xref: /sqlite-3.40.0/src/malloc.c (revision 5baaf40a)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** Memory allocation functions used throughout sqlite.
14 */
15 #include "sqliteInt.h"
16 #include <stdarg.h>
17 
18 /*
19 ** Attempt to release up to n bytes of non-essential memory currently
20 ** held by SQLite. An example of non-essential memory is memory used to
21 ** cache database pages that are not currently in use.
22 */
23 int sqlite3_release_memory(int n){
24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
25   return sqlite3PcacheReleaseMemory(n);
26 #else
27   /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
28   ** is a no-op returning zero if SQLite is not compiled with
29   ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
30   UNUSED_PARAMETER(n);
31   return 0;
32 #endif
33 }
34 
35 /*
36 ** Default value of the hard heap limit.  0 means "no limit".
37 */
38 #ifndef SQLITE_MAX_MEMORY
39 # define SQLITE_MAX_MEMORY 0
40 #endif
41 
42 /*
43 ** State information local to the memory allocation subsystem.
44 */
45 static SQLITE_WSD struct Mem0Global {
46   sqlite3_mutex *mutex;         /* Mutex to serialize access */
47   sqlite3_int64 alarmThreshold; /* The soft heap limit */
48   sqlite3_int64 hardLimit;      /* The hard upper bound on memory */
49 
50   /*
51   ** True if heap is nearly "full" where "full" is defined by the
52   ** sqlite3_soft_heap_limit() setting.
53   */
54   int nearlyFull;
55 } mem0 = { 0, SQLITE_MAX_MEMORY, SQLITE_MAX_MEMORY, 0 };
56 
57 #define mem0 GLOBAL(struct Mem0Global, mem0)
58 
59 /*
60 ** Return the memory allocator mutex. sqlite3_status() needs it.
61 */
62 sqlite3_mutex *sqlite3MallocMutex(void){
63   return mem0.mutex;
64 }
65 
66 #ifndef SQLITE_OMIT_DEPRECATED
67 /*
68 ** Deprecated external interface.  It used to set an alarm callback
69 ** that was invoked when memory usage grew too large.  Now it is a
70 ** no-op.
71 */
72 int sqlite3_memory_alarm(
73   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
74   void *pArg,
75   sqlite3_int64 iThreshold
76 ){
77   (void)xCallback;
78   (void)pArg;
79   (void)iThreshold;
80   return SQLITE_OK;
81 }
82 #endif
83 
84 /*
85 ** Set the soft heap-size limit for the library.  An argument of
86 ** zero disables the limit.  A negative argument is a no-op used to
87 ** obtain the return value.
88 **
89 ** The return value is the value of the heap limit just before this
90 ** interface was called.
91 **
92 ** If the hard heap limit is enabled, then the soft heap limit cannot
93 ** be disabled nor raised above the hard heap limit.
94 */
95 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
96   sqlite3_int64 priorLimit;
97   sqlite3_int64 excess;
98   sqlite3_int64 nUsed;
99 #ifndef SQLITE_OMIT_AUTOINIT
100   int rc = sqlite3_initialize();
101   if( rc ) return -1;
102 #endif
103   sqlite3_mutex_enter(mem0.mutex);
104   priorLimit = mem0.alarmThreshold;
105   if( n<0 ){
106     sqlite3_mutex_leave(mem0.mutex);
107     return priorLimit;
108   }
109   if( mem0.hardLimit>0 && (n>mem0.hardLimit || n==0) ){
110     n = mem0.hardLimit;
111   }
112   mem0.alarmThreshold = n;
113   nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
114   AtomicStore(&mem0.nearlyFull, n>0 && n<=nUsed);
115   sqlite3_mutex_leave(mem0.mutex);
116   excess = sqlite3_memory_used() - n;
117   if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
118   return priorLimit;
119 }
120 void sqlite3_soft_heap_limit(int n){
121   if( n<0 ) n = 0;
122   sqlite3_soft_heap_limit64(n);
123 }
124 
125 /*
126 ** Set the hard heap-size limit for the library. An argument of zero
127 ** disables the hard heap limit.  A negative argument is a no-op used
128 ** to obtain the return value without affecting the hard heap limit.
129 **
130 ** The return value is the value of the hard heap limit just prior to
131 ** calling this interface.
132 **
133 ** Setting the hard heap limit will also activate the soft heap limit
134 ** and constrain the soft heap limit to be no more than the hard heap
135 ** limit.
136 */
137 sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 n){
138   sqlite3_int64 priorLimit;
139 #ifndef SQLITE_OMIT_AUTOINIT
140   int rc = sqlite3_initialize();
141   if( rc ) return -1;
142 #endif
143   sqlite3_mutex_enter(mem0.mutex);
144   priorLimit = mem0.hardLimit;
145   if( n>=0 ){
146     mem0.hardLimit = n;
147     if( n<mem0.alarmThreshold || mem0.alarmThreshold==0 ){
148       mem0.alarmThreshold = n;
149     }
150   }
151   sqlite3_mutex_leave(mem0.mutex);
152   return priorLimit;
153 }
154 
155 
156 /*
157 ** Initialize the memory allocation subsystem.
158 */
159 int sqlite3MallocInit(void){
160   int rc;
161   if( sqlite3GlobalConfig.m.xMalloc==0 ){
162     sqlite3MemSetDefault();
163   }
164   mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
165   if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
166       || sqlite3GlobalConfig.nPage<=0 ){
167     sqlite3GlobalConfig.pPage = 0;
168     sqlite3GlobalConfig.szPage = 0;
169   }
170   rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
171   if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0));
172   return rc;
173 }
174 
175 /*
176 ** Return true if the heap is currently under memory pressure - in other
177 ** words if the amount of heap used is close to the limit set by
178 ** sqlite3_soft_heap_limit().
179 */
180 int sqlite3HeapNearlyFull(void){
181   return AtomicLoad(&mem0.nearlyFull);
182 }
183 
184 /*
185 ** Deinitialize the memory allocation subsystem.
186 */
187 void sqlite3MallocEnd(void){
188   if( sqlite3GlobalConfig.m.xShutdown ){
189     sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
190   }
191   memset(&mem0, 0, sizeof(mem0));
192 }
193 
194 /*
195 ** Return the amount of memory currently checked out.
196 */
197 sqlite3_int64 sqlite3_memory_used(void){
198   sqlite3_int64 res, mx;
199   sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0);
200   return res;
201 }
202 
203 /*
204 ** Return the maximum amount of memory that has ever been
205 ** checked out since either the beginning of this process
206 ** or since the most recent reset.
207 */
208 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
209   sqlite3_int64 res, mx;
210   sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag);
211   return mx;
212 }
213 
214 /*
215 ** Return an estimate of the amount of unallocated memory.
216 **
217 ** This the hard heap limit minus the current memory usage.  It might
218 ** not be possible to allocate this much memory all at once.  This is
219 ** only an estimate.
220 */
221 sqlite3_int64 sqlite3EstMemoryAvailable(void){
222   sqlite3_int64 n;
223   sqlite3_mutex_enter(mem0.mutex);
224   n = mem0.alarmThreshold;
225   if( n<=0 ) n = mem0.hardLimit;
226   sqlite3_mutex_leave(mem0.mutex);
227   if( n<=0 ) n = LARGEST_INT64;
228   n -= sqlite3_memory_used();
229   if( n<0 ) n = 0;
230   return n;
231 }
232 
233 /*
234 ** Trigger the alarm
235 */
236 static void sqlite3MallocAlarm(int nByte){
237   if( mem0.alarmThreshold<=0 ) return;
238   sqlite3_mutex_leave(mem0.mutex);
239   sqlite3_release_memory(nByte);
240   sqlite3_mutex_enter(mem0.mutex);
241 }
242 
243 /*
244 ** Do a memory allocation with statistics and alarms.  Assume the
245 ** lock is already held.
246 */
247 static void mallocWithAlarm(int n, void **pp){
248   void *p;
249   int nFull;
250   assert( sqlite3_mutex_held(mem0.mutex) );
251   assert( n>0 );
252 
253   /* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal
254   ** implementation of malloc_good_size(), which must be called in debug
255   ** mode and specifically when the DMD "Dark Matter Detector" is enabled
256   ** or else a crash results.  Hence, do not attempt to optimize out the
257   ** following xRoundup() call. */
258   nFull = sqlite3GlobalConfig.m.xRoundup(n);
259 
260   sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n);
261   if( mem0.alarmThreshold>0 ){
262     sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
263     if( nUsed >= mem0.alarmThreshold - nFull ){
264       AtomicStore(&mem0.nearlyFull, 1);
265       sqlite3MallocAlarm(nFull);
266       if( mem0.hardLimit ){
267         nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
268         if( nUsed >= mem0.hardLimit - nFull ){
269           *pp = 0;
270           return;
271         }
272       }
273     }else{
274       AtomicStore(&mem0.nearlyFull, 0);
275     }
276   }
277   p = sqlite3GlobalConfig.m.xMalloc(nFull);
278 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
279   if( p==0 && mem0.alarmThreshold>0 ){
280     sqlite3MallocAlarm(nFull);
281     p = sqlite3GlobalConfig.m.xMalloc(nFull);
282   }
283 #endif
284   if( p ){
285     nFull = sqlite3MallocSize(p);
286     sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
287     sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
288   }
289   *pp = p;
290 }
291 
292 /*
293 ** Allocate memory.  This routine is like sqlite3_malloc() except that it
294 ** assumes the memory subsystem has already been initialized.
295 */
296 void *sqlite3Malloc(u64 n){
297   void *p;
298   if( n==0 || n>=0x7fffff00 ){
299     /* A memory allocation of a number of bytes which is near the maximum
300     ** signed integer value might cause an integer overflow inside of the
301     ** xMalloc().  Hence we limit the maximum size to 0x7fffff00, giving
302     ** 255 bytes of overhead.  SQLite itself will never use anything near
303     ** this amount.  The only way to reach the limit is with sqlite3_malloc() */
304     p = 0;
305   }else if( sqlite3GlobalConfig.bMemstat ){
306     sqlite3_mutex_enter(mem0.mutex);
307     mallocWithAlarm((int)n, &p);
308     sqlite3_mutex_leave(mem0.mutex);
309   }else{
310     p = sqlite3GlobalConfig.m.xMalloc((int)n);
311   }
312   assert( EIGHT_BYTE_ALIGNMENT(p) );  /* IMP: R-11148-40995 */
313   return p;
314 }
315 
316 /*
317 ** This version of the memory allocation is for use by the application.
318 ** First make sure the memory subsystem is initialized, then do the
319 ** allocation.
320 */
321 void *sqlite3_malloc(int n){
322 #ifndef SQLITE_OMIT_AUTOINIT
323   if( sqlite3_initialize() ) return 0;
324 #endif
325   return n<=0 ? 0 : sqlite3Malloc(n);
326 }
327 void *sqlite3_malloc64(sqlite3_uint64 n){
328 #ifndef SQLITE_OMIT_AUTOINIT
329   if( sqlite3_initialize() ) return 0;
330 #endif
331   return sqlite3Malloc(n);
332 }
333 
334 /*
335 ** TRUE if p is a lookaside memory allocation from db
336 */
337 #ifndef SQLITE_OMIT_LOOKASIDE
338 static int isLookaside(sqlite3 *db, const void *p){
339   return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pEnd);
340 }
341 #else
342 #define isLookaside(A,B) 0
343 #endif
344 
345 /*
346 ** Return the size of a memory allocation previously obtained from
347 ** sqlite3Malloc() or sqlite3_malloc().
348 */
349 int sqlite3MallocSize(const void *p){
350   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
351   return sqlite3GlobalConfig.m.xSize((void*)p);
352 }
353 static int lookasideMallocSize(sqlite3 *db, const void *p){
354 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
355   return p<db->lookaside.pMiddle ? db->lookaside.szTrue : LOOKASIDE_SMALL;
356 #else
357   return db->lookaside.szTrue;
358 #endif
359 }
360 int sqlite3DbMallocSize(sqlite3 *db, const void *p){
361   assert( p!=0 );
362 #ifdef SQLITE_DEBUG
363   if( db==0 || !isLookaside(db,p) ){
364     if( db==0 ){
365       assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
366       assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
367     }else{
368       assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
369       assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
370     }
371   }
372 #endif
373   if( db ){
374     if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){
375 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
376       if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){
377         assert( sqlite3_mutex_held(db->mutex) );
378         return LOOKASIDE_SMALL;
379       }
380 #endif
381       if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){
382         assert( sqlite3_mutex_held(db->mutex) );
383         return db->lookaside.szTrue;
384       }
385     }
386   }
387   return sqlite3GlobalConfig.m.xSize((void*)p);
388 }
389 sqlite3_uint64 sqlite3_msize(void *p){
390   assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
391   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
392   return p ? sqlite3GlobalConfig.m.xSize(p) : 0;
393 }
394 
395 /*
396 ** Free memory previously obtained from sqlite3Malloc().
397 */
398 void sqlite3_free(void *p){
399   if( p==0 ) return;  /* IMP: R-49053-54554 */
400   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
401   assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
402   if( sqlite3GlobalConfig.bMemstat ){
403     sqlite3_mutex_enter(mem0.mutex);
404     sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p));
405     sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
406     sqlite3GlobalConfig.m.xFree(p);
407     sqlite3_mutex_leave(mem0.mutex);
408   }else{
409     sqlite3GlobalConfig.m.xFree(p);
410   }
411 }
412 
413 /*
414 ** Add the size of memory allocation "p" to the count in
415 ** *db->pnBytesFreed.
416 */
417 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){
418   *db->pnBytesFreed += sqlite3DbMallocSize(db,p);
419 }
420 
421 /*
422 ** Free memory that might be associated with a particular database
423 ** connection.  Calling sqlite3DbFree(D,X) for X==0 is a harmless no-op.
424 ** The sqlite3DbFreeNN(D,X) version requires that X be non-NULL.
425 */
426 void sqlite3DbFreeNN(sqlite3 *db, void *p){
427   assert( db==0 || sqlite3_mutex_held(db->mutex) );
428   assert( p!=0 );
429   if( db ){
430     if( db->pnBytesFreed ){
431       measureAllocationSize(db, p);
432       return;
433     }
434     if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){
435 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
436       if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){
437         LookasideSlot *pBuf = (LookasideSlot*)p;
438 #ifdef SQLITE_DEBUG
439         memset(p, 0xaa, LOOKASIDE_SMALL);  /* Trash freed content */
440 #endif
441         pBuf->pNext = db->lookaside.pSmallFree;
442         db->lookaside.pSmallFree = pBuf;
443         return;
444       }
445 #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
446       if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){
447         LookasideSlot *pBuf = (LookasideSlot*)p;
448 #ifdef SQLITE_DEBUG
449         memset(p, 0xaa, db->lookaside.szTrue);  /* Trash freed content */
450 #endif
451         pBuf->pNext = db->lookaside.pFree;
452         db->lookaside.pFree = pBuf;
453         return;
454       }
455     }
456   }
457   assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
458   assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
459   assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
460   sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
461   sqlite3_free(p);
462 }
463 void sqlite3DbFree(sqlite3 *db, void *p){
464   assert( db==0 || sqlite3_mutex_held(db->mutex) );
465   if( p ) sqlite3DbFreeNN(db, p);
466 }
467 
468 /*
469 ** Change the size of an existing memory allocation
470 */
471 void *sqlite3Realloc(void *pOld, u64 nBytes){
472   int nOld, nNew, nDiff;
473   void *pNew;
474   assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
475   assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) );
476   if( pOld==0 ){
477     return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */
478   }
479   if( nBytes==0 ){
480     sqlite3_free(pOld); /* IMP: R-26507-47431 */
481     return 0;
482   }
483   if( nBytes>=0x7fffff00 ){
484     /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
485     return 0;
486   }
487   nOld = sqlite3MallocSize(pOld);
488   /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
489   ** argument to xRealloc is always a value returned by a prior call to
490   ** xRoundup. */
491   nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
492   if( nOld==nNew ){
493     pNew = pOld;
494   }else if( sqlite3GlobalConfig.bMemstat ){
495     sqlite3_int64 nUsed;
496     sqlite3_mutex_enter(mem0.mutex);
497     sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
498     nDiff = nNew - nOld;
499     if( nDiff>0 && (nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)) >=
500           mem0.alarmThreshold-nDiff ){
501       sqlite3MallocAlarm(nDiff);
502       if( mem0.hardLimit>0 && nUsed >= mem0.hardLimit - nDiff ){
503         sqlite3_mutex_leave(mem0.mutex);
504         return 0;
505       }
506     }
507     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
508 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
509     if( pNew==0 && mem0.alarmThreshold>0 ){
510       sqlite3MallocAlarm((int)nBytes);
511       pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
512     }
513 #endif
514     if( pNew ){
515       nNew = sqlite3MallocSize(pNew);
516       sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
517     }
518     sqlite3_mutex_leave(mem0.mutex);
519   }else{
520     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
521   }
522   assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */
523   return pNew;
524 }
525 
526 /*
527 ** The public interface to sqlite3Realloc.  Make sure that the memory
528 ** subsystem is initialized prior to invoking sqliteRealloc.
529 */
530 void *sqlite3_realloc(void *pOld, int n){
531 #ifndef SQLITE_OMIT_AUTOINIT
532   if( sqlite3_initialize() ) return 0;
533 #endif
534   if( n<0 ) n = 0;  /* IMP: R-26507-47431 */
535   return sqlite3Realloc(pOld, n);
536 }
537 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){
538 #ifndef SQLITE_OMIT_AUTOINIT
539   if( sqlite3_initialize() ) return 0;
540 #endif
541   return sqlite3Realloc(pOld, n);
542 }
543 
544 
545 /*
546 ** Allocate and zero memory.
547 */
548 void *sqlite3MallocZero(u64 n){
549   void *p = sqlite3Malloc(n);
550   if( p ){
551     memset(p, 0, (size_t)n);
552   }
553   return p;
554 }
555 
556 /*
557 ** Allocate and zero memory.  If the allocation fails, make
558 ** the mallocFailed flag in the connection pointer.
559 */
560 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){
561   void *p;
562   testcase( db==0 );
563   p = sqlite3DbMallocRaw(db, n);
564   if( p ) memset(p, 0, (size_t)n);
565   return p;
566 }
567 
568 
569 /* Finish the work of sqlite3DbMallocRawNN for the unusual and
570 ** slower case when the allocation cannot be fulfilled using lookaside.
571 */
572 static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){
573   void *p;
574   assert( db!=0 );
575   p = sqlite3Malloc(n);
576   if( !p ) sqlite3OomFault(db);
577   sqlite3MemdebugSetType(p,
578          (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
579   return p;
580 }
581 
582 /*
583 ** Allocate memory, either lookaside (if possible) or heap.
584 ** If the allocation fails, set the mallocFailed flag in
585 ** the connection pointer.
586 **
587 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
588 ** failure on the same database connection) then always return 0.
589 ** Hence for a particular database connection, once malloc starts
590 ** failing, it fails consistently until mallocFailed is reset.
591 ** This is an important assumption.  There are many places in the
592 ** code that do things like this:
593 **
594 **         int *a = (int*)sqlite3DbMallocRaw(db, 100);
595 **         int *b = (int*)sqlite3DbMallocRaw(db, 200);
596 **         if( b ) a[10] = 9;
597 **
598 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
599 ** that all prior mallocs (ex: "a") worked too.
600 **
601 ** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is
602 ** not a NULL pointer.
603 */
604 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){
605   void *p;
606   if( db ) return sqlite3DbMallocRawNN(db, n);
607   p = sqlite3Malloc(n);
608   sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
609   return p;
610 }
611 void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){
612 #ifndef SQLITE_OMIT_LOOKASIDE
613   LookasideSlot *pBuf;
614   assert( db!=0 );
615   assert( sqlite3_mutex_held(db->mutex) );
616   assert( db->pnBytesFreed==0 );
617   if( n>db->lookaside.sz ){
618     if( !db->lookaside.bDisable ){
619       db->lookaside.anStat[1]++;
620     }else if( db->mallocFailed ){
621       return 0;
622     }
623     return dbMallocRawFinish(db, n);
624   }
625 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
626   if( n<=LOOKASIDE_SMALL ){
627     if( (pBuf = db->lookaside.pSmallFree)!=0 ){
628       db->lookaside.pSmallFree = pBuf->pNext;
629       db->lookaside.anStat[0]++;
630       return (void*)pBuf;
631     }else if( (pBuf = db->lookaside.pSmallInit)!=0 ){
632       db->lookaside.pSmallInit = pBuf->pNext;
633       db->lookaside.anStat[0]++;
634       return (void*)pBuf;
635     }
636   }
637 #endif
638   if( (pBuf = db->lookaside.pFree)!=0 ){
639     db->lookaside.pFree = pBuf->pNext;
640     db->lookaside.anStat[0]++;
641     return (void*)pBuf;
642   }else if( (pBuf = db->lookaside.pInit)!=0 ){
643     db->lookaside.pInit = pBuf->pNext;
644     db->lookaside.anStat[0]++;
645     return (void*)pBuf;
646   }else{
647     db->lookaside.anStat[2]++;
648   }
649 #else
650   assert( db!=0 );
651   assert( sqlite3_mutex_held(db->mutex) );
652   assert( db->pnBytesFreed==0 );
653   if( db->mallocFailed ){
654     return 0;
655   }
656 #endif
657   return dbMallocRawFinish(db, n);
658 }
659 
660 /* Forward declaration */
661 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n);
662 
663 /*
664 ** Resize the block of memory pointed to by p to n bytes. If the
665 ** resize fails, set the mallocFailed flag in the connection object.
666 */
667 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){
668   assert( db!=0 );
669   if( p==0 ) return sqlite3DbMallocRawNN(db, n);
670   assert( sqlite3_mutex_held(db->mutex) );
671   if( ((uptr)p)<(uptr)db->lookaside.pEnd ){
672 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
673     if( ((uptr)p)>=(uptr)db->lookaside.pMiddle ){
674       if( n<=LOOKASIDE_SMALL ) return p;
675     }else
676 #endif
677     if( ((uptr)p)>=(uptr)db->lookaside.pStart ){
678       if( n<=db->lookaside.szTrue ) return p;
679     }
680   }
681   return dbReallocFinish(db, p, n);
682 }
683 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){
684   void *pNew = 0;
685   assert( db!=0 );
686   assert( p!=0 );
687   if( db->mallocFailed==0 ){
688     if( isLookaside(db, p) ){
689       pNew = sqlite3DbMallocRawNN(db, n);
690       if( pNew ){
691         memcpy(pNew, p, lookasideMallocSize(db, p));
692         sqlite3DbFree(db, p);
693       }
694     }else{
695       assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
696       assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
697       sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
698       pNew = sqlite3Realloc(p, n);
699       if( !pNew ){
700         sqlite3OomFault(db);
701       }
702       sqlite3MemdebugSetType(pNew,
703             (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
704     }
705   }
706   return pNew;
707 }
708 
709 /*
710 ** Attempt to reallocate p.  If the reallocation fails, then free p
711 ** and set the mallocFailed flag in the database connection.
712 */
713 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){
714   void *pNew;
715   pNew = sqlite3DbRealloc(db, p, n);
716   if( !pNew ){
717     sqlite3DbFree(db, p);
718   }
719   return pNew;
720 }
721 
722 /*
723 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
724 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
725 ** is because when memory debugging is turned on, these two functions are
726 ** called via macros that record the current file and line number in the
727 ** ThreadData structure.
728 */
729 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
730   char *zNew;
731   size_t n;
732   if( z==0 ){
733     return 0;
734   }
735   n = strlen(z) + 1;
736   zNew = sqlite3DbMallocRaw(db, n);
737   if( zNew ){
738     memcpy(zNew, z, n);
739   }
740   return zNew;
741 }
742 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){
743   char *zNew;
744   assert( db!=0 );
745   assert( z!=0 || n==0 );
746   assert( (n&0x7fffffff)==n );
747   zNew = z ? sqlite3DbMallocRawNN(db, n+1) : 0;
748   if( zNew ){
749     memcpy(zNew, z, (size_t)n);
750     zNew[n] = 0;
751   }
752   return zNew;
753 }
754 
755 /*
756 ** The text between zStart and zEnd represents a phrase within a larger
757 ** SQL statement.  Make a copy of this phrase in space obtained form
758 ** sqlite3DbMalloc().  Omit leading and trailing whitespace.
759 */
760 char *sqlite3DbSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){
761   int n;
762   while( sqlite3Isspace(zStart[0]) ) zStart++;
763   n = (int)(zEnd - zStart);
764   while( ALWAYS(n>0) && sqlite3Isspace(zStart[n-1]) ) n--;
765   return sqlite3DbStrNDup(db, zStart, n);
766 }
767 
768 /*
769 ** Free any prior content in *pz and replace it with a copy of zNew.
770 */
771 void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){
772   sqlite3DbFree(db, *pz);
773   *pz = sqlite3DbStrDup(db, zNew);
774 }
775 
776 /*
777 ** Call this routine to record the fact that an OOM (out-of-memory) error
778 ** has happened.  This routine will set db->mallocFailed, and also
779 ** temporarily disable the lookaside memory allocator and interrupt
780 ** any running VDBEs.
781 */
782 void sqlite3OomFault(sqlite3 *db){
783   if( db->mallocFailed==0 && db->bBenignMalloc==0 ){
784     db->mallocFailed = 1;
785     if( db->nVdbeExec>0 ){
786       AtomicStore(&db->u1.isInterrupted, 1);
787     }
788     DisableLookaside;
789     if( db->pParse ){
790       db->pParse->rc = SQLITE_NOMEM_BKPT;
791     }
792   }
793 }
794 
795 /*
796 ** This routine reactivates the memory allocator and clears the
797 ** db->mallocFailed flag as necessary.
798 **
799 ** The memory allocator is not restarted if there are running
800 ** VDBEs.
801 */
802 void sqlite3OomClear(sqlite3 *db){
803   if( db->mallocFailed && db->nVdbeExec==0 ){
804     db->mallocFailed = 0;
805     AtomicStore(&db->u1.isInterrupted, 0);
806     assert( db->lookaside.bDisable>0 );
807     EnableLookaside;
808   }
809 }
810 
811 /*
812 ** Take actions at the end of an API call to deal with error codes.
813 */
814 static SQLITE_NOINLINE int apiHandleError(sqlite3 *db, int rc){
815   if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){
816     sqlite3OomClear(db);
817     sqlite3Error(db, SQLITE_NOMEM);
818     return SQLITE_NOMEM_BKPT;
819   }
820   return rc & db->errMask;
821 }
822 
823 /*
824 ** This function must be called before exiting any API function (i.e.
825 ** returning control to the user) that has called sqlite3_malloc or
826 ** sqlite3_realloc.
827 **
828 ** The returned value is normally a copy of the second argument to this
829 ** function. However, if a malloc() failure has occurred since the previous
830 ** invocation SQLITE_NOMEM is returned instead.
831 **
832 ** If an OOM as occurred, then the connection error-code (the value
833 ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM.
834 */
835 int sqlite3ApiExit(sqlite3* db, int rc){
836   /* If the db handle must hold the connection handle mutex here.
837   ** Otherwise the read (and possible write) of db->mallocFailed
838   ** is unsafe, as is the call to sqlite3Error().
839   */
840   assert( db!=0 );
841   assert( sqlite3_mutex_held(db->mutex) );
842   if( db->mallocFailed || rc ){
843     return apiHandleError(db, rc);
844   }
845   return rc & db->errMask;
846 }
847