xref: /sqlite-3.40.0/src/malloc.c (revision d4530979)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** Memory allocation functions used throughout sqlite.
14 */
15 #include "sqliteInt.h"
16 #include <stdarg.h>
17 
18 /*
19 ** Attempt to release up to n bytes of non-essential memory currently
20 ** held by SQLite. An example of non-essential memory is memory used to
21 ** cache database pages that are not currently in use.
22 */
23 int sqlite3_release_memory(int n){
24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
25   return sqlite3PcacheReleaseMemory(n);
26 #else
27   /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
28   ** is a no-op returning zero if SQLite is not compiled with
29   ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
30   UNUSED_PARAMETER(n);
31   return 0;
32 #endif
33 }
34 
35 /*
36 ** An instance of the following object records the location of
37 ** each unused scratch buffer.
38 */
39 typedef struct ScratchFreeslot {
40   struct ScratchFreeslot *pNext;   /* Next unused scratch buffer */
41 } ScratchFreeslot;
42 
43 /*
44 ** State information local to the memory allocation subsystem.
45 */
46 static SQLITE_WSD struct Mem0Global {
47   sqlite3_mutex *mutex;         /* Mutex to serialize access */
48 
49   /*
50   ** The alarm callback and its arguments.  The mem0.mutex lock will
51   ** be held while the callback is running.  Recursive calls into
52   ** the memory subsystem are allowed, but no new callbacks will be
53   ** issued.
54   */
55   sqlite3_int64 alarmThreshold;
56   void (*alarmCallback)(void*, sqlite3_int64,int);
57   void *alarmArg;
58 
59   /*
60   ** Pointers to the end of sqlite3GlobalConfig.pScratch memory
61   ** (so that a range test can be used to determine if an allocation
62   ** being freed came from pScratch) and a pointer to the list of
63   ** unused scratch allocations.
64   */
65   void *pScratchEnd;
66   ScratchFreeslot *pScratchFree;
67   u32 nScratchFree;
68 
69   /*
70   ** True if heap is nearly "full" where "full" is defined by the
71   ** sqlite3_soft_heap_limit() setting.
72   */
73   int nearlyFull;
74 } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 };
75 
76 #define mem0 GLOBAL(struct Mem0Global, mem0)
77 
78 /*
79 ** This routine runs when the memory allocator sees that the
80 ** total memory allocation is about to exceed the soft heap
81 ** limit.
82 */
83 static void softHeapLimitEnforcer(
84   void *NotUsed,
85   sqlite3_int64 NotUsed2,
86   int allocSize
87 ){
88   UNUSED_PARAMETER2(NotUsed, NotUsed2);
89   sqlite3_release_memory(allocSize);
90 }
91 
92 /*
93 ** Change the alarm callback
94 */
95 static int sqlite3MemoryAlarm(
96   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
97   void *pArg,
98   sqlite3_int64 iThreshold
99 ){
100   int nUsed;
101   sqlite3_mutex_enter(mem0.mutex);
102   mem0.alarmCallback = xCallback;
103   mem0.alarmArg = pArg;
104   mem0.alarmThreshold = iThreshold;
105   nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
106   mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed);
107   sqlite3_mutex_leave(mem0.mutex);
108   return SQLITE_OK;
109 }
110 
111 #ifndef SQLITE_OMIT_DEPRECATED
112 /*
113 ** Deprecated external interface.  Internal/core SQLite code
114 ** should call sqlite3MemoryAlarm.
115 */
116 int sqlite3_memory_alarm(
117   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
118   void *pArg,
119   sqlite3_int64 iThreshold
120 ){
121   return sqlite3MemoryAlarm(xCallback, pArg, iThreshold);
122 }
123 #endif
124 
125 /*
126 ** Set the soft heap-size limit for the library. Passing a zero or
127 ** negative value indicates no limit.
128 */
129 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
130   sqlite3_int64 priorLimit;
131   sqlite3_int64 excess;
132 #ifndef SQLITE_OMIT_AUTOINIT
133   int rc = sqlite3_initialize();
134   if( rc ) return -1;
135 #endif
136   sqlite3_mutex_enter(mem0.mutex);
137   priorLimit = mem0.alarmThreshold;
138   sqlite3_mutex_leave(mem0.mutex);
139   if( n<0 ) return priorLimit;
140   if( n>0 ){
141     sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n);
142   }else{
143     sqlite3MemoryAlarm(0, 0, 0);
144   }
145   excess = sqlite3_memory_used() - n;
146   if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
147   return priorLimit;
148 }
149 void sqlite3_soft_heap_limit(int n){
150   if( n<0 ) n = 0;
151   sqlite3_soft_heap_limit64(n);
152 }
153 
154 /*
155 ** Initialize the memory allocation subsystem.
156 */
157 int sqlite3MallocInit(void){
158   if( sqlite3GlobalConfig.m.xMalloc==0 ){
159     sqlite3MemSetDefault();
160   }
161   memset(&mem0, 0, sizeof(mem0));
162   if( sqlite3GlobalConfig.bCoreMutex ){
163     mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
164   }
165   if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
166       && sqlite3GlobalConfig.nScratch>0 ){
167     int i, n, sz;
168     ScratchFreeslot *pSlot;
169     sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch);
170     sqlite3GlobalConfig.szScratch = sz;
171     pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch;
172     n = sqlite3GlobalConfig.nScratch;
173     mem0.pScratchFree = pSlot;
174     mem0.nScratchFree = n;
175     for(i=0; i<n-1; i++){
176       pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot);
177       pSlot = pSlot->pNext;
178     }
179     pSlot->pNext = 0;
180     mem0.pScratchEnd = (void*)&pSlot[1];
181   }else{
182     mem0.pScratchEnd = 0;
183     sqlite3GlobalConfig.pScratch = 0;
184     sqlite3GlobalConfig.szScratch = 0;
185     sqlite3GlobalConfig.nScratch = 0;
186   }
187   if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
188       || sqlite3GlobalConfig.nPage<1 ){
189     sqlite3GlobalConfig.pPage = 0;
190     sqlite3GlobalConfig.szPage = 0;
191     sqlite3GlobalConfig.nPage = 0;
192   }
193   return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
194 }
195 
196 /*
197 ** Return true if the heap is currently under memory pressure - in other
198 ** words if the amount of heap used is close to the limit set by
199 ** sqlite3_soft_heap_limit().
200 */
201 int sqlite3HeapNearlyFull(void){
202   return mem0.nearlyFull;
203 }
204 
205 /*
206 ** Deinitialize the memory allocation subsystem.
207 */
208 void sqlite3MallocEnd(void){
209   if( sqlite3GlobalConfig.m.xShutdown ){
210     sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
211   }
212   memset(&mem0, 0, sizeof(mem0));
213 }
214 
215 /*
216 ** Return the amount of memory currently checked out.
217 */
218 sqlite3_int64 sqlite3_memory_used(void){
219   int n, mx;
220   sqlite3_int64 res;
221   sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
222   res = (sqlite3_int64)n;  /* Work around bug in Borland C. Ticket #3216 */
223   return res;
224 }
225 
226 /*
227 ** Return the maximum amount of memory that has ever been
228 ** checked out since either the beginning of this process
229 ** or since the most recent reset.
230 */
231 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
232   int n, mx;
233   sqlite3_int64 res;
234   sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
235   res = (sqlite3_int64)mx;  /* Work around bug in Borland C. Ticket #3216 */
236   return res;
237 }
238 
239 /*
240 ** Trigger the alarm
241 */
242 static void sqlite3MallocAlarm(int nByte){
243   void (*xCallback)(void*,sqlite3_int64,int);
244   sqlite3_int64 nowUsed;
245   void *pArg;
246   if( mem0.alarmCallback==0 ) return;
247   xCallback = mem0.alarmCallback;
248   nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
249   pArg = mem0.alarmArg;
250   mem0.alarmCallback = 0;
251   sqlite3_mutex_leave(mem0.mutex);
252   xCallback(pArg, nowUsed, nByte);
253   sqlite3_mutex_enter(mem0.mutex);
254   mem0.alarmCallback = xCallback;
255   mem0.alarmArg = pArg;
256 }
257 
258 /*
259 ** Do a memory allocation with statistics and alarms.  Assume the
260 ** lock is already held.
261 */
262 static int mallocWithAlarm(int n, void **pp){
263   int nFull;
264   void *p;
265   assert( sqlite3_mutex_held(mem0.mutex) );
266   nFull = sqlite3GlobalConfig.m.xRoundup(n);
267   sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
268   if( mem0.alarmCallback!=0 ){
269     int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
270     if( nUsed >= mem0.alarmThreshold - nFull ){
271       mem0.nearlyFull = 1;
272       sqlite3MallocAlarm(nFull);
273     }else{
274       mem0.nearlyFull = 0;
275     }
276   }
277   p = sqlite3GlobalConfig.m.xMalloc(nFull);
278 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
279   if( p==0 && mem0.alarmCallback ){
280     sqlite3MallocAlarm(nFull);
281     p = sqlite3GlobalConfig.m.xMalloc(nFull);
282   }
283 #endif
284   if( p ){
285     nFull = sqlite3MallocSize(p);
286     sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
287     sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1);
288   }
289   *pp = p;
290   return nFull;
291 }
292 
293 /*
294 ** Allocate memory.  This routine is like sqlite3_malloc() except that it
295 ** assumes the memory subsystem has already been initialized.
296 */
297 void *sqlite3Malloc(int n){
298   void *p;
299   if( n<=0               /* IMP: R-65312-04917 */
300    || n>=0x7fffff00
301   ){
302     /* A memory allocation of a number of bytes which is near the maximum
303     ** signed integer value might cause an integer overflow inside of the
304     ** xMalloc().  Hence we limit the maximum size to 0x7fffff00, giving
305     ** 255 bytes of overhead.  SQLite itself will never use anything near
306     ** this amount.  The only way to reach the limit is with sqlite3_malloc() */
307     p = 0;
308   }else if( sqlite3GlobalConfig.bMemstat ){
309     sqlite3_mutex_enter(mem0.mutex);
310     mallocWithAlarm(n, &p);
311     sqlite3_mutex_leave(mem0.mutex);
312   }else{
313     p = sqlite3GlobalConfig.m.xMalloc(n);
314   }
315   assert( EIGHT_BYTE_ALIGNMENT(p) );  /* IMP: R-04675-44850 */
316   return p;
317 }
318 
319 /*
320 ** This version of the memory allocation is for use by the application.
321 ** First make sure the memory subsystem is initialized, then do the
322 ** allocation.
323 */
324 void *sqlite3_malloc(int n){
325 #ifndef SQLITE_OMIT_AUTOINIT
326   if( sqlite3_initialize() ) return 0;
327 #endif
328   return sqlite3Malloc(n);
329 }
330 
331 /*
332 ** Each thread may only have a single outstanding allocation from
333 ** xScratchMalloc().  We verify this constraint in the single-threaded
334 ** case by setting scratchAllocOut to 1 when an allocation
335 ** is outstanding clearing it when the allocation is freed.
336 */
337 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
338 static int scratchAllocOut = 0;
339 #endif
340 
341 
342 /*
343 ** Allocate memory that is to be used and released right away.
344 ** This routine is similar to alloca() in that it is not intended
345 ** for situations where the memory might be held long-term.  This
346 ** routine is intended to get memory to old large transient data
347 ** structures that would not normally fit on the stack of an
348 ** embedded processor.
349 */
350 void *sqlite3ScratchMalloc(int n){
351   void *p;
352   assert( n>0 );
353 
354   sqlite3_mutex_enter(mem0.mutex);
355   sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
356   if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
357     p = mem0.pScratchFree;
358     mem0.pScratchFree = mem0.pScratchFree->pNext;
359     mem0.nScratchFree--;
360     sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
361     sqlite3_mutex_leave(mem0.mutex);
362   }else{
363     sqlite3_mutex_leave(mem0.mutex);
364     p = sqlite3Malloc(n);
365     if( sqlite3GlobalConfig.bMemstat && p ){
366       sqlite3_mutex_enter(mem0.mutex);
367       sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p));
368       sqlite3_mutex_leave(mem0.mutex);
369     }
370     sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
371   }
372   assert( sqlite3_mutex_notheld(mem0.mutex) );
373 
374 
375 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
376   /* Verify that no more than two scratch allocations per thread
377   ** are outstanding at one time.  (This is only checked in the
378   ** single-threaded case since checking in the multi-threaded case
379   ** would be much more complicated.) */
380   assert( scratchAllocOut<=1 );
381   if( p ) scratchAllocOut++;
382 #endif
383 
384   return p;
385 }
386 void sqlite3ScratchFree(void *p){
387   if( p ){
388 
389 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
390     /* Verify that no more than two scratch allocation per thread
391     ** is outstanding at one time.  (This is only checked in the
392     ** single-threaded case since checking in the multi-threaded case
393     ** would be much more complicated.) */
394     assert( scratchAllocOut>=1 && scratchAllocOut<=2 );
395     scratchAllocOut--;
396 #endif
397 
398     if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){
399       /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */
400       ScratchFreeslot *pSlot;
401       pSlot = (ScratchFreeslot*)p;
402       sqlite3_mutex_enter(mem0.mutex);
403       pSlot->pNext = mem0.pScratchFree;
404       mem0.pScratchFree = pSlot;
405       mem0.nScratchFree++;
406       assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch );
407       sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
408       sqlite3_mutex_leave(mem0.mutex);
409     }else{
410       /* Release memory back to the heap */
411       assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
412       assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) );
413       sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
414       if( sqlite3GlobalConfig.bMemstat ){
415         int iSize = sqlite3MallocSize(p);
416         sqlite3_mutex_enter(mem0.mutex);
417         sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
418         sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
419         sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
420         sqlite3GlobalConfig.m.xFree(p);
421         sqlite3_mutex_leave(mem0.mutex);
422       }else{
423         sqlite3GlobalConfig.m.xFree(p);
424       }
425     }
426   }
427 }
428 
429 /*
430 ** TRUE if p is a lookaside memory allocation from db
431 */
432 #ifndef SQLITE_OMIT_LOOKASIDE
433 static int isLookaside(sqlite3 *db, void *p){
434   return p>=db->lookaside.pStart && p<db->lookaside.pEnd;
435 }
436 #else
437 #define isLookaside(A,B) 0
438 #endif
439 
440 /*
441 ** Return the size of a memory allocation previously obtained from
442 ** sqlite3Malloc() or sqlite3_malloc().
443 */
444 int sqlite3MallocSize(void *p){
445   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
446   assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
447   return sqlite3GlobalConfig.m.xSize(p);
448 }
449 int sqlite3DbMallocSize(sqlite3 *db, void *p){
450   assert( db!=0 );
451   assert( sqlite3_mutex_held(db->mutex) );
452   if( isLookaside(db, p) ){
453     return db->lookaside.sz;
454   }else{
455     assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
456     assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
457     assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
458     return sqlite3GlobalConfig.m.xSize(p);
459   }
460 }
461 
462 /*
463 ** Free memory previously obtained from sqlite3Malloc().
464 */
465 void sqlite3_free(void *p){
466   if( p==0 ) return;  /* IMP: R-49053-54554 */
467   assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
468   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
469   if( sqlite3GlobalConfig.bMemstat ){
470     sqlite3_mutex_enter(mem0.mutex);
471     sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
472     sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
473     sqlite3GlobalConfig.m.xFree(p);
474     sqlite3_mutex_leave(mem0.mutex);
475   }else{
476     sqlite3GlobalConfig.m.xFree(p);
477   }
478 }
479 
480 /*
481 ** Add the size of memory allocation "p" to the count in
482 ** *db->pnBytesFreed.
483 */
484 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){
485   *db->pnBytesFreed += sqlite3DbMallocSize(db,p);
486 }
487 
488 /*
489 ** Free memory that might be associated with a particular database
490 ** connection.
491 */
492 void sqlite3DbFree(sqlite3 *db, void *p){
493   assert( db==0 || sqlite3_mutex_held(db->mutex) );
494   if( p==0 ) return;
495   if( db ){
496     if( db->pnBytesFreed ){
497       measureAllocationSize(db, p);
498       return;
499     }
500     if( isLookaside(db, p) ){
501       LookasideSlot *pBuf = (LookasideSlot*)p;
502 #if SQLITE_DEBUG
503       /* Trash all content in the buffer being freed */
504       memset(p, 0xaa, db->lookaside.sz);
505 #endif
506       pBuf->pNext = db->lookaside.pFree;
507       db->lookaside.pFree = pBuf;
508       db->lookaside.nOut--;
509       return;
510     }
511   }
512   assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
513   assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
514   assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
515   sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
516   sqlite3_free(p);
517 }
518 
519 /*
520 ** Change the size of an existing memory allocation
521 */
522 void *sqlite3Realloc(void *pOld, int nBytes){
523   int nOld, nNew, nDiff;
524   void *pNew;
525   if( pOld==0 ){
526     return sqlite3Malloc(nBytes); /* IMP: R-28354-25769 */
527   }
528   if( nBytes<=0 ){
529     sqlite3_free(pOld); /* IMP: R-31593-10574 */
530     return 0;
531   }
532   if( nBytes>=0x7fffff00 ){
533     /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
534     return 0;
535   }
536   nOld = sqlite3MallocSize(pOld);
537   /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
538   ** argument to xRealloc is always a value returned by a prior call to
539   ** xRoundup. */
540   nNew = sqlite3GlobalConfig.m.xRoundup(nBytes);
541   if( nOld==nNew ){
542     pNew = pOld;
543   }else if( sqlite3GlobalConfig.bMemstat ){
544     sqlite3_mutex_enter(mem0.mutex);
545     sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
546     nDiff = nNew - nOld;
547     if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >=
548           mem0.alarmThreshold-nDiff ){
549       sqlite3MallocAlarm(nDiff);
550     }
551     assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
552     assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) );
553     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
554     if( pNew==0 && mem0.alarmCallback ){
555       sqlite3MallocAlarm(nBytes);
556       pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
557     }
558     if( pNew ){
559       nNew = sqlite3MallocSize(pNew);
560       sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
561     }
562     sqlite3_mutex_leave(mem0.mutex);
563   }else{
564     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
565   }
566   assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-04675-44850 */
567   return pNew;
568 }
569 
570 /*
571 ** The public interface to sqlite3Realloc.  Make sure that the memory
572 ** subsystem is initialized prior to invoking sqliteRealloc.
573 */
574 void *sqlite3_realloc(void *pOld, int n){
575 #ifndef SQLITE_OMIT_AUTOINIT
576   if( sqlite3_initialize() ) return 0;
577 #endif
578   return sqlite3Realloc(pOld, n);
579 }
580 
581 
582 /*
583 ** Allocate and zero memory.
584 */
585 void *sqlite3MallocZero(int n){
586   void *p = sqlite3Malloc(n);
587   if( p ){
588     memset(p, 0, n);
589   }
590   return p;
591 }
592 
593 /*
594 ** Allocate and zero memory.  If the allocation fails, make
595 ** the mallocFailed flag in the connection pointer.
596 */
597 void *sqlite3DbMallocZero(sqlite3 *db, int n){
598   void *p = sqlite3DbMallocRaw(db, n);
599   if( p ){
600     memset(p, 0, n);
601   }
602   return p;
603 }
604 
605 /*
606 ** Allocate and zero memory.  If the allocation fails, make
607 ** the mallocFailed flag in the connection pointer.
608 **
609 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
610 ** failure on the same database connection) then always return 0.
611 ** Hence for a particular database connection, once malloc starts
612 ** failing, it fails consistently until mallocFailed is reset.
613 ** This is an important assumption.  There are many places in the
614 ** code that do things like this:
615 **
616 **         int *a = (int*)sqlite3DbMallocRaw(db, 100);
617 **         int *b = (int*)sqlite3DbMallocRaw(db, 200);
618 **         if( b ) a[10] = 9;
619 **
620 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
621 ** that all prior mallocs (ex: "a") worked too.
622 */
623 void *sqlite3DbMallocRaw(sqlite3 *db, int n){
624   void *p;
625   assert( db==0 || sqlite3_mutex_held(db->mutex) );
626   assert( db==0 || db->pnBytesFreed==0 );
627 #ifndef SQLITE_OMIT_LOOKASIDE
628   if( db ){
629     LookasideSlot *pBuf;
630     if( db->mallocFailed ){
631       return 0;
632     }
633     if( db->lookaside.bEnabled ){
634       if( n>db->lookaside.sz ){
635         db->lookaside.anStat[1]++;
636       }else if( (pBuf = db->lookaside.pFree)==0 ){
637         db->lookaside.anStat[2]++;
638       }else{
639         db->lookaside.pFree = pBuf->pNext;
640         db->lookaside.nOut++;
641         db->lookaside.anStat[0]++;
642         if( db->lookaside.nOut>db->lookaside.mxOut ){
643           db->lookaside.mxOut = db->lookaside.nOut;
644         }
645         return (void*)pBuf;
646       }
647     }
648   }
649 #else
650   if( db && db->mallocFailed ){
651     return 0;
652   }
653 #endif
654   p = sqlite3Malloc(n);
655   if( !p && db ){
656     db->mallocFailed = 1;
657   }
658   sqlite3MemdebugSetType(p, MEMTYPE_DB |
659          ((db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
660   return p;
661 }
662 
663 /*
664 ** Resize the block of memory pointed to by p to n bytes. If the
665 ** resize fails, set the mallocFailed flag in the connection object.
666 */
667 void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
668   void *pNew = 0;
669   assert( db!=0 );
670   assert( sqlite3_mutex_held(db->mutex) );
671   if( db->mallocFailed==0 ){
672     if( p==0 ){
673       return sqlite3DbMallocRaw(db, n);
674     }
675     if( isLookaside(db, p) ){
676       if( n<=db->lookaside.sz ){
677         return p;
678       }
679       pNew = sqlite3DbMallocRaw(db, n);
680       if( pNew ){
681         memcpy(pNew, p, db->lookaside.sz);
682         sqlite3DbFree(db, p);
683       }
684     }else{
685       assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
686       assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
687       sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
688       pNew = sqlite3_realloc(p, n);
689       if( !pNew ){
690         sqlite3MemdebugSetType(p, MEMTYPE_DB|MEMTYPE_HEAP);
691         db->mallocFailed = 1;
692       }
693       sqlite3MemdebugSetType(pNew, MEMTYPE_DB |
694             (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
695     }
696   }
697   return pNew;
698 }
699 
700 /*
701 ** Attempt to reallocate p.  If the reallocation fails, then free p
702 ** and set the mallocFailed flag in the database connection.
703 */
704 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
705   void *pNew;
706   pNew = sqlite3DbRealloc(db, p, n);
707   if( !pNew ){
708     sqlite3DbFree(db, p);
709   }
710   return pNew;
711 }
712 
713 /*
714 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
715 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
716 ** is because when memory debugging is turned on, these two functions are
717 ** called via macros that record the current file and line number in the
718 ** ThreadData structure.
719 */
720 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
721   char *zNew;
722   size_t n;
723   if( z==0 ){
724     return 0;
725   }
726   n = sqlite3Strlen30(z) + 1;
727   assert( (n&0x7fffffff)==n );
728   zNew = sqlite3DbMallocRaw(db, (int)n);
729   if( zNew ){
730     memcpy(zNew, z, n);
731   }
732   return zNew;
733 }
734 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
735   char *zNew;
736   if( z==0 ){
737     return 0;
738   }
739   assert( (n&0x7fffffff)==n );
740   zNew = sqlite3DbMallocRaw(db, n+1);
741   if( zNew ){
742     memcpy(zNew, z, n);
743     zNew[n] = 0;
744   }
745   return zNew;
746 }
747 
748 /*
749 ** Create a string from the zFromat argument and the va_list that follows.
750 ** Store the string in memory obtained from sqliteMalloc() and make *pz
751 ** point to that string.
752 */
753 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
754   va_list ap;
755   char *z;
756 
757   va_start(ap, zFormat);
758   z = sqlite3VMPrintf(db, zFormat, ap);
759   va_end(ap);
760   sqlite3DbFree(db, *pz);
761   *pz = z;
762 }
763 
764 /*
765 ** Take actions at the end of an API call to indicate an OOM error
766 */
767 static SQLITE_NOINLINE int apiOomError(sqlite3 *db){
768   db->mallocFailed = 0;
769   sqlite3Error(db, SQLITE_NOMEM);
770   return SQLITE_NOMEM;
771 }
772 
773 /*
774 ** This function must be called before exiting any API function (i.e.
775 ** returning control to the user) that has called sqlite3_malloc or
776 ** sqlite3_realloc.
777 **
778 ** The returned value is normally a copy of the second argument to this
779 ** function. However, if a malloc() failure has occurred since the previous
780 ** invocation SQLITE_NOMEM is returned instead.
781 **
782 ** If the first argument, db, is not NULL and a malloc() error has occurred,
783 ** then the connection error-code (the value returned by sqlite3_errcode())
784 ** is set to SQLITE_NOMEM.
785 */
786 int sqlite3ApiExit(sqlite3* db, int rc){
787   /* If the db handle is not NULL, then we must hold the connection handle
788   ** mutex here. Otherwise the read (and possible write) of db->mallocFailed
789   ** is unsafe, as is the call to sqlite3Error().
790   */
791   assert( !db || sqlite3_mutex_held(db->mutex) );
792   if( db==0 ) return rc & 0xff;
793   if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){
794     return apiOomError(db);
795   }
796   return rc & db->errMask;
797 }
798