xref: /sqlite-3.40.0/src/malloc.c (revision e99cb2da)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** Memory allocation functions used throughout sqlite.
14 */
15 #include "sqliteInt.h"
16 #include <stdarg.h>
17 
18 /*
19 ** Attempt to release up to n bytes of non-essential memory currently
20 ** held by SQLite. An example of non-essential memory is memory used to
21 ** cache database pages that are not currently in use.
22 */
23 int sqlite3_release_memory(int n){
24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
25   return sqlite3PcacheReleaseMemory(n);
26 #else
27   /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
28   ** is a no-op returning zero if SQLite is not compiled with
29   ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
30   UNUSED_PARAMETER(n);
31   return 0;
32 #endif
33 }
34 
35 /*
36 ** Default value of the hard heap limit.  0 means "no limit".
37 */
38 #ifndef SQLITE_MAX_MEMORY
39 # define SQLITE_MAX_MEMORY 0
40 #endif
41 
42 /*
43 ** State information local to the memory allocation subsystem.
44 */
45 static SQLITE_WSD struct Mem0Global {
46   sqlite3_mutex *mutex;         /* Mutex to serialize access */
47   sqlite3_int64 alarmThreshold; /* The soft heap limit */
48   sqlite3_int64 hardLimit;      /* The hard upper bound on memory */
49 
50   /*
51   ** True if heap is nearly "full" where "full" is defined by the
52   ** sqlite3_soft_heap_limit() setting.
53   */
54   int nearlyFull;
55 } mem0 = { 0, SQLITE_MAX_MEMORY, SQLITE_MAX_MEMORY, 0 };
56 
57 #define mem0 GLOBAL(struct Mem0Global, mem0)
58 
59 /*
60 ** Return the memory allocator mutex. sqlite3_status() needs it.
61 */
62 sqlite3_mutex *sqlite3MallocMutex(void){
63   return mem0.mutex;
64 }
65 
66 #ifndef SQLITE_OMIT_DEPRECATED
67 /*
68 ** Deprecated external interface.  It used to set an alarm callback
69 ** that was invoked when memory usage grew too large.  Now it is a
70 ** no-op.
71 */
72 int sqlite3_memory_alarm(
73   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
74   void *pArg,
75   sqlite3_int64 iThreshold
76 ){
77   (void)xCallback;
78   (void)pArg;
79   (void)iThreshold;
80   return SQLITE_OK;
81 }
82 #endif
83 
84 /*
85 ** Set the soft heap-size limit for the library.  An argument of
86 ** zero disables the limit.  A negative argument is a no-op used to
87 ** obtain the return value.
88 **
89 ** The return value is the value of the heap limit just before this
90 ** interface was called.
91 **
92 ** If the hard heap limit is enabled, then the soft heap limit cannot
93 ** be disabled nor raised above the hard heap limit.
94 */
95 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
96   sqlite3_int64 priorLimit;
97   sqlite3_int64 excess;
98   sqlite3_int64 nUsed;
99 #ifndef SQLITE_OMIT_AUTOINIT
100   int rc = sqlite3_initialize();
101   if( rc ) return -1;
102 #endif
103   sqlite3_mutex_enter(mem0.mutex);
104   priorLimit = mem0.alarmThreshold;
105   if( n<0 ){
106     sqlite3_mutex_leave(mem0.mutex);
107     return priorLimit;
108   }
109   if( mem0.hardLimit>0 && (n>mem0.hardLimit || n==0) ){
110     n = mem0.hardLimit;
111   }
112   mem0.alarmThreshold = n;
113   nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
114   mem0.nearlyFull = (n>0 && n<=nUsed);
115   sqlite3_mutex_leave(mem0.mutex);
116   excess = sqlite3_memory_used() - n;
117   if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
118   return priorLimit;
119 }
120 void sqlite3_soft_heap_limit(int n){
121   if( n<0 ) n = 0;
122   sqlite3_soft_heap_limit64(n);
123 }
124 
125 /*
126 ** Set the hard heap-size limit for the library. An argument of zero
127 ** disables the hard heap limit.  A negative argument is a no-op used
128 ** to obtain the return value without affecting the hard heap limit.
129 **
130 ** The return value is the value of the hard heap limit just prior to
131 ** calling this interface.
132 **
133 ** Setting the hard heap limit will also activate the soft heap limit
134 ** and constrain the soft heap limit to be no more than the hard heap
135 ** limit.
136 */
137 sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 n){
138   sqlite3_int64 priorLimit;
139 #ifndef SQLITE_OMIT_AUTOINIT
140   int rc = sqlite3_initialize();
141   if( rc ) return -1;
142 #endif
143   sqlite3_mutex_enter(mem0.mutex);
144   priorLimit = mem0.hardLimit;
145   if( n>=0 ){
146     mem0.hardLimit = n;
147     if( n<mem0.alarmThreshold || mem0.alarmThreshold==0 ){
148       mem0.alarmThreshold = n;
149     }
150   }
151   sqlite3_mutex_leave(mem0.mutex);
152   return priorLimit;
153 }
154 
155 
156 /*
157 ** Initialize the memory allocation subsystem.
158 */
159 int sqlite3MallocInit(void){
160   int rc;
161   if( sqlite3GlobalConfig.m.xMalloc==0 ){
162     sqlite3MemSetDefault();
163   }
164   memset(&mem0, 0, sizeof(mem0));
165   mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
166   if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
167       || sqlite3GlobalConfig.nPage<=0 ){
168     sqlite3GlobalConfig.pPage = 0;
169     sqlite3GlobalConfig.szPage = 0;
170   }
171   rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
172   if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0));
173   return rc;
174 }
175 
176 /*
177 ** Return true if the heap is currently under memory pressure - in other
178 ** words if the amount of heap used is close to the limit set by
179 ** sqlite3_soft_heap_limit().
180 */
181 int sqlite3HeapNearlyFull(void){
182   return mem0.nearlyFull;
183 }
184 
185 /*
186 ** Deinitialize the memory allocation subsystem.
187 */
188 void sqlite3MallocEnd(void){
189   if( sqlite3GlobalConfig.m.xShutdown ){
190     sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
191   }
192   memset(&mem0, 0, sizeof(mem0));
193 }
194 
195 /*
196 ** Return the amount of memory currently checked out.
197 */
198 sqlite3_int64 sqlite3_memory_used(void){
199   sqlite3_int64 res, mx;
200   sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0);
201   return res;
202 }
203 
204 /*
205 ** Return the maximum amount of memory that has ever been
206 ** checked out since either the beginning of this process
207 ** or since the most recent reset.
208 */
209 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
210   sqlite3_int64 res, mx;
211   sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag);
212   return mx;
213 }
214 
215 /*
216 ** Trigger the alarm
217 */
218 static void sqlite3MallocAlarm(int nByte){
219   if( mem0.alarmThreshold<=0 ) return;
220   sqlite3_mutex_leave(mem0.mutex);
221   sqlite3_release_memory(nByte);
222   sqlite3_mutex_enter(mem0.mutex);
223 }
224 
225 /*
226 ** Do a memory allocation with statistics and alarms.  Assume the
227 ** lock is already held.
228 */
229 static void mallocWithAlarm(int n, void **pp){
230   void *p;
231   int nFull;
232   assert( sqlite3_mutex_held(mem0.mutex) );
233   assert( n>0 );
234 
235   /* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal
236   ** implementation of malloc_good_size(), which must be called in debug
237   ** mode and specifically when the DMD "Dark Matter Detector" is enabled
238   ** or else a crash results.  Hence, do not attempt to optimize out the
239   ** following xRoundup() call. */
240   nFull = sqlite3GlobalConfig.m.xRoundup(n);
241 
242   sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n);
243   if( mem0.alarmThreshold>0 ){
244     sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
245     if( nUsed >= mem0.alarmThreshold - nFull ){
246       mem0.nearlyFull = 1;
247       sqlite3MallocAlarm(nFull);
248       if( mem0.hardLimit ){
249         nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
250         if( nUsed >= mem0.hardLimit - nFull ){
251           *pp = 0;
252           return;
253         }
254       }
255     }else{
256       mem0.nearlyFull = 0;
257     }
258   }
259   p = sqlite3GlobalConfig.m.xMalloc(nFull);
260 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
261   if( p==0 && mem0.alarmThreshold>0 ){
262     sqlite3MallocAlarm(nFull);
263     p = sqlite3GlobalConfig.m.xMalloc(nFull);
264   }
265 #endif
266   if( p ){
267     nFull = sqlite3MallocSize(p);
268     sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
269     sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
270   }
271   *pp = p;
272 }
273 
274 /*
275 ** Allocate memory.  This routine is like sqlite3_malloc() except that it
276 ** assumes the memory subsystem has already been initialized.
277 */
278 void *sqlite3Malloc(u64 n){
279   void *p;
280   if( n==0 || n>=0x7fffff00 ){
281     /* A memory allocation of a number of bytes which is near the maximum
282     ** signed integer value might cause an integer overflow inside of the
283     ** xMalloc().  Hence we limit the maximum size to 0x7fffff00, giving
284     ** 255 bytes of overhead.  SQLite itself will never use anything near
285     ** this amount.  The only way to reach the limit is with sqlite3_malloc() */
286     p = 0;
287   }else if( sqlite3GlobalConfig.bMemstat ){
288     sqlite3_mutex_enter(mem0.mutex);
289     mallocWithAlarm((int)n, &p);
290     sqlite3_mutex_leave(mem0.mutex);
291   }else{
292     p = sqlite3GlobalConfig.m.xMalloc((int)n);
293   }
294   assert( EIGHT_BYTE_ALIGNMENT(p) );  /* IMP: R-11148-40995 */
295   return p;
296 }
297 
298 /*
299 ** This version of the memory allocation is for use by the application.
300 ** First make sure the memory subsystem is initialized, then do the
301 ** allocation.
302 */
303 void *sqlite3_malloc(int n){
304 #ifndef SQLITE_OMIT_AUTOINIT
305   if( sqlite3_initialize() ) return 0;
306 #endif
307   return n<=0 ? 0 : sqlite3Malloc(n);
308 }
309 void *sqlite3_malloc64(sqlite3_uint64 n){
310 #ifndef SQLITE_OMIT_AUTOINIT
311   if( sqlite3_initialize() ) return 0;
312 #endif
313   return sqlite3Malloc(n);
314 }
315 
316 /*
317 ** TRUE if p is a lookaside memory allocation from db
318 */
319 #ifndef SQLITE_OMIT_LOOKASIDE
320 static int isLookaside(sqlite3 *db, void *p){
321   return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pEnd);
322 }
323 #else
324 #define isLookaside(A,B) 0
325 #endif
326 
327 /*
328 ** Return the size of a memory allocation previously obtained from
329 ** sqlite3Malloc() or sqlite3_malloc().
330 */
331 int sqlite3MallocSize(void *p){
332   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
333   return sqlite3GlobalConfig.m.xSize(p);
334 }
335 int sqlite3DbMallocSize(sqlite3 *db, void *p){
336   assert( p!=0 );
337   if( db==0 || !isLookaside(db,p) ){
338 #ifdef SQLITE_DEBUG
339     if( db==0 ){
340       assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
341       assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
342     }else{
343       assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
344       assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
345     }
346 #endif
347     return sqlite3GlobalConfig.m.xSize(p);
348   }else{
349     assert( sqlite3_mutex_held(db->mutex) );
350     return db->lookaside.szTrue;
351   }
352 }
353 sqlite3_uint64 sqlite3_msize(void *p){
354   assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
355   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
356   return p ? sqlite3GlobalConfig.m.xSize(p) : 0;
357 }
358 
359 /*
360 ** Free memory previously obtained from sqlite3Malloc().
361 */
362 void sqlite3_free(void *p){
363   if( p==0 ) return;  /* IMP: R-49053-54554 */
364   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
365   assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
366   if( sqlite3GlobalConfig.bMemstat ){
367     sqlite3_mutex_enter(mem0.mutex);
368     sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p));
369     sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
370     sqlite3GlobalConfig.m.xFree(p);
371     sqlite3_mutex_leave(mem0.mutex);
372   }else{
373     sqlite3GlobalConfig.m.xFree(p);
374   }
375 }
376 
377 /*
378 ** Add the size of memory allocation "p" to the count in
379 ** *db->pnBytesFreed.
380 */
381 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){
382   *db->pnBytesFreed += sqlite3DbMallocSize(db,p);
383 }
384 
385 /*
386 ** Free memory that might be associated with a particular database
387 ** connection.  Calling sqlite3DbFree(D,X) for X==0 is a harmless no-op.
388 ** The sqlite3DbFreeNN(D,X) version requires that X be non-NULL.
389 */
390 void sqlite3DbFreeNN(sqlite3 *db, void *p){
391   assert( db==0 || sqlite3_mutex_held(db->mutex) );
392   assert( p!=0 );
393   if( db ){
394     if( db->pnBytesFreed ){
395       measureAllocationSize(db, p);
396       return;
397     }
398     if( isLookaside(db, p) ){
399       LookasideSlot *pBuf = (LookasideSlot*)p;
400 #ifdef SQLITE_DEBUG
401       /* Trash all content in the buffer being freed */
402       memset(p, 0xaa, db->lookaside.szTrue);
403 #endif
404       pBuf->pNext = db->lookaside.pFree;
405       db->lookaside.pFree = pBuf;
406       return;
407     }
408   }
409   assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
410   assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
411   assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
412   sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
413   sqlite3_free(p);
414 }
415 void sqlite3DbFree(sqlite3 *db, void *p){
416   assert( db==0 || sqlite3_mutex_held(db->mutex) );
417   if( p ) sqlite3DbFreeNN(db, p);
418 }
419 
420 /*
421 ** Change the size of an existing memory allocation
422 */
423 void *sqlite3Realloc(void *pOld, u64 nBytes){
424   int nOld, nNew, nDiff;
425   void *pNew;
426   assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
427   assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) );
428   if( pOld==0 ){
429     return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */
430   }
431   if( nBytes==0 ){
432     sqlite3_free(pOld); /* IMP: R-26507-47431 */
433     return 0;
434   }
435   if( nBytes>=0x7fffff00 ){
436     /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
437     return 0;
438   }
439   nOld = sqlite3MallocSize(pOld);
440   /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
441   ** argument to xRealloc is always a value returned by a prior call to
442   ** xRoundup. */
443   nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
444   if( nOld==nNew ){
445     pNew = pOld;
446   }else if( sqlite3GlobalConfig.bMemstat ){
447     sqlite3_mutex_enter(mem0.mutex);
448     sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
449     nDiff = nNew - nOld;
450     if( nDiff>0 && sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >=
451           mem0.alarmThreshold-nDiff ){
452       sqlite3MallocAlarm(nDiff);
453     }
454     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
455     if( pNew==0 && mem0.alarmThreshold>0 ){
456       sqlite3MallocAlarm((int)nBytes);
457       pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
458     }
459     if( pNew ){
460       nNew = sqlite3MallocSize(pNew);
461       sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
462     }
463     sqlite3_mutex_leave(mem0.mutex);
464   }else{
465     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
466   }
467   assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */
468   return pNew;
469 }
470 
471 /*
472 ** The public interface to sqlite3Realloc.  Make sure that the memory
473 ** subsystem is initialized prior to invoking sqliteRealloc.
474 */
475 void *sqlite3_realloc(void *pOld, int n){
476 #ifndef SQLITE_OMIT_AUTOINIT
477   if( sqlite3_initialize() ) return 0;
478 #endif
479   if( n<0 ) n = 0;  /* IMP: R-26507-47431 */
480   return sqlite3Realloc(pOld, n);
481 }
482 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){
483 #ifndef SQLITE_OMIT_AUTOINIT
484   if( sqlite3_initialize() ) return 0;
485 #endif
486   return sqlite3Realloc(pOld, n);
487 }
488 
489 
490 /*
491 ** Allocate and zero memory.
492 */
493 void *sqlite3MallocZero(u64 n){
494   void *p = sqlite3Malloc(n);
495   if( p ){
496     memset(p, 0, (size_t)n);
497   }
498   return p;
499 }
500 
501 /*
502 ** Allocate and zero memory.  If the allocation fails, make
503 ** the mallocFailed flag in the connection pointer.
504 */
505 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){
506   void *p;
507   testcase( db==0 );
508   p = sqlite3DbMallocRaw(db, n);
509   if( p ) memset(p, 0, (size_t)n);
510   return p;
511 }
512 
513 
514 /* Finish the work of sqlite3DbMallocRawNN for the unusual and
515 ** slower case when the allocation cannot be fulfilled using lookaside.
516 */
517 static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){
518   void *p;
519   assert( db!=0 );
520   p = sqlite3Malloc(n);
521   if( !p ) sqlite3OomFault(db);
522   sqlite3MemdebugSetType(p,
523          (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
524   return p;
525 }
526 
527 /*
528 ** Allocate memory, either lookaside (if possible) or heap.
529 ** If the allocation fails, set the mallocFailed flag in
530 ** the connection pointer.
531 **
532 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
533 ** failure on the same database connection) then always return 0.
534 ** Hence for a particular database connection, once malloc starts
535 ** failing, it fails consistently until mallocFailed is reset.
536 ** This is an important assumption.  There are many places in the
537 ** code that do things like this:
538 **
539 **         int *a = (int*)sqlite3DbMallocRaw(db, 100);
540 **         int *b = (int*)sqlite3DbMallocRaw(db, 200);
541 **         if( b ) a[10] = 9;
542 **
543 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
544 ** that all prior mallocs (ex: "a") worked too.
545 **
546 ** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is
547 ** not a NULL pointer.
548 */
549 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){
550   void *p;
551   if( db ) return sqlite3DbMallocRawNN(db, n);
552   p = sqlite3Malloc(n);
553   sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
554   return p;
555 }
556 void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){
557 #ifndef SQLITE_OMIT_LOOKASIDE
558   LookasideSlot *pBuf;
559   assert( db!=0 );
560   assert( sqlite3_mutex_held(db->mutex) );
561   assert( db->pnBytesFreed==0 );
562   if( n>db->lookaside.sz ){
563     if( db->lookaside.bDisable ){
564       return db->mallocFailed ? 0 : dbMallocRawFinish(db, n);
565     }
566     db->lookaside.anStat[1]++;
567   }else if( (pBuf = db->lookaside.pFree)!=0 ){
568     db->lookaside.pFree = pBuf->pNext;
569     db->lookaside.anStat[0]++;
570     return (void*)pBuf;
571   }else if( (pBuf = db->lookaside.pInit)!=0 ){
572     db->lookaside.pInit = pBuf->pNext;
573     db->lookaside.anStat[0]++;
574     return (void*)pBuf;
575   }else{
576     db->lookaside.anStat[2]++;
577   }
578 #else
579   assert( db!=0 );
580   assert( sqlite3_mutex_held(db->mutex) );
581   assert( db->pnBytesFreed==0 );
582   if( db->mallocFailed ){
583     return 0;
584   }
585 #endif
586   return dbMallocRawFinish(db, n);
587 }
588 
589 /* Forward declaration */
590 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n);
591 
592 /*
593 ** Resize the block of memory pointed to by p to n bytes. If the
594 ** resize fails, set the mallocFailed flag in the connection object.
595 */
596 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){
597   assert( db!=0 );
598   if( p==0 ) return sqlite3DbMallocRawNN(db, n);
599   assert( sqlite3_mutex_held(db->mutex) );
600   if( isLookaside(db,p) && n<=db->lookaside.szTrue ) return p;
601   return dbReallocFinish(db, p, n);
602 }
603 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){
604   void *pNew = 0;
605   assert( db!=0 );
606   assert( p!=0 );
607   if( db->mallocFailed==0 ){
608     if( isLookaside(db, p) ){
609       pNew = sqlite3DbMallocRawNN(db, n);
610       if( pNew ){
611         memcpy(pNew, p, db->lookaside.szTrue);
612         sqlite3DbFree(db, p);
613       }
614     }else{
615       assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
616       assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
617       sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
618       pNew = sqlite3_realloc64(p, n);
619       if( !pNew ){
620         sqlite3OomFault(db);
621       }
622       sqlite3MemdebugSetType(pNew,
623             (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
624     }
625   }
626   return pNew;
627 }
628 
629 /*
630 ** Attempt to reallocate p.  If the reallocation fails, then free p
631 ** and set the mallocFailed flag in the database connection.
632 */
633 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){
634   void *pNew;
635   pNew = sqlite3DbRealloc(db, p, n);
636   if( !pNew ){
637     sqlite3DbFree(db, p);
638   }
639   return pNew;
640 }
641 
642 /*
643 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
644 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
645 ** is because when memory debugging is turned on, these two functions are
646 ** called via macros that record the current file and line number in the
647 ** ThreadData structure.
648 */
649 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
650   char *zNew;
651   size_t n;
652   if( z==0 ){
653     return 0;
654   }
655   n = strlen(z) + 1;
656   zNew = sqlite3DbMallocRaw(db, n);
657   if( zNew ){
658     memcpy(zNew, z, n);
659   }
660   return zNew;
661 }
662 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){
663   char *zNew;
664   assert( db!=0 );
665   if( z==0 ){
666     return 0;
667   }
668   assert( (n&0x7fffffff)==n );
669   zNew = sqlite3DbMallocRawNN(db, n+1);
670   if( zNew ){
671     memcpy(zNew, z, (size_t)n);
672     zNew[n] = 0;
673   }
674   return zNew;
675 }
676 
677 /*
678 ** The text between zStart and zEnd represents a phrase within a larger
679 ** SQL statement.  Make a copy of this phrase in space obtained form
680 ** sqlite3DbMalloc().  Omit leading and trailing whitespace.
681 */
682 char *sqlite3DbSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){
683   int n;
684   while( sqlite3Isspace(zStart[0]) ) zStart++;
685   n = (int)(zEnd - zStart);
686   while( ALWAYS(n>0) && sqlite3Isspace(zStart[n-1]) ) n--;
687   return sqlite3DbStrNDup(db, zStart, n);
688 }
689 
690 /*
691 ** Free any prior content in *pz and replace it with a copy of zNew.
692 */
693 void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){
694   sqlite3DbFree(db, *pz);
695   *pz = sqlite3DbStrDup(db, zNew);
696 }
697 
698 /*
699 ** Call this routine to record the fact that an OOM (out-of-memory) error
700 ** has happened.  This routine will set db->mallocFailed, and also
701 ** temporarily disable the lookaside memory allocator and interrupt
702 ** any running VDBEs.
703 */
704 void sqlite3OomFault(sqlite3 *db){
705   if( db->mallocFailed==0 && db->bBenignMalloc==0 ){
706     db->mallocFailed = 1;
707     if( db->nVdbeExec>0 ){
708       db->u1.isInterrupted = 1;
709     }
710     DisableLookaside;
711     if( db->pParse ){
712       db->pParse->rc = SQLITE_NOMEM_BKPT;
713     }
714   }
715 }
716 
717 /*
718 ** This routine reactivates the memory allocator and clears the
719 ** db->mallocFailed flag as necessary.
720 **
721 ** The memory allocator is not restarted if there are running
722 ** VDBEs.
723 */
724 void sqlite3OomClear(sqlite3 *db){
725   if( db->mallocFailed && db->nVdbeExec==0 ){
726     db->mallocFailed = 0;
727     db->u1.isInterrupted = 0;
728     assert( db->lookaside.bDisable>0 );
729     EnableLookaside;
730   }
731 }
732 
733 /*
734 ** Take actions at the end of an API call to indicate an OOM error
735 */
736 static SQLITE_NOINLINE int apiOomError(sqlite3 *db){
737   sqlite3OomClear(db);
738   sqlite3Error(db, SQLITE_NOMEM);
739   return SQLITE_NOMEM_BKPT;
740 }
741 
742 /*
743 ** This function must be called before exiting any API function (i.e.
744 ** returning control to the user) that has called sqlite3_malloc or
745 ** sqlite3_realloc.
746 **
747 ** The returned value is normally a copy of the second argument to this
748 ** function. However, if a malloc() failure has occurred since the previous
749 ** invocation SQLITE_NOMEM is returned instead.
750 **
751 ** If an OOM as occurred, then the connection error-code (the value
752 ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM.
753 */
754 int sqlite3ApiExit(sqlite3* db, int rc){
755   /* If the db handle must hold the connection handle mutex here.
756   ** Otherwise the read (and possible write) of db->mallocFailed
757   ** is unsafe, as is the call to sqlite3Error().
758   */
759   assert( db!=0 );
760   assert( sqlite3_mutex_held(db->mutex) );
761   if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){
762     return apiOomError(db);
763   }
764   return rc & db->errMask;
765 }
766