xref: /sqlite-3.40.0/src/mem5.c (revision 7c6791c8)
1 /*
2 ** 2007 October 14
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement a memory
13 ** allocation subsystem for use by SQLite.
14 **
15 ** This version of the memory allocation subsystem omits all
16 ** use of malloc(). The application gives SQLite a block of memory
17 ** before calling sqlite3_initialize() from which allocations
18 ** are made and returned by the xMalloc() and xRealloc()
19 ** implementations. Once sqlite3_initialize() has been called,
20 ** the amount of memory available to SQLite is fixed and cannot
21 ** be changed.
22 **
23 ** This version of the memory allocation subsystem is included
24 ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
25 **
26 ** This memory allocator uses the following algorithm:
27 **
28 **   1.  All memory allocations sizes are rounded up to a power of 2.
29 **
30 **   2.  If two adjacent free blocks are the halves of a larger block,
31 **       then the two blocks are coalesed into the single larger block.
32 **
33 **   3.  New memory is allocated from the first available free block.
34 **
35 ** This algorithm is described in: J. M. Robson. "Bounds for Some Functions
36 ** Concerning Dynamic Storage Allocation". Journal of the Association for
37 ** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499.
38 **
39 ** Let n be the size of the largest allocation divided by the minimum
40 ** allocation size (after rounding all sizes up to a power of 2.)  Let M
41 ** be the maximum amount of memory ever outstanding at one time.  Let
42 ** N be the total amount of memory available for allocation.  Robson
43 ** proved that this memory allocator will never breakdown due to
44 ** fragmentation as long as the following constraint holds:
45 **
46 **      N >=  M*(1 + log2(n)/2) - n + 1
47 **
48 ** The sqlite3_status() logic tracks the maximum values of n and M so
49 ** that an application can, at any time, verify this constraint.
50 */
51 #include "sqliteInt.h"
52 
53 /*
54 ** This version of the memory allocator is used only when
55 ** SQLITE_ENABLE_MEMSYS5 is defined.
56 */
57 #ifdef SQLITE_ENABLE_MEMSYS5
58 
59 /*
60 ** A minimum allocation is an instance of the following structure.
61 ** Larger allocations are an array of these structures where the
62 ** size of the array is a power of 2.
63 **
64 ** The size of this object must be a power of two.  That fact is
65 ** verified in memsys5Init().
66 */
67 typedef struct Mem5Link Mem5Link;
68 struct Mem5Link {
69   int next;       /* Index of next free chunk */
70   int prev;       /* Index of previous free chunk */
71 };
72 
73 /*
74 ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since
75 ** mem5.szAtom is always at least 8 and 32-bit integers are used,
76 ** it is not actually possible to reach this limit.
77 */
78 #define LOGMAX 30
79 
80 /*
81 ** Masks used for mem5.aCtrl[] elements.
82 */
83 #define CTRL_LOGSIZE  0x1f    /* Log2 Size of this block */
84 #define CTRL_FREE     0x20    /* True if not checked out */
85 
86 /*
87 ** All of the static variables used by this module are collected
88 ** into a single structure named "mem5".  This is to keep the
89 ** static variables organized and to reduce namespace pollution
90 ** when this module is combined with other in the amalgamation.
91 */
92 static SQLITE_WSD struct Mem5Global {
93   /*
94   ** Memory available for allocation
95   */
96   int szAtom;      /* Smallest possible allocation in bytes */
97   int nBlock;      /* Number of szAtom sized blocks in zPool */
98   u8 *zPool;       /* Memory available to be allocated */
99 
100   /*
101   ** Mutex to control access to the memory allocation subsystem.
102   */
103   sqlite3_mutex *mutex;
104 
105   /*
106   ** Performance statistics
107   */
108   u64 nAlloc;         /* Total number of calls to malloc */
109   u64 totalAlloc;     /* Total of all malloc calls - includes internal frag */
110   u64 totalExcess;    /* Total internal fragmentation */
111   u32 currentOut;     /* Current checkout, including internal fragmentation */
112   u32 currentCount;   /* Current number of distinct checkouts */
113   u32 maxOut;         /* Maximum instantaneous currentOut */
114   u32 maxCount;       /* Maximum instantaneous currentCount */
115   u32 maxRequest;     /* Largest allocation (exclusive of internal frag) */
116 
117   /*
118   ** Lists of free blocks.  aiFreelist[0] is a list of free blocks of
119   ** size mem5.szAtom.  aiFreelist[1] holds blocks of size szAtom*2.
120   ** and so forth.
121   */
122   int aiFreelist[LOGMAX+1];
123 
124   /*
125   ** Space for tracking which blocks are checked out and the size
126   ** of each block.  One byte per block.
127   */
128   u8 *aCtrl;
129 
130 } mem5 = { 0 };
131 
132 /*
133 ** Access the static variable through a macro for SQLITE_OMIT_WSD
134 */
135 #define mem5 GLOBAL(struct Mem5Global, mem5)
136 
137 /*
138 ** Assuming mem5.zPool is divided up into an array of Mem5Link
139 ** structures, return a pointer to the idx-th such lik.
140 */
141 #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom]))
142 
143 /*
144 ** Unlink the chunk at mem5.aPool[i] from list it is currently
145 ** on.  It should be found on mem5.aiFreelist[iLogsize].
146 */
147 static void memsys5Unlink(int i, int iLogsize){
148   int next, prev;
149   assert( i>=0 && i<mem5.nBlock );
150   assert( iLogsize>=0 && iLogsize<=LOGMAX );
151   assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
152 
153   next = MEM5LINK(i)->next;
154   prev = MEM5LINK(i)->prev;
155   if( prev<0 ){
156     mem5.aiFreelist[iLogsize] = next;
157   }else{
158     MEM5LINK(prev)->next = next;
159   }
160   if( next>=0 ){
161     MEM5LINK(next)->prev = prev;
162   }
163 }
164 
165 /*
166 ** Link the chunk at mem5.aPool[i] so that is on the iLogsize
167 ** free list.
168 */
169 static void memsys5Link(int i, int iLogsize){
170   int x;
171   assert( sqlite3_mutex_held(mem5.mutex) );
172   assert( i>=0 && i<mem5.nBlock );
173   assert( iLogsize>=0 && iLogsize<=LOGMAX );
174   assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
175 
176   x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
177   MEM5LINK(i)->prev = -1;
178   if( x>=0 ){
179     assert( x<mem5.nBlock );
180     MEM5LINK(x)->prev = i;
181   }
182   mem5.aiFreelist[iLogsize] = i;
183 }
184 
185 /*
186 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
187 ** will already be held (obtained by code in malloc.c) if
188 ** sqlite3GlobalConfig.bMemStat is true.
189 */
190 static void memsys5Enter(void){
191   if( sqlite3GlobalConfig.bMemstat==0 && mem5.mutex==0 ){
192     mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
193   }
194   sqlite3_mutex_enter(mem5.mutex);
195 }
196 static void memsys5Leave(void){
197   sqlite3_mutex_leave(mem5.mutex);
198 }
199 
200 /*
201 ** Return the size of an outstanding allocation, in bytes.  The
202 ** size returned omits the 8-byte header overhead.  This only
203 ** works for chunks that are currently checked out.
204 */
205 static int memsys5Size(void *p){
206   int iSize = 0;
207   if( p ){
208     int i = ((u8 *)p-mem5.zPool)/mem5.szAtom;
209     assert( i>=0 && i<mem5.nBlock );
210     iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
211   }
212   return iSize;
213 }
214 
215 /*
216 ** Find the first entry on the freelist iLogsize.  Unlink that
217 ** entry and return its index.
218 */
219 static int memsys5UnlinkFirst(int iLogsize){
220   int i;
221   int iFirst;
222 
223   assert( iLogsize>=0 && iLogsize<=LOGMAX );
224   i = iFirst = mem5.aiFreelist[iLogsize];
225   assert( iFirst>=0 );
226   while( i>0 ){
227     if( i<iFirst ) iFirst = i;
228     i = MEM5LINK(i)->next;
229   }
230   memsys5Unlink(iFirst, iLogsize);
231   return iFirst;
232 }
233 
234 /*
235 ** Return a block of memory of at least nBytes in size.
236 ** Return NULL if unable.  Return NULL if nBytes==0.
237 **
238 ** The caller guarantees that nByte positive.
239 **
240 ** The caller has obtained a mutex prior to invoking this
241 ** routine so there is never any chance that two or more
242 ** threads can be in this routine at the same time.
243 */
244 static void *memsys5MallocUnsafe(int nByte){
245   int i;           /* Index of a mem5.aPool[] slot */
246   int iBin;        /* Index into mem5.aiFreelist[] */
247   int iFullSz;     /* Size of allocation rounded up to power of 2 */
248   int iLogsize;    /* Log2 of iFullSz/POW2_MIN */
249 
250   /* nByte must be a positive */
251   assert( nByte>0 );
252 
253   /* Keep track of the maximum allocation request.  Even unfulfilled
254   ** requests are counted */
255   if( (u32)nByte>mem5.maxRequest ){
256     mem5.maxRequest = nByte;
257   }
258 
259   /* Abort if the requested allocation size is larger than the largest
260   ** power of two that we can represent using 32-bit signed integers.
261   */
262   if( nByte > 0x40000000 ){
263     return 0;
264   }
265 
266   /* Round nByte up to the next valid power of two */
267   for(iFullSz=mem5.szAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
268 
269   /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
270   ** block.  If not, then split a block of the next larger power of
271   ** two in order to create a new free block of size iLogsize.
272   */
273   for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){}
274   if( iBin>LOGMAX ) return 0;
275   i = memsys5UnlinkFirst(iBin);
276   while( iBin>iLogsize ){
277     int newSize;
278 
279     iBin--;
280     newSize = 1 << iBin;
281     mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
282     memsys5Link(i+newSize, iBin);
283   }
284   mem5.aCtrl[i] = iLogsize;
285 
286   /* Update allocator performance statistics. */
287   mem5.nAlloc++;
288   mem5.totalAlloc += iFullSz;
289   mem5.totalExcess += iFullSz - nByte;
290   mem5.currentCount++;
291   mem5.currentOut += iFullSz;
292   if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
293   if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
294 
295   /* Return a pointer to the allocated memory. */
296   return (void*)&mem5.zPool[i*mem5.szAtom];
297 }
298 
299 /*
300 ** Free an outstanding memory allocation.
301 */
302 static void memsys5FreeUnsafe(void *pOld){
303   u32 size, iLogsize;
304   int iBlock;
305 
306   /* Set iBlock to the index of the block pointed to by pOld in
307   ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool.
308   */
309   iBlock = ((u8 *)pOld-mem5.zPool)/mem5.szAtom;
310 
311   /* Check that the pointer pOld points to a valid, non-free block. */
312   assert( iBlock>=0 && iBlock<mem5.nBlock );
313   assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 );
314   assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
315 
316   iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
317   size = 1<<iLogsize;
318   assert( iBlock+size-1<(u32)mem5.nBlock );
319 
320   mem5.aCtrl[iBlock] |= CTRL_FREE;
321   mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
322   assert( mem5.currentCount>0 );
323   assert( mem5.currentOut>=(size*mem5.szAtom) );
324   mem5.currentCount--;
325   mem5.currentOut -= size*mem5.szAtom;
326   assert( mem5.currentOut>0 || mem5.currentCount==0 );
327   assert( mem5.currentCount>0 || mem5.currentOut==0 );
328 
329   mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
330   while( ALWAYS(iLogsize<LOGMAX) ){
331     int iBuddy;
332     if( (iBlock>>iLogsize) & 1 ){
333       iBuddy = iBlock - size;
334     }else{
335       iBuddy = iBlock + size;
336     }
337     assert( iBuddy>=0 );
338     if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break;
339     if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
340     memsys5Unlink(iBuddy, iLogsize);
341     iLogsize++;
342     if( iBuddy<iBlock ){
343       mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
344       mem5.aCtrl[iBlock] = 0;
345       iBlock = iBuddy;
346     }else{
347       mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
348       mem5.aCtrl[iBuddy] = 0;
349     }
350     size *= 2;
351   }
352   memsys5Link(iBlock, iLogsize);
353 }
354 
355 /*
356 ** Allocate nBytes of memory
357 */
358 static void *memsys5Malloc(int nBytes){
359   sqlite3_int64 *p = 0;
360   if( nBytes>0 ){
361     memsys5Enter();
362     p = memsys5MallocUnsafe(nBytes);
363     memsys5Leave();
364   }
365   return (void*)p;
366 }
367 
368 /*
369 ** Free memory.
370 **
371 ** The outer layer memory allocator prevents this routine from
372 ** being called with pPrior==0.
373 */
374 static void memsys5Free(void *pPrior){
375   assert( pPrior!=0 );
376   memsys5Enter();
377   memsys5FreeUnsafe(pPrior);
378   memsys5Leave();
379 }
380 
381 /*
382 ** Change the size of an existing memory allocation.
383 **
384 ** The outer layer memory allocator prevents this routine from
385 ** being called with pPrior==0.
386 **
387 ** nBytes is always a value obtained from a prior call to
388 ** memsys5Round().  Hence nBytes is always a non-negative power
389 ** of two.  If nBytes==0 that means that an oversize allocation
390 ** (an allocation larger than 0x40000000) was requested and this
391 ** routine should return 0 without freeing pPrior.
392 */
393 static void *memsys5Realloc(void *pPrior, int nBytes){
394   int nOld;
395   void *p;
396   assert( pPrior!=0 );
397   assert( (nBytes&(nBytes-1))==0 );
398   assert( nBytes>=0 );
399   if( nBytes==0 ){
400     return 0;
401   }
402   nOld = memsys5Size(pPrior);
403   if( nBytes<=nOld ){
404     return pPrior;
405   }
406   memsys5Enter();
407   p = memsys5MallocUnsafe(nBytes);
408   if( p ){
409     memcpy(p, pPrior, nOld);
410     memsys5FreeUnsafe(pPrior);
411   }
412   memsys5Leave();
413   return p;
414 }
415 
416 /*
417 ** Round up a request size to the next valid allocation size.  If
418 ** the allocation is too large to be handled by this allocation system,
419 ** return 0.
420 **
421 ** All allocations must be a power of two and must be expressed by a
422 ** 32-bit signed integer.  Hence the largest allocation is 0x40000000
423 ** or 1073741824 bytes.
424 */
425 static int memsys5Roundup(int n){
426   int iFullSz;
427   if( n > 0x40000000 ) return 0;
428   for(iFullSz=mem5.szAtom; iFullSz<n; iFullSz *= 2);
429   return iFullSz;
430 }
431 
432 /*
433 ** Return the ceiling of the logarithm base 2 of iValue.
434 **
435 ** Examples:   memsys5Log(1) -> 0
436 **             memsys5Log(2) -> 1
437 **             memsys5Log(4) -> 2
438 **             memsys5Log(5) -> 3
439 **             memsys5Log(8) -> 3
440 **             memsys5Log(9) -> 4
441 */
442 static int memsys5Log(int iValue){
443   int iLog;
444   for(iLog=0; (1<<iLog)<iValue; iLog++);
445   return iLog;
446 }
447 
448 /*
449 ** Initialize the memory allocator.
450 */
451 static int memsys5Init(void *NotUsed){
452   int ii;            /* Loop counter */
453   int nByte;         /* Number of bytes of memory available to this allocator */
454   u8 *zByte;         /* Memory usable by this allocator */
455   int nMinLog;       /* Log base 2 of minimum allocation size in bytes */
456   int iOffset;       /* An offset into mem5.aCtrl[] */
457 
458   UNUSED_PARAMETER(NotUsed);
459 
460   /* The size of a Mem5Link object must be a power of two.  Verify that
461   ** this is case.
462   */
463   assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 );
464 
465   nByte = sqlite3GlobalConfig.nHeap;
466   zByte = (u8*)sqlite3GlobalConfig.pHeap;
467   assert( zByte!=0 );  /* sqlite3_config() does not allow otherwise */
468 
469   nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq);
470   mem5.szAtom = (1<<nMinLog);
471   while( (int)sizeof(Mem5Link)>mem5.szAtom ){
472     mem5.szAtom = mem5.szAtom << 1;
473   }
474 
475   mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8)));
476   mem5.zPool = zByte;
477   mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom];
478 
479   for(ii=0; ii<=LOGMAX; ii++){
480     mem5.aiFreelist[ii] = -1;
481   }
482 
483   iOffset = 0;
484   for(ii=LOGMAX; ii>=0; ii--){
485     int nAlloc = (1<<ii);
486     if( (iOffset+nAlloc)<=mem5.nBlock ){
487       mem5.aCtrl[iOffset] = ii | CTRL_FREE;
488       memsys5Link(iOffset, ii);
489       iOffset += nAlloc;
490     }
491     assert((iOffset+nAlloc)>mem5.nBlock);
492   }
493 
494   return SQLITE_OK;
495 }
496 
497 /*
498 ** Deinitialize this module.
499 */
500 static void memsys5Shutdown(void *NotUsed){
501   UNUSED_PARAMETER(NotUsed);
502   mem5.mutex = 0;
503   return;
504 }
505 
506 #ifdef SQLITE_TEST
507 /*
508 ** Open the file indicated and write a log of all unfreed memory
509 ** allocations into that log.
510 */
511 void sqlite3Memsys5Dump(const char *zFilename){
512   FILE *out;
513   int i, j, n;
514   int nMinLog;
515 
516   if( zFilename==0 || zFilename[0]==0 ){
517     out = stdout;
518   }else{
519     out = fopen(zFilename, "w");
520     if( out==0 ){
521       fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
522                       zFilename);
523       return;
524     }
525   }
526   memsys5Enter();
527   nMinLog = memsys5Log(mem5.szAtom);
528   for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
529     for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
530     fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n);
531   }
532   fprintf(out, "mem5.nAlloc       = %llu\n", mem5.nAlloc);
533   fprintf(out, "mem5.totalAlloc   = %llu\n", mem5.totalAlloc);
534   fprintf(out, "mem5.totalExcess  = %llu\n", mem5.totalExcess);
535   fprintf(out, "mem5.currentOut   = %u\n", mem5.currentOut);
536   fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
537   fprintf(out, "mem5.maxOut       = %u\n", mem5.maxOut);
538   fprintf(out, "mem5.maxCount     = %u\n", mem5.maxCount);
539   fprintf(out, "mem5.maxRequest   = %u\n", mem5.maxRequest);
540   memsys5Leave();
541   if( out==stdout ){
542     fflush(stdout);
543   }else{
544     fclose(out);
545   }
546 }
547 #endif
548 
549 /*
550 ** This routine is the only routine in this file with external
551 ** linkage. It returns a pointer to a static sqlite3_mem_methods
552 ** struct populated with the memsys5 methods.
553 */
554 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
555   static const sqlite3_mem_methods memsys5Methods = {
556      memsys5Malloc,
557      memsys5Free,
558      memsys5Realloc,
559      memsys5Size,
560      memsys5Roundup,
561      memsys5Init,
562      memsys5Shutdown,
563      0
564   };
565   return &memsys5Methods;
566 }
567 
568 #endif /* SQLITE_ENABLE_MEMSYS5 */
569