1 /* 2 ** 2007 October 14 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the C functions that implement a memory 13 ** allocation subsystem for use by SQLite. 14 ** 15 ** This version of the memory allocation subsystem omits all 16 ** use of malloc(). The application gives SQLite a block of memory 17 ** before calling sqlite3_initialize() from which allocations 18 ** are made and returned by the xMalloc() and xRealloc() 19 ** implementations. Once sqlite3_initialize() has been called, 20 ** the amount of memory available to SQLite is fixed and cannot 21 ** be changed. 22 ** 23 ** This version of the memory allocation subsystem is included 24 ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined. 25 ** 26 ** This memory allocator uses the following algorithm: 27 ** 28 ** 1. All memory allocations sizes are rounded up to a power of 2. 29 ** 30 ** 2. If two adjacent free blocks are the halves of a larger block, 31 ** then the two blocks are coalesed into the single larger block. 32 ** 33 ** 3. New memory is allocated from the first available free block. 34 ** 35 ** This algorithm is described in: J. M. Robson. "Bounds for Some Functions 36 ** Concerning Dynamic Storage Allocation". Journal of the Association for 37 ** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499. 38 ** 39 ** Let n be the size of the largest allocation divided by the minimum 40 ** allocation size (after rounding all sizes up to a power of 2.) Let M 41 ** be the maximum amount of memory ever outstanding at one time. Let 42 ** N be the total amount of memory available for allocation. Robson 43 ** proved that this memory allocator will never breakdown due to 44 ** fragmentation as long as the following constraint holds: 45 ** 46 ** N >= M*(1 + log2(n)/2) - n + 1 47 ** 48 ** The sqlite3_status() logic tracks the maximum values of n and M so 49 ** that an application can, at any time, verify this constraint. 50 */ 51 #include "sqliteInt.h" 52 53 /* 54 ** This version of the memory allocator is used only when 55 ** SQLITE_ENABLE_MEMSYS5 is defined. 56 */ 57 #ifdef SQLITE_ENABLE_MEMSYS5 58 59 /* 60 ** A minimum allocation is an instance of the following structure. 61 ** Larger allocations are an array of these structures where the 62 ** size of the array is a power of 2. 63 ** 64 ** The size of this object must be a power of two. That fact is 65 ** verified in memsys5Init(). 66 */ 67 typedef struct Mem5Link Mem5Link; 68 struct Mem5Link { 69 int next; /* Index of next free chunk */ 70 int prev; /* Index of previous free chunk */ 71 }; 72 73 /* 74 ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since 75 ** mem5.szAtom is always at least 8 and 32-bit integers are used, 76 ** it is not actually possible to reach this limit. 77 */ 78 #define LOGMAX 30 79 80 /* 81 ** Masks used for mem5.aCtrl[] elements. 82 */ 83 #define CTRL_LOGSIZE 0x1f /* Log2 Size of this block */ 84 #define CTRL_FREE 0x20 /* True if not checked out */ 85 86 /* 87 ** All of the static variables used by this module are collected 88 ** into a single structure named "mem5". This is to keep the 89 ** static variables organized and to reduce namespace pollution 90 ** when this module is combined with other in the amalgamation. 91 */ 92 static SQLITE_WSD struct Mem5Global { 93 /* 94 ** Memory available for allocation 95 */ 96 int szAtom; /* Smallest possible allocation in bytes */ 97 int nBlock; /* Number of szAtom sized blocks in zPool */ 98 u8 *zPool; /* Memory available to be allocated */ 99 100 /* 101 ** Mutex to control access to the memory allocation subsystem. 102 */ 103 sqlite3_mutex *mutex; 104 105 /* 106 ** Performance statistics 107 */ 108 u64 nAlloc; /* Total number of calls to malloc */ 109 u64 totalAlloc; /* Total of all malloc calls - includes internal frag */ 110 u64 totalExcess; /* Total internal fragmentation */ 111 u32 currentOut; /* Current checkout, including internal fragmentation */ 112 u32 currentCount; /* Current number of distinct checkouts */ 113 u32 maxOut; /* Maximum instantaneous currentOut */ 114 u32 maxCount; /* Maximum instantaneous currentCount */ 115 u32 maxRequest; /* Largest allocation (exclusive of internal frag) */ 116 117 /* 118 ** Lists of free blocks. aiFreelist[0] is a list of free blocks of 119 ** size mem5.szAtom. aiFreelist[1] holds blocks of size szAtom*2. 120 ** and so forth. 121 */ 122 int aiFreelist[LOGMAX+1]; 123 124 /* 125 ** Space for tracking which blocks are checked out and the size 126 ** of each block. One byte per block. 127 */ 128 u8 *aCtrl; 129 130 } mem5; 131 132 /* 133 ** Access the static variable through a macro for SQLITE_OMIT_WSD. 134 */ 135 #define mem5 GLOBAL(struct Mem5Global, mem5) 136 137 /* 138 ** Assuming mem5.zPool is divided up into an array of Mem5Link 139 ** structures, return a pointer to the idx-th such link. 140 */ 141 #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom])) 142 143 /* 144 ** Unlink the chunk at mem5.aPool[i] from list it is currently 145 ** on. It should be found on mem5.aiFreelist[iLogsize]. 146 */ 147 static void memsys5Unlink(int i, int iLogsize){ 148 int next, prev; 149 assert( i>=0 && i<mem5.nBlock ); 150 assert( iLogsize>=0 && iLogsize<=LOGMAX ); 151 assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); 152 153 next = MEM5LINK(i)->next; 154 prev = MEM5LINK(i)->prev; 155 if( prev<0 ){ 156 mem5.aiFreelist[iLogsize] = next; 157 }else{ 158 MEM5LINK(prev)->next = next; 159 } 160 if( next>=0 ){ 161 MEM5LINK(next)->prev = prev; 162 } 163 } 164 165 /* 166 ** Link the chunk at mem5.aPool[i] so that is on the iLogsize 167 ** free list. 168 */ 169 static void memsys5Link(int i, int iLogsize){ 170 int x; 171 assert( sqlite3_mutex_held(mem5.mutex) ); 172 assert( i>=0 && i<mem5.nBlock ); 173 assert( iLogsize>=0 && iLogsize<=LOGMAX ); 174 assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); 175 176 x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize]; 177 MEM5LINK(i)->prev = -1; 178 if( x>=0 ){ 179 assert( x<mem5.nBlock ); 180 MEM5LINK(x)->prev = i; 181 } 182 mem5.aiFreelist[iLogsize] = i; 183 } 184 185 /* 186 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex 187 ** will already be held (obtained by code in malloc.c) if 188 ** sqlite3GlobalConfig.bMemStat is true. 189 */ 190 static void memsys5Enter(void){ 191 sqlite3_mutex_enter(mem5.mutex); 192 } 193 static void memsys5Leave(void){ 194 sqlite3_mutex_leave(mem5.mutex); 195 } 196 197 /* 198 ** Return the size of an outstanding allocation, in bytes. The 199 ** size returned omits the 8-byte header overhead. This only 200 ** works for chunks that are currently checked out. 201 */ 202 static int memsys5Size(void *p){ 203 int iSize = 0; 204 if( p ){ 205 int i = (int)(((u8 *)p-mem5.zPool)/mem5.szAtom); 206 assert( i>=0 && i<mem5.nBlock ); 207 iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE)); 208 } 209 return iSize; 210 } 211 212 /* 213 ** Return a block of memory of at least nBytes in size. 214 ** Return NULL if unable. Return NULL if nBytes==0. 215 ** 216 ** The caller guarantees that nByte is positive. 217 ** 218 ** The caller has obtained a mutex prior to invoking this 219 ** routine so there is never any chance that two or more 220 ** threads can be in this routine at the same time. 221 */ 222 static void *memsys5MallocUnsafe(int nByte){ 223 int i; /* Index of a mem5.aPool[] slot */ 224 int iBin; /* Index into mem5.aiFreelist[] */ 225 int iFullSz; /* Size of allocation rounded up to power of 2 */ 226 int iLogsize; /* Log2 of iFullSz/POW2_MIN */ 227 228 /* nByte must be a positive */ 229 assert( nByte>0 ); 230 231 /* Keep track of the maximum allocation request. Even unfulfilled 232 ** requests are counted */ 233 if( (u32)nByte>mem5.maxRequest ){ 234 mem5.maxRequest = nByte; 235 } 236 237 /* Abort if the requested allocation size is larger than the largest 238 ** power of two that we can represent using 32-bit signed integers. 239 */ 240 if( nByte > 0x40000000 ){ 241 return 0; 242 } 243 244 /* Round nByte up to the next valid power of two */ 245 for(iFullSz=mem5.szAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){} 246 247 /* Make sure mem5.aiFreelist[iLogsize] contains at least one free 248 ** block. If not, then split a block of the next larger power of 249 ** two in order to create a new free block of size iLogsize. 250 */ 251 for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){} 252 if( iBin>LOGMAX ){ 253 testcase( sqlite3GlobalConfig.xLog!=0 ); 254 sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte); 255 return 0; 256 } 257 i = mem5.aiFreelist[iBin]; 258 memsys5Unlink(i, iBin); 259 while( iBin>iLogsize ){ 260 int newSize; 261 262 iBin--; 263 newSize = 1 << iBin; 264 mem5.aCtrl[i+newSize] = CTRL_FREE | iBin; 265 memsys5Link(i+newSize, iBin); 266 } 267 mem5.aCtrl[i] = iLogsize; 268 269 /* Update allocator performance statistics. */ 270 mem5.nAlloc++; 271 mem5.totalAlloc += iFullSz; 272 mem5.totalExcess += iFullSz - nByte; 273 mem5.currentCount++; 274 mem5.currentOut += iFullSz; 275 if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount; 276 if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut; 277 278 /* Return a pointer to the allocated memory. */ 279 return (void*)&mem5.zPool[i*mem5.szAtom]; 280 } 281 282 /* 283 ** Free an outstanding memory allocation. 284 */ 285 static void memsys5FreeUnsafe(void *pOld){ 286 u32 size, iLogsize; 287 int iBlock; 288 289 /* Set iBlock to the index of the block pointed to by pOld in 290 ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool. 291 */ 292 iBlock = (int)(((u8 *)pOld-mem5.zPool)/mem5.szAtom); 293 294 /* Check that the pointer pOld points to a valid, non-free block. */ 295 assert( iBlock>=0 && iBlock<mem5.nBlock ); 296 assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 ); 297 assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 ); 298 299 iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE; 300 size = 1<<iLogsize; 301 assert( iBlock+size-1<(u32)mem5.nBlock ); 302 303 mem5.aCtrl[iBlock] |= CTRL_FREE; 304 mem5.aCtrl[iBlock+size-1] |= CTRL_FREE; 305 assert( mem5.currentCount>0 ); 306 assert( mem5.currentOut>=(size*mem5.szAtom) ); 307 mem5.currentCount--; 308 mem5.currentOut -= size*mem5.szAtom; 309 assert( mem5.currentOut>0 || mem5.currentCount==0 ); 310 assert( mem5.currentCount>0 || mem5.currentOut==0 ); 311 312 mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; 313 while( ALWAYS(iLogsize<LOGMAX) ){ 314 int iBuddy; 315 if( (iBlock>>iLogsize) & 1 ){ 316 iBuddy = iBlock - size; 317 }else{ 318 iBuddy = iBlock + size; 319 } 320 assert( iBuddy>=0 ); 321 if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break; 322 if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break; 323 memsys5Unlink(iBuddy, iLogsize); 324 iLogsize++; 325 if( iBuddy<iBlock ){ 326 mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize; 327 mem5.aCtrl[iBlock] = 0; 328 iBlock = iBuddy; 329 }else{ 330 mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; 331 mem5.aCtrl[iBuddy] = 0; 332 } 333 size *= 2; 334 } 335 memsys5Link(iBlock, iLogsize); 336 } 337 338 /* 339 ** Allocate nBytes of memory. 340 */ 341 static void *memsys5Malloc(int nBytes){ 342 sqlite3_int64 *p = 0; 343 if( nBytes>0 ){ 344 memsys5Enter(); 345 p = memsys5MallocUnsafe(nBytes); 346 memsys5Leave(); 347 } 348 return (void*)p; 349 } 350 351 /* 352 ** Free memory. 353 ** 354 ** The outer layer memory allocator prevents this routine from 355 ** being called with pPrior==0. 356 */ 357 static void memsys5Free(void *pPrior){ 358 assert( pPrior!=0 ); 359 memsys5Enter(); 360 memsys5FreeUnsafe(pPrior); 361 memsys5Leave(); 362 } 363 364 /* 365 ** Change the size of an existing memory allocation. 366 ** 367 ** The outer layer memory allocator prevents this routine from 368 ** being called with pPrior==0. 369 ** 370 ** nBytes is always a value obtained from a prior call to 371 ** memsys5Round(). Hence nBytes is always a non-negative power 372 ** of two. If nBytes==0 that means that an oversize allocation 373 ** (an allocation larger than 0x40000000) was requested and this 374 ** routine should return 0 without freeing pPrior. 375 */ 376 static void *memsys5Realloc(void *pPrior, int nBytes){ 377 int nOld; 378 void *p; 379 assert( pPrior!=0 ); 380 assert( (nBytes&(nBytes-1))==0 ); /* EV: R-46199-30249 */ 381 assert( nBytes>=0 ); 382 if( nBytes==0 ){ 383 return 0; 384 } 385 nOld = memsys5Size(pPrior); 386 if( nBytes<=nOld ){ 387 return pPrior; 388 } 389 memsys5Enter(); 390 p = memsys5MallocUnsafe(nBytes); 391 if( p ){ 392 memcpy(p, pPrior, nOld); 393 memsys5FreeUnsafe(pPrior); 394 } 395 memsys5Leave(); 396 return p; 397 } 398 399 /* 400 ** Round up a request size to the next valid allocation size. If 401 ** the allocation is too large to be handled by this allocation system, 402 ** return 0. 403 ** 404 ** All allocations must be a power of two and must be expressed by a 405 ** 32-bit signed integer. Hence the largest allocation is 0x40000000 406 ** or 1073741824 bytes. 407 */ 408 static int memsys5Roundup(int n){ 409 int iFullSz; 410 if( n > 0x40000000 ) return 0; 411 for(iFullSz=mem5.szAtom; iFullSz<n; iFullSz *= 2); 412 return iFullSz; 413 } 414 415 /* 416 ** Return the ceiling of the logarithm base 2 of iValue. 417 ** 418 ** Examples: memsys5Log(1) -> 0 419 ** memsys5Log(2) -> 1 420 ** memsys5Log(4) -> 2 421 ** memsys5Log(5) -> 3 422 ** memsys5Log(8) -> 3 423 ** memsys5Log(9) -> 4 424 */ 425 static int memsys5Log(int iValue){ 426 int iLog; 427 for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<<iLog)<iValue; iLog++); 428 return iLog; 429 } 430 431 /* 432 ** Initialize the memory allocator. 433 ** 434 ** This routine is not threadsafe. The caller must be holding a mutex 435 ** to prevent multiple threads from entering at the same time. 436 */ 437 static int memsys5Init(void *NotUsed){ 438 int ii; /* Loop counter */ 439 int nByte; /* Number of bytes of memory available to this allocator */ 440 u8 *zByte; /* Memory usable by this allocator */ 441 int nMinLog; /* Log base 2 of minimum allocation size in bytes */ 442 int iOffset; /* An offset into mem5.aCtrl[] */ 443 444 UNUSED_PARAMETER(NotUsed); 445 446 /* For the purposes of this routine, disable the mutex */ 447 mem5.mutex = 0; 448 449 /* The size of a Mem5Link object must be a power of two. Verify that 450 ** this is case. 451 */ 452 assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 ); 453 454 nByte = sqlite3GlobalConfig.nHeap; 455 zByte = (u8*)sqlite3GlobalConfig.pHeap; 456 assert( zByte!=0 ); /* sqlite3_config() does not allow otherwise */ 457 458 /* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */ 459 nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq); 460 mem5.szAtom = (1<<nMinLog); 461 while( (int)sizeof(Mem5Link)>mem5.szAtom ){ 462 mem5.szAtom = mem5.szAtom << 1; 463 } 464 465 mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8))); 466 mem5.zPool = zByte; 467 mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom]; 468 469 for(ii=0; ii<=LOGMAX; ii++){ 470 mem5.aiFreelist[ii] = -1; 471 } 472 473 iOffset = 0; 474 for(ii=LOGMAX; ii>=0; ii--){ 475 int nAlloc = (1<<ii); 476 if( (iOffset+nAlloc)<=mem5.nBlock ){ 477 mem5.aCtrl[iOffset] = ii | CTRL_FREE; 478 memsys5Link(iOffset, ii); 479 iOffset += nAlloc; 480 } 481 assert((iOffset+nAlloc)>mem5.nBlock); 482 } 483 484 /* If a mutex is required for normal operation, allocate one */ 485 if( sqlite3GlobalConfig.bMemstat==0 ){ 486 mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 487 } 488 489 return SQLITE_OK; 490 } 491 492 /* 493 ** Deinitialize this module. 494 */ 495 static void memsys5Shutdown(void *NotUsed){ 496 UNUSED_PARAMETER(NotUsed); 497 mem5.mutex = 0; 498 return; 499 } 500 501 #ifdef SQLITE_TEST 502 /* 503 ** Open the file indicated and write a log of all unfreed memory 504 ** allocations into that log. 505 */ 506 void sqlite3Memsys5Dump(const char *zFilename){ 507 FILE *out; 508 int i, j, n; 509 int nMinLog; 510 511 if( zFilename==0 || zFilename[0]==0 ){ 512 out = stdout; 513 }else{ 514 out = fopen(zFilename, "w"); 515 if( out==0 ){ 516 fprintf(stderr, "** Unable to output memory debug output log: %s **\n", 517 zFilename); 518 return; 519 } 520 } 521 memsys5Enter(); 522 nMinLog = memsys5Log(mem5.szAtom); 523 for(i=0; i<=LOGMAX && i+nMinLog<32; i++){ 524 for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){} 525 fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n); 526 } 527 fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc); 528 fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc); 529 fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess); 530 fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut); 531 fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount); 532 fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut); 533 fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount); 534 fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest); 535 memsys5Leave(); 536 if( out==stdout ){ 537 fflush(stdout); 538 }else{ 539 fclose(out); 540 } 541 } 542 #endif 543 544 /* 545 ** This routine is the only routine in this file with external 546 ** linkage. It returns a pointer to a static sqlite3_mem_methods 547 ** struct populated with the memsys5 methods. 548 */ 549 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){ 550 static const sqlite3_mem_methods memsys5Methods = { 551 memsys5Malloc, 552 memsys5Free, 553 memsys5Realloc, 554 memsys5Size, 555 memsys5Roundup, 556 memsys5Init, 557 memsys5Shutdown, 558 0 559 }; 560 return &memsys5Methods; 561 } 562 563 #endif /* SQLITE_ENABLE_MEMSYS5 */ 564