xref: /sqlite-3.40.0/src/os.c (revision 4f3557e4)
1 /*
2 ** 2005 November 29
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 ******************************************************************************
12 **
13 ** This file contains OS interface code that is common to all
14 ** architectures.
15 */
16 #include "sqliteInt.h"
17 
18 /*
19 ** If we compile with the SQLITE_TEST macro set, then the following block
20 ** of code will give us the ability to simulate a disk I/O error.  This
21 ** is used for testing the I/O recovery logic.
22 */
23 #if defined(SQLITE_TEST)
24 int sqlite3_io_error_hit = 0;            /* Total number of I/O Errors */
25 int sqlite3_io_error_hardhit = 0;        /* Number of non-benign errors */
26 int sqlite3_io_error_pending = 0;        /* Count down to first I/O error */
27 int sqlite3_io_error_persist = 0;        /* True if I/O errors persist */
28 int sqlite3_io_error_benign = 0;         /* True if errors are benign */
29 int sqlite3_diskfull_pending = 0;
30 int sqlite3_diskfull = 0;
31 #endif /* defined(SQLITE_TEST) */
32 
33 /*
34 ** When testing, also keep a count of the number of open files.
35 */
36 #if defined(SQLITE_TEST)
37 int sqlite3_open_file_count = 0;
38 #endif /* defined(SQLITE_TEST) */
39 
40 /*
41 ** The default SQLite sqlite3_vfs implementations do not allocate
42 ** memory (actually, os_unix.c allocates a small amount of memory
43 ** from within OsOpen()), but some third-party implementations may.
44 ** So we test the effects of a malloc() failing and the sqlite3OsXXX()
45 ** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro.
46 **
47 ** The following functions are instrumented for malloc() failure
48 ** testing:
49 **
50 **     sqlite3OsRead()
51 **     sqlite3OsWrite()
52 **     sqlite3OsSync()
53 **     sqlite3OsFileSize()
54 **     sqlite3OsLock()
55 **     sqlite3OsCheckReservedLock()
56 **     sqlite3OsFileControl()
57 **     sqlite3OsShmMap()
58 **     sqlite3OsOpen()
59 **     sqlite3OsDelete()
60 **     sqlite3OsAccess()
61 **     sqlite3OsFullPathname()
62 **
63 */
64 #if defined(SQLITE_TEST)
65 int sqlite3_memdebug_vfs_oom_test = 1;
66   #define DO_OS_MALLOC_TEST(x)                                       \
67   if (sqlite3_memdebug_vfs_oom_test && (!x || !sqlite3JournalIsInMemory(x))) { \
68     void *pTstAlloc = sqlite3Malloc(10);                             \
69     if (!pTstAlloc) return SQLITE_IOERR_NOMEM_BKPT;                  \
70     sqlite3_free(pTstAlloc);                                         \
71   }
72 #else
73   #define DO_OS_MALLOC_TEST(x)
74 #endif
75 
76 /*
77 ** The following routines are convenience wrappers around methods
78 ** of the sqlite3_file object.  This is mostly just syntactic sugar. All
79 ** of this would be completely automatic if SQLite were coded using
80 ** C++ instead of plain old C.
81 */
82 void sqlite3OsClose(sqlite3_file *pId){
83   if( pId->pMethods ){
84     pId->pMethods->xClose(pId);
85     pId->pMethods = 0;
86   }
87 }
88 int sqlite3OsRead(sqlite3_file *id, void *pBuf, int amt, i64 offset){
89   DO_OS_MALLOC_TEST(id);
90   return id->pMethods->xRead(id, pBuf, amt, offset);
91 }
92 int sqlite3OsWrite(sqlite3_file *id, const void *pBuf, int amt, i64 offset){
93   DO_OS_MALLOC_TEST(id);
94   return id->pMethods->xWrite(id, pBuf, amt, offset);
95 }
96 int sqlite3OsTruncate(sqlite3_file *id, i64 size){
97   return id->pMethods->xTruncate(id, size);
98 }
99 int sqlite3OsSync(sqlite3_file *id, int flags){
100   DO_OS_MALLOC_TEST(id);
101   return flags ? id->pMethods->xSync(id, flags) : SQLITE_OK;
102 }
103 int sqlite3OsFileSize(sqlite3_file *id, i64 *pSize){
104   DO_OS_MALLOC_TEST(id);
105   return id->pMethods->xFileSize(id, pSize);
106 }
107 int sqlite3OsLock(sqlite3_file *id, int lockType){
108   DO_OS_MALLOC_TEST(id);
109   return id->pMethods->xLock(id, lockType);
110 }
111 int sqlite3OsUnlock(sqlite3_file *id, int lockType){
112   return id->pMethods->xUnlock(id, lockType);
113 }
114 int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut){
115   DO_OS_MALLOC_TEST(id);
116   return id->pMethods->xCheckReservedLock(id, pResOut);
117 }
118 
119 /*
120 ** Use sqlite3OsFileControl() when we are doing something that might fail
121 ** and we need to know about the failures.  Use sqlite3OsFileControlHint()
122 ** when simply tossing information over the wall to the VFS and we do not
123 ** really care if the VFS receives and understands the information since it
124 ** is only a hint and can be safely ignored.  The sqlite3OsFileControlHint()
125 ** routine has no return value since the return value would be meaningless.
126 */
127 int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){
128   if( id->pMethods==0 ) return SQLITE_NOTFOUND;
129 #ifdef SQLITE_TEST
130   if( op!=SQLITE_FCNTL_COMMIT_PHASETWO
131    && op!=SQLITE_FCNTL_LOCK_TIMEOUT
132    && op!=SQLITE_FCNTL_CKPT_DONE
133    && op!=SQLITE_FCNTL_CKPT_START
134   ){
135     /* Faults are not injected into COMMIT_PHASETWO because, assuming SQLite
136     ** is using a regular VFS, it is called after the corresponding
137     ** transaction has been committed. Injecting a fault at this point
138     ** confuses the test scripts - the COMMIT comand returns SQLITE_NOMEM
139     ** but the transaction is committed anyway.
140     **
141     ** The core must call OsFileControl() though, not OsFileControlHint(),
142     ** as if a custom VFS (e.g. zipvfs) returns an error here, it probably
143     ** means the commit really has failed and an error should be returned
144     ** to the user.
145     **
146     ** The CKPT_DONE and CKPT_START file-controls are write-only signals
147     ** to the cksumvfs.  Their return code is meaningless and is ignored
148     ** by the SQLite core, so there is no point in simulating OOMs for them.
149     */
150     DO_OS_MALLOC_TEST(id);
151   }
152 #endif
153   return id->pMethods->xFileControl(id, op, pArg);
154 }
155 void sqlite3OsFileControlHint(sqlite3_file *id, int op, void *pArg){
156   if( id->pMethods ) (void)id->pMethods->xFileControl(id, op, pArg);
157 }
158 
159 int sqlite3OsSectorSize(sqlite3_file *id){
160   int (*xSectorSize)(sqlite3_file*) = id->pMethods->xSectorSize;
161   return (xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE);
162 }
163 int sqlite3OsDeviceCharacteristics(sqlite3_file *id){
164   if( NEVER(id->pMethods==0) ) return 0;
165   return id->pMethods->xDeviceCharacteristics(id);
166 }
167 #ifndef SQLITE_OMIT_WAL
168 int sqlite3OsShmLock(sqlite3_file *id, int offset, int n, int flags){
169   return id->pMethods->xShmLock(id, offset, n, flags);
170 }
171 void sqlite3OsShmBarrier(sqlite3_file *id){
172   id->pMethods->xShmBarrier(id);
173 }
174 int sqlite3OsShmUnmap(sqlite3_file *id, int deleteFlag){
175   return id->pMethods->xShmUnmap(id, deleteFlag);
176 }
177 int sqlite3OsShmMap(
178   sqlite3_file *id,               /* Database file handle */
179   int iPage,
180   int pgsz,
181   int bExtend,                    /* True to extend file if necessary */
182   void volatile **pp              /* OUT: Pointer to mapping */
183 ){
184   DO_OS_MALLOC_TEST(id);
185   return id->pMethods->xShmMap(id, iPage, pgsz, bExtend, pp);
186 }
187 #endif /* SQLITE_OMIT_WAL */
188 
189 #if SQLITE_MAX_MMAP_SIZE>0
190 /* The real implementation of xFetch and xUnfetch */
191 int sqlite3OsFetch(sqlite3_file *id, i64 iOff, int iAmt, void **pp){
192   DO_OS_MALLOC_TEST(id);
193   return id->pMethods->xFetch(id, iOff, iAmt, pp);
194 }
195 int sqlite3OsUnfetch(sqlite3_file *id, i64 iOff, void *p){
196   return id->pMethods->xUnfetch(id, iOff, p);
197 }
198 #else
199 /* No-op stubs to use when memory-mapped I/O is disabled */
200 int sqlite3OsFetch(sqlite3_file *id, i64 iOff, int iAmt, void **pp){
201   *pp = 0;
202   return SQLITE_OK;
203 }
204 int sqlite3OsUnfetch(sqlite3_file *id, i64 iOff, void *p){
205   return SQLITE_OK;
206 }
207 #endif
208 
209 /*
210 ** The next group of routines are convenience wrappers around the
211 ** VFS methods.
212 */
213 int sqlite3OsOpen(
214   sqlite3_vfs *pVfs,
215   const char *zPath,
216   sqlite3_file *pFile,
217   int flags,
218   int *pFlagsOut
219 ){
220   int rc;
221   DO_OS_MALLOC_TEST(0);
222   /* 0x87f7f is a mask of SQLITE_OPEN_ flags that are valid to be passed
223   ** down into the VFS layer.  Some SQLITE_OPEN_ flags (for example,
224   ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before
225   ** reaching the VFS. */
226   rc = pVfs->xOpen(pVfs, zPath, pFile, flags & 0x1087f7f, pFlagsOut);
227   assert( rc==SQLITE_OK || pFile->pMethods==0 );
228   return rc;
229 }
230 int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
231   DO_OS_MALLOC_TEST(0);
232   assert( dirSync==0 || dirSync==1 );
233   return pVfs->xDelete!=0 ? pVfs->xDelete(pVfs, zPath, dirSync) : SQLITE_OK;
234 }
235 int sqlite3OsAccess(
236   sqlite3_vfs *pVfs,
237   const char *zPath,
238   int flags,
239   int *pResOut
240 ){
241   DO_OS_MALLOC_TEST(0);
242   return pVfs->xAccess(pVfs, zPath, flags, pResOut);
243 }
244 int sqlite3OsFullPathname(
245   sqlite3_vfs *pVfs,
246   const char *zPath,
247   int nPathOut,
248   char *zPathOut
249 ){
250   DO_OS_MALLOC_TEST(0);
251   zPathOut[0] = 0;
252   return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut);
253 }
254 #ifndef SQLITE_OMIT_LOAD_EXTENSION
255 void *sqlite3OsDlOpen(sqlite3_vfs *pVfs, const char *zPath){
256   assert( zPath!=0 );
257   assert( strlen(zPath)<=SQLITE_MAX_PATHLEN );  /* tag-20210611-1 */
258   return pVfs->xDlOpen(pVfs, zPath);
259 }
260 void sqlite3OsDlError(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
261   pVfs->xDlError(pVfs, nByte, zBufOut);
262 }
263 void (*sqlite3OsDlSym(sqlite3_vfs *pVfs, void *pHdle, const char *zSym))(void){
264   return pVfs->xDlSym(pVfs, pHdle, zSym);
265 }
266 void sqlite3OsDlClose(sqlite3_vfs *pVfs, void *pHandle){
267   pVfs->xDlClose(pVfs, pHandle);
268 }
269 #endif /* SQLITE_OMIT_LOAD_EXTENSION */
270 int sqlite3OsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){
271   if( sqlite3Config.iPrngSeed ){
272     memset(zBufOut, 0, nByte);
273     if( ALWAYS(nByte>(signed)sizeof(unsigned)) ) nByte = sizeof(unsigned int);
274     memcpy(zBufOut, &sqlite3Config.iPrngSeed, nByte);
275     return SQLITE_OK;
276   }else{
277     return pVfs->xRandomness(pVfs, nByte, zBufOut);
278   }
279 
280 }
281 int sqlite3OsSleep(sqlite3_vfs *pVfs, int nMicro){
282   return pVfs->xSleep(pVfs, nMicro);
283 }
284 int sqlite3OsGetLastError(sqlite3_vfs *pVfs){
285   return pVfs->xGetLastError ? pVfs->xGetLastError(pVfs, 0, 0) : 0;
286 }
287 int sqlite3OsCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *pTimeOut){
288   int rc;
289   /* IMPLEMENTATION-OF: R-49045-42493 SQLite will use the xCurrentTimeInt64()
290   ** method to get the current date and time if that method is available
291   ** (if iVersion is 2 or greater and the function pointer is not NULL) and
292   ** will fall back to xCurrentTime() if xCurrentTimeInt64() is
293   ** unavailable.
294   */
295   if( pVfs->iVersion>=2 && pVfs->xCurrentTimeInt64 ){
296     rc = pVfs->xCurrentTimeInt64(pVfs, pTimeOut);
297   }else{
298     double r;
299     rc = pVfs->xCurrentTime(pVfs, &r);
300     *pTimeOut = (sqlite3_int64)(r*86400000.0);
301   }
302   return rc;
303 }
304 
305 int sqlite3OsOpenMalloc(
306   sqlite3_vfs *pVfs,
307   const char *zFile,
308   sqlite3_file **ppFile,
309   int flags,
310   int *pOutFlags
311 ){
312   int rc;
313   sqlite3_file *pFile;
314   pFile = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile);
315   if( pFile ){
316     rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags);
317     if( rc!=SQLITE_OK ){
318       sqlite3_free(pFile);
319       *ppFile = 0;
320     }else{
321       *ppFile = pFile;
322     }
323   }else{
324     *ppFile = 0;
325     rc = SQLITE_NOMEM_BKPT;
326   }
327   assert( *ppFile!=0 || rc!=SQLITE_OK );
328   return rc;
329 }
330 void sqlite3OsCloseFree(sqlite3_file *pFile){
331   assert( pFile );
332   sqlite3OsClose(pFile);
333   sqlite3_free(pFile);
334 }
335 
336 /*
337 ** This function is a wrapper around the OS specific implementation of
338 ** sqlite3_os_init(). The purpose of the wrapper is to provide the
339 ** ability to simulate a malloc failure, so that the handling of an
340 ** error in sqlite3_os_init() by the upper layers can be tested.
341 */
342 int sqlite3OsInit(void){
343   void *p = sqlite3_malloc(10);
344   if( p==0 ) return SQLITE_NOMEM_BKPT;
345   sqlite3_free(p);
346   return sqlite3_os_init();
347 }
348 
349 /*
350 ** The list of all registered VFS implementations.
351 */
352 static sqlite3_vfs * SQLITE_WSD vfsList = 0;
353 #define vfsList GLOBAL(sqlite3_vfs *, vfsList)
354 
355 /*
356 ** Locate a VFS by name.  If no name is given, simply return the
357 ** first VFS on the list.
358 */
359 sqlite3_vfs *sqlite3_vfs_find(const char *zVfs){
360   sqlite3_vfs *pVfs = 0;
361 #if SQLITE_THREADSAFE
362   sqlite3_mutex *mutex;
363 #endif
364 #ifndef SQLITE_OMIT_AUTOINIT
365   int rc = sqlite3_initialize();
366   if( rc ) return 0;
367 #endif
368 #if SQLITE_THREADSAFE
369   mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN);
370 #endif
371   sqlite3_mutex_enter(mutex);
372   for(pVfs = vfsList; pVfs; pVfs=pVfs->pNext){
373     if( zVfs==0 ) break;
374     if( strcmp(zVfs, pVfs->zName)==0 ) break;
375   }
376   sqlite3_mutex_leave(mutex);
377   return pVfs;
378 }
379 
380 /*
381 ** Unlink a VFS from the linked list
382 */
383 static void vfsUnlink(sqlite3_vfs *pVfs){
384   assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN)) );
385   if( pVfs==0 ){
386     /* No-op */
387   }else if( vfsList==pVfs ){
388     vfsList = pVfs->pNext;
389   }else if( vfsList ){
390     sqlite3_vfs *p = vfsList;
391     while( p->pNext && p->pNext!=pVfs ){
392       p = p->pNext;
393     }
394     if( p->pNext==pVfs ){
395       p->pNext = pVfs->pNext;
396     }
397   }
398 }
399 
400 /*
401 ** Register a VFS with the system.  It is harmless to register the same
402 ** VFS multiple times.  The new VFS becomes the default if makeDflt is
403 ** true.
404 */
405 int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){
406   MUTEX_LOGIC(sqlite3_mutex *mutex;)
407 #ifndef SQLITE_OMIT_AUTOINIT
408   int rc = sqlite3_initialize();
409   if( rc ) return rc;
410 #endif
411 #ifdef SQLITE_ENABLE_API_ARMOR
412   if( pVfs==0 ) return SQLITE_MISUSE_BKPT;
413 #endif
414 
415   MUTEX_LOGIC( mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
416   sqlite3_mutex_enter(mutex);
417   vfsUnlink(pVfs);
418   if( makeDflt || vfsList==0 ){
419     pVfs->pNext = vfsList;
420     vfsList = pVfs;
421   }else{
422     pVfs->pNext = vfsList->pNext;
423     vfsList->pNext = pVfs;
424   }
425   assert(vfsList);
426   sqlite3_mutex_leave(mutex);
427   return SQLITE_OK;
428 }
429 
430 /*
431 ** Unregister a VFS so that it is no longer accessible.
432 */
433 int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){
434   MUTEX_LOGIC(sqlite3_mutex *mutex;)
435 #ifndef SQLITE_OMIT_AUTOINIT
436   int rc = sqlite3_initialize();
437   if( rc ) return rc;
438 #endif
439   MUTEX_LOGIC( mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN); )
440   sqlite3_mutex_enter(mutex);
441   vfsUnlink(pVfs);
442   sqlite3_mutex_leave(mutex);
443   return SQLITE_OK;
444 }
445