1 /* 2 ** 2007 October 14 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the C functions that implement a memory 13 ** allocation subsystem for use by SQLite. 14 ** 15 ** This version of the memory allocation subsystem omits all 16 ** use of malloc(). The application gives SQLite a block of memory 17 ** before calling sqlite3_initialize() from which allocations 18 ** are made and returned by the xMalloc() and xRealloc() 19 ** implementations. Once sqlite3_initialize() has been called, 20 ** the amount of memory available to SQLite is fixed and cannot 21 ** be changed. 22 ** 23 ** This version of the memory allocation subsystem is included 24 ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined. 25 ** 26 ** This memory allocator uses the following algorithm: 27 ** 28 ** 1. All memory allocations sizes are rounded up to a power of 2. 29 ** 30 ** 2. If two adjacent free blocks are the halves of a larger block, 31 ** then the two blocks are coalesed into the single larger block. 32 ** 33 ** 3. New memory is allocated from the first available free block. 34 ** 35 ** This algorithm is described in: J. M. Robson. "Bounds for Some Functions 36 ** Concerning Dynamic Storage Allocation". Journal of the Association for 37 ** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499. 38 ** 39 ** Let n be the size of the largest allocation divided by the minimum 40 ** allocation size (after rounding all sizes up to a power of 2.) Let M 41 ** be the maximum amount of memory ever outstanding at one time. Let 42 ** N be the total amount of memory available for allocation. Robson 43 ** proved that this memory allocator will never breakdown due to 44 ** fragmentation as long as the following constraint holds: 45 ** 46 ** N >= M*(1 + log2(n)/2) - n + 1 47 ** 48 ** The sqlite3_status() logic tracks the maximum values of n and M so 49 ** that an application can, at any time, verify this constraint. 50 */ 51 #include "sqliteInt.h" 52 53 /* 54 ** This version of the memory allocator is used only when 55 ** SQLITE_ENABLE_MEMSYS5 is defined. 56 */ 57 #ifdef SQLITE_ENABLE_MEMSYS5 58 59 /* 60 ** A minimum allocation is an instance of the following structure. 61 ** Larger allocations are an array of these structures where the 62 ** size of the array is a power of 2. 63 ** 64 ** The size of this object must be a power of two. That fact is 65 ** verified in memsys5Init(). 66 */ 67 typedef struct Mem5Link Mem5Link; 68 struct Mem5Link { 69 int next; /* Index of next free chunk */ 70 int prev; /* Index of previous free chunk */ 71 }; 72 73 /* 74 ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since 75 ** mem5.szAtom is always at least 8 and 32-bit integers are used, 76 ** it is not actually possible to reach this limit. 77 */ 78 #define LOGMAX 30 79 80 /* 81 ** Masks used for mem5.aCtrl[] elements. 82 */ 83 #define CTRL_LOGSIZE 0x1f /* Log2 Size of this block */ 84 #define CTRL_FREE 0x20 /* True if not checked out */ 85 86 /* 87 ** All of the static variables used by this module are collected 88 ** into a single structure named "mem5". This is to keep the 89 ** static variables organized and to reduce namespace pollution 90 ** when this module is combined with other in the amalgamation. 91 */ 92 static SQLITE_WSD struct Mem5Global { 93 /* 94 ** Memory available for allocation 95 */ 96 int szAtom; /* Smallest possible allocation in bytes */ 97 int nBlock; /* Number of szAtom sized blocks in zPool */ 98 u8 *zPool; /* Memory available to be allocated */ 99 100 /* 101 ** Mutex to control access to the memory allocation subsystem. 102 */ 103 sqlite3_mutex *mutex; 104 105 /* 106 ** Performance statistics 107 */ 108 u64 nAlloc; /* Total number of calls to malloc */ 109 u64 totalAlloc; /* Total of all malloc calls - includes internal frag */ 110 u64 totalExcess; /* Total internal fragmentation */ 111 u32 currentOut; /* Current checkout, including internal fragmentation */ 112 u32 currentCount; /* Current number of distinct checkouts */ 113 u32 maxOut; /* Maximum instantaneous currentOut */ 114 u32 maxCount; /* Maximum instantaneous currentCount */ 115 u32 maxRequest; /* Largest allocation (exclusive of internal frag) */ 116 117 /* 118 ** Lists of free blocks. aiFreelist[0] is a list of free blocks of 119 ** size mem5.szAtom. aiFreelist[1] holds blocks of size szAtom*2. 120 ** and so forth. 121 */ 122 int aiFreelist[LOGMAX+1]; 123 124 /* 125 ** Space for tracking which blocks are checked out and the size 126 ** of each block. One byte per block. 127 */ 128 u8 *aCtrl; 129 130 } mem5; 131 132 /* 133 ** Access the static variable through a macro for SQLITE_OMIT_WSD. 134 */ 135 #define mem5 GLOBAL(struct Mem5Global, mem5) 136 137 /* 138 ** Assuming mem5.zPool is divided up into an array of Mem5Link 139 ** structures, return a pointer to the idx-th such link. 140 */ 141 #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom])) 142 143 /* 144 ** Unlink the chunk at mem5.aPool[i] from list it is currently 145 ** on. It should be found on mem5.aiFreelist[iLogsize]. 146 */ 147 static void memsys5Unlink(int i, int iLogsize){ 148 int next, prev; 149 assert( i>=0 && i<mem5.nBlock ); 150 assert( iLogsize>=0 && iLogsize<=LOGMAX ); 151 assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); 152 153 next = MEM5LINK(i)->next; 154 prev = MEM5LINK(i)->prev; 155 if( prev<0 ){ 156 mem5.aiFreelist[iLogsize] = next; 157 }else{ 158 MEM5LINK(prev)->next = next; 159 } 160 if( next>=0 ){ 161 MEM5LINK(next)->prev = prev; 162 } 163 } 164 165 /* 166 ** Link the chunk at mem5.aPool[i] so that is on the iLogsize 167 ** free list. 168 */ 169 static void memsys5Link(int i, int iLogsize){ 170 int x; 171 assert( sqlite3_mutex_held(mem5.mutex) ); 172 assert( i>=0 && i<mem5.nBlock ); 173 assert( iLogsize>=0 && iLogsize<=LOGMAX ); 174 assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); 175 176 x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize]; 177 MEM5LINK(i)->prev = -1; 178 if( x>=0 ){ 179 assert( x<mem5.nBlock ); 180 MEM5LINK(x)->prev = i; 181 } 182 mem5.aiFreelist[iLogsize] = i; 183 } 184 185 /* 186 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex 187 ** will already be held (obtained by code in malloc.c) if 188 ** sqlite3GlobalConfig.bMemStat is true. 189 */ 190 static void memsys5Enter(void){ 191 sqlite3_mutex_enter(mem5.mutex); 192 } 193 static void memsys5Leave(void){ 194 sqlite3_mutex_leave(mem5.mutex); 195 } 196 197 /* 198 ** Return the size of an outstanding allocation, in bytes. The 199 ** size returned omits the 8-byte header overhead. This only 200 ** works for chunks that are currently checked out. 201 */ 202 static int memsys5Size(void *p){ 203 int iSize = 0; 204 if( p ){ 205 int i = (int)(((u8 *)p-mem5.zPool)/mem5.szAtom); 206 assert( i>=0 && i<mem5.nBlock ); 207 iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE)); 208 } 209 return iSize; 210 } 211 212 /* 213 ** Return a block of memory of at least nBytes in size. 214 ** Return NULL if unable. Return NULL if nBytes==0. 215 ** 216 ** The caller guarantees that nByte is positive. 217 ** 218 ** The caller has obtained a mutex prior to invoking this 219 ** routine so there is never any chance that two or more 220 ** threads can be in this routine at the same time. 221 */ 222 static void *memsys5MallocUnsafe(int nByte){ 223 int i; /* Index of a mem5.aPool[] slot */ 224 int iBin; /* Index into mem5.aiFreelist[] */ 225 int iFullSz; /* Size of allocation rounded up to power of 2 */ 226 int iLogsize; /* Log2 of iFullSz/POW2_MIN */ 227 228 /* nByte must be a positive */ 229 assert( nByte>0 ); 230 231 /* Keep track of the maximum allocation request. Even unfulfilled 232 ** requests are counted */ 233 if( (u32)nByte>mem5.maxRequest ){ 234 mem5.maxRequest = nByte; 235 } 236 237 /* Abort if the requested allocation size is larger than the largest 238 ** power of two that we can represent using 32-bit signed integers. 239 */ 240 if( nByte > 0x40000000 ){ 241 return 0; 242 } 243 244 /* Round nByte up to the next valid power of two */ 245 for(iFullSz=mem5.szAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){} 246 247 /* Make sure mem5.aiFreelist[iLogsize] contains at least one free 248 ** block. If not, then split a block of the next larger power of 249 ** two in order to create a new free block of size iLogsize. 250 */ 251 for(iBin=iLogsize; iBin<=LOGMAX && mem5.aiFreelist[iBin]<0; iBin++){} 252 if( iBin>LOGMAX ){ 253 testcase( sqlite3GlobalConfig.xLog!=0 ); 254 sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte); 255 return 0; 256 } 257 i = mem5.aiFreelist[iBin]; 258 memsys5Unlink(i, iBin); 259 while( iBin>iLogsize ){ 260 int newSize; 261 262 iBin--; 263 newSize = 1 << iBin; 264 mem5.aCtrl[i+newSize] = CTRL_FREE | iBin; 265 memsys5Link(i+newSize, iBin); 266 } 267 mem5.aCtrl[i] = iLogsize; 268 269 /* Update allocator performance statistics. */ 270 mem5.nAlloc++; 271 mem5.totalAlloc += iFullSz; 272 mem5.totalExcess += iFullSz - nByte; 273 mem5.currentCount++; 274 mem5.currentOut += iFullSz; 275 if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount; 276 if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut; 277 278 #ifdef SQLITE_DEBUG 279 /* Make sure the allocated memory does not assume that it is set to zero 280 ** or retains a value from a previous allocation */ 281 memset(&mem5.zPool[i*mem5.szAtom], 0xAA, iFullSz); 282 #endif 283 284 /* Return a pointer to the allocated memory. */ 285 return (void*)&mem5.zPool[i*mem5.szAtom]; 286 } 287 288 /* 289 ** Free an outstanding memory allocation. 290 */ 291 static void memsys5FreeUnsafe(void *pOld){ 292 u32 size, iLogsize; 293 int iBlock; 294 295 /* Set iBlock to the index of the block pointed to by pOld in 296 ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool. 297 */ 298 iBlock = (int)(((u8 *)pOld-mem5.zPool)/mem5.szAtom); 299 300 /* Check that the pointer pOld points to a valid, non-free block. */ 301 assert( iBlock>=0 && iBlock<mem5.nBlock ); 302 assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 ); 303 assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 ); 304 305 iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE; 306 size = 1<<iLogsize; 307 assert( iBlock+size-1<(u32)mem5.nBlock ); 308 309 mem5.aCtrl[iBlock] |= CTRL_FREE; 310 mem5.aCtrl[iBlock+size-1] |= CTRL_FREE; 311 assert( mem5.currentCount>0 ); 312 assert( mem5.currentOut>=(size*mem5.szAtom) ); 313 mem5.currentCount--; 314 mem5.currentOut -= size*mem5.szAtom; 315 assert( mem5.currentOut>0 || mem5.currentCount==0 ); 316 assert( mem5.currentCount>0 || mem5.currentOut==0 ); 317 318 mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; 319 while( ALWAYS(iLogsize<LOGMAX) ){ 320 int iBuddy; 321 if( (iBlock>>iLogsize) & 1 ){ 322 iBuddy = iBlock - size; 323 }else{ 324 iBuddy = iBlock + size; 325 } 326 assert( iBuddy>=0 ); 327 if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break; 328 if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break; 329 memsys5Unlink(iBuddy, iLogsize); 330 iLogsize++; 331 if( iBuddy<iBlock ){ 332 mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize; 333 mem5.aCtrl[iBlock] = 0; 334 iBlock = iBuddy; 335 }else{ 336 mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; 337 mem5.aCtrl[iBuddy] = 0; 338 } 339 size *= 2; 340 } 341 342 #ifdef SQLITE_DEBUG 343 /* Overwrite freed memory with the 0x55 bit pattern to verify that it is 344 ** not used after being freed */ 345 memset(&mem5.zPool[iBlock*mem5.szAtom], 0x55, size); 346 #endif 347 348 memsys5Link(iBlock, iLogsize); 349 } 350 351 /* 352 ** Allocate nBytes of memory. 353 */ 354 static void *memsys5Malloc(int nBytes){ 355 sqlite3_int64 *p = 0; 356 if( nBytes>0 ){ 357 memsys5Enter(); 358 p = memsys5MallocUnsafe(nBytes); 359 memsys5Leave(); 360 } 361 return (void*)p; 362 } 363 364 /* 365 ** Free memory. 366 ** 367 ** The outer layer memory allocator prevents this routine from 368 ** being called with pPrior==0. 369 */ 370 static void memsys5Free(void *pPrior){ 371 assert( pPrior!=0 ); 372 memsys5Enter(); 373 memsys5FreeUnsafe(pPrior); 374 memsys5Leave(); 375 } 376 377 /* 378 ** Change the size of an existing memory allocation. 379 ** 380 ** The outer layer memory allocator prevents this routine from 381 ** being called with pPrior==0. 382 ** 383 ** nBytes is always a value obtained from a prior call to 384 ** memsys5Round(). Hence nBytes is always a non-negative power 385 ** of two. If nBytes==0 that means that an oversize allocation 386 ** (an allocation larger than 0x40000000) was requested and this 387 ** routine should return 0 without freeing pPrior. 388 */ 389 static void *memsys5Realloc(void *pPrior, int nBytes){ 390 int nOld; 391 void *p; 392 assert( pPrior!=0 ); 393 assert( (nBytes&(nBytes-1))==0 ); /* EV: R-46199-30249 */ 394 assert( nBytes>=0 ); 395 if( nBytes==0 ){ 396 return 0; 397 } 398 nOld = memsys5Size(pPrior); 399 if( nBytes<=nOld ){ 400 return pPrior; 401 } 402 memsys5Enter(); 403 p = memsys5MallocUnsafe(nBytes); 404 if( p ){ 405 memcpy(p, pPrior, nOld); 406 memsys5FreeUnsafe(pPrior); 407 } 408 memsys5Leave(); 409 return p; 410 } 411 412 /* 413 ** Round up a request size to the next valid allocation size. If 414 ** the allocation is too large to be handled by this allocation system, 415 ** return 0. 416 ** 417 ** All allocations must be a power of two and must be expressed by a 418 ** 32-bit signed integer. Hence the largest allocation is 0x40000000 419 ** or 1073741824 bytes. 420 */ 421 static int memsys5Roundup(int n){ 422 int iFullSz; 423 if( n > 0x40000000 ) return 0; 424 for(iFullSz=mem5.szAtom; iFullSz<n; iFullSz *= 2); 425 return iFullSz; 426 } 427 428 /* 429 ** Return the ceiling of the logarithm base 2 of iValue. 430 ** 431 ** Examples: memsys5Log(1) -> 0 432 ** memsys5Log(2) -> 1 433 ** memsys5Log(4) -> 2 434 ** memsys5Log(5) -> 3 435 ** memsys5Log(8) -> 3 436 ** memsys5Log(9) -> 4 437 */ 438 static int memsys5Log(int iValue){ 439 int iLog; 440 for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<<iLog)<iValue; iLog++); 441 return iLog; 442 } 443 444 /* 445 ** Initialize the memory allocator. 446 ** 447 ** This routine is not threadsafe. The caller must be holding a mutex 448 ** to prevent multiple threads from entering at the same time. 449 */ 450 static int memsys5Init(void *NotUsed){ 451 int ii; /* Loop counter */ 452 int nByte; /* Number of bytes of memory available to this allocator */ 453 u8 *zByte; /* Memory usable by this allocator */ 454 int nMinLog; /* Log base 2 of minimum allocation size in bytes */ 455 int iOffset; /* An offset into mem5.aCtrl[] */ 456 457 UNUSED_PARAMETER(NotUsed); 458 459 /* For the purposes of this routine, disable the mutex */ 460 mem5.mutex = 0; 461 462 /* The size of a Mem5Link object must be a power of two. Verify that 463 ** this is case. 464 */ 465 assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 ); 466 467 nByte = sqlite3GlobalConfig.nHeap; 468 zByte = (u8*)sqlite3GlobalConfig.pHeap; 469 assert( zByte!=0 ); /* sqlite3_config() does not allow otherwise */ 470 471 /* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */ 472 nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq); 473 mem5.szAtom = (1<<nMinLog); 474 while( (int)sizeof(Mem5Link)>mem5.szAtom ){ 475 mem5.szAtom = mem5.szAtom << 1; 476 } 477 478 mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8))); 479 mem5.zPool = zByte; 480 mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom]; 481 482 for(ii=0; ii<=LOGMAX; ii++){ 483 mem5.aiFreelist[ii] = -1; 484 } 485 486 iOffset = 0; 487 for(ii=LOGMAX; ii>=0; ii--){ 488 int nAlloc = (1<<ii); 489 if( (iOffset+nAlloc)<=mem5.nBlock ){ 490 mem5.aCtrl[iOffset] = ii | CTRL_FREE; 491 memsys5Link(iOffset, ii); 492 iOffset += nAlloc; 493 } 494 assert((iOffset+nAlloc)>mem5.nBlock); 495 } 496 497 /* If a mutex is required for normal operation, allocate one */ 498 if( sqlite3GlobalConfig.bMemstat==0 ){ 499 mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 500 } 501 502 return SQLITE_OK; 503 } 504 505 /* 506 ** Deinitialize this module. 507 */ 508 static void memsys5Shutdown(void *NotUsed){ 509 UNUSED_PARAMETER(NotUsed); 510 mem5.mutex = 0; 511 return; 512 } 513 514 #ifdef SQLITE_TEST 515 /* 516 ** Open the file indicated and write a log of all unfreed memory 517 ** allocations into that log. 518 */ 519 void sqlite3Memsys5Dump(const char *zFilename){ 520 FILE *out; 521 int i, j, n; 522 int nMinLog; 523 524 if( zFilename==0 || zFilename[0]==0 ){ 525 out = stdout; 526 }else{ 527 out = fopen(zFilename, "w"); 528 if( out==0 ){ 529 fprintf(stderr, "** Unable to output memory debug output log: %s **\n", 530 zFilename); 531 return; 532 } 533 } 534 memsys5Enter(); 535 nMinLog = memsys5Log(mem5.szAtom); 536 for(i=0; i<=LOGMAX && i+nMinLog<32; i++){ 537 for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){} 538 fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n); 539 } 540 fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc); 541 fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc); 542 fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess); 543 fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut); 544 fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount); 545 fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut); 546 fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount); 547 fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest); 548 memsys5Leave(); 549 if( out==stdout ){ 550 fflush(stdout); 551 }else{ 552 fclose(out); 553 } 554 } 555 #endif 556 557 /* 558 ** This routine is the only routine in this file with external 559 ** linkage. It returns a pointer to a static sqlite3_mem_methods 560 ** struct populated with the memsys5 methods. 561 */ 562 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){ 563 static const sqlite3_mem_methods memsys5Methods = { 564 memsys5Malloc, 565 memsys5Free, 566 memsys5Realloc, 567 memsys5Size, 568 memsys5Roundup, 569 memsys5Init, 570 memsys5Shutdown, 571 0 572 }; 573 return &memsys5Methods; 574 } 575 576 #endif /* SQLITE_ENABLE_MEMSYS5 */ 577