xref: /sqlite-3.40.0/src/mem3.c (revision 57e5ea93)
1 /*
2 ** 2007 October 14
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement a memory
13 ** allocation subsystem for use by SQLite.
14 **
15 ** This version of the memory allocation subsystem omits all
16 ** use of malloc().  All dynamically allocatable memory is
17 ** contained in a static array, mem3.aPool[].  The size of this
18 ** fixed memory pool is SQLITE_MEMORY_SIZE bytes.
19 **
20 ** This version of the memory allocation subsystem is used if
21 ** and only if SQLITE_MEMORY_SIZE is defined.
22 **
23 ** $Id: mem3.c,v 1.15 2008/06/24 19:02:55 danielk1977 Exp $
24 */
25 #include "sqliteInt.h"
26 
27 /*
28 ** This version of the memory allocator is only built into the library
29 ** SQLITE_ENABLE_MEMPOOL is defined. Defining this symbol does not
30 ** mean that the library will use a memory-pool by default, just that
31 ** it is available. The mempool allocator is activated by calling
32 ** sqlite3_config().
33 */
34 #ifdef SQLITE_ENABLE_MEMPOOL
35 
36 /*
37 ** Maximum size (in Mem3Blocks) of a "small" chunk.
38 */
39 #define MX_SMALL 10
40 
41 
42 /*
43 ** Number of freelist hash slots
44 */
45 #define N_HASH  61
46 
47 /*
48 ** A memory allocation (also called a "chunk") consists of two or
49 ** more blocks where each block is 8 bytes.  The first 8 bytes are
50 ** a header that is not returned to the user.
51 **
52 ** A chunk is two or more blocks that is either checked out or
53 ** free.  The first block has format u.hdr.  u.hdr.size4x is 4 times the
54 ** size of the allocation in blocks if the allocation is free.
55 ** The u.hdr.size4x&1 bit is true if the chunk is checked out and
56 ** false if the chunk is on the freelist.  The u.hdr.size4x&2 bit
57 ** is true if the previous chunk is checked out and false if the
58 ** previous chunk is free.  The u.hdr.prevSize field is the size of
59 ** the previous chunk in blocks if the previous chunk is on the
60 ** freelist. If the previous chunk is checked out, then
61 ** u.hdr.prevSize can be part of the data for that chunk and should
62 ** not be read or written.
63 **
64 ** We often identify a chunk by its index in mem3.aPool[].  When
65 ** this is done, the chunk index refers to the second block of
66 ** the chunk.  In this way, the first chunk has an index of 1.
67 ** A chunk index of 0 means "no such chunk" and is the equivalent
68 ** of a NULL pointer.
69 **
70 ** The second block of free chunks is of the form u.list.  The
71 ** two fields form a double-linked list of chunks of related sizes.
72 ** Pointers to the head of the list are stored in mem3.aiSmall[]
73 ** for smaller chunks and mem3.aiHash[] for larger chunks.
74 **
75 ** The second block of a chunk is user data if the chunk is checked
76 ** out.  If a chunk is checked out, the user data may extend into
77 ** the u.hdr.prevSize value of the following chunk.
78 */
79 typedef struct Mem3Block Mem3Block;
80 struct Mem3Block {
81   union {
82     struct {
83       u32 prevSize;   /* Size of previous chunk in Mem3Block elements */
84       u32 size4x;     /* 4x the size of current chunk in Mem3Block elements */
85     } hdr;
86     struct {
87       u32 next;       /* Index in mem3.aPool[] of next free chunk */
88       u32 prev;       /* Index in mem3.aPool[] of previous free chunk */
89     } list;
90   } u;
91 };
92 
93 /*
94 ** All of the static variables used by this module are collected
95 ** into a single structure named "mem3".  This is to keep the
96 ** static variables organized and to reduce namespace pollution
97 ** when this module is combined with other in the amalgamation.
98 */
99 static struct {
100   /*
101   ** True if we are evaluating an out-of-memory callback.
102   */
103   int alarmBusy;
104 
105   /*
106   ** Mutex to control access to the memory allocation subsystem.
107   */
108   sqlite3_mutex *mutex;
109 
110   /*
111   ** The minimum amount of free space that we have seen.
112   */
113   u32 mnMaster;
114 
115   /*
116   ** iMaster is the index of the master chunk.  Most new allocations
117   ** occur off of this chunk.  szMaster is the size (in Mem3Blocks)
118   ** of the current master.  iMaster is 0 if there is not master chunk.
119   ** The master chunk is not in either the aiHash[] or aiSmall[].
120   */
121   u32 iMaster;
122   u32 szMaster;
123 
124   /*
125   ** Array of lists of free blocks according to the block size
126   ** for smaller chunks, or a hash on the block size for larger
127   ** chunks.
128   */
129   u32 aiSmall[MX_SMALL-1];   /* For sizes 2 through MX_SMALL, inclusive */
130   u32 aiHash[N_HASH];        /* For sizes MX_SMALL+1 and larger */
131 
132   /*
133   ** Memory available for allocation. nPool is the size of the array
134   ** (in Mem3Blocks) pointed to by aPool less 2.
135   */
136   u32 nPool;
137   Mem3Block *aPool;
138   /* Mem3Block aPool[SQLITE_MEMORY_SIZE/sizeof(Mem3Block)+2]; */
139 } mem3;
140 
141 /*
142 ** Unlink the chunk at mem3.aPool[i] from list it is currently
143 ** on.  *pRoot is the list that i is a member of.
144 */
145 static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
146   u32 next = mem3.aPool[i].u.list.next;
147   u32 prev = mem3.aPool[i].u.list.prev;
148   assert( sqlite3_mutex_held(mem3.mutex) );
149   if( prev==0 ){
150     *pRoot = next;
151   }else{
152     mem3.aPool[prev].u.list.next = next;
153   }
154   if( next ){
155     mem3.aPool[next].u.list.prev = prev;
156   }
157   mem3.aPool[i].u.list.next = 0;
158   mem3.aPool[i].u.list.prev = 0;
159 }
160 
161 /*
162 ** Unlink the chunk at index i from
163 ** whatever list is currently a member of.
164 */
165 static void memsys3Unlink(u32 i){
166   u32 size, hash;
167   assert( sqlite3_mutex_held(mem3.mutex) );
168   assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
169   assert( i>=1 );
170   size = mem3.aPool[i-1].u.hdr.size4x/4;
171   assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
172   assert( size>=2 );
173   if( size <= MX_SMALL ){
174     memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]);
175   }else{
176     hash = size % N_HASH;
177     memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
178   }
179 }
180 
181 /*
182 ** Link the chunk at mem3.aPool[i] so that is on the list rooted
183 ** at *pRoot.
184 */
185 static void memsys3LinkIntoList(u32 i, u32 *pRoot){
186   assert( sqlite3_mutex_held(mem3.mutex) );
187   mem3.aPool[i].u.list.next = *pRoot;
188   mem3.aPool[i].u.list.prev = 0;
189   if( *pRoot ){
190     mem3.aPool[*pRoot].u.list.prev = i;
191   }
192   *pRoot = i;
193 }
194 
195 /*
196 ** Link the chunk at index i into either the appropriate
197 ** small chunk list, or into the large chunk hash table.
198 */
199 static void memsys3Link(u32 i){
200   u32 size, hash;
201   assert( sqlite3_mutex_held(mem3.mutex) );
202   assert( i>=1 );
203   assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
204   size = mem3.aPool[i-1].u.hdr.size4x/4;
205   assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
206   assert( size>=2 );
207   if( size <= MX_SMALL ){
208     memsys3LinkIntoList(i, &mem3.aiSmall[size-2]);
209   }else{
210     hash = size % N_HASH;
211     memsys3LinkIntoList(i, &mem3.aiHash[hash]);
212   }
213 }
214 
215 /*
216 ** Enter the mutex mem3.mutex. Allocate it if it is not already allocated.
217 **
218 ** Also:  Initialize the memory allocation subsystem the first time
219 ** this routine is called.
220 */
221 static void memsys3Enter(void){
222 #if 0
223   if( mem3.mutex==0 ){
224     mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
225   }
226   sqlite3_mutex_enter(mem3.mutex);
227 #endif
228 }
229 static void memsys3Leave(void){
230 }
231 
232 /*
233 ** Called when we are unable to satisfy an allocation of nBytes.
234 */
235 static void memsys3OutOfMemory(int nByte){
236   if( !mem3.alarmBusy ){
237     mem3.alarmBusy = 1;
238     assert( sqlite3_mutex_held(mem3.mutex) );
239     sqlite3_mutex_leave(mem3.mutex);
240     sqlite3_release_memory(nByte);
241     sqlite3_mutex_enter(mem3.mutex);
242     mem3.alarmBusy = 0;
243   }
244 }
245 
246 
247 /*
248 ** Chunk i is a free chunk that has been unlinked.  Adjust its
249 ** size parameters for check-out and return a pointer to the
250 ** user portion of the chunk.
251 */
252 static void *memsys3Checkout(u32 i, int nBlock){
253   u32 x;
254   assert( sqlite3_mutex_held(mem3.mutex) );
255   assert( i>=1 );
256   assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock );
257   assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
258   x = mem3.aPool[i-1].u.hdr.size4x;
259   mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
260   mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
261   mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2;
262   return &mem3.aPool[i];
263 }
264 
265 /*
266 ** Carve a piece off of the end of the mem3.iMaster free chunk.
267 ** Return a pointer to the new allocation.  Or, if the master chunk
268 ** is not large enough, return 0.
269 */
270 static void *memsys3FromMaster(int nBlock){
271   assert( sqlite3_mutex_held(mem3.mutex) );
272   assert( mem3.szMaster>=nBlock );
273   if( nBlock>=mem3.szMaster-1 ){
274     /* Use the entire master */
275     void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster);
276     mem3.iMaster = 0;
277     mem3.szMaster = 0;
278     mem3.mnMaster = 0;
279     return p;
280   }else{
281     /* Split the master block.  Return the tail. */
282     u32 newi, x;
283     newi = mem3.iMaster + mem3.szMaster - nBlock;
284     assert( newi > mem3.iMaster+1 );
285     mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock;
286     mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2;
287     mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
288     mem3.szMaster -= nBlock;
289     mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster;
290     x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
291     mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
292     if( mem3.szMaster < mem3.mnMaster ){
293       mem3.mnMaster = mem3.szMaster;
294     }
295     return (void*)&mem3.aPool[newi];
296   }
297 }
298 
299 /*
300 ** *pRoot is the head of a list of free chunks of the same size
301 ** or same size hash.  In other words, *pRoot is an entry in either
302 ** mem3.aiSmall[] or mem3.aiHash[].
303 **
304 ** This routine examines all entries on the given list and tries
305 ** to coalesce each entries with adjacent free chunks.
306 **
307 ** If it sees a chunk that is larger than mem3.iMaster, it replaces
308 ** the current mem3.iMaster with the new larger chunk.  In order for
309 ** this mem3.iMaster replacement to work, the master chunk must be
310 ** linked into the hash tables.  That is not the normal state of
311 ** affairs, of course.  The calling routine must link the master
312 ** chunk before invoking this routine, then must unlink the (possibly
313 ** changed) master chunk once this routine has finished.
314 */
315 static void memsys3Merge(u32 *pRoot){
316   u32 iNext, prev, size, i, x;
317 
318   assert( sqlite3_mutex_held(mem3.mutex) );
319   for(i=*pRoot; i>0; i=iNext){
320     iNext = mem3.aPool[i].u.list.next;
321     size = mem3.aPool[i-1].u.hdr.size4x;
322     assert( (size&1)==0 );
323     if( (size&2)==0 ){
324       memsys3UnlinkFromList(i, pRoot);
325       assert( i > mem3.aPool[i-1].u.hdr.prevSize );
326       prev = i - mem3.aPool[i-1].u.hdr.prevSize;
327       if( prev==iNext ){
328         iNext = mem3.aPool[prev].u.list.next;
329       }
330       memsys3Unlink(prev);
331       size = i + size/4 - prev;
332       x = mem3.aPool[prev-1].u.hdr.size4x & 2;
333       mem3.aPool[prev-1].u.hdr.size4x = size*4 | x;
334       mem3.aPool[prev+size-1].u.hdr.prevSize = size;
335       memsys3Link(prev);
336       i = prev;
337     }else{
338       size /= 4;
339     }
340     if( size>mem3.szMaster ){
341       mem3.iMaster = i;
342       mem3.szMaster = size;
343     }
344   }
345 }
346 
347 /*
348 ** Return a block of memory of at least nBytes in size.
349 ** Return NULL if unable.
350 */
351 static void *memsys3Malloc(int nByte){
352   u32 i;
353   int nBlock;
354   int toFree;
355 
356   assert( sqlite3_mutex_held(mem3.mutex) );
357   assert( sizeof(Mem3Block)==8 );
358   if( nByte<=12 ){
359     nBlock = 2;
360   }else{
361     nBlock = (nByte + 11)/8;
362   }
363   assert( nBlock>=2 );
364 
365   /* STEP 1:
366   ** Look for an entry of the correct size in either the small
367   ** chunk table or in the large chunk hash table.  This is
368   ** successful most of the time (about 9 times out of 10).
369   */
370   if( nBlock <= MX_SMALL ){
371     i = mem3.aiSmall[nBlock-2];
372     if( i>0 ){
373       memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]);
374       return memsys3Checkout(i, nBlock);
375     }
376   }else{
377     int hash = nBlock % N_HASH;
378     for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){
379       if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){
380         memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
381         return memsys3Checkout(i, nBlock);
382       }
383     }
384   }
385 
386   /* STEP 2:
387   ** Try to satisfy the allocation by carving a piece off of the end
388   ** of the master chunk.  This step usually works if step 1 fails.
389   */
390   if( mem3.szMaster>=nBlock ){
391     return memsys3FromMaster(nBlock);
392   }
393 
394 
395   /* STEP 3:
396   ** Loop through the entire memory pool.  Coalesce adjacent free
397   ** chunks.  Recompute the master chunk as the largest free chunk.
398   ** Then try again to satisfy the allocation by carving a piece off
399   ** of the end of the master chunk.  This step happens very
400   ** rarely (we hope!)
401   */
402   for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){
403     memsys3OutOfMemory(toFree);
404     if( mem3.iMaster ){
405       memsys3Link(mem3.iMaster);
406       mem3.iMaster = 0;
407       mem3.szMaster = 0;
408     }
409     for(i=0; i<N_HASH; i++){
410       memsys3Merge(&mem3.aiHash[i]);
411     }
412     for(i=0; i<MX_SMALL-1; i++){
413       memsys3Merge(&mem3.aiSmall[i]);
414     }
415     if( mem3.szMaster ){
416       memsys3Unlink(mem3.iMaster);
417       if( mem3.szMaster>=nBlock ){
418         return memsys3FromMaster(nBlock);
419       }
420     }
421   }
422 
423   /* If none of the above worked, then we fail. */
424   return 0;
425 }
426 
427 /*
428 ** Free an outstanding memory allocation.
429 */
430 void memsys3Free(void *pOld){
431   Mem3Block *p = (Mem3Block*)pOld;
432   int i;
433   u32 size, x;
434   assert( sqlite3_mutex_held(mem3.mutex) );
435   assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] );
436   i = p - mem3.aPool;
437   assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 );
438   size = mem3.aPool[i-1].u.hdr.size4x/4;
439   assert( i+size<=mem3.nPool+1 );
440   mem3.aPool[i-1].u.hdr.size4x &= ~1;
441   mem3.aPool[i+size-1].u.hdr.prevSize = size;
442   mem3.aPool[i+size-1].u.hdr.size4x &= ~2;
443   memsys3Link(i);
444 
445   /* Try to expand the master using the newly freed chunk */
446   if( mem3.iMaster ){
447     while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){
448       size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize;
449       mem3.iMaster -= size;
450       mem3.szMaster += size;
451       memsys3Unlink(mem3.iMaster);
452       x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
453       mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
454       mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
455     }
456     x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
457     while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){
458       memsys3Unlink(mem3.iMaster+mem3.szMaster);
459       mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4;
460       mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
461       mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
462     }
463   }
464 }
465 
466 /*
467 ** Allocate nBytes of memory.
468 */
469 static void *mempoolMalloc(int nBytes){
470   sqlite3_int64 *p;
471   assert( nBytes>0 );          /* malloc.c filters out 0 byte requests */
472   memsys3Enter();
473   p = memsys3Malloc(nBytes);
474   memsys3Leave();
475   return (void*)p;
476 }
477 
478 /*
479 ** Free memory.
480 */
481 void mempoolFree(void *pPrior){
482   assert( pPrior );
483   memsys3Enter();
484   memsys3Free(pPrior);
485   memsys3Leave();
486 }
487 
488 /*
489 ** Return the size of an outstanding allocation, in bytes.  The
490 ** size returned omits the 8-byte header overhead.  This only
491 ** works for chunks that are currently checked out.
492 */
493 static int mempoolSize(void *p){
494   Mem3Block *pBlock = (Mem3Block*)p;
495   assert( pBlock );
496   assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
497   return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
498 }
499 
500 /*
501 ** Change the size of an existing memory allocation
502 */
503 void *mempoolRealloc(void *pPrior, int nBytes){
504   int nOld;
505   void *p;
506   if( pPrior==0 ){
507     return sqlite3_malloc(nBytes);
508   }
509   if( nBytes<=0 ){
510     sqlite3_free(pPrior);
511     return 0;
512   }
513   nOld = mempoolSize(pPrior);
514   if( nBytes<=nOld && nBytes>=nOld-128 ){
515     return pPrior;
516   }
517   memsys3Enter();
518   p = mempoolMalloc(nBytes);
519   if( p ){
520     if( nOld<nBytes ){
521       memcpy(p, pPrior, nOld);
522     }else{
523       memcpy(p, pPrior, nBytes);
524     }
525     mempoolFree(pPrior);
526   }
527   memsys3Leave();
528   return p;
529 }
530 
531 /*
532 ** Round up a request size to the next valid allocation size.
533 */
534 static int mempoolRoundup(int n){
535   /* TODO: Fix me */
536   return n;
537 }
538 
539 /*
540 ** Initialize this module.
541 */
542 static int mempoolInit(void *NotUsed){
543   return SQLITE_OK;
544 }
545 
546 /*
547 ** Deinitialize this module.
548 */
549 static void mempoolShutdown(void *NotUsed){
550   return;
551 }
552 
553 
554 
555 /*
556 ** Open the file indicated and write a log of all unfreed memory
557 ** allocations into that log.
558 */
559 #if 0
560 void sqlite3MemdebugDump(const char *zFilename){
561 #ifdef SQLITE_DEBUG
562   FILE *out;
563   int i, j;
564   u32 size;
565   if( zFilename==0 || zFilename[0]==0 ){
566     out = stdout;
567   }else{
568     out = fopen(zFilename, "w");
569     if( out==0 ){
570       fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
571                       zFilename);
572       return;
573     }
574   }
575   memsys3Enter();
576   fprintf(out, "CHUNKS:\n");
577   for(i=1; i<=SQLITE_MEMORY_SIZE/8; i+=size/4){
578     size = mem3.aPool[i-1].u.hdr.size4x;
579     if( size/4<=1 ){
580       fprintf(out, "%p size error\n", &mem3.aPool[i]);
581       assert( 0 );
582       break;
583     }
584     if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
585       fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]);
586       assert( 0 );
587       break;
588     }
589     if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
590       fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]);
591       assert( 0 );
592       break;
593     }
594     if( size&1 ){
595       fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8);
596     }else{
597       fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8,
598                   i==mem3.iMaster ? " **master**" : "");
599     }
600   }
601   for(i=0; i<MX_SMALL-1; i++){
602     if( mem3.aiSmall[i]==0 ) continue;
603     fprintf(out, "small(%2d):", i);
604     for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){
605       fprintf(out, " %p(%d)", &mem3.aPool[j],
606               (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
607     }
608     fprintf(out, "\n");
609   }
610   for(i=0; i<N_HASH; i++){
611     if( mem3.aiHash[i]==0 ) continue;
612     fprintf(out, "hash(%2d):", i);
613     for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){
614       fprintf(out, " %p(%d)", &mem3.aPool[j],
615               (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
616     }
617     fprintf(out, "\n");
618   }
619   fprintf(out, "master=%d\n", mem3.iMaster);
620   fprintf(out, "nowUsed=%d\n", SQLITE_MEMORY_SIZE - mem3.szMaster*8);
621   fprintf(out, "mxUsed=%d\n", SQLITE_MEMORY_SIZE - mem3.mnMaster*8);
622   sqlite3_mutex_leave(mem3.mutex);
623   if( out==stdout ){
624     fflush(stdout);
625   }else{
626     fclose(out);
627   }
628 #endif
629 }
630 #endif
631 
632 /*
633 ** This routine is the only routine in this file with external
634 ** linkage.
635 **
636 ** Populate the low-level memory allocation function pointers in
637 ** sqlite3Config.m with pointers to the routines in this file. The
638 ** arguments specify the block of memory to manage.
639 **
640 ** This routine is only called by sqlite3_config(), and therefore
641 ** is not required to be threadsafe (it is not).
642 */
643 void sqlite3MemSetMempool(u8 *pBlock, int nBlock){
644   static const sqlite3_mem_methods mempoolMethods = {
645      mempoolMalloc,
646      mempoolFree,
647      mempoolRealloc,
648      mempoolSize,
649      mempoolRoundup,
650      mempoolInit,
651      mempoolShutdown,
652      0
653   };
654 
655   /* Configure the functions to call to allocate memory. */
656   sqlite3_config(SQLITE_CONFIG_MALLOC, &mempoolMethods);
657 
658   /* Store a pointer to the memory block in global structure mem3. */
659   assert( sizeof(Mem3Block)==8 );
660   mem3.aPool = (Mem3Block *)pBlock;
661   mem3.nPool = (nBlock / sizeof(Mem3Block)) - 2;
662 
663   /* Initialize the master block. */
664   mem3.szMaster = mem3.nPool;
665   mem3.mnMaster = mem3.szMaster;
666   mem3.iMaster = 1;
667   mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2;
668   mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool;
669   mem3.aPool[mem3.nPool].u.hdr.size4x = 1;
670 }
671 
672 #endif /* SQLITE_MEMPOOL_MALLOC */
673