1 /* 2 ** 2008 October 7 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** This file contains code use to implement an in-memory rollback journal. 14 ** The in-memory rollback journal is used to journal transactions for 15 ** ":memory:" databases and when the journal_mode=MEMORY pragma is used. 16 ** 17 ** Update: The in-memory journal is also used to temporarily cache 18 ** smaller journals that are not critical for power-loss recovery. 19 ** For example, statement journals that are not too big will be held 20 ** entirely in memory, thus reducing the number of file I/O calls, and 21 ** more importantly, reducing temporary file creation events. If these 22 ** journals become too large for memory, they are spilled to disk. But 23 ** in the common case, they are usually small and no file I/O needs to 24 ** occur. 25 */ 26 #include "sqliteInt.h" 27 28 /* Forward references to internal structures */ 29 typedef struct MemJournal MemJournal; 30 typedef struct FilePoint FilePoint; 31 typedef struct FileChunk FileChunk; 32 33 /* 34 ** The rollback journal is composed of a linked list of these structures. 35 ** 36 ** The zChunk array is always at least 8 bytes in size - usually much more. 37 ** Its actual size is stored in the MemJournal.nChunkSize variable. 38 */ 39 struct FileChunk { 40 FileChunk *pNext; /* Next chunk in the journal */ 41 u8 zChunk[8]; /* Content of this chunk */ 42 }; 43 44 /* 45 ** By default, allocate this many bytes of memory for each FileChunk object. 46 */ 47 #define MEMJOURNAL_DFLT_FILECHUNKSIZE 1024 48 49 /* 50 ** For chunk size nChunkSize, return the number of bytes that should 51 ** be allocated for each FileChunk structure. 52 */ 53 #define fileChunkSize(nChunkSize) (sizeof(FileChunk) + ((nChunkSize)-8)) 54 55 /* 56 ** An instance of this object serves as a cursor into the rollback journal. 57 ** The cursor can be either for reading or writing. 58 */ 59 struct FilePoint { 60 sqlite3_int64 iOffset; /* Offset from the beginning of the file */ 61 FileChunk *pChunk; /* Specific chunk into which cursor points */ 62 }; 63 64 /* 65 ** This structure is a subclass of sqlite3_file. Each open memory-journal 66 ** is an instance of this class. 67 */ 68 struct MemJournal { 69 const sqlite3_io_methods *pMethod; /* Parent class. MUST BE FIRST */ 70 int nChunkSize; /* In-memory chunk-size */ 71 72 int nSpill; /* Bytes of data before flushing */ 73 int nSize; /* Bytes of data currently in memory */ 74 FileChunk *pFirst; /* Head of in-memory chunk-list */ 75 FilePoint endpoint; /* Pointer to the end of the file */ 76 FilePoint readpoint; /* Pointer to the end of the last xRead() */ 77 78 int flags; /* xOpen flags */ 79 sqlite3_vfs *pVfs; /* The "real" underlying VFS */ 80 const char *zJournal; /* Name of the journal file */ 81 }; 82 83 /* 84 ** Read data from the in-memory journal file. This is the implementation 85 ** of the sqlite3_vfs.xRead method. 86 */ 87 static int memjrnlRead( 88 sqlite3_file *pJfd, /* The journal file from which to read */ 89 void *zBuf, /* Put the results here */ 90 int iAmt, /* Number of bytes to read */ 91 sqlite_int64 iOfst /* Begin reading at this offset */ 92 ){ 93 MemJournal *p = (MemJournal *)pJfd; 94 u8 *zOut = zBuf; 95 int nRead = iAmt; 96 int iChunkOffset; 97 FileChunk *pChunk; 98 99 #if defined(SQLITE_ENABLE_ATOMIC_WRITE) \ 100 || defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) 101 if( (iAmt+iOfst)>p->endpoint.iOffset ){ 102 return SQLITE_IOERR_SHORT_READ; 103 } 104 #endif 105 106 assert( (iAmt+iOfst)<=p->endpoint.iOffset ); 107 assert( p->readpoint.iOffset==0 || p->readpoint.pChunk!=0 ); 108 if( p->readpoint.iOffset!=iOfst || iOfst==0 ){ 109 sqlite3_int64 iOff = 0; 110 for(pChunk=p->pFirst; 111 ALWAYS(pChunk) && (iOff+p->nChunkSize)<=iOfst; 112 pChunk=pChunk->pNext 113 ){ 114 iOff += p->nChunkSize; 115 } 116 }else{ 117 pChunk = p->readpoint.pChunk; 118 assert( pChunk!=0 ); 119 } 120 121 iChunkOffset = (int)(iOfst%p->nChunkSize); 122 do { 123 int iSpace = p->nChunkSize - iChunkOffset; 124 int nCopy = MIN(nRead, (p->nChunkSize - iChunkOffset)); 125 memcpy(zOut, (u8*)pChunk->zChunk + iChunkOffset, nCopy); 126 zOut += nCopy; 127 nRead -= iSpace; 128 iChunkOffset = 0; 129 } while( nRead>=0 && (pChunk=pChunk->pNext)!=0 && nRead>0 ); 130 p->readpoint.iOffset = pChunk ? iOfst+iAmt : 0; 131 p->readpoint.pChunk = pChunk; 132 133 return SQLITE_OK; 134 } 135 136 /* 137 ** Free the list of FileChunk structures headed at MemJournal.pFirst. 138 */ 139 static void memjrnlFreeChunks(MemJournal *p){ 140 FileChunk *pIter; 141 FileChunk *pNext; 142 for(pIter=p->pFirst; pIter; pIter=pNext){ 143 pNext = pIter->pNext; 144 sqlite3_free(pIter); 145 } 146 p->pFirst = 0; 147 } 148 149 /* 150 ** Flush the contents of memory to a real file on disk. 151 */ 152 static int memjrnlCreateFile(MemJournal *p){ 153 int rc; 154 sqlite3_file *pReal = (sqlite3_file*)p; 155 MemJournal copy = *p; 156 157 memset(p, 0, sizeof(MemJournal)); 158 rc = sqlite3OsOpen(copy.pVfs, copy.zJournal, pReal, copy.flags, 0); 159 if( rc==SQLITE_OK ){ 160 int nChunk = copy.nChunkSize; 161 i64 iOff = 0; 162 FileChunk *pIter; 163 for(pIter=copy.pFirst; pIter; pIter=pIter->pNext){ 164 if( iOff + nChunk > copy.endpoint.iOffset ){ 165 nChunk = copy.endpoint.iOffset - iOff; 166 } 167 rc = sqlite3OsWrite(pReal, (u8*)pIter->zChunk, nChunk, iOff); 168 if( rc ) break; 169 iOff += nChunk; 170 } 171 if( rc==SQLITE_OK ){ 172 /* No error has occurred. Free the in-memory buffers. */ 173 memjrnlFreeChunks(©); 174 } 175 } 176 if( rc!=SQLITE_OK ){ 177 /* If an error occurred while creating or writing to the file, restore 178 ** the original before returning. This way, SQLite uses the in-memory 179 ** journal data to roll back changes made to the internal page-cache 180 ** before this function was called. */ 181 sqlite3OsClose(pReal); 182 *p = copy; 183 } 184 return rc; 185 } 186 187 188 /* 189 ** Write data to the file. 190 */ 191 static int memjrnlWrite( 192 sqlite3_file *pJfd, /* The journal file into which to write */ 193 const void *zBuf, /* Take data to be written from here */ 194 int iAmt, /* Number of bytes to write */ 195 sqlite_int64 iOfst /* Begin writing at this offset into the file */ 196 ){ 197 MemJournal *p = (MemJournal *)pJfd; 198 int nWrite = iAmt; 199 u8 *zWrite = (u8 *)zBuf; 200 201 /* If the file should be created now, create it and write the new data 202 ** into the file on disk. */ 203 if( p->nSpill>0 && (iAmt+iOfst)>p->nSpill ){ 204 int rc = memjrnlCreateFile(p); 205 if( rc==SQLITE_OK ){ 206 rc = sqlite3OsWrite(pJfd, zBuf, iAmt, iOfst); 207 } 208 return rc; 209 } 210 211 /* If the contents of this write should be stored in memory */ 212 else{ 213 /* An in-memory journal file should only ever be appended to. Random 214 ** access writes are not required. The only exception to this is when 215 ** the in-memory journal is being used by a connection using the 216 ** atomic-write optimization. In this case the first 28 bytes of the 217 ** journal file may be written as part of committing the transaction. */ 218 assert( iOfst==p->endpoint.iOffset || iOfst==0 ); 219 #if defined(SQLITE_ENABLE_ATOMIC_WRITE) \ 220 || defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) 221 if( iOfst==0 && p->pFirst ){ 222 assert( p->nChunkSize>iAmt ); 223 memcpy((u8*)p->pFirst->zChunk, zBuf, iAmt); 224 }else 225 #else 226 assert( iOfst>0 || p->pFirst==0 ); 227 #endif 228 { 229 while( nWrite>0 ){ 230 FileChunk *pChunk = p->endpoint.pChunk; 231 int iChunkOffset = (int)(p->endpoint.iOffset%p->nChunkSize); 232 int iSpace = MIN(nWrite, p->nChunkSize - iChunkOffset); 233 234 if( iChunkOffset==0 ){ 235 /* New chunk is required to extend the file. */ 236 FileChunk *pNew = sqlite3_malloc(fileChunkSize(p->nChunkSize)); 237 if( !pNew ){ 238 return SQLITE_IOERR_NOMEM_BKPT; 239 } 240 pNew->pNext = 0; 241 if( pChunk ){ 242 assert( p->pFirst ); 243 pChunk->pNext = pNew; 244 }else{ 245 assert( !p->pFirst ); 246 p->pFirst = pNew; 247 } 248 p->endpoint.pChunk = pNew; 249 } 250 251 memcpy((u8*)p->endpoint.pChunk->zChunk + iChunkOffset, zWrite, iSpace); 252 zWrite += iSpace; 253 nWrite -= iSpace; 254 p->endpoint.iOffset += iSpace; 255 } 256 p->nSize = iAmt + iOfst; 257 } 258 } 259 260 return SQLITE_OK; 261 } 262 263 /* 264 ** Truncate the file. 265 ** 266 ** If the journal file is already on disk, truncate it there. Or, if it 267 ** is still in main memory but is being truncated to zero bytes in size, 268 ** ignore 269 */ 270 static int memjrnlTruncate(sqlite3_file *pJfd, sqlite_int64 size){ 271 MemJournal *p = (MemJournal *)pJfd; 272 if( ALWAYS(size==0) ){ 273 memjrnlFreeChunks(p); 274 p->nSize = 0; 275 p->endpoint.pChunk = 0; 276 p->endpoint.iOffset = 0; 277 p->readpoint.pChunk = 0; 278 p->readpoint.iOffset = 0; 279 } 280 return SQLITE_OK; 281 } 282 283 /* 284 ** Close the file. 285 */ 286 static int memjrnlClose(sqlite3_file *pJfd){ 287 MemJournal *p = (MemJournal *)pJfd; 288 memjrnlFreeChunks(p); 289 return SQLITE_OK; 290 } 291 292 /* 293 ** Sync the file. 294 ** 295 ** If the real file has been created, call its xSync method. Otherwise, 296 ** syncing an in-memory journal is a no-op. 297 */ 298 static int memjrnlSync(sqlite3_file *pJfd, int flags){ 299 UNUSED_PARAMETER2(pJfd, flags); 300 return SQLITE_OK; 301 } 302 303 /* 304 ** Query the size of the file in bytes. 305 */ 306 static int memjrnlFileSize(sqlite3_file *pJfd, sqlite_int64 *pSize){ 307 MemJournal *p = (MemJournal *)pJfd; 308 *pSize = (sqlite_int64) p->endpoint.iOffset; 309 return SQLITE_OK; 310 } 311 312 /* 313 ** Table of methods for MemJournal sqlite3_file object. 314 */ 315 static const struct sqlite3_io_methods MemJournalMethods = { 316 1, /* iVersion */ 317 memjrnlClose, /* xClose */ 318 memjrnlRead, /* xRead */ 319 memjrnlWrite, /* xWrite */ 320 memjrnlTruncate, /* xTruncate */ 321 memjrnlSync, /* xSync */ 322 memjrnlFileSize, /* xFileSize */ 323 0, /* xLock */ 324 0, /* xUnlock */ 325 0, /* xCheckReservedLock */ 326 0, /* xFileControl */ 327 0, /* xSectorSize */ 328 0, /* xDeviceCharacteristics */ 329 0, /* xShmMap */ 330 0, /* xShmLock */ 331 0, /* xShmBarrier */ 332 0, /* xShmUnmap */ 333 0, /* xFetch */ 334 0 /* xUnfetch */ 335 }; 336 337 /* 338 ** Open a journal file. 339 ** 340 ** The behaviour of the journal file depends on the value of parameter 341 ** nSpill. If nSpill is 0, then the journal file is always create and 342 ** accessed using the underlying VFS. If nSpill is less than zero, then 343 ** all content is always stored in main-memory. Finally, if nSpill is a 344 ** positive value, then the journal file is initially created in-memory 345 ** but may be flushed to disk later on. In this case the journal file is 346 ** flushed to disk either when it grows larger than nSpill bytes in size, 347 ** or when sqlite3JournalCreate() is called. 348 */ 349 int sqlite3JournalOpen( 350 sqlite3_vfs *pVfs, /* The VFS to use for actual file I/O */ 351 const char *zName, /* Name of the journal file */ 352 sqlite3_file *pJfd, /* Preallocated, blank file handle */ 353 int flags, /* Opening flags */ 354 int nSpill /* Bytes buffered before opening the file */ 355 ){ 356 MemJournal *p = (MemJournal*)pJfd; 357 358 /* Zero the file-handle object. If nSpill was passed zero, initialize 359 ** it using the sqlite3OsOpen() function of the underlying VFS. In this 360 ** case none of the code in this module is executed as a result of calls 361 ** made on the journal file-handle. */ 362 memset(p, 0, sizeof(MemJournal)); 363 if( nSpill==0 ){ 364 return sqlite3OsOpen(pVfs, zName, pJfd, flags, 0); 365 } 366 367 if( nSpill>0 ){ 368 p->nChunkSize = nSpill; 369 }else{ 370 p->nChunkSize = 8 + MEMJOURNAL_DFLT_FILECHUNKSIZE - sizeof(FileChunk); 371 assert( MEMJOURNAL_DFLT_FILECHUNKSIZE==fileChunkSize(p->nChunkSize) ); 372 } 373 374 p->pMethod = (const sqlite3_io_methods*)&MemJournalMethods; 375 p->nSpill = nSpill; 376 p->flags = flags; 377 p->zJournal = zName; 378 p->pVfs = pVfs; 379 return SQLITE_OK; 380 } 381 382 /* 383 ** Open an in-memory journal file. 384 */ 385 void sqlite3MemJournalOpen(sqlite3_file *pJfd){ 386 sqlite3JournalOpen(0, 0, pJfd, 0, -1); 387 } 388 389 #if defined(SQLITE_ENABLE_ATOMIC_WRITE) \ 390 || defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) 391 /* 392 ** If the argument p points to a MemJournal structure that is not an 393 ** in-memory-only journal file (i.e. is one that was opened with a +ve 394 ** nSpill parameter or as SQLITE_OPEN_MAIN_JOURNAL), and the underlying 395 ** file has not yet been created, create it now. 396 */ 397 int sqlite3JournalCreate(sqlite3_file *pJfd){ 398 int rc = SQLITE_OK; 399 MemJournal *p = (MemJournal*)pJfd; 400 if( p->pMethod==&MemJournalMethods && ( 401 #ifdef SQLITE_ENABLE_ATOMIC_WRITE 402 p->nSpill>0 403 #else 404 /* While this appears to not be possible without ATOMIC_WRITE, the 405 ** paths are complex, so it seems prudent to leave the test in as 406 ** a NEVER(), in case our analysis is subtly flawed. */ 407 NEVER(p->nSpill>0) 408 #endif 409 #ifdef SQLITE_ENABLE_BATCH_ATOMIC_WRITE 410 || (p->flags & SQLITE_OPEN_MAIN_JOURNAL) 411 #endif 412 )){ 413 rc = memjrnlCreateFile(p); 414 } 415 return rc; 416 } 417 #endif 418 419 /* 420 ** The file-handle passed as the only argument is open on a journal file. 421 ** Return true if this "journal file" is currently stored in heap memory, 422 ** or false otherwise. 423 */ 424 int sqlite3JournalIsInMemory(sqlite3_file *p){ 425 return p->pMethods==&MemJournalMethods; 426 } 427 428 /* 429 ** Return the number of bytes required to store a JournalFile that uses vfs 430 ** pVfs to create the underlying on-disk files. 431 */ 432 int sqlite3JournalSize(sqlite3_vfs *pVfs){ 433 return MAX(pVfs->szOsFile, (int)sizeof(MemJournal)); 434 } 435