xref: /sqlite-3.40.0/src/mem5.c (revision a03396aa)
1 /*
2 ** 2007 October 14
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement a memory
13 ** allocation subsystem for use by SQLite.
14 **
15 ** This version of the memory allocation subsystem omits all
16 ** use of malloc(). The SQLite user supplies a block of memory
17 ** before calling sqlite3_initialize() from which allocations
18 ** are made and returned by the xMalloc() and xRealloc()
19 ** implementations. Once sqlite3_initialize() has been called,
20 ** the amount of memory available to SQLite is fixed and cannot
21 ** be changed.
22 **
23 ** This version of the memory allocation subsystem is included
24 ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
25 **
26 ** $Id: mem5.c,v 1.18 2008/11/19 14:35:47 danielk1977 Exp $
27 */
28 #include "sqliteInt.h"
29 
30 /*
31 ** This version of the memory allocator is used only when
32 ** SQLITE_ENABLE_MEMSYS5 is defined.
33 */
34 #ifdef SQLITE_ENABLE_MEMSYS5
35 
36 /*
37 ** A minimum allocation is an instance of the following structure.
38 ** Larger allocations are an array of these structures where the
39 ** size of the array is a power of 2.
40 */
41 typedef struct Mem5Link Mem5Link;
42 struct Mem5Link {
43   int next;       /* Index of next free chunk */
44   int prev;       /* Index of previous free chunk */
45 };
46 
47 /*
48 ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.nAtom). Since
49 ** mem5.nAtom is always at least 8, this is not really a practical
50 ** limitation.
51 */
52 #define LOGMAX 30
53 
54 /*
55 ** Masks used for mem5.aCtrl[] elements.
56 */
57 #define CTRL_LOGSIZE  0x1f    /* Log2 Size of this block relative to POW2_MIN */
58 #define CTRL_FREE     0x20    /* True if not checked out */
59 
60 /*
61 ** All of the static variables used by this module are collected
62 ** into a single structure named "mem5".  This is to keep the
63 ** static variables organized and to reduce namespace pollution
64 ** when this module is combined with other in the amalgamation.
65 */
66 static SQLITE_WSD struct Mem5Global {
67   /*
68   ** Memory available for allocation
69   */
70   int nAtom;       /* Smallest possible allocation in bytes */
71   int nBlock;      /* Number of nAtom sized blocks in zPool */
72   u8 *zPool;
73 
74   /*
75   ** Mutex to control access to the memory allocation subsystem.
76   */
77   sqlite3_mutex *mutex;
78 
79   /*
80   ** Performance statistics
81   */
82   u64 nAlloc;         /* Total number of calls to malloc */
83   u64 totalAlloc;     /* Total of all malloc calls - includes internal frag */
84   u64 totalExcess;    /* Total internal fragmentation */
85   u32 currentOut;     /* Current checkout, including internal fragmentation */
86   u32 currentCount;   /* Current number of distinct checkouts */
87   u32 maxOut;         /* Maximum instantaneous currentOut */
88   u32 maxCount;       /* Maximum instantaneous currentCount */
89   u32 maxRequest;     /* Largest allocation (exclusive of internal frag) */
90 
91   /*
92   ** Lists of free blocks of various sizes.
93   */
94   int aiFreelist[LOGMAX+1];
95 
96   /*
97   ** Space for tracking which blocks are checked out and the size
98   ** of each block.  One byte per block.
99   */
100   u8 *aCtrl;
101 
102 } mem5 = { 19804167 };
103 
104 #define mem5 GLOBAL(struct Mem5Global, mem5)
105 
106 #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.nAtom]))
107 
108 /*
109 ** Unlink the chunk at mem5.aPool[i] from list it is currently
110 ** on.  It should be found on mem5.aiFreelist[iLogsize].
111 */
112 static void memsys5Unlink(int i, int iLogsize){
113   int next, prev;
114   assert( i>=0 && i<mem5.nBlock );
115   assert( iLogsize>=0 && iLogsize<=LOGMAX );
116   assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
117 
118   next = MEM5LINK(i)->next;
119   prev = MEM5LINK(i)->prev;
120   if( prev<0 ){
121     mem5.aiFreelist[iLogsize] = next;
122   }else{
123     MEM5LINK(prev)->next = next;
124   }
125   if( next>=0 ){
126     MEM5LINK(next)->prev = prev;
127   }
128 }
129 
130 /*
131 ** Link the chunk at mem5.aPool[i] so that is on the iLogsize
132 ** free list.
133 */
134 static void memsys5Link(int i, int iLogsize){
135   int x;
136   assert( sqlite3_mutex_held(mem5.mutex) );
137   assert( i>=0 && i<mem5.nBlock );
138   assert( iLogsize>=0 && iLogsize<=LOGMAX );
139   assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
140 
141   x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
142   MEM5LINK(i)->prev = -1;
143   if( x>=0 ){
144     assert( x<mem5.nBlock );
145     MEM5LINK(x)->prev = i;
146   }
147   mem5.aiFreelist[iLogsize] = i;
148 }
149 
150 /*
151 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
152 ** will already be held (obtained by code in malloc.c) if
153 ** sqlite3GlobalConfig.bMemStat is true.
154 */
155 static void memsys5Enter(void){
156   if( sqlite3GlobalConfig.bMemstat==0 && mem5.mutex==0 ){
157     mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
158   }
159   sqlite3_mutex_enter(mem5.mutex);
160 }
161 static void memsys5Leave(void){
162   sqlite3_mutex_leave(mem5.mutex);
163 }
164 
165 /*
166 ** Return the size of an outstanding allocation, in bytes.  The
167 ** size returned omits the 8-byte header overhead.  This only
168 ** works for chunks that are currently checked out.
169 */
170 static int memsys5Size(void *p){
171   int iSize = 0;
172   if( p ){
173     int i = ((u8 *)p-mem5.zPool)/mem5.nAtom;
174     assert( i>=0 && i<mem5.nBlock );
175     iSize = mem5.nAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
176   }
177   return iSize;
178 }
179 
180 /*
181 ** Find the first entry on the freelist iLogsize.  Unlink that
182 ** entry and return its index.
183 */
184 static int memsys5UnlinkFirst(int iLogsize){
185   int i;
186   int iFirst;
187 
188   assert( iLogsize>=0 && iLogsize<=LOGMAX );
189   i = iFirst = mem5.aiFreelist[iLogsize];
190   assert( iFirst>=0 );
191   while( i>0 ){
192     if( i<iFirst ) iFirst = i;
193     i = MEM5LINK(i)->next;
194   }
195   memsys5Unlink(iFirst, iLogsize);
196   return iFirst;
197 }
198 
199 /*
200 ** Return a block of memory of at least nBytes in size.
201 ** Return NULL if unable.
202 */
203 static void *memsys5MallocUnsafe(int nByte){
204   int i;           /* Index of a mem5.aPool[] slot */
205   int iBin;        /* Index into mem5.aiFreelist[] */
206   int iFullSz;     /* Size of allocation rounded up to power of 2 */
207   int iLogsize;    /* Log2 of iFullSz/POW2_MIN */
208 
209   /* Keep track of the maximum allocation request.  Even unfulfilled
210   ** requests are counted */
211   if( (u32)nByte>mem5.maxRequest ){
212     mem5.maxRequest = nByte;
213   }
214 
215   /* Round nByte up to the next valid power of two */
216   for(iFullSz=mem5.nAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
217 
218   /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
219   ** block.  If not, then split a block of the next larger power of
220   ** two in order to create a new free block of size iLogsize.
221   */
222   for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){}
223   if( iBin>LOGMAX ) return 0;
224   i = memsys5UnlinkFirst(iBin);
225   while( iBin>iLogsize ){
226     int newSize;
227 
228     iBin--;
229     newSize = 1 << iBin;
230     mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
231     memsys5Link(i+newSize, iBin);
232   }
233   mem5.aCtrl[i] = iLogsize;
234 
235   /* Update allocator performance statistics. */
236   mem5.nAlloc++;
237   mem5.totalAlloc += iFullSz;
238   mem5.totalExcess += iFullSz - nByte;
239   mem5.currentCount++;
240   mem5.currentOut += iFullSz;
241   if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
242   if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
243 
244   /* Return a pointer to the allocated memory. */
245   return (void*)&mem5.zPool[i*mem5.nAtom];
246 }
247 
248 /*
249 ** Free an outstanding memory allocation.
250 */
251 static void memsys5FreeUnsafe(void *pOld){
252   u32 size, iLogsize;
253   int iBlock;
254 
255   /* Set iBlock to the index of the block pointed to by pOld in
256   ** the array of mem5.nAtom byte blocks pointed to by mem5.zPool.
257   */
258   iBlock = ((u8 *)pOld-mem5.zPool)/mem5.nAtom;
259 
260   /* Check that the pointer pOld points to a valid, non-free block. */
261   assert( iBlock>=0 && iBlock<mem5.nBlock );
262   assert( ((u8 *)pOld-mem5.zPool)%mem5.nAtom==0 );
263   assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
264 
265   iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
266   size = 1<<iLogsize;
267   assert( iBlock+size-1<(u32)mem5.nBlock );
268 
269   mem5.aCtrl[iBlock] |= CTRL_FREE;
270   mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
271   assert( mem5.currentCount>0 );
272   assert( mem5.currentOut>=(size*mem5.nAtom) );
273   mem5.currentCount--;
274   mem5.currentOut -= size*mem5.nAtom;
275   assert( mem5.currentOut>0 || mem5.currentCount==0 );
276   assert( mem5.currentCount>0 || mem5.currentOut==0 );
277 
278   mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
279   while( iLogsize<LOGMAX ){
280     int iBuddy;
281     if( (iBlock>>iLogsize) & 1 ){
282       iBuddy = iBlock - size;
283     }else{
284       iBuddy = iBlock + size;
285     }
286     assert( iBuddy>=0 );
287     if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break;
288     if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
289     memsys5Unlink(iBuddy, iLogsize);
290     iLogsize++;
291     if( iBuddy<iBlock ){
292       mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
293       mem5.aCtrl[iBlock] = 0;
294       iBlock = iBuddy;
295     }else{
296       mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
297       mem5.aCtrl[iBuddy] = 0;
298     }
299     size *= 2;
300   }
301   memsys5Link(iBlock, iLogsize);
302 }
303 
304 /*
305 ** Allocate nBytes of memory
306 */
307 static void *memsys5Malloc(int nBytes){
308   sqlite3_int64 *p = 0;
309   if( nBytes>0 ){
310     memsys5Enter();
311     p = memsys5MallocUnsafe(nBytes);
312     memsys5Leave();
313   }
314   return (void*)p;
315 }
316 
317 /*
318 ** Free memory.
319 */
320 static void memsys5Free(void *pPrior){
321   if( pPrior==0 ){
322 assert(0);
323     return;
324   }
325   memsys5Enter();
326   memsys5FreeUnsafe(pPrior);
327   memsys5Leave();
328 }
329 
330 /*
331 ** Change the size of an existing memory allocation
332 */
333 static void *memsys5Realloc(void *pPrior, int nBytes){
334   int nOld;
335   void *p;
336   if( pPrior==0 ){
337     return memsys5Malloc(nBytes);
338   }
339   if( nBytes<=0 ){
340     memsys5Free(pPrior);
341     return 0;
342   }
343   nOld = memsys5Size(pPrior);
344   if( nBytes<=nOld ){
345     return pPrior;
346   }
347   memsys5Enter();
348   p = memsys5MallocUnsafe(nBytes);
349   if( p ){
350     memcpy(p, pPrior, nOld);
351     memsys5FreeUnsafe(pPrior);
352   }
353   memsys5Leave();
354   return p;
355 }
356 
357 /*
358 ** Round up a request size to the next valid allocation size.
359 */
360 static int memsys5Roundup(int n){
361   int iFullSz;
362   for(iFullSz=mem5.nAtom; iFullSz<n; iFullSz *= 2);
363   return iFullSz;
364 }
365 
366 static int memsys5Log(int iValue){
367   int iLog;
368   for(iLog=0; (1<<iLog)<iValue; iLog++);
369   return iLog;
370 }
371 
372 /*
373 ** Initialize this module.
374 */
375 static int memsys5Init(void *NotUsed){
376   int ii;
377   int nByte = sqlite3GlobalConfig.nHeap;
378   u8 *zByte = (u8 *)sqlite3GlobalConfig.pHeap;
379   int nMinLog;                 /* Log of minimum allocation size in bytes*/
380   int iOffset;
381 
382   UNUSED_PARAMETER(NotUsed);
383 
384   if( !zByte ){
385     return SQLITE_ERROR;
386   }
387 
388   nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq);
389   mem5.nAtom = (1<<nMinLog);
390   while( (int)sizeof(Mem5Link)>mem5.nAtom ){
391     mem5.nAtom = mem5.nAtom << 1;
392   }
393 
394   mem5.nBlock = (nByte / (mem5.nAtom+sizeof(u8)));
395   mem5.zPool = zByte;
396   mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.nAtom];
397 
398   for(ii=0; ii<=LOGMAX; ii++){
399     mem5.aiFreelist[ii] = -1;
400   }
401 
402   iOffset = 0;
403   for(ii=LOGMAX; ii>=0; ii--){
404     int nAlloc = (1<<ii);
405     if( (iOffset+nAlloc)<=mem5.nBlock ){
406       mem5.aCtrl[iOffset] = ii | CTRL_FREE;
407       memsys5Link(iOffset, ii);
408       iOffset += nAlloc;
409     }
410     assert((iOffset+nAlloc)>mem5.nBlock);
411   }
412 
413   return SQLITE_OK;
414 }
415 
416 /*
417 ** Deinitialize this module.
418 */
419 static void memsys5Shutdown(void *NotUsed){
420   UNUSED_PARAMETER(NotUsed);
421   return;
422 }
423 
424 /*
425 ** Open the file indicated and write a log of all unfreed memory
426 ** allocations into that log.
427 */
428 void sqlite3Memsys5Dump(const char *zFilename){
429 #ifdef SQLITE_DEBUG
430   FILE *out;
431   int i, j, n;
432   int nMinLog;
433 
434   if( zFilename==0 || zFilename[0]==0 ){
435     out = stdout;
436   }else{
437     out = fopen(zFilename, "w");
438     if( out==0 ){
439       fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
440                       zFilename);
441       return;
442     }
443   }
444   memsys5Enter();
445   nMinLog = memsys5Log(mem5.nAtom);
446   for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
447     for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
448     fprintf(out, "freelist items of size %d: %d\n", mem5.nAtom << i, n);
449   }
450   fprintf(out, "mem5.nAlloc       = %llu\n", mem5.nAlloc);
451   fprintf(out, "mem5.totalAlloc   = %llu\n", mem5.totalAlloc);
452   fprintf(out, "mem5.totalExcess  = %llu\n", mem5.totalExcess);
453   fprintf(out, "mem5.currentOut   = %u\n", mem5.currentOut);
454   fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
455   fprintf(out, "mem5.maxOut       = %u\n", mem5.maxOut);
456   fprintf(out, "mem5.maxCount     = %u\n", mem5.maxCount);
457   fprintf(out, "mem5.maxRequest   = %u\n", mem5.maxRequest);
458   memsys5Leave();
459   if( out==stdout ){
460     fflush(stdout);
461   }else{
462     fclose(out);
463   }
464 #endif
465 }
466 
467 /*
468 ** This routine is the only routine in this file with external
469 ** linkage. It returns a pointer to a static sqlite3_mem_methods
470 ** struct populated with the memsys5 methods.
471 */
472 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
473   static const sqlite3_mem_methods memsys5Methods = {
474      memsys5Malloc,
475      memsys5Free,
476      memsys5Realloc,
477      memsys5Size,
478      memsys5Roundup,
479      memsys5Init,
480      memsys5Shutdown,
481      0
482   };
483   return &memsys5Methods;
484 }
485 
486 #endif /* SQLITE_ENABLE_MEMSYS5 */
487