1 /* 2 ** 2007 October 14 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This file contains the C functions that implement a memory 13 ** allocation subsystem for use by SQLite. 14 ** 15 ** This version of the memory allocation subsystem omits all 16 ** use of malloc(). The application gives SQLite a block of memory 17 ** before calling sqlite3_initialize() from which allocations 18 ** are made and returned by the xMalloc() and xRealloc() 19 ** implementations. Once sqlite3_initialize() has been called, 20 ** the amount of memory available to SQLite is fixed and cannot 21 ** be changed. 22 ** 23 ** This version of the memory allocation subsystem is included 24 ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined. 25 ** 26 ** This memory allocator uses the following algorithm: 27 ** 28 ** 1. All memory allocations sizes are rounded up to a power of 2. 29 ** 30 ** 2. If two adjacent free blocks are the halves of a larger block, 31 ** then the two blocks are coalesed into the single larger block. 32 ** 33 ** 3. New memory is allocated from the first available free block. 34 ** 35 ** This algorithm is described in: J. M. Robson. "Bounds for Some Functions 36 ** Concerning Dynamic Storage Allocation". Journal of the Association for 37 ** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499. 38 ** 39 ** Let n be the size of the largest allocation divided by the minimum 40 ** allocation size (after rounding all sizes up to a power of 2.) Let M 41 ** be the maximum amount of memory ever outstanding at one time. Let 42 ** N be the total amount of memory available for allocation. Robson 43 ** proved that this memory allocator will never breakdown due to 44 ** fragmentation as long as the following constraint holds: 45 ** 46 ** N >= M*(1 + log2(n)/2) - n + 1 47 ** 48 ** The sqlite3_status() logic tracks the maximum values of n and M so 49 ** that an application can, at any time, verify this constraint. 50 */ 51 #include "sqliteInt.h" 52 53 /* 54 ** This version of the memory allocator is used only when 55 ** SQLITE_ENABLE_MEMSYS5 is defined. 56 */ 57 #ifdef SQLITE_ENABLE_MEMSYS5 58 59 /* 60 ** A minimum allocation is an instance of the following structure. 61 ** Larger allocations are an array of these structures where the 62 ** size of the array is a power of 2. 63 ** 64 ** The size of this object must be a power of two. That fact is 65 ** verified in memsys5Init(). 66 */ 67 typedef struct Mem5Link Mem5Link; 68 struct Mem5Link { 69 int next; /* Index of next free chunk */ 70 int prev; /* Index of previous free chunk */ 71 }; 72 73 /* 74 ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since 75 ** mem5.szAtom is always at least 8 and 32-bit integers are used, 76 ** it is not actually possible to reach this limit. 77 */ 78 #define LOGMAX 30 79 80 /* 81 ** Masks used for mem5.aCtrl[] elements. 82 */ 83 #define CTRL_LOGSIZE 0x1f /* Log2 Size of this block */ 84 #define CTRL_FREE 0x20 /* True if not checked out */ 85 86 /* 87 ** All of the static variables used by this module are collected 88 ** into a single structure named "mem5". This is to keep the 89 ** static variables organized and to reduce namespace pollution 90 ** when this module is combined with other in the amalgamation. 91 */ 92 static SQLITE_WSD struct Mem5Global { 93 /* 94 ** Memory available for allocation 95 */ 96 int szAtom; /* Smallest possible allocation in bytes */ 97 int nBlock; /* Number of szAtom sized blocks in zPool */ 98 u8 *zPool; /* Memory available to be allocated */ 99 100 /* 101 ** Mutex to control access to the memory allocation subsystem. 102 */ 103 sqlite3_mutex *mutex; 104 105 /* 106 ** Performance statistics 107 */ 108 u64 nAlloc; /* Total number of calls to malloc */ 109 u64 totalAlloc; /* Total of all malloc calls - includes internal frag */ 110 u64 totalExcess; /* Total internal fragmentation */ 111 u32 currentOut; /* Current checkout, including internal fragmentation */ 112 u32 currentCount; /* Current number of distinct checkouts */ 113 u32 maxOut; /* Maximum instantaneous currentOut */ 114 u32 maxCount; /* Maximum instantaneous currentCount */ 115 u32 maxRequest; /* Largest allocation (exclusive of internal frag) */ 116 117 /* 118 ** Lists of free blocks. aiFreelist[0] is a list of free blocks of 119 ** size mem5.szAtom. aiFreelist[1] holds blocks of size szAtom*2. 120 ** and so forth. 121 */ 122 int aiFreelist[LOGMAX+1]; 123 124 /* 125 ** Space for tracking which blocks are checked out and the size 126 ** of each block. One byte per block. 127 */ 128 u8 *aCtrl; 129 130 } mem5 = { 0 }; 131 132 /* 133 ** Access the static variable through a macro for SQLITE_OMIT_WSD 134 */ 135 #define mem5 GLOBAL(struct Mem5Global, mem5) 136 137 /* 138 ** Assuming mem5.zPool is divided up into an array of Mem5Link 139 ** structures, return a pointer to the idx-th such lik. 140 */ 141 #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom])) 142 143 /* 144 ** Unlink the chunk at mem5.aPool[i] from list it is currently 145 ** on. It should be found on mem5.aiFreelist[iLogsize]. 146 */ 147 static void memsys5Unlink(int i, int iLogsize){ 148 int next, prev; 149 assert( i>=0 && i<mem5.nBlock ); 150 assert( iLogsize>=0 && iLogsize<=LOGMAX ); 151 assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); 152 153 next = MEM5LINK(i)->next; 154 prev = MEM5LINK(i)->prev; 155 if( prev<0 ){ 156 mem5.aiFreelist[iLogsize] = next; 157 }else{ 158 MEM5LINK(prev)->next = next; 159 } 160 if( next>=0 ){ 161 MEM5LINK(next)->prev = prev; 162 } 163 } 164 165 /* 166 ** Link the chunk at mem5.aPool[i] so that is on the iLogsize 167 ** free list. 168 */ 169 static void memsys5Link(int i, int iLogsize){ 170 int x; 171 assert( sqlite3_mutex_held(mem5.mutex) ); 172 assert( i>=0 && i<mem5.nBlock ); 173 assert( iLogsize>=0 && iLogsize<=LOGMAX ); 174 assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); 175 176 x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize]; 177 MEM5LINK(i)->prev = -1; 178 if( x>=0 ){ 179 assert( x<mem5.nBlock ); 180 MEM5LINK(x)->prev = i; 181 } 182 mem5.aiFreelist[iLogsize] = i; 183 } 184 185 /* 186 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex 187 ** will already be held (obtained by code in malloc.c) if 188 ** sqlite3GlobalConfig.bMemStat is true. 189 */ 190 static void memsys5Enter(void){ 191 if( sqlite3GlobalConfig.bMemstat==0 && mem5.mutex==0 ){ 192 mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 193 } 194 sqlite3_mutex_enter(mem5.mutex); 195 } 196 static void memsys5Leave(void){ 197 sqlite3_mutex_leave(mem5.mutex); 198 } 199 200 /* 201 ** Return the size of an outstanding allocation, in bytes. The 202 ** size returned omits the 8-byte header overhead. This only 203 ** works for chunks that are currently checked out. 204 */ 205 static int memsys5Size(void *p){ 206 int iSize = 0; 207 if( p ){ 208 int i = ((u8 *)p-mem5.zPool)/mem5.szAtom; 209 assert( i>=0 && i<mem5.nBlock ); 210 iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE)); 211 } 212 return iSize; 213 } 214 215 /* 216 ** Find the first entry on the freelist iLogsize. Unlink that 217 ** entry and return its index. 218 */ 219 static int memsys5UnlinkFirst(int iLogsize){ 220 int i; 221 int iFirst; 222 223 assert( iLogsize>=0 && iLogsize<=LOGMAX ); 224 i = iFirst = mem5.aiFreelist[iLogsize]; 225 assert( iFirst>=0 ); 226 while( i>0 ){ 227 if( i<iFirst ) iFirst = i; 228 i = MEM5LINK(i)->next; 229 } 230 memsys5Unlink(iFirst, iLogsize); 231 return iFirst; 232 } 233 234 /* 235 ** Return a block of memory of at least nBytes in size. 236 ** Return NULL if unable. Return NULL if nBytes==0. 237 ** 238 ** The caller guarantees that nByte positive. 239 ** 240 ** The caller has obtained a mutex prior to invoking this 241 ** routine so there is never any chance that two or more 242 ** threads can be in this routine at the same time. 243 */ 244 static void *memsys5MallocUnsafe(int nByte){ 245 int i; /* Index of a mem5.aPool[] slot */ 246 int iBin; /* Index into mem5.aiFreelist[] */ 247 int iFullSz; /* Size of allocation rounded up to power of 2 */ 248 int iLogsize; /* Log2 of iFullSz/POW2_MIN */ 249 250 /* nByte must be a positive */ 251 assert( nByte>0 ); 252 253 /* Keep track of the maximum allocation request. Even unfulfilled 254 ** requests are counted */ 255 if( (u32)nByte>mem5.maxRequest ){ 256 mem5.maxRequest = nByte; 257 } 258 259 /* Abort if the requested allocation size is larger than the largest 260 ** power of two that we can represent using 32-bit signed integers. 261 */ 262 if( nByte > 0x40000000 ){ 263 return 0; 264 } 265 266 /* Round nByte up to the next valid power of two */ 267 for(iFullSz=mem5.szAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){} 268 269 /* Make sure mem5.aiFreelist[iLogsize] contains at least one free 270 ** block. If not, then split a block of the next larger power of 271 ** two in order to create a new free block of size iLogsize. 272 */ 273 for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){} 274 if( iBin>LOGMAX ) return 0; 275 i = memsys5UnlinkFirst(iBin); 276 while( iBin>iLogsize ){ 277 int newSize; 278 279 iBin--; 280 newSize = 1 << iBin; 281 mem5.aCtrl[i+newSize] = CTRL_FREE | iBin; 282 memsys5Link(i+newSize, iBin); 283 } 284 mem5.aCtrl[i] = iLogsize; 285 286 /* Update allocator performance statistics. */ 287 mem5.nAlloc++; 288 mem5.totalAlloc += iFullSz; 289 mem5.totalExcess += iFullSz - nByte; 290 mem5.currentCount++; 291 mem5.currentOut += iFullSz; 292 if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount; 293 if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut; 294 295 /* Return a pointer to the allocated memory. */ 296 return (void*)&mem5.zPool[i*mem5.szAtom]; 297 } 298 299 /* 300 ** Free an outstanding memory allocation. 301 */ 302 static void memsys5FreeUnsafe(void *pOld){ 303 u32 size, iLogsize; 304 int iBlock; 305 306 /* Set iBlock to the index of the block pointed to by pOld in 307 ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool. 308 */ 309 iBlock = ((u8 *)pOld-mem5.zPool)/mem5.szAtom; 310 311 /* Check that the pointer pOld points to a valid, non-free block. */ 312 assert( iBlock>=0 && iBlock<mem5.nBlock ); 313 assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 ); 314 assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 ); 315 316 iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE; 317 size = 1<<iLogsize; 318 assert( iBlock+size-1<(u32)mem5.nBlock ); 319 320 mem5.aCtrl[iBlock] |= CTRL_FREE; 321 mem5.aCtrl[iBlock+size-1] |= CTRL_FREE; 322 assert( mem5.currentCount>0 ); 323 assert( mem5.currentOut>=(size*mem5.szAtom) ); 324 mem5.currentCount--; 325 mem5.currentOut -= size*mem5.szAtom; 326 assert( mem5.currentOut>0 || mem5.currentCount==0 ); 327 assert( mem5.currentCount>0 || mem5.currentOut==0 ); 328 329 mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; 330 while( ALWAYS(iLogsize<LOGMAX) ){ 331 int iBuddy; 332 if( (iBlock>>iLogsize) & 1 ){ 333 iBuddy = iBlock - size; 334 }else{ 335 iBuddy = iBlock + size; 336 } 337 assert( iBuddy>=0 ); 338 if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break; 339 if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break; 340 memsys5Unlink(iBuddy, iLogsize); 341 iLogsize++; 342 if( iBuddy<iBlock ){ 343 mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize; 344 mem5.aCtrl[iBlock] = 0; 345 iBlock = iBuddy; 346 }else{ 347 mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; 348 mem5.aCtrl[iBuddy] = 0; 349 } 350 size *= 2; 351 } 352 memsys5Link(iBlock, iLogsize); 353 } 354 355 /* 356 ** Allocate nBytes of memory 357 */ 358 static void *memsys5Malloc(int nBytes){ 359 sqlite3_int64 *p = 0; 360 if( nBytes>0 ){ 361 memsys5Enter(); 362 p = memsys5MallocUnsafe(nBytes); 363 memsys5Leave(); 364 } 365 return (void*)p; 366 } 367 368 /* 369 ** Free memory. 370 ** 371 ** The outer layer memory allocator prevents this routine from 372 ** being called with pPrior==0. 373 */ 374 static void memsys5Free(void *pPrior){ 375 assert( pPrior!=0 ); 376 memsys5Enter(); 377 memsys5FreeUnsafe(pPrior); 378 memsys5Leave(); 379 } 380 381 /* 382 ** Change the size of an existing memory allocation. 383 ** 384 ** The outer layer memory allocator prevents this routine from 385 ** being called with pPrior==0. 386 ** 387 ** nBytes is always a value obtained from a prior call to 388 ** memsys5Round(). Hence nBytes is always a non-negative power 389 ** of two. If nBytes==0 that means that an oversize allocation 390 ** (an allocation larger than 0x40000000) was requested and this 391 ** routine should return 0 without freeing pPrior. 392 */ 393 static void *memsys5Realloc(void *pPrior, int nBytes){ 394 int nOld; 395 void *p; 396 assert( pPrior!=0 ); 397 assert( (nBytes&(nBytes-1))==0 ); 398 assert( nBytes>=0 ); 399 if( nBytes==0 ){ 400 return 0; 401 } 402 nOld = memsys5Size(pPrior); 403 if( nBytes<=nOld ){ 404 return pPrior; 405 } 406 memsys5Enter(); 407 p = memsys5MallocUnsafe(nBytes); 408 if( p ){ 409 memcpy(p, pPrior, nOld); 410 memsys5FreeUnsafe(pPrior); 411 } 412 memsys5Leave(); 413 return p; 414 } 415 416 /* 417 ** Round up a request size to the next valid allocation size. If 418 ** the allocation is too large to be handled by this allocation system, 419 ** return 0. 420 ** 421 ** All allocations must be a power of two and must be expressed by a 422 ** 32-bit signed integer. Hence the largest allocation is 0x40000000 423 ** or 1073741824 bytes. 424 */ 425 static int memsys5Roundup(int n){ 426 int iFullSz; 427 if( n > 0x40000000 ) return 0; 428 for(iFullSz=mem5.szAtom; iFullSz<n; iFullSz *= 2); 429 return iFullSz; 430 } 431 432 /* 433 ** Return the ceiling of the logarithm base 2 of iValue. 434 ** 435 ** Examples: memsys5Log(1) -> 0 436 ** memsys5Log(2) -> 1 437 ** memsys5Log(4) -> 2 438 ** memsys5Log(5) -> 3 439 ** memsys5Log(8) -> 3 440 ** memsys5Log(9) -> 4 441 */ 442 static int memsys5Log(int iValue){ 443 int iLog; 444 for(iLog=0; (1<<iLog)<iValue; iLog++); 445 return iLog; 446 } 447 448 /* 449 ** Initialize the memory allocator. 450 */ 451 static int memsys5Init(void *NotUsed){ 452 int ii; /* Loop counter */ 453 int nByte; /* Number of bytes of memory available to this allocator */ 454 u8 *zByte; /* Memory usable by this allocator */ 455 int nMinLog; /* Log base 2 of minimum allocation size in bytes */ 456 int iOffset; /* An offset into mem5.aCtrl[] */ 457 458 UNUSED_PARAMETER(NotUsed); 459 460 /* The size of a Mem5Link object must be a power of two. Verify that 461 ** this is case. 462 */ 463 assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 ); 464 465 nByte = sqlite3GlobalConfig.nHeap; 466 zByte = (u8*)sqlite3GlobalConfig.pHeap; 467 assert( zByte!=0 ); /* sqlite3_config() does not allow otherwise */ 468 469 nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq); 470 mem5.szAtom = (1<<nMinLog); 471 while( (int)sizeof(Mem5Link)>mem5.szAtom ){ 472 mem5.szAtom = mem5.szAtom << 1; 473 } 474 475 mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8))); 476 mem5.zPool = zByte; 477 mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom]; 478 479 for(ii=0; ii<=LOGMAX; ii++){ 480 mem5.aiFreelist[ii] = -1; 481 } 482 483 iOffset = 0; 484 for(ii=LOGMAX; ii>=0; ii--){ 485 int nAlloc = (1<<ii); 486 if( (iOffset+nAlloc)<=mem5.nBlock ){ 487 mem5.aCtrl[iOffset] = ii | CTRL_FREE; 488 memsys5Link(iOffset, ii); 489 iOffset += nAlloc; 490 } 491 assert((iOffset+nAlloc)>mem5.nBlock); 492 } 493 494 return SQLITE_OK; 495 } 496 497 /* 498 ** Deinitialize this module. 499 */ 500 static void memsys5Shutdown(void *NotUsed){ 501 UNUSED_PARAMETER(NotUsed); 502 mem5.mutex = 0; 503 return; 504 } 505 506 #ifdef SQLITE_TEST 507 /* 508 ** Open the file indicated and write a log of all unfreed memory 509 ** allocations into that log. 510 */ 511 void sqlite3Memsys5Dump(const char *zFilename){ 512 FILE *out; 513 int i, j, n; 514 int nMinLog; 515 516 if( zFilename==0 || zFilename[0]==0 ){ 517 out = stdout; 518 }else{ 519 out = fopen(zFilename, "w"); 520 if( out==0 ){ 521 fprintf(stderr, "** Unable to output memory debug output log: %s **\n", 522 zFilename); 523 return; 524 } 525 } 526 memsys5Enter(); 527 nMinLog = memsys5Log(mem5.szAtom); 528 for(i=0; i<=LOGMAX && i+nMinLog<32; i++){ 529 for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){} 530 fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n); 531 } 532 fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc); 533 fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc); 534 fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess); 535 fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut); 536 fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount); 537 fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut); 538 fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount); 539 fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest); 540 memsys5Leave(); 541 if( out==stdout ){ 542 fflush(stdout); 543 }else{ 544 fclose(out); 545 } 546 } 547 #endif 548 549 /* 550 ** This routine is the only routine in this file with external 551 ** linkage. It returns a pointer to a static sqlite3_mem_methods 552 ** struct populated with the memsys5 methods. 553 */ 554 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){ 555 static const sqlite3_mem_methods memsys5Methods = { 556 memsys5Malloc, 557 memsys5Free, 558 memsys5Realloc, 559 memsys5Size, 560 memsys5Roundup, 561 memsys5Init, 562 memsys5Shutdown, 563 0 564 }; 565 return &memsys5Methods; 566 } 567 568 #endif /* SQLITE_ENABLE_MEMSYS5 */ 569