1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** Memory allocation functions used throughout sqlite. 14 */ 15 #include "sqliteInt.h" 16 #include <stdarg.h> 17 18 /* 19 ** Attempt to release up to n bytes of non-essential memory currently 20 ** held by SQLite. An example of non-essential memory is memory used to 21 ** cache database pages that are not currently in use. 22 */ 23 int sqlite3_release_memory(int n){ 24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 25 return sqlite3PcacheReleaseMemory(n); 26 #else 27 /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine 28 ** is a no-op returning zero if SQLite is not compiled with 29 ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ 30 UNUSED_PARAMETER(n); 31 return 0; 32 #endif 33 } 34 35 /* 36 ** An instance of the following object records the location of 37 ** each unused scratch buffer. 38 */ 39 typedef struct ScratchFreeslot { 40 struct ScratchFreeslot *pNext; /* Next unused scratch buffer */ 41 } ScratchFreeslot; 42 43 /* 44 ** State information local to the memory allocation subsystem. 45 */ 46 static SQLITE_WSD struct Mem0Global { 47 sqlite3_mutex *mutex; /* Mutex to serialize access */ 48 49 /* 50 ** The alarm callback and its arguments. The mem0.mutex lock will 51 ** be held while the callback is running. Recursive calls into 52 ** the memory subsystem are allowed, but no new callbacks will be 53 ** issued. 54 */ 55 sqlite3_int64 alarmThreshold; 56 void (*alarmCallback)(void*, sqlite3_int64,int); 57 void *alarmArg; 58 59 /* 60 ** Pointers to the end of sqlite3GlobalConfig.pScratch memory 61 ** (so that a range test can be used to determine if an allocation 62 ** being freed came from pScratch) and a pointer to the list of 63 ** unused scratch allocations. 64 */ 65 void *pScratchEnd; 66 ScratchFreeslot *pScratchFree; 67 u32 nScratchFree; 68 69 /* 70 ** True if heap is nearly "full" where "full" is defined by the 71 ** sqlite3_soft_heap_limit() setting. 72 */ 73 int nearlyFull; 74 } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 }; 75 76 #define mem0 GLOBAL(struct Mem0Global, mem0) 77 78 /* 79 ** Return the memory allocator mutex. sqlite3_status() needs it. 80 */ 81 sqlite3_mutex *sqlite3MallocMutex(void){ 82 return mem0.mutex; 83 } 84 85 /* 86 ** This routine runs when the memory allocator sees that the 87 ** total memory allocation is about to exceed the soft heap 88 ** limit. 89 */ 90 static void softHeapLimitEnforcer( 91 void *NotUsed, 92 sqlite3_int64 NotUsed2, 93 int allocSize 94 ){ 95 UNUSED_PARAMETER2(NotUsed, NotUsed2); 96 sqlite3_release_memory(allocSize); 97 } 98 99 /* 100 ** Change the alarm callback 101 */ 102 static int sqlite3MemoryAlarm( 103 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 104 void *pArg, 105 sqlite3_int64 iThreshold 106 ){ 107 sqlite3_int64 nUsed; 108 sqlite3_mutex_enter(mem0.mutex); 109 mem0.alarmCallback = xCallback; 110 mem0.alarmArg = pArg; 111 mem0.alarmThreshold = iThreshold; 112 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 113 mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed); 114 sqlite3_mutex_leave(mem0.mutex); 115 return SQLITE_OK; 116 } 117 118 #ifndef SQLITE_OMIT_DEPRECATED 119 /* 120 ** Deprecated external interface. Internal/core SQLite code 121 ** should call sqlite3MemoryAlarm. 122 */ 123 int sqlite3_memory_alarm( 124 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 125 void *pArg, 126 sqlite3_int64 iThreshold 127 ){ 128 return sqlite3MemoryAlarm(xCallback, pArg, iThreshold); 129 } 130 #endif 131 132 /* 133 ** Set the soft heap-size limit for the library. Passing a zero or 134 ** negative value indicates no limit. 135 */ 136 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ 137 sqlite3_int64 priorLimit; 138 sqlite3_int64 excess; 139 #ifndef SQLITE_OMIT_AUTOINIT 140 int rc = sqlite3_initialize(); 141 if( rc ) return -1; 142 #endif 143 sqlite3_mutex_enter(mem0.mutex); 144 priorLimit = mem0.alarmThreshold; 145 sqlite3_mutex_leave(mem0.mutex); 146 if( n<0 ) return priorLimit; 147 if( n>0 ){ 148 sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n); 149 }else{ 150 sqlite3MemoryAlarm(0, 0, 0); 151 } 152 excess = sqlite3_memory_used() - n; 153 if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); 154 return priorLimit; 155 } 156 void sqlite3_soft_heap_limit(int n){ 157 if( n<0 ) n = 0; 158 sqlite3_soft_heap_limit64(n); 159 } 160 161 /* 162 ** Initialize the memory allocation subsystem. 163 */ 164 int sqlite3MallocInit(void){ 165 int rc; 166 if( sqlite3GlobalConfig.m.xMalloc==0 ){ 167 sqlite3MemSetDefault(); 168 } 169 memset(&mem0, 0, sizeof(mem0)); 170 if( sqlite3GlobalConfig.bCoreMutex ){ 171 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 172 } 173 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 174 && sqlite3GlobalConfig.nScratch>0 ){ 175 int i, n, sz; 176 ScratchFreeslot *pSlot; 177 sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch); 178 sqlite3GlobalConfig.szScratch = sz; 179 pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch; 180 n = sqlite3GlobalConfig.nScratch; 181 mem0.pScratchFree = pSlot; 182 mem0.nScratchFree = n; 183 for(i=0; i<n-1; i++){ 184 pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot); 185 pSlot = pSlot->pNext; 186 } 187 pSlot->pNext = 0; 188 mem0.pScratchEnd = (void*)&pSlot[1]; 189 }else{ 190 mem0.pScratchEnd = 0; 191 sqlite3GlobalConfig.pScratch = 0; 192 sqlite3GlobalConfig.szScratch = 0; 193 sqlite3GlobalConfig.nScratch = 0; 194 } 195 if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 196 || sqlite3GlobalConfig.nPage<1 ){ 197 sqlite3GlobalConfig.pPage = 0; 198 sqlite3GlobalConfig.szPage = 0; 199 sqlite3GlobalConfig.nPage = 0; 200 } 201 rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); 202 if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0)); 203 return rc; 204 } 205 206 /* 207 ** Return true if the heap is currently under memory pressure - in other 208 ** words if the amount of heap used is close to the limit set by 209 ** sqlite3_soft_heap_limit(). 210 */ 211 int sqlite3HeapNearlyFull(void){ 212 return mem0.nearlyFull; 213 } 214 215 /* 216 ** Deinitialize the memory allocation subsystem. 217 */ 218 void sqlite3MallocEnd(void){ 219 if( sqlite3GlobalConfig.m.xShutdown ){ 220 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); 221 } 222 memset(&mem0, 0, sizeof(mem0)); 223 } 224 225 /* 226 ** Return the amount of memory currently checked out. 227 */ 228 sqlite3_int64 sqlite3_memory_used(void){ 229 int n, mx; 230 sqlite3_int64 res; 231 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0); 232 res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */ 233 return res; 234 } 235 236 /* 237 ** Return the maximum amount of memory that has ever been 238 ** checked out since either the beginning of this process 239 ** or since the most recent reset. 240 */ 241 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ 242 int n, mx; 243 sqlite3_int64 res; 244 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag); 245 res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */ 246 return res; 247 } 248 249 /* 250 ** Trigger the alarm 251 */ 252 static void sqlite3MallocAlarm(int nByte){ 253 void (*xCallback)(void*,sqlite3_int64,int); 254 sqlite3_int64 nowUsed; 255 void *pArg; 256 if( mem0.alarmCallback==0 ) return; 257 xCallback = mem0.alarmCallback; 258 nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 259 pArg = mem0.alarmArg; 260 mem0.alarmCallback = 0; 261 sqlite3_mutex_leave(mem0.mutex); 262 xCallback(pArg, nowUsed, nByte); 263 sqlite3_mutex_enter(mem0.mutex); 264 mem0.alarmCallback = xCallback; 265 mem0.alarmArg = pArg; 266 } 267 268 /* 269 ** Do a memory allocation with statistics and alarms. Assume the 270 ** lock is already held. 271 */ 272 static int mallocWithAlarm(int n, void **pp){ 273 int nFull; 274 void *p; 275 assert( sqlite3_mutex_held(mem0.mutex) ); 276 nFull = sqlite3GlobalConfig.m.xRoundup(n); 277 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); 278 if( mem0.alarmCallback!=0 ){ 279 sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 280 if( nUsed >= mem0.alarmThreshold - nFull ){ 281 mem0.nearlyFull = 1; 282 sqlite3MallocAlarm(nFull); 283 }else{ 284 mem0.nearlyFull = 0; 285 } 286 } 287 p = sqlite3GlobalConfig.m.xMalloc(nFull); 288 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 289 if( p==0 && mem0.alarmCallback ){ 290 sqlite3MallocAlarm(nFull); 291 p = sqlite3GlobalConfig.m.xMalloc(nFull); 292 } 293 #endif 294 if( p ){ 295 nFull = sqlite3MallocSize(p); 296 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull); 297 sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1); 298 } 299 *pp = p; 300 return nFull; 301 } 302 303 /* 304 ** Allocate memory. This routine is like sqlite3_malloc() except that it 305 ** assumes the memory subsystem has already been initialized. 306 */ 307 void *sqlite3Malloc(u64 n){ 308 void *p; 309 if( n==0 || n>=0x7fffff00 ){ 310 /* A memory allocation of a number of bytes which is near the maximum 311 ** signed integer value might cause an integer overflow inside of the 312 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving 313 ** 255 bytes of overhead. SQLite itself will never use anything near 314 ** this amount. The only way to reach the limit is with sqlite3_malloc() */ 315 p = 0; 316 }else if( sqlite3GlobalConfig.bMemstat ){ 317 sqlite3_mutex_enter(mem0.mutex); 318 mallocWithAlarm((int)n, &p); 319 sqlite3_mutex_leave(mem0.mutex); 320 }else{ 321 p = sqlite3GlobalConfig.m.xMalloc((int)n); 322 } 323 assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */ 324 return p; 325 } 326 327 /* 328 ** This version of the memory allocation is for use by the application. 329 ** First make sure the memory subsystem is initialized, then do the 330 ** allocation. 331 */ 332 void *sqlite3_malloc(int n){ 333 #ifndef SQLITE_OMIT_AUTOINIT 334 if( sqlite3_initialize() ) return 0; 335 #endif 336 return n<=0 ? 0 : sqlite3Malloc(n); 337 } 338 void *sqlite3_malloc64(sqlite3_uint64 n){ 339 #ifndef SQLITE_OMIT_AUTOINIT 340 if( sqlite3_initialize() ) return 0; 341 #endif 342 return sqlite3Malloc(n); 343 } 344 345 /* 346 ** Each thread may only have a single outstanding allocation from 347 ** xScratchMalloc(). We verify this constraint in the single-threaded 348 ** case by setting scratchAllocOut to 1 when an allocation 349 ** is outstanding clearing it when the allocation is freed. 350 */ 351 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 352 static int scratchAllocOut = 0; 353 #endif 354 355 356 /* 357 ** Allocate memory that is to be used and released right away. 358 ** This routine is similar to alloca() in that it is not intended 359 ** for situations where the memory might be held long-term. This 360 ** routine is intended to get memory to old large transient data 361 ** structures that would not normally fit on the stack of an 362 ** embedded processor. 363 */ 364 void *sqlite3ScratchMalloc(int n){ 365 void *p; 366 assert( n>0 ); 367 368 sqlite3_mutex_enter(mem0.mutex); 369 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); 370 if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){ 371 p = mem0.pScratchFree; 372 mem0.pScratchFree = mem0.pScratchFree->pNext; 373 mem0.nScratchFree--; 374 sqlite3StatusUp(SQLITE_STATUS_SCRATCH_USED, 1); 375 sqlite3_mutex_leave(mem0.mutex); 376 }else{ 377 sqlite3_mutex_leave(mem0.mutex); 378 p = sqlite3Malloc(n); 379 if( sqlite3GlobalConfig.bMemstat && p ){ 380 sqlite3_mutex_enter(mem0.mutex); 381 sqlite3StatusUp(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p)); 382 sqlite3_mutex_leave(mem0.mutex); 383 } 384 sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); 385 } 386 assert( sqlite3_mutex_notheld(mem0.mutex) ); 387 388 389 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 390 /* EVIDENCE-OF: R-12970-05880 SQLite will not use more than one scratch 391 ** buffers per thread. 392 ** 393 ** This can only be checked in single-threaded mode. 394 */ 395 assert( scratchAllocOut==0 ); 396 if( p ) scratchAllocOut++; 397 #endif 398 399 return p; 400 } 401 void sqlite3ScratchFree(void *p){ 402 if( p ){ 403 404 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 405 /* Verify that no more than two scratch allocation per thread 406 ** is outstanding at one time. (This is only checked in the 407 ** single-threaded case since checking in the multi-threaded case 408 ** would be much more complicated.) */ 409 assert( scratchAllocOut>=1 && scratchAllocOut<=2 ); 410 scratchAllocOut--; 411 #endif 412 413 if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){ 414 /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */ 415 ScratchFreeslot *pSlot; 416 pSlot = (ScratchFreeslot*)p; 417 sqlite3_mutex_enter(mem0.mutex); 418 pSlot->pNext = mem0.pScratchFree; 419 mem0.pScratchFree = pSlot; 420 mem0.nScratchFree++; 421 assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch ); 422 sqlite3StatusDown(SQLITE_STATUS_SCRATCH_USED, 1); 423 sqlite3_mutex_leave(mem0.mutex); 424 }else{ 425 /* Release memory back to the heap */ 426 assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); 427 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_SCRATCH) ); 428 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 429 if( sqlite3GlobalConfig.bMemstat ){ 430 int iSize = sqlite3MallocSize(p); 431 sqlite3_mutex_enter(mem0.mutex); 432 sqlite3StatusDown(SQLITE_STATUS_SCRATCH_OVERFLOW, iSize); 433 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, iSize); 434 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); 435 sqlite3GlobalConfig.m.xFree(p); 436 sqlite3_mutex_leave(mem0.mutex); 437 }else{ 438 sqlite3GlobalConfig.m.xFree(p); 439 } 440 } 441 } 442 } 443 444 /* 445 ** TRUE if p is a lookaside memory allocation from db 446 */ 447 #ifndef SQLITE_OMIT_LOOKASIDE 448 static int isLookaside(sqlite3 *db, void *p){ 449 return p>=db->lookaside.pStart && p<db->lookaside.pEnd; 450 } 451 #else 452 #define isLookaside(A,B) 0 453 #endif 454 455 /* 456 ** Return the size of a memory allocation previously obtained from 457 ** sqlite3Malloc() or sqlite3_malloc(). 458 */ 459 int sqlite3MallocSize(void *p){ 460 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 461 return sqlite3GlobalConfig.m.xSize(p); 462 } 463 int sqlite3DbMallocSize(sqlite3 *db, void *p){ 464 if( db==0 ){ 465 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 466 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 467 return sqlite3MallocSize(p); 468 }else{ 469 assert( sqlite3_mutex_held(db->mutex) ); 470 if( isLookaside(db, p) ){ 471 return db->lookaside.sz; 472 }else{ 473 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 474 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 475 return sqlite3GlobalConfig.m.xSize(p); 476 } 477 } 478 } 479 sqlite3_uint64 sqlite3_msize(void *p){ 480 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 481 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 482 return (sqlite3_uint64)sqlite3GlobalConfig.m.xSize(p); 483 } 484 485 /* 486 ** Free memory previously obtained from sqlite3Malloc(). 487 */ 488 void sqlite3_free(void *p){ 489 if( p==0 ) return; /* IMP: R-49053-54554 */ 490 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 491 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 492 if( sqlite3GlobalConfig.bMemstat ){ 493 sqlite3_mutex_enter(mem0.mutex); 494 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p)); 495 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); 496 sqlite3GlobalConfig.m.xFree(p); 497 sqlite3_mutex_leave(mem0.mutex); 498 }else{ 499 sqlite3GlobalConfig.m.xFree(p); 500 } 501 } 502 503 /* 504 ** Add the size of memory allocation "p" to the count in 505 ** *db->pnBytesFreed. 506 */ 507 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){ 508 *db->pnBytesFreed += sqlite3DbMallocSize(db,p); 509 } 510 511 /* 512 ** Free memory that might be associated with a particular database 513 ** connection. 514 */ 515 void sqlite3DbFree(sqlite3 *db, void *p){ 516 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 517 if( p==0 ) return; 518 if( db ){ 519 if( db->pnBytesFreed ){ 520 measureAllocationSize(db, p); 521 return; 522 } 523 if( isLookaside(db, p) ){ 524 LookasideSlot *pBuf = (LookasideSlot*)p; 525 #if SQLITE_DEBUG 526 /* Trash all content in the buffer being freed */ 527 memset(p, 0xaa, db->lookaside.sz); 528 #endif 529 pBuf->pNext = db->lookaside.pFree; 530 db->lookaside.pFree = pBuf; 531 db->lookaside.nOut--; 532 return; 533 } 534 } 535 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 536 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 537 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); 538 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 539 sqlite3_free(p); 540 } 541 542 /* 543 ** Change the size of an existing memory allocation 544 */ 545 void *sqlite3Realloc(void *pOld, u64 nBytes){ 546 int nOld, nNew, nDiff; 547 void *pNew; 548 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); 549 assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) ); 550 if( pOld==0 ){ 551 return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */ 552 } 553 if( nBytes==0 ){ 554 sqlite3_free(pOld); /* IMP: R-26507-47431 */ 555 return 0; 556 } 557 if( nBytes>=0x7fffff00 ){ 558 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ 559 return 0; 560 } 561 nOld = sqlite3MallocSize(pOld); 562 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second 563 ** argument to xRealloc is always a value returned by a prior call to 564 ** xRoundup. */ 565 nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes); 566 if( nOld==nNew ){ 567 pNew = pOld; 568 }else if( sqlite3GlobalConfig.bMemstat ){ 569 sqlite3_mutex_enter(mem0.mutex); 570 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes); 571 nDiff = nNew - nOld; 572 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= 573 mem0.alarmThreshold-nDiff ){ 574 sqlite3MallocAlarm(nDiff); 575 } 576 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 577 if( pNew==0 && mem0.alarmCallback ){ 578 sqlite3MallocAlarm((int)nBytes); 579 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 580 } 581 if( pNew ){ 582 nNew = sqlite3MallocSize(pNew); 583 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld); 584 } 585 sqlite3_mutex_leave(mem0.mutex); 586 }else{ 587 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 588 } 589 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */ 590 return pNew; 591 } 592 593 /* 594 ** The public interface to sqlite3Realloc. Make sure that the memory 595 ** subsystem is initialized prior to invoking sqliteRealloc. 596 */ 597 void *sqlite3_realloc(void *pOld, int n){ 598 #ifndef SQLITE_OMIT_AUTOINIT 599 if( sqlite3_initialize() ) return 0; 600 #endif 601 if( n<0 ) n = 0; /* IMP: R-26507-47431 */ 602 return sqlite3Realloc(pOld, n); 603 } 604 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){ 605 #ifndef SQLITE_OMIT_AUTOINIT 606 if( sqlite3_initialize() ) return 0; 607 #endif 608 return sqlite3Realloc(pOld, n); 609 } 610 611 612 /* 613 ** Allocate and zero memory. 614 */ 615 void *sqlite3MallocZero(u64 n){ 616 void *p = sqlite3Malloc(n); 617 if( p ){ 618 memset(p, 0, (size_t)n); 619 } 620 return p; 621 } 622 623 /* 624 ** Allocate and zero memory. If the allocation fails, make 625 ** the mallocFailed flag in the connection pointer. 626 */ 627 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){ 628 void *p = sqlite3DbMallocRaw(db, n); 629 if( p ){ 630 memset(p, 0, (size_t)n); 631 } 632 return p; 633 } 634 635 /* 636 ** Allocate and zero memory. If the allocation fails, make 637 ** the mallocFailed flag in the connection pointer. 638 ** 639 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc 640 ** failure on the same database connection) then always return 0. 641 ** Hence for a particular database connection, once malloc starts 642 ** failing, it fails consistently until mallocFailed is reset. 643 ** This is an important assumption. There are many places in the 644 ** code that do things like this: 645 ** 646 ** int *a = (int*)sqlite3DbMallocRaw(db, 100); 647 ** int *b = (int*)sqlite3DbMallocRaw(db, 200); 648 ** if( b ) a[10] = 9; 649 ** 650 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed 651 ** that all prior mallocs (ex: "a") worked too. 652 */ 653 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){ 654 void *p; 655 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 656 assert( db==0 || db->pnBytesFreed==0 ); 657 #ifndef SQLITE_OMIT_LOOKASIDE 658 if( db ){ 659 LookasideSlot *pBuf; 660 if( db->mallocFailed ){ 661 return 0; 662 } 663 if( db->lookaside.bEnabled ){ 664 if( n>db->lookaside.sz ){ 665 db->lookaside.anStat[1]++; 666 }else if( (pBuf = db->lookaside.pFree)==0 ){ 667 db->lookaside.anStat[2]++; 668 }else{ 669 db->lookaside.pFree = pBuf->pNext; 670 db->lookaside.nOut++; 671 db->lookaside.anStat[0]++; 672 if( db->lookaside.nOut>db->lookaside.mxOut ){ 673 db->lookaside.mxOut = db->lookaside.nOut; 674 } 675 return (void*)pBuf; 676 } 677 } 678 } 679 #else 680 if( db && db->mallocFailed ){ 681 return 0; 682 } 683 #endif 684 p = sqlite3Malloc(n); 685 if( !p && db ){ 686 db->mallocFailed = 1; 687 } 688 sqlite3MemdebugSetType(p, 689 (db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP); 690 return p; 691 } 692 693 /* 694 ** Resize the block of memory pointed to by p to n bytes. If the 695 ** resize fails, set the mallocFailed flag in the connection object. 696 */ 697 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){ 698 void *pNew = 0; 699 assert( db!=0 ); 700 assert( sqlite3_mutex_held(db->mutex) ); 701 if( db->mallocFailed==0 ){ 702 if( p==0 ){ 703 return sqlite3DbMallocRaw(db, n); 704 } 705 if( isLookaside(db, p) ){ 706 if( n<=db->lookaside.sz ){ 707 return p; 708 } 709 pNew = sqlite3DbMallocRaw(db, n); 710 if( pNew ){ 711 memcpy(pNew, p, db->lookaside.sz); 712 sqlite3DbFree(db, p); 713 } 714 }else{ 715 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 716 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 717 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 718 pNew = sqlite3_realloc64(p, n); 719 if( !pNew ){ 720 db->mallocFailed = 1; 721 } 722 sqlite3MemdebugSetType(pNew, 723 (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); 724 } 725 } 726 return pNew; 727 } 728 729 /* 730 ** Attempt to reallocate p. If the reallocation fails, then free p 731 ** and set the mallocFailed flag in the database connection. 732 */ 733 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){ 734 void *pNew; 735 pNew = sqlite3DbRealloc(db, p, n); 736 if( !pNew ){ 737 sqlite3DbFree(db, p); 738 } 739 return pNew; 740 } 741 742 /* 743 ** Make a copy of a string in memory obtained from sqliteMalloc(). These 744 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This 745 ** is because when memory debugging is turned on, these two functions are 746 ** called via macros that record the current file and line number in the 747 ** ThreadData structure. 748 */ 749 char *sqlite3DbStrDup(sqlite3 *db, const char *z){ 750 char *zNew; 751 size_t n; 752 if( z==0 ){ 753 return 0; 754 } 755 n = sqlite3Strlen30(z) + 1; 756 assert( (n&0x7fffffff)==n ); 757 zNew = sqlite3DbMallocRaw(db, (int)n); 758 if( zNew ){ 759 memcpy(zNew, z, n); 760 } 761 return zNew; 762 } 763 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){ 764 char *zNew; 765 if( z==0 ){ 766 return 0; 767 } 768 assert( (n&0x7fffffff)==n ); 769 zNew = sqlite3DbMallocRaw(db, n+1); 770 if( zNew ){ 771 memcpy(zNew, z, (size_t)n); 772 zNew[n] = 0; 773 } 774 return zNew; 775 } 776 777 /* 778 ** Create a string from the zFromat argument and the va_list that follows. 779 ** Store the string in memory obtained from sqliteMalloc() and make *pz 780 ** point to that string. 781 */ 782 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){ 783 va_list ap; 784 char *z; 785 786 va_start(ap, zFormat); 787 z = sqlite3VMPrintf(db, zFormat, ap); 788 va_end(ap); 789 sqlite3DbFree(db, *pz); 790 *pz = z; 791 } 792 793 /* 794 ** Take actions at the end of an API call to indicate an OOM error 795 */ 796 static SQLITE_NOINLINE int apiOomError(sqlite3 *db){ 797 db->mallocFailed = 0; 798 sqlite3Error(db, SQLITE_NOMEM); 799 return SQLITE_NOMEM; 800 } 801 802 /* 803 ** This function must be called before exiting any API function (i.e. 804 ** returning control to the user) that has called sqlite3_malloc or 805 ** sqlite3_realloc. 806 ** 807 ** The returned value is normally a copy of the second argument to this 808 ** function. However, if a malloc() failure has occurred since the previous 809 ** invocation SQLITE_NOMEM is returned instead. 810 ** 811 ** If the first argument, db, is not NULL and a malloc() error has occurred, 812 ** then the connection error-code (the value returned by sqlite3_errcode()) 813 ** is set to SQLITE_NOMEM. 814 */ 815 int sqlite3ApiExit(sqlite3* db, int rc){ 816 /* If the db handle is not NULL, then we must hold the connection handle 817 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed 818 ** is unsafe, as is the call to sqlite3Error(). 819 */ 820 assert( !db || sqlite3_mutex_held(db->mutex) ); 821 if( db==0 ) return rc & 0xff; 822 if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){ 823 return apiOomError(db); 824 } 825 return rc & db->errMask; 826 } 827