xref: /sqlite-3.40.0/src/malloc.c (revision c947d6a4)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** Memory allocation functions used throughout sqlite.
14 */
15 #include "sqliteInt.h"
16 #include <stdarg.h>
17 
18 /*
19 ** Attempt to release up to n bytes of non-essential memory currently
20 ** held by SQLite. An example of non-essential memory is memory used to
21 ** cache database pages that are not currently in use.
22 */
23 int sqlite3_release_memory(int n){
24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
25   return sqlite3PcacheReleaseMemory(n);
26 #else
27   /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
28   ** is a no-op returning zero if SQLite is not compiled with
29   ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
30   UNUSED_PARAMETER(n);
31   return 0;
32 #endif
33 }
34 
35 /*
36 ** Default value of the hard heap limit.  0 means "no limit".
37 */
38 #ifndef SQLITE_MAX_MEMORY
39 # define SQLITE_MAX_MEMORY 0
40 #endif
41 
42 /*
43 ** State information local to the memory allocation subsystem.
44 */
45 static SQLITE_WSD struct Mem0Global {
46   sqlite3_mutex *mutex;         /* Mutex to serialize access */
47   sqlite3_int64 alarmThreshold; /* The soft heap limit */
48   sqlite3_int64 hardLimit;      /* The hard upper bound on memory */
49 
50   /*
51   ** True if heap is nearly "full" where "full" is defined by the
52   ** sqlite3_soft_heap_limit() setting.
53   */
54   int nearlyFull;
55 } mem0 = { 0, SQLITE_MAX_MEMORY, SQLITE_MAX_MEMORY, 0 };
56 
57 #define mem0 GLOBAL(struct Mem0Global, mem0)
58 
59 /*
60 ** Return the memory allocator mutex. sqlite3_status() needs it.
61 */
62 sqlite3_mutex *sqlite3MallocMutex(void){
63   return mem0.mutex;
64 }
65 
66 #ifndef SQLITE_OMIT_DEPRECATED
67 /*
68 ** Deprecated external interface.  It used to set an alarm callback
69 ** that was invoked when memory usage grew too large.  Now it is a
70 ** no-op.
71 */
72 int sqlite3_memory_alarm(
73   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
74   void *pArg,
75   sqlite3_int64 iThreshold
76 ){
77   (void)xCallback;
78   (void)pArg;
79   (void)iThreshold;
80   return SQLITE_OK;
81 }
82 #endif
83 
84 /*
85 ** Set the soft heap-size limit for the library.  An argument of
86 ** zero disables the limit.  A negative argument is a no-op used to
87 ** obtain the return value.
88 **
89 ** The return value is the value of the heap limit just before this
90 ** interface was called.
91 **
92 ** If the hard heap limit is enabled, then the soft heap limit cannot
93 ** be disabled nor raised above the hard heap limit.
94 */
95 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
96   sqlite3_int64 priorLimit;
97   sqlite3_int64 excess;
98   sqlite3_int64 nUsed;
99 #ifndef SQLITE_OMIT_AUTOINIT
100   int rc = sqlite3_initialize();
101   if( rc ) return -1;
102 #endif
103   sqlite3_mutex_enter(mem0.mutex);
104   priorLimit = mem0.alarmThreshold;
105   if( n<0 ){
106     sqlite3_mutex_leave(mem0.mutex);
107     return priorLimit;
108   }
109   if( mem0.hardLimit>0 && (n>mem0.hardLimit || n==0) ){
110     n = mem0.hardLimit;
111   }
112   mem0.alarmThreshold = n;
113   nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
114   mem0.nearlyFull = (n>0 && n<=nUsed);
115   sqlite3_mutex_leave(mem0.mutex);
116   excess = sqlite3_memory_used() - n;
117   if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
118   return priorLimit;
119 }
120 void sqlite3_soft_heap_limit(int n){
121   if( n<0 ) n = 0;
122   sqlite3_soft_heap_limit64(n);
123 }
124 
125 /*
126 ** Set the hard heap-size limit for the library. An argument of zero
127 ** disables the hard heap limit.  A negative argument is a no-op used
128 ** to obtain the return value without affecting the hard heap limit.
129 **
130 ** The return value is the value of the hard heap limit just prior to
131 ** calling this interface.
132 **
133 ** Setting the hard heap limit will also activate the soft heap limit
134 ** and constrain the soft heap limit to be no more than the hard heap
135 ** limit.
136 */
137 sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 n){
138   sqlite3_int64 priorLimit;
139 #ifndef SQLITE_OMIT_AUTOINIT
140   int rc = sqlite3_initialize();
141   if( rc ) return -1;
142 #endif
143   sqlite3_mutex_enter(mem0.mutex);
144   priorLimit = mem0.hardLimit;
145   if( n>=0 ){
146     mem0.hardLimit = n;
147     if( n<mem0.alarmThreshold || mem0.alarmThreshold==0 ){
148       mem0.alarmThreshold = n;
149     }
150   }
151   sqlite3_mutex_leave(mem0.mutex);
152   return priorLimit;
153 }
154 
155 
156 /*
157 ** Initialize the memory allocation subsystem.
158 */
159 int sqlite3MallocInit(void){
160   int rc;
161   if( sqlite3GlobalConfig.m.xMalloc==0 ){
162     sqlite3MemSetDefault();
163   }
164   memset(&mem0, 0, sizeof(mem0));
165   mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
166   if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
167       || sqlite3GlobalConfig.nPage<=0 ){
168     sqlite3GlobalConfig.pPage = 0;
169     sqlite3GlobalConfig.szPage = 0;
170   }
171   rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
172   if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0));
173   return rc;
174 }
175 
176 /*
177 ** Return true if the heap is currently under memory pressure - in other
178 ** words if the amount of heap used is close to the limit set by
179 ** sqlite3_soft_heap_limit().
180 */
181 int sqlite3HeapNearlyFull(void){
182   return mem0.nearlyFull;
183 }
184 
185 /*
186 ** Deinitialize the memory allocation subsystem.
187 */
188 void sqlite3MallocEnd(void){
189   if( sqlite3GlobalConfig.m.xShutdown ){
190     sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
191   }
192   memset(&mem0, 0, sizeof(mem0));
193 }
194 
195 /*
196 ** Return the amount of memory currently checked out.
197 */
198 sqlite3_int64 sqlite3_memory_used(void){
199   sqlite3_int64 res, mx;
200   sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0);
201   return res;
202 }
203 
204 /*
205 ** Return the maximum amount of memory that has ever been
206 ** checked out since either the beginning of this process
207 ** or since the most recent reset.
208 */
209 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
210   sqlite3_int64 res, mx;
211   sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag);
212   return mx;
213 }
214 
215 /*
216 ** Trigger the alarm
217 */
218 static void sqlite3MallocAlarm(int nByte){
219   if( mem0.alarmThreshold<=0 ) return;
220   sqlite3_mutex_leave(mem0.mutex);
221   sqlite3_release_memory(nByte);
222   sqlite3_mutex_enter(mem0.mutex);
223 }
224 
225 /*
226 ** Do a memory allocation with statistics and alarms.  Assume the
227 ** lock is already held.
228 */
229 static void mallocWithAlarm(int n, void **pp){
230   void *p;
231   int nFull;
232   assert( sqlite3_mutex_held(mem0.mutex) );
233   assert( n>0 );
234 
235   /* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal
236   ** implementation of malloc_good_size(), which must be called in debug
237   ** mode and specifically when the DMD "Dark Matter Detector" is enabled
238   ** or else a crash results.  Hence, do not attempt to optimize out the
239   ** following xRoundup() call. */
240   nFull = sqlite3GlobalConfig.m.xRoundup(n);
241 
242   sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n);
243   if( mem0.alarmThreshold>0 ){
244     sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
245     if( nUsed >= mem0.alarmThreshold - nFull ){
246       mem0.nearlyFull = 1;
247       sqlite3MallocAlarm(nFull);
248       if( mem0.hardLimit ){
249         nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
250         if( nUsed >= mem0.hardLimit - nFull ){
251           *pp = 0;
252           return;
253         }
254       }
255     }else{
256       mem0.nearlyFull = 0;
257     }
258   }
259   p = sqlite3GlobalConfig.m.xMalloc(nFull);
260 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
261   if( p==0 && mem0.alarmThreshold>0 ){
262     sqlite3MallocAlarm(nFull);
263     p = sqlite3GlobalConfig.m.xMalloc(nFull);
264   }
265 #endif
266   if( p ){
267     nFull = sqlite3MallocSize(p);
268     sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
269     sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
270   }
271   *pp = p;
272 }
273 
274 /*
275 ** Allocate memory.  This routine is like sqlite3_malloc() except that it
276 ** assumes the memory subsystem has already been initialized.
277 */
278 void *sqlite3Malloc(u64 n){
279   void *p;
280   if( n==0 || n>=0x7fffff00 ){
281     /* A memory allocation of a number of bytes which is near the maximum
282     ** signed integer value might cause an integer overflow inside of the
283     ** xMalloc().  Hence we limit the maximum size to 0x7fffff00, giving
284     ** 255 bytes of overhead.  SQLite itself will never use anything near
285     ** this amount.  The only way to reach the limit is with sqlite3_malloc() */
286     p = 0;
287   }else if( sqlite3GlobalConfig.bMemstat ){
288     sqlite3_mutex_enter(mem0.mutex);
289     mallocWithAlarm((int)n, &p);
290     sqlite3_mutex_leave(mem0.mutex);
291   }else{
292     p = sqlite3GlobalConfig.m.xMalloc((int)n);
293   }
294   assert( EIGHT_BYTE_ALIGNMENT(p) );  /* IMP: R-11148-40995 */
295   return p;
296 }
297 
298 /*
299 ** This version of the memory allocation is for use by the application.
300 ** First make sure the memory subsystem is initialized, then do the
301 ** allocation.
302 */
303 void *sqlite3_malloc(int n){
304 #ifndef SQLITE_OMIT_AUTOINIT
305   if( sqlite3_initialize() ) return 0;
306 #endif
307   return n<=0 ? 0 : sqlite3Malloc(n);
308 }
309 void *sqlite3_malloc64(sqlite3_uint64 n){
310 #ifndef SQLITE_OMIT_AUTOINIT
311   if( sqlite3_initialize() ) return 0;
312 #endif
313   return sqlite3Malloc(n);
314 }
315 
316 /*
317 ** TRUE if p is a lookaside memory allocation from db
318 */
319 #ifndef SQLITE_OMIT_LOOKASIDE
320 static int isLookaside(sqlite3 *db, void *p){
321   return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pEnd);
322 }
323 #else
324 #define isLookaside(A,B) 0
325 #endif
326 
327 /*
328 ** Return the size of a memory allocation previously obtained from
329 ** sqlite3Malloc() or sqlite3_malloc().
330 */
331 int sqlite3MallocSize(void *p){
332   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
333   return sqlite3GlobalConfig.m.xSize(p);
334 }
335 static int lookasideMallocSize(sqlite3 *db, void *p){
336 #ifndef SQLITE_OMIT_MINI_LOOKASIDE
337   return p<db->lookaside.pMiddle ? db->lookaside.szTrue : MINI_SZ;
338 #else
339   return db->lookaside.szTrue;
340 #endif
341 }
342 int sqlite3DbMallocSize(sqlite3 *db, void *p){
343   assert( p!=0 );
344   if( db==0 || !isLookaside(db,p) ){
345 #ifdef SQLITE_DEBUG
346     if( db==0 ){
347       assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
348       assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
349     }else{
350       assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
351       assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
352     }
353 #endif
354     return sqlite3GlobalConfig.m.xSize(p);
355   }else{
356     assert( sqlite3_mutex_held(db->mutex) );
357     return lookasideMallocSize(db, p);
358   }
359 }
360 sqlite3_uint64 sqlite3_msize(void *p){
361   assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
362   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
363   return p ? sqlite3GlobalConfig.m.xSize(p) : 0;
364 }
365 
366 /*
367 ** Free memory previously obtained from sqlite3Malloc().
368 */
369 void sqlite3_free(void *p){
370   if( p==0 ) return;  /* IMP: R-49053-54554 */
371   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
372   assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
373   if( sqlite3GlobalConfig.bMemstat ){
374     sqlite3_mutex_enter(mem0.mutex);
375     sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p));
376     sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
377     sqlite3GlobalConfig.m.xFree(p);
378     sqlite3_mutex_leave(mem0.mutex);
379   }else{
380     sqlite3GlobalConfig.m.xFree(p);
381   }
382 }
383 
384 /*
385 ** Add the size of memory allocation "p" to the count in
386 ** *db->pnBytesFreed.
387 */
388 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){
389   *db->pnBytesFreed += sqlite3DbMallocSize(db,p);
390 }
391 
392 /*
393 ** Free memory that might be associated with a particular database
394 ** connection.  Calling sqlite3DbFree(D,X) for X==0 is a harmless no-op.
395 ** The sqlite3DbFreeNN(D,X) version requires that X be non-NULL.
396 */
397 void sqlite3DbFreeNN(sqlite3 *db, void *p){
398   assert( db==0 || sqlite3_mutex_held(db->mutex) );
399   assert( p!=0 );
400   if( db ){
401     if( db->pnBytesFreed ){
402       measureAllocationSize(db, p);
403       return;
404     }
405     if( isLookaside(db, p) ){
406       LookasideSlot *pBuf = (LookasideSlot*)p;
407 #ifndef SQLITE_OMIT_MINI_LOOKASIDE
408       if( p>=db->lookaside.pMiddle ){
409 # ifdef SQLITE_DEBUG
410         /* Trash all content in the buffer being freed */
411         memset(p, 0xaa, MINI_SZ);
412 # endif
413         pBuf->pNext = db->lookaside.pMiniFree;
414         db->lookaside.pMiniFree = pBuf;
415         return;
416       }
417 #endif
418 #ifdef SQLITE_DEBUG
419       /* Trash all content in the buffer being freed */
420       memset(p, 0xaa, db->lookaside.szTrue);
421 #endif
422       pBuf->pNext = db->lookaside.pFree;
423       db->lookaside.pFree = pBuf;
424       return;
425     }
426   }
427   assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
428   assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
429   assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
430   sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
431   sqlite3_free(p);
432 }
433 void sqlite3DbFree(sqlite3 *db, void *p){
434   assert( db==0 || sqlite3_mutex_held(db->mutex) );
435   if( p ) sqlite3DbFreeNN(db, p);
436 }
437 
438 /*
439 ** Change the size of an existing memory allocation
440 */
441 void *sqlite3Realloc(void *pOld, u64 nBytes){
442   int nOld, nNew, nDiff;
443   void *pNew;
444   assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
445   assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) );
446   if( pOld==0 ){
447     return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */
448   }
449   if( nBytes==0 ){
450     sqlite3_free(pOld); /* IMP: R-26507-47431 */
451     return 0;
452   }
453   if( nBytes>=0x7fffff00 ){
454     /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
455     return 0;
456   }
457   nOld = sqlite3MallocSize(pOld);
458   /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
459   ** argument to xRealloc is always a value returned by a prior call to
460   ** xRoundup. */
461   nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
462   if( nOld==nNew ){
463     pNew = pOld;
464   }else if( sqlite3GlobalConfig.bMemstat ){
465     sqlite3_mutex_enter(mem0.mutex);
466     sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
467     nDiff = nNew - nOld;
468     if( nDiff>0 && sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >=
469           mem0.alarmThreshold-nDiff ){
470       sqlite3MallocAlarm(nDiff);
471     }
472     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
473     if( pNew==0 && mem0.alarmThreshold>0 ){
474       sqlite3MallocAlarm((int)nBytes);
475       pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
476     }
477     if( pNew ){
478       nNew = sqlite3MallocSize(pNew);
479       sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
480     }
481     sqlite3_mutex_leave(mem0.mutex);
482   }else{
483     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
484   }
485   assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */
486   return pNew;
487 }
488 
489 /*
490 ** The public interface to sqlite3Realloc.  Make sure that the memory
491 ** subsystem is initialized prior to invoking sqliteRealloc.
492 */
493 void *sqlite3_realloc(void *pOld, int n){
494 #ifndef SQLITE_OMIT_AUTOINIT
495   if( sqlite3_initialize() ) return 0;
496 #endif
497   if( n<0 ) n = 0;  /* IMP: R-26507-47431 */
498   return sqlite3Realloc(pOld, n);
499 }
500 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){
501 #ifndef SQLITE_OMIT_AUTOINIT
502   if( sqlite3_initialize() ) return 0;
503 #endif
504   return sqlite3Realloc(pOld, n);
505 }
506 
507 
508 /*
509 ** Allocate and zero memory.
510 */
511 void *sqlite3MallocZero(u64 n){
512   void *p = sqlite3Malloc(n);
513   if( p ){
514     memset(p, 0, (size_t)n);
515   }
516   return p;
517 }
518 
519 /*
520 ** Allocate and zero memory.  If the allocation fails, make
521 ** the mallocFailed flag in the connection pointer.
522 */
523 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){
524   void *p;
525   testcase( db==0 );
526   p = sqlite3DbMallocRaw(db, n);
527   if( p ) memset(p, 0, (size_t)n);
528   return p;
529 }
530 
531 
532 /* Finish the work of sqlite3DbMallocRawNN for the unusual and
533 ** slower case when the allocation cannot be fulfilled using lookaside.
534 */
535 static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){
536   void *p;
537   assert( db!=0 );
538   p = sqlite3Malloc(n);
539   if( !p ) sqlite3OomFault(db);
540   sqlite3MemdebugSetType(p,
541          (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
542   return p;
543 }
544 
545 /*
546 ** Allocate memory, either lookaside (if possible) or heap.
547 ** If the allocation fails, set the mallocFailed flag in
548 ** the connection pointer.
549 **
550 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
551 ** failure on the same database connection) then always return 0.
552 ** Hence for a particular database connection, once malloc starts
553 ** failing, it fails consistently until mallocFailed is reset.
554 ** This is an important assumption.  There are many places in the
555 ** code that do things like this:
556 **
557 **         int *a = (int*)sqlite3DbMallocRaw(db, 100);
558 **         int *b = (int*)sqlite3DbMallocRaw(db, 200);
559 **         if( b ) a[10] = 9;
560 **
561 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
562 ** that all prior mallocs (ex: "a") worked too.
563 **
564 ** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is
565 ** not a NULL pointer.
566 */
567 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){
568   void *p;
569   if( db ) return sqlite3DbMallocRawNN(db, n);
570   p = sqlite3Malloc(n);
571   sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
572   return p;
573 }
574 void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){
575 #ifndef SQLITE_OMIT_LOOKASIDE
576   LookasideSlot *pBuf;
577   assert( db!=0 );
578   assert( sqlite3_mutex_held(db->mutex) );
579   assert( db->pnBytesFreed==0 );
580   if( n>db->lookaside.sz ){
581     if( db->lookaside.bDisable ){
582       return db->mallocFailed ? 0 : dbMallocRawFinish(db, n);
583     }
584     db->lookaside.anStat[1]++;
585     return dbMallocRawFinish(db, n);
586   }
587 # ifndef SQLITE_OMIT_MINI_LOOKASIDE
588   if( n<=MINI_SZ ){
589     if( (pBuf = db->lookaside.pMiniFree)!=0 ){
590       db->lookaside.pMiniFree = pBuf->pNext;
591       db->lookaside.anStat[0]++;
592       return (void*)pBuf;
593     }else if( (pBuf = db->lookaside.pMiniInit)!=0 ){
594       db->lookaside.pMiniInit = pBuf->pNext;
595       db->lookaside.anStat[0]++;
596       return (void*)pBuf;
597     }
598   }
599 # endif
600   if( (pBuf = db->lookaside.pFree)!=0 ){
601     db->lookaside.pFree = pBuf->pNext;
602     db->lookaside.anStat[0]++;
603     return (void*)pBuf;
604   }else if( (pBuf = db->lookaside.pInit)!=0 ){
605     db->lookaside.pInit = pBuf->pNext;
606     db->lookaside.anStat[0]++;
607     return (void*)pBuf;
608   }else{
609     db->lookaside.anStat[2]++;
610   }
611 #else
612   assert( db!=0 );
613   assert( sqlite3_mutex_held(db->mutex) );
614   assert( db->pnBytesFreed==0 );
615   if( db->mallocFailed ){
616     return 0;
617   }
618 #endif
619   return dbMallocRawFinish(db, n);
620 }
621 
622 /* Forward declaration */
623 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n);
624 
625 /*
626 ** Resize the block of memory pointed to by p to n bytes. If the
627 ** resize fails, set the mallocFailed flag in the connection object.
628 */
629 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){
630   assert( db!=0 );
631   if( p==0 ) return sqlite3DbMallocRawNN(db, n);
632   assert( sqlite3_mutex_held(db->mutex) );
633   if( isLookaside(db,p) && n<lookasideMallocSize(db, p) ) return p;
634   return dbReallocFinish(db, p, n);
635 }
636 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){
637   void *pNew = 0;
638   assert( db!=0 );
639   assert( p!=0 );
640   if( db->mallocFailed==0 ){
641     if( isLookaside(db, p) ){
642       pNew = sqlite3DbMallocRawNN(db, n);
643       if( pNew ){
644         memcpy(pNew, p, lookasideMallocSize(db, p));
645         sqlite3DbFree(db, p);
646       }
647     }else{
648       assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
649       assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
650       sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
651       pNew = sqlite3_realloc64(p, n);
652       if( !pNew ){
653         sqlite3OomFault(db);
654       }
655       sqlite3MemdebugSetType(pNew,
656             (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
657     }
658   }
659   return pNew;
660 }
661 
662 /*
663 ** Attempt to reallocate p.  If the reallocation fails, then free p
664 ** and set the mallocFailed flag in the database connection.
665 */
666 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){
667   void *pNew;
668   pNew = sqlite3DbRealloc(db, p, n);
669   if( !pNew ){
670     sqlite3DbFree(db, p);
671   }
672   return pNew;
673 }
674 
675 /*
676 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
677 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
678 ** is because when memory debugging is turned on, these two functions are
679 ** called via macros that record the current file and line number in the
680 ** ThreadData structure.
681 */
682 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
683   char *zNew;
684   size_t n;
685   if( z==0 ){
686     return 0;
687   }
688   n = strlen(z) + 1;
689   zNew = sqlite3DbMallocRaw(db, n);
690   if( zNew ){
691     memcpy(zNew, z, n);
692   }
693   return zNew;
694 }
695 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){
696   char *zNew;
697   assert( db!=0 );
698   if( z==0 ){
699     return 0;
700   }
701   assert( (n&0x7fffffff)==n );
702   zNew = sqlite3DbMallocRawNN(db, n+1);
703   if( zNew ){
704     memcpy(zNew, z, (size_t)n);
705     zNew[n] = 0;
706   }
707   return zNew;
708 }
709 
710 /*
711 ** The text between zStart and zEnd represents a phrase within a larger
712 ** SQL statement.  Make a copy of this phrase in space obtained form
713 ** sqlite3DbMalloc().  Omit leading and trailing whitespace.
714 */
715 char *sqlite3DbSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){
716   int n;
717   while( sqlite3Isspace(zStart[0]) ) zStart++;
718   n = (int)(zEnd - zStart);
719   while( ALWAYS(n>0) && sqlite3Isspace(zStart[n-1]) ) n--;
720   return sqlite3DbStrNDup(db, zStart, n);
721 }
722 
723 /*
724 ** Free any prior content in *pz and replace it with a copy of zNew.
725 */
726 void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){
727   sqlite3DbFree(db, *pz);
728   *pz = sqlite3DbStrDup(db, zNew);
729 }
730 
731 /*
732 ** Call this routine to record the fact that an OOM (out-of-memory) error
733 ** has happened.  This routine will set db->mallocFailed, and also
734 ** temporarily disable the lookaside memory allocator and interrupt
735 ** any running VDBEs.
736 */
737 void sqlite3OomFault(sqlite3 *db){
738   if( db->mallocFailed==0 && db->bBenignMalloc==0 ){
739     db->mallocFailed = 1;
740     if( db->nVdbeExec>0 ){
741       db->u1.isInterrupted = 1;
742     }
743     DisableLookaside;
744     if( db->pParse ){
745       db->pParse->rc = SQLITE_NOMEM_BKPT;
746     }
747   }
748 }
749 
750 /*
751 ** This routine reactivates the memory allocator and clears the
752 ** db->mallocFailed flag as necessary.
753 **
754 ** The memory allocator is not restarted if there are running
755 ** VDBEs.
756 */
757 void sqlite3OomClear(sqlite3 *db){
758   if( db->mallocFailed && db->nVdbeExec==0 ){
759     db->mallocFailed = 0;
760     db->u1.isInterrupted = 0;
761     assert( db->lookaside.bDisable>0 );
762     EnableLookaside;
763   }
764 }
765 
766 /*
767 ** Take actions at the end of an API call to indicate an OOM error
768 */
769 static SQLITE_NOINLINE int apiOomError(sqlite3 *db){
770   sqlite3OomClear(db);
771   sqlite3Error(db, SQLITE_NOMEM);
772   return SQLITE_NOMEM_BKPT;
773 }
774 
775 /*
776 ** This function must be called before exiting any API function (i.e.
777 ** returning control to the user) that has called sqlite3_malloc or
778 ** sqlite3_realloc.
779 **
780 ** The returned value is normally a copy of the second argument to this
781 ** function. However, if a malloc() failure has occurred since the previous
782 ** invocation SQLITE_NOMEM is returned instead.
783 **
784 ** If an OOM as occurred, then the connection error-code (the value
785 ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM.
786 */
787 int sqlite3ApiExit(sqlite3* db, int rc){
788   /* If the db handle must hold the connection handle mutex here.
789   ** Otherwise the read (and possible write) of db->mallocFailed
790   ** is unsafe, as is the call to sqlite3Error().
791   */
792   assert( db!=0 );
793   assert( sqlite3_mutex_held(db->mutex) );
794   if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){
795     return apiOomError(db);
796   }
797   return rc & db->errMask;
798 }
799