1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** Memory allocation functions used throughout sqlite. 14 */ 15 #include "sqliteInt.h" 16 #include <stdarg.h> 17 18 /* 19 ** Attempt to release up to n bytes of non-essential memory currently 20 ** held by SQLite. An example of non-essential memory is memory used to 21 ** cache database pages that are not currently in use. 22 */ 23 int sqlite3_release_memory(int n){ 24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 25 return sqlite3PcacheReleaseMemory(n); 26 #else 27 /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine 28 ** is a no-op returning zero if SQLite is not compiled with 29 ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ 30 UNUSED_PARAMETER(n); 31 return 0; 32 #endif 33 } 34 35 /* 36 ** Default value of the hard heap limit. 0 means "no limit". 37 */ 38 #ifndef SQLITE_MAX_MEMORY 39 # define SQLITE_MAX_MEMORY 0 40 #endif 41 42 /* 43 ** State information local to the memory allocation subsystem. 44 */ 45 static SQLITE_WSD struct Mem0Global { 46 sqlite3_mutex *mutex; /* Mutex to serialize access */ 47 sqlite3_int64 alarmThreshold; /* The soft heap limit */ 48 sqlite3_int64 hardLimit; /* The hard upper bound on memory */ 49 50 /* 51 ** True if heap is nearly "full" where "full" is defined by the 52 ** sqlite3_soft_heap_limit() setting. 53 */ 54 int nearlyFull; 55 } mem0 = { 0, SQLITE_MAX_MEMORY, SQLITE_MAX_MEMORY, 0 }; 56 57 #define mem0 GLOBAL(struct Mem0Global, mem0) 58 59 /* 60 ** Return the memory allocator mutex. sqlite3_status() needs it. 61 */ 62 sqlite3_mutex *sqlite3MallocMutex(void){ 63 return mem0.mutex; 64 } 65 66 #ifndef SQLITE_OMIT_DEPRECATED 67 /* 68 ** Deprecated external interface. It used to set an alarm callback 69 ** that was invoked when memory usage grew too large. Now it is a 70 ** no-op. 71 */ 72 int sqlite3_memory_alarm( 73 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 74 void *pArg, 75 sqlite3_int64 iThreshold 76 ){ 77 (void)xCallback; 78 (void)pArg; 79 (void)iThreshold; 80 return SQLITE_OK; 81 } 82 #endif 83 84 /* 85 ** Set the soft heap-size limit for the library. An argument of 86 ** zero disables the limit. A negative argument is a no-op used to 87 ** obtain the return value. 88 ** 89 ** The return value is the value of the heap limit just before this 90 ** interface was called. 91 ** 92 ** If the hard heap limit is enabled, then the soft heap limit cannot 93 ** be disabled nor raised above the hard heap limit. 94 */ 95 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ 96 sqlite3_int64 priorLimit; 97 sqlite3_int64 excess; 98 sqlite3_int64 nUsed; 99 #ifndef SQLITE_OMIT_AUTOINIT 100 int rc = sqlite3_initialize(); 101 if( rc ) return -1; 102 #endif 103 sqlite3_mutex_enter(mem0.mutex); 104 priorLimit = mem0.alarmThreshold; 105 if( n<0 ){ 106 sqlite3_mutex_leave(mem0.mutex); 107 return priorLimit; 108 } 109 if( mem0.hardLimit>0 && (n>mem0.hardLimit || n==0) ){ 110 n = mem0.hardLimit; 111 } 112 mem0.alarmThreshold = n; 113 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 114 mem0.nearlyFull = (n>0 && n<=nUsed); 115 sqlite3_mutex_leave(mem0.mutex); 116 excess = sqlite3_memory_used() - n; 117 if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); 118 return priorLimit; 119 } 120 void sqlite3_soft_heap_limit(int n){ 121 if( n<0 ) n = 0; 122 sqlite3_soft_heap_limit64(n); 123 } 124 125 /* 126 ** Set the hard heap-size limit for the library. An argument of zero 127 ** disables the hard heap limit. A negative argument is a no-op used 128 ** to obtain the return value without affecting the hard heap limit. 129 ** 130 ** The return value is the value of the hard heap limit just prior to 131 ** calling this interface. 132 ** 133 ** Setting the hard heap limit will also activate the soft heap limit 134 ** and constrain the soft heap limit to be no more than the hard heap 135 ** limit. 136 */ 137 sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 n){ 138 sqlite3_int64 priorLimit; 139 #ifndef SQLITE_OMIT_AUTOINIT 140 int rc = sqlite3_initialize(); 141 if( rc ) return -1; 142 #endif 143 sqlite3_mutex_enter(mem0.mutex); 144 priorLimit = mem0.hardLimit; 145 if( n>=0 ){ 146 mem0.hardLimit = n; 147 if( n<mem0.alarmThreshold || mem0.alarmThreshold==0 ){ 148 mem0.alarmThreshold = n; 149 } 150 } 151 sqlite3_mutex_leave(mem0.mutex); 152 return priorLimit; 153 } 154 155 156 /* 157 ** Initialize the memory allocation subsystem. 158 */ 159 int sqlite3MallocInit(void){ 160 int rc; 161 if( sqlite3GlobalConfig.m.xMalloc==0 ){ 162 sqlite3MemSetDefault(); 163 } 164 memset(&mem0, 0, sizeof(mem0)); 165 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 166 if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 167 || sqlite3GlobalConfig.nPage<=0 ){ 168 sqlite3GlobalConfig.pPage = 0; 169 sqlite3GlobalConfig.szPage = 0; 170 } 171 rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); 172 if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0)); 173 return rc; 174 } 175 176 /* 177 ** Return true if the heap is currently under memory pressure - in other 178 ** words if the amount of heap used is close to the limit set by 179 ** sqlite3_soft_heap_limit(). 180 */ 181 int sqlite3HeapNearlyFull(void){ 182 return mem0.nearlyFull; 183 } 184 185 /* 186 ** Deinitialize the memory allocation subsystem. 187 */ 188 void sqlite3MallocEnd(void){ 189 if( sqlite3GlobalConfig.m.xShutdown ){ 190 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); 191 } 192 memset(&mem0, 0, sizeof(mem0)); 193 } 194 195 /* 196 ** Return the amount of memory currently checked out. 197 */ 198 sqlite3_int64 sqlite3_memory_used(void){ 199 sqlite3_int64 res, mx; 200 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0); 201 return res; 202 } 203 204 /* 205 ** Return the maximum amount of memory that has ever been 206 ** checked out since either the beginning of this process 207 ** or since the most recent reset. 208 */ 209 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ 210 sqlite3_int64 res, mx; 211 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag); 212 return mx; 213 } 214 215 /* 216 ** Trigger the alarm 217 */ 218 static void sqlite3MallocAlarm(int nByte){ 219 if( mem0.alarmThreshold<=0 ) return; 220 sqlite3_mutex_leave(mem0.mutex); 221 sqlite3_release_memory(nByte); 222 sqlite3_mutex_enter(mem0.mutex); 223 } 224 225 /* 226 ** Do a memory allocation with statistics and alarms. Assume the 227 ** lock is already held. 228 */ 229 static void mallocWithAlarm(int n, void **pp){ 230 void *p; 231 int nFull; 232 assert( sqlite3_mutex_held(mem0.mutex) ); 233 assert( n>0 ); 234 235 /* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal 236 ** implementation of malloc_good_size(), which must be called in debug 237 ** mode and specifically when the DMD "Dark Matter Detector" is enabled 238 ** or else a crash results. Hence, do not attempt to optimize out the 239 ** following xRoundup() call. */ 240 nFull = sqlite3GlobalConfig.m.xRoundup(n); 241 242 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n); 243 if( mem0.alarmThreshold>0 ){ 244 sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 245 if( nUsed >= mem0.alarmThreshold - nFull ){ 246 mem0.nearlyFull = 1; 247 sqlite3MallocAlarm(nFull); 248 if( mem0.hardLimit ){ 249 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 250 if( nUsed >= mem0.hardLimit - nFull ){ 251 *pp = 0; 252 return; 253 } 254 } 255 }else{ 256 mem0.nearlyFull = 0; 257 } 258 } 259 p = sqlite3GlobalConfig.m.xMalloc(nFull); 260 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 261 if( p==0 && mem0.alarmThreshold>0 ){ 262 sqlite3MallocAlarm(nFull); 263 p = sqlite3GlobalConfig.m.xMalloc(nFull); 264 } 265 #endif 266 if( p ){ 267 nFull = sqlite3MallocSize(p); 268 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull); 269 sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1); 270 } 271 *pp = p; 272 } 273 274 /* 275 ** Allocate memory. This routine is like sqlite3_malloc() except that it 276 ** assumes the memory subsystem has already been initialized. 277 */ 278 void *sqlite3Malloc(u64 n){ 279 void *p; 280 if( n==0 || n>=0x7fffff00 ){ 281 /* A memory allocation of a number of bytes which is near the maximum 282 ** signed integer value might cause an integer overflow inside of the 283 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving 284 ** 255 bytes of overhead. SQLite itself will never use anything near 285 ** this amount. The only way to reach the limit is with sqlite3_malloc() */ 286 p = 0; 287 }else if( sqlite3GlobalConfig.bMemstat ){ 288 sqlite3_mutex_enter(mem0.mutex); 289 mallocWithAlarm((int)n, &p); 290 sqlite3_mutex_leave(mem0.mutex); 291 }else{ 292 p = sqlite3GlobalConfig.m.xMalloc((int)n); 293 } 294 assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */ 295 return p; 296 } 297 298 /* 299 ** This version of the memory allocation is for use by the application. 300 ** First make sure the memory subsystem is initialized, then do the 301 ** allocation. 302 */ 303 void *sqlite3_malloc(int n){ 304 #ifndef SQLITE_OMIT_AUTOINIT 305 if( sqlite3_initialize() ) return 0; 306 #endif 307 return n<=0 ? 0 : sqlite3Malloc(n); 308 } 309 void *sqlite3_malloc64(sqlite3_uint64 n){ 310 #ifndef SQLITE_OMIT_AUTOINIT 311 if( sqlite3_initialize() ) return 0; 312 #endif 313 return sqlite3Malloc(n); 314 } 315 316 /* 317 ** TRUE if p is a lookaside memory allocation from db 318 */ 319 #ifndef SQLITE_OMIT_LOOKASIDE 320 static int isLookaside(sqlite3 *db, void *p){ 321 return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pEnd); 322 } 323 #else 324 #define isLookaside(A,B) 0 325 #endif 326 327 /* 328 ** Return the size of a memory allocation previously obtained from 329 ** sqlite3Malloc() or sqlite3_malloc(). 330 */ 331 int sqlite3MallocSize(void *p){ 332 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 333 return sqlite3GlobalConfig.m.xSize(p); 334 } 335 int sqlite3DbMallocSize(sqlite3 *db, void *p){ 336 assert( p!=0 ); 337 if( db==0 || !isLookaside(db,p) ){ 338 #ifdef SQLITE_DEBUG 339 if( db==0 ){ 340 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 341 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 342 }else{ 343 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 344 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 345 } 346 #endif 347 return sqlite3GlobalConfig.m.xSize(p); 348 }else{ 349 assert( sqlite3_mutex_held(db->mutex) ); 350 return db->lookaside.szTrue; 351 } 352 } 353 sqlite3_uint64 sqlite3_msize(void *p){ 354 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 355 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 356 return p ? sqlite3GlobalConfig.m.xSize(p) : 0; 357 } 358 359 /* 360 ** Free memory previously obtained from sqlite3Malloc(). 361 */ 362 void sqlite3_free(void *p){ 363 if( p==0 ) return; /* IMP: R-49053-54554 */ 364 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 365 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 366 if( sqlite3GlobalConfig.bMemstat ){ 367 sqlite3_mutex_enter(mem0.mutex); 368 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p)); 369 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); 370 sqlite3GlobalConfig.m.xFree(p); 371 sqlite3_mutex_leave(mem0.mutex); 372 }else{ 373 sqlite3GlobalConfig.m.xFree(p); 374 } 375 } 376 377 /* 378 ** Add the size of memory allocation "p" to the count in 379 ** *db->pnBytesFreed. 380 */ 381 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){ 382 *db->pnBytesFreed += sqlite3DbMallocSize(db,p); 383 } 384 385 /* 386 ** Free memory that might be associated with a particular database 387 ** connection. Calling sqlite3DbFree(D,X) for X==0 is a harmless no-op. 388 ** The sqlite3DbFreeNN(D,X) version requires that X be non-NULL. 389 */ 390 void sqlite3DbFreeNN(sqlite3 *db, void *p){ 391 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 392 assert( p!=0 ); 393 if( db ){ 394 if( db->pnBytesFreed ){ 395 measureAllocationSize(db, p); 396 return; 397 } 398 if( isLookaside(db, p) ){ 399 LookasideSlot *pBuf = (LookasideSlot*)p; 400 #ifdef SQLITE_DEBUG 401 /* Trash all content in the buffer being freed */ 402 memset(p, 0xaa, db->lookaside.szTrue); 403 #endif 404 pBuf->pNext = db->lookaside.pFree; 405 db->lookaside.pFree = pBuf; 406 return; 407 } 408 } 409 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 410 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 411 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); 412 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 413 sqlite3_free(p); 414 } 415 void sqlite3DbFree(sqlite3 *db, void *p){ 416 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 417 if( p ) sqlite3DbFreeNN(db, p); 418 } 419 420 /* 421 ** Change the size of an existing memory allocation 422 */ 423 void *sqlite3Realloc(void *pOld, u64 nBytes){ 424 int nOld, nNew, nDiff; 425 void *pNew; 426 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); 427 assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) ); 428 if( pOld==0 ){ 429 return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */ 430 } 431 if( nBytes==0 ){ 432 sqlite3_free(pOld); /* IMP: R-26507-47431 */ 433 return 0; 434 } 435 if( nBytes>=0x7fffff00 ){ 436 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ 437 return 0; 438 } 439 nOld = sqlite3MallocSize(pOld); 440 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second 441 ** argument to xRealloc is always a value returned by a prior call to 442 ** xRoundup. */ 443 nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes); 444 if( nOld==nNew ){ 445 pNew = pOld; 446 }else if( sqlite3GlobalConfig.bMemstat ){ 447 sqlite3_mutex_enter(mem0.mutex); 448 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes); 449 nDiff = nNew - nOld; 450 if( nDiff>0 && sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= 451 mem0.alarmThreshold-nDiff ){ 452 sqlite3MallocAlarm(nDiff); 453 } 454 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 455 if( pNew==0 && mem0.alarmThreshold>0 ){ 456 sqlite3MallocAlarm((int)nBytes); 457 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 458 } 459 if( pNew ){ 460 nNew = sqlite3MallocSize(pNew); 461 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld); 462 } 463 sqlite3_mutex_leave(mem0.mutex); 464 }else{ 465 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 466 } 467 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */ 468 return pNew; 469 } 470 471 /* 472 ** The public interface to sqlite3Realloc. Make sure that the memory 473 ** subsystem is initialized prior to invoking sqliteRealloc. 474 */ 475 void *sqlite3_realloc(void *pOld, int n){ 476 #ifndef SQLITE_OMIT_AUTOINIT 477 if( sqlite3_initialize() ) return 0; 478 #endif 479 if( n<0 ) n = 0; /* IMP: R-26507-47431 */ 480 return sqlite3Realloc(pOld, n); 481 } 482 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){ 483 #ifndef SQLITE_OMIT_AUTOINIT 484 if( sqlite3_initialize() ) return 0; 485 #endif 486 return sqlite3Realloc(pOld, n); 487 } 488 489 490 /* 491 ** Allocate and zero memory. 492 */ 493 void *sqlite3MallocZero(u64 n){ 494 void *p = sqlite3Malloc(n); 495 if( p ){ 496 memset(p, 0, (size_t)n); 497 } 498 return p; 499 } 500 501 /* 502 ** Allocate and zero memory. If the allocation fails, make 503 ** the mallocFailed flag in the connection pointer. 504 */ 505 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){ 506 void *p; 507 testcase( db==0 ); 508 p = sqlite3DbMallocRaw(db, n); 509 if( p ) memset(p, 0, (size_t)n); 510 return p; 511 } 512 513 514 /* Finish the work of sqlite3DbMallocRawNN for the unusual and 515 ** slower case when the allocation cannot be fulfilled using lookaside. 516 */ 517 static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){ 518 void *p; 519 assert( db!=0 ); 520 p = sqlite3Malloc(n); 521 if( !p ) sqlite3OomFault(db); 522 sqlite3MemdebugSetType(p, 523 (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP); 524 return p; 525 } 526 527 /* 528 ** Allocate memory, either lookaside (if possible) or heap. 529 ** If the allocation fails, set the mallocFailed flag in 530 ** the connection pointer. 531 ** 532 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc 533 ** failure on the same database connection) then always return 0. 534 ** Hence for a particular database connection, once malloc starts 535 ** failing, it fails consistently until mallocFailed is reset. 536 ** This is an important assumption. There are many places in the 537 ** code that do things like this: 538 ** 539 ** int *a = (int*)sqlite3DbMallocRaw(db, 100); 540 ** int *b = (int*)sqlite3DbMallocRaw(db, 200); 541 ** if( b ) a[10] = 9; 542 ** 543 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed 544 ** that all prior mallocs (ex: "a") worked too. 545 ** 546 ** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is 547 ** not a NULL pointer. 548 */ 549 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){ 550 void *p; 551 if( db ) return sqlite3DbMallocRawNN(db, n); 552 p = sqlite3Malloc(n); 553 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 554 return p; 555 } 556 void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){ 557 #ifndef SQLITE_OMIT_LOOKASIDE 558 LookasideSlot *pBuf; 559 assert( db!=0 ); 560 assert( sqlite3_mutex_held(db->mutex) ); 561 assert( db->pnBytesFreed==0 ); 562 if( n>db->lookaside.sz ){ 563 if( db->lookaside.bDisable ){ 564 return db->mallocFailed ? 0 : dbMallocRawFinish(db, n); 565 } 566 db->lookaside.anStat[1]++; 567 }else if( (pBuf = db->lookaside.pFree)!=0 ){ 568 db->lookaside.pFree = pBuf->pNext; 569 db->lookaside.anStat[0]++; 570 return (void*)pBuf; 571 }else if( (pBuf = db->lookaside.pInit)!=0 ){ 572 db->lookaside.pInit = pBuf->pNext; 573 db->lookaside.anStat[0]++; 574 return (void*)pBuf; 575 }else{ 576 db->lookaside.anStat[2]++; 577 } 578 #else 579 assert( db!=0 ); 580 assert( sqlite3_mutex_held(db->mutex) ); 581 assert( db->pnBytesFreed==0 ); 582 if( db->mallocFailed ){ 583 return 0; 584 } 585 #endif 586 return dbMallocRawFinish(db, n); 587 } 588 589 /* Forward declaration */ 590 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n); 591 592 /* 593 ** Resize the block of memory pointed to by p to n bytes. If the 594 ** resize fails, set the mallocFailed flag in the connection object. 595 */ 596 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){ 597 assert( db!=0 ); 598 if( p==0 ) return sqlite3DbMallocRawNN(db, n); 599 assert( sqlite3_mutex_held(db->mutex) ); 600 if( isLookaside(db,p) && n<=db->lookaside.szTrue ) return p; 601 return dbReallocFinish(db, p, n); 602 } 603 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){ 604 void *pNew = 0; 605 assert( db!=0 ); 606 assert( p!=0 ); 607 if( db->mallocFailed==0 ){ 608 if( isLookaside(db, p) ){ 609 pNew = sqlite3DbMallocRawNN(db, n); 610 if( pNew ){ 611 memcpy(pNew, p, db->lookaside.szTrue); 612 sqlite3DbFree(db, p); 613 } 614 }else{ 615 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 616 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 617 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 618 pNew = sqlite3_realloc64(p, n); 619 if( !pNew ){ 620 sqlite3OomFault(db); 621 } 622 sqlite3MemdebugSetType(pNew, 623 (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); 624 } 625 } 626 return pNew; 627 } 628 629 /* 630 ** Attempt to reallocate p. If the reallocation fails, then free p 631 ** and set the mallocFailed flag in the database connection. 632 */ 633 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){ 634 void *pNew; 635 pNew = sqlite3DbRealloc(db, p, n); 636 if( !pNew ){ 637 sqlite3DbFree(db, p); 638 } 639 return pNew; 640 } 641 642 /* 643 ** Make a copy of a string in memory obtained from sqliteMalloc(). These 644 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This 645 ** is because when memory debugging is turned on, these two functions are 646 ** called via macros that record the current file and line number in the 647 ** ThreadData structure. 648 */ 649 char *sqlite3DbStrDup(sqlite3 *db, const char *z){ 650 char *zNew; 651 size_t n; 652 if( z==0 ){ 653 return 0; 654 } 655 n = strlen(z) + 1; 656 zNew = sqlite3DbMallocRaw(db, n); 657 if( zNew ){ 658 memcpy(zNew, z, n); 659 } 660 return zNew; 661 } 662 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){ 663 char *zNew; 664 assert( db!=0 ); 665 if( z==0 ){ 666 return 0; 667 } 668 assert( (n&0x7fffffff)==n ); 669 zNew = sqlite3DbMallocRawNN(db, n+1); 670 if( zNew ){ 671 memcpy(zNew, z, (size_t)n); 672 zNew[n] = 0; 673 } 674 return zNew; 675 } 676 677 /* 678 ** The text between zStart and zEnd represents a phrase within a larger 679 ** SQL statement. Make a copy of this phrase in space obtained form 680 ** sqlite3DbMalloc(). Omit leading and trailing whitespace. 681 */ 682 char *sqlite3DbSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){ 683 int n; 684 while( sqlite3Isspace(zStart[0]) ) zStart++; 685 n = (int)(zEnd - zStart); 686 while( ALWAYS(n>0) && sqlite3Isspace(zStart[n-1]) ) n--; 687 return sqlite3DbStrNDup(db, zStart, n); 688 } 689 690 /* 691 ** Free any prior content in *pz and replace it with a copy of zNew. 692 */ 693 void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){ 694 sqlite3DbFree(db, *pz); 695 *pz = sqlite3DbStrDup(db, zNew); 696 } 697 698 /* 699 ** Call this routine to record the fact that an OOM (out-of-memory) error 700 ** has happened. This routine will set db->mallocFailed, and also 701 ** temporarily disable the lookaside memory allocator and interrupt 702 ** any running VDBEs. 703 */ 704 void sqlite3OomFault(sqlite3 *db){ 705 if( db->mallocFailed==0 && db->bBenignMalloc==0 ){ 706 db->mallocFailed = 1; 707 if( db->nVdbeExec>0 ){ 708 db->u1.isInterrupted = 1; 709 } 710 DisableLookaside; 711 if( db->pParse ){ 712 db->pParse->rc = SQLITE_NOMEM_BKPT; 713 } 714 } 715 } 716 717 /* 718 ** This routine reactivates the memory allocator and clears the 719 ** db->mallocFailed flag as necessary. 720 ** 721 ** The memory allocator is not restarted if there are running 722 ** VDBEs. 723 */ 724 void sqlite3OomClear(sqlite3 *db){ 725 if( db->mallocFailed && db->nVdbeExec==0 ){ 726 db->mallocFailed = 0; 727 db->u1.isInterrupted = 0; 728 assert( db->lookaside.bDisable>0 ); 729 EnableLookaside; 730 } 731 } 732 733 /* 734 ** Take actions at the end of an API call to indicate an OOM error 735 */ 736 static SQLITE_NOINLINE int apiOomError(sqlite3 *db){ 737 sqlite3OomClear(db); 738 sqlite3Error(db, SQLITE_NOMEM); 739 return SQLITE_NOMEM_BKPT; 740 } 741 742 /* 743 ** This function must be called before exiting any API function (i.e. 744 ** returning control to the user) that has called sqlite3_malloc or 745 ** sqlite3_realloc. 746 ** 747 ** The returned value is normally a copy of the second argument to this 748 ** function. However, if a malloc() failure has occurred since the previous 749 ** invocation SQLITE_NOMEM is returned instead. 750 ** 751 ** If an OOM as occurred, then the connection error-code (the value 752 ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM. 753 */ 754 int sqlite3ApiExit(sqlite3* db, int rc){ 755 /* If the db handle must hold the connection handle mutex here. 756 ** Otherwise the read (and possible write) of db->mallocFailed 757 ** is unsafe, as is the call to sqlite3Error(). 758 */ 759 assert( db!=0 ); 760 assert( sqlite3_mutex_held(db->mutex) ); 761 if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){ 762 return apiOomError(db); 763 } 764 return rc & db->errMask; 765 } 766