1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** Memory allocation functions used throughout sqlite. 14 */ 15 #include "sqliteInt.h" 16 #include <stdarg.h> 17 18 /* 19 ** Attempt to release up to n bytes of non-essential memory currently 20 ** held by SQLite. An example of non-essential memory is memory used to 21 ** cache database pages that are not currently in use. 22 */ 23 int sqlite3_release_memory(int n){ 24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 25 return sqlite3PcacheReleaseMemory(n); 26 #else 27 /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine 28 ** is a no-op returning zero if SQLite is not compiled with 29 ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ 30 UNUSED_PARAMETER(n); 31 return 0; 32 #endif 33 } 34 35 /* 36 ** An instance of the following object records the location of 37 ** each unused scratch buffer. 38 */ 39 typedef struct ScratchFreeslot { 40 struct ScratchFreeslot *pNext; /* Next unused scratch buffer */ 41 } ScratchFreeslot; 42 43 /* 44 ** State information local to the memory allocation subsystem. 45 */ 46 static SQLITE_WSD struct Mem0Global { 47 sqlite3_mutex *mutex; /* Mutex to serialize access */ 48 sqlite3_int64 alarmThreshold; /* The soft heap limit */ 49 50 /* 51 ** Pointers to the end of sqlite3GlobalConfig.pScratch memory 52 ** (so that a range test can be used to determine if an allocation 53 ** being freed came from pScratch) and a pointer to the list of 54 ** unused scratch allocations. 55 */ 56 void *pScratchEnd; 57 ScratchFreeslot *pScratchFree; 58 u32 nScratchFree; 59 60 /* 61 ** True if heap is nearly "full" where "full" is defined by the 62 ** sqlite3_soft_heap_limit() setting. 63 */ 64 int nearlyFull; 65 } mem0 = { 0, 0, 0, 0, 0, 0 }; 66 67 #define mem0 GLOBAL(struct Mem0Global, mem0) 68 69 /* 70 ** Return the memory allocator mutex. sqlite3_status() needs it. 71 */ 72 sqlite3_mutex *sqlite3MallocMutex(void){ 73 return mem0.mutex; 74 } 75 76 #ifndef SQLITE_OMIT_DEPRECATED 77 /* 78 ** Deprecated external interface. It used to set an alarm callback 79 ** that was invoked when memory usage grew too large. Now it is a 80 ** no-op. 81 */ 82 int sqlite3_memory_alarm( 83 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 84 void *pArg, 85 sqlite3_int64 iThreshold 86 ){ 87 (void)xCallback; 88 (void)pArg; 89 (void)iThreshold; 90 return SQLITE_OK; 91 } 92 #endif 93 94 /* 95 ** Set the soft heap-size limit for the library. Passing a zero or 96 ** negative value indicates no limit. 97 */ 98 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ 99 sqlite3_int64 priorLimit; 100 sqlite3_int64 excess; 101 sqlite3_int64 nUsed; 102 #ifndef SQLITE_OMIT_AUTOINIT 103 int rc = sqlite3_initialize(); 104 if( rc ) return -1; 105 #endif 106 sqlite3_mutex_enter(mem0.mutex); 107 priorLimit = mem0.alarmThreshold; 108 if( n<0 ){ 109 sqlite3_mutex_leave(mem0.mutex); 110 return priorLimit; 111 } 112 mem0.alarmThreshold = n; 113 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 114 mem0.nearlyFull = (n>0 && n<=nUsed); 115 sqlite3_mutex_leave(mem0.mutex); 116 excess = sqlite3_memory_used() - n; 117 if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); 118 return priorLimit; 119 } 120 void sqlite3_soft_heap_limit(int n){ 121 if( n<0 ) n = 0; 122 sqlite3_soft_heap_limit64(n); 123 } 124 125 /* 126 ** Initialize the memory allocation subsystem. 127 */ 128 int sqlite3MallocInit(void){ 129 int rc; 130 if( sqlite3GlobalConfig.m.xMalloc==0 ){ 131 sqlite3MemSetDefault(); 132 } 133 memset(&mem0, 0, sizeof(mem0)); 134 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 135 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 136 && sqlite3GlobalConfig.nScratch>0 ){ 137 int i, n, sz; 138 ScratchFreeslot *pSlot; 139 sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch); 140 sqlite3GlobalConfig.szScratch = sz; 141 pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch; 142 n = sqlite3GlobalConfig.nScratch; 143 mem0.pScratchFree = pSlot; 144 mem0.nScratchFree = n; 145 for(i=0; i<n-1; i++){ 146 pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot); 147 pSlot = pSlot->pNext; 148 } 149 pSlot->pNext = 0; 150 mem0.pScratchEnd = (void*)&pSlot[1]; 151 }else{ 152 mem0.pScratchEnd = 0; 153 sqlite3GlobalConfig.pScratch = 0; 154 sqlite3GlobalConfig.szScratch = 0; 155 sqlite3GlobalConfig.nScratch = 0; 156 } 157 if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 158 || sqlite3GlobalConfig.nPage<=0 ){ 159 sqlite3GlobalConfig.pPage = 0; 160 sqlite3GlobalConfig.szPage = 0; 161 } 162 rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); 163 if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0)); 164 return rc; 165 } 166 167 /* 168 ** Return true if the heap is currently under memory pressure - in other 169 ** words if the amount of heap used is close to the limit set by 170 ** sqlite3_soft_heap_limit(). 171 */ 172 int sqlite3HeapNearlyFull(void){ 173 return mem0.nearlyFull; 174 } 175 176 /* 177 ** Deinitialize the memory allocation subsystem. 178 */ 179 void sqlite3MallocEnd(void){ 180 if( sqlite3GlobalConfig.m.xShutdown ){ 181 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); 182 } 183 memset(&mem0, 0, sizeof(mem0)); 184 } 185 186 /* 187 ** Return the amount of memory currently checked out. 188 */ 189 sqlite3_int64 sqlite3_memory_used(void){ 190 sqlite3_int64 res, mx; 191 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0); 192 return res; 193 } 194 195 /* 196 ** Return the maximum amount of memory that has ever been 197 ** checked out since either the beginning of this process 198 ** or since the most recent reset. 199 */ 200 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ 201 sqlite3_int64 res, mx; 202 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag); 203 return mx; 204 } 205 206 /* 207 ** Trigger the alarm 208 */ 209 static void sqlite3MallocAlarm(int nByte){ 210 if( mem0.alarmThreshold<=0 ) return; 211 sqlite3_mutex_leave(mem0.mutex); 212 sqlite3_release_memory(nByte); 213 sqlite3_mutex_enter(mem0.mutex); 214 } 215 216 /* 217 ** Do a memory allocation with statistics and alarms. Assume the 218 ** lock is already held. 219 */ 220 static int mallocWithAlarm(int n, void **pp){ 221 int nFull; 222 void *p; 223 assert( sqlite3_mutex_held(mem0.mutex) ); 224 nFull = sqlite3GlobalConfig.m.xRoundup(n); 225 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n); 226 if( mem0.alarmThreshold>0 ){ 227 sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 228 if( nUsed >= mem0.alarmThreshold - nFull ){ 229 mem0.nearlyFull = 1; 230 sqlite3MallocAlarm(nFull); 231 }else{ 232 mem0.nearlyFull = 0; 233 } 234 } 235 p = sqlite3GlobalConfig.m.xMalloc(nFull); 236 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 237 if( p==0 && mem0.alarmThreshold>0 ){ 238 sqlite3MallocAlarm(nFull); 239 p = sqlite3GlobalConfig.m.xMalloc(nFull); 240 } 241 #endif 242 if( p ){ 243 nFull = sqlite3MallocSize(p); 244 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull); 245 sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1); 246 } 247 *pp = p; 248 return nFull; 249 } 250 251 /* 252 ** Allocate memory. This routine is like sqlite3_malloc() except that it 253 ** assumes the memory subsystem has already been initialized. 254 */ 255 void *sqlite3Malloc(u64 n){ 256 void *p; 257 if( n==0 || n>=0x7fffff00 ){ 258 /* A memory allocation of a number of bytes which is near the maximum 259 ** signed integer value might cause an integer overflow inside of the 260 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving 261 ** 255 bytes of overhead. SQLite itself will never use anything near 262 ** this amount. The only way to reach the limit is with sqlite3_malloc() */ 263 p = 0; 264 }else if( sqlite3GlobalConfig.bMemstat ){ 265 sqlite3_mutex_enter(mem0.mutex); 266 mallocWithAlarm((int)n, &p); 267 sqlite3_mutex_leave(mem0.mutex); 268 }else{ 269 p = sqlite3GlobalConfig.m.xMalloc((int)n); 270 } 271 assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */ 272 return p; 273 } 274 275 /* 276 ** This version of the memory allocation is for use by the application. 277 ** First make sure the memory subsystem is initialized, then do the 278 ** allocation. 279 */ 280 void *sqlite3_malloc(int n){ 281 #ifndef SQLITE_OMIT_AUTOINIT 282 if( sqlite3_initialize() ) return 0; 283 #endif 284 return n<=0 ? 0 : sqlite3Malloc(n); 285 } 286 void *sqlite3_malloc64(sqlite3_uint64 n){ 287 #ifndef SQLITE_OMIT_AUTOINIT 288 if( sqlite3_initialize() ) return 0; 289 #endif 290 return sqlite3Malloc(n); 291 } 292 293 /* 294 ** Each thread may only have a single outstanding allocation from 295 ** xScratchMalloc(). We verify this constraint in the single-threaded 296 ** case by setting scratchAllocOut to 1 when an allocation 297 ** is outstanding clearing it when the allocation is freed. 298 */ 299 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 300 static int scratchAllocOut = 0; 301 #endif 302 303 304 /* 305 ** Allocate memory that is to be used and released right away. 306 ** This routine is similar to alloca() in that it is not intended 307 ** for situations where the memory might be held long-term. This 308 ** routine is intended to get memory to old large transient data 309 ** structures that would not normally fit on the stack of an 310 ** embedded processor. 311 */ 312 void *sqlite3ScratchMalloc(int n){ 313 void *p; 314 assert( n>0 ); 315 316 sqlite3_mutex_enter(mem0.mutex); 317 sqlite3StatusHighwater(SQLITE_STATUS_SCRATCH_SIZE, n); 318 if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){ 319 p = mem0.pScratchFree; 320 mem0.pScratchFree = mem0.pScratchFree->pNext; 321 mem0.nScratchFree--; 322 sqlite3StatusUp(SQLITE_STATUS_SCRATCH_USED, 1); 323 sqlite3_mutex_leave(mem0.mutex); 324 }else{ 325 sqlite3_mutex_leave(mem0.mutex); 326 p = sqlite3Malloc(n); 327 if( sqlite3GlobalConfig.bMemstat && p ){ 328 sqlite3_mutex_enter(mem0.mutex); 329 sqlite3StatusUp(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p)); 330 sqlite3_mutex_leave(mem0.mutex); 331 } 332 sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); 333 } 334 assert( sqlite3_mutex_notheld(mem0.mutex) ); 335 336 337 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 338 /* EVIDENCE-OF: R-12970-05880 SQLite will not use more than one scratch 339 ** buffers per thread. 340 ** 341 ** This can only be checked in single-threaded mode. 342 */ 343 assert( scratchAllocOut==0 ); 344 if( p ) scratchAllocOut++; 345 #endif 346 347 return p; 348 } 349 void sqlite3ScratchFree(void *p){ 350 if( p ){ 351 352 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 353 /* Verify that no more than two scratch allocation per thread 354 ** is outstanding at one time. (This is only checked in the 355 ** single-threaded case since checking in the multi-threaded case 356 ** would be much more complicated.) */ 357 assert( scratchAllocOut>=1 && scratchAllocOut<=2 ); 358 scratchAllocOut--; 359 #endif 360 361 if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){ 362 /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */ 363 ScratchFreeslot *pSlot; 364 pSlot = (ScratchFreeslot*)p; 365 sqlite3_mutex_enter(mem0.mutex); 366 pSlot->pNext = mem0.pScratchFree; 367 mem0.pScratchFree = pSlot; 368 mem0.nScratchFree++; 369 assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch ); 370 sqlite3StatusDown(SQLITE_STATUS_SCRATCH_USED, 1); 371 sqlite3_mutex_leave(mem0.mutex); 372 }else{ 373 /* Release memory back to the heap */ 374 assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); 375 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_SCRATCH) ); 376 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 377 if( sqlite3GlobalConfig.bMemstat ){ 378 int iSize = sqlite3MallocSize(p); 379 sqlite3_mutex_enter(mem0.mutex); 380 sqlite3StatusDown(SQLITE_STATUS_SCRATCH_OVERFLOW, iSize); 381 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, iSize); 382 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); 383 sqlite3GlobalConfig.m.xFree(p); 384 sqlite3_mutex_leave(mem0.mutex); 385 }else{ 386 sqlite3GlobalConfig.m.xFree(p); 387 } 388 } 389 } 390 } 391 392 /* 393 ** TRUE if p is a lookaside memory allocation from db 394 */ 395 #ifndef SQLITE_OMIT_LOOKASIDE 396 static int isLookaside(sqlite3 *db, void *p){ 397 return p>=db->lookaside.pStart && p<db->lookaside.pEnd; 398 } 399 #else 400 #define isLookaside(A,B) 0 401 #endif 402 403 /* 404 ** Return the size of a memory allocation previously obtained from 405 ** sqlite3Malloc() or sqlite3_malloc(). 406 */ 407 int sqlite3MallocSize(void *p){ 408 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 409 return sqlite3GlobalConfig.m.xSize(p); 410 } 411 int sqlite3DbMallocSize(sqlite3 *db, void *p){ 412 assert( p!=0 ); 413 if( db==0 || !isLookaside(db,p) ){ 414 #if SQLITE_DEBUG 415 if( db==0 ){ 416 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 417 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 418 }else{ 419 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 420 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 421 } 422 #endif 423 return sqlite3GlobalConfig.m.xSize(p); 424 }else{ 425 assert( sqlite3_mutex_held(db->mutex) ); 426 return db->lookaside.sz; 427 } 428 } 429 sqlite3_uint64 sqlite3_msize(void *p){ 430 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 431 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 432 return p ? sqlite3GlobalConfig.m.xSize(p) : 0; 433 } 434 435 /* 436 ** Free memory previously obtained from sqlite3Malloc(). 437 */ 438 void sqlite3_free(void *p){ 439 if( p==0 ) return; /* IMP: R-49053-54554 */ 440 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 441 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 442 if( sqlite3GlobalConfig.bMemstat ){ 443 sqlite3_mutex_enter(mem0.mutex); 444 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p)); 445 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); 446 sqlite3GlobalConfig.m.xFree(p); 447 sqlite3_mutex_leave(mem0.mutex); 448 }else{ 449 sqlite3GlobalConfig.m.xFree(p); 450 } 451 } 452 453 /* 454 ** Add the size of memory allocation "p" to the count in 455 ** *db->pnBytesFreed. 456 */ 457 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){ 458 *db->pnBytesFreed += sqlite3DbMallocSize(db,p); 459 } 460 461 /* 462 ** Free memory that might be associated with a particular database 463 ** connection. 464 */ 465 void sqlite3DbFree(sqlite3 *db, void *p){ 466 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 467 if( p==0 ) return; 468 if( db ){ 469 if( db->pnBytesFreed ){ 470 measureAllocationSize(db, p); 471 return; 472 } 473 if( isLookaside(db, p) ){ 474 LookasideSlot *pBuf = (LookasideSlot*)p; 475 #if SQLITE_DEBUG 476 /* Trash all content in the buffer being freed */ 477 memset(p, 0xaa, db->lookaside.sz); 478 #endif 479 pBuf->pNext = db->lookaside.pFree; 480 db->lookaside.pFree = pBuf; 481 db->lookaside.nOut--; 482 return; 483 } 484 } 485 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 486 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 487 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); 488 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 489 sqlite3_free(p); 490 } 491 492 /* 493 ** Change the size of an existing memory allocation 494 */ 495 void *sqlite3Realloc(void *pOld, u64 nBytes){ 496 int nOld, nNew, nDiff; 497 void *pNew; 498 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); 499 assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) ); 500 if( pOld==0 ){ 501 return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */ 502 } 503 if( nBytes==0 ){ 504 sqlite3_free(pOld); /* IMP: R-26507-47431 */ 505 return 0; 506 } 507 if( nBytes>=0x7fffff00 ){ 508 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ 509 return 0; 510 } 511 nOld = sqlite3MallocSize(pOld); 512 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second 513 ** argument to xRealloc is always a value returned by a prior call to 514 ** xRoundup. */ 515 nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes); 516 if( nOld==nNew ){ 517 pNew = pOld; 518 }else if( sqlite3GlobalConfig.bMemstat ){ 519 sqlite3_mutex_enter(mem0.mutex); 520 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes); 521 nDiff = nNew - nOld; 522 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= 523 mem0.alarmThreshold-nDiff ){ 524 sqlite3MallocAlarm(nDiff); 525 } 526 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 527 if( pNew==0 && mem0.alarmThreshold>0 ){ 528 sqlite3MallocAlarm((int)nBytes); 529 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 530 } 531 if( pNew ){ 532 nNew = sqlite3MallocSize(pNew); 533 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld); 534 } 535 sqlite3_mutex_leave(mem0.mutex); 536 }else{ 537 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 538 } 539 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */ 540 return pNew; 541 } 542 543 /* 544 ** The public interface to sqlite3Realloc. Make sure that the memory 545 ** subsystem is initialized prior to invoking sqliteRealloc. 546 */ 547 void *sqlite3_realloc(void *pOld, int n){ 548 #ifndef SQLITE_OMIT_AUTOINIT 549 if( sqlite3_initialize() ) return 0; 550 #endif 551 if( n<0 ) n = 0; /* IMP: R-26507-47431 */ 552 return sqlite3Realloc(pOld, n); 553 } 554 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){ 555 #ifndef SQLITE_OMIT_AUTOINIT 556 if( sqlite3_initialize() ) return 0; 557 #endif 558 return sqlite3Realloc(pOld, n); 559 } 560 561 562 /* 563 ** Allocate and zero memory. 564 */ 565 void *sqlite3MallocZero(u64 n){ 566 void *p = sqlite3Malloc(n); 567 if( p ){ 568 memset(p, 0, (size_t)n); 569 } 570 return p; 571 } 572 573 /* 574 ** Allocate and zero memory. If the allocation fails, make 575 ** the mallocFailed flag in the connection pointer. 576 */ 577 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){ 578 void *p = sqlite3DbMallocRaw(db, n); 579 if( p ){ 580 memset(p, 0, (size_t)n); 581 } 582 return p; 583 } 584 585 /* 586 ** Allocate and zero memory. If the allocation fails, make 587 ** the mallocFailed flag in the connection pointer. 588 ** 589 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc 590 ** failure on the same database connection) then always return 0. 591 ** Hence for a particular database connection, once malloc starts 592 ** failing, it fails consistently until mallocFailed is reset. 593 ** This is an important assumption. There are many places in the 594 ** code that do things like this: 595 ** 596 ** int *a = (int*)sqlite3DbMallocRaw(db, 100); 597 ** int *b = (int*)sqlite3DbMallocRaw(db, 200); 598 ** if( b ) a[10] = 9; 599 ** 600 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed 601 ** that all prior mallocs (ex: "a") worked too. 602 */ 603 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){ 604 void *p; 605 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 606 assert( db==0 || db->pnBytesFreed==0 ); 607 #ifndef SQLITE_OMIT_LOOKASIDE 608 if( db ){ 609 LookasideSlot *pBuf; 610 if( db->mallocFailed ){ 611 return 0; 612 } 613 if( db->lookaside.bEnabled ){ 614 if( n>db->lookaside.sz ){ 615 db->lookaside.anStat[1]++; 616 }else if( (pBuf = db->lookaside.pFree)==0 ){ 617 db->lookaside.anStat[2]++; 618 }else{ 619 db->lookaside.pFree = pBuf->pNext; 620 db->lookaside.nOut++; 621 db->lookaside.anStat[0]++; 622 if( db->lookaside.nOut>db->lookaside.mxOut ){ 623 db->lookaside.mxOut = db->lookaside.nOut; 624 } 625 return (void*)pBuf; 626 } 627 } 628 } 629 #else 630 if( db && db->mallocFailed ){ 631 return 0; 632 } 633 #endif 634 p = sqlite3Malloc(n); 635 if( !p && db ){ 636 db->mallocFailed = 1; 637 } 638 sqlite3MemdebugSetType(p, 639 (db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP); 640 return p; 641 } 642 643 /* 644 ** Resize the block of memory pointed to by p to n bytes. If the 645 ** resize fails, set the mallocFailed flag in the connection object. 646 */ 647 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){ 648 void *pNew = 0; 649 assert( db!=0 ); 650 assert( sqlite3_mutex_held(db->mutex) ); 651 if( db->mallocFailed==0 ){ 652 if( p==0 ){ 653 return sqlite3DbMallocRaw(db, n); 654 } 655 if( isLookaside(db, p) ){ 656 if( n<=db->lookaside.sz ){ 657 return p; 658 } 659 pNew = sqlite3DbMallocRaw(db, n); 660 if( pNew ){ 661 memcpy(pNew, p, db->lookaside.sz); 662 sqlite3DbFree(db, p); 663 } 664 }else{ 665 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 666 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 667 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 668 pNew = sqlite3_realloc64(p, n); 669 if( !pNew ){ 670 db->mallocFailed = 1; 671 } 672 sqlite3MemdebugSetType(pNew, 673 (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); 674 } 675 } 676 return pNew; 677 } 678 679 /* 680 ** Attempt to reallocate p. If the reallocation fails, then free p 681 ** and set the mallocFailed flag in the database connection. 682 */ 683 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){ 684 void *pNew; 685 pNew = sqlite3DbRealloc(db, p, n); 686 if( !pNew ){ 687 sqlite3DbFree(db, p); 688 } 689 return pNew; 690 } 691 692 /* 693 ** Make a copy of a string in memory obtained from sqliteMalloc(). These 694 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This 695 ** is because when memory debugging is turned on, these two functions are 696 ** called via macros that record the current file and line number in the 697 ** ThreadData structure. 698 */ 699 char *sqlite3DbStrDup(sqlite3 *db, const char *z){ 700 char *zNew; 701 size_t n; 702 if( z==0 ){ 703 return 0; 704 } 705 n = sqlite3Strlen30(z) + 1; 706 assert( (n&0x7fffffff)==n ); 707 zNew = sqlite3DbMallocRaw(db, (int)n); 708 if( zNew ){ 709 memcpy(zNew, z, n); 710 } 711 return zNew; 712 } 713 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){ 714 char *zNew; 715 if( z==0 ){ 716 return 0; 717 } 718 assert( (n&0x7fffffff)==n ); 719 zNew = sqlite3DbMallocRaw(db, n+1); 720 if( zNew ){ 721 memcpy(zNew, z, (size_t)n); 722 zNew[n] = 0; 723 } 724 return zNew; 725 } 726 727 /* 728 ** Free any prior content in *pz and replace it with a copy of zNew. 729 */ 730 void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){ 731 sqlite3DbFree(db, *pz); 732 *pz = sqlite3DbStrDup(db, zNew); 733 } 734 735 /* 736 ** Take actions at the end of an API call to indicate an OOM error 737 */ 738 static SQLITE_NOINLINE int apiOomError(sqlite3 *db){ 739 db->mallocFailed = 0; 740 sqlite3Error(db, SQLITE_NOMEM); 741 return SQLITE_NOMEM; 742 } 743 744 /* 745 ** This function must be called before exiting any API function (i.e. 746 ** returning control to the user) that has called sqlite3_malloc or 747 ** sqlite3_realloc. 748 ** 749 ** The returned value is normally a copy of the second argument to this 750 ** function. However, if a malloc() failure has occurred since the previous 751 ** invocation SQLITE_NOMEM is returned instead. 752 ** 753 ** If an OOM as occurred, then the connection error-code (the value 754 ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM. 755 */ 756 int sqlite3ApiExit(sqlite3* db, int rc){ 757 /* If the db handle must hold the connection handle mutex here. 758 ** Otherwise the read (and possible write) of db->mallocFailed 759 ** is unsafe, as is the call to sqlite3Error(). 760 */ 761 assert( db!=0 ); 762 assert( sqlite3_mutex_held(db->mutex) ); 763 if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){ 764 return apiOomError(db); 765 } 766 return rc & db->errMask; 767 } 768