amt, i64 offset){ 93 DO_OS_MALLOC_TEST(id); 94 return id->pMethods->xWrite(id, pBuf, amt, offset); 95 } 96 int sqlite3OsTruncate(sqlite3_file *id, i64 size){ 97 return id->pMethods->xTruncate(id, size); 98 } 99 int sqlite3OsSync(sqlite3_file *id, int flags){ 100 DO_OS_MALLOC_TEST(id); 101 return id->pMethods->xSync(id, flags); 102 } 103 int sqlite3OsFileSize(sqlite3_file *id, i64 *pSize){ 104 DO_OS_MALLOC_TEST(id); 105 return id->pMethods->xFileSize(id, pSize); 106 } 107 int sqlite3OsLock(sqlite3_file *id, int lockType){ 108 DO_OS_MALLOC_TEST(id); 109 return id->pMethods->xLock(id, lockType); 110 } 111 int sqlite3OsUnlock(sqlite3_file *id, int lockType){ 112 return id->pMethods->xUnlock(id, lockType); 113 } 114 int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut){ 115 DO_OS_MALLOC_TEST(id); 116 return id->pMethods->xCheckReservedLock(id, pResOut); 117 } 118 119 /* 120 ** Use sqlite3OsFileControl() when we are doing something that might fail 121 ** and we need to know about the failures. Use sqlite3OsFileControlHint() 122 ** when simply tossing information over the wall to the VFS and we do not 123 ** really care if the VFS receives and understands the information since it 124 ** is only a hint and can be safely ignored. The sqlite3OsFileControlHint() 125 ** routine has no return value since the return value would be meaningless. 126 */ 127 int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){ 128 #ifdef SQLITE_TEST 129 if( op!=SQLITE_FCNTL_COMMIT_PHASETWO ){ 130 /* Faults are not injected into COMMIT_PHASETWO because, assuming SQLite 131 ** is using a regular VFS, it is called after the corresponding 132 ** transaction has been committed. Injecting a fault at this point 133 ** confuses the test scripts - the COMMIT comand returns SQLITE_NOMEM 134 ** but the transaction is committed anyway. 135 ** 136 ** The core must call OsFileControl() though, not OsFileControlHint(), 137 ** as if a custom VFS (e.g. zipvfs) returns an error here, it probably 138 ** means the commit really has failed and an error should be returned 139 ** to the user. */ 140 DO_OS_MALLOC_TEST(id); 141 } 142 #endif 143 return id->pMethods->xFileControl(id, op, pArg); 144 } 145 void sqlite3OsFileControlHint(sqlite3_file *id, int op, void *pArg){ 146 (void)id->pMethods->xFileControl(id, op, pArg); 147 } 148 149 int sqlite3OsSectorSize(sqlite3_file *id){ 150 int (*xSectorSize)(sqlite3_file*) = id->pMethods->xSectorSize; 151 return (xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE); 152 } 153 int sqlite3OsDeviceCharacteristics(sqlite3_file *id){ 154 return id->pMethods->xDeviceCharacteristics(id); 155 } 156 int sqlite3OsShmLock(sqlite3_file *id, int offset, int n, int flags){ 157 return id->pMethods->xShmLock(id, offset, n, flags); 158 } 159 void sqlite3OsShmBarrier(sqlite3_file *id){ 160 id->pMethods->xShmBarrier(id); 161 } 162 int sqlite3OsShmUnmap(sqlite3_file *id, int deleteFlag){ 163 return id->pMethods->xShmUnmap(id, deleteFlag); 164 } 165 int sqlite3OsShmMap( 166 sqlite3_file *id, /* Database file handle */ 167 int iPage, 168 int pgsz, 169 int bExtend, /* True to extend file if necessary */ 170 void volatile **pp /* OUT: Pointer to mapping */ 171 ){ 172 DO_OS_MALLOC_TEST(id); 173 return id->pMethods->xShmMap(id, iPage, pgsz, bExtend, pp); 174 } 175 176 #if SQLITE_MAX_MMAP_SIZE>0 177 /* The real implementation of xFetch and xUnfetch */ 178 int sqlite3OsFetch(sqlite3_file *id, i64 iOff, int iAmt, void **pp){ 179 DO_OS_MALLOC_TEST(id); 180 return id->pMethods->xFetch(id, iOff, iAmt, pp); 181 } 182 int sqlite3OsUnfetch(sqlite3_file *id, i64 iOff, void *p){ 183 return id->pMethods->xUnfetch(id, iOff, p); 184 } 185 #else 186 /* No-op stubs to use when memory-mapped I/O is disabled */ 187 int sqlite3OsFetch(sqlite3_file *id, i64 iOff, int iAmt, void **pp){ 188 *pp = 0; 189 return SQLITE_OK; 190 } 191 int sqlite3OsUnfetch(sqlite3_file *id, i64 iOff, void *p){ 192 return SQLITE_OK; 193 } 194 #endif 195 196 /* 197 ** The next group of routines are convenience wrappers around the 198 ** VFS methods. 199 */ 200 int sqlite3OsOpen( 201 sqlite3_vfs *pVfs, 202 const char *zPath, 203 sqlite3_file *pFile, 204 int flags, 205 int *pFlagsOut 206 ){ 207 int rc; 208 DO_OS_MALLOC_TEST(0); 209 /* 0x87f7f is a mask of SQLITE_OPEN_ flags that are valid to be passed 210 ** down into the VFS layer. Some SQLITE_OPEN_ flags (for example, 211 ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before 212 ** reaching the VFS. */ 213 rc = pVfs->xOpen(pVfs, zPath, pFile, flags & 0x87f7f, pFlagsOut); 214 assert( rc==SQLITE_OK || pFile->pMethods==0 ); 215 return rc; 216 } 217 int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ 218 DO_OS_MALLOC_TEST(0); 219 assert( dirSync==0 || dirSync==1 ); 220 return pVfs->xDelete(pVfs, zPath, dirSync); 221 } 222 int sqlite3OsAccess( 223 sqlite3_vfs *pVfs, 224 const char *zPath, 225 int flags, 226 int *pResOut 227 ){ 228 DO_OS_MALLOC_TEST(0); 229 return pVfs->xAccess(pVfs, zPath, flags, pResOut); 230 } 231 int sqlite3OsFullPathname( 232 sqlite3_vfs *pVfs, 233 const char *zPath, 234 int nPathOut, 235 char *zPathOut 236 ){ 237 DO_OS_MALLOC_TEST(0); 238 zPathOut[0] = 0; 239 return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut); 240 } 241 #ifndef SQLITE_OMIT_LOAD_EXTENSION 242 void *sqlite3OsDlOpen(sqlite3_vfs *pVfs, const char *zPath){ 243 return pVfs->xDlOpen(pVfs, zPath); 244 } 245 void sqlite3OsDlError(sqlite3_vfs *pVfs, int nByte, char *zBufOut){ 246 pVfs->xDlError(pVfs, nByte, zBufOut); 247 } 248 void (*sqlite3OsDlSym(sqlite3_vfs *pVfs, void *pHdle, const char *zSym))(void){ 249 return pVfs->xDlSym(pVfs, pHdle, zSym); 250 } 251 void sqlite3OsDlClose(sqlite3_vfs *pVfs, void *pHandle){ 252 pVfs->xDlClose(pVfs, pHandle); 253 } 254 #endif /* SQLITE_OMIT_LOAD_EXTENSION */ 255 int sqlite3OsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){ 256 return pVfs->xRandomness(pVfs, nByte, zBufOut); 257 } 258 int sqlite3OsSleep(sqlite3_vfs *pVfs, int nMicro){ 259 return pVfs->xSleep(pVfs, nMicro); 260 } 261 int sqlite3OsGetLastError(sqlite3_vfs *pVfs){ 262 return pVfs->xGetLastError ? pVfs->xGetLastError(pVfs, 0, 0) : 0; 263 } 264 int sqlite3OsCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *pTimeOut){ 265 int rc; 266 /* IMPLEMENTATION-OF: R-49045-42493 SQLite will use the xCurrentTimeInt64() 267 ** method to get the current date and time if that method is available 268 ** (if iVersion is 2 or greater and the function pointer is not NULL) and 269 ** will fall back to xCurrentTime() if xCurrentTimeInt64() is 270 ** unavailable. 271 */ 272 if( pVfs->iVersion>=2 && pVfs->xCurrentTimeInt64 ){ 273 rc = pVfs->xCurrentTimeInt64(pVfs, pTimeOut); 274 }else{ 275 double r; 276 rc = pVfs->xCurrentTime(pVfs, &r); 277 *pTimeOut = (sqlite3_int64)(r*86400000.0); 278 } 279 return rc; 280 } 281 282 int sqlite3OsOpenMalloc( 283 sqlite3_vfs *pVfs, 284 const char *zFile, 285 sqlite3_file **ppFile, 286 int flags, 287 int *pOutFlags 288 ){ 289 int rc; 290 sqlite3_file *pFile; 291 pFile = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile); 292 if( pFile ){ 293 rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags); 294 if( rc!=SQLITE_OK ){ 295 sqlite3_free(pFile); 296 }else{ 297 *ppFile = pFile; 298 } 299 }else{ 300 rc = SQLITE_NOMEM_BKPT; 301 } 302 return rc; 303 } 304 void sqlite3OsCloseFree(sqlite3_file *pFile){ 305 assert( pFile ); 306 sqlite3OsClose(pFile); 307 sqlite3_free(pFile); 308 } 309 310 /* 311 ** This function is a wrapper around the OS specific implementation of 312 ** sqlite3_os_init(). The purpose of the wrapper is to provide the 313 ** ability to simulate a malloc failure, so that the handling of an 314 ** error in sqlite3_os_init() by the upper layers can be tested. 315 */ 316 int sqlite3OsInit(void){ 317 void *p = sqlite3_malloc(10); 318 if( p==0 ) return SQLITE_NOMEM_BKPT; 319 sqlite3_free(p); 320 return sqlite3_os_init(); 321 } 322 323 /* 324 ** The list of all registered VFS implementations. 325 */ 326 static sqlite3_vfs * SQLITE_WSD vfsList = 0; 327 #define vfsList GLOBAL(sqlite3_vfs *, vfsList) 328 329 /* 330 ** Locate a VFS by name. If no name is given, simply return the 331 ** first VFS on the list. 332 */ 333 sqlite3_vfs *sqlite3_vfs_find(const char *zVfs){ 334 sqlite3_vfs *pVfs = 0; 335 #if SQLITE_THREADSAFE 336 sqlite3_mutex *mutex; 337 #endif 338 #ifndef SQLITE_OMIT_AUTOINIT 339 int rc = sqlite3_initialize(); 340 if( rc ) return 0; 341 #endif 342 #if SQLITE_THREADSAFE 343 mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); 344 #endif 345 sqlite3_mutex_enter(mutex); 346 for(pVfs = vfsList; pVfs; pVfs=pVfs->pNext){ 347 if( zVfs==0 ) break; 348 if( strcmp(zVfs, pVfs->zName)==0 ) break; 349 } 350 sqlite3_mutex_leave(mutex); 351 return pVfs; 352 } 353 354 /* 355 ** Unlink a VFS from the linked list 356 */ 357 static void vfsUnlink(sqlite3_vfs *pVfs){ 358 assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)) ); 359 if( pVfs==0 ){ 360 /* No-op */ 361 }else if( vfsList==pVfs ){ 362 vfsList = pVfs->pNext; 363 }else if( vfsList ){ 364 sqlite3_vfs *p = vfsList; 365 while( p->pNext && p->pNext!=pVfs ){ 366 p = p->pNext; 367 } 368 if( p->pNext==pVfs ){ 369 p->pNext = pVfs->pNext; 370 } 371 } 372 } 373 374 /* 375 ** Register a VFS with the system. It is harmless to register the same 376 ** VFS multiple times. The new VFS becomes the default if makeDflt is 377 ** true. 378 */ 379 int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){ 380 MUTEX_LOGIC(sqlite3_mutex *mutex;) 381 #ifndef SQLITE_OMIT_AUTOINIT 382 int rc = sqlite3_initialize(); 383 if( rc ) return rc; 384 #endif 385 #ifdef SQLITE_ENABLE_API_ARMOR 386 if( pVfs==0 ) return SQLITE_MISUSE_BKPT; 387 #endif 388 389 MUTEX_LOGIC( mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) 390 sqlite3_mutex_enter(mutex); 391 vfsUnlink(pVfs); 392 if( makeDflt || vfsList==0 ){ 393 pVfs->pNext = vfsList; 394 vfsList = pVfs; 395 }else{ 396 pVfs->pNext = vfsList->pNext; 397 vfsList->pNext = pVfs; 398 } 399 assert(vfsList); 400 sqlite3_mutex_leave(mutex); 401 return SQLITE_OK; 402 } 403 404 /* 405 ** Unregister a VFS so that it is no longer accessible. 406 */ 407 int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){ 408 #if SQLITE_THREADSAFE 409 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); 410 #endif 411 sqlite3_mutex_enter(mutex); 412 vfsUnlink(pVfs); 413 sqlite3_mutex_leave(mutex); 414 return SQLITE_OK; 415 } 416