xref: /sqlite-3.40.0/src/mutex_unix.c (revision 7aa3ebee)
1 /*
2 ** 2007 August 28
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement mutexes for pthreads
13 */
14 #include "sqliteInt.h"
15 
16 /*
17 ** The code in this file is only used if we are compiling threadsafe
18 ** under unix with pthreads.
19 **
20 ** Note that this implementation requires a version of pthreads that
21 ** supports recursive mutexes.
22 */
23 #ifdef SQLITE_MUTEX_PTHREADS
24 
25 #include <pthread.h>
26 
27 /*
28 ** The sqlite3_mutex.id, sqlite3_mutex.nRef, and sqlite3_mutex.owner fields
29 ** are necessary under two condidtions:  (1) Debug builds and (2) using
30 ** home-grown mutexes.  Encapsulate these conditions into a single #define.
31 */
32 #if defined(SQLITE_DEBUG) || defined(SQLITE_HOMEGROWN_RECURSIVE_MUTEX)
33 # define SQLITE_MUTEX_NREF 1
34 #else
35 # define SQLITE_MUTEX_NREF 0
36 #endif
37 
38 /*
39 ** Each recursive mutex is an instance of the following structure.
40 */
41 struct sqlite3_mutex {
42   pthread_mutex_t mutex;     /* Mutex controlling the lock */
43 #if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR)
44   int id;                    /* Mutex type */
45 #endif
46 #if SQLITE_MUTEX_NREF
47   volatile int nRef;         /* Number of entrances */
48   volatile pthread_t owner;  /* Thread that is within this mutex */
49   int trace;                 /* True to trace changes */
50 #endif
51 };
52 #if SQLITE_MUTEX_NREF
53 #define SQLITE3_MUTEX_INITIALIZER {PTHREAD_MUTEX_INITIALIZER,0,0,(pthread_t)0,0}
54 #elif defined(SQLITE_ENABLE_API_ARMOR)
55 #define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0 }
56 #else
57 #define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER }
58 #endif
59 
60 /*
61 ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
62 ** intended for use only inside assert() statements.  On some platforms,
63 ** there might be race conditions that can cause these routines to
64 ** deliver incorrect results.  In particular, if pthread_equal() is
65 ** not an atomic operation, then these routines might delivery
66 ** incorrect results.  On most platforms, pthread_equal() is a
67 ** comparison of two integers and is therefore atomic.  But we are
68 ** told that HPUX is not such a platform.  If so, then these routines
69 ** will not always work correctly on HPUX.
70 **
71 ** On those platforms where pthread_equal() is not atomic, SQLite
72 ** should be compiled without -DSQLITE_DEBUG and with -DNDEBUG to
73 ** make sure no assert() statements are evaluated and hence these
74 ** routines are never called.
75 */
76 #if !defined(NDEBUG) || defined(SQLITE_DEBUG)
77 static int pthreadMutexHeld(sqlite3_mutex *p){
78   return (p->nRef!=0 && pthread_equal(p->owner, pthread_self()));
79 }
80 static int pthreadMutexNotheld(sqlite3_mutex *p){
81   return p->nRef==0 || pthread_equal(p->owner, pthread_self())==0;
82 }
83 #endif
84 
85 /*
86 ** Try to provide a memory barrier operation, needed for initialization
87 ** and also for the implementation of xShmBarrier in the VFS in cases
88 ** where SQLite is compiled without mutexes.
89 */
90 void sqlite3MemoryBarrier(void){
91 #if defined(SQLITE_MEMORY_BARRIER)
92   SQLITE_MEMORY_BARRIER;
93 #elif defined(__GNUC__) && GCC_VERSION>=4001000
94   __sync_synchronize();
95 #endif
96 }
97 
98 /*
99 ** Initialize and deinitialize the mutex subsystem.
100 */
101 static int pthreadMutexInit(void){ return SQLITE_OK; }
102 static int pthreadMutexEnd(void){ return SQLITE_OK; }
103 
104 /*
105 ** The sqlite3_mutex_alloc() routine allocates a new
106 ** mutex and returns a pointer to it.  If it returns NULL
107 ** that means that a mutex could not be allocated.  SQLite
108 ** will unwind its stack and return an error.  The argument
109 ** to sqlite3_mutex_alloc() is one of these integer constants:
110 **
111 ** <ul>
112 ** <li>  SQLITE_MUTEX_FAST
113 ** <li>  SQLITE_MUTEX_RECURSIVE
114 ** <li>  SQLITE_MUTEX_STATIC_MASTER
115 ** <li>  SQLITE_MUTEX_STATIC_MEM
116 ** <li>  SQLITE_MUTEX_STATIC_OPEN
117 ** <li>  SQLITE_MUTEX_STATIC_PRNG
118 ** <li>  SQLITE_MUTEX_STATIC_LRU
119 ** <li>  SQLITE_MUTEX_STATIC_PMEM
120 ** <li>  SQLITE_MUTEX_STATIC_APP1
121 ** <li>  SQLITE_MUTEX_STATIC_APP2
122 ** <li>  SQLITE_MUTEX_STATIC_APP3
123 ** <li>  SQLITE_MUTEX_STATIC_VFS1
124 ** <li>  SQLITE_MUTEX_STATIC_VFS2
125 ** <li>  SQLITE_MUTEX_STATIC_VFS3
126 ** </ul>
127 **
128 ** The first two constants cause sqlite3_mutex_alloc() to create
129 ** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
130 ** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
131 ** The mutex implementation does not need to make a distinction
132 ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
133 ** not want to.  But SQLite will only request a recursive mutex in
134 ** cases where it really needs one.  If a faster non-recursive mutex
135 ** implementation is available on the host platform, the mutex subsystem
136 ** might return such a mutex in response to SQLITE_MUTEX_FAST.
137 **
138 ** The other allowed parameters to sqlite3_mutex_alloc() each return
139 ** a pointer to a static preexisting mutex.  Six static mutexes are
140 ** used by the current version of SQLite.  Future versions of SQLite
141 ** may add additional static mutexes.  Static mutexes are for internal
142 ** use by SQLite only.  Applications that use SQLite mutexes should
143 ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
144 ** SQLITE_MUTEX_RECURSIVE.
145 **
146 ** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
147 ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
148 ** returns a different mutex on every call.  But for the static
149 ** mutex types, the same mutex is returned on every call that has
150 ** the same type number.
151 */
152 static sqlite3_mutex *pthreadMutexAlloc(int iType){
153   static sqlite3_mutex staticMutexes[] = {
154     SQLITE3_MUTEX_INITIALIZER,
155     SQLITE3_MUTEX_INITIALIZER,
156     SQLITE3_MUTEX_INITIALIZER,
157     SQLITE3_MUTEX_INITIALIZER,
158     SQLITE3_MUTEX_INITIALIZER,
159     SQLITE3_MUTEX_INITIALIZER,
160     SQLITE3_MUTEX_INITIALIZER,
161     SQLITE3_MUTEX_INITIALIZER,
162     SQLITE3_MUTEX_INITIALIZER,
163     SQLITE3_MUTEX_INITIALIZER,
164     SQLITE3_MUTEX_INITIALIZER,
165     SQLITE3_MUTEX_INITIALIZER
166   };
167   sqlite3_mutex *p;
168   switch( iType ){
169     case SQLITE_MUTEX_RECURSIVE: {
170       p = sqlite3MallocZero( sizeof(*p) );
171       if( p ){
172 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
173         /* If recursive mutexes are not available, we will have to
174         ** build our own.  See below. */
175         pthread_mutex_init(&p->mutex, 0);
176 #else
177         /* Use a recursive mutex if it is available */
178         pthread_mutexattr_t recursiveAttr;
179         pthread_mutexattr_init(&recursiveAttr);
180         pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
181         pthread_mutex_init(&p->mutex, &recursiveAttr);
182         pthread_mutexattr_destroy(&recursiveAttr);
183 #endif
184       }
185       break;
186     }
187     case SQLITE_MUTEX_FAST: {
188       p = sqlite3MallocZero( sizeof(*p) );
189       if( p ){
190         pthread_mutex_init(&p->mutex, 0);
191       }
192       break;
193     }
194     default: {
195 #ifdef SQLITE_ENABLE_API_ARMOR
196       if( iType-2<0 || iType-2>=ArraySize(staticMutexes) ){
197         (void)SQLITE_MISUSE_BKPT;
198         return 0;
199       }
200 #endif
201       p = &staticMutexes[iType-2];
202       break;
203     }
204   }
205 #if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR)
206   if( p ) p->id = iType;
207 #endif
208   return p;
209 }
210 
211 
212 /*
213 ** This routine deallocates a previously
214 ** allocated mutex.  SQLite is careful to deallocate every
215 ** mutex that it allocates.
216 */
217 static void pthreadMutexFree(sqlite3_mutex *p){
218   assert( p->nRef==0 );
219 #if SQLITE_ENABLE_API_ARMOR
220   if( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE )
221 #endif
222   {
223     pthread_mutex_destroy(&p->mutex);
224     sqlite3_free(p);
225   }
226 #ifdef SQLITE_ENABLE_API_ARMOR
227   else{
228     (void)SQLITE_MISUSE_BKPT;
229   }
230 #endif
231 }
232 
233 /*
234 ** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
235 ** to enter a mutex.  If another thread is already within the mutex,
236 ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
237 ** SQLITE_BUSY.  The sqlite3_mutex_try() interface returns SQLITE_OK
238 ** upon successful entry.  Mutexes created using SQLITE_MUTEX_RECURSIVE can
239 ** be entered multiple times by the same thread.  In such cases the,
240 ** mutex must be exited an equal number of times before another thread
241 ** can enter.  If the same thread tries to enter any other kind of mutex
242 ** more than once, the behavior is undefined.
243 */
244 static void pthreadMutexEnter(sqlite3_mutex *p){
245   assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
246 
247 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
248   /* If recursive mutexes are not available, then we have to grow
249   ** our own.  This implementation assumes that pthread_equal()
250   ** is atomic - that it cannot be deceived into thinking self
251   ** and p->owner are equal if p->owner changes between two values
252   ** that are not equal to self while the comparison is taking place.
253   ** This implementation also assumes a coherent cache - that
254   ** separate processes cannot read different values from the same
255   ** address at the same time.  If either of these two conditions
256   ** are not met, then the mutexes will fail and problems will result.
257   */
258   {
259     pthread_t self = pthread_self();
260     if( p->nRef>0 && pthread_equal(p->owner, self) ){
261       p->nRef++;
262     }else{
263       pthread_mutex_lock(&p->mutex);
264       assert( p->nRef==0 );
265       p->owner = self;
266       p->nRef = 1;
267     }
268   }
269 #else
270   /* Use the built-in recursive mutexes if they are available.
271   */
272   pthread_mutex_lock(&p->mutex);
273 #if SQLITE_MUTEX_NREF
274   assert( p->nRef>0 || p->owner==0 );
275   p->owner = pthread_self();
276   p->nRef++;
277 #endif
278 #endif
279 
280 #ifdef SQLITE_DEBUG
281   if( p->trace ){
282     printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
283   }
284 #endif
285 }
286 static int pthreadMutexTry(sqlite3_mutex *p){
287   int rc;
288   assert( p->id==SQLITE_MUTEX_RECURSIVE || pthreadMutexNotheld(p) );
289 
290 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
291   /* If recursive mutexes are not available, then we have to grow
292   ** our own.  This implementation assumes that pthread_equal()
293   ** is atomic - that it cannot be deceived into thinking self
294   ** and p->owner are equal if p->owner changes between two values
295   ** that are not equal to self while the comparison is taking place.
296   ** This implementation also assumes a coherent cache - that
297   ** separate processes cannot read different values from the same
298   ** address at the same time.  If either of these two conditions
299   ** are not met, then the mutexes will fail and problems will result.
300   */
301   {
302     pthread_t self = pthread_self();
303     if( p->nRef>0 && pthread_equal(p->owner, self) ){
304       p->nRef++;
305       rc = SQLITE_OK;
306     }else if( pthread_mutex_trylock(&p->mutex)==0 ){
307       assert( p->nRef==0 );
308       p->owner = self;
309       p->nRef = 1;
310       rc = SQLITE_OK;
311     }else{
312       rc = SQLITE_BUSY;
313     }
314   }
315 #else
316   /* Use the built-in recursive mutexes if they are available.
317   */
318   if( pthread_mutex_trylock(&p->mutex)==0 ){
319 #if SQLITE_MUTEX_NREF
320     p->owner = pthread_self();
321     p->nRef++;
322 #endif
323     rc = SQLITE_OK;
324   }else{
325     rc = SQLITE_BUSY;
326   }
327 #endif
328 
329 #ifdef SQLITE_DEBUG
330   if( rc==SQLITE_OK && p->trace ){
331     printf("enter mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
332   }
333 #endif
334   return rc;
335 }
336 
337 /*
338 ** The sqlite3_mutex_leave() routine exits a mutex that was
339 ** previously entered by the same thread.  The behavior
340 ** is undefined if the mutex is not currently entered or
341 ** is not currently allocated.  SQLite will never do either.
342 */
343 static void pthreadMutexLeave(sqlite3_mutex *p){
344   assert( pthreadMutexHeld(p) );
345 #if SQLITE_MUTEX_NREF
346   p->nRef--;
347   if( p->nRef==0 ) p->owner = 0;
348 #endif
349   assert( p->nRef==0 || p->id==SQLITE_MUTEX_RECURSIVE );
350 
351 #ifdef SQLITE_HOMEGROWN_RECURSIVE_MUTEX
352   if( p->nRef==0 ){
353     pthread_mutex_unlock(&p->mutex);
354   }
355 #else
356   pthread_mutex_unlock(&p->mutex);
357 #endif
358 
359 #ifdef SQLITE_DEBUG
360   if( p->trace ){
361     printf("leave mutex %p (%d) with nRef=%d\n", p, p->trace, p->nRef);
362   }
363 #endif
364 }
365 
366 sqlite3_mutex_methods const *sqlite3DefaultMutex(void){
367   static const sqlite3_mutex_methods sMutex = {
368     pthreadMutexInit,
369     pthreadMutexEnd,
370     pthreadMutexAlloc,
371     pthreadMutexFree,
372     pthreadMutexEnter,
373     pthreadMutexTry,
374     pthreadMutexLeave,
375 #ifdef SQLITE_DEBUG
376     pthreadMutexHeld,
377     pthreadMutexNotheld
378 #else
379     0,
380     0
381 #endif
382   };
383 
384   return &sMutex;
385 }
386 
387 #endif /* SQLITE_MUTEX_PTHREADS */
388