xref: /sqlite-3.40.0/src/malloc.c (revision f5ed7ad6)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** Memory allocation functions used throughout sqlite.
14 */
15 #include "sqliteInt.h"
16 #include <stdarg.h>
17 
18 /*
19 ** Attempt to release up to n bytes of non-essential memory currently
20 ** held by SQLite. An example of non-essential memory is memory used to
21 ** cache database pages that are not currently in use.
22 */
23 int sqlite3_release_memory(int n){
24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
25   return sqlite3PcacheReleaseMemory(n);
26 #else
27   /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
28   ** is a no-op returning zero if SQLite is not compiled with
29   ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
30   UNUSED_PARAMETER(n);
31   return 0;
32 #endif
33 }
34 
35 /*
36 ** An instance of the following object records the location of
37 ** each unused scratch buffer.
38 */
39 typedef struct ScratchFreeslot {
40   struct ScratchFreeslot *pNext;   /* Next unused scratch buffer */
41 } ScratchFreeslot;
42 
43 /*
44 ** State information local to the memory allocation subsystem.
45 */
46 static SQLITE_WSD struct Mem0Global {
47   sqlite3_mutex *mutex;         /* Mutex to serialize access */
48 
49   /*
50   ** The alarm callback and its arguments.  The mem0.mutex lock will
51   ** be held while the callback is running.  Recursive calls into
52   ** the memory subsystem are allowed, but no new callbacks will be
53   ** issued.
54   */
55   sqlite3_int64 alarmThreshold;
56   void (*alarmCallback)(void*, sqlite3_int64,int);
57   void *alarmArg;
58 
59   /*
60   ** Pointers to the end of sqlite3GlobalConfig.pScratch memory
61   ** (so that a range test can be used to determine if an allocation
62   ** being freed came from pScratch) and a pointer to the list of
63   ** unused scratch allocations.
64   */
65   void *pScratchEnd;
66   ScratchFreeslot *pScratchFree;
67   u32 nScratchFree;
68 
69   /*
70   ** True if heap is nearly "full" where "full" is defined by the
71   ** sqlite3_soft_heap_limit() setting.
72   */
73   int nearlyFull;
74 } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 };
75 
76 #define mem0 GLOBAL(struct Mem0Global, mem0)
77 
78 /*
79 ** Return the memory allocator mutex. sqlite3_status() needs it.
80 */
81 sqlite3_mutex *sqlite3MallocMutex(void){
82   return mem0.mutex;
83 }
84 
85 /*
86 ** This routine runs when the memory allocator sees that the
87 ** total memory allocation is about to exceed the soft heap
88 ** limit.
89 */
90 static void softHeapLimitEnforcer(
91   void *NotUsed,
92   sqlite3_int64 NotUsed2,
93   int allocSize
94 ){
95   UNUSED_PARAMETER2(NotUsed, NotUsed2);
96   sqlite3_release_memory(allocSize);
97 }
98 
99 /*
100 ** Change the alarm callback
101 */
102 static int sqlite3MemoryAlarm(
103   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
104   void *pArg,
105   sqlite3_int64 iThreshold
106 ){
107   sqlite3_int64 nUsed;
108   sqlite3_mutex_enter(mem0.mutex);
109   mem0.alarmCallback = xCallback;
110   mem0.alarmArg = pArg;
111   mem0.alarmThreshold = iThreshold;
112   nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
113   mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed);
114   sqlite3_mutex_leave(mem0.mutex);
115   return SQLITE_OK;
116 }
117 
118 #ifndef SQLITE_OMIT_DEPRECATED
119 /*
120 ** Deprecated external interface.  Internal/core SQLite code
121 ** should call sqlite3MemoryAlarm.
122 */
123 int sqlite3_memory_alarm(
124   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
125   void *pArg,
126   sqlite3_int64 iThreshold
127 ){
128   return sqlite3MemoryAlarm(xCallback, pArg, iThreshold);
129 }
130 #endif
131 
132 /*
133 ** Set the soft heap-size limit for the library. Passing a zero or
134 ** negative value indicates no limit.
135 */
136 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
137   sqlite3_int64 priorLimit;
138   sqlite3_int64 excess;
139 #ifndef SQLITE_OMIT_AUTOINIT
140   int rc = sqlite3_initialize();
141   if( rc ) return -1;
142 #endif
143   sqlite3_mutex_enter(mem0.mutex);
144   priorLimit = mem0.alarmThreshold;
145   sqlite3_mutex_leave(mem0.mutex);
146   if( n<0 ) return priorLimit;
147   if( n>0 ){
148     sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n);
149   }else{
150     sqlite3MemoryAlarm(0, 0, 0);
151   }
152   excess = sqlite3_memory_used() - n;
153   if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
154   return priorLimit;
155 }
156 void sqlite3_soft_heap_limit(int n){
157   if( n<0 ) n = 0;
158   sqlite3_soft_heap_limit64(n);
159 }
160 
161 /*
162 ** Initialize the memory allocation subsystem.
163 */
164 int sqlite3MallocInit(void){
165   int rc;
166   if( sqlite3GlobalConfig.m.xMalloc==0 ){
167     sqlite3MemSetDefault();
168   }
169   memset(&mem0, 0, sizeof(mem0));
170   if( sqlite3GlobalConfig.bCoreMutex ){
171     mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
172   }
173   if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
174       && sqlite3GlobalConfig.nScratch>0 ){
175     int i, n, sz;
176     ScratchFreeslot *pSlot;
177     sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch);
178     sqlite3GlobalConfig.szScratch = sz;
179     pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch;
180     n = sqlite3GlobalConfig.nScratch;
181     mem0.pScratchFree = pSlot;
182     mem0.nScratchFree = n;
183     for(i=0; i<n-1; i++){
184       pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot);
185       pSlot = pSlot->pNext;
186     }
187     pSlot->pNext = 0;
188     mem0.pScratchEnd = (void*)&pSlot[1];
189   }else{
190     mem0.pScratchEnd = 0;
191     sqlite3GlobalConfig.pScratch = 0;
192     sqlite3GlobalConfig.szScratch = 0;
193     sqlite3GlobalConfig.nScratch = 0;
194   }
195   if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
196       || sqlite3GlobalConfig.nPage<1 ){
197     sqlite3GlobalConfig.pPage = 0;
198     sqlite3GlobalConfig.szPage = 0;
199     sqlite3GlobalConfig.nPage = 0;
200   }
201   rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
202   if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0));
203   return rc;
204 }
205 
206 /*
207 ** Return true if the heap is currently under memory pressure - in other
208 ** words if the amount of heap used is close to the limit set by
209 ** sqlite3_soft_heap_limit().
210 */
211 int sqlite3HeapNearlyFull(void){
212   return mem0.nearlyFull;
213 }
214 
215 /*
216 ** Deinitialize the memory allocation subsystem.
217 */
218 void sqlite3MallocEnd(void){
219   if( sqlite3GlobalConfig.m.xShutdown ){
220     sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
221   }
222   memset(&mem0, 0, sizeof(mem0));
223 }
224 
225 /*
226 ** Return the amount of memory currently checked out.
227 */
228 sqlite3_int64 sqlite3_memory_used(void){
229   sqlite3_int64 res, mx;
230   sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0);
231   return res;
232 }
233 
234 /*
235 ** Return the maximum amount of memory that has ever been
236 ** checked out since either the beginning of this process
237 ** or since the most recent reset.
238 */
239 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
240   sqlite3_int64 res, mx;
241   sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag);
242   return mx;
243 }
244 
245 /*
246 ** Trigger the alarm
247 */
248 static void sqlite3MallocAlarm(int nByte){
249   void (*xCallback)(void*,sqlite3_int64,int);
250   sqlite3_int64 nowUsed;
251   void *pArg;
252   if( mem0.alarmCallback==0 ) return;
253   xCallback = mem0.alarmCallback;
254   nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
255   pArg = mem0.alarmArg;
256   mem0.alarmCallback = 0;
257   sqlite3_mutex_leave(mem0.mutex);
258   xCallback(pArg, nowUsed, nByte);
259   sqlite3_mutex_enter(mem0.mutex);
260   mem0.alarmCallback = xCallback;
261   mem0.alarmArg = pArg;
262 }
263 
264 /*
265 ** Do a memory allocation with statistics and alarms.  Assume the
266 ** lock is already held.
267 */
268 static int mallocWithAlarm(int n, void **pp){
269   int nFull;
270   void *p;
271   assert( sqlite3_mutex_held(mem0.mutex) );
272   nFull = sqlite3GlobalConfig.m.xRoundup(n);
273   sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
274   if( mem0.alarmCallback!=0 ){
275     sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
276     if( nUsed >= mem0.alarmThreshold - nFull ){
277       mem0.nearlyFull = 1;
278       sqlite3MallocAlarm(nFull);
279     }else{
280       mem0.nearlyFull = 0;
281     }
282   }
283   p = sqlite3GlobalConfig.m.xMalloc(nFull);
284 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
285   if( p==0 && mem0.alarmCallback ){
286     sqlite3MallocAlarm(nFull);
287     p = sqlite3GlobalConfig.m.xMalloc(nFull);
288   }
289 #endif
290   if( p ){
291     nFull = sqlite3MallocSize(p);
292     sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
293     sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
294   }
295   *pp = p;
296   return nFull;
297 }
298 
299 /*
300 ** Allocate memory.  This routine is like sqlite3_malloc() except that it
301 ** assumes the memory subsystem has already been initialized.
302 */
303 void *sqlite3Malloc(u64 n){
304   void *p;
305   if( n==0 || n>=0x7fffff00 ){
306     /* A memory allocation of a number of bytes which is near the maximum
307     ** signed integer value might cause an integer overflow inside of the
308     ** xMalloc().  Hence we limit the maximum size to 0x7fffff00, giving
309     ** 255 bytes of overhead.  SQLite itself will never use anything near
310     ** this amount.  The only way to reach the limit is with sqlite3_malloc() */
311     p = 0;
312   }else if( sqlite3GlobalConfig.bMemstat ){
313     sqlite3_mutex_enter(mem0.mutex);
314     mallocWithAlarm((int)n, &p);
315     sqlite3_mutex_leave(mem0.mutex);
316   }else{
317     p = sqlite3GlobalConfig.m.xMalloc((int)n);
318   }
319   assert( EIGHT_BYTE_ALIGNMENT(p) );  /* IMP: R-11148-40995 */
320   return p;
321 }
322 
323 /*
324 ** This version of the memory allocation is for use by the application.
325 ** First make sure the memory subsystem is initialized, then do the
326 ** allocation.
327 */
328 void *sqlite3_malloc(int n){
329 #ifndef SQLITE_OMIT_AUTOINIT
330   if( sqlite3_initialize() ) return 0;
331 #endif
332   return n<=0 ? 0 : sqlite3Malloc(n);
333 }
334 void *sqlite3_malloc64(sqlite3_uint64 n){
335 #ifndef SQLITE_OMIT_AUTOINIT
336   if( sqlite3_initialize() ) return 0;
337 #endif
338   return sqlite3Malloc(n);
339 }
340 
341 /*
342 ** Each thread may only have a single outstanding allocation from
343 ** xScratchMalloc().  We verify this constraint in the single-threaded
344 ** case by setting scratchAllocOut to 1 when an allocation
345 ** is outstanding clearing it when the allocation is freed.
346 */
347 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
348 static int scratchAllocOut = 0;
349 #endif
350 
351 
352 /*
353 ** Allocate memory that is to be used and released right away.
354 ** This routine is similar to alloca() in that it is not intended
355 ** for situations where the memory might be held long-term.  This
356 ** routine is intended to get memory to old large transient data
357 ** structures that would not normally fit on the stack of an
358 ** embedded processor.
359 */
360 void *sqlite3ScratchMalloc(int n){
361   void *p;
362   assert( n>0 );
363 
364   sqlite3_mutex_enter(mem0.mutex);
365   sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
366   if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
367     p = mem0.pScratchFree;
368     mem0.pScratchFree = mem0.pScratchFree->pNext;
369     mem0.nScratchFree--;
370     sqlite3StatusUp(SQLITE_STATUS_SCRATCH_USED, 1);
371     sqlite3_mutex_leave(mem0.mutex);
372   }else{
373     sqlite3_mutex_leave(mem0.mutex);
374     p = sqlite3Malloc(n);
375     if( sqlite3GlobalConfig.bMemstat && p ){
376       sqlite3_mutex_enter(mem0.mutex);
377       sqlite3StatusUp(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p));
378       sqlite3_mutex_leave(mem0.mutex);
379     }
380     sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
381   }
382   assert( sqlite3_mutex_notheld(mem0.mutex) );
383 
384 
385 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
386   /* EVIDENCE-OF: R-12970-05880 SQLite will not use more than one scratch
387   ** buffers per thread.
388   **
389   ** This can only be checked in single-threaded mode.
390   */
391   assert( scratchAllocOut==0 );
392   if( p ) scratchAllocOut++;
393 #endif
394 
395   return p;
396 }
397 void sqlite3ScratchFree(void *p){
398   if( p ){
399 
400 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
401     /* Verify that no more than two scratch allocation per thread
402     ** is outstanding at one time.  (This is only checked in the
403     ** single-threaded case since checking in the multi-threaded case
404     ** would be much more complicated.) */
405     assert( scratchAllocOut>=1 && scratchAllocOut<=2 );
406     scratchAllocOut--;
407 #endif
408 
409     if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){
410       /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */
411       ScratchFreeslot *pSlot;
412       pSlot = (ScratchFreeslot*)p;
413       sqlite3_mutex_enter(mem0.mutex);
414       pSlot->pNext = mem0.pScratchFree;
415       mem0.pScratchFree = pSlot;
416       mem0.nScratchFree++;
417       assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch );
418       sqlite3StatusDown(SQLITE_STATUS_SCRATCH_USED, 1);
419       sqlite3_mutex_leave(mem0.mutex);
420     }else{
421       /* Release memory back to the heap */
422       assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
423       assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_SCRATCH) );
424       sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
425       if( sqlite3GlobalConfig.bMemstat ){
426         int iSize = sqlite3MallocSize(p);
427         sqlite3_mutex_enter(mem0.mutex);
428         sqlite3StatusDown(SQLITE_STATUS_SCRATCH_OVERFLOW, iSize);
429         sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, iSize);
430         sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
431         sqlite3GlobalConfig.m.xFree(p);
432         sqlite3_mutex_leave(mem0.mutex);
433       }else{
434         sqlite3GlobalConfig.m.xFree(p);
435       }
436     }
437   }
438 }
439 
440 /*
441 ** TRUE if p is a lookaside memory allocation from db
442 */
443 #ifndef SQLITE_OMIT_LOOKASIDE
444 static int isLookaside(sqlite3 *db, void *p){
445   return p>=db->lookaside.pStart && p<db->lookaside.pEnd;
446 }
447 #else
448 #define isLookaside(A,B) 0
449 #endif
450 
451 /*
452 ** Return the size of a memory allocation previously obtained from
453 ** sqlite3Malloc() or sqlite3_malloc().
454 */
455 int sqlite3MallocSize(void *p){
456   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
457   return sqlite3GlobalConfig.m.xSize(p);
458 }
459 int sqlite3DbMallocSize(sqlite3 *db, void *p){
460   if( db==0 ){
461     assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
462     assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
463     return sqlite3MallocSize(p);
464   }else{
465     assert( sqlite3_mutex_held(db->mutex) );
466     if( isLookaside(db, p) ){
467       return db->lookaside.sz;
468     }else{
469       assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
470       assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
471       return sqlite3GlobalConfig.m.xSize(p);
472     }
473   }
474 }
475 sqlite3_uint64 sqlite3_msize(void *p){
476   assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
477   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
478   return (sqlite3_uint64)sqlite3GlobalConfig.m.xSize(p);
479 }
480 
481 /*
482 ** Free memory previously obtained from sqlite3Malloc().
483 */
484 void sqlite3_free(void *p){
485   if( p==0 ) return;  /* IMP: R-49053-54554 */
486   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
487   assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
488   if( sqlite3GlobalConfig.bMemstat ){
489     sqlite3_mutex_enter(mem0.mutex);
490     sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p));
491     sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
492     sqlite3GlobalConfig.m.xFree(p);
493     sqlite3_mutex_leave(mem0.mutex);
494   }else{
495     sqlite3GlobalConfig.m.xFree(p);
496   }
497 }
498 
499 /*
500 ** Add the size of memory allocation "p" to the count in
501 ** *db->pnBytesFreed.
502 */
503 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){
504   *db->pnBytesFreed += sqlite3DbMallocSize(db,p);
505 }
506 
507 /*
508 ** Free memory that might be associated with a particular database
509 ** connection.
510 */
511 void sqlite3DbFree(sqlite3 *db, void *p){
512   assert( db==0 || sqlite3_mutex_held(db->mutex) );
513   if( p==0 ) return;
514   if( db ){
515     if( db->pnBytesFreed ){
516       measureAllocationSize(db, p);
517       return;
518     }
519     if( isLookaside(db, p) ){
520       LookasideSlot *pBuf = (LookasideSlot*)p;
521 #if SQLITE_DEBUG
522       /* Trash all content in the buffer being freed */
523       memset(p, 0xaa, db->lookaside.sz);
524 #endif
525       pBuf->pNext = db->lookaside.pFree;
526       db->lookaside.pFree = pBuf;
527       db->lookaside.nOut--;
528       return;
529     }
530   }
531   assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
532   assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
533   assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
534   sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
535   sqlite3_free(p);
536 }
537 
538 /*
539 ** Change the size of an existing memory allocation
540 */
541 void *sqlite3Realloc(void *pOld, u64 nBytes){
542   int nOld, nNew, nDiff;
543   void *pNew;
544   assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
545   assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) );
546   if( pOld==0 ){
547     return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */
548   }
549   if( nBytes==0 ){
550     sqlite3_free(pOld); /* IMP: R-26507-47431 */
551     return 0;
552   }
553   if( nBytes>=0x7fffff00 ){
554     /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
555     return 0;
556   }
557   nOld = sqlite3MallocSize(pOld);
558   /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
559   ** argument to xRealloc is always a value returned by a prior call to
560   ** xRoundup. */
561   nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
562   if( nOld==nNew ){
563     pNew = pOld;
564   }else if( sqlite3GlobalConfig.bMemstat ){
565     sqlite3_mutex_enter(mem0.mutex);
566     sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
567     nDiff = nNew - nOld;
568     if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >=
569           mem0.alarmThreshold-nDiff ){
570       sqlite3MallocAlarm(nDiff);
571     }
572     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
573     if( pNew==0 && mem0.alarmCallback ){
574       sqlite3MallocAlarm((int)nBytes);
575       pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
576     }
577     if( pNew ){
578       nNew = sqlite3MallocSize(pNew);
579       sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
580     }
581     sqlite3_mutex_leave(mem0.mutex);
582   }else{
583     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
584   }
585   assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */
586   return pNew;
587 }
588 
589 /*
590 ** The public interface to sqlite3Realloc.  Make sure that the memory
591 ** subsystem is initialized prior to invoking sqliteRealloc.
592 */
593 void *sqlite3_realloc(void *pOld, int n){
594 #ifndef SQLITE_OMIT_AUTOINIT
595   if( sqlite3_initialize() ) return 0;
596 #endif
597   if( n<0 ) n = 0;  /* IMP: R-26507-47431 */
598   return sqlite3Realloc(pOld, n);
599 }
600 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){
601 #ifndef SQLITE_OMIT_AUTOINIT
602   if( sqlite3_initialize() ) return 0;
603 #endif
604   return sqlite3Realloc(pOld, n);
605 }
606 
607 
608 /*
609 ** Allocate and zero memory.
610 */
611 void *sqlite3MallocZero(u64 n){
612   void *p = sqlite3Malloc(n);
613   if( p ){
614     memset(p, 0, (size_t)n);
615   }
616   return p;
617 }
618 
619 /*
620 ** Allocate and zero memory.  If the allocation fails, make
621 ** the mallocFailed flag in the connection pointer.
622 */
623 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){
624   void *p = sqlite3DbMallocRaw(db, n);
625   if( p ){
626     memset(p, 0, (size_t)n);
627   }
628   return p;
629 }
630 
631 /*
632 ** Allocate and zero memory.  If the allocation fails, make
633 ** the mallocFailed flag in the connection pointer.
634 **
635 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
636 ** failure on the same database connection) then always return 0.
637 ** Hence for a particular database connection, once malloc starts
638 ** failing, it fails consistently until mallocFailed is reset.
639 ** This is an important assumption.  There are many places in the
640 ** code that do things like this:
641 **
642 **         int *a = (int*)sqlite3DbMallocRaw(db, 100);
643 **         int *b = (int*)sqlite3DbMallocRaw(db, 200);
644 **         if( b ) a[10] = 9;
645 **
646 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
647 ** that all prior mallocs (ex: "a") worked too.
648 */
649 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){
650   void *p;
651   assert( db==0 || sqlite3_mutex_held(db->mutex) );
652   assert( db==0 || db->pnBytesFreed==0 );
653 #ifndef SQLITE_OMIT_LOOKASIDE
654   if( db ){
655     LookasideSlot *pBuf;
656     if( db->mallocFailed ){
657       return 0;
658     }
659     if( db->lookaside.bEnabled ){
660       if( n>db->lookaside.sz ){
661         db->lookaside.anStat[1]++;
662       }else if( (pBuf = db->lookaside.pFree)==0 ){
663         db->lookaside.anStat[2]++;
664       }else{
665         db->lookaside.pFree = pBuf->pNext;
666         db->lookaside.nOut++;
667         db->lookaside.anStat[0]++;
668         if( db->lookaside.nOut>db->lookaside.mxOut ){
669           db->lookaside.mxOut = db->lookaside.nOut;
670         }
671         return (void*)pBuf;
672       }
673     }
674   }
675 #else
676   if( db && db->mallocFailed ){
677     return 0;
678   }
679 #endif
680   p = sqlite3Malloc(n);
681   if( !p && db ){
682     db->mallocFailed = 1;
683   }
684   sqlite3MemdebugSetType(p,
685          (db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
686   return p;
687 }
688 
689 /*
690 ** Resize the block of memory pointed to by p to n bytes. If the
691 ** resize fails, set the mallocFailed flag in the connection object.
692 */
693 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){
694   void *pNew = 0;
695   assert( db!=0 );
696   assert( sqlite3_mutex_held(db->mutex) );
697   if( db->mallocFailed==0 ){
698     if( p==0 ){
699       return sqlite3DbMallocRaw(db, n);
700     }
701     if( isLookaside(db, p) ){
702       if( n<=db->lookaside.sz ){
703         return p;
704       }
705       pNew = sqlite3DbMallocRaw(db, n);
706       if( pNew ){
707         memcpy(pNew, p, db->lookaside.sz);
708         sqlite3DbFree(db, p);
709       }
710     }else{
711       assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
712       assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
713       sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
714       pNew = sqlite3_realloc64(p, n);
715       if( !pNew ){
716         db->mallocFailed = 1;
717       }
718       sqlite3MemdebugSetType(pNew,
719             (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
720     }
721   }
722   return pNew;
723 }
724 
725 /*
726 ** Attempt to reallocate p.  If the reallocation fails, then free p
727 ** and set the mallocFailed flag in the database connection.
728 */
729 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){
730   void *pNew;
731   pNew = sqlite3DbRealloc(db, p, n);
732   if( !pNew ){
733     sqlite3DbFree(db, p);
734   }
735   return pNew;
736 }
737 
738 /*
739 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
740 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
741 ** is because when memory debugging is turned on, these two functions are
742 ** called via macros that record the current file and line number in the
743 ** ThreadData structure.
744 */
745 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
746   char *zNew;
747   size_t n;
748   if( z==0 ){
749     return 0;
750   }
751   n = sqlite3Strlen30(z) + 1;
752   assert( (n&0x7fffffff)==n );
753   zNew = sqlite3DbMallocRaw(db, (int)n);
754   if( zNew ){
755     memcpy(zNew, z, n);
756   }
757   return zNew;
758 }
759 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){
760   char *zNew;
761   if( z==0 ){
762     return 0;
763   }
764   assert( (n&0x7fffffff)==n );
765   zNew = sqlite3DbMallocRaw(db, n+1);
766   if( zNew ){
767     memcpy(zNew, z, (size_t)n);
768     zNew[n] = 0;
769   }
770   return zNew;
771 }
772 
773 /*
774 ** Free any prior content in *pz and replace it with a copy of zNew.
775 */
776 void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){
777   sqlite3DbFree(db, *pz);
778   *pz = sqlite3DbStrDup(db, zNew);
779 }
780 
781 /*
782 ** Take actions at the end of an API call to indicate an OOM error
783 */
784 static SQLITE_NOINLINE int apiOomError(sqlite3 *db){
785   db->mallocFailed = 0;
786   sqlite3Error(db, SQLITE_NOMEM);
787   return SQLITE_NOMEM;
788 }
789 
790 /*
791 ** This function must be called before exiting any API function (i.e.
792 ** returning control to the user) that has called sqlite3_malloc or
793 ** sqlite3_realloc.
794 **
795 ** The returned value is normally a copy of the second argument to this
796 ** function. However, if a malloc() failure has occurred since the previous
797 ** invocation SQLITE_NOMEM is returned instead.
798 **
799 ** If the first argument, db, is not NULL and a malloc() error has occurred,
800 ** then the connection error-code (the value returned by sqlite3_errcode())
801 ** is set to SQLITE_NOMEM.
802 */
803 int sqlite3ApiExit(sqlite3* db, int rc){
804   /* If the db handle is not NULL, then we must hold the connection handle
805   ** mutex here. Otherwise the read (and possible write) of db->mallocFailed
806   ** is unsafe, as is the call to sqlite3Error().
807   */
808   assert( !db || sqlite3_mutex_held(db->mutex) );
809   if( db==0 ) return rc & 0xff;
810   if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){
811     return apiOomError(db);
812   }
813   return rc & db->errMask;
814 }
815