xref: /sqlite-3.40.0/src/mem3.c (revision 4591c7ba)
1 /*
2 ** 2007 October 14
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement a memory
13 ** allocation subsystem for use by SQLite.
14 **
15 ** This version of the memory allocation subsystem omits all
16 ** use of malloc(). The SQLite user supplies a block of memory
17 ** before calling sqlite3_initialize() from which allocations
18 ** are made and returned by the xMalloc() and xRealloc()
19 ** implementations. Once sqlite3_initialize() has been called,
20 ** the amount of memory available to SQLite is fixed and cannot
21 ** be changed.
22 **
23 ** This version of the memory allocation subsystem is included
24 ** in the build only if SQLITE_ENABLE_MEMSYS3 is defined.
25 **
26 ** $Id: mem3.c,v 1.25 2008/11/19 16:52:44 danielk1977 Exp $
27 */
28 #include "sqliteInt.h"
29 
30 /*
31 ** This version of the memory allocator is only built into the library
32 ** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not
33 ** mean that the library will use a memory-pool by default, just that
34 ** it is available. The mempool allocator is activated by calling
35 ** sqlite3_config().
36 */
37 #ifdef SQLITE_ENABLE_MEMSYS3
38 
39 /*
40 ** Maximum size (in Mem3Blocks) of a "small" chunk.
41 */
42 #define MX_SMALL 10
43 
44 
45 /*
46 ** Number of freelist hash slots
47 */
48 #define N_HASH  61
49 
50 /*
51 ** A memory allocation (also called a "chunk") consists of two or
52 ** more blocks where each block is 8 bytes.  The first 8 bytes are
53 ** a header that is not returned to the user.
54 **
55 ** A chunk is two or more blocks that is either checked out or
56 ** free.  The first block has format u.hdr.  u.hdr.size4x is 4 times the
57 ** size of the allocation in blocks if the allocation is free.
58 ** The u.hdr.size4x&1 bit is true if the chunk is checked out and
59 ** false if the chunk is on the freelist.  The u.hdr.size4x&2 bit
60 ** is true if the previous chunk is checked out and false if the
61 ** previous chunk is free.  The u.hdr.prevSize field is the size of
62 ** the previous chunk in blocks if the previous chunk is on the
63 ** freelist. If the previous chunk is checked out, then
64 ** u.hdr.prevSize can be part of the data for that chunk and should
65 ** not be read or written.
66 **
67 ** We often identify a chunk by its index in mem3.aPool[].  When
68 ** this is done, the chunk index refers to the second block of
69 ** the chunk.  In this way, the first chunk has an index of 1.
70 ** A chunk index of 0 means "no such chunk" and is the equivalent
71 ** of a NULL pointer.
72 **
73 ** The second block of free chunks is of the form u.list.  The
74 ** two fields form a double-linked list of chunks of related sizes.
75 ** Pointers to the head of the list are stored in mem3.aiSmall[]
76 ** for smaller chunks and mem3.aiHash[] for larger chunks.
77 **
78 ** The second block of a chunk is user data if the chunk is checked
79 ** out.  If a chunk is checked out, the user data may extend into
80 ** the u.hdr.prevSize value of the following chunk.
81 */
82 typedef struct Mem3Block Mem3Block;
83 struct Mem3Block {
84   union {
85     struct {
86       u32 prevSize;   /* Size of previous chunk in Mem3Block elements */
87       u32 size4x;     /* 4x the size of current chunk in Mem3Block elements */
88     } hdr;
89     struct {
90       u32 next;       /* Index in mem3.aPool[] of next free chunk */
91       u32 prev;       /* Index in mem3.aPool[] of previous free chunk */
92     } list;
93   } u;
94 };
95 
96 /*
97 ** All of the static variables used by this module are collected
98 ** into a single structure named "mem3".  This is to keep the
99 ** static variables organized and to reduce namespace pollution
100 ** when this module is combined with other in the amalgamation.
101 */
102 static SQLITE_WSD struct Mem3Global {
103   /*
104   ** Memory available for allocation. nPool is the size of the array
105   ** (in Mem3Blocks) pointed to by aPool less 2.
106   */
107   u32 nPool;
108   Mem3Block *aPool;
109 
110   /*
111   ** True if we are evaluating an out-of-memory callback.
112   */
113   int alarmBusy;
114 
115   /*
116   ** Mutex to control access to the memory allocation subsystem.
117   */
118   sqlite3_mutex *mutex;
119 
120   /*
121   ** The minimum amount of free space that we have seen.
122   */
123   u32 mnMaster;
124 
125   /*
126   ** iMaster is the index of the master chunk.  Most new allocations
127   ** occur off of this chunk.  szMaster is the size (in Mem3Blocks)
128   ** of the current master.  iMaster is 0 if there is not master chunk.
129   ** The master chunk is not in either the aiHash[] or aiSmall[].
130   */
131   u32 iMaster;
132   u32 szMaster;
133 
134   /*
135   ** Array of lists of free blocks according to the block size
136   ** for smaller chunks, or a hash on the block size for larger
137   ** chunks.
138   */
139   u32 aiSmall[MX_SMALL-1];   /* For sizes 2 through MX_SMALL, inclusive */
140   u32 aiHash[N_HASH];        /* For sizes MX_SMALL+1 and larger */
141 } mem3 = { 97535575 };
142 
143 #define mem3 GLOBAL(struct Mem3Global, mem3)
144 
145 /*
146 ** Unlink the chunk at mem3.aPool[i] from list it is currently
147 ** on.  *pRoot is the list that i is a member of.
148 */
149 static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
150   u32 next = mem3.aPool[i].u.list.next;
151   u32 prev = mem3.aPool[i].u.list.prev;
152   assert( sqlite3_mutex_held(mem3.mutex) );
153   if( prev==0 ){
154     *pRoot = next;
155   }else{
156     mem3.aPool[prev].u.list.next = next;
157   }
158   if( next ){
159     mem3.aPool[next].u.list.prev = prev;
160   }
161   mem3.aPool[i].u.list.next = 0;
162   mem3.aPool[i].u.list.prev = 0;
163 }
164 
165 /*
166 ** Unlink the chunk at index i from
167 ** whatever list is currently a member of.
168 */
169 static void memsys3Unlink(u32 i){
170   u32 size, hash;
171   assert( sqlite3_mutex_held(mem3.mutex) );
172   assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
173   assert( i>=1 );
174   size = mem3.aPool[i-1].u.hdr.size4x/4;
175   assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
176   assert( size>=2 );
177   if( size <= MX_SMALL ){
178     memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]);
179   }else{
180     hash = size % N_HASH;
181     memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
182   }
183 }
184 
185 /*
186 ** Link the chunk at mem3.aPool[i] so that is on the list rooted
187 ** at *pRoot.
188 */
189 static void memsys3LinkIntoList(u32 i, u32 *pRoot){
190   assert( sqlite3_mutex_held(mem3.mutex) );
191   mem3.aPool[i].u.list.next = *pRoot;
192   mem3.aPool[i].u.list.prev = 0;
193   if( *pRoot ){
194     mem3.aPool[*pRoot].u.list.prev = i;
195   }
196   *pRoot = i;
197 }
198 
199 /*
200 ** Link the chunk at index i into either the appropriate
201 ** small chunk list, or into the large chunk hash table.
202 */
203 static void memsys3Link(u32 i){
204   u32 size, hash;
205   assert( sqlite3_mutex_held(mem3.mutex) );
206   assert( i>=1 );
207   assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
208   size = mem3.aPool[i-1].u.hdr.size4x/4;
209   assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
210   assert( size>=2 );
211   if( size <= MX_SMALL ){
212     memsys3LinkIntoList(i, &mem3.aiSmall[size-2]);
213   }else{
214     hash = size % N_HASH;
215     memsys3LinkIntoList(i, &mem3.aiHash[hash]);
216   }
217 }
218 
219 /*
220 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
221 ** will already be held (obtained by code in malloc.c) if
222 ** sqlite3GlobalConfig.bMemStat is true.
223 */
224 static void memsys3Enter(void){
225   if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){
226     mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
227   }
228   sqlite3_mutex_enter(mem3.mutex);
229 }
230 static void memsys3Leave(void){
231   sqlite3_mutex_leave(mem3.mutex);
232 }
233 
234 /*
235 ** Called when we are unable to satisfy an allocation of nBytes.
236 */
237 static void memsys3OutOfMemory(int nByte){
238   if( !mem3.alarmBusy ){
239     mem3.alarmBusy = 1;
240     assert( sqlite3_mutex_held(mem3.mutex) );
241     sqlite3_mutex_leave(mem3.mutex);
242     sqlite3_release_memory(nByte);
243     sqlite3_mutex_enter(mem3.mutex);
244     mem3.alarmBusy = 0;
245   }
246 }
247 
248 
249 /*
250 ** Chunk i is a free chunk that has been unlinked.  Adjust its
251 ** size parameters for check-out and return a pointer to the
252 ** user portion of the chunk.
253 */
254 static void *memsys3Checkout(u32 i, u32 nBlock){
255   u32 x;
256   assert( sqlite3_mutex_held(mem3.mutex) );
257   assert( i>=1 );
258   assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock );
259   assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
260   x = mem3.aPool[i-1].u.hdr.size4x;
261   mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
262   mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
263   mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2;
264   return &mem3.aPool[i];
265 }
266 
267 /*
268 ** Carve a piece off of the end of the mem3.iMaster free chunk.
269 ** Return a pointer to the new allocation.  Or, if the master chunk
270 ** is not large enough, return 0.
271 */
272 static void *memsys3FromMaster(u32 nBlock){
273   assert( sqlite3_mutex_held(mem3.mutex) );
274   assert( mem3.szMaster>=nBlock );
275   if( nBlock>=mem3.szMaster-1 ){
276     /* Use the entire master */
277     void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster);
278     mem3.iMaster = 0;
279     mem3.szMaster = 0;
280     mem3.mnMaster = 0;
281     return p;
282   }else{
283     /* Split the master block.  Return the tail. */
284     u32 newi, x;
285     newi = mem3.iMaster + mem3.szMaster - nBlock;
286     assert( newi > mem3.iMaster+1 );
287     mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock;
288     mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2;
289     mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
290     mem3.szMaster -= nBlock;
291     mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster;
292     x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
293     mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
294     if( mem3.szMaster < mem3.mnMaster ){
295       mem3.mnMaster = mem3.szMaster;
296     }
297     return (void*)&mem3.aPool[newi];
298   }
299 }
300 
301 /*
302 ** *pRoot is the head of a list of free chunks of the same size
303 ** or same size hash.  In other words, *pRoot is an entry in either
304 ** mem3.aiSmall[] or mem3.aiHash[].
305 **
306 ** This routine examines all entries on the given list and tries
307 ** to coalesce each entries with adjacent free chunks.
308 **
309 ** If it sees a chunk that is larger than mem3.iMaster, it replaces
310 ** the current mem3.iMaster with the new larger chunk.  In order for
311 ** this mem3.iMaster replacement to work, the master chunk must be
312 ** linked into the hash tables.  That is not the normal state of
313 ** affairs, of course.  The calling routine must link the master
314 ** chunk before invoking this routine, then must unlink the (possibly
315 ** changed) master chunk once this routine has finished.
316 */
317 static void memsys3Merge(u32 *pRoot){
318   u32 iNext, prev, size, i, x;
319 
320   assert( sqlite3_mutex_held(mem3.mutex) );
321   for(i=*pRoot; i>0; i=iNext){
322     iNext = mem3.aPool[i].u.list.next;
323     size = mem3.aPool[i-1].u.hdr.size4x;
324     assert( (size&1)==0 );
325     if( (size&2)==0 ){
326       memsys3UnlinkFromList(i, pRoot);
327       assert( i > mem3.aPool[i-1].u.hdr.prevSize );
328       prev = i - mem3.aPool[i-1].u.hdr.prevSize;
329       if( prev==iNext ){
330         iNext = mem3.aPool[prev].u.list.next;
331       }
332       memsys3Unlink(prev);
333       size = i + size/4 - prev;
334       x = mem3.aPool[prev-1].u.hdr.size4x & 2;
335       mem3.aPool[prev-1].u.hdr.size4x = size*4 | x;
336       mem3.aPool[prev+size-1].u.hdr.prevSize = size;
337       memsys3Link(prev);
338       i = prev;
339     }else{
340       size /= 4;
341     }
342     if( size>mem3.szMaster ){
343       mem3.iMaster = i;
344       mem3.szMaster = size;
345     }
346   }
347 }
348 
349 /*
350 ** Return a block of memory of at least nBytes in size.
351 ** Return NULL if unable.
352 **
353 ** This function assumes that the necessary mutexes, if any, are
354 ** already held by the caller. Hence "Unsafe".
355 */
356 static void *memsys3MallocUnsafe(int nByte){
357   u32 i;
358   u32 nBlock;
359   u32 toFree;
360 
361   assert( sqlite3_mutex_held(mem3.mutex) );
362   assert( sizeof(Mem3Block)==8 );
363   if( nByte<=12 ){
364     nBlock = 2;
365   }else{
366     nBlock = (nByte + 11)/8;
367   }
368   assert( nBlock>=2 );
369 
370   /* STEP 1:
371   ** Look for an entry of the correct size in either the small
372   ** chunk table or in the large chunk hash table.  This is
373   ** successful most of the time (about 9 times out of 10).
374   */
375   if( nBlock <= MX_SMALL ){
376     i = mem3.aiSmall[nBlock-2];
377     if( i>0 ){
378       memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]);
379       return memsys3Checkout(i, nBlock);
380     }
381   }else{
382     int hash = nBlock % N_HASH;
383     for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){
384       if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){
385         memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
386         return memsys3Checkout(i, nBlock);
387       }
388     }
389   }
390 
391   /* STEP 2:
392   ** Try to satisfy the allocation by carving a piece off of the end
393   ** of the master chunk.  This step usually works if step 1 fails.
394   */
395   if( mem3.szMaster>=nBlock ){
396     return memsys3FromMaster(nBlock);
397   }
398 
399 
400   /* STEP 3:
401   ** Loop through the entire memory pool.  Coalesce adjacent free
402   ** chunks.  Recompute the master chunk as the largest free chunk.
403   ** Then try again to satisfy the allocation by carving a piece off
404   ** of the end of the master chunk.  This step happens very
405   ** rarely (we hope!)
406   */
407   for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){
408     memsys3OutOfMemory(toFree);
409     if( mem3.iMaster ){
410       memsys3Link(mem3.iMaster);
411       mem3.iMaster = 0;
412       mem3.szMaster = 0;
413     }
414     for(i=0; i<N_HASH; i++){
415       memsys3Merge(&mem3.aiHash[i]);
416     }
417     for(i=0; i<MX_SMALL-1; i++){
418       memsys3Merge(&mem3.aiSmall[i]);
419     }
420     if( mem3.szMaster ){
421       memsys3Unlink(mem3.iMaster);
422       if( mem3.szMaster>=nBlock ){
423         return memsys3FromMaster(nBlock);
424       }
425     }
426   }
427 
428   /* If none of the above worked, then we fail. */
429   return 0;
430 }
431 
432 /*
433 ** Free an outstanding memory allocation.
434 **
435 ** This function assumes that the necessary mutexes, if any, are
436 ** already held by the caller. Hence "Unsafe".
437 */
438 void memsys3FreeUnsafe(void *pOld){
439   Mem3Block *p = (Mem3Block*)pOld;
440   int i;
441   u32 size, x;
442   assert( sqlite3_mutex_held(mem3.mutex) );
443   assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] );
444   i = p - mem3.aPool;
445   assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 );
446   size = mem3.aPool[i-1].u.hdr.size4x/4;
447   assert( i+size<=mem3.nPool+1 );
448   mem3.aPool[i-1].u.hdr.size4x &= ~1;
449   mem3.aPool[i+size-1].u.hdr.prevSize = size;
450   mem3.aPool[i+size-1].u.hdr.size4x &= ~2;
451   memsys3Link(i);
452 
453   /* Try to expand the master using the newly freed chunk */
454   if( mem3.iMaster ){
455     while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){
456       size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize;
457       mem3.iMaster -= size;
458       mem3.szMaster += size;
459       memsys3Unlink(mem3.iMaster);
460       x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
461       mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
462       mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
463     }
464     x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
465     while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){
466       memsys3Unlink(mem3.iMaster+mem3.szMaster);
467       mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4;
468       mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
469       mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
470     }
471   }
472 }
473 
474 /*
475 ** Return the size of an outstanding allocation, in bytes.  The
476 ** size returned omits the 8-byte header overhead.  This only
477 ** works for chunks that are currently checked out.
478 */
479 static int memsys3Size(void *p){
480   Mem3Block *pBlock;
481   if( p==0 ) return 0;
482   pBlock = (Mem3Block*)p;
483   assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
484   return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
485 }
486 
487 /*
488 ** Round up a request size to the next valid allocation size.
489 */
490 static int memsys3Roundup(int n){
491   if( n<=12 ){
492     return 12;
493   }else{
494     return ((n+11)&~7) - 4;
495   }
496 }
497 
498 /*
499 ** Allocate nBytes of memory.
500 */
501 static void *memsys3Malloc(int nBytes){
502   sqlite3_int64 *p;
503   assert( nBytes>0 );          /* malloc.c filters out 0 byte requests */
504   memsys3Enter();
505   p = memsys3MallocUnsafe(nBytes);
506   memsys3Leave();
507   return (void*)p;
508 }
509 
510 /*
511 ** Free memory.
512 */
513 void memsys3Free(void *pPrior){
514   assert( pPrior );
515   memsys3Enter();
516   memsys3FreeUnsafe(pPrior);
517   memsys3Leave();
518 }
519 
520 /*
521 ** Change the size of an existing memory allocation
522 */
523 void *memsys3Realloc(void *pPrior, int nBytes){
524   int nOld;
525   void *p;
526   if( pPrior==0 ){
527     return sqlite3_malloc(nBytes);
528   }
529   if( nBytes<=0 ){
530     sqlite3_free(pPrior);
531     return 0;
532   }
533   nOld = memsys3Size(pPrior);
534   if( nBytes<=nOld && nBytes>=nOld-128 ){
535     return pPrior;
536   }
537   memsys3Enter();
538   p = memsys3MallocUnsafe(nBytes);
539   if( p ){
540     if( nOld<nBytes ){
541       memcpy(p, pPrior, nOld);
542     }else{
543       memcpy(p, pPrior, nBytes);
544     }
545     memsys3FreeUnsafe(pPrior);
546   }
547   memsys3Leave();
548   return p;
549 }
550 
551 /*
552 ** Initialize this module.
553 */
554 static int memsys3Init(void *NotUsed){
555   UNUSED_PARAMETER(NotUsed);
556   if( !sqlite3GlobalConfig.pHeap ){
557     return SQLITE_ERROR;
558   }
559 
560   /* Store a pointer to the memory block in global structure mem3. */
561   assert( sizeof(Mem3Block)==8 );
562   mem3.aPool = (Mem3Block *)sqlite3GlobalConfig.pHeap;
563   mem3.nPool = (sqlite3GlobalConfig.nHeap / sizeof(Mem3Block)) - 2;
564 
565   /* Initialize the master block. */
566   mem3.szMaster = mem3.nPool;
567   mem3.mnMaster = mem3.szMaster;
568   mem3.iMaster = 1;
569   mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2;
570   mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool;
571   mem3.aPool[mem3.nPool].u.hdr.size4x = 1;
572 
573   return SQLITE_OK;
574 }
575 
576 /*
577 ** Deinitialize this module.
578 */
579 static void memsys3Shutdown(void *NotUsed){
580   UNUSED_PARAMETER(NotUsed);
581   mem3.mutex = 0;
582   return;
583 }
584 
585 
586 
587 /*
588 ** Open the file indicated and write a log of all unfreed memory
589 ** allocations into that log.
590 */
591 void sqlite3Memsys3Dump(const char *zFilename){
592 #ifdef SQLITE_DEBUG
593   FILE *out;
594   u32 i, j;
595   u32 size;
596   if( zFilename==0 || zFilename[0]==0 ){
597     out = stdout;
598   }else{
599     out = fopen(zFilename, "w");
600     if( out==0 ){
601       fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
602                       zFilename);
603       return;
604     }
605   }
606   memsys3Enter();
607   fprintf(out, "CHUNKS:\n");
608   for(i=1; i<=mem3.nPool; i+=size/4){
609     size = mem3.aPool[i-1].u.hdr.size4x;
610     if( size/4<=1 ){
611       fprintf(out, "%p size error\n", &mem3.aPool[i]);
612       assert( 0 );
613       break;
614     }
615     if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
616       fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]);
617       assert( 0 );
618       break;
619     }
620     if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
621       fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]);
622       assert( 0 );
623       break;
624     }
625     if( size&1 ){
626       fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8);
627     }else{
628       fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8,
629                   i==mem3.iMaster ? " **master**" : "");
630     }
631   }
632   for(i=0; i<MX_SMALL-1; i++){
633     if( mem3.aiSmall[i]==0 ) continue;
634     fprintf(out, "small(%2d):", i);
635     for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){
636       fprintf(out, " %p(%d)", &mem3.aPool[j],
637               (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
638     }
639     fprintf(out, "\n");
640   }
641   for(i=0; i<N_HASH; i++){
642     if( mem3.aiHash[i]==0 ) continue;
643     fprintf(out, "hash(%2d):", i);
644     for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){
645       fprintf(out, " %p(%d)", &mem3.aPool[j],
646               (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
647     }
648     fprintf(out, "\n");
649   }
650   fprintf(out, "master=%d\n", mem3.iMaster);
651   fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8);
652   fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8);
653   sqlite3_mutex_leave(mem3.mutex);
654   if( out==stdout ){
655     fflush(stdout);
656   }else{
657     fclose(out);
658   }
659 #else
660   UNUSED_PARAMETER(zFilename);
661 #endif
662 }
663 
664 /*
665 ** This routine is the only routine in this file with external
666 ** linkage.
667 **
668 ** Populate the low-level memory allocation function pointers in
669 ** sqlite3GlobalConfig.m with pointers to the routines in this file. The
670 ** arguments specify the block of memory to manage.
671 **
672 ** This routine is only called by sqlite3_config(), and therefore
673 ** is not required to be threadsafe (it is not).
674 */
675 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){
676   static const sqlite3_mem_methods mempoolMethods = {
677      memsys3Malloc,
678      memsys3Free,
679      memsys3Realloc,
680      memsys3Size,
681      memsys3Roundup,
682      memsys3Init,
683      memsys3Shutdown,
684      0
685   };
686   return &mempoolMethods;
687 }
688 
689 #endif /* SQLITE_ENABLE_MEMSYS3 */
690