1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** Memory allocation functions used throughout sqlite. 14 ** 15 ** $Id: malloc.c,v 1.66 2009/07/17 11:44:07 drh Exp $ 16 */ 17 #include "sqliteInt.h" 18 #include <stdarg.h> 19 20 /* 21 ** This routine runs when the memory allocator sees that the 22 ** total memory allocation is about to exceed the soft heap 23 ** limit. 24 */ 25 static void softHeapLimitEnforcer( 26 void *NotUsed, 27 sqlite3_int64 NotUsed2, 28 int allocSize 29 ){ 30 UNUSED_PARAMETER2(NotUsed, NotUsed2); 31 sqlite3_release_memory(allocSize); 32 } 33 34 /* 35 ** Set the soft heap-size limit for the library. Passing a zero or 36 ** negative value indicates no limit. 37 */ 38 void sqlite3_soft_heap_limit(int n){ 39 sqlite3_uint64 iLimit; 40 int overage; 41 if( n<0 ){ 42 iLimit = 0; 43 }else{ 44 iLimit = n; 45 } 46 sqlite3_initialize(); 47 if( iLimit>0 ){ 48 sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, iLimit); 49 }else{ 50 sqlite3MemoryAlarm(0, 0, 0); 51 } 52 overage = (int)(sqlite3_memory_used() - (i64)n); 53 if( overage>0 ){ 54 sqlite3_release_memory(overage); 55 } 56 } 57 58 /* 59 ** Attempt to release up to n bytes of non-essential memory currently 60 ** held by SQLite. An example of non-essential memory is memory used to 61 ** cache database pages that are not currently in use. 62 */ 63 int sqlite3_release_memory(int n){ 64 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 65 int nRet = 0; 66 #if 0 67 nRet += sqlite3VdbeReleaseMemory(n); 68 #endif 69 nRet += sqlite3PcacheReleaseMemory(n-nRet); 70 return nRet; 71 #else 72 UNUSED_PARAMETER(n); 73 return SQLITE_OK; 74 #endif 75 } 76 77 /* 78 ** State information local to the memory allocation subsystem. 79 */ 80 static SQLITE_WSD struct Mem0Global { 81 /* Number of free pages for scratch and page-cache memory */ 82 u32 nScratchFree; 83 u32 nPageFree; 84 85 sqlite3_mutex *mutex; /* Mutex to serialize access */ 86 87 /* 88 ** The alarm callback and its arguments. The mem0.mutex lock will 89 ** be held while the callback is running. Recursive calls into 90 ** the memory subsystem are allowed, but no new callbacks will be 91 ** issued. 92 */ 93 sqlite3_int64 alarmThreshold; 94 void (*alarmCallback)(void*, sqlite3_int64,int); 95 void *alarmArg; 96 97 /* 98 ** Pointers to the end of sqlite3GlobalConfig.pScratch and 99 ** sqlite3GlobalConfig.pPage to a block of memory that records 100 ** which pages are available. 101 */ 102 u32 *aScratchFree; 103 u32 *aPageFree; 104 } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 }; 105 106 #define mem0 GLOBAL(struct Mem0Global, mem0) 107 108 /* 109 ** Initialize the memory allocation subsystem. 110 */ 111 int sqlite3MallocInit(void){ 112 if( sqlite3GlobalConfig.m.xMalloc==0 ){ 113 sqlite3MemSetDefault(); 114 } 115 memset(&mem0, 0, sizeof(mem0)); 116 if( sqlite3GlobalConfig.bCoreMutex ){ 117 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 118 } 119 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 120 && sqlite3GlobalConfig.nScratch>=0 ){ 121 int i; 122 sqlite3GlobalConfig.szScratch = ROUNDDOWN8(sqlite3GlobalConfig.szScratch-4); 123 mem0.aScratchFree = (u32*)&((char*)sqlite3GlobalConfig.pScratch) 124 [sqlite3GlobalConfig.szScratch*sqlite3GlobalConfig.nScratch]; 125 for(i=0; i<sqlite3GlobalConfig.nScratch; i++){ mem0.aScratchFree[i] = i; } 126 mem0.nScratchFree = sqlite3GlobalConfig.nScratch; 127 }else{ 128 sqlite3GlobalConfig.pScratch = 0; 129 sqlite3GlobalConfig.szScratch = 0; 130 } 131 if( sqlite3GlobalConfig.pPage && sqlite3GlobalConfig.szPage>=512 132 && sqlite3GlobalConfig.nPage>=1 ){ 133 int i; 134 int overhead; 135 int sz = ROUNDDOWN8(sqlite3GlobalConfig.szPage); 136 int n = sqlite3GlobalConfig.nPage; 137 overhead = (4*n + sz - 1)/sz; 138 sqlite3GlobalConfig.nPage -= overhead; 139 mem0.aPageFree = (u32*)&((char*)sqlite3GlobalConfig.pPage) 140 [sqlite3GlobalConfig.szPage*sqlite3GlobalConfig.nPage]; 141 for(i=0; i<sqlite3GlobalConfig.nPage; i++){ mem0.aPageFree[i] = i; } 142 mem0.nPageFree = sqlite3GlobalConfig.nPage; 143 }else{ 144 sqlite3GlobalConfig.pPage = 0; 145 sqlite3GlobalConfig.szPage = 0; 146 } 147 return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); 148 } 149 150 /* 151 ** Deinitialize the memory allocation subsystem. 152 */ 153 void sqlite3MallocEnd(void){ 154 if( sqlite3GlobalConfig.m.xShutdown ){ 155 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); 156 } 157 memset(&mem0, 0, sizeof(mem0)); 158 } 159 160 /* 161 ** Return the amount of memory currently checked out. 162 */ 163 sqlite3_int64 sqlite3_memory_used(void){ 164 int n, mx; 165 sqlite3_int64 res; 166 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0); 167 res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */ 168 return res; 169 } 170 171 /* 172 ** Return the maximum amount of memory that has ever been 173 ** checked out since either the beginning of this process 174 ** or since the most recent reset. 175 */ 176 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ 177 int n, mx; 178 sqlite3_int64 res; 179 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag); 180 res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */ 181 return res; 182 } 183 184 /* 185 ** Change the alarm callback 186 */ 187 int sqlite3MemoryAlarm( 188 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 189 void *pArg, 190 sqlite3_int64 iThreshold 191 ){ 192 sqlite3_mutex_enter(mem0.mutex); 193 mem0.alarmCallback = xCallback; 194 mem0.alarmArg = pArg; 195 mem0.alarmThreshold = iThreshold; 196 sqlite3_mutex_leave(mem0.mutex); 197 return SQLITE_OK; 198 } 199 200 #ifndef SQLITE_OMIT_DEPRECATED 201 /* 202 ** Deprecated external interface. Internal/core SQLite code 203 ** should call sqlite3MemoryAlarm. 204 */ 205 int sqlite3_memory_alarm( 206 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 207 void *pArg, 208 sqlite3_int64 iThreshold 209 ){ 210 return sqlite3MemoryAlarm(xCallback, pArg, iThreshold); 211 } 212 #endif 213 214 /* 215 ** Trigger the alarm 216 */ 217 static void sqlite3MallocAlarm(int nByte){ 218 void (*xCallback)(void*,sqlite3_int64,int); 219 sqlite3_int64 nowUsed; 220 void *pArg; 221 if( mem0.alarmCallback==0 ) return; 222 xCallback = mem0.alarmCallback; 223 nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 224 pArg = mem0.alarmArg; 225 mem0.alarmCallback = 0; 226 sqlite3_mutex_leave(mem0.mutex); 227 xCallback(pArg, nowUsed, nByte); 228 sqlite3_mutex_enter(mem0.mutex); 229 mem0.alarmCallback = xCallback; 230 mem0.alarmArg = pArg; 231 } 232 233 /* 234 ** Do a memory allocation with statistics and alarms. Assume the 235 ** lock is already held. 236 */ 237 static int mallocWithAlarm(int n, void **pp){ 238 int nFull; 239 void *p; 240 assert( sqlite3_mutex_held(mem0.mutex) ); 241 nFull = sqlite3GlobalConfig.m.xRoundup(n); 242 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); 243 if( mem0.alarmCallback!=0 ){ 244 int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 245 if( nUsed+nFull >= mem0.alarmThreshold ){ 246 sqlite3MallocAlarm(nFull); 247 } 248 } 249 p = sqlite3GlobalConfig.m.xMalloc(nFull); 250 if( p==0 && mem0.alarmCallback ){ 251 sqlite3MallocAlarm(nFull); 252 p = sqlite3GlobalConfig.m.xMalloc(nFull); 253 } 254 if( p ){ 255 nFull = sqlite3MallocSize(p); 256 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull); 257 } 258 *pp = p; 259 return nFull; 260 } 261 262 /* 263 ** Allocate memory. This routine is like sqlite3_malloc() except that it 264 ** assumes the memory subsystem has already been initialized. 265 */ 266 void *sqlite3Malloc(int n){ 267 void *p; 268 if( n<=0 || n>=0x7fffff00 ){ 269 /* A memory allocation of a number of bytes which is near the maximum 270 ** signed integer value might cause an integer overflow inside of the 271 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving 272 ** 255 bytes of overhead. SQLite itself will never use anything near 273 ** this amount. The only way to reach the limit is with sqlite3_malloc() */ 274 p = 0; 275 }else if( sqlite3GlobalConfig.bMemstat ){ 276 sqlite3_mutex_enter(mem0.mutex); 277 mallocWithAlarm(n, &p); 278 sqlite3_mutex_leave(mem0.mutex); 279 }else{ 280 p = sqlite3GlobalConfig.m.xMalloc(n); 281 } 282 return p; 283 } 284 285 /* 286 ** This version of the memory allocation is for use by the application. 287 ** First make sure the memory subsystem is initialized, then do the 288 ** allocation. 289 */ 290 void *sqlite3_malloc(int n){ 291 #ifndef SQLITE_OMIT_AUTOINIT 292 if( sqlite3_initialize() ) return 0; 293 #endif 294 return sqlite3Malloc(n); 295 } 296 297 /* 298 ** Each thread may only have a single outstanding allocation from 299 ** xScratchMalloc(). We verify this constraint in the single-threaded 300 ** case by setting scratchAllocOut to 1 when an allocation 301 ** is outstanding clearing it when the allocation is freed. 302 */ 303 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 304 static int scratchAllocOut = 0; 305 #endif 306 307 308 /* 309 ** Allocate memory that is to be used and released right away. 310 ** This routine is similar to alloca() in that it is not intended 311 ** for situations where the memory might be held long-term. This 312 ** routine is intended to get memory to old large transient data 313 ** structures that would not normally fit on the stack of an 314 ** embedded processor. 315 */ 316 void *sqlite3ScratchMalloc(int n){ 317 void *p; 318 assert( n>0 ); 319 320 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 321 /* Verify that no more than one scratch allocation per thread 322 ** is outstanding at one time. (This is only checked in the 323 ** single-threaded case since checking in the multi-threaded case 324 ** would be much more complicated.) */ 325 assert( scratchAllocOut==0 ); 326 #endif 327 328 if( sqlite3GlobalConfig.szScratch<n ){ 329 goto scratch_overflow; 330 }else{ 331 sqlite3_mutex_enter(mem0.mutex); 332 if( mem0.nScratchFree==0 ){ 333 sqlite3_mutex_leave(mem0.mutex); 334 goto scratch_overflow; 335 }else{ 336 int i; 337 i = mem0.aScratchFree[--mem0.nScratchFree]; 338 i *= sqlite3GlobalConfig.szScratch; 339 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1); 340 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); 341 sqlite3_mutex_leave(mem0.mutex); 342 p = (void*)&((char*)sqlite3GlobalConfig.pScratch)[i]; 343 assert( (((u8*)p - (u8*)0) & 7)==0 ); 344 } 345 } 346 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 347 scratchAllocOut = p!=0; 348 #endif 349 350 return p; 351 352 scratch_overflow: 353 if( sqlite3GlobalConfig.bMemstat ){ 354 sqlite3_mutex_enter(mem0.mutex); 355 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); 356 n = mallocWithAlarm(n, &p); 357 if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n); 358 sqlite3_mutex_leave(mem0.mutex); 359 }else{ 360 p = sqlite3GlobalConfig.m.xMalloc(n); 361 } 362 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 363 scratchAllocOut = p!=0; 364 #endif 365 return p; 366 } 367 void sqlite3ScratchFree(void *p){ 368 if( p ){ 369 370 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 371 /* Verify that no more than one scratch allocation per thread 372 ** is outstanding at one time. (This is only checked in the 373 ** single-threaded case since checking in the multi-threaded case 374 ** would be much more complicated.) */ 375 assert( scratchAllocOut==1 ); 376 scratchAllocOut = 0; 377 #endif 378 379 if( sqlite3GlobalConfig.pScratch==0 380 || p<sqlite3GlobalConfig.pScratch 381 || p>=(void*)mem0.aScratchFree ){ 382 if( sqlite3GlobalConfig.bMemstat ){ 383 int iSize = sqlite3MallocSize(p); 384 sqlite3_mutex_enter(mem0.mutex); 385 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize); 386 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize); 387 sqlite3GlobalConfig.m.xFree(p); 388 sqlite3_mutex_leave(mem0.mutex); 389 }else{ 390 sqlite3GlobalConfig.m.xFree(p); 391 } 392 }else{ 393 int i; 394 i = (int)((u8*)p - (u8*)sqlite3GlobalConfig.pScratch); 395 i /= sqlite3GlobalConfig.szScratch; 396 assert( i>=0 && i<sqlite3GlobalConfig.nScratch ); 397 sqlite3_mutex_enter(mem0.mutex); 398 assert( mem0.nScratchFree<(u32)sqlite3GlobalConfig.nScratch ); 399 mem0.aScratchFree[mem0.nScratchFree++] = i; 400 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1); 401 sqlite3_mutex_leave(mem0.mutex); 402 } 403 } 404 } 405 406 /* 407 ** TRUE if p is a lookaside memory allocation from db 408 */ 409 #ifndef SQLITE_OMIT_LOOKASIDE 410 static int isLookaside(sqlite3 *db, void *p){ 411 return db && p && p>=db->lookaside.pStart && p<db->lookaside.pEnd; 412 } 413 #else 414 #define isLookaside(A,B) 0 415 #endif 416 417 /* 418 ** Return the size of a memory allocation previously obtained from 419 ** sqlite3Malloc() or sqlite3_malloc(). 420 */ 421 int sqlite3MallocSize(void *p){ 422 return sqlite3GlobalConfig.m.xSize(p); 423 } 424 int sqlite3DbMallocSize(sqlite3 *db, void *p){ 425 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 426 if( isLookaside(db, p) ){ 427 return db->lookaside.sz; 428 }else{ 429 return sqlite3GlobalConfig.m.xSize(p); 430 } 431 } 432 433 /* 434 ** Free memory previously obtained from sqlite3Malloc(). 435 */ 436 void sqlite3_free(void *p){ 437 if( p==0 ) return; 438 if( sqlite3GlobalConfig.bMemstat ){ 439 sqlite3_mutex_enter(mem0.mutex); 440 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p)); 441 sqlite3GlobalConfig.m.xFree(p); 442 sqlite3_mutex_leave(mem0.mutex); 443 }else{ 444 sqlite3GlobalConfig.m.xFree(p); 445 } 446 } 447 448 /* 449 ** Free memory that might be associated with a particular database 450 ** connection. 451 */ 452 void sqlite3DbFree(sqlite3 *db, void *p){ 453 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 454 if( isLookaside(db, p) ){ 455 LookasideSlot *pBuf = (LookasideSlot*)p; 456 pBuf->pNext = db->lookaside.pFree; 457 db->lookaside.pFree = pBuf; 458 db->lookaside.nOut--; 459 }else{ 460 sqlite3_free(p); 461 } 462 } 463 464 /* 465 ** Change the size of an existing memory allocation 466 */ 467 void *sqlite3Realloc(void *pOld, int nBytes){ 468 int nOld, nNew; 469 void *pNew; 470 if( pOld==0 ){ 471 return sqlite3Malloc(nBytes); 472 } 473 if( nBytes<=0 ){ 474 sqlite3_free(pOld); 475 return 0; 476 } 477 if( nBytes>=0x7fffff00 ){ 478 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ 479 return 0; 480 } 481 nOld = sqlite3MallocSize(pOld); 482 if( sqlite3GlobalConfig.bMemstat ){ 483 sqlite3_mutex_enter(mem0.mutex); 484 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes); 485 nNew = sqlite3GlobalConfig.m.xRoundup(nBytes); 486 if( nOld==nNew ){ 487 pNew = pOld; 488 }else{ 489 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >= 490 mem0.alarmThreshold ){ 491 sqlite3MallocAlarm(nNew-nOld); 492 } 493 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 494 if( pNew==0 && mem0.alarmCallback ){ 495 sqlite3MallocAlarm(nBytes); 496 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 497 } 498 if( pNew ){ 499 nNew = sqlite3MallocSize(pNew); 500 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld); 501 } 502 } 503 sqlite3_mutex_leave(mem0.mutex); 504 }else{ 505 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nBytes); 506 } 507 return pNew; 508 } 509 510 /* 511 ** The public interface to sqlite3Realloc. Make sure that the memory 512 ** subsystem is initialized prior to invoking sqliteRealloc. 513 */ 514 void *sqlite3_realloc(void *pOld, int n){ 515 #ifndef SQLITE_OMIT_AUTOINIT 516 if( sqlite3_initialize() ) return 0; 517 #endif 518 return sqlite3Realloc(pOld, n); 519 } 520 521 522 /* 523 ** Allocate and zero memory. 524 */ 525 void *sqlite3MallocZero(int n){ 526 void *p = sqlite3Malloc(n); 527 if( p ){ 528 memset(p, 0, n); 529 } 530 return p; 531 } 532 533 /* 534 ** Allocate and zero memory. If the allocation fails, make 535 ** the mallocFailed flag in the connection pointer. 536 */ 537 void *sqlite3DbMallocZero(sqlite3 *db, int n){ 538 void *p = sqlite3DbMallocRaw(db, n); 539 if( p ){ 540 memset(p, 0, n); 541 } 542 return p; 543 } 544 545 /* 546 ** Allocate and zero memory. If the allocation fails, make 547 ** the mallocFailed flag in the connection pointer. 548 ** 549 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc 550 ** failure on the same database connection) then always return 0. 551 ** Hence for a particular database connection, once malloc starts 552 ** failing, it fails consistently until mallocFailed is reset. 553 ** This is an important assumption. There are many places in the 554 ** code that do things like this: 555 ** 556 ** int *a = (int*)sqlite3DbMallocRaw(db, 100); 557 ** int *b = (int*)sqlite3DbMallocRaw(db, 200); 558 ** if( b ) a[10] = 9; 559 ** 560 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed 561 ** that all prior mallocs (ex: "a") worked too. 562 */ 563 void *sqlite3DbMallocRaw(sqlite3 *db, int n){ 564 void *p; 565 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 566 #ifndef SQLITE_OMIT_LOOKASIDE 567 if( db ){ 568 LookasideSlot *pBuf; 569 if( db->mallocFailed ){ 570 return 0; 571 } 572 if( db->lookaside.bEnabled && n<=db->lookaside.sz 573 && (pBuf = db->lookaside.pFree)!=0 ){ 574 db->lookaside.pFree = pBuf->pNext; 575 db->lookaside.nOut++; 576 if( db->lookaside.nOut>db->lookaside.mxOut ){ 577 db->lookaside.mxOut = db->lookaside.nOut; 578 } 579 return (void*)pBuf; 580 } 581 } 582 #else 583 if( db && db->mallocFailed ){ 584 return 0; 585 } 586 #endif 587 p = sqlite3Malloc(n); 588 if( !p && db ){ 589 db->mallocFailed = 1; 590 } 591 return p; 592 } 593 594 /* 595 ** Resize the block of memory pointed to by p to n bytes. If the 596 ** resize fails, set the mallocFailed flag in the connection object. 597 */ 598 void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){ 599 void *pNew = 0; 600 assert( db!=0 ); 601 assert( sqlite3_mutex_held(db->mutex) ); 602 if( db->mallocFailed==0 ){ 603 if( p==0 ){ 604 return sqlite3DbMallocRaw(db, n); 605 } 606 if( isLookaside(db, p) ){ 607 if( n<=db->lookaside.sz ){ 608 return p; 609 } 610 pNew = sqlite3DbMallocRaw(db, n); 611 if( pNew ){ 612 memcpy(pNew, p, db->lookaside.sz); 613 sqlite3DbFree(db, p); 614 } 615 }else{ 616 pNew = sqlite3_realloc(p, n); 617 if( !pNew ){ 618 db->mallocFailed = 1; 619 } 620 } 621 } 622 return pNew; 623 } 624 625 /* 626 ** Attempt to reallocate p. If the reallocation fails, then free p 627 ** and set the mallocFailed flag in the database connection. 628 */ 629 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){ 630 void *pNew; 631 pNew = sqlite3DbRealloc(db, p, n); 632 if( !pNew ){ 633 sqlite3DbFree(db, p); 634 } 635 return pNew; 636 } 637 638 /* 639 ** Make a copy of a string in memory obtained from sqliteMalloc(). These 640 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This 641 ** is because when memory debugging is turned on, these two functions are 642 ** called via macros that record the current file and line number in the 643 ** ThreadData structure. 644 */ 645 char *sqlite3DbStrDup(sqlite3 *db, const char *z){ 646 char *zNew; 647 size_t n; 648 if( z==0 ){ 649 return 0; 650 } 651 n = sqlite3Strlen30(z) + 1; 652 assert( (n&0x7fffffff)==n ); 653 zNew = sqlite3DbMallocRaw(db, (int)n); 654 if( zNew ){ 655 memcpy(zNew, z, n); 656 } 657 return zNew; 658 } 659 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){ 660 char *zNew; 661 if( z==0 ){ 662 return 0; 663 } 664 assert( (n&0x7fffffff)==n ); 665 zNew = sqlite3DbMallocRaw(db, n+1); 666 if( zNew ){ 667 memcpy(zNew, z, n); 668 zNew[n] = 0; 669 } 670 return zNew; 671 } 672 673 /* 674 ** Create a string from the zFromat argument and the va_list that follows. 675 ** Store the string in memory obtained from sqliteMalloc() and make *pz 676 ** point to that string. 677 */ 678 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){ 679 va_list ap; 680 char *z; 681 682 va_start(ap, zFormat); 683 z = sqlite3VMPrintf(db, zFormat, ap); 684 va_end(ap); 685 sqlite3DbFree(db, *pz); 686 *pz = z; 687 } 688 689 690 /* 691 ** This function must be called before exiting any API function (i.e. 692 ** returning control to the user) that has called sqlite3_malloc or 693 ** sqlite3_realloc. 694 ** 695 ** The returned value is normally a copy of the second argument to this 696 ** function. However, if a malloc() failure has occurred since the previous 697 ** invocation SQLITE_NOMEM is returned instead. 698 ** 699 ** If the first argument, db, is not NULL and a malloc() error has occurred, 700 ** then the connection error-code (the value returned by sqlite3_errcode()) 701 ** is set to SQLITE_NOMEM. 702 */ 703 int sqlite3ApiExit(sqlite3* db, int rc){ 704 /* If the db handle is not NULL, then we must hold the connection handle 705 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed 706 ** is unsafe, as is the call to sqlite3Error(). 707 */ 708 assert( !db || sqlite3_mutex_held(db->mutex) ); 709 if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){ 710 sqlite3Error(db, SQLITE_NOMEM, 0); 711 db->mallocFailed = 0; 712 rc = SQLITE_NOMEM; 713 } 714 return rc & (db ? db->errMask : 0xff); 715 } 716