1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** Memory allocation functions used throughout sqlite. 14 ** 15 ** $Id: malloc.c,v 1.61 2009/03/24 15:08:10 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 #include <stdarg.h> 19 20 /* 21 ** This routine runs when the memory allocator sees that the 22 ** total memory allocation is about to exceed the soft heap 23 ** limit. 24 */ 25 static void softHeapLimitEnforcer( 26 void *NotUsed, 27 sqlite3_int64 NotUsed2, 28 int allocSize 29 ){ 30 UNUSED_PARAMETER2(NotUsed, NotUsed2); 31 sqlite3_release_memory(allocSize); 32 } 33 34 /* 35 ** Set the soft heap-size limit for the library. Passing a zero or 36 ** negative value indicates no limit. 37 */ 38 void sqlite3_soft_heap_limit(int n){ 39 sqlite3_uint64 iLimit; 40 int overage; 41 if( n<0 ){ 42 iLimit = 0; 43 }else{ 44 iLimit = n; 45 } 46 sqlite3_initialize(); 47 if( iLimit>0 ){ 48 sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, iLimit); 49 }else{ 50 sqlite3MemoryAlarm(0, 0, 0); 51 } 52 overage = (int)(sqlite3_memory_used() - (i64)n); 53 if( overage>0 ){ 54 sqlite3_release_memory(overage); 55 } 56 } 57 58 /* 59 ** Attempt to release up to n bytes of non-essential memory currently 60 ** held by SQLite. An example of non-essential memory is memory used to 61 ** cache database pages that are not currently in use. 62 */ 63 int sqlite3_release_memory(int n){ 64 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 65 int nRet = 0; 66 #if 0 67 nRet += sqlite3VdbeReleaseMemory(n); 68 #endif 69 nRet += sqlite3PcacheReleaseMemory(n-nRet); 70 return nRet; 71 #else 72 UNUSED_PARAMETER(n); 73 return SQLITE_OK; 74 #endif 75 } 76 77 /* 78 ** State information local to the memory allocation subsystem. 79 */ 80 static SQLITE_WSD struct Mem0Global { 81 /* Number of free pages for scratch and page-cache memory */ 82 u32 nScratchFree; 83 u32 nPageFree; 84 85 sqlite3_mutex *mutex; /* Mutex to serialize access */ 86 87 /* 88 ** The alarm callback and its arguments. The mem0.mutex lock will 89 ** be held while the callback is running. Recursive calls into 90 ** the memory subsystem are allowed, but no new callbacks will be 91 ** issued. The alarmBusy variable is set to prevent recursive 92 ** callbacks. 93 */ 94 sqlite3_int64 alarmThreshold; 95 void (*alarmCallback)(void*, sqlite3_int64,int); 96 void *alarmArg; 97 int alarmBusy; 98 99 /* 100 ** Pointers to the end of sqlite3GlobalConfig.pScratch and 101 ** sqlite3GlobalConfig.pPage to a block of memory that records 102 ** which pages are available. 103 */ 104 u32 *aScratchFree; 105 u32 *aPageFree; 106 } mem0 = { 62560955, 0, 0, 0, 0, 0, 0, 0, 0 }; 107 108 #define mem0 GLOBAL(struct Mem0Global, mem0) 109 110 /* 111 ** Initialize the memory allocation subsystem. 112 */ 113 int sqlite3MallocInit(void){ 114 if( sqlite3GlobalConfig.m.xMalloc==0 ){ 115 sqlite3MemSetDefault(); 116 } 117 memset(&mem0, 0, sizeof(mem0)); 118 if( sqlite3GlobalConfig.bCoreMutex ){ 119 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 120 } 121 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 122 && sqlite3GlobalConfig.nScratch>=0 ){ 123 int i; 124 sqlite3GlobalConfig.szScratch = ROUNDDOWN8(sqlite3GlobalConfig.szScratch-4); 125 mem0.aScratchFree = (u32*)&((char*)sqlite3GlobalConfig.pScratch) 126 [sqlite3GlobalConfig.szScratch*sqlite3GlobalConfig.nScratch]; 127 for(i=0; i<sqlite3GlobalConfig.nScratch; i++){ mem0.aScratchFree[i] = i; } 128 mem0.nScratchFree = sqlite3GlobalConfig.nScratch; 129 }else{ 130 sqlite3GlobalConfig.pScratch = 0; 131 sqlite3GlobalConfig.szScratch = 0; 132 } 133 if( sqlite3GlobalConfig.pPage && sqlite3GlobalConfig.szPage>=512 134 && sqlite3GlobalConfig.nPage>=1 ){ 135 int i; 136 int overhead; 137 int sz = ROUNDDOWN8(sqlite3GlobalConfig.szPage); 138 int n = sqlite3GlobalConfig.nPage; 139 overhead = (4*n + sz - 1)/sz; 140 sqlite3GlobalConfig.nPage -= overhead; 141 mem0.aPageFree = (u32*)&((char*)sqlite3GlobalConfig.pPage) 142 [sqlite3GlobalConfig.szPage*sqlite3GlobalConfig.nPage]; 143 for(i=0; i<sqlite3GlobalConfig.nPage; i++){ mem0.aPageFree[i] = i; } 144 mem0.nPageFree = sqlite3GlobalConfig.nPage; 145 }else{ 146 sqlite3GlobalConfig.pPage = 0; 147 sqlite3GlobalConfig.szPage = 0; 148 } 149 return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); 150 } 151 152 /* 153 ** Deinitialize the memory allocation subsystem. 154 */ 155 void sqlite3MallocEnd(void){ 156 if( sqlite3GlobalConfig.m.xShutdown ){ 157 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); 158 } 159 memset(&mem0, 0, sizeof(mem0)); 160 } 161 162 /* 163 ** Return the amount of memory currently checked out. 164 */ 165 sqlite3_int64 sqlite3_memory_used(void){ 166 int n, mx; 167 sqlite3_int64 res; 168 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0); 169 res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */ 170 return res; 171 } 172 173 /* 174 ** Return the maximum amount of memory that has ever been 175 ** checked out since either the beginning of this process 176 ** or since the most recent reset. 177 */ 178 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ 179 int n, mx; 180 sqlite3_int64 res; 181 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag); 182 res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */ 183 return res; 184 } 185 186 /* 187 ** Change the alarm callback 188 */ 189 int sqlite3MemoryAlarm( 190 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 191 void *pArg, 192 sqlite3_int64 iThreshold 193 ){ 194 sqlite3_mutex_enter(mem0.mutex); 195 mem0.alarmCallback = xCallback; 196 mem0.alarmArg = pArg; 197 mem0.alarmThreshold = iThreshold; 198 sqlite3_mutex_leave(mem0.mutex); 199 return SQLITE_OK; 200 } 201 202 #ifndef SQLITE_OMIT_DEPRECATED 203 /* 204 ** Deprecated external interface. Internal/core SQLite code 205 ** should call sqlite3MemoryAlarm. 206 */ 207 int sqlite3_memory_alarm( 208 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 209 void *pArg, 210 sqlite3_int64 iThreshold 211 ){ 212 return sqlite3MemoryAlarm(xCallback, pArg, iThreshold); 213 } 214 #endif 215 216 /* 217 ** Trigger the alarm 218 */ 219 static void sqlite3MallocAlarm(int nByte){ 220 void (*xCallback)(void*,sqlite3_int64,int); 221 sqlite3_int64 nowUsed; 222 void *pArg; 223 if( mem0.alarmCallback==0 || mem0.alarmBusy ) return; 224 mem0.alarmBusy = 1; 225 xCallback = mem0.alarmCallback; 226 nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 227 pArg = mem0.alarmArg; 228 sqlite3_mutex_leave(mem0.mutex); 229 xCallback(pArg, nowUsed, nByte); 230 sqlite3_mutex_enter(mem0.mutex); 231 mem0.alarmBusy = 0; 232 } 233 234 /* 235 ** Do a memory allocation with statistics and alarms. Assume the 236 ** lock is already held. 237 */ 238 static int mallocWithAlarm(int n, void **pp){ 239 int nFull; 240 void *p; 241 assert( sqlite3_mutex_held(mem0.mutex) ); 242 nFull = sqlite3GlobalConfig.m.xRoundup(n); 243 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); 244 if( mem0.alarmCallback!=0 ){ 245 int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 246 if( nUsed+nFull >= mem0.alarmThreshold ){ 247 sqlite3MallocAlarm(nFull); 248 } 249 } 250 p = sqlite3GlobalConfig.m.xMalloc(nFull); 251 if( p==0 && mem0.alarmCallback ){ 252 sqlite3MallocAlarm(nFull); 253 p = sqlite3GlobalConfig.m.xMalloc(nFull); 254 } 255 if( p ){ 256 nFull = sqlite3MallocSize(p); 257 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull); 258 } 259 *pp = p; 260 return nFull; 261 } 262 263 /* 264 ** Allocate memory. This routine is like sqlite3_malloc() except that it 265 ** assumes the memory subsystem has already been initialized. 266 */ 267 void *sqlite3Malloc(int n){ 268 void *p; 269 if( n<=0 || NEVER(n>=0x7fffff00) ){ 270 /* The NEVER(n>=0x7fffff00) term is added out of paranoia. We want to make 271 ** absolutely sure that there is nothing within SQLite that can cause a 272 ** memory allocation of a number of bytes which is near the maximum signed 273 ** integer value and thus cause an integer overflow inside of the xMalloc() 274 ** implementation. The n>=0x7fffff00 gives us 255 bytes of headroom. The 275 ** test should never be true because SQLITE_MAX_LENGTH should be much 276 ** less than 0x7fffff00 and it should catch large memory allocations 277 ** before they reach this point. */ 278 p = 0; 279 }else if( sqlite3GlobalConfig.bMemstat ){ 280 sqlite3_mutex_enter(mem0.mutex); 281 mallocWithAlarm(n, &p); 282 sqlite3_mutex_leave(mem0.mutex); 283 }else{ 284 p = sqlite3GlobalConfig.m.xMalloc(n); 285 } 286 return p; 287 } 288 289 /* 290 ** This version of the memory allocation is for use by the application. 291 ** First make sure the memory subsystem is initialized, then do the 292 ** allocation. 293 */ 294 void *sqlite3_malloc(int n){ 295 #ifndef SQLITE_OMIT_AUTOINIT 296 if( sqlite3_initialize() ) return 0; 297 #endif 298 return sqlite3Malloc(n); 299 } 300 301 /* 302 ** Each thread may only have a single outstanding allocation from 303 ** xScratchMalloc(). We verify this constraint in the single-threaded 304 ** case by setting scratchAllocOut to 1 when an allocation 305 ** is outstanding clearing it when the allocation is freed. 306 */ 307 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 308 static int scratchAllocOut = 0; 309 #endif 310 311 312 /* 313 ** Allocate memory that is to be used and released right away. 314 ** This routine is similar to alloca() in that it is not intended 315 ** for situations where the memory might be held long-term. This 316 ** routine is intended to get memory to old large transient data 317 ** structures that would not normally fit on the stack of an 318 ** embedded processor. 319 */ 320 void *sqlite3ScratchMalloc(int n){ 321 void *p; 322 assert( n>0 ); 323 324 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 325 /* Verify that no more than one scratch allocation per thread 326 ** is outstanding at one time. (This is only checked in the 327 ** single-threaded case since checking in the multi-threaded case 328 ** would be much more complicated.) */ 329 assert( scratchAllocOut==0 ); 330 #endif 331 332 if( sqlite3GlobalConfig.szScratch<n ){ 333 goto scratch_overflow; 334 }else{ 335 sqlite3_mutex_enter(mem0.mutex); 336 if( mem0.nScratchFree==0 ){ 337 sqlite3_mutex_leave(mem0.mutex); 338 goto scratch_overflow; 339 }else{ 340 int i; 341 i = mem0.aScratchFree[--mem0.nScratchFree]; 342 i *= sqlite3GlobalConfig.szScratch; 343 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1); 344 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); 345 sqlite3_mutex_leave(mem0.mutex); 346 p = (void*)&((char*)sqlite3GlobalConfig.pScratch)[i]; 347 assert( (((u8*)p - (u8*)0) & 7)==0 ); 348 } 349 } 350 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 351 scratchAllocOut = p!=0; 352 #endif 353 354 return p; 355 356 scratch_overflow: 357 if( sqlite3GlobalConfig.bMemstat ){ 358 sqlite3_mutex_enter(mem0.mutex); 359 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); 360 n = mallocWithAlarm(n, &p); 361 if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n); 362 sqlite3_mutex_leave(mem0.mutex); 363 }else{ 364 p = sqlite3GlobalConfig.m.xMalloc(n); 365 } 366 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 367 scratchAllocOut = p!=0; 368 #endif 369 return p; 370 } 371 void sqlite3ScratchFree(void *p){ 372 if( p ){ 373 374 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 375 /* Verify that no more than one scratch allocation per thread 376 ** is outstanding at one time. (This is only checked in the 377 ** single-threaded case since checking in the multi-threaded case 378 ** would be much more complicated.) */ 379 assert( scratchAllocOut==1 ); 380 scratchAllocOut = 0; 381 #endif 382 383 if( sqlite3GlobalConfig.pScratch==0 384 || p<sqlite3GlobalConfig.pScratch 385 || p>=(void*)mem0.aScratchFree ){ 386 if( sqlite3GlobalConfig.bMemstat ){ 387 int iSize = sqlite3MallocSize(p); 388 sqlite3_mutex_enter(mem0.mutex); 389 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize); 390 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize); 391 sqlite3GlobalConfig.m.xFree(p); 392 sqlite3_mutex_leave(mem0.mutex); 393 }else{ 394 sqlite3GlobalConfig.m.xFree(p); 395 } 396 }else{ 397 int i; 398 i = (int)((u8*)p - (u8*)sqlite3GlobalConfig.pScratch); 399 i /= sqlite3GlobalConfig.szScratch; 400 assert( i>=0 && i<sqlite3GlobalConfig.nScratch ); 401 sqlite3_mutex_enter(mem0.mutex); 402 assert( mem0.nScratchFree<(u32)sqlite3GlobalConfig.nScratch ); 403 mem0.aScratchFree[mem0.nScratchFree++] = i; 404 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1); 405 sqlite3_mutex_leave(mem0.mutex); 406 } 407 } 408 } 409 410 /* 411 ** TRUE if p is a lookaside memory allocation from db 412 */ 413 #ifndef SQLITE_OMIT_LOOKASIDE 414 static int isLookaside(sqlite3 *db, void *p){ 415 return db && p && p>=db->lookaside.pStart && p<db->lookaside.pEnd; 416 } 417 #else 418 #define isLookaside(A,B) 0 419 #endif 420 421 /* 422 ** Return the size of a memory allocation previously obtained from 423 ** sqlite3Malloc() or sqlite3_malloc(). 424 */ 425 int sqlite3MallocSize(void *p){ 426 return sqlite3GlobalConfig.m.xSize(p); 427 } 428 int sqlite3DbMallocSize(sqlite3 *db, void *p){ 429 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 430 if( p==0 ){ 431 return 0; 432 }else if( isLookaside(db, p) ){ 433 return db->lookaside.sz; 434 }else{ 435 return sqlite3GlobalConfig.m.xSize(p); 436 } 437 } 438 439 /* 440 ** Free memory previously obtained from sqlite3Malloc(). 441 */ 442 void sqlite3_free(void *p){ 443 if( p==0 ) return; 444 if( sqlite3GlobalConfig.bMemstat ){ 445 sqlite3_mutex_enter(mem0.mutex); 446 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p)); 447 sqlite3GlobalConfig.m.xFree(p); 448 sqlite3_mutex_leave(mem0.mutex); 449 }else{ 450 sqlite3GlobalConfig.m.xFree(p); 451 } 452 } 453 454 /* 455 ** Free memory that might be associated with a particular database 456 ** connection. 457 */ 458 void sqlite3DbFree(sqlite3 *db, void *p){ 459 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 460 if( isLookaside(db, p) ){ 461 LookasideSlot *pBuf = (LookasideSlot*)p; 462 pBuf->pNext = db->lookaside.pFree; 463 db->lookaside.pFree = pBuf; 464 db->lookaside.nOut--; 465 }else{ 466 sqlite3_free(p); 467 } 468 } 469 470 /* 471 ** Change the size of an existing memory allocation 472 */ 473 void *sqlite3Realloc(void *pOld, int nBytes){ 474 int nOld, nNew; 475 void *pNew; 476 if( pOld==0 ){ 477 return sqlite3Malloc(nBytes); 478 } 479 if( nBytes<=0 || NEVER(nBytes>=0x7fffff00) ){ 480 /* The NEVER(...) term is explained in comments on sqlite3Malloc() */ 481 sqlite3_free(pOld); 482 return 0; 483 } 484 nOld = sqlite3MallocSize(pOld); 485 if( sqlite3GlobalConfig.bMemstat ){ 486 sqlite3_mutex_enter(mem0.mutex); 487 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes); 488 nNew = sqlite3GlobalConfig.m.xRoundup(nBytes); 489 if( nOld==nNew ){ 490 pNew = pOld; 491 }else{ 492 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >= 493 mem0.alarmThreshold ){ 494 sqlite3MallocAlarm(nNew-nOld); 495 } 496 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 497 if( pNew==0 && mem0.alarmCallback ){ 498 sqlite3MallocAlarm(nBytes); 499 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 500 } 501 if( pNew ){ 502 nNew = sqlite3MallocSize(pNew); 503 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld); 504 } 505 } 506 sqlite3_mutex_leave(mem0.mutex); 507 }else{ 508 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nBytes); 509 } 510 return pNew; 511 } 512 513 /* 514 ** The public interface to sqlite3Realloc. Make sure that the memory 515 ** subsystem is initialized prior to invoking sqliteRealloc. 516 */ 517 void *sqlite3_realloc(void *pOld, int n){ 518 #ifndef SQLITE_OMIT_AUTOINIT 519 if( sqlite3_initialize() ) return 0; 520 #endif 521 return sqlite3Realloc(pOld, n); 522 } 523 524 525 /* 526 ** Allocate and zero memory. 527 */ 528 void *sqlite3MallocZero(int n){ 529 void *p = sqlite3Malloc(n); 530 if( p ){ 531 memset(p, 0, n); 532 } 533 return p; 534 } 535 536 /* 537 ** Allocate and zero memory. If the allocation fails, make 538 ** the mallocFailed flag in the connection pointer. 539 */ 540 void *sqlite3DbMallocZero(sqlite3 *db, int n){ 541 void *p = sqlite3DbMallocRaw(db, n); 542 if( p ){ 543 memset(p, 0, n); 544 } 545 return p; 546 } 547 548 /* 549 ** Allocate and zero memory. If the allocation fails, make 550 ** the mallocFailed flag in the connection pointer. 551 ** 552 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc 553 ** failure on the same database connection) then always return 0. 554 ** Hence for a particular database connection, once malloc starts 555 ** failing, it fails consistently until mallocFailed is reset. 556 ** This is an important assumption. There are many places in the 557 ** code that do things like this: 558 ** 559 ** int *a = (int*)sqlite3DbMallocRaw(db, 100); 560 ** int *b = (int*)sqlite3DbMallocRaw(db, 200); 561 ** if( b ) a[10] = 9; 562 ** 563 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed 564 ** that all prior mallocs (ex: "a") worked too. 565 */ 566 void *sqlite3DbMallocRaw(sqlite3 *db, int n){ 567 void *p; 568 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 569 #ifndef SQLITE_OMIT_LOOKASIDE 570 if( db ){ 571 LookasideSlot *pBuf; 572 if( db->mallocFailed ){ 573 return 0; 574 } 575 if( db->lookaside.bEnabled && n<=db->lookaside.sz 576 && (pBuf = db->lookaside.pFree)!=0 ){ 577 db->lookaside.pFree = pBuf->pNext; 578 db->lookaside.nOut++; 579 if( db->lookaside.nOut>db->lookaside.mxOut ){ 580 db->lookaside.mxOut = db->lookaside.nOut; 581 } 582 return (void*)pBuf; 583 } 584 } 585 #else 586 if( db && db->mallocFailed ){ 587 return 0; 588 } 589 #endif 590 p = sqlite3Malloc(n); 591 if( !p && db ){ 592 db->mallocFailed = 1; 593 } 594 return p; 595 } 596 597 /* 598 ** Resize the block of memory pointed to by p to n bytes. If the 599 ** resize fails, set the mallocFailed flag in the connection object. 600 */ 601 void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){ 602 void *pNew = 0; 603 assert( db!=0 ); 604 assert( sqlite3_mutex_held(db->mutex) ); 605 if( db->mallocFailed==0 ){ 606 if( p==0 ){ 607 return sqlite3DbMallocRaw(db, n); 608 } 609 if( isLookaside(db, p) ){ 610 if( n<=db->lookaside.sz ){ 611 return p; 612 } 613 pNew = sqlite3DbMallocRaw(db, n); 614 if( pNew ){ 615 memcpy(pNew, p, db->lookaside.sz); 616 sqlite3DbFree(db, p); 617 } 618 }else{ 619 pNew = sqlite3_realloc(p, n); 620 if( !pNew ){ 621 db->mallocFailed = 1; 622 } 623 } 624 } 625 return pNew; 626 } 627 628 /* 629 ** Attempt to reallocate p. If the reallocation fails, then free p 630 ** and set the mallocFailed flag in the database connection. 631 */ 632 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){ 633 void *pNew; 634 pNew = sqlite3DbRealloc(db, p, n); 635 if( !pNew ){ 636 sqlite3DbFree(db, p); 637 } 638 return pNew; 639 } 640 641 /* 642 ** Make a copy of a string in memory obtained from sqliteMalloc(). These 643 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This 644 ** is because when memory debugging is turned on, these two functions are 645 ** called via macros that record the current file and line number in the 646 ** ThreadData structure. 647 */ 648 char *sqlite3DbStrDup(sqlite3 *db, const char *z){ 649 char *zNew; 650 size_t n; 651 if( z==0 ){ 652 return 0; 653 } 654 n = (db ? sqlite3Strlen(db, z) : sqlite3Strlen30(z))+1; 655 assert( (n&0x7fffffff)==n ); 656 zNew = sqlite3DbMallocRaw(db, (int)n); 657 if( zNew ){ 658 memcpy(zNew, z, n); 659 } 660 return zNew; 661 } 662 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){ 663 char *zNew; 664 if( z==0 ){ 665 return 0; 666 } 667 assert( (n&0x7fffffff)==n ); 668 zNew = sqlite3DbMallocRaw(db, n+1); 669 if( zNew ){ 670 memcpy(zNew, z, n); 671 zNew[n] = 0; 672 } 673 return zNew; 674 } 675 676 /* 677 ** Create a string from the zFromat argument and the va_list that follows. 678 ** Store the string in memory obtained from sqliteMalloc() and make *pz 679 ** point to that string. 680 */ 681 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){ 682 va_list ap; 683 char *z; 684 685 va_start(ap, zFormat); 686 z = sqlite3VMPrintf(db, zFormat, ap); 687 va_end(ap); 688 sqlite3DbFree(db, *pz); 689 *pz = z; 690 } 691 692 693 /* 694 ** This function must be called before exiting any API function (i.e. 695 ** returning control to the user) that has called sqlite3_malloc or 696 ** sqlite3_realloc. 697 ** 698 ** The returned value is normally a copy of the second argument to this 699 ** function. However, if a malloc() failure has occurred since the previous 700 ** invocation SQLITE_NOMEM is returned instead. 701 ** 702 ** If the first argument, db, is not NULL and a malloc() error has occurred, 703 ** then the connection error-code (the value returned by sqlite3_errcode()) 704 ** is set to SQLITE_NOMEM. 705 */ 706 int sqlite3ApiExit(sqlite3* db, int rc){ 707 /* If the db handle is not NULL, then we must hold the connection handle 708 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed 709 ** is unsafe, as is the call to sqlite3Error(). 710 */ 711 assert( !db || sqlite3_mutex_held(db->mutex) ); 712 if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){ 713 sqlite3Error(db, SQLITE_NOMEM, 0); 714 db->mallocFailed = 0; 715 rc = SQLITE_NOMEM; 716 } 717 return rc & (db ? db->errMask : 0xff); 718 } 719