xref: /sqlite-3.40.0/src/malloc.c (revision 5d00d0a8)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** Memory allocation functions used throughout sqlite.
14 **
15 ** $Id: malloc.c,v 1.66 2009/07/17 11:44:07 drh Exp $
16 */
17 #include "sqliteInt.h"
18 #include <stdarg.h>
19 
20 /*
21 ** This routine runs when the memory allocator sees that the
22 ** total memory allocation is about to exceed the soft heap
23 ** limit.
24 */
25 static void softHeapLimitEnforcer(
26   void *NotUsed,
27   sqlite3_int64 NotUsed2,
28   int allocSize
29 ){
30   UNUSED_PARAMETER2(NotUsed, NotUsed2);
31   sqlite3_release_memory(allocSize);
32 }
33 
34 /*
35 ** Set the soft heap-size limit for the library. Passing a zero or
36 ** negative value indicates no limit.
37 */
38 void sqlite3_soft_heap_limit(int n){
39   sqlite3_uint64 iLimit;
40   int overage;
41   if( n<0 ){
42     iLimit = 0;
43   }else{
44     iLimit = n;
45   }
46 #ifndef SQLITE_OMIT_AUTOINIT
47   sqlite3_initialize();
48 #endif
49   if( iLimit>0 ){
50     sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, iLimit);
51   }else{
52     sqlite3MemoryAlarm(0, 0, 0);
53   }
54   overage = (int)(sqlite3_memory_used() - (i64)n);
55   if( overage>0 ){
56     sqlite3_release_memory(overage);
57   }
58 }
59 
60 /*
61 ** Attempt to release up to n bytes of non-essential memory currently
62 ** held by SQLite. An example of non-essential memory is memory used to
63 ** cache database pages that are not currently in use.
64 */
65 int sqlite3_release_memory(int n){
66 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
67   int nRet = 0;
68 #if 0
69   nRet += sqlite3VdbeReleaseMemory(n);
70 #endif
71   nRet += sqlite3PcacheReleaseMemory(n-nRet);
72   return nRet;
73 #else
74   UNUSED_PARAMETER(n);
75   return SQLITE_OK;
76 #endif
77 }
78 
79 /*
80 ** State information local to the memory allocation subsystem.
81 */
82 static SQLITE_WSD struct Mem0Global {
83   /* Number of free pages for scratch and page-cache memory */
84   u32 nScratchFree;
85   u32 nPageFree;
86 
87   sqlite3_mutex *mutex;         /* Mutex to serialize access */
88 
89   /*
90   ** The alarm callback and its arguments.  The mem0.mutex lock will
91   ** be held while the callback is running.  Recursive calls into
92   ** the memory subsystem are allowed, but no new callbacks will be
93   ** issued.
94   */
95   sqlite3_int64 alarmThreshold;
96   void (*alarmCallback)(void*, sqlite3_int64,int);
97   void *alarmArg;
98 
99   /*
100   ** Pointers to the end of sqlite3GlobalConfig.pScratch and
101   ** sqlite3GlobalConfig.pPage to a block of memory that records
102   ** which pages are available.
103   */
104   u32 *aScratchFree;
105   u32 *aPageFree;
106 } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 };
107 
108 #define mem0 GLOBAL(struct Mem0Global, mem0)
109 
110 /*
111 ** Initialize the memory allocation subsystem.
112 */
113 int sqlite3MallocInit(void){
114   if( sqlite3GlobalConfig.m.xMalloc==0 ){
115     sqlite3MemSetDefault();
116   }
117   memset(&mem0, 0, sizeof(mem0));
118   if( sqlite3GlobalConfig.bCoreMutex ){
119     mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
120   }
121   if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
122       && sqlite3GlobalConfig.nScratch>=0 ){
123     int i;
124     sqlite3GlobalConfig.szScratch = ROUNDDOWN8(sqlite3GlobalConfig.szScratch-4);
125     mem0.aScratchFree = (u32*)&((char*)sqlite3GlobalConfig.pScratch)
126                   [sqlite3GlobalConfig.szScratch*sqlite3GlobalConfig.nScratch];
127     for(i=0; i<sqlite3GlobalConfig.nScratch; i++){ mem0.aScratchFree[i] = i; }
128     mem0.nScratchFree = sqlite3GlobalConfig.nScratch;
129   }else{
130     sqlite3GlobalConfig.pScratch = 0;
131     sqlite3GlobalConfig.szScratch = 0;
132   }
133   if( sqlite3GlobalConfig.pPage && sqlite3GlobalConfig.szPage>=512
134       && sqlite3GlobalConfig.nPage>=1 ){
135     int i;
136     int overhead;
137     int sz = ROUNDDOWN8(sqlite3GlobalConfig.szPage);
138     int n = sqlite3GlobalConfig.nPage;
139     overhead = (4*n + sz - 1)/sz;
140     sqlite3GlobalConfig.nPage -= overhead;
141     mem0.aPageFree = (u32*)&((char*)sqlite3GlobalConfig.pPage)
142                   [sqlite3GlobalConfig.szPage*sqlite3GlobalConfig.nPage];
143     for(i=0; i<sqlite3GlobalConfig.nPage; i++){ mem0.aPageFree[i] = i; }
144     mem0.nPageFree = sqlite3GlobalConfig.nPage;
145   }else{
146     sqlite3GlobalConfig.pPage = 0;
147     sqlite3GlobalConfig.szPage = 0;
148   }
149   return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
150 }
151 
152 /*
153 ** Deinitialize the memory allocation subsystem.
154 */
155 void sqlite3MallocEnd(void){
156   if( sqlite3GlobalConfig.m.xShutdown ){
157     sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
158   }
159   memset(&mem0, 0, sizeof(mem0));
160 }
161 
162 /*
163 ** Return the amount of memory currently checked out.
164 */
165 sqlite3_int64 sqlite3_memory_used(void){
166   int n, mx;
167   sqlite3_int64 res;
168   sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
169   res = (sqlite3_int64)n;  /* Work around bug in Borland C. Ticket #3216 */
170   return res;
171 }
172 
173 /*
174 ** Return the maximum amount of memory that has ever been
175 ** checked out since either the beginning of this process
176 ** or since the most recent reset.
177 */
178 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
179   int n, mx;
180   sqlite3_int64 res;
181   sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
182   res = (sqlite3_int64)mx;  /* Work around bug in Borland C. Ticket #3216 */
183   return res;
184 }
185 
186 /*
187 ** Change the alarm callback
188 */
189 int sqlite3MemoryAlarm(
190   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
191   void *pArg,
192   sqlite3_int64 iThreshold
193 ){
194   sqlite3_mutex_enter(mem0.mutex);
195   mem0.alarmCallback = xCallback;
196   mem0.alarmArg = pArg;
197   mem0.alarmThreshold = iThreshold;
198   sqlite3_mutex_leave(mem0.mutex);
199   return SQLITE_OK;
200 }
201 
202 #ifndef SQLITE_OMIT_DEPRECATED
203 /*
204 ** Deprecated external interface.  Internal/core SQLite code
205 ** should call sqlite3MemoryAlarm.
206 */
207 int sqlite3_memory_alarm(
208   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
209   void *pArg,
210   sqlite3_int64 iThreshold
211 ){
212   return sqlite3MemoryAlarm(xCallback, pArg, iThreshold);
213 }
214 #endif
215 
216 /*
217 ** Trigger the alarm
218 */
219 static void sqlite3MallocAlarm(int nByte){
220   void (*xCallback)(void*,sqlite3_int64,int);
221   sqlite3_int64 nowUsed;
222   void *pArg;
223   if( mem0.alarmCallback==0 ) return;
224   xCallback = mem0.alarmCallback;
225   nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
226   pArg = mem0.alarmArg;
227   mem0.alarmCallback = 0;
228   sqlite3_mutex_leave(mem0.mutex);
229   xCallback(pArg, nowUsed, nByte);
230   sqlite3_mutex_enter(mem0.mutex);
231   mem0.alarmCallback = xCallback;
232   mem0.alarmArg = pArg;
233 }
234 
235 /*
236 ** Do a memory allocation with statistics and alarms.  Assume the
237 ** lock is already held.
238 */
239 static int mallocWithAlarm(int n, void **pp){
240   int nFull;
241   void *p;
242   assert( sqlite3_mutex_held(mem0.mutex) );
243   nFull = sqlite3GlobalConfig.m.xRoundup(n);
244   sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
245   if( mem0.alarmCallback!=0 ){
246     int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
247     if( nUsed+nFull >= mem0.alarmThreshold ){
248       sqlite3MallocAlarm(nFull);
249     }
250   }
251   p = sqlite3GlobalConfig.m.xMalloc(nFull);
252   if( p==0 && mem0.alarmCallback ){
253     sqlite3MallocAlarm(nFull);
254     p = sqlite3GlobalConfig.m.xMalloc(nFull);
255   }
256   if( p ){
257     nFull = sqlite3MallocSize(p);
258     sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
259   }
260   *pp = p;
261   return nFull;
262 }
263 
264 /*
265 ** Allocate memory.  This routine is like sqlite3_malloc() except that it
266 ** assumes the memory subsystem has already been initialized.
267 */
268 void *sqlite3Malloc(int n){
269   void *p;
270   if( n<=0 || n>=0x7fffff00 ){
271     /* A memory allocation of a number of bytes which is near the maximum
272     ** signed integer value might cause an integer overflow inside of the
273     ** xMalloc().  Hence we limit the maximum size to 0x7fffff00, giving
274     ** 255 bytes of overhead.  SQLite itself will never use anything near
275     ** this amount.  The only way to reach the limit is with sqlite3_malloc() */
276     p = 0;
277   }else if( sqlite3GlobalConfig.bMemstat ){
278     sqlite3_mutex_enter(mem0.mutex);
279     mallocWithAlarm(n, &p);
280     sqlite3_mutex_leave(mem0.mutex);
281   }else{
282     p = sqlite3GlobalConfig.m.xMalloc(n);
283   }
284   return p;
285 }
286 
287 /*
288 ** This version of the memory allocation is for use by the application.
289 ** First make sure the memory subsystem is initialized, then do the
290 ** allocation.
291 */
292 void *sqlite3_malloc(int n){
293 #ifndef SQLITE_OMIT_AUTOINIT
294   if( sqlite3_initialize() ) return 0;
295 #endif
296   return sqlite3Malloc(n);
297 }
298 
299 /*
300 ** Each thread may only have a single outstanding allocation from
301 ** xScratchMalloc().  We verify this constraint in the single-threaded
302 ** case by setting scratchAllocOut to 1 when an allocation
303 ** is outstanding clearing it when the allocation is freed.
304 */
305 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
306 static int scratchAllocOut = 0;
307 #endif
308 
309 
310 /*
311 ** Allocate memory that is to be used and released right away.
312 ** This routine is similar to alloca() in that it is not intended
313 ** for situations where the memory might be held long-term.  This
314 ** routine is intended to get memory to old large transient data
315 ** structures that would not normally fit on the stack of an
316 ** embedded processor.
317 */
318 void *sqlite3ScratchMalloc(int n){
319   void *p;
320   assert( n>0 );
321 
322 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
323   /* Verify that no more than one scratch allocation per thread
324   ** is outstanding at one time.  (This is only checked in the
325   ** single-threaded case since checking in the multi-threaded case
326   ** would be much more complicated.) */
327   assert( scratchAllocOut==0 );
328 #endif
329 
330   if( sqlite3GlobalConfig.szScratch<n ){
331     goto scratch_overflow;
332   }else{
333     sqlite3_mutex_enter(mem0.mutex);
334     if( mem0.nScratchFree==0 ){
335       sqlite3_mutex_leave(mem0.mutex);
336       goto scratch_overflow;
337     }else{
338       int i;
339       i = mem0.aScratchFree[--mem0.nScratchFree];
340       i *= sqlite3GlobalConfig.szScratch;
341       sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
342       sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
343       sqlite3_mutex_leave(mem0.mutex);
344       p = (void*)&((char*)sqlite3GlobalConfig.pScratch)[i];
345       assert(  (((u8*)p - (u8*)0) & 7)==0 );
346     }
347   }
348 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
349   scratchAllocOut = p!=0;
350 #endif
351 
352   return p;
353 
354 scratch_overflow:
355   if( sqlite3GlobalConfig.bMemstat ){
356     sqlite3_mutex_enter(mem0.mutex);
357     sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
358     n = mallocWithAlarm(n, &p);
359     if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
360     sqlite3_mutex_leave(mem0.mutex);
361   }else{
362     p = sqlite3GlobalConfig.m.xMalloc(n);
363   }
364 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
365   scratchAllocOut = p!=0;
366 #endif
367   return p;
368 }
369 void sqlite3ScratchFree(void *p){
370   if( p ){
371 
372 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
373     /* Verify that no more than one scratch allocation per thread
374     ** is outstanding at one time.  (This is only checked in the
375     ** single-threaded case since checking in the multi-threaded case
376     ** would be much more complicated.) */
377     assert( scratchAllocOut==1 );
378     scratchAllocOut = 0;
379 #endif
380 
381     if( sqlite3GlobalConfig.pScratch==0
382            || p<sqlite3GlobalConfig.pScratch
383            || p>=(void*)mem0.aScratchFree ){
384       if( sqlite3GlobalConfig.bMemstat ){
385         int iSize = sqlite3MallocSize(p);
386         sqlite3_mutex_enter(mem0.mutex);
387         sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
388         sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
389         sqlite3GlobalConfig.m.xFree(p);
390         sqlite3_mutex_leave(mem0.mutex);
391       }else{
392         sqlite3GlobalConfig.m.xFree(p);
393       }
394     }else{
395       int i;
396       i = (int)((u8*)p - (u8*)sqlite3GlobalConfig.pScratch);
397       i /= sqlite3GlobalConfig.szScratch;
398       assert( i>=0 && i<sqlite3GlobalConfig.nScratch );
399       sqlite3_mutex_enter(mem0.mutex);
400       assert( mem0.nScratchFree<(u32)sqlite3GlobalConfig.nScratch );
401       mem0.aScratchFree[mem0.nScratchFree++] = i;
402       sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
403       sqlite3_mutex_leave(mem0.mutex);
404     }
405   }
406 }
407 
408 /*
409 ** TRUE if p is a lookaside memory allocation from db
410 */
411 #ifndef SQLITE_OMIT_LOOKASIDE
412 static int isLookaside(sqlite3 *db, void *p){
413   return db && p && p>=db->lookaside.pStart && p<db->lookaside.pEnd;
414 }
415 #else
416 #define isLookaside(A,B) 0
417 #endif
418 
419 /*
420 ** Return the size of a memory allocation previously obtained from
421 ** sqlite3Malloc() or sqlite3_malloc().
422 */
423 int sqlite3MallocSize(void *p){
424   return sqlite3GlobalConfig.m.xSize(p);
425 }
426 int sqlite3DbMallocSize(sqlite3 *db, void *p){
427   assert( db==0 || sqlite3_mutex_held(db->mutex) );
428   if( isLookaside(db, p) ){
429     return db->lookaside.sz;
430   }else{
431     return sqlite3GlobalConfig.m.xSize(p);
432   }
433 }
434 
435 /*
436 ** Free memory previously obtained from sqlite3Malloc().
437 */
438 void sqlite3_free(void *p){
439   if( p==0 ) return;
440   if( sqlite3GlobalConfig.bMemstat ){
441     sqlite3_mutex_enter(mem0.mutex);
442     sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
443     sqlite3GlobalConfig.m.xFree(p);
444     sqlite3_mutex_leave(mem0.mutex);
445   }else{
446     sqlite3GlobalConfig.m.xFree(p);
447   }
448 }
449 
450 /*
451 ** Free memory that might be associated with a particular database
452 ** connection.
453 */
454 void sqlite3DbFree(sqlite3 *db, void *p){
455   assert( db==0 || sqlite3_mutex_held(db->mutex) );
456   if( isLookaside(db, p) ){
457     LookasideSlot *pBuf = (LookasideSlot*)p;
458     pBuf->pNext = db->lookaside.pFree;
459     db->lookaside.pFree = pBuf;
460     db->lookaside.nOut--;
461   }else{
462     sqlite3_free(p);
463   }
464 }
465 
466 /*
467 ** Change the size of an existing memory allocation
468 */
469 void *sqlite3Realloc(void *pOld, int nBytes){
470   int nOld, nNew;
471   void *pNew;
472   if( pOld==0 ){
473     return sqlite3Malloc(nBytes);
474   }
475   if( nBytes<=0 ){
476     sqlite3_free(pOld);
477     return 0;
478   }
479   if( nBytes>=0x7fffff00 ){
480     /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
481     return 0;
482   }
483   nOld = sqlite3MallocSize(pOld);
484   nNew = sqlite3GlobalConfig.m.xRoundup(nBytes);
485   if( nOld==nNew ){
486     pNew = pOld;
487   }else if( sqlite3GlobalConfig.bMemstat ){
488     sqlite3_mutex_enter(mem0.mutex);
489     sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
490     if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >=
491           mem0.alarmThreshold ){
492       sqlite3MallocAlarm(nNew-nOld);
493     }
494     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
495     if( pNew==0 && mem0.alarmCallback ){
496       sqlite3MallocAlarm(nBytes);
497       pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
498     }
499     if( pNew ){
500       nNew = sqlite3MallocSize(pNew);
501       sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
502     }
503     sqlite3_mutex_leave(mem0.mutex);
504   }else{
505     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
506   }
507   return pNew;
508 }
509 
510 /*
511 ** The public interface to sqlite3Realloc.  Make sure that the memory
512 ** subsystem is initialized prior to invoking sqliteRealloc.
513 */
514 void *sqlite3_realloc(void *pOld, int n){
515 #ifndef SQLITE_OMIT_AUTOINIT
516   if( sqlite3_initialize() ) return 0;
517 #endif
518   return sqlite3Realloc(pOld, n);
519 }
520 
521 
522 /*
523 ** Allocate and zero memory.
524 */
525 void *sqlite3MallocZero(int n){
526   void *p = sqlite3Malloc(n);
527   if( p ){
528     memset(p, 0, n);
529   }
530   return p;
531 }
532 
533 /*
534 ** Allocate and zero memory.  If the allocation fails, make
535 ** the mallocFailed flag in the connection pointer.
536 */
537 void *sqlite3DbMallocZero(sqlite3 *db, int n){
538   void *p = sqlite3DbMallocRaw(db, n);
539   if( p ){
540     memset(p, 0, n);
541   }
542   return p;
543 }
544 
545 /*
546 ** Allocate and zero memory.  If the allocation fails, make
547 ** the mallocFailed flag in the connection pointer.
548 **
549 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
550 ** failure on the same database connection) then always return 0.
551 ** Hence for a particular database connection, once malloc starts
552 ** failing, it fails consistently until mallocFailed is reset.
553 ** This is an important assumption.  There are many places in the
554 ** code that do things like this:
555 **
556 **         int *a = (int*)sqlite3DbMallocRaw(db, 100);
557 **         int *b = (int*)sqlite3DbMallocRaw(db, 200);
558 **         if( b ) a[10] = 9;
559 **
560 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
561 ** that all prior mallocs (ex: "a") worked too.
562 */
563 void *sqlite3DbMallocRaw(sqlite3 *db, int n){
564   void *p;
565   assert( db==0 || sqlite3_mutex_held(db->mutex) );
566 #ifndef SQLITE_OMIT_LOOKASIDE
567   if( db ){
568     LookasideSlot *pBuf;
569     if( db->mallocFailed ){
570       return 0;
571     }
572     if( db->lookaside.bEnabled && n<=db->lookaside.sz
573          && (pBuf = db->lookaside.pFree)!=0 ){
574       db->lookaside.pFree = pBuf->pNext;
575       db->lookaside.nOut++;
576       if( db->lookaside.nOut>db->lookaside.mxOut ){
577         db->lookaside.mxOut = db->lookaside.nOut;
578       }
579       return (void*)pBuf;
580     }
581   }
582 #else
583   if( db && db->mallocFailed ){
584     return 0;
585   }
586 #endif
587   p = sqlite3Malloc(n);
588   if( !p && db ){
589     db->mallocFailed = 1;
590   }
591   return p;
592 }
593 
594 /*
595 ** Resize the block of memory pointed to by p to n bytes. If the
596 ** resize fails, set the mallocFailed flag in the connection object.
597 */
598 void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
599   void *pNew = 0;
600   assert( db!=0 );
601   assert( sqlite3_mutex_held(db->mutex) );
602   if( db->mallocFailed==0 ){
603     if( p==0 ){
604       return sqlite3DbMallocRaw(db, n);
605     }
606     if( isLookaside(db, p) ){
607       if( n<=db->lookaside.sz ){
608         return p;
609       }
610       pNew = sqlite3DbMallocRaw(db, n);
611       if( pNew ){
612         memcpy(pNew, p, db->lookaside.sz);
613         sqlite3DbFree(db, p);
614       }
615     }else{
616       pNew = sqlite3_realloc(p, n);
617       if( !pNew ){
618         db->mallocFailed = 1;
619       }
620     }
621   }
622   return pNew;
623 }
624 
625 /*
626 ** Attempt to reallocate p.  If the reallocation fails, then free p
627 ** and set the mallocFailed flag in the database connection.
628 */
629 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
630   void *pNew;
631   pNew = sqlite3DbRealloc(db, p, n);
632   if( !pNew ){
633     sqlite3DbFree(db, p);
634   }
635   return pNew;
636 }
637 
638 /*
639 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
640 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
641 ** is because when memory debugging is turned on, these two functions are
642 ** called via macros that record the current file and line number in the
643 ** ThreadData structure.
644 */
645 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
646   char *zNew;
647   size_t n;
648   if( z==0 ){
649     return 0;
650   }
651   n = sqlite3Strlen30(z) + 1;
652   assert( (n&0x7fffffff)==n );
653   zNew = sqlite3DbMallocRaw(db, (int)n);
654   if( zNew ){
655     memcpy(zNew, z, n);
656   }
657   return zNew;
658 }
659 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
660   char *zNew;
661   if( z==0 ){
662     return 0;
663   }
664   assert( (n&0x7fffffff)==n );
665   zNew = sqlite3DbMallocRaw(db, n+1);
666   if( zNew ){
667     memcpy(zNew, z, n);
668     zNew[n] = 0;
669   }
670   return zNew;
671 }
672 
673 /*
674 ** Create a string from the zFromat argument and the va_list that follows.
675 ** Store the string in memory obtained from sqliteMalloc() and make *pz
676 ** point to that string.
677 */
678 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
679   va_list ap;
680   char *z;
681 
682   va_start(ap, zFormat);
683   z = sqlite3VMPrintf(db, zFormat, ap);
684   va_end(ap);
685   sqlite3DbFree(db, *pz);
686   *pz = z;
687 }
688 
689 
690 /*
691 ** This function must be called before exiting any API function (i.e.
692 ** returning control to the user) that has called sqlite3_malloc or
693 ** sqlite3_realloc.
694 **
695 ** The returned value is normally a copy of the second argument to this
696 ** function. However, if a malloc() failure has occurred since the previous
697 ** invocation SQLITE_NOMEM is returned instead.
698 **
699 ** If the first argument, db, is not NULL and a malloc() error has occurred,
700 ** then the connection error-code (the value returned by sqlite3_errcode())
701 ** is set to SQLITE_NOMEM.
702 */
703 int sqlite3ApiExit(sqlite3* db, int rc){
704   /* If the db handle is not NULL, then we must hold the connection handle
705   ** mutex here. Otherwise the read (and possible write) of db->mallocFailed
706   ** is unsafe, as is the call to sqlite3Error().
707   */
708   assert( !db || sqlite3_mutex_held(db->mutex) );
709   if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){
710     sqlite3Error(db, SQLITE_NOMEM, 0);
711     db->mallocFailed = 0;
712     rc = SQLITE_NOMEM;
713   }
714   return rc & (db ? db->errMask : 0xff);
715 }
716