1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** Memory allocation functions used throughout sqlite. 14 ** 15 ** $Id: malloc.c,v 1.66 2009/07/17 11:44:07 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 #include <stdarg.h> 19 20 /* 21 ** This routine runs when the memory allocator sees that the 22 ** total memory allocation is about to exceed the soft heap 23 ** limit. 24 */ 25 static void softHeapLimitEnforcer( 26 void *NotUsed, 27 sqlite3_int64 NotUsed2, 28 int allocSize 29 ){ 30 UNUSED_PARAMETER2(NotUsed, NotUsed2); 31 sqlite3_release_memory(allocSize); 32 } 33 34 /* 35 ** Set the soft heap-size limit for the library. Passing a zero or 36 ** negative value indicates no limit. 37 */ 38 void sqlite3_soft_heap_limit(int n){ 39 sqlite3_uint64 iLimit; 40 int overage; 41 if( n<0 ){ 42 iLimit = 0; 43 }else{ 44 iLimit = n; 45 } 46 #ifndef SQLITE_OMIT_AUTOINIT 47 sqlite3_initialize(); 48 #endif 49 if( iLimit>0 ){ 50 sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, iLimit); 51 }else{ 52 sqlite3MemoryAlarm(0, 0, 0); 53 } 54 overage = (int)(sqlite3_memory_used() - (i64)n); 55 if( overage>0 ){ 56 sqlite3_release_memory(overage); 57 } 58 } 59 60 /* 61 ** Attempt to release up to n bytes of non-essential memory currently 62 ** held by SQLite. An example of non-essential memory is memory used to 63 ** cache database pages that are not currently in use. 64 */ 65 int sqlite3_release_memory(int n){ 66 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 67 int nRet = 0; 68 #if 0 69 nRet += sqlite3VdbeReleaseMemory(n); 70 #endif 71 nRet += sqlite3PcacheReleaseMemory(n-nRet); 72 return nRet; 73 #else 74 UNUSED_PARAMETER(n); 75 return SQLITE_OK; 76 #endif 77 } 78 79 /* 80 ** State information local to the memory allocation subsystem. 81 */ 82 static SQLITE_WSD struct Mem0Global { 83 /* Number of free pages for scratch and page-cache memory */ 84 u32 nScratchFree; 85 u32 nPageFree; 86 87 sqlite3_mutex *mutex; /* Mutex to serialize access */ 88 89 /* 90 ** The alarm callback and its arguments. The mem0.mutex lock will 91 ** be held while the callback is running. Recursive calls into 92 ** the memory subsystem are allowed, but no new callbacks will be 93 ** issued. 94 */ 95 sqlite3_int64 alarmThreshold; 96 void (*alarmCallback)(void*, sqlite3_int64,int); 97 void *alarmArg; 98 99 /* 100 ** Pointers to the end of sqlite3GlobalConfig.pScratch and 101 ** sqlite3GlobalConfig.pPage to a block of memory that records 102 ** which pages are available. 103 */ 104 u32 *aScratchFree; 105 u32 *aPageFree; 106 } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 }; 107 108 #define mem0 GLOBAL(struct Mem0Global, mem0) 109 110 /* 111 ** Initialize the memory allocation subsystem. 112 */ 113 int sqlite3MallocInit(void){ 114 if( sqlite3GlobalConfig.m.xMalloc==0 ){ 115 sqlite3MemSetDefault(); 116 } 117 memset(&mem0, 0, sizeof(mem0)); 118 if( sqlite3GlobalConfig.bCoreMutex ){ 119 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 120 } 121 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 122 && sqlite3GlobalConfig.nScratch>=0 ){ 123 int i; 124 sqlite3GlobalConfig.szScratch = ROUNDDOWN8(sqlite3GlobalConfig.szScratch-4); 125 mem0.aScratchFree = (u32*)&((char*)sqlite3GlobalConfig.pScratch) 126 [sqlite3GlobalConfig.szScratch*sqlite3GlobalConfig.nScratch]; 127 for(i=0; i<sqlite3GlobalConfig.nScratch; i++){ mem0.aScratchFree[i] = i; } 128 mem0.nScratchFree = sqlite3GlobalConfig.nScratch; 129 }else{ 130 sqlite3GlobalConfig.pScratch = 0; 131 sqlite3GlobalConfig.szScratch = 0; 132 } 133 if( sqlite3GlobalConfig.pPage && sqlite3GlobalConfig.szPage>=512 134 && sqlite3GlobalConfig.nPage>=1 ){ 135 int i; 136 int overhead; 137 int sz = ROUNDDOWN8(sqlite3GlobalConfig.szPage); 138 int n = sqlite3GlobalConfig.nPage; 139 overhead = (4*n + sz - 1)/sz; 140 sqlite3GlobalConfig.nPage -= overhead; 141 mem0.aPageFree = (u32*)&((char*)sqlite3GlobalConfig.pPage) 142 [sqlite3GlobalConfig.szPage*sqlite3GlobalConfig.nPage]; 143 for(i=0; i<sqlite3GlobalConfig.nPage; i++){ mem0.aPageFree[i] = i; } 144 mem0.nPageFree = sqlite3GlobalConfig.nPage; 145 }else{ 146 sqlite3GlobalConfig.pPage = 0; 147 sqlite3GlobalConfig.szPage = 0; 148 } 149 return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); 150 } 151 152 /* 153 ** Deinitialize the memory allocation subsystem. 154 */ 155 void sqlite3MallocEnd(void){ 156 if( sqlite3GlobalConfig.m.xShutdown ){ 157 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); 158 } 159 memset(&mem0, 0, sizeof(mem0)); 160 } 161 162 /* 163 ** Return the amount of memory currently checked out. 164 */ 165 sqlite3_int64 sqlite3_memory_used(void){ 166 int n, mx; 167 sqlite3_int64 res; 168 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0); 169 res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */ 170 return res; 171 } 172 173 /* 174 ** Return the maximum amount of memory that has ever been 175 ** checked out since either the beginning of this process 176 ** or since the most recent reset. 177 */ 178 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ 179 int n, mx; 180 sqlite3_int64 res; 181 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag); 182 res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */ 183 return res; 184 } 185 186 /* 187 ** Change the alarm callback 188 */ 189 int sqlite3MemoryAlarm( 190 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 191 void *pArg, 192 sqlite3_int64 iThreshold 193 ){ 194 sqlite3_mutex_enter(mem0.mutex); 195 mem0.alarmCallback = xCallback; 196 mem0.alarmArg = pArg; 197 mem0.alarmThreshold = iThreshold; 198 sqlite3_mutex_leave(mem0.mutex); 199 return SQLITE_OK; 200 } 201 202 #ifndef SQLITE_OMIT_DEPRECATED 203 /* 204 ** Deprecated external interface. Internal/core SQLite code 205 ** should call sqlite3MemoryAlarm. 206 */ 207 int sqlite3_memory_alarm( 208 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 209 void *pArg, 210 sqlite3_int64 iThreshold 211 ){ 212 return sqlite3MemoryAlarm(xCallback, pArg, iThreshold); 213 } 214 #endif 215 216 /* 217 ** Trigger the alarm 218 */ 219 static void sqlite3MallocAlarm(int nByte){ 220 void (*xCallback)(void*,sqlite3_int64,int); 221 sqlite3_int64 nowUsed; 222 void *pArg; 223 if( mem0.alarmCallback==0 ) return; 224 xCallback = mem0.alarmCallback; 225 nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 226 pArg = mem0.alarmArg; 227 mem0.alarmCallback = 0; 228 sqlite3_mutex_leave(mem0.mutex); 229 xCallback(pArg, nowUsed, nByte); 230 sqlite3_mutex_enter(mem0.mutex); 231 mem0.alarmCallback = xCallback; 232 mem0.alarmArg = pArg; 233 } 234 235 /* 236 ** Do a memory allocation with statistics and alarms. Assume the 237 ** lock is already held. 238 */ 239 static int mallocWithAlarm(int n, void **pp){ 240 int nFull; 241 void *p; 242 assert( sqlite3_mutex_held(mem0.mutex) ); 243 nFull = sqlite3GlobalConfig.m.xRoundup(n); 244 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); 245 if( mem0.alarmCallback!=0 ){ 246 int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 247 if( nUsed+nFull >= mem0.alarmThreshold ){ 248 sqlite3MallocAlarm(nFull); 249 } 250 } 251 p = sqlite3GlobalConfig.m.xMalloc(nFull); 252 if( p==0 && mem0.alarmCallback ){ 253 sqlite3MallocAlarm(nFull); 254 p = sqlite3GlobalConfig.m.xMalloc(nFull); 255 } 256 if( p ){ 257 nFull = sqlite3MallocSize(p); 258 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull); 259 } 260 *pp = p; 261 return nFull; 262 } 263 264 /* 265 ** Allocate memory. This routine is like sqlite3_malloc() except that it 266 ** assumes the memory subsystem has already been initialized. 267 */ 268 void *sqlite3Malloc(int n){ 269 void *p; 270 if( n<=0 || n>=0x7fffff00 ){ 271 /* A memory allocation of a number of bytes which is near the maximum 272 ** signed integer value might cause an integer overflow inside of the 273 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving 274 ** 255 bytes of overhead. SQLite itself will never use anything near 275 ** this amount. The only way to reach the limit is with sqlite3_malloc() */ 276 p = 0; 277 }else if( sqlite3GlobalConfig.bMemstat ){ 278 sqlite3_mutex_enter(mem0.mutex); 279 mallocWithAlarm(n, &p); 280 sqlite3_mutex_leave(mem0.mutex); 281 }else{ 282 p = sqlite3GlobalConfig.m.xMalloc(n); 283 } 284 return p; 285 } 286 287 /* 288 ** This version of the memory allocation is for use by the application. 289 ** First make sure the memory subsystem is initialized, then do the 290 ** allocation. 291 */ 292 void *sqlite3_malloc(int n){ 293 #ifndef SQLITE_OMIT_AUTOINIT 294 if( sqlite3_initialize() ) return 0; 295 #endif 296 return sqlite3Malloc(n); 297 } 298 299 /* 300 ** Each thread may only have a single outstanding allocation from 301 ** xScratchMalloc(). We verify this constraint in the single-threaded 302 ** case by setting scratchAllocOut to 1 when an allocation 303 ** is outstanding clearing it when the allocation is freed. 304 */ 305 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 306 static int scratchAllocOut = 0; 307 #endif 308 309 310 /* 311 ** Allocate memory that is to be used and released right away. 312 ** This routine is similar to alloca() in that it is not intended 313 ** for situations where the memory might be held long-term. This 314 ** routine is intended to get memory to old large transient data 315 ** structures that would not normally fit on the stack of an 316 ** embedded processor. 317 */ 318 void *sqlite3ScratchMalloc(int n){ 319 void *p; 320 assert( n>0 ); 321 322 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 323 /* Verify that no more than one scratch allocation per thread 324 ** is outstanding at one time. (This is only checked in the 325 ** single-threaded case since checking in the multi-threaded case 326 ** would be much more complicated.) */ 327 assert( scratchAllocOut==0 ); 328 #endif 329 330 if( sqlite3GlobalConfig.szScratch<n ){ 331 goto scratch_overflow; 332 }else{ 333 sqlite3_mutex_enter(mem0.mutex); 334 if( mem0.nScratchFree==0 ){ 335 sqlite3_mutex_leave(mem0.mutex); 336 goto scratch_overflow; 337 }else{ 338 int i; 339 i = mem0.aScratchFree[--mem0.nScratchFree]; 340 i *= sqlite3GlobalConfig.szScratch; 341 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1); 342 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); 343 sqlite3_mutex_leave(mem0.mutex); 344 p = (void*)&((char*)sqlite3GlobalConfig.pScratch)[i]; 345 assert( (((u8*)p - (u8*)0) & 7)==0 ); 346 } 347 } 348 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 349 scratchAllocOut = p!=0; 350 #endif 351 352 return p; 353 354 scratch_overflow: 355 if( sqlite3GlobalConfig.bMemstat ){ 356 sqlite3_mutex_enter(mem0.mutex); 357 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); 358 n = mallocWithAlarm(n, &p); 359 if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n); 360 sqlite3_mutex_leave(mem0.mutex); 361 }else{ 362 p = sqlite3GlobalConfig.m.xMalloc(n); 363 } 364 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 365 scratchAllocOut = p!=0; 366 #endif 367 return p; 368 } 369 void sqlite3ScratchFree(void *p){ 370 if( p ){ 371 372 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 373 /* Verify that no more than one scratch allocation per thread 374 ** is outstanding at one time. (This is only checked in the 375 ** single-threaded case since checking in the multi-threaded case 376 ** would be much more complicated.) */ 377 assert( scratchAllocOut==1 ); 378 scratchAllocOut = 0; 379 #endif 380 381 if( sqlite3GlobalConfig.pScratch==0 382 || p<sqlite3GlobalConfig.pScratch 383 || p>=(void*)mem0.aScratchFree ){ 384 if( sqlite3GlobalConfig.bMemstat ){ 385 int iSize = sqlite3MallocSize(p); 386 sqlite3_mutex_enter(mem0.mutex); 387 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize); 388 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize); 389 sqlite3GlobalConfig.m.xFree(p); 390 sqlite3_mutex_leave(mem0.mutex); 391 }else{ 392 sqlite3GlobalConfig.m.xFree(p); 393 } 394 }else{ 395 int i; 396 i = (int)((u8*)p - (u8*)sqlite3GlobalConfig.pScratch); 397 i /= sqlite3GlobalConfig.szScratch; 398 assert( i>=0 && i<sqlite3GlobalConfig.nScratch ); 399 sqlite3_mutex_enter(mem0.mutex); 400 assert( mem0.nScratchFree<(u32)sqlite3GlobalConfig.nScratch ); 401 mem0.aScratchFree[mem0.nScratchFree++] = i; 402 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1); 403 sqlite3_mutex_leave(mem0.mutex); 404 } 405 } 406 } 407 408 /* 409 ** TRUE if p is a lookaside memory allocation from db 410 */ 411 #ifndef SQLITE_OMIT_LOOKASIDE 412 static int isLookaside(sqlite3 *db, void *p){ 413 return db && p && p>=db->lookaside.pStart && p<db->lookaside.pEnd; 414 } 415 #else 416 #define isLookaside(A,B) 0 417 #endif 418 419 /* 420 ** Return the size of a memory allocation previously obtained from 421 ** sqlite3Malloc() or sqlite3_malloc(). 422 */ 423 int sqlite3MallocSize(void *p){ 424 return sqlite3GlobalConfig.m.xSize(p); 425 } 426 int sqlite3DbMallocSize(sqlite3 *db, void *p){ 427 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 428 if( isLookaside(db, p) ){ 429 return db->lookaside.sz; 430 }else{ 431 return sqlite3GlobalConfig.m.xSize(p); 432 } 433 } 434 435 /* 436 ** Free memory previously obtained from sqlite3Malloc(). 437 */ 438 void sqlite3_free(void *p){ 439 if( p==0 ) return; 440 if( sqlite3GlobalConfig.bMemstat ){ 441 sqlite3_mutex_enter(mem0.mutex); 442 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p)); 443 sqlite3GlobalConfig.m.xFree(p); 444 sqlite3_mutex_leave(mem0.mutex); 445 }else{ 446 sqlite3GlobalConfig.m.xFree(p); 447 } 448 } 449 450 /* 451 ** Free memory that might be associated with a particular database 452 ** connection. 453 */ 454 void sqlite3DbFree(sqlite3 *db, void *p){ 455 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 456 if( isLookaside(db, p) ){ 457 LookasideSlot *pBuf = (LookasideSlot*)p; 458 pBuf->pNext = db->lookaside.pFree; 459 db->lookaside.pFree = pBuf; 460 db->lookaside.nOut--; 461 }else{ 462 sqlite3_free(p); 463 } 464 } 465 466 /* 467 ** Change the size of an existing memory allocation 468 */ 469 void *sqlite3Realloc(void *pOld, int nBytes){ 470 int nOld, nNew; 471 void *pNew; 472 if( pOld==0 ){ 473 return sqlite3Malloc(nBytes); 474 } 475 if( nBytes<=0 ){ 476 sqlite3_free(pOld); 477 return 0; 478 } 479 if( nBytes>=0x7fffff00 ){ 480 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ 481 return 0; 482 } 483 nOld = sqlite3MallocSize(pOld); 484 nNew = sqlite3GlobalConfig.m.xRoundup(nBytes); 485 if( nOld==nNew ){ 486 pNew = pOld; 487 }else if( sqlite3GlobalConfig.bMemstat ){ 488 sqlite3_mutex_enter(mem0.mutex); 489 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes); 490 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >= 491 mem0.alarmThreshold ){ 492 sqlite3MallocAlarm(nNew-nOld); 493 } 494 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 495 if( pNew==0 && mem0.alarmCallback ){ 496 sqlite3MallocAlarm(nBytes); 497 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 498 } 499 if( pNew ){ 500 nNew = sqlite3MallocSize(pNew); 501 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld); 502 } 503 sqlite3_mutex_leave(mem0.mutex); 504 }else{ 505 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 506 } 507 return pNew; 508 } 509 510 /* 511 ** The public interface to sqlite3Realloc. Make sure that the memory 512 ** subsystem is initialized prior to invoking sqliteRealloc. 513 */ 514 void *sqlite3_realloc(void *pOld, int n){ 515 #ifndef SQLITE_OMIT_AUTOINIT 516 if( sqlite3_initialize() ) return 0; 517 #endif 518 return sqlite3Realloc(pOld, n); 519 } 520 521 522 /* 523 ** Allocate and zero memory. 524 */ 525 void *sqlite3MallocZero(int n){ 526 void *p = sqlite3Malloc(n); 527 if( p ){ 528 memset(p, 0, n); 529 } 530 return p; 531 } 532 533 /* 534 ** Allocate and zero memory. If the allocation fails, make 535 ** the mallocFailed flag in the connection pointer. 536 */ 537 void *sqlite3DbMallocZero(sqlite3 *db, int n){ 538 void *p = sqlite3DbMallocRaw(db, n); 539 if( p ){ 540 memset(p, 0, n); 541 } 542 return p; 543 } 544 545 /* 546 ** Allocate and zero memory. If the allocation fails, make 547 ** the mallocFailed flag in the connection pointer. 548 ** 549 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc 550 ** failure on the same database connection) then always return 0. 551 ** Hence for a particular database connection, once malloc starts 552 ** failing, it fails consistently until mallocFailed is reset. 553 ** This is an important assumption. There are many places in the 554 ** code that do things like this: 555 ** 556 ** int *a = (int*)sqlite3DbMallocRaw(db, 100); 557 ** int *b = (int*)sqlite3DbMallocRaw(db, 200); 558 ** if( b ) a[10] = 9; 559 ** 560 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed 561 ** that all prior mallocs (ex: "a") worked too. 562 */ 563 void *sqlite3DbMallocRaw(sqlite3 *db, int n){ 564 void *p; 565 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 566 #ifndef SQLITE_OMIT_LOOKASIDE 567 if( db ){ 568 LookasideSlot *pBuf; 569 if( db->mallocFailed ){ 570 return 0; 571 } 572 if( db->lookaside.bEnabled && n<=db->lookaside.sz 573 && (pBuf = db->lookaside.pFree)!=0 ){ 574 db->lookaside.pFree = pBuf->pNext; 575 db->lookaside.nOut++; 576 if( db->lookaside.nOut>db->lookaside.mxOut ){ 577 db->lookaside.mxOut = db->lookaside.nOut; 578 } 579 return (void*)pBuf; 580 } 581 } 582 #else 583 if( db && db->mallocFailed ){ 584 return 0; 585 } 586 #endif 587 p = sqlite3Malloc(n); 588 if( !p && db ){ 589 db->mallocFailed = 1; 590 } 591 return p; 592 } 593 594 /* 595 ** Resize the block of memory pointed to by p to n bytes. If the 596 ** resize fails, set the mallocFailed flag in the connection object. 597 */ 598 void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){ 599 void *pNew = 0; 600 assert( db!=0 ); 601 assert( sqlite3_mutex_held(db->mutex) ); 602 if( db->mallocFailed==0 ){ 603 if( p==0 ){ 604 return sqlite3DbMallocRaw(db, n); 605 } 606 if( isLookaside(db, p) ){ 607 if( n<=db->lookaside.sz ){ 608 return p; 609 } 610 pNew = sqlite3DbMallocRaw(db, n); 611 if( pNew ){ 612 memcpy(pNew, p, db->lookaside.sz); 613 sqlite3DbFree(db, p); 614 } 615 }else{ 616 pNew = sqlite3_realloc(p, n); 617 if( !pNew ){ 618 db->mallocFailed = 1; 619 } 620 } 621 } 622 return pNew; 623 } 624 625 /* 626 ** Attempt to reallocate p. If the reallocation fails, then free p 627 ** and set the mallocFailed flag in the database connection. 628 */ 629 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){ 630 void *pNew; 631 pNew = sqlite3DbRealloc(db, p, n); 632 if( !pNew ){ 633 sqlite3DbFree(db, p); 634 } 635 return pNew; 636 } 637 638 /* 639 ** Make a copy of a string in memory obtained from sqliteMalloc(). These 640 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This 641 ** is because when memory debugging is turned on, these two functions are 642 ** called via macros that record the current file and line number in the 643 ** ThreadData structure. 644 */ 645 char *sqlite3DbStrDup(sqlite3 *db, const char *z){ 646 char *zNew; 647 size_t n; 648 if( z==0 ){ 649 return 0; 650 } 651 n = sqlite3Strlen30(z) + 1; 652 assert( (n&0x7fffffff)==n ); 653 zNew = sqlite3DbMallocRaw(db, (int)n); 654 if( zNew ){ 655 memcpy(zNew, z, n); 656 } 657 return zNew; 658 } 659 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){ 660 char *zNew; 661 if( z==0 ){ 662 return 0; 663 } 664 assert( (n&0x7fffffff)==n ); 665 zNew = sqlite3DbMallocRaw(db, n+1); 666 if( zNew ){ 667 memcpy(zNew, z, n); 668 zNew[n] = 0; 669 } 670 return zNew; 671 } 672 673 /* 674 ** Create a string from the zFromat argument and the va_list that follows. 675 ** Store the string in memory obtained from sqliteMalloc() and make *pz 676 ** point to that string. 677 */ 678 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){ 679 va_list ap; 680 char *z; 681 682 va_start(ap, zFormat); 683 z = sqlite3VMPrintf(db, zFormat, ap); 684 va_end(ap); 685 sqlite3DbFree(db, *pz); 686 *pz = z; 687 } 688 689 690 /* 691 ** This function must be called before exiting any API function (i.e. 692 ** returning control to the user) that has called sqlite3_malloc or 693 ** sqlite3_realloc. 694 ** 695 ** The returned value is normally a copy of the second argument to this 696 ** function. However, if a malloc() failure has occurred since the previous 697 ** invocation SQLITE_NOMEM is returned instead. 698 ** 699 ** If the first argument, db, is not NULL and a malloc() error has occurred, 700 ** then the connection error-code (the value returned by sqlite3_errcode()) 701 ** is set to SQLITE_NOMEM. 702 */ 703 int sqlite3ApiExit(sqlite3* db, int rc){ 704 /* If the db handle is not NULL, then we must hold the connection handle 705 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed 706 ** is unsafe, as is the call to sqlite3Error(). 707 */ 708 assert( !db || sqlite3_mutex_held(db->mutex) ); 709 if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){ 710 sqlite3Error(db, SQLITE_NOMEM, 0); 711 db->mallocFailed = 0; 712 rc = SQLITE_NOMEM; 713 } 714 return rc & (db ? db->errMask : 0xff); 715 } 716