1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** Memory allocation functions used throughout sqlite. 14 */ 15 #include "sqliteInt.h" 16 #include <stdarg.h> 17 18 /* 19 ** Attempt to release up to n bytes of non-essential memory currently 20 ** held by SQLite. An example of non-essential memory is memory used to 21 ** cache database pages that are not currently in use. 22 */ 23 int sqlite3_release_memory(int n){ 24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 25 return sqlite3PcacheReleaseMemory(n); 26 #else 27 /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine 28 ** is a no-op returning zero if SQLite is not compiled with 29 ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ 30 UNUSED_PARAMETER(n); 31 return 0; 32 #endif 33 } 34 35 /* 36 ** An instance of the following object records the location of 37 ** each unused scratch buffer. 38 */ 39 typedef struct ScratchFreeslot { 40 struct ScratchFreeslot *pNext; /* Next unused scratch buffer */ 41 } ScratchFreeslot; 42 43 /* 44 ** State information local to the memory allocation subsystem. 45 */ 46 static SQLITE_WSD struct Mem0Global { 47 sqlite3_mutex *mutex; /* Mutex to serialize access */ 48 49 /* 50 ** The alarm callback and its arguments. The mem0.mutex lock will 51 ** be held while the callback is running. Recursive calls into 52 ** the memory subsystem are allowed, but no new callbacks will be 53 ** issued. 54 */ 55 sqlite3_int64 alarmThreshold; 56 void (*alarmCallback)(void*, sqlite3_int64,int); 57 void *alarmArg; 58 59 /* 60 ** Pointers to the end of sqlite3GlobalConfig.pScratch memory 61 ** (so that a range test can be used to determine if an allocation 62 ** being freed came from pScratch) and a pointer to the list of 63 ** unused scratch allocations. 64 */ 65 void *pScratchEnd; 66 ScratchFreeslot *pScratchFree; 67 u32 nScratchFree; 68 69 /* 70 ** True if heap is nearly "full" where "full" is defined by the 71 ** sqlite3_soft_heap_limit() setting. 72 */ 73 int nearlyFull; 74 } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 }; 75 76 #define mem0 GLOBAL(struct Mem0Global, mem0) 77 78 /* 79 ** This routine runs when the memory allocator sees that the 80 ** total memory allocation is about to exceed the soft heap 81 ** limit. 82 */ 83 static void softHeapLimitEnforcer( 84 void *NotUsed, 85 sqlite3_int64 NotUsed2, 86 int allocSize 87 ){ 88 UNUSED_PARAMETER2(NotUsed, NotUsed2); 89 sqlite3_release_memory(allocSize); 90 } 91 92 /* 93 ** Change the alarm callback 94 */ 95 static int sqlite3MemoryAlarm( 96 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 97 void *pArg, 98 sqlite3_int64 iThreshold 99 ){ 100 int nUsed; 101 sqlite3_mutex_enter(mem0.mutex); 102 mem0.alarmCallback = xCallback; 103 mem0.alarmArg = pArg; 104 mem0.alarmThreshold = iThreshold; 105 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 106 mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed); 107 sqlite3_mutex_leave(mem0.mutex); 108 return SQLITE_OK; 109 } 110 111 #ifndef SQLITE_OMIT_DEPRECATED 112 /* 113 ** Deprecated external interface. Internal/core SQLite code 114 ** should call sqlite3MemoryAlarm. 115 */ 116 int sqlite3_memory_alarm( 117 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 118 void *pArg, 119 sqlite3_int64 iThreshold 120 ){ 121 return sqlite3MemoryAlarm(xCallback, pArg, iThreshold); 122 } 123 #endif 124 125 /* 126 ** Set the soft heap-size limit for the library. Passing a zero or 127 ** negative value indicates no limit. 128 */ 129 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ 130 sqlite3_int64 priorLimit; 131 sqlite3_int64 excess; 132 #ifndef SQLITE_OMIT_AUTOINIT 133 int rc = sqlite3_initialize(); 134 if( rc ) return -1; 135 #endif 136 sqlite3_mutex_enter(mem0.mutex); 137 priorLimit = mem0.alarmThreshold; 138 sqlite3_mutex_leave(mem0.mutex); 139 if( n<0 ) return priorLimit; 140 if( n>0 ){ 141 sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n); 142 }else{ 143 sqlite3MemoryAlarm(0, 0, 0); 144 } 145 excess = sqlite3_memory_used() - n; 146 if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); 147 return priorLimit; 148 } 149 void sqlite3_soft_heap_limit(int n){ 150 if( n<0 ) n = 0; 151 sqlite3_soft_heap_limit64(n); 152 } 153 154 /* 155 ** Initialize the memory allocation subsystem. 156 */ 157 int sqlite3MallocInit(void){ 158 if( sqlite3GlobalConfig.m.xMalloc==0 ){ 159 sqlite3MemSetDefault(); 160 } 161 memset(&mem0, 0, sizeof(mem0)); 162 if( sqlite3GlobalConfig.bCoreMutex ){ 163 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 164 } 165 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 166 && sqlite3GlobalConfig.nScratch>0 ){ 167 int i, n, sz; 168 ScratchFreeslot *pSlot; 169 sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch); 170 sqlite3GlobalConfig.szScratch = sz; 171 pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch; 172 n = sqlite3GlobalConfig.nScratch; 173 mem0.pScratchFree = pSlot; 174 mem0.nScratchFree = n; 175 for(i=0; i<n-1; i++){ 176 pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot); 177 pSlot = pSlot->pNext; 178 } 179 pSlot->pNext = 0; 180 mem0.pScratchEnd = (void*)&pSlot[1]; 181 }else{ 182 mem0.pScratchEnd = 0; 183 sqlite3GlobalConfig.pScratch = 0; 184 sqlite3GlobalConfig.szScratch = 0; 185 sqlite3GlobalConfig.nScratch = 0; 186 } 187 if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 188 || sqlite3GlobalConfig.nPage<1 ){ 189 sqlite3GlobalConfig.pPage = 0; 190 sqlite3GlobalConfig.szPage = 0; 191 sqlite3GlobalConfig.nPage = 0; 192 } 193 return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); 194 } 195 196 /* 197 ** Return true if the heap is currently under memory pressure - in other 198 ** words if the amount of heap used is close to the limit set by 199 ** sqlite3_soft_heap_limit(). 200 */ 201 int sqlite3HeapNearlyFull(void){ 202 return mem0.nearlyFull; 203 } 204 205 /* 206 ** Deinitialize the memory allocation subsystem. 207 */ 208 void sqlite3MallocEnd(void){ 209 if( sqlite3GlobalConfig.m.xShutdown ){ 210 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); 211 } 212 memset(&mem0, 0, sizeof(mem0)); 213 } 214 215 /* 216 ** Return the amount of memory currently checked out. 217 */ 218 sqlite3_int64 sqlite3_memory_used(void){ 219 int n, mx; 220 sqlite3_int64 res; 221 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0); 222 res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */ 223 return res; 224 } 225 226 /* 227 ** Return the maximum amount of memory that has ever been 228 ** checked out since either the beginning of this process 229 ** or since the most recent reset. 230 */ 231 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ 232 int n, mx; 233 sqlite3_int64 res; 234 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag); 235 res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */ 236 return res; 237 } 238 239 /* 240 ** Trigger the alarm 241 */ 242 static void sqlite3MallocAlarm(int nByte){ 243 void (*xCallback)(void*,sqlite3_int64,int); 244 sqlite3_int64 nowUsed; 245 void *pArg; 246 if( mem0.alarmCallback==0 ) return; 247 xCallback = mem0.alarmCallback; 248 nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 249 pArg = mem0.alarmArg; 250 mem0.alarmCallback = 0; 251 sqlite3_mutex_leave(mem0.mutex); 252 xCallback(pArg, nowUsed, nByte); 253 sqlite3_mutex_enter(mem0.mutex); 254 mem0.alarmCallback = xCallback; 255 mem0.alarmArg = pArg; 256 } 257 258 /* 259 ** Do a memory allocation with statistics and alarms. Assume the 260 ** lock is already held. 261 */ 262 static int mallocWithAlarm(int n, void **pp){ 263 int nFull; 264 void *p; 265 assert( sqlite3_mutex_held(mem0.mutex) ); 266 nFull = sqlite3GlobalConfig.m.xRoundup(n); 267 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); 268 if( mem0.alarmCallback!=0 ){ 269 int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 270 if( nUsed >= mem0.alarmThreshold - nFull ){ 271 mem0.nearlyFull = 1; 272 sqlite3MallocAlarm(nFull); 273 }else{ 274 mem0.nearlyFull = 0; 275 } 276 } 277 p = sqlite3GlobalConfig.m.xMalloc(nFull); 278 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 279 if( p==0 && mem0.alarmCallback ){ 280 sqlite3MallocAlarm(nFull); 281 p = sqlite3GlobalConfig.m.xMalloc(nFull); 282 } 283 #endif 284 if( p ){ 285 nFull = sqlite3MallocSize(p); 286 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull); 287 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1); 288 } 289 *pp = p; 290 return nFull; 291 } 292 293 /* 294 ** Allocate memory. This routine is like sqlite3_malloc() except that it 295 ** assumes the memory subsystem has already been initialized. 296 */ 297 void *sqlite3Malloc(u64 n){ 298 void *p; 299 if( n==0 || n>=0x7fffff00 ){ 300 /* A memory allocation of a number of bytes which is near the maximum 301 ** signed integer value might cause an integer overflow inside of the 302 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving 303 ** 255 bytes of overhead. SQLite itself will never use anything near 304 ** this amount. The only way to reach the limit is with sqlite3_malloc() */ 305 p = 0; 306 }else if( sqlite3GlobalConfig.bMemstat ){ 307 sqlite3_mutex_enter(mem0.mutex); 308 mallocWithAlarm((int)n, &p); 309 sqlite3_mutex_leave(mem0.mutex); 310 }else{ 311 p = sqlite3GlobalConfig.m.xMalloc((int)n); 312 } 313 assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */ 314 return p; 315 } 316 317 /* 318 ** This version of the memory allocation is for use by the application. 319 ** First make sure the memory subsystem is initialized, then do the 320 ** allocation. 321 */ 322 void *sqlite3_malloc(int n){ 323 #ifndef SQLITE_OMIT_AUTOINIT 324 if( sqlite3_initialize() ) return 0; 325 #endif 326 return n<=0 ? 0 : sqlite3Malloc(n); 327 } 328 void *sqlite3_malloc64(sqlite3_uint64 n){ 329 #ifndef SQLITE_OMIT_AUTOINIT 330 if( sqlite3_initialize() ) return 0; 331 #endif 332 return sqlite3Malloc(n); 333 } 334 335 /* 336 ** Each thread may only have a single outstanding allocation from 337 ** xScratchMalloc(). We verify this constraint in the single-threaded 338 ** case by setting scratchAllocOut to 1 when an allocation 339 ** is outstanding clearing it when the allocation is freed. 340 */ 341 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 342 static int scratchAllocOut = 0; 343 #endif 344 345 346 /* 347 ** Allocate memory that is to be used and released right away. 348 ** This routine is similar to alloca() in that it is not intended 349 ** for situations where the memory might be held long-term. This 350 ** routine is intended to get memory to old large transient data 351 ** structures that would not normally fit on the stack of an 352 ** embedded processor. 353 */ 354 void *sqlite3ScratchMalloc(int n){ 355 void *p; 356 assert( n>0 ); 357 358 sqlite3_mutex_enter(mem0.mutex); 359 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); 360 if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){ 361 p = mem0.pScratchFree; 362 mem0.pScratchFree = mem0.pScratchFree->pNext; 363 mem0.nScratchFree--; 364 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1); 365 sqlite3_mutex_leave(mem0.mutex); 366 }else{ 367 sqlite3_mutex_leave(mem0.mutex); 368 p = sqlite3Malloc(n); 369 if( sqlite3GlobalConfig.bMemstat && p ){ 370 sqlite3_mutex_enter(mem0.mutex); 371 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p)); 372 sqlite3_mutex_leave(mem0.mutex); 373 } 374 sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); 375 } 376 assert( sqlite3_mutex_notheld(mem0.mutex) ); 377 378 379 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 380 /* EVIDENCE-OF: R-12970-05880 SQLite will not use more than one scratch 381 ** buffers per thread. 382 ** 383 ** This can only be checked in single-threaded mode. 384 */ 385 assert( scratchAllocOut==0 ); 386 if( p ) scratchAllocOut++; 387 #endif 388 389 return p; 390 } 391 void sqlite3ScratchFree(void *p){ 392 if( p ){ 393 394 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 395 /* Verify that no more than two scratch allocation per thread 396 ** is outstanding at one time. (This is only checked in the 397 ** single-threaded case since checking in the multi-threaded case 398 ** would be much more complicated.) */ 399 assert( scratchAllocOut>=1 && scratchAllocOut<=2 ); 400 scratchAllocOut--; 401 #endif 402 403 if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){ 404 /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */ 405 ScratchFreeslot *pSlot; 406 pSlot = (ScratchFreeslot*)p; 407 sqlite3_mutex_enter(mem0.mutex); 408 pSlot->pNext = mem0.pScratchFree; 409 mem0.pScratchFree = pSlot; 410 mem0.nScratchFree++; 411 assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch ); 412 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1); 413 sqlite3_mutex_leave(mem0.mutex); 414 }else{ 415 /* Release memory back to the heap */ 416 assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); 417 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) ); 418 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 419 if( sqlite3GlobalConfig.bMemstat ){ 420 int iSize = sqlite3MallocSize(p); 421 sqlite3_mutex_enter(mem0.mutex); 422 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize); 423 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize); 424 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1); 425 sqlite3GlobalConfig.m.xFree(p); 426 sqlite3_mutex_leave(mem0.mutex); 427 }else{ 428 sqlite3GlobalConfig.m.xFree(p); 429 } 430 } 431 } 432 } 433 434 /* 435 ** TRUE if p is a lookaside memory allocation from db 436 */ 437 #ifndef SQLITE_OMIT_LOOKASIDE 438 static int isLookaside(sqlite3 *db, void *p){ 439 return p>=db->lookaside.pStart && p<db->lookaside.pEnd; 440 } 441 #else 442 #define isLookaside(A,B) 0 443 #endif 444 445 /* 446 ** Return the size of a memory allocation previously obtained from 447 ** sqlite3Malloc() or sqlite3_malloc(). 448 */ 449 int sqlite3MallocSize(void *p){ 450 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 451 return sqlite3GlobalConfig.m.xSize(p); 452 } 453 int sqlite3DbMallocSize(sqlite3 *db, void *p){ 454 if( db==0 ){ 455 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) ); 456 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 457 return sqlite3MallocSize(p); 458 }else{ 459 assert( sqlite3_mutex_held(db->mutex) ); 460 if( isLookaside(db, p) ){ 461 return db->lookaside.sz; 462 }else{ 463 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 464 assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 465 return sqlite3GlobalConfig.m.xSize(p); 466 } 467 } 468 } 469 sqlite3_uint64 sqlite3_msize(void *p){ 470 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) ); 471 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 472 return (sqlite3_uint64)sqlite3GlobalConfig.m.xSize(p); 473 } 474 475 /* 476 ** Free memory previously obtained from sqlite3Malloc(). 477 */ 478 void sqlite3_free(void *p){ 479 if( p==0 ) return; /* IMP: R-49053-54554 */ 480 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 481 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) ); 482 if( sqlite3GlobalConfig.bMemstat ){ 483 sqlite3_mutex_enter(mem0.mutex); 484 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p)); 485 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1); 486 sqlite3GlobalConfig.m.xFree(p); 487 sqlite3_mutex_leave(mem0.mutex); 488 }else{ 489 sqlite3GlobalConfig.m.xFree(p); 490 } 491 } 492 493 /* 494 ** Add the size of memory allocation "p" to the count in 495 ** *db->pnBytesFreed. 496 */ 497 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){ 498 *db->pnBytesFreed += sqlite3DbMallocSize(db,p); 499 } 500 501 /* 502 ** Free memory that might be associated with a particular database 503 ** connection. 504 */ 505 void sqlite3DbFree(sqlite3 *db, void *p){ 506 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 507 if( p==0 ) return; 508 if( db ){ 509 if( db->pnBytesFreed ){ 510 measureAllocationSize(db, p); 511 return; 512 } 513 if( isLookaside(db, p) ){ 514 LookasideSlot *pBuf = (LookasideSlot*)p; 515 #if SQLITE_DEBUG 516 /* Trash all content in the buffer being freed */ 517 memset(p, 0xaa, db->lookaside.sz); 518 #endif 519 pBuf->pNext = db->lookaside.pFree; 520 db->lookaside.pFree = pBuf; 521 db->lookaside.nOut--; 522 return; 523 } 524 } 525 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 526 assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 527 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); 528 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 529 sqlite3_free(p); 530 } 531 532 /* 533 ** Change the size of an existing memory allocation 534 */ 535 void *sqlite3Realloc(void *pOld, u64 nBytes){ 536 int nOld, nNew, nDiff; 537 void *pNew; 538 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); 539 assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) ); 540 if( pOld==0 ){ 541 return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */ 542 } 543 if( nBytes==0 ){ 544 sqlite3_free(pOld); /* IMP: R-26507-47431 */ 545 return 0; 546 } 547 if( nBytes>=0x7fffff00 ){ 548 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ 549 return 0; 550 } 551 nOld = sqlite3MallocSize(pOld); 552 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second 553 ** argument to xRealloc is always a value returned by a prior call to 554 ** xRoundup. */ 555 nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes); 556 if( nOld==nNew ){ 557 pNew = pOld; 558 }else if( sqlite3GlobalConfig.bMemstat ){ 559 sqlite3_mutex_enter(mem0.mutex); 560 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes); 561 nDiff = nNew - nOld; 562 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= 563 mem0.alarmThreshold-nDiff ){ 564 sqlite3MallocAlarm(nDiff); 565 } 566 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 567 if( pNew==0 && mem0.alarmCallback ){ 568 sqlite3MallocAlarm((int)nBytes); 569 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 570 } 571 if( pNew ){ 572 nNew = sqlite3MallocSize(pNew); 573 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld); 574 } 575 sqlite3_mutex_leave(mem0.mutex); 576 }else{ 577 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 578 } 579 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */ 580 return pNew; 581 } 582 583 /* 584 ** The public interface to sqlite3Realloc. Make sure that the memory 585 ** subsystem is initialized prior to invoking sqliteRealloc. 586 */ 587 void *sqlite3_realloc(void *pOld, int n){ 588 #ifndef SQLITE_OMIT_AUTOINIT 589 if( sqlite3_initialize() ) return 0; 590 #endif 591 if( n<0 ) n = 0; /* IMP: R-26507-47431 */ 592 return sqlite3Realloc(pOld, n); 593 } 594 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){ 595 #ifndef SQLITE_OMIT_AUTOINIT 596 if( sqlite3_initialize() ) return 0; 597 #endif 598 return sqlite3Realloc(pOld, n); 599 } 600 601 602 /* 603 ** Allocate and zero memory. 604 */ 605 void *sqlite3MallocZero(u64 n){ 606 void *p = sqlite3Malloc(n); 607 if( p ){ 608 memset(p, 0, (size_t)n); 609 } 610 return p; 611 } 612 613 /* 614 ** Allocate and zero memory. If the allocation fails, make 615 ** the mallocFailed flag in the connection pointer. 616 */ 617 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){ 618 void *p = sqlite3DbMallocRaw(db, n); 619 if( p ){ 620 memset(p, 0, (size_t)n); 621 } 622 return p; 623 } 624 625 /* 626 ** Allocate and zero memory. If the allocation fails, make 627 ** the mallocFailed flag in the connection pointer. 628 ** 629 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc 630 ** failure on the same database connection) then always return 0. 631 ** Hence for a particular database connection, once malloc starts 632 ** failing, it fails consistently until mallocFailed is reset. 633 ** This is an important assumption. There are many places in the 634 ** code that do things like this: 635 ** 636 ** int *a = (int*)sqlite3DbMallocRaw(db, 100); 637 ** int *b = (int*)sqlite3DbMallocRaw(db, 200); 638 ** if( b ) a[10] = 9; 639 ** 640 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed 641 ** that all prior mallocs (ex: "a") worked too. 642 */ 643 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){ 644 void *p; 645 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 646 assert( db==0 || db->pnBytesFreed==0 ); 647 #ifndef SQLITE_OMIT_LOOKASIDE 648 if( db ){ 649 LookasideSlot *pBuf; 650 if( db->mallocFailed ){ 651 return 0; 652 } 653 if( db->lookaside.bEnabled ){ 654 if( n>db->lookaside.sz ){ 655 db->lookaside.anStat[1]++; 656 }else if( (pBuf = db->lookaside.pFree)==0 ){ 657 db->lookaside.anStat[2]++; 658 }else{ 659 db->lookaside.pFree = pBuf->pNext; 660 db->lookaside.nOut++; 661 db->lookaside.anStat[0]++; 662 if( db->lookaside.nOut>db->lookaside.mxOut ){ 663 db->lookaside.mxOut = db->lookaside.nOut; 664 } 665 return (void*)pBuf; 666 } 667 } 668 } 669 #else 670 if( db && db->mallocFailed ){ 671 return 0; 672 } 673 #endif 674 p = sqlite3Malloc(n); 675 if( !p && db ){ 676 db->mallocFailed = 1; 677 } 678 sqlite3MemdebugSetType(p, 679 (db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP); 680 return p; 681 } 682 683 /* 684 ** Resize the block of memory pointed to by p to n bytes. If the 685 ** resize fails, set the mallocFailed flag in the connection object. 686 */ 687 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){ 688 void *pNew = 0; 689 assert( db!=0 ); 690 assert( sqlite3_mutex_held(db->mutex) ); 691 if( db->mallocFailed==0 ){ 692 if( p==0 ){ 693 return sqlite3DbMallocRaw(db, n); 694 } 695 if( isLookaside(db, p) ){ 696 if( n<=db->lookaside.sz ){ 697 return p; 698 } 699 pNew = sqlite3DbMallocRaw(db, n); 700 if( pNew ){ 701 memcpy(pNew, p, db->lookaside.sz); 702 sqlite3DbFree(db, p); 703 } 704 }else{ 705 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 706 assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 707 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 708 pNew = sqlite3_realloc64(p, n); 709 if( !pNew ){ 710 db->mallocFailed = 1; 711 } 712 sqlite3MemdebugSetType(pNew, 713 (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); 714 } 715 } 716 return pNew; 717 } 718 719 /* 720 ** Attempt to reallocate p. If the reallocation fails, then free p 721 ** and set the mallocFailed flag in the database connection. 722 */ 723 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){ 724 void *pNew; 725 pNew = sqlite3DbRealloc(db, p, n); 726 if( !pNew ){ 727 sqlite3DbFree(db, p); 728 } 729 return pNew; 730 } 731 732 /* 733 ** Make a copy of a string in memory obtained from sqliteMalloc(). These 734 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This 735 ** is because when memory debugging is turned on, these two functions are 736 ** called via macros that record the current file and line number in the 737 ** ThreadData structure. 738 */ 739 char *sqlite3DbStrDup(sqlite3 *db, const char *z){ 740 char *zNew; 741 size_t n; 742 if( z==0 ){ 743 return 0; 744 } 745 n = sqlite3Strlen30(z) + 1; 746 assert( (n&0x7fffffff)==n ); 747 zNew = sqlite3DbMallocRaw(db, (int)n); 748 if( zNew ){ 749 memcpy(zNew, z, n); 750 } 751 return zNew; 752 } 753 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){ 754 char *zNew; 755 if( z==0 ){ 756 return 0; 757 } 758 assert( (n&0x7fffffff)==n ); 759 zNew = sqlite3DbMallocRaw(db, n+1); 760 if( zNew ){ 761 memcpy(zNew, z, (size_t)n); 762 zNew[n] = 0; 763 } 764 return zNew; 765 } 766 767 /* 768 ** Create a string from the zFromat argument and the va_list that follows. 769 ** Store the string in memory obtained from sqliteMalloc() and make *pz 770 ** point to that string. 771 */ 772 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){ 773 va_list ap; 774 char *z; 775 776 va_start(ap, zFormat); 777 z = sqlite3VMPrintf(db, zFormat, ap); 778 va_end(ap); 779 sqlite3DbFree(db, *pz); 780 *pz = z; 781 } 782 783 /* 784 ** Take actions at the end of an API call to indicate an OOM error 785 */ 786 static SQLITE_NOINLINE int apiOomError(sqlite3 *db){ 787 db->mallocFailed = 0; 788 sqlite3Error(db, SQLITE_NOMEM); 789 return SQLITE_NOMEM; 790 } 791 792 /* 793 ** This function must be called before exiting any API function (i.e. 794 ** returning control to the user) that has called sqlite3_malloc or 795 ** sqlite3_realloc. 796 ** 797 ** The returned value is normally a copy of the second argument to this 798 ** function. However, if a malloc() failure has occurred since the previous 799 ** invocation SQLITE_NOMEM is returned instead. 800 ** 801 ** If the first argument, db, is not NULL and a malloc() error has occurred, 802 ** then the connection error-code (the value returned by sqlite3_errcode()) 803 ** is set to SQLITE_NOMEM. 804 */ 805 int sqlite3ApiExit(sqlite3* db, int rc){ 806 /* If the db handle is not NULL, then we must hold the connection handle 807 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed 808 ** is unsafe, as is the call to sqlite3Error(). 809 */ 810 assert( !db || sqlite3_mutex_held(db->mutex) ); 811 if( db==0 ) return rc & 0xff; 812 if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){ 813 return apiOomError(db); 814 } 815 return rc & db->errMask; 816 } 817