xref: /sqlite-3.40.0/src/mem3.c (revision 8a29dfde)
1 /*
2 ** 2007 October 14
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement a memory
13 ** allocation subsystem for use by SQLite.
14 **
15 ** This version of the memory allocation subsystem omits all
16 ** use of malloc().  All dynamically allocatable memory is
17 ** contained in a static array, mem.aPool[].  The size of this
18 ** fixed memory pool is SQLITE_MEMORY_SIZE bytes.
19 **
20 ** This version of the memory allocation subsystem is used if
21 ** and only if SQLITE_MEMORY_SIZE is defined.
22 **
23 ** $Id: mem3.c,v 1.12 2008/02/19 15:15:16 drh Exp $
24 */
25 #include "sqliteInt.h"
26 
27 /*
28 ** This version of the memory allocator is used only when
29 ** SQLITE_MEMORY_SIZE is defined.
30 */
31 #ifdef SQLITE_MEMORY_SIZE
32 
33 /*
34 ** Maximum size (in Mem3Blocks) of a "small" chunk.
35 */
36 #define MX_SMALL 10
37 
38 
39 /*
40 ** Number of freelist hash slots
41 */
42 #define N_HASH  61
43 
44 /*
45 ** A memory allocation (also called a "chunk") consists of two or
46 ** more blocks where each block is 8 bytes.  The first 8 bytes are
47 ** a header that is not returned to the user.
48 **
49 ** A chunk is two or more blocks that is either checked out or
50 ** free.  The first block has format u.hdr.  u.hdr.size4x is 4 times the
51 ** size of the allocation in blocks if the allocation is free.
52 ** The u.hdr.size4x&1 bit is true if the chunk is checked out and
53 ** false if the chunk is on the freelist.  The u.hdr.size4x&2 bit
54 ** is true if the previous chunk is checked out and false if the
55 ** previous chunk is free.  The u.hdr.prevSize field is the size of
56 ** the previous chunk in blocks if the previous chunk is on the
57 ** freelist. If the previous chunk is checked out, then
58 ** u.hdr.prevSize can be part of the data for that chunk and should
59 ** not be read or written.
60 **
61 ** We often identify a chunk by its index in mem.aPool[].  When
62 ** this is done, the chunk index refers to the second block of
63 ** the chunk.  In this way, the first chunk has an index of 1.
64 ** A chunk index of 0 means "no such chunk" and is the equivalent
65 ** of a NULL pointer.
66 **
67 ** The second block of free chunks is of the form u.list.  The
68 ** two fields form a double-linked list of chunks of related sizes.
69 ** Pointers to the head of the list are stored in mem.aiSmall[]
70 ** for smaller chunks and mem.aiHash[] for larger chunks.
71 **
72 ** The second block of a chunk is user data if the chunk is checked
73 ** out.  If a chunk is checked out, the user data may extend into
74 ** the u.hdr.prevSize value of the following chunk.
75 */
76 typedef struct Mem3Block Mem3Block;
77 struct Mem3Block {
78   union {
79     struct {
80       u32 prevSize;   /* Size of previous chunk in Mem3Block elements */
81       u32 size4x;     /* 4x the size of current chunk in Mem3Block elements */
82     } hdr;
83     struct {
84       u32 next;       /* Index in mem.aPool[] of next free chunk */
85       u32 prev;       /* Index in mem.aPool[] of previous free chunk */
86     } list;
87   } u;
88 };
89 
90 /*
91 ** All of the static variables used by this module are collected
92 ** into a single structure named "mem".  This is to keep the
93 ** static variables organized and to reduce namespace pollution
94 ** when this module is combined with other in the amalgamation.
95 */
96 static struct {
97   /*
98   ** True if we are evaluating an out-of-memory callback.
99   */
100   int alarmBusy;
101 
102   /*
103   ** Mutex to control access to the memory allocation subsystem.
104   */
105   sqlite3_mutex *mutex;
106 
107   /*
108   ** The minimum amount of free space that we have seen.
109   */
110   u32 mnMaster;
111 
112   /*
113   ** iMaster is the index of the master chunk.  Most new allocations
114   ** occur off of this chunk.  szMaster is the size (in Mem3Blocks)
115   ** of the current master.  iMaster is 0 if there is not master chunk.
116   ** The master chunk is not in either the aiHash[] or aiSmall[].
117   */
118   u32 iMaster;
119   u32 szMaster;
120 
121   /*
122   ** Array of lists of free blocks according to the block size
123   ** for smaller chunks, or a hash on the block size for larger
124   ** chunks.
125   */
126   u32 aiSmall[MX_SMALL-1];   /* For sizes 2 through MX_SMALL, inclusive */
127   u32 aiHash[N_HASH];        /* For sizes MX_SMALL+1 and larger */
128 
129   /*
130   ** Memory available for allocation
131   */
132   Mem3Block aPool[SQLITE_MEMORY_SIZE/sizeof(Mem3Block)+2];
133 } mem;
134 
135 /*
136 ** Unlink the chunk at mem.aPool[i] from list it is currently
137 ** on.  *pRoot is the list that i is a member of.
138 */
139 static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
140   u32 next = mem.aPool[i].u.list.next;
141   u32 prev = mem.aPool[i].u.list.prev;
142   assert( sqlite3_mutex_held(mem.mutex) );
143   if( prev==0 ){
144     *pRoot = next;
145   }else{
146     mem.aPool[prev].u.list.next = next;
147   }
148   if( next ){
149     mem.aPool[next].u.list.prev = prev;
150   }
151   mem.aPool[i].u.list.next = 0;
152   mem.aPool[i].u.list.prev = 0;
153 }
154 
155 /*
156 ** Unlink the chunk at index i from
157 ** whatever list is currently a member of.
158 */
159 static void memsys3Unlink(u32 i){
160   u32 size, hash;
161   assert( sqlite3_mutex_held(mem.mutex) );
162   assert( (mem.aPool[i-1].u.hdr.size4x & 1)==0 );
163   assert( i>=1 );
164   size = mem.aPool[i-1].u.hdr.size4x/4;
165   assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
166   assert( size>=2 );
167   if( size <= MX_SMALL ){
168     memsys3UnlinkFromList(i, &mem.aiSmall[size-2]);
169   }else{
170     hash = size % N_HASH;
171     memsys3UnlinkFromList(i, &mem.aiHash[hash]);
172   }
173 }
174 
175 /*
176 ** Link the chunk at mem.aPool[i] so that is on the list rooted
177 ** at *pRoot.
178 */
179 static void memsys3LinkIntoList(u32 i, u32 *pRoot){
180   assert( sqlite3_mutex_held(mem.mutex) );
181   mem.aPool[i].u.list.next = *pRoot;
182   mem.aPool[i].u.list.prev = 0;
183   if( *pRoot ){
184     mem.aPool[*pRoot].u.list.prev = i;
185   }
186   *pRoot = i;
187 }
188 
189 /*
190 ** Link the chunk at index i into either the appropriate
191 ** small chunk list, or into the large chunk hash table.
192 */
193 static void memsys3Link(u32 i){
194   u32 size, hash;
195   assert( sqlite3_mutex_held(mem.mutex) );
196   assert( i>=1 );
197   assert( (mem.aPool[i-1].u.hdr.size4x & 1)==0 );
198   size = mem.aPool[i-1].u.hdr.size4x/4;
199   assert( size==mem.aPool[i+size-1].u.hdr.prevSize );
200   assert( size>=2 );
201   if( size <= MX_SMALL ){
202     memsys3LinkIntoList(i, &mem.aiSmall[size-2]);
203   }else{
204     hash = size % N_HASH;
205     memsys3LinkIntoList(i, &mem.aiHash[hash]);
206   }
207 }
208 
209 /*
210 ** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
211 **
212 ** Also:  Initialize the memory allocation subsystem the first time
213 ** this routine is called.
214 */
215 static void memsys3Enter(void){
216   if( mem.mutex==0 ){
217     mem.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM);
218     mem.aPool[0].u.hdr.size4x = SQLITE_MEMORY_SIZE/2 + 2;
219     mem.aPool[SQLITE_MEMORY_SIZE/8].u.hdr.prevSize = SQLITE_MEMORY_SIZE/8;
220     mem.aPool[SQLITE_MEMORY_SIZE/8].u.hdr.size4x = 1;
221     mem.iMaster = 1;
222     mem.szMaster = SQLITE_MEMORY_SIZE/8;
223     mem.mnMaster = mem.szMaster;
224   }
225   sqlite3_mutex_enter(mem.mutex);
226 }
227 
228 /*
229 ** Return the amount of memory currently checked out.
230 */
231 sqlite3_int64 sqlite3_memory_used(void){
232   sqlite3_int64 n;
233   memsys3Enter();
234   n = SQLITE_MEMORY_SIZE - mem.szMaster*8;
235   sqlite3_mutex_leave(mem.mutex);
236   return n;
237 }
238 
239 /*
240 ** Return the maximum amount of memory that has ever been
241 ** checked out since either the beginning of this process
242 ** or since the most recent reset.
243 */
244 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
245   sqlite3_int64 n;
246   memsys3Enter();
247   n = SQLITE_MEMORY_SIZE - mem.mnMaster*8;
248   if( resetFlag ){
249     mem.mnMaster = mem.szMaster;
250   }
251   sqlite3_mutex_leave(mem.mutex);
252   return n;
253 }
254 
255 /*
256 ** Change the alarm callback.
257 **
258 ** This is a no-op for the static memory allocator.  The purpose
259 ** of the memory alarm is to support sqlite3_soft_heap_limit().
260 ** But with this memory allocator, the soft_heap_limit is really
261 ** a hard limit that is fixed at SQLITE_MEMORY_SIZE.
262 */
263 int sqlite3_memory_alarm(
264   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
265   void *pArg,
266   sqlite3_int64 iThreshold
267 ){
268   return SQLITE_OK;
269 }
270 
271 /*
272 ** Called when we are unable to satisfy an allocation of nBytes.
273 */
274 static void memsys3OutOfMemory(int nByte){
275   if( !mem.alarmBusy ){
276     mem.alarmBusy = 1;
277     assert( sqlite3_mutex_held(mem.mutex) );
278     sqlite3_mutex_leave(mem.mutex);
279     sqlite3_release_memory(nByte);
280     sqlite3_mutex_enter(mem.mutex);
281     mem.alarmBusy = 0;
282   }
283 }
284 
285 /*
286 ** Return the size of an outstanding allocation, in bytes.  The
287 ** size returned omits the 8-byte header overhead.  This only
288 ** works for chunks that are currently checked out.
289 */
290 int sqlite3MallocSize(void *p){
291   int iSize = 0;
292   if( p ){
293     Mem3Block *pBlock = (Mem3Block*)p;
294     assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
295     iSize = (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
296   }
297   return iSize;
298 }
299 
300 /*
301 ** Chunk i is a free chunk that has been unlinked.  Adjust its
302 ** size parameters for check-out and return a pointer to the
303 ** user portion of the chunk.
304 */
305 static void *memsys3Checkout(u32 i, int nBlock){
306   u32 x;
307   assert( sqlite3_mutex_held(mem.mutex) );
308   assert( i>=1 );
309   assert( mem.aPool[i-1].u.hdr.size4x/4==nBlock );
310   assert( mem.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
311   x = mem.aPool[i-1].u.hdr.size4x;
312   mem.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
313   mem.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
314   mem.aPool[i+nBlock-1].u.hdr.size4x |= 2;
315   return &mem.aPool[i];
316 }
317 
318 /*
319 ** Carve a piece off of the end of the mem.iMaster free chunk.
320 ** Return a pointer to the new allocation.  Or, if the master chunk
321 ** is not large enough, return 0.
322 */
323 static void *memsys3FromMaster(int nBlock){
324   assert( sqlite3_mutex_held(mem.mutex) );
325   assert( mem.szMaster>=nBlock );
326   if( nBlock>=mem.szMaster-1 ){
327     /* Use the entire master */
328     void *p = memsys3Checkout(mem.iMaster, mem.szMaster);
329     mem.iMaster = 0;
330     mem.szMaster = 0;
331     mem.mnMaster = 0;
332     return p;
333   }else{
334     /* Split the master block.  Return the tail. */
335     u32 newi, x;
336     newi = mem.iMaster + mem.szMaster - nBlock;
337     assert( newi > mem.iMaster+1 );
338     mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = nBlock;
339     mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x |= 2;
340     mem.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
341     mem.szMaster -= nBlock;
342     mem.aPool[newi-1].u.hdr.prevSize = mem.szMaster;
343     x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
344     mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
345     if( mem.szMaster < mem.mnMaster ){
346       mem.mnMaster = mem.szMaster;
347     }
348     return (void*)&mem.aPool[newi];
349   }
350 }
351 
352 /*
353 ** *pRoot is the head of a list of free chunks of the same size
354 ** or same size hash.  In other words, *pRoot is an entry in either
355 ** mem.aiSmall[] or mem.aiHash[].
356 **
357 ** This routine examines all entries on the given list and tries
358 ** to coalesce each entries with adjacent free chunks.
359 **
360 ** If it sees a chunk that is larger than mem.iMaster, it replaces
361 ** the current mem.iMaster with the new larger chunk.  In order for
362 ** this mem.iMaster replacement to work, the master chunk must be
363 ** linked into the hash tables.  That is not the normal state of
364 ** affairs, of course.  The calling routine must link the master
365 ** chunk before invoking this routine, then must unlink the (possibly
366 ** changed) master chunk once this routine has finished.
367 */
368 static void memsys3Merge(u32 *pRoot){
369   u32 iNext, prev, size, i, x;
370 
371   assert( sqlite3_mutex_held(mem.mutex) );
372   for(i=*pRoot; i>0; i=iNext){
373     iNext = mem.aPool[i].u.list.next;
374     size = mem.aPool[i-1].u.hdr.size4x;
375     assert( (size&1)==0 );
376     if( (size&2)==0 ){
377       memsys3UnlinkFromList(i, pRoot);
378       assert( i > mem.aPool[i-1].u.hdr.prevSize );
379       prev = i - mem.aPool[i-1].u.hdr.prevSize;
380       if( prev==iNext ){
381         iNext = mem.aPool[prev].u.list.next;
382       }
383       memsys3Unlink(prev);
384       size = i + size/4 - prev;
385       x = mem.aPool[prev-1].u.hdr.size4x & 2;
386       mem.aPool[prev-1].u.hdr.size4x = size*4 | x;
387       mem.aPool[prev+size-1].u.hdr.prevSize = size;
388       memsys3Link(prev);
389       i = prev;
390     }else{
391       size /= 4;
392     }
393     if( size>mem.szMaster ){
394       mem.iMaster = i;
395       mem.szMaster = size;
396     }
397   }
398 }
399 
400 /*
401 ** Return a block of memory of at least nBytes in size.
402 ** Return NULL if unable.
403 */
404 static void *memsys3Malloc(int nByte){
405   u32 i;
406   int nBlock;
407   int toFree;
408 
409   assert( sqlite3_mutex_held(mem.mutex) );
410   assert( sizeof(Mem3Block)==8 );
411   if( nByte<=12 ){
412     nBlock = 2;
413   }else{
414     nBlock = (nByte + 11)/8;
415   }
416   assert( nBlock >= 2 );
417 
418   /* STEP 1:
419   ** Look for an entry of the correct size in either the small
420   ** chunk table or in the large chunk hash table.  This is
421   ** successful most of the time (about 9 times out of 10).
422   */
423   if( nBlock <= MX_SMALL ){
424     i = mem.aiSmall[nBlock-2];
425     if( i>0 ){
426       memsys3UnlinkFromList(i, &mem.aiSmall[nBlock-2]);
427       return memsys3Checkout(i, nBlock);
428     }
429   }else{
430     int hash = nBlock % N_HASH;
431     for(i=mem.aiHash[hash]; i>0; i=mem.aPool[i].u.list.next){
432       if( mem.aPool[i-1].u.hdr.size4x/4==nBlock ){
433         memsys3UnlinkFromList(i, &mem.aiHash[hash]);
434         return memsys3Checkout(i, nBlock);
435       }
436     }
437   }
438 
439   /* STEP 2:
440   ** Try to satisfy the allocation by carving a piece off of the end
441   ** of the master chunk.  This step usually works if step 1 fails.
442   */
443   if( mem.szMaster>=nBlock ){
444     return memsys3FromMaster(nBlock);
445   }
446 
447 
448   /* STEP 3:
449   ** Loop through the entire memory pool.  Coalesce adjacent free
450   ** chunks.  Recompute the master chunk as the largest free chunk.
451   ** Then try again to satisfy the allocation by carving a piece off
452   ** of the end of the master chunk.  This step happens very
453   ** rarely (we hope!)
454   */
455   for(toFree=nBlock*16; toFree<SQLITE_MEMORY_SIZE*2; toFree *= 2){
456     memsys3OutOfMemory(toFree);
457     if( mem.iMaster ){
458       memsys3Link(mem.iMaster);
459       mem.iMaster = 0;
460       mem.szMaster = 0;
461     }
462     for(i=0; i<N_HASH; i++){
463       memsys3Merge(&mem.aiHash[i]);
464     }
465     for(i=0; i<MX_SMALL-1; i++){
466       memsys3Merge(&mem.aiSmall[i]);
467     }
468     if( mem.szMaster ){
469       memsys3Unlink(mem.iMaster);
470       if( mem.szMaster>=nBlock ){
471         return memsys3FromMaster(nBlock);
472       }
473     }
474   }
475 
476   /* If none of the above worked, then we fail. */
477   return 0;
478 }
479 
480 /*
481 ** Free an outstanding memory allocation.
482 */
483 void memsys3Free(void *pOld){
484   Mem3Block *p = (Mem3Block*)pOld;
485   int i;
486   u32 size, x;
487   assert( sqlite3_mutex_held(mem.mutex) );
488   assert( p>mem.aPool && p<&mem.aPool[SQLITE_MEMORY_SIZE/8] );
489   i = p - mem.aPool;
490   assert( (mem.aPool[i-1].u.hdr.size4x&1)==1 );
491   size = mem.aPool[i-1].u.hdr.size4x/4;
492   assert( i+size<=SQLITE_MEMORY_SIZE/8+1 );
493   mem.aPool[i-1].u.hdr.size4x &= ~1;
494   mem.aPool[i+size-1].u.hdr.prevSize = size;
495   mem.aPool[i+size-1].u.hdr.size4x &= ~2;
496   memsys3Link(i);
497 
498   /* Try to expand the master using the newly freed chunk */
499   if( mem.iMaster ){
500     while( (mem.aPool[mem.iMaster-1].u.hdr.size4x&2)==0 ){
501       size = mem.aPool[mem.iMaster-1].u.hdr.prevSize;
502       mem.iMaster -= size;
503       mem.szMaster += size;
504       memsys3Unlink(mem.iMaster);
505       x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
506       mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
507       mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
508     }
509     x = mem.aPool[mem.iMaster-1].u.hdr.size4x & 2;
510     while( (mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x&1)==0 ){
511       memsys3Unlink(mem.iMaster+mem.szMaster);
512       mem.szMaster += mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.size4x/4;
513       mem.aPool[mem.iMaster-1].u.hdr.size4x = mem.szMaster*4 | x;
514       mem.aPool[mem.iMaster+mem.szMaster-1].u.hdr.prevSize = mem.szMaster;
515     }
516   }
517 }
518 
519 /*
520 ** Allocate nBytes of memory
521 */
522 void *sqlite3_malloc(int nBytes){
523   sqlite3_int64 *p = 0;
524   if( nBytes>0 ){
525     memsys3Enter();
526     p = memsys3Malloc(nBytes);
527     sqlite3_mutex_leave(mem.mutex);
528   }
529   return (void*)p;
530 }
531 
532 /*
533 ** Free memory.
534 */
535 void sqlite3_free(void *pPrior){
536   if( pPrior==0 ){
537     return;
538   }
539   assert( mem.mutex!=0 );
540   sqlite3_mutex_enter(mem.mutex);
541   memsys3Free(pPrior);
542   sqlite3_mutex_leave(mem.mutex);
543 }
544 
545 /*
546 ** Change the size of an existing memory allocation
547 */
548 void *sqlite3_realloc(void *pPrior, int nBytes){
549   int nOld;
550   void *p;
551   if( pPrior==0 ){
552     return sqlite3_malloc(nBytes);
553   }
554   if( nBytes<=0 ){
555     sqlite3_free(pPrior);
556     return 0;
557   }
558   assert( mem.mutex!=0 );
559   nOld = sqlite3MallocSize(pPrior);
560   if( nBytes<=nOld && nBytes>=nOld-128 ){
561     return pPrior;
562   }
563   sqlite3_mutex_enter(mem.mutex);
564   p = memsys3Malloc(nBytes);
565   if( p ){
566     if( nOld<nBytes ){
567       memcpy(p, pPrior, nOld);
568     }else{
569       memcpy(p, pPrior, nBytes);
570     }
571     memsys3Free(pPrior);
572   }
573   sqlite3_mutex_leave(mem.mutex);
574   return p;
575 }
576 
577 /*
578 ** Open the file indicated and write a log of all unfreed memory
579 ** allocations into that log.
580 */
581 void sqlite3MemdebugDump(const char *zFilename){
582 #ifdef SQLITE_DEBUG
583   FILE *out;
584   int i, j;
585   u32 size;
586   if( zFilename==0 || zFilename[0]==0 ){
587     out = stdout;
588   }else{
589     out = fopen(zFilename, "w");
590     if( out==0 ){
591       fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
592                       zFilename);
593       return;
594     }
595   }
596   memsys3Enter();
597   fprintf(out, "CHUNKS:\n");
598   for(i=1; i<=SQLITE_MEMORY_SIZE/8; i+=size/4){
599     size = mem.aPool[i-1].u.hdr.size4x;
600     if( size/4<=1 ){
601       fprintf(out, "%p size error\n", &mem.aPool[i]);
602       assert( 0 );
603       break;
604     }
605     if( (size&1)==0 && mem.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
606       fprintf(out, "%p tail size does not match\n", &mem.aPool[i]);
607       assert( 0 );
608       break;
609     }
610     if( ((mem.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
611       fprintf(out, "%p tail checkout bit is incorrect\n", &mem.aPool[i]);
612       assert( 0 );
613       break;
614     }
615     if( size&1 ){
616       fprintf(out, "%p %6d bytes checked out\n", &mem.aPool[i], (size/4)*8-8);
617     }else{
618       fprintf(out, "%p %6d bytes free%s\n", &mem.aPool[i], (size/4)*8-8,
619                   i==mem.iMaster ? " **master**" : "");
620     }
621   }
622   for(i=0; i<MX_SMALL-1; i++){
623     if( mem.aiSmall[i]==0 ) continue;
624     fprintf(out, "small(%2d):", i);
625     for(j = mem.aiSmall[i]; j>0; j=mem.aPool[j].u.list.next){
626       fprintf(out, " %p(%d)", &mem.aPool[j],
627               (mem.aPool[j-1].u.hdr.size4x/4)*8-8);
628     }
629     fprintf(out, "\n");
630   }
631   for(i=0; i<N_HASH; i++){
632     if( mem.aiHash[i]==0 ) continue;
633     fprintf(out, "hash(%2d):", i);
634     for(j = mem.aiHash[i]; j>0; j=mem.aPool[j].u.list.next){
635       fprintf(out, " %p(%d)", &mem.aPool[j],
636               (mem.aPool[j-1].u.hdr.size4x/4)*8-8);
637     }
638     fprintf(out, "\n");
639   }
640   fprintf(out, "master=%d\n", mem.iMaster);
641   fprintf(out, "nowUsed=%d\n", SQLITE_MEMORY_SIZE - mem.szMaster*8);
642   fprintf(out, "mxUsed=%d\n", SQLITE_MEMORY_SIZE - mem.mnMaster*8);
643   sqlite3_mutex_leave(mem.mutex);
644   if( out==stdout ){
645     fflush(stdout);
646   }else{
647     fclose(out);
648   }
649 #endif
650 }
651 
652 
653 #endif /* !SQLITE_MEMORY_SIZE */
654