1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** Memory allocation functions used throughout sqlite. 14 */ 15 #include "sqliteInt.h" 16 #include <stdarg.h> 17 18 /* 19 ** Attempt to release up to n bytes of non-essential memory currently 20 ** held by SQLite. An example of non-essential memory is memory used to 21 ** cache database pages that are not currently in use. 22 */ 23 int sqlite3_release_memory(int n){ 24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 25 return sqlite3PcacheReleaseMemory(n); 26 #else 27 /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine 28 ** is a no-op returning zero if SQLite is not compiled with 29 ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ 30 UNUSED_PARAMETER(n); 31 return 0; 32 #endif 33 } 34 35 /* 36 ** An instance of the following object records the location of 37 ** each unused scratch buffer. 38 */ 39 typedef struct ScratchFreeslot { 40 struct ScratchFreeslot *pNext; /* Next unused scratch buffer */ 41 } ScratchFreeslot; 42 43 /* 44 ** State information local to the memory allocation subsystem. 45 */ 46 static SQLITE_WSD struct Mem0Global { 47 sqlite3_mutex *mutex; /* Mutex to serialize access */ 48 49 /* 50 ** The alarm callback and its arguments. The mem0.mutex lock will 51 ** be held while the callback is running. Recursive calls into 52 ** the memory subsystem are allowed, but no new callbacks will be 53 ** issued. 54 */ 55 sqlite3_int64 alarmThreshold; 56 void (*alarmCallback)(void*, sqlite3_int64,int); 57 void *alarmArg; 58 59 /* 60 ** Pointers to the end of sqlite3GlobalConfig.pScratch memory 61 ** (so that a range test can be used to determine if an allocation 62 ** being freed came from pScratch) and a pointer to the list of 63 ** unused scratch allocations. 64 */ 65 void *pScratchEnd; 66 ScratchFreeslot *pScratchFree; 67 u32 nScratchFree; 68 69 /* 70 ** True if heap is nearly "full" where "full" is defined by the 71 ** sqlite3_soft_heap_limit() setting. 72 */ 73 int nearlyFull; 74 } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 }; 75 76 #define mem0 GLOBAL(struct Mem0Global, mem0) 77 78 /* 79 ** This routine runs when the memory allocator sees that the 80 ** total memory allocation is about to exceed the soft heap 81 ** limit. 82 */ 83 static void softHeapLimitEnforcer( 84 void *NotUsed, 85 sqlite3_int64 NotUsed2, 86 int allocSize 87 ){ 88 UNUSED_PARAMETER2(NotUsed, NotUsed2); 89 sqlite3_release_memory(allocSize); 90 } 91 92 /* 93 ** Change the alarm callback 94 */ 95 static int sqlite3MemoryAlarm( 96 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 97 void *pArg, 98 sqlite3_int64 iThreshold 99 ){ 100 int nUsed; 101 sqlite3_mutex_enter(mem0.mutex); 102 mem0.alarmCallback = xCallback; 103 mem0.alarmArg = pArg; 104 mem0.alarmThreshold = iThreshold; 105 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 106 mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed); 107 sqlite3_mutex_leave(mem0.mutex); 108 return SQLITE_OK; 109 } 110 111 #ifndef SQLITE_OMIT_DEPRECATED 112 /* 113 ** Deprecated external interface. Internal/core SQLite code 114 ** should call sqlite3MemoryAlarm. 115 */ 116 int sqlite3_memory_alarm( 117 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 118 void *pArg, 119 sqlite3_int64 iThreshold 120 ){ 121 return sqlite3MemoryAlarm(xCallback, pArg, iThreshold); 122 } 123 #endif 124 125 /* 126 ** Set the soft heap-size limit for the library. Passing a zero or 127 ** negative value indicates no limit. 128 */ 129 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ 130 sqlite3_int64 priorLimit; 131 sqlite3_int64 excess; 132 #ifndef SQLITE_OMIT_AUTOINIT 133 int rc = sqlite3_initialize(); 134 if( rc ) return -1; 135 #endif 136 sqlite3_mutex_enter(mem0.mutex); 137 priorLimit = mem0.alarmThreshold; 138 sqlite3_mutex_leave(mem0.mutex); 139 if( n<0 ) return priorLimit; 140 if( n>0 ){ 141 sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n); 142 }else{ 143 sqlite3MemoryAlarm(0, 0, 0); 144 } 145 excess = sqlite3_memory_used() - n; 146 if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); 147 return priorLimit; 148 } 149 void sqlite3_soft_heap_limit(int n){ 150 if( n<0 ) n = 0; 151 sqlite3_soft_heap_limit64(n); 152 } 153 154 /* 155 ** Initialize the memory allocation subsystem. 156 */ 157 int sqlite3MallocInit(void){ 158 if( sqlite3GlobalConfig.m.xMalloc==0 ){ 159 sqlite3MemSetDefault(); 160 } 161 memset(&mem0, 0, sizeof(mem0)); 162 if( sqlite3GlobalConfig.bCoreMutex ){ 163 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 164 } 165 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 166 && sqlite3GlobalConfig.nScratch>0 ){ 167 int i, n, sz; 168 ScratchFreeslot *pSlot; 169 sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch); 170 sqlite3GlobalConfig.szScratch = sz; 171 pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch; 172 n = sqlite3GlobalConfig.nScratch; 173 mem0.pScratchFree = pSlot; 174 mem0.nScratchFree = n; 175 for(i=0; i<n-1; i++){ 176 pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot); 177 pSlot = pSlot->pNext; 178 } 179 pSlot->pNext = 0; 180 mem0.pScratchEnd = (void*)&pSlot[1]; 181 }else{ 182 mem0.pScratchEnd = 0; 183 sqlite3GlobalConfig.pScratch = 0; 184 sqlite3GlobalConfig.szScratch = 0; 185 sqlite3GlobalConfig.nScratch = 0; 186 } 187 if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 188 || sqlite3GlobalConfig.nPage<1 ){ 189 sqlite3GlobalConfig.pPage = 0; 190 sqlite3GlobalConfig.szPage = 0; 191 sqlite3GlobalConfig.nPage = 0; 192 } 193 return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); 194 } 195 196 /* 197 ** Return true if the heap is currently under memory pressure - in other 198 ** words if the amount of heap used is close to the limit set by 199 ** sqlite3_soft_heap_limit(). 200 */ 201 int sqlite3HeapNearlyFull(void){ 202 return mem0.nearlyFull; 203 } 204 205 /* 206 ** Deinitialize the memory allocation subsystem. 207 */ 208 void sqlite3MallocEnd(void){ 209 if( sqlite3GlobalConfig.m.xShutdown ){ 210 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); 211 } 212 memset(&mem0, 0, sizeof(mem0)); 213 } 214 215 /* 216 ** Return the amount of memory currently checked out. 217 */ 218 sqlite3_int64 sqlite3_memory_used(void){ 219 int n, mx; 220 sqlite3_int64 res; 221 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0); 222 res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */ 223 return res; 224 } 225 226 /* 227 ** Return the maximum amount of memory that has ever been 228 ** checked out since either the beginning of this process 229 ** or since the most recent reset. 230 */ 231 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ 232 int n, mx; 233 sqlite3_int64 res; 234 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag); 235 res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */ 236 return res; 237 } 238 239 /* 240 ** Trigger the alarm 241 */ 242 static void sqlite3MallocAlarm(int nByte){ 243 void (*xCallback)(void*,sqlite3_int64,int); 244 sqlite3_int64 nowUsed; 245 void *pArg; 246 if( mem0.alarmCallback==0 ) return; 247 xCallback = mem0.alarmCallback; 248 nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 249 pArg = mem0.alarmArg; 250 mem0.alarmCallback = 0; 251 sqlite3_mutex_leave(mem0.mutex); 252 xCallback(pArg, nowUsed, nByte); 253 sqlite3_mutex_enter(mem0.mutex); 254 mem0.alarmCallback = xCallback; 255 mem0.alarmArg = pArg; 256 } 257 258 /* 259 ** Do a memory allocation with statistics and alarms. Assume the 260 ** lock is already held. 261 */ 262 static int mallocWithAlarm(int n, void **pp){ 263 int nFull; 264 void *p; 265 assert( sqlite3_mutex_held(mem0.mutex) ); 266 nFull = sqlite3GlobalConfig.m.xRoundup(n); 267 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); 268 if( mem0.alarmCallback!=0 ){ 269 int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 270 if( nUsed >= mem0.alarmThreshold - nFull ){ 271 mem0.nearlyFull = 1; 272 sqlite3MallocAlarm(nFull); 273 }else{ 274 mem0.nearlyFull = 0; 275 } 276 } 277 p = sqlite3GlobalConfig.m.xMalloc(nFull); 278 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 279 if( p==0 && mem0.alarmCallback ){ 280 sqlite3MallocAlarm(nFull); 281 p = sqlite3GlobalConfig.m.xMalloc(nFull); 282 } 283 #endif 284 if( p ){ 285 nFull = sqlite3MallocSize(p); 286 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull); 287 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1); 288 } 289 *pp = p; 290 return nFull; 291 } 292 293 /* 294 ** Allocate memory. This routine is like sqlite3_malloc() except that it 295 ** assumes the memory subsystem has already been initialized. 296 */ 297 void *sqlite3Malloc(int n){ 298 void *p; 299 if( n<=0 /* IMP: R-65312-04917 */ 300 || n>=0x7fffff00 301 ){ 302 /* A memory allocation of a number of bytes which is near the maximum 303 ** signed integer value might cause an integer overflow inside of the 304 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving 305 ** 255 bytes of overhead. SQLite itself will never use anything near 306 ** this amount. The only way to reach the limit is with sqlite3_malloc() */ 307 p = 0; 308 }else if( sqlite3GlobalConfig.bMemstat ){ 309 sqlite3_mutex_enter(mem0.mutex); 310 mallocWithAlarm(n, &p); 311 sqlite3_mutex_leave(mem0.mutex); 312 }else{ 313 p = sqlite3GlobalConfig.m.xMalloc(n); 314 } 315 assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-04675-44850 */ 316 return p; 317 } 318 319 /* 320 ** This version of the memory allocation is for use by the application. 321 ** First make sure the memory subsystem is initialized, then do the 322 ** allocation. 323 */ 324 void *sqlite3_malloc(int n){ 325 #ifndef SQLITE_OMIT_AUTOINIT 326 if( sqlite3_initialize() ) return 0; 327 #endif 328 return sqlite3Malloc(n); 329 } 330 331 /* 332 ** Each thread may only have a single outstanding allocation from 333 ** xScratchMalloc(). We verify this constraint in the single-threaded 334 ** case by setting scratchAllocOut to 1 when an allocation 335 ** is outstanding clearing it when the allocation is freed. 336 */ 337 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 338 static int scratchAllocOut = 0; 339 #endif 340 341 342 /* 343 ** Allocate memory that is to be used and released right away. 344 ** This routine is similar to alloca() in that it is not intended 345 ** for situations where the memory might be held long-term. This 346 ** routine is intended to get memory to old large transient data 347 ** structures that would not normally fit on the stack of an 348 ** embedded processor. 349 */ 350 void *sqlite3ScratchMalloc(int n){ 351 void *p; 352 assert( n>0 ); 353 354 sqlite3_mutex_enter(mem0.mutex); 355 if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){ 356 p = mem0.pScratchFree; 357 mem0.pScratchFree = mem0.pScratchFree->pNext; 358 mem0.nScratchFree--; 359 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1); 360 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); 361 sqlite3_mutex_leave(mem0.mutex); 362 }else{ 363 if( sqlite3GlobalConfig.bMemstat ){ 364 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); 365 n = mallocWithAlarm(n, &p); 366 if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n); 367 sqlite3_mutex_leave(mem0.mutex); 368 }else{ 369 sqlite3_mutex_leave(mem0.mutex); 370 p = sqlite3GlobalConfig.m.xMalloc(n); 371 } 372 sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); 373 } 374 assert( sqlite3_mutex_notheld(mem0.mutex) ); 375 376 377 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 378 /* Verify that no more than two scratch allocations per thread 379 ** are outstanding at one time. (This is only checked in the 380 ** single-threaded case since checking in the multi-threaded case 381 ** would be much more complicated.) */ 382 assert( scratchAllocOut<=1 ); 383 if( p ) scratchAllocOut++; 384 #endif 385 386 return p; 387 } 388 void sqlite3ScratchFree(void *p){ 389 if( p ){ 390 391 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 392 /* Verify that no more than two scratch allocation per thread 393 ** is outstanding at one time. (This is only checked in the 394 ** single-threaded case since checking in the multi-threaded case 395 ** would be much more complicated.) */ 396 assert( scratchAllocOut>=1 && scratchAllocOut<=2 ); 397 scratchAllocOut--; 398 #endif 399 400 if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){ 401 /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */ 402 ScratchFreeslot *pSlot; 403 pSlot = (ScratchFreeslot*)p; 404 sqlite3_mutex_enter(mem0.mutex); 405 pSlot->pNext = mem0.pScratchFree; 406 mem0.pScratchFree = pSlot; 407 mem0.nScratchFree++; 408 assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch ); 409 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1); 410 sqlite3_mutex_leave(mem0.mutex); 411 }else{ 412 /* Release memory back to the heap */ 413 assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); 414 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) ); 415 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 416 if( sqlite3GlobalConfig.bMemstat ){ 417 int iSize = sqlite3MallocSize(p); 418 sqlite3_mutex_enter(mem0.mutex); 419 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize); 420 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize); 421 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1); 422 sqlite3GlobalConfig.m.xFree(p); 423 sqlite3_mutex_leave(mem0.mutex); 424 }else{ 425 sqlite3GlobalConfig.m.xFree(p); 426 } 427 } 428 } 429 } 430 431 /* 432 ** TRUE if p is a lookaside memory allocation from db 433 */ 434 #ifndef SQLITE_OMIT_LOOKASIDE 435 static int isLookaside(sqlite3 *db, void *p){ 436 return p>=db->lookaside.pStart && p<db->lookaside.pEnd; 437 } 438 #else 439 #define isLookaside(A,B) 0 440 #endif 441 442 /* 443 ** Return the size of a memory allocation previously obtained from 444 ** sqlite3Malloc() or sqlite3_malloc(). 445 */ 446 int sqlite3MallocSize(void *p){ 447 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 448 assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) ); 449 return sqlite3GlobalConfig.m.xSize(p); 450 } 451 int sqlite3DbMallocSize(sqlite3 *db, void *p){ 452 assert( db!=0 ); 453 assert( sqlite3_mutex_held(db->mutex) ); 454 if( isLookaside(db, p) ){ 455 return db->lookaside.sz; 456 }else{ 457 assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); 458 assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); 459 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); 460 return sqlite3GlobalConfig.m.xSize(p); 461 } 462 } 463 464 /* 465 ** Free memory previously obtained from sqlite3Malloc(). 466 */ 467 void sqlite3_free(void *p){ 468 if( p==0 ) return; /* IMP: R-49053-54554 */ 469 assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) ); 470 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 471 if( sqlite3GlobalConfig.bMemstat ){ 472 sqlite3_mutex_enter(mem0.mutex); 473 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p)); 474 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1); 475 sqlite3GlobalConfig.m.xFree(p); 476 sqlite3_mutex_leave(mem0.mutex); 477 }else{ 478 sqlite3GlobalConfig.m.xFree(p); 479 } 480 } 481 482 /* 483 ** Free memory that might be associated with a particular database 484 ** connection. 485 */ 486 void sqlite3DbFree(sqlite3 *db, void *p){ 487 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 488 if( p==0 ) return; 489 if( db ){ 490 if( db->pnBytesFreed ){ 491 *db->pnBytesFreed += sqlite3DbMallocSize(db, p); 492 return; 493 } 494 if( isLookaside(db, p) ){ 495 LookasideSlot *pBuf = (LookasideSlot*)p; 496 #if SQLITE_DEBUG 497 /* Trash all content in the buffer being freed */ 498 memset(p, 0xaa, db->lookaside.sz); 499 #endif 500 pBuf->pNext = db->lookaside.pFree; 501 db->lookaside.pFree = pBuf; 502 db->lookaside.nOut--; 503 return; 504 } 505 } 506 assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); 507 assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); 508 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); 509 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 510 sqlite3_free(p); 511 } 512 513 /* 514 ** Change the size of an existing memory allocation 515 */ 516 void *sqlite3Realloc(void *pOld, int nBytes){ 517 int nOld, nNew, nDiff; 518 void *pNew; 519 if( pOld==0 ){ 520 return sqlite3Malloc(nBytes); /* IMP: R-28354-25769 */ 521 } 522 if( nBytes<=0 ){ 523 sqlite3_free(pOld); /* IMP: R-31593-10574 */ 524 return 0; 525 } 526 if( nBytes>=0x7fffff00 ){ 527 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ 528 return 0; 529 } 530 nOld = sqlite3MallocSize(pOld); 531 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second 532 ** argument to xRealloc is always a value returned by a prior call to 533 ** xRoundup. */ 534 nNew = sqlite3GlobalConfig.m.xRoundup(nBytes); 535 if( nOld==nNew ){ 536 pNew = pOld; 537 }else if( sqlite3GlobalConfig.bMemstat ){ 538 sqlite3_mutex_enter(mem0.mutex); 539 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes); 540 nDiff = nNew - nOld; 541 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= 542 mem0.alarmThreshold-nDiff ){ 543 sqlite3MallocAlarm(nDiff); 544 } 545 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); 546 assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) ); 547 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 548 if( pNew==0 && mem0.alarmCallback ){ 549 sqlite3MallocAlarm(nBytes); 550 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 551 } 552 if( pNew ){ 553 nNew = sqlite3MallocSize(pNew); 554 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld); 555 } 556 sqlite3_mutex_leave(mem0.mutex); 557 }else{ 558 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 559 } 560 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-04675-44850 */ 561 return pNew; 562 } 563 564 /* 565 ** The public interface to sqlite3Realloc. Make sure that the memory 566 ** subsystem is initialized prior to invoking sqliteRealloc. 567 */ 568 void *sqlite3_realloc(void *pOld, int n){ 569 #ifndef SQLITE_OMIT_AUTOINIT 570 if( sqlite3_initialize() ) return 0; 571 #endif 572 return sqlite3Realloc(pOld, n); 573 } 574 575 576 /* 577 ** Allocate and zero memory. 578 */ 579 void *sqlite3MallocZero(int n){ 580 void *p = sqlite3Malloc(n); 581 if( p ){ 582 memset(p, 0, n); 583 } 584 return p; 585 } 586 587 /* 588 ** Allocate and zero memory. If the allocation fails, make 589 ** the mallocFailed flag in the connection pointer. 590 */ 591 void *sqlite3DbMallocZero(sqlite3 *db, int n){ 592 void *p = sqlite3DbMallocRaw(db, n); 593 if( p ){ 594 memset(p, 0, n); 595 } 596 return p; 597 } 598 599 /* 600 ** Allocate and zero memory. If the allocation fails, make 601 ** the mallocFailed flag in the connection pointer. 602 ** 603 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc 604 ** failure on the same database connection) then always return 0. 605 ** Hence for a particular database connection, once malloc starts 606 ** failing, it fails consistently until mallocFailed is reset. 607 ** This is an important assumption. There are many places in the 608 ** code that do things like this: 609 ** 610 ** int *a = (int*)sqlite3DbMallocRaw(db, 100); 611 ** int *b = (int*)sqlite3DbMallocRaw(db, 200); 612 ** if( b ) a[10] = 9; 613 ** 614 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed 615 ** that all prior mallocs (ex: "a") worked too. 616 */ 617 void *sqlite3DbMallocRaw(sqlite3 *db, int n){ 618 void *p; 619 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 620 assert( db==0 || db->pnBytesFreed==0 ); 621 #ifndef SQLITE_OMIT_LOOKASIDE 622 if( db ){ 623 LookasideSlot *pBuf; 624 if( db->mallocFailed ){ 625 return 0; 626 } 627 if( db->lookaside.bEnabled ){ 628 if( n>db->lookaside.sz ){ 629 db->lookaside.anStat[1]++; 630 }else if( (pBuf = db->lookaside.pFree)==0 ){ 631 db->lookaside.anStat[2]++; 632 }else{ 633 db->lookaside.pFree = pBuf->pNext; 634 db->lookaside.nOut++; 635 db->lookaside.anStat[0]++; 636 if( db->lookaside.nOut>db->lookaside.mxOut ){ 637 db->lookaside.mxOut = db->lookaside.nOut; 638 } 639 return (void*)pBuf; 640 } 641 } 642 } 643 #else 644 if( db && db->mallocFailed ){ 645 return 0; 646 } 647 #endif 648 p = sqlite3Malloc(n); 649 if( !p && db ){ 650 db->mallocFailed = 1; 651 } 652 sqlite3MemdebugSetType(p, MEMTYPE_DB | 653 ((db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); 654 return p; 655 } 656 657 /* 658 ** Resize the block of memory pointed to by p to n bytes. If the 659 ** resize fails, set the mallocFailed flag in the connection object. 660 */ 661 void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){ 662 void *pNew = 0; 663 assert( db!=0 ); 664 assert( sqlite3_mutex_held(db->mutex) ); 665 if( db->mallocFailed==0 ){ 666 if( p==0 ){ 667 return sqlite3DbMallocRaw(db, n); 668 } 669 if( isLookaside(db, p) ){ 670 if( n<=db->lookaside.sz ){ 671 return p; 672 } 673 pNew = sqlite3DbMallocRaw(db, n); 674 if( pNew ){ 675 memcpy(pNew, p, db->lookaside.sz); 676 sqlite3DbFree(db, p); 677 } 678 }else{ 679 assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); 680 assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); 681 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 682 pNew = sqlite3_realloc(p, n); 683 if( !pNew ){ 684 sqlite3MemdebugSetType(p, MEMTYPE_DB|MEMTYPE_HEAP); 685 db->mallocFailed = 1; 686 } 687 sqlite3MemdebugSetType(pNew, MEMTYPE_DB | 688 (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); 689 } 690 } 691 return pNew; 692 } 693 694 /* 695 ** Attempt to reallocate p. If the reallocation fails, then free p 696 ** and set the mallocFailed flag in the database connection. 697 */ 698 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){ 699 void *pNew; 700 pNew = sqlite3DbRealloc(db, p, n); 701 if( !pNew ){ 702 sqlite3DbFree(db, p); 703 } 704 return pNew; 705 } 706 707 /* 708 ** Make a copy of a string in memory obtained from sqliteMalloc(). These 709 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This 710 ** is because when memory debugging is turned on, these two functions are 711 ** called via macros that record the current file and line number in the 712 ** ThreadData structure. 713 */ 714 char *sqlite3DbStrDup(sqlite3 *db, const char *z){ 715 char *zNew; 716 size_t n; 717 if( z==0 ){ 718 return 0; 719 } 720 n = sqlite3Strlen30(z) + 1; 721 assert( (n&0x7fffffff)==n ); 722 zNew = sqlite3DbMallocRaw(db, (int)n); 723 if( zNew ){ 724 memcpy(zNew, z, n); 725 } 726 return zNew; 727 } 728 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){ 729 char *zNew; 730 if( z==0 ){ 731 return 0; 732 } 733 assert( (n&0x7fffffff)==n ); 734 zNew = sqlite3DbMallocRaw(db, n+1); 735 if( zNew ){ 736 memcpy(zNew, z, n); 737 zNew[n] = 0; 738 } 739 return zNew; 740 } 741 742 /* 743 ** Create a string from the zFromat argument and the va_list that follows. 744 ** Store the string in memory obtained from sqliteMalloc() and make *pz 745 ** point to that string. 746 */ 747 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){ 748 va_list ap; 749 char *z; 750 751 va_start(ap, zFormat); 752 z = sqlite3VMPrintf(db, zFormat, ap); 753 va_end(ap); 754 sqlite3DbFree(db, *pz); 755 *pz = z; 756 } 757 758 759 /* 760 ** This function must be called before exiting any API function (i.e. 761 ** returning control to the user) that has called sqlite3_malloc or 762 ** sqlite3_realloc. 763 ** 764 ** The returned value is normally a copy of the second argument to this 765 ** function. However, if a malloc() failure has occurred since the previous 766 ** invocation SQLITE_NOMEM is returned instead. 767 ** 768 ** If the first argument, db, is not NULL and a malloc() error has occurred, 769 ** then the connection error-code (the value returned by sqlite3_errcode()) 770 ** is set to SQLITE_NOMEM. 771 */ 772 int sqlite3ApiExit(sqlite3* db, int rc){ 773 /* If the db handle is not NULL, then we must hold the connection handle 774 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed 775 ** is unsafe, as is the call to sqlite3Error(). 776 */ 777 assert( !db || sqlite3_mutex_held(db->mutex) ); 778 if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){ 779 sqlite3Error(db, SQLITE_NOMEM, 0); 780 db->mallocFailed = 0; 781 rc = SQLITE_NOMEM; 782 } 783 return rc & (db ? db->errMask : 0xff); 784 } 785