1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** Memory allocation functions used throughout sqlite. 14 */ 15 #include "sqliteInt.h" 16 #include <stdarg.h> 17 18 /* 19 ** Attempt to release up to n bytes of non-essential memory currently 20 ** held by SQLite. An example of non-essential memory is memory used to 21 ** cache database pages that are not currently in use. 22 */ 23 int sqlite3_release_memory(int n){ 24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 25 return sqlite3PcacheReleaseMemory(n); 26 #else 27 /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine 28 ** is a no-op returning zero if SQLite is not compiled with 29 ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ 30 UNUSED_PARAMETER(n); 31 return 0; 32 #endif 33 } 34 35 /* 36 ** An instance of the following object records the location of 37 ** each unused scratch buffer. 38 */ 39 typedef struct ScratchFreeslot { 40 struct ScratchFreeslot *pNext; /* Next unused scratch buffer */ 41 } ScratchFreeslot; 42 43 /* 44 ** State information local to the memory allocation subsystem. 45 */ 46 static SQLITE_WSD struct Mem0Global { 47 sqlite3_mutex *mutex; /* Mutex to serialize access */ 48 sqlite3_int64 alarmThreshold; /* The soft heap limit */ 49 50 /* 51 ** Pointers to the end of sqlite3GlobalConfig.pScratch memory 52 ** (so that a range test can be used to determine if an allocation 53 ** being freed came from pScratch) and a pointer to the list of 54 ** unused scratch allocations. 55 */ 56 void *pScratchEnd; 57 ScratchFreeslot *pScratchFree; 58 u32 nScratchFree; 59 60 /* 61 ** True if heap is nearly "full" where "full" is defined by the 62 ** sqlite3_soft_heap_limit() setting. 63 */ 64 int nearlyFull; 65 } mem0 = { 0, 0, 0, 0, 0, 0 }; 66 67 #define mem0 GLOBAL(struct Mem0Global, mem0) 68 69 /* 70 ** Return the memory allocator mutex. sqlite3_status() needs it. 71 */ 72 sqlite3_mutex *sqlite3MallocMutex(void){ 73 return mem0.mutex; 74 } 75 76 #ifndef SQLITE_OMIT_DEPRECATED 77 /* 78 ** Deprecated external interface. It used to set an alarm callback 79 ** that was invoked when memory usage grew too large. Now it is a 80 ** no-op. 81 */ 82 int sqlite3_memory_alarm( 83 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 84 void *pArg, 85 sqlite3_int64 iThreshold 86 ){ 87 (void)xCallback; 88 (void)pArg; 89 (void)iThreshold; 90 return SQLITE_OK; 91 } 92 #endif 93 94 /* 95 ** Set the soft heap-size limit for the library. Passing a zero or 96 ** negative value indicates no limit. 97 */ 98 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ 99 sqlite3_int64 priorLimit; 100 sqlite3_int64 excess; 101 sqlite3_int64 nUsed; 102 #ifndef SQLITE_OMIT_AUTOINIT 103 int rc = sqlite3_initialize(); 104 if( rc ) return -1; 105 #endif 106 sqlite3_mutex_enter(mem0.mutex); 107 priorLimit = mem0.alarmThreshold; 108 if( n<0 ){ 109 sqlite3_mutex_leave(mem0.mutex); 110 return priorLimit; 111 } 112 mem0.alarmThreshold = n; 113 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 114 mem0.nearlyFull = (n>0 && n<=nUsed); 115 sqlite3_mutex_leave(mem0.mutex); 116 excess = sqlite3_memory_used() - n; 117 if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); 118 return priorLimit; 119 } 120 void sqlite3_soft_heap_limit(int n){ 121 if( n<0 ) n = 0; 122 sqlite3_soft_heap_limit64(n); 123 } 124 125 /* 126 ** Initialize the memory allocation subsystem. 127 */ 128 int sqlite3MallocInit(void){ 129 int rc; 130 if( sqlite3GlobalConfig.m.xMalloc==0 ){ 131 sqlite3MemSetDefault(); 132 } 133 memset(&mem0, 0, sizeof(mem0)); 134 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 135 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 136 && sqlite3GlobalConfig.nScratch>0 ){ 137 int i, n, sz; 138 ScratchFreeslot *pSlot; 139 sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch); 140 sqlite3GlobalConfig.szScratch = sz; 141 pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch; 142 n = sqlite3GlobalConfig.nScratch; 143 mem0.pScratchFree = pSlot; 144 mem0.nScratchFree = n; 145 for(i=0; i<n-1; i++){ 146 pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot); 147 pSlot = pSlot->pNext; 148 } 149 pSlot->pNext = 0; 150 mem0.pScratchEnd = (void*)&pSlot[1]; 151 }else{ 152 mem0.pScratchEnd = 0; 153 sqlite3GlobalConfig.pScratch = 0; 154 sqlite3GlobalConfig.szScratch = 0; 155 sqlite3GlobalConfig.nScratch = 0; 156 } 157 if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 158 || sqlite3GlobalConfig.nPage<=0 ){ 159 sqlite3GlobalConfig.pPage = 0; 160 sqlite3GlobalConfig.szPage = 0; 161 } 162 rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); 163 if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0)); 164 return rc; 165 } 166 167 /* 168 ** Return true if the heap is currently under memory pressure - in other 169 ** words if the amount of heap used is close to the limit set by 170 ** sqlite3_soft_heap_limit(). 171 */ 172 int sqlite3HeapNearlyFull(void){ 173 return mem0.nearlyFull; 174 } 175 176 /* 177 ** Deinitialize the memory allocation subsystem. 178 */ 179 void sqlite3MallocEnd(void){ 180 if( sqlite3GlobalConfig.m.xShutdown ){ 181 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); 182 } 183 memset(&mem0, 0, sizeof(mem0)); 184 } 185 186 /* 187 ** Return the amount of memory currently checked out. 188 */ 189 sqlite3_int64 sqlite3_memory_used(void){ 190 sqlite3_int64 res, mx; 191 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0); 192 return res; 193 } 194 195 /* 196 ** Return the maximum amount of memory that has ever been 197 ** checked out since either the beginning of this process 198 ** or since the most recent reset. 199 */ 200 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ 201 sqlite3_int64 res, mx; 202 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag); 203 return mx; 204 } 205 206 /* 207 ** Trigger the alarm 208 */ 209 static void sqlite3MallocAlarm(int nByte){ 210 if( mem0.alarmThreshold<=0 ) return; 211 sqlite3_mutex_leave(mem0.mutex); 212 sqlite3_release_memory(nByte); 213 sqlite3_mutex_enter(mem0.mutex); 214 } 215 216 /* 217 ** Do a memory allocation with statistics and alarms. Assume the 218 ** lock is already held. 219 */ 220 static void mallocWithAlarm(int n, void **pp){ 221 void *p; 222 int nFull = 0; 223 assert( sqlite3_mutex_held(mem0.mutex) ); 224 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n); 225 if( mem0.alarmThreshold>0 ){ 226 sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 227 nFull = sqlite3GlobalConfig.m.xRoundup(n); 228 if( nUsed >= mem0.alarmThreshold - nFull ){ 229 mem0.nearlyFull = 1; 230 sqlite3MallocAlarm(nFull); 231 }else{ 232 mem0.nearlyFull = 0; 233 } 234 } 235 p = sqlite3GlobalConfig.m.xMalloc(n); 236 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 237 if( p==0 && mem0.alarmThreshold>0 ){ 238 sqlite3MallocAlarm(nFull); 239 p = sqlite3GlobalConfig.m.xMalloc(n); 240 } 241 #endif 242 if( p ){ 243 nFull = sqlite3MallocSize(p); 244 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull); 245 sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1); 246 } 247 *pp = p; 248 } 249 250 /* 251 ** Allocate memory. This routine is like sqlite3_malloc() except that it 252 ** assumes the memory subsystem has already been initialized. 253 */ 254 void *sqlite3Malloc(u64 n){ 255 void *p; 256 if( n==0 || n>=0x7fffff00 ){ 257 /* A memory allocation of a number of bytes which is near the maximum 258 ** signed integer value might cause an integer overflow inside of the 259 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving 260 ** 255 bytes of overhead. SQLite itself will never use anything near 261 ** this amount. The only way to reach the limit is with sqlite3_malloc() */ 262 p = 0; 263 }else if( sqlite3GlobalConfig.bMemstat ){ 264 sqlite3_mutex_enter(mem0.mutex); 265 mallocWithAlarm((int)n, &p); 266 sqlite3_mutex_leave(mem0.mutex); 267 }else{ 268 p = sqlite3GlobalConfig.m.xMalloc((int)n); 269 } 270 assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */ 271 return p; 272 } 273 274 /* 275 ** This version of the memory allocation is for use by the application. 276 ** First make sure the memory subsystem is initialized, then do the 277 ** allocation. 278 */ 279 void *sqlite3_malloc(int n){ 280 #ifndef SQLITE_OMIT_AUTOINIT 281 if( sqlite3_initialize() ) return 0; 282 #endif 283 return n<=0 ? 0 : sqlite3Malloc(n); 284 } 285 void *sqlite3_malloc64(sqlite3_uint64 n){ 286 #ifndef SQLITE_OMIT_AUTOINIT 287 if( sqlite3_initialize() ) return 0; 288 #endif 289 return sqlite3Malloc(n); 290 } 291 292 /* 293 ** Each thread may only have a single outstanding allocation from 294 ** xScratchMalloc(). We verify this constraint in the single-threaded 295 ** case by setting scratchAllocOut to 1 when an allocation 296 ** is outstanding clearing it when the allocation is freed. 297 */ 298 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 299 static int scratchAllocOut = 0; 300 #endif 301 302 303 /* 304 ** Allocate memory that is to be used and released right away. 305 ** This routine is similar to alloca() in that it is not intended 306 ** for situations where the memory might be held long-term. This 307 ** routine is intended to get memory to old large transient data 308 ** structures that would not normally fit on the stack of an 309 ** embedded processor. 310 */ 311 void *sqlite3ScratchMalloc(int n){ 312 void *p; 313 assert( n>0 ); 314 315 sqlite3_mutex_enter(mem0.mutex); 316 sqlite3StatusHighwater(SQLITE_STATUS_SCRATCH_SIZE, n); 317 if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){ 318 p = mem0.pScratchFree; 319 mem0.pScratchFree = mem0.pScratchFree->pNext; 320 mem0.nScratchFree--; 321 sqlite3StatusUp(SQLITE_STATUS_SCRATCH_USED, 1); 322 sqlite3_mutex_leave(mem0.mutex); 323 }else{ 324 sqlite3_mutex_leave(mem0.mutex); 325 p = sqlite3Malloc(n); 326 if( sqlite3GlobalConfig.bMemstat && p ){ 327 sqlite3_mutex_enter(mem0.mutex); 328 sqlite3StatusUp(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p)); 329 sqlite3_mutex_leave(mem0.mutex); 330 } 331 sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); 332 } 333 assert( sqlite3_mutex_notheld(mem0.mutex) ); 334 335 336 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 337 /* EVIDENCE-OF: R-12970-05880 SQLite will not use more than one scratch 338 ** buffers per thread. 339 ** 340 ** This can only be checked in single-threaded mode. 341 */ 342 assert( scratchAllocOut==0 ); 343 if( p ) scratchAllocOut++; 344 #endif 345 346 return p; 347 } 348 void sqlite3ScratchFree(void *p){ 349 if( p ){ 350 351 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 352 /* Verify that no more than two scratch allocation per thread 353 ** is outstanding at one time. (This is only checked in the 354 ** single-threaded case since checking in the multi-threaded case 355 ** would be much more complicated.) */ 356 assert( scratchAllocOut>=1 && scratchAllocOut<=2 ); 357 scratchAllocOut--; 358 #endif 359 360 if( SQLITE_WITHIN(p, sqlite3GlobalConfig.pScratch, mem0.pScratchEnd) ){ 361 /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */ 362 ScratchFreeslot *pSlot; 363 pSlot = (ScratchFreeslot*)p; 364 sqlite3_mutex_enter(mem0.mutex); 365 pSlot->pNext = mem0.pScratchFree; 366 mem0.pScratchFree = pSlot; 367 mem0.nScratchFree++; 368 assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch ); 369 sqlite3StatusDown(SQLITE_STATUS_SCRATCH_USED, 1); 370 sqlite3_mutex_leave(mem0.mutex); 371 }else{ 372 /* Release memory back to the heap */ 373 assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); 374 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_SCRATCH) ); 375 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 376 if( sqlite3GlobalConfig.bMemstat ){ 377 int iSize = sqlite3MallocSize(p); 378 sqlite3_mutex_enter(mem0.mutex); 379 sqlite3StatusDown(SQLITE_STATUS_SCRATCH_OVERFLOW, iSize); 380 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, iSize); 381 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); 382 sqlite3GlobalConfig.m.xFree(p); 383 sqlite3_mutex_leave(mem0.mutex); 384 }else{ 385 sqlite3GlobalConfig.m.xFree(p); 386 } 387 } 388 } 389 } 390 391 /* 392 ** TRUE if p is a lookaside memory allocation from db 393 */ 394 #ifndef SQLITE_OMIT_LOOKASIDE 395 static int isLookaside(sqlite3 *db, void *p){ 396 return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pEnd); 397 } 398 #else 399 #define isLookaside(A,B) 0 400 #endif 401 402 /* 403 ** Return the size of a memory allocation previously obtained from 404 ** sqlite3Malloc() or sqlite3_malloc(). 405 */ 406 int sqlite3MallocSize(void *p){ 407 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 408 return sqlite3GlobalConfig.m.xSize(p); 409 } 410 int sqlite3DbMallocSize(sqlite3 *db, void *p){ 411 assert( p!=0 ); 412 if( db==0 || !isLookaside(db,p) ){ 413 #if SQLITE_DEBUG 414 if( db==0 ){ 415 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 416 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 417 }else{ 418 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 419 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 420 } 421 #endif 422 return sqlite3GlobalConfig.m.xSize(p); 423 }else{ 424 assert( sqlite3_mutex_held(db->mutex) ); 425 return db->lookaside.sz; 426 } 427 } 428 sqlite3_uint64 sqlite3_msize(void *p){ 429 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 430 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 431 return p ? sqlite3GlobalConfig.m.xSize(p) : 0; 432 } 433 434 /* 435 ** Free memory previously obtained from sqlite3Malloc(). 436 */ 437 void sqlite3_free(void *p){ 438 if( p==0 ) return; /* IMP: R-49053-54554 */ 439 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 440 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 441 if( sqlite3GlobalConfig.bMemstat ){ 442 sqlite3_mutex_enter(mem0.mutex); 443 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p)); 444 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); 445 sqlite3GlobalConfig.m.xFree(p); 446 sqlite3_mutex_leave(mem0.mutex); 447 }else{ 448 sqlite3GlobalConfig.m.xFree(p); 449 } 450 } 451 452 /* 453 ** Add the size of memory allocation "p" to the count in 454 ** *db->pnBytesFreed. 455 */ 456 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){ 457 *db->pnBytesFreed += sqlite3DbMallocSize(db,p); 458 } 459 460 /* 461 ** Free memory that might be associated with a particular database 462 ** connection. 463 */ 464 void sqlite3DbFree(sqlite3 *db, void *p){ 465 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 466 if( p==0 ) return; 467 if( db ){ 468 if( db->pnBytesFreed ){ 469 measureAllocationSize(db, p); 470 return; 471 } 472 if( isLookaside(db, p) ){ 473 LookasideSlot *pBuf = (LookasideSlot*)p; 474 #if SQLITE_DEBUG 475 /* Trash all content in the buffer being freed */ 476 memset(p, 0xaa, db->lookaside.sz); 477 #endif 478 pBuf->pNext = db->lookaside.pFree; 479 db->lookaside.pFree = pBuf; 480 db->lookaside.nOut--; 481 return; 482 } 483 } 484 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 485 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 486 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); 487 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 488 sqlite3_free(p); 489 } 490 491 /* 492 ** Change the size of an existing memory allocation 493 */ 494 void *sqlite3Realloc(void *pOld, u64 nBytes){ 495 int nOld, nNew, nDiff; 496 void *pNew; 497 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); 498 assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) ); 499 if( pOld==0 ){ 500 return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */ 501 } 502 if( nBytes==0 ){ 503 sqlite3_free(pOld); /* IMP: R-26507-47431 */ 504 return 0; 505 } 506 if( nBytes>=0x7fffff00 ){ 507 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ 508 return 0; 509 } 510 nOld = sqlite3MallocSize(pOld); 511 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second 512 ** argument to xRealloc is always a value returned by a prior call to 513 ** xRoundup. */ 514 nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes); 515 if( nOld==nNew ){ 516 pNew = pOld; 517 }else if( sqlite3GlobalConfig.bMemstat ){ 518 sqlite3_mutex_enter(mem0.mutex); 519 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes); 520 nDiff = nNew - nOld; 521 if( nDiff>0 && sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= 522 mem0.alarmThreshold-nDiff ){ 523 sqlite3MallocAlarm(nDiff); 524 } 525 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 526 if( pNew==0 && mem0.alarmThreshold>0 ){ 527 sqlite3MallocAlarm((int)nBytes); 528 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 529 } 530 if( pNew ){ 531 nNew = sqlite3MallocSize(pNew); 532 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld); 533 } 534 sqlite3_mutex_leave(mem0.mutex); 535 }else{ 536 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 537 } 538 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */ 539 return pNew; 540 } 541 542 /* 543 ** The public interface to sqlite3Realloc. Make sure that the memory 544 ** subsystem is initialized prior to invoking sqliteRealloc. 545 */ 546 void *sqlite3_realloc(void *pOld, int n){ 547 #ifndef SQLITE_OMIT_AUTOINIT 548 if( sqlite3_initialize() ) return 0; 549 #endif 550 if( n<0 ) n = 0; /* IMP: R-26507-47431 */ 551 return sqlite3Realloc(pOld, n); 552 } 553 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){ 554 #ifndef SQLITE_OMIT_AUTOINIT 555 if( sqlite3_initialize() ) return 0; 556 #endif 557 return sqlite3Realloc(pOld, n); 558 } 559 560 561 /* 562 ** Allocate and zero memory. 563 */ 564 void *sqlite3MallocZero(u64 n){ 565 void *p = sqlite3Malloc(n); 566 if( p ){ 567 memset(p, 0, (size_t)n); 568 } 569 return p; 570 } 571 572 /* 573 ** Allocate and zero memory. If the allocation fails, make 574 ** the mallocFailed flag in the connection pointer. 575 */ 576 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){ 577 void *p; 578 testcase( db==0 ); 579 p = sqlite3DbMallocRaw(db, n); 580 if( p ) memset(p, 0, (size_t)n); 581 return p; 582 } 583 584 585 /* Finish the work of sqlite3DbMallocRawNN for the unusual and 586 ** slower case when the allocation cannot be fulfilled using lookaside. 587 */ 588 static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){ 589 void *p; 590 assert( db!=0 ); 591 p = sqlite3Malloc(n); 592 if( !p ) sqlite3OomFault(db); 593 sqlite3MemdebugSetType(p, 594 (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP); 595 return p; 596 } 597 598 /* 599 ** Allocate memory, either lookaside (if possible) or heap. 600 ** If the allocation fails, set the mallocFailed flag in 601 ** the connection pointer. 602 ** 603 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc 604 ** failure on the same database connection) then always return 0. 605 ** Hence for a particular database connection, once malloc starts 606 ** failing, it fails consistently until mallocFailed is reset. 607 ** This is an important assumption. There are many places in the 608 ** code that do things like this: 609 ** 610 ** int *a = (int*)sqlite3DbMallocRaw(db, 100); 611 ** int *b = (int*)sqlite3DbMallocRaw(db, 200); 612 ** if( b ) a[10] = 9; 613 ** 614 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed 615 ** that all prior mallocs (ex: "a") worked too. 616 ** 617 ** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is 618 ** not a NULL pointer. 619 */ 620 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){ 621 void *p; 622 if( db ) return sqlite3DbMallocRawNN(db, n); 623 p = sqlite3Malloc(n); 624 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 625 return p; 626 } 627 void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){ 628 #ifndef SQLITE_OMIT_LOOKASIDE 629 LookasideSlot *pBuf; 630 assert( db!=0 ); 631 assert( sqlite3_mutex_held(db->mutex) ); 632 assert( db->pnBytesFreed==0 ); 633 if( db->lookaside.bDisable==0 ){ 634 assert( db->mallocFailed==0 ); 635 if( n>db->lookaside.sz ){ 636 db->lookaside.anStat[1]++; 637 }else if( (pBuf = db->lookaside.pFree)==0 ){ 638 db->lookaside.anStat[2]++; 639 }else{ 640 db->lookaside.pFree = pBuf->pNext; 641 db->lookaside.nOut++; 642 db->lookaside.anStat[0]++; 643 if( db->lookaside.nOut>db->lookaside.mxOut ){ 644 db->lookaside.mxOut = db->lookaside.nOut; 645 } 646 return (void*)pBuf; 647 } 648 }else if( db->mallocFailed ){ 649 return 0; 650 } 651 #else 652 assert( db!=0 ); 653 assert( sqlite3_mutex_held(db->mutex) ); 654 assert( db->pnBytesFreed==0 ); 655 if( db->mallocFailed ){ 656 return 0; 657 } 658 #endif 659 return dbMallocRawFinish(db, n); 660 } 661 662 /* Forward declaration */ 663 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n); 664 665 /* 666 ** Resize the block of memory pointed to by p to n bytes. If the 667 ** resize fails, set the mallocFailed flag in the connection object. 668 */ 669 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){ 670 assert( db!=0 ); 671 if( p==0 ) return sqlite3DbMallocRawNN(db, n); 672 assert( sqlite3_mutex_held(db->mutex) ); 673 if( isLookaside(db,p) && n<=db->lookaside.sz ) return p; 674 return dbReallocFinish(db, p, n); 675 } 676 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){ 677 void *pNew = 0; 678 assert( db!=0 ); 679 assert( p!=0 ); 680 if( db->mallocFailed==0 ){ 681 if( isLookaside(db, p) ){ 682 pNew = sqlite3DbMallocRawNN(db, n); 683 if( pNew ){ 684 memcpy(pNew, p, db->lookaside.sz); 685 sqlite3DbFree(db, p); 686 } 687 }else{ 688 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 689 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 690 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 691 pNew = sqlite3_realloc64(p, n); 692 if( !pNew ){ 693 sqlite3OomFault(db); 694 } 695 sqlite3MemdebugSetType(pNew, 696 (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); 697 } 698 } 699 return pNew; 700 } 701 702 /* 703 ** Attempt to reallocate p. If the reallocation fails, then free p 704 ** and set the mallocFailed flag in the database connection. 705 */ 706 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){ 707 void *pNew; 708 pNew = sqlite3DbRealloc(db, p, n); 709 if( !pNew ){ 710 sqlite3DbFree(db, p); 711 } 712 return pNew; 713 } 714 715 /* 716 ** Make a copy of a string in memory obtained from sqliteMalloc(). These 717 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This 718 ** is because when memory debugging is turned on, these two functions are 719 ** called via macros that record the current file and line number in the 720 ** ThreadData structure. 721 */ 722 char *sqlite3DbStrDup(sqlite3 *db, const char *z){ 723 char *zNew; 724 size_t n; 725 if( z==0 ){ 726 return 0; 727 } 728 n = strlen(z) + 1; 729 zNew = sqlite3DbMallocRaw(db, n); 730 if( zNew ){ 731 memcpy(zNew, z, n); 732 } 733 return zNew; 734 } 735 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){ 736 char *zNew; 737 assert( db!=0 ); 738 if( z==0 ){ 739 return 0; 740 } 741 assert( (n&0x7fffffff)==n ); 742 zNew = sqlite3DbMallocRawNN(db, n+1); 743 if( zNew ){ 744 memcpy(zNew, z, (size_t)n); 745 zNew[n] = 0; 746 } 747 return zNew; 748 } 749 750 /* 751 ** Free any prior content in *pz and replace it with a copy of zNew. 752 */ 753 void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){ 754 sqlite3DbFree(db, *pz); 755 *pz = sqlite3DbStrDup(db, zNew); 756 } 757 758 /* 759 ** Call this routine to record the fact that an OOM (out-of-memory) error 760 ** has happened. This routine will set db->mallocFailed, and also 761 ** temporarily disable the lookaside memory allocator and interrupt 762 ** any running VDBEs. 763 */ 764 void sqlite3OomFault(sqlite3 *db){ 765 if( db->mallocFailed==0 && db->bBenignMalloc==0 ){ 766 db->mallocFailed = 1; 767 if( db->nVdbeExec>0 ){ 768 db->u1.isInterrupted = 1; 769 } 770 db->lookaside.bDisable++; 771 } 772 } 773 774 /* 775 ** This routine reactivates the memory allocator and clears the 776 ** db->mallocFailed flag as necessary. 777 ** 778 ** The memory allocator is not restarted if there are running 779 ** VDBEs. 780 */ 781 void sqlite3OomClear(sqlite3 *db){ 782 if( db->mallocFailed && db->nVdbeExec==0 ){ 783 db->mallocFailed = 0; 784 db->u1.isInterrupted = 0; 785 assert( db->lookaside.bDisable>0 ); 786 db->lookaside.bDisable--; 787 } 788 } 789 790 /* 791 ** Take actions at the end of an API call to indicate an OOM error 792 */ 793 static SQLITE_NOINLINE int apiOomError(sqlite3 *db){ 794 sqlite3OomClear(db); 795 sqlite3Error(db, SQLITE_NOMEM); 796 return SQLITE_NOMEM_BKPT; 797 } 798 799 /* 800 ** This function must be called before exiting any API function (i.e. 801 ** returning control to the user) that has called sqlite3_malloc or 802 ** sqlite3_realloc. 803 ** 804 ** The returned value is normally a copy of the second argument to this 805 ** function. However, if a malloc() failure has occurred since the previous 806 ** invocation SQLITE_NOMEM is returned instead. 807 ** 808 ** If an OOM as occurred, then the connection error-code (the value 809 ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM. 810 */ 811 int sqlite3ApiExit(sqlite3* db, int rc){ 812 /* If the db handle must hold the connection handle mutex here. 813 ** Otherwise the read (and possible write) of db->mallocFailed 814 ** is unsafe, as is the call to sqlite3Error(). 815 */ 816 assert( db!=0 ); 817 assert( sqlite3_mutex_held(db->mutex) ); 818 if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){ 819 return apiOomError(db); 820 } 821 return rc & db->errMask; 822 } 823