xref: /sqlite-3.40.0/src/malloc.c (revision 70cdf382)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** Memory allocation functions used throughout sqlite.
14 */
15 #include "sqliteInt.h"
16 #include <stdarg.h>
17 
18 /*
19 ** Attempt to release up to n bytes of non-essential memory currently
20 ** held by SQLite. An example of non-essential memory is memory used to
21 ** cache database pages that are not currently in use.
22 */
23 int sqlite3_release_memory(int n){
24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
25   return sqlite3PcacheReleaseMemory(n);
26 #else
27   /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
28   ** is a no-op returning zero if SQLite is not compiled with
29   ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
30   UNUSED_PARAMETER(n);
31   return 0;
32 #endif
33 }
34 
35 /*
36 ** An instance of the following object records the location of
37 ** each unused scratch buffer.
38 */
39 typedef struct ScratchFreeslot {
40   struct ScratchFreeslot *pNext;   /* Next unused scratch buffer */
41 } ScratchFreeslot;
42 
43 /*
44 ** State information local to the memory allocation subsystem.
45 */
46 static SQLITE_WSD struct Mem0Global {
47   sqlite3_mutex *mutex;         /* Mutex to serialize access */
48   sqlite3_int64 alarmThreshold; /* The soft heap limit */
49 
50   /*
51   ** Pointers to the end of sqlite3GlobalConfig.pScratch memory
52   ** (so that a range test can be used to determine if an allocation
53   ** being freed came from pScratch) and a pointer to the list of
54   ** unused scratch allocations.
55   */
56   void *pScratchEnd;
57   ScratchFreeslot *pScratchFree;
58   u32 nScratchFree;
59 
60   /*
61   ** True if heap is nearly "full" where "full" is defined by the
62   ** sqlite3_soft_heap_limit() setting.
63   */
64   int nearlyFull;
65 } mem0 = { 0, 0, 0, 0, 0, 0 };
66 
67 #define mem0 GLOBAL(struct Mem0Global, mem0)
68 
69 /*
70 ** Return the memory allocator mutex. sqlite3_status() needs it.
71 */
72 sqlite3_mutex *sqlite3MallocMutex(void){
73   return mem0.mutex;
74 }
75 
76 #ifndef SQLITE_OMIT_DEPRECATED
77 /*
78 ** Deprecated external interface.  It used to set an alarm callback
79 ** that was invoked when memory usage grew too large.  Now it is a
80 ** no-op.
81 */
82 int sqlite3_memory_alarm(
83   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
84   void *pArg,
85   sqlite3_int64 iThreshold
86 ){
87   (void)xCallback;
88   (void)pArg;
89   (void)iThreshold;
90   return SQLITE_OK;
91 }
92 #endif
93 
94 /*
95 ** Set the soft heap-size limit for the library. Passing a zero or
96 ** negative value indicates no limit.
97 */
98 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
99   sqlite3_int64 priorLimit;
100   sqlite3_int64 excess;
101   sqlite3_int64 nUsed;
102 #ifndef SQLITE_OMIT_AUTOINIT
103   int rc = sqlite3_initialize();
104   if( rc ) return -1;
105 #endif
106   sqlite3_mutex_enter(mem0.mutex);
107   priorLimit = mem0.alarmThreshold;
108   if( n<0 ){
109     sqlite3_mutex_leave(mem0.mutex);
110     return priorLimit;
111   }
112   mem0.alarmThreshold = n;
113   nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
114   mem0.nearlyFull = (n>0 && n<=nUsed);
115   sqlite3_mutex_leave(mem0.mutex);
116   excess = sqlite3_memory_used() - n;
117   if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
118   return priorLimit;
119 }
120 void sqlite3_soft_heap_limit(int n){
121   if( n<0 ) n = 0;
122   sqlite3_soft_heap_limit64(n);
123 }
124 
125 /*
126 ** Initialize the memory allocation subsystem.
127 */
128 int sqlite3MallocInit(void){
129   int rc;
130   if( sqlite3GlobalConfig.m.xMalloc==0 ){
131     sqlite3MemSetDefault();
132   }
133   memset(&mem0, 0, sizeof(mem0));
134   mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
135   if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
136       && sqlite3GlobalConfig.nScratch>0 ){
137     int i, n, sz;
138     ScratchFreeslot *pSlot;
139     sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch);
140     sqlite3GlobalConfig.szScratch = sz;
141     pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch;
142     n = sqlite3GlobalConfig.nScratch;
143     mem0.pScratchFree = pSlot;
144     mem0.nScratchFree = n;
145     for(i=0; i<n-1; i++){
146       pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot);
147       pSlot = pSlot->pNext;
148     }
149     pSlot->pNext = 0;
150     mem0.pScratchEnd = (void*)&pSlot[1];
151   }else{
152     mem0.pScratchEnd = 0;
153     sqlite3GlobalConfig.pScratch = 0;
154     sqlite3GlobalConfig.szScratch = 0;
155     sqlite3GlobalConfig.nScratch = 0;
156   }
157   if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
158       || sqlite3GlobalConfig.nPage<=0 ){
159     sqlite3GlobalConfig.pPage = 0;
160     sqlite3GlobalConfig.szPage = 0;
161   }
162   rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
163   if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0));
164   return rc;
165 }
166 
167 /*
168 ** Return true if the heap is currently under memory pressure - in other
169 ** words if the amount of heap used is close to the limit set by
170 ** sqlite3_soft_heap_limit().
171 */
172 int sqlite3HeapNearlyFull(void){
173   return mem0.nearlyFull;
174 }
175 
176 /*
177 ** Deinitialize the memory allocation subsystem.
178 */
179 void sqlite3MallocEnd(void){
180   if( sqlite3GlobalConfig.m.xShutdown ){
181     sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
182   }
183   memset(&mem0, 0, sizeof(mem0));
184 }
185 
186 /*
187 ** Return the amount of memory currently checked out.
188 */
189 sqlite3_int64 sqlite3_memory_used(void){
190   sqlite3_int64 res, mx;
191   sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0);
192   return res;
193 }
194 
195 /*
196 ** Return the maximum amount of memory that has ever been
197 ** checked out since either the beginning of this process
198 ** or since the most recent reset.
199 */
200 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
201   sqlite3_int64 res, mx;
202   sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag);
203   return mx;
204 }
205 
206 /*
207 ** Trigger the alarm
208 */
209 static void sqlite3MallocAlarm(int nByte){
210   if( mem0.alarmThreshold<=0 ) return;
211   sqlite3_mutex_leave(mem0.mutex);
212   sqlite3_release_memory(nByte);
213   sqlite3_mutex_enter(mem0.mutex);
214 }
215 
216 /*
217 ** Do a memory allocation with statistics and alarms.  Assume the
218 ** lock is already held.
219 */
220 static void mallocWithAlarm(int n, void **pp){
221   void *p;
222   int nFull;
223   assert( sqlite3_mutex_held(mem0.mutex) );
224   assert( n>0 );
225 
226   /* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal
227   ** implementation of malloc_good_size(), which must be called in debug
228   ** mode and specifically when the DMD "Dark Matter Detector" is enabled
229   ** or else a crash results.  Hence, do not attempt to optimize out the
230   ** following xRoundup() call. */
231   nFull = sqlite3GlobalConfig.m.xRoundup(n);
232 
233   sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n);
234   if( mem0.alarmThreshold>0 ){
235     sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
236     if( nUsed >= mem0.alarmThreshold - nFull ){
237       mem0.nearlyFull = 1;
238       sqlite3MallocAlarm(nFull);
239     }else{
240       mem0.nearlyFull = 0;
241     }
242   }
243   p = sqlite3GlobalConfig.m.xMalloc(nFull);
244 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
245   if( p==0 && mem0.alarmThreshold>0 ){
246     sqlite3MallocAlarm(nFull);
247     p = sqlite3GlobalConfig.m.xMalloc(nFull);
248   }
249 #endif
250   if( p ){
251     nFull = sqlite3MallocSize(p);
252     sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
253     sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
254   }
255   *pp = p;
256 }
257 
258 /*
259 ** Allocate memory.  This routine is like sqlite3_malloc() except that it
260 ** assumes the memory subsystem has already been initialized.
261 */
262 void *sqlite3Malloc(u64 n){
263   void *p;
264   if( n==0 || n>=0x7fffff00 ){
265     /* A memory allocation of a number of bytes which is near the maximum
266     ** signed integer value might cause an integer overflow inside of the
267     ** xMalloc().  Hence we limit the maximum size to 0x7fffff00, giving
268     ** 255 bytes of overhead.  SQLite itself will never use anything near
269     ** this amount.  The only way to reach the limit is with sqlite3_malloc() */
270     p = 0;
271   }else if( sqlite3GlobalConfig.bMemstat ){
272     sqlite3_mutex_enter(mem0.mutex);
273     mallocWithAlarm((int)n, &p);
274     sqlite3_mutex_leave(mem0.mutex);
275   }else{
276     p = sqlite3GlobalConfig.m.xMalloc((int)n);
277   }
278   assert( EIGHT_BYTE_ALIGNMENT(p) );  /* IMP: R-11148-40995 */
279   return p;
280 }
281 
282 /*
283 ** This version of the memory allocation is for use by the application.
284 ** First make sure the memory subsystem is initialized, then do the
285 ** allocation.
286 */
287 void *sqlite3_malloc(int n){
288 #ifndef SQLITE_OMIT_AUTOINIT
289   if( sqlite3_initialize() ) return 0;
290 #endif
291   return n<=0 ? 0 : sqlite3Malloc(n);
292 }
293 void *sqlite3_malloc64(sqlite3_uint64 n){
294 #ifndef SQLITE_OMIT_AUTOINIT
295   if( sqlite3_initialize() ) return 0;
296 #endif
297   return sqlite3Malloc(n);
298 }
299 
300 /*
301 ** Each thread may only have a single outstanding allocation from
302 ** xScratchMalloc().  We verify this constraint in the single-threaded
303 ** case by setting scratchAllocOut to 1 when an allocation
304 ** is outstanding clearing it when the allocation is freed.
305 */
306 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
307 static int scratchAllocOut = 0;
308 #endif
309 
310 
311 /*
312 ** Allocate memory that is to be used and released right away.
313 ** This routine is similar to alloca() in that it is not intended
314 ** for situations where the memory might be held long-term.  This
315 ** routine is intended to get memory to old large transient data
316 ** structures that would not normally fit on the stack of an
317 ** embedded processor.
318 */
319 void *sqlite3ScratchMalloc(int n){
320   void *p;
321   assert( n>0 );
322 
323   sqlite3_mutex_enter(mem0.mutex);
324   sqlite3StatusHighwater(SQLITE_STATUS_SCRATCH_SIZE, n);
325   if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
326     p = mem0.pScratchFree;
327     mem0.pScratchFree = mem0.pScratchFree->pNext;
328     mem0.nScratchFree--;
329     sqlite3StatusUp(SQLITE_STATUS_SCRATCH_USED, 1);
330     sqlite3_mutex_leave(mem0.mutex);
331   }else{
332     sqlite3_mutex_leave(mem0.mutex);
333     p = sqlite3Malloc(n);
334     if( sqlite3GlobalConfig.bMemstat && p ){
335       sqlite3_mutex_enter(mem0.mutex);
336       sqlite3StatusUp(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p));
337       sqlite3_mutex_leave(mem0.mutex);
338     }
339     sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
340   }
341   assert( sqlite3_mutex_notheld(mem0.mutex) );
342 
343 
344 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
345   /* EVIDENCE-OF: R-12970-05880 SQLite will not use more than one scratch
346   ** buffers per thread.
347   **
348   ** This can only be checked in single-threaded mode.
349   */
350   assert( scratchAllocOut==0 );
351   if( p ) scratchAllocOut++;
352 #endif
353 
354   return p;
355 }
356 void sqlite3ScratchFree(void *p){
357   if( p ){
358 
359 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
360     /* Verify that no more than two scratch allocation per thread
361     ** is outstanding at one time.  (This is only checked in the
362     ** single-threaded case since checking in the multi-threaded case
363     ** would be much more complicated.) */
364     assert( scratchAllocOut>=1 && scratchAllocOut<=2 );
365     scratchAllocOut--;
366 #endif
367 
368     if( SQLITE_WITHIN(p, sqlite3GlobalConfig.pScratch, mem0.pScratchEnd) ){
369       /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */
370       ScratchFreeslot *pSlot;
371       pSlot = (ScratchFreeslot*)p;
372       sqlite3_mutex_enter(mem0.mutex);
373       pSlot->pNext = mem0.pScratchFree;
374       mem0.pScratchFree = pSlot;
375       mem0.nScratchFree++;
376       assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch );
377       sqlite3StatusDown(SQLITE_STATUS_SCRATCH_USED, 1);
378       sqlite3_mutex_leave(mem0.mutex);
379     }else{
380       /* Release memory back to the heap */
381       assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
382       assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_SCRATCH) );
383       sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
384       if( sqlite3GlobalConfig.bMemstat ){
385         int iSize = sqlite3MallocSize(p);
386         sqlite3_mutex_enter(mem0.mutex);
387         sqlite3StatusDown(SQLITE_STATUS_SCRATCH_OVERFLOW, iSize);
388         sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, iSize);
389         sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
390         sqlite3GlobalConfig.m.xFree(p);
391         sqlite3_mutex_leave(mem0.mutex);
392       }else{
393         sqlite3GlobalConfig.m.xFree(p);
394       }
395     }
396   }
397 }
398 
399 /*
400 ** TRUE if p is a lookaside memory allocation from db
401 */
402 #ifndef SQLITE_OMIT_LOOKASIDE
403 static int isLookaside(sqlite3 *db, void *p){
404   return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pEnd);
405 }
406 #else
407 #define isLookaside(A,B) 0
408 #endif
409 
410 /*
411 ** Return the size of a memory allocation previously obtained from
412 ** sqlite3Malloc() or sqlite3_malloc().
413 */
414 int sqlite3MallocSize(void *p){
415   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
416   return sqlite3GlobalConfig.m.xSize(p);
417 }
418 int sqlite3DbMallocSize(sqlite3 *db, void *p){
419   assert( p!=0 );
420   if( db==0 || !isLookaside(db,p) ){
421 #ifdef SQLITE_DEBUG
422     if( db==0 ){
423       assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
424       assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
425     }else{
426       assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
427       assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
428     }
429 #endif
430     return sqlite3GlobalConfig.m.xSize(p);
431   }else{
432     assert( sqlite3_mutex_held(db->mutex) );
433     return db->lookaside.sz;
434   }
435 }
436 sqlite3_uint64 sqlite3_msize(void *p){
437   assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
438   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
439   return p ? sqlite3GlobalConfig.m.xSize(p) : 0;
440 }
441 
442 /*
443 ** Free memory previously obtained from sqlite3Malloc().
444 */
445 void sqlite3_free(void *p){
446   if( p==0 ) return;  /* IMP: R-49053-54554 */
447   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
448   assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
449   if( sqlite3GlobalConfig.bMemstat ){
450     sqlite3_mutex_enter(mem0.mutex);
451     sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p));
452     sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
453     sqlite3GlobalConfig.m.xFree(p);
454     sqlite3_mutex_leave(mem0.mutex);
455   }else{
456     sqlite3GlobalConfig.m.xFree(p);
457   }
458 }
459 
460 /*
461 ** Add the size of memory allocation "p" to the count in
462 ** *db->pnBytesFreed.
463 */
464 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){
465   *db->pnBytesFreed += sqlite3DbMallocSize(db,p);
466 }
467 
468 /*
469 ** Free memory that might be associated with a particular database
470 ** connection.
471 */
472 void sqlite3DbFree(sqlite3 *db, void *p){
473   assert( db==0 || sqlite3_mutex_held(db->mutex) );
474   if( p==0 ) return;
475   if( db ){
476     if( db->pnBytesFreed ){
477       measureAllocationSize(db, p);
478       return;
479     }
480     if( isLookaside(db, p) ){
481       LookasideSlot *pBuf = (LookasideSlot*)p;
482 #ifdef SQLITE_DEBUG
483       /* Trash all content in the buffer being freed */
484       memset(p, 0xaa, db->lookaside.sz);
485 #endif
486       pBuf->pNext = db->lookaside.pFree;
487       db->lookaside.pFree = pBuf;
488       db->lookaside.nOut--;
489       return;
490     }
491   }
492   assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
493   assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
494   assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
495   sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
496   sqlite3_free(p);
497 }
498 
499 /*
500 ** Change the size of an existing memory allocation
501 */
502 void *sqlite3Realloc(void *pOld, u64 nBytes){
503   int nOld, nNew, nDiff;
504   void *pNew;
505   assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
506   assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) );
507   if( pOld==0 ){
508     return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */
509   }
510   if( nBytes==0 ){
511     sqlite3_free(pOld); /* IMP: R-26507-47431 */
512     return 0;
513   }
514   if( nBytes>=0x7fffff00 ){
515     /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
516     return 0;
517   }
518   nOld = sqlite3MallocSize(pOld);
519   /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
520   ** argument to xRealloc is always a value returned by a prior call to
521   ** xRoundup. */
522   nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
523   if( nOld==nNew ){
524     pNew = pOld;
525   }else if( sqlite3GlobalConfig.bMemstat ){
526     sqlite3_mutex_enter(mem0.mutex);
527     sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
528     nDiff = nNew - nOld;
529     if( nDiff>0 && sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >=
530           mem0.alarmThreshold-nDiff ){
531       sqlite3MallocAlarm(nDiff);
532     }
533     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
534     if( pNew==0 && mem0.alarmThreshold>0 ){
535       sqlite3MallocAlarm((int)nBytes);
536       pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
537     }
538     if( pNew ){
539       nNew = sqlite3MallocSize(pNew);
540       sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
541     }
542     sqlite3_mutex_leave(mem0.mutex);
543   }else{
544     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
545   }
546   assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */
547   return pNew;
548 }
549 
550 /*
551 ** The public interface to sqlite3Realloc.  Make sure that the memory
552 ** subsystem is initialized prior to invoking sqliteRealloc.
553 */
554 void *sqlite3_realloc(void *pOld, int n){
555 #ifndef SQLITE_OMIT_AUTOINIT
556   if( sqlite3_initialize() ) return 0;
557 #endif
558   if( n<0 ) n = 0;  /* IMP: R-26507-47431 */
559   return sqlite3Realloc(pOld, n);
560 }
561 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){
562 #ifndef SQLITE_OMIT_AUTOINIT
563   if( sqlite3_initialize() ) return 0;
564 #endif
565   return sqlite3Realloc(pOld, n);
566 }
567 
568 
569 /*
570 ** Allocate and zero memory.
571 */
572 void *sqlite3MallocZero(u64 n){
573   void *p = sqlite3Malloc(n);
574   if( p ){
575     memset(p, 0, (size_t)n);
576   }
577   return p;
578 }
579 
580 /*
581 ** Allocate and zero memory.  If the allocation fails, make
582 ** the mallocFailed flag in the connection pointer.
583 */
584 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){
585   void *p;
586   testcase( db==0 );
587   p = sqlite3DbMallocRaw(db, n);
588   if( p ) memset(p, 0, (size_t)n);
589   return p;
590 }
591 
592 
593 /* Finish the work of sqlite3DbMallocRawNN for the unusual and
594 ** slower case when the allocation cannot be fulfilled using lookaside.
595 */
596 static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){
597   void *p;
598   assert( db!=0 );
599   p = sqlite3Malloc(n);
600   if( !p ) sqlite3OomFault(db);
601   sqlite3MemdebugSetType(p,
602          (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
603   return p;
604 }
605 
606 /*
607 ** Allocate memory, either lookaside (if possible) or heap.
608 ** If the allocation fails, set the mallocFailed flag in
609 ** the connection pointer.
610 **
611 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
612 ** failure on the same database connection) then always return 0.
613 ** Hence for a particular database connection, once malloc starts
614 ** failing, it fails consistently until mallocFailed is reset.
615 ** This is an important assumption.  There are many places in the
616 ** code that do things like this:
617 **
618 **         int *a = (int*)sqlite3DbMallocRaw(db, 100);
619 **         int *b = (int*)sqlite3DbMallocRaw(db, 200);
620 **         if( b ) a[10] = 9;
621 **
622 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
623 ** that all prior mallocs (ex: "a") worked too.
624 **
625 ** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is
626 ** not a NULL pointer.
627 */
628 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){
629   void *p;
630   if( db ) return sqlite3DbMallocRawNN(db, n);
631   p = sqlite3Malloc(n);
632   sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
633   return p;
634 }
635 void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){
636 #ifndef SQLITE_OMIT_LOOKASIDE
637   LookasideSlot *pBuf;
638   assert( db!=0 );
639   assert( sqlite3_mutex_held(db->mutex) );
640   assert( db->pnBytesFreed==0 );
641   if( db->lookaside.bDisable==0 ){
642     assert( db->mallocFailed==0 );
643     if( n>db->lookaside.sz ){
644       db->lookaside.anStat[1]++;
645     }else if( (pBuf = db->lookaside.pFree)==0 ){
646       db->lookaside.anStat[2]++;
647     }else{
648       db->lookaside.pFree = pBuf->pNext;
649       db->lookaside.nOut++;
650       db->lookaside.anStat[0]++;
651       if( db->lookaside.nOut>db->lookaside.mxOut ){
652         db->lookaside.mxOut = db->lookaside.nOut;
653       }
654       return (void*)pBuf;
655     }
656   }else if( db->mallocFailed ){
657     return 0;
658   }
659 #else
660   assert( db!=0 );
661   assert( sqlite3_mutex_held(db->mutex) );
662   assert( db->pnBytesFreed==0 );
663   if( db->mallocFailed ){
664     return 0;
665   }
666 #endif
667   return dbMallocRawFinish(db, n);
668 }
669 
670 /* Forward declaration */
671 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n);
672 
673 /*
674 ** Resize the block of memory pointed to by p to n bytes. If the
675 ** resize fails, set the mallocFailed flag in the connection object.
676 */
677 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){
678   assert( db!=0 );
679   if( p==0 ) return sqlite3DbMallocRawNN(db, n);
680   assert( sqlite3_mutex_held(db->mutex) );
681   if( isLookaside(db,p) && n<=db->lookaside.sz ) return p;
682   return dbReallocFinish(db, p, n);
683 }
684 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){
685   void *pNew = 0;
686   assert( db!=0 );
687   assert( p!=0 );
688   if( db->mallocFailed==0 ){
689     if( isLookaside(db, p) ){
690       pNew = sqlite3DbMallocRawNN(db, n);
691       if( pNew ){
692         memcpy(pNew, p, db->lookaside.sz);
693         sqlite3DbFree(db, p);
694       }
695     }else{
696       assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
697       assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
698       sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
699       pNew = sqlite3_realloc64(p, n);
700       if( !pNew ){
701         sqlite3OomFault(db);
702       }
703       sqlite3MemdebugSetType(pNew,
704             (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
705     }
706   }
707   return pNew;
708 }
709 
710 /*
711 ** Attempt to reallocate p.  If the reallocation fails, then free p
712 ** and set the mallocFailed flag in the database connection.
713 */
714 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){
715   void *pNew;
716   pNew = sqlite3DbRealloc(db, p, n);
717   if( !pNew ){
718     sqlite3DbFree(db, p);
719   }
720   return pNew;
721 }
722 
723 /*
724 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
725 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
726 ** is because when memory debugging is turned on, these two functions are
727 ** called via macros that record the current file and line number in the
728 ** ThreadData structure.
729 */
730 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
731   char *zNew;
732   size_t n;
733   if( z==0 ){
734     return 0;
735   }
736   n = strlen(z) + 1;
737   zNew = sqlite3DbMallocRaw(db, n);
738   if( zNew ){
739     memcpy(zNew, z, n);
740   }
741   return zNew;
742 }
743 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){
744   char *zNew;
745   assert( db!=0 );
746   if( z==0 ){
747     return 0;
748   }
749   assert( (n&0x7fffffff)==n );
750   zNew = sqlite3DbMallocRawNN(db, n+1);
751   if( zNew ){
752     memcpy(zNew, z, (size_t)n);
753     zNew[n] = 0;
754   }
755   return zNew;
756 }
757 
758 /*
759 ** Free any prior content in *pz and replace it with a copy of zNew.
760 */
761 void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){
762   sqlite3DbFree(db, *pz);
763   *pz = sqlite3DbStrDup(db, zNew);
764 }
765 
766 /*
767 ** Call this routine to record the fact that an OOM (out-of-memory) error
768 ** has happened.  This routine will set db->mallocFailed, and also
769 ** temporarily disable the lookaside memory allocator and interrupt
770 ** any running VDBEs.
771 */
772 void sqlite3OomFault(sqlite3 *db){
773   if( db->mallocFailed==0 && db->bBenignMalloc==0 ){
774     db->mallocFailed = 1;
775     if( db->nVdbeExec>0 ){
776       db->u1.isInterrupted = 1;
777     }
778     db->lookaside.bDisable++;
779   }
780 }
781 
782 /*
783 ** This routine reactivates the memory allocator and clears the
784 ** db->mallocFailed flag as necessary.
785 **
786 ** The memory allocator is not restarted if there are running
787 ** VDBEs.
788 */
789 void sqlite3OomClear(sqlite3 *db){
790   if( db->mallocFailed && db->nVdbeExec==0 ){
791     db->mallocFailed = 0;
792     db->u1.isInterrupted = 0;
793     assert( db->lookaside.bDisable>0 );
794     db->lookaside.bDisable--;
795   }
796 }
797 
798 /*
799 ** Take actions at the end of an API call to indicate an OOM error
800 */
801 static SQLITE_NOINLINE int apiOomError(sqlite3 *db){
802   sqlite3OomClear(db);
803   sqlite3Error(db, SQLITE_NOMEM);
804   return SQLITE_NOMEM_BKPT;
805 }
806 
807 /*
808 ** This function must be called before exiting any API function (i.e.
809 ** returning control to the user) that has called sqlite3_malloc or
810 ** sqlite3_realloc.
811 **
812 ** The returned value is normally a copy of the second argument to this
813 ** function. However, if a malloc() failure has occurred since the previous
814 ** invocation SQLITE_NOMEM is returned instead.
815 **
816 ** If an OOM as occurred, then the connection error-code (the value
817 ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM.
818 */
819 int sqlite3ApiExit(sqlite3* db, int rc){
820   /* If the db handle must hold the connection handle mutex here.
821   ** Otherwise the read (and possible write) of db->mallocFailed
822   ** is unsafe, as is the call to sqlite3Error().
823   */
824   assert( db!=0 );
825   assert( sqlite3_mutex_held(db->mutex) );
826   if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){
827     return apiOomError(db);
828   }
829   return rc & db->errMask;
830 }
831