1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** Memory allocation functions used throughout sqlite. 14 */ 15 #include "sqliteInt.h" 16 #include <stdarg.h> 17 18 /* 19 ** This routine runs when the memory allocator sees that the 20 ** total memory allocation is about to exceed the soft heap 21 ** limit. 22 */ 23 static void softHeapLimitEnforcer( 24 void *NotUsed, 25 sqlite3_int64 NotUsed2, 26 int allocSize 27 ){ 28 UNUSED_PARAMETER2(NotUsed, NotUsed2); 29 sqlite3_release_memory(allocSize); 30 } 31 32 /* 33 ** Set the soft heap-size limit for the library. Passing a zero or 34 ** negative value indicates no limit. 35 */ 36 void sqlite3_soft_heap_limit(int n){ 37 sqlite3_uint64 iLimit; 38 int overage; 39 if( n<0 ){ 40 iLimit = 0; 41 }else{ 42 iLimit = n; 43 } 44 #ifndef SQLITE_OMIT_AUTOINIT 45 sqlite3_initialize(); 46 #endif 47 if( iLimit>0 ){ 48 sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, iLimit); 49 }else{ 50 sqlite3MemoryAlarm(0, 0, 0); 51 } 52 overage = (int)(sqlite3_memory_used() - (i64)n); 53 if( overage>0 ){ 54 sqlite3_release_memory(overage); 55 } 56 } 57 58 /* 59 ** Attempt to release up to n bytes of non-essential memory currently 60 ** held by SQLite. An example of non-essential memory is memory used to 61 ** cache database pages that are not currently in use. 62 */ 63 int sqlite3_release_memory(int n){ 64 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 65 int nRet = 0; 66 nRet += sqlite3PcacheReleaseMemory(n-nRet); 67 return nRet; 68 #else 69 UNUSED_PARAMETER(n); 70 return SQLITE_OK; 71 #endif 72 } 73 74 /* 75 ** State information local to the memory allocation subsystem. 76 */ 77 static SQLITE_WSD struct Mem0Global { 78 /* Number of free pages for scratch and page-cache memory */ 79 u32 nScratchFree; 80 u32 nPageFree; 81 82 sqlite3_mutex *mutex; /* Mutex to serialize access */ 83 84 /* 85 ** The alarm callback and its arguments. The mem0.mutex lock will 86 ** be held while the callback is running. Recursive calls into 87 ** the memory subsystem are allowed, but no new callbacks will be 88 ** issued. 89 */ 90 sqlite3_int64 alarmThreshold; 91 void (*alarmCallback)(void*, sqlite3_int64,int); 92 void *alarmArg; 93 94 /* 95 ** Pointers to the end of sqlite3GlobalConfig.pScratch and 96 ** sqlite3GlobalConfig.pPage to a block of memory that records 97 ** which pages are available. 98 */ 99 u32 *aScratchFree; 100 u32 *aPageFree; 101 } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 }; 102 103 #define mem0 GLOBAL(struct Mem0Global, mem0) 104 105 /* 106 ** Initialize the memory allocation subsystem. 107 */ 108 int sqlite3MallocInit(void){ 109 if( sqlite3GlobalConfig.m.xMalloc==0 ){ 110 sqlite3MemSetDefault(); 111 } 112 memset(&mem0, 0, sizeof(mem0)); 113 if( sqlite3GlobalConfig.bCoreMutex ){ 114 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 115 } 116 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 117 && sqlite3GlobalConfig.nScratch>=0 ){ 118 int i; 119 sqlite3GlobalConfig.szScratch = ROUNDDOWN8(sqlite3GlobalConfig.szScratch-4); 120 mem0.aScratchFree = (u32*)&((char*)sqlite3GlobalConfig.pScratch) 121 [sqlite3GlobalConfig.szScratch*sqlite3GlobalConfig.nScratch]; 122 for(i=0; i<sqlite3GlobalConfig.nScratch; i++){ mem0.aScratchFree[i] = i; } 123 mem0.nScratchFree = sqlite3GlobalConfig.nScratch; 124 }else{ 125 sqlite3GlobalConfig.pScratch = 0; 126 sqlite3GlobalConfig.szScratch = 0; 127 } 128 if( sqlite3GlobalConfig.pPage && sqlite3GlobalConfig.szPage>=512 129 && sqlite3GlobalConfig.nPage>=1 ){ 130 int i; 131 int overhead; 132 int sz = ROUNDDOWN8(sqlite3GlobalConfig.szPage); 133 int n = sqlite3GlobalConfig.nPage; 134 overhead = (4*n + sz - 1)/sz; 135 sqlite3GlobalConfig.nPage -= overhead; 136 mem0.aPageFree = (u32*)&((char*)sqlite3GlobalConfig.pPage) 137 [sqlite3GlobalConfig.szPage*sqlite3GlobalConfig.nPage]; 138 for(i=0; i<sqlite3GlobalConfig.nPage; i++){ mem0.aPageFree[i] = i; } 139 mem0.nPageFree = sqlite3GlobalConfig.nPage; 140 }else{ 141 sqlite3GlobalConfig.pPage = 0; 142 sqlite3GlobalConfig.szPage = 0; 143 } 144 return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); 145 } 146 147 /* 148 ** Deinitialize the memory allocation subsystem. 149 */ 150 void sqlite3MallocEnd(void){ 151 if( sqlite3GlobalConfig.m.xShutdown ){ 152 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); 153 } 154 memset(&mem0, 0, sizeof(mem0)); 155 } 156 157 /* 158 ** Return the amount of memory currently checked out. 159 */ 160 sqlite3_int64 sqlite3_memory_used(void){ 161 int n, mx; 162 sqlite3_int64 res; 163 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0); 164 res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */ 165 return res; 166 } 167 168 /* 169 ** Return the maximum amount of memory that has ever been 170 ** checked out since either the beginning of this process 171 ** or since the most recent reset. 172 */ 173 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ 174 int n, mx; 175 sqlite3_int64 res; 176 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag); 177 res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */ 178 return res; 179 } 180 181 /* 182 ** Change the alarm callback 183 */ 184 int sqlite3MemoryAlarm( 185 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 186 void *pArg, 187 sqlite3_int64 iThreshold 188 ){ 189 sqlite3_mutex_enter(mem0.mutex); 190 mem0.alarmCallback = xCallback; 191 mem0.alarmArg = pArg; 192 mem0.alarmThreshold = iThreshold; 193 sqlite3_mutex_leave(mem0.mutex); 194 return SQLITE_OK; 195 } 196 197 #ifndef SQLITE_OMIT_DEPRECATED 198 /* 199 ** Deprecated external interface. Internal/core SQLite code 200 ** should call sqlite3MemoryAlarm. 201 */ 202 int sqlite3_memory_alarm( 203 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 204 void *pArg, 205 sqlite3_int64 iThreshold 206 ){ 207 return sqlite3MemoryAlarm(xCallback, pArg, iThreshold); 208 } 209 #endif 210 211 /* 212 ** Trigger the alarm 213 */ 214 static void sqlite3MallocAlarm(int nByte){ 215 void (*xCallback)(void*,sqlite3_int64,int); 216 sqlite3_int64 nowUsed; 217 void *pArg; 218 if( mem0.alarmCallback==0 ) return; 219 xCallback = mem0.alarmCallback; 220 nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 221 pArg = mem0.alarmArg; 222 mem0.alarmCallback = 0; 223 sqlite3_mutex_leave(mem0.mutex); 224 xCallback(pArg, nowUsed, nByte); 225 sqlite3_mutex_enter(mem0.mutex); 226 mem0.alarmCallback = xCallback; 227 mem0.alarmArg = pArg; 228 } 229 230 /* 231 ** Do a memory allocation with statistics and alarms. Assume the 232 ** lock is already held. 233 */ 234 static int mallocWithAlarm(int n, void **pp){ 235 int nFull; 236 void *p; 237 assert( sqlite3_mutex_held(mem0.mutex) ); 238 nFull = sqlite3GlobalConfig.m.xRoundup(n); 239 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); 240 if( mem0.alarmCallback!=0 ){ 241 int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 242 if( nUsed+nFull >= mem0.alarmThreshold ){ 243 sqlite3MallocAlarm(nFull); 244 } 245 } 246 p = sqlite3GlobalConfig.m.xMalloc(nFull); 247 if( p==0 && mem0.alarmCallback ){ 248 sqlite3MallocAlarm(nFull); 249 p = sqlite3GlobalConfig.m.xMalloc(nFull); 250 } 251 if( p ){ 252 nFull = sqlite3MallocSize(p); 253 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull); 254 } 255 *pp = p; 256 return nFull; 257 } 258 259 /* 260 ** Allocate memory. This routine is like sqlite3_malloc() except that it 261 ** assumes the memory subsystem has already been initialized. 262 */ 263 void *sqlite3Malloc(int n){ 264 void *p; 265 if( n<=0 || n>=0x7fffff00 ){ 266 /* A memory allocation of a number of bytes which is near the maximum 267 ** signed integer value might cause an integer overflow inside of the 268 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving 269 ** 255 bytes of overhead. SQLite itself will never use anything near 270 ** this amount. The only way to reach the limit is with sqlite3_malloc() */ 271 p = 0; 272 }else if( sqlite3GlobalConfig.bMemstat ){ 273 sqlite3_mutex_enter(mem0.mutex); 274 mallocWithAlarm(n, &p); 275 sqlite3_mutex_leave(mem0.mutex); 276 }else{ 277 p = sqlite3GlobalConfig.m.xMalloc(n); 278 } 279 return p; 280 } 281 282 /* 283 ** This version of the memory allocation is for use by the application. 284 ** First make sure the memory subsystem is initialized, then do the 285 ** allocation. 286 */ 287 void *sqlite3_malloc(int n){ 288 #ifndef SQLITE_OMIT_AUTOINIT 289 if( sqlite3_initialize() ) return 0; 290 #endif 291 return sqlite3Malloc(n); 292 } 293 294 /* 295 ** Each thread may only have a single outstanding allocation from 296 ** xScratchMalloc(). We verify this constraint in the single-threaded 297 ** case by setting scratchAllocOut to 1 when an allocation 298 ** is outstanding clearing it when the allocation is freed. 299 */ 300 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 301 static int scratchAllocOut = 0; 302 #endif 303 304 305 /* 306 ** Allocate memory that is to be used and released right away. 307 ** This routine is similar to alloca() in that it is not intended 308 ** for situations where the memory might be held long-term. This 309 ** routine is intended to get memory to old large transient data 310 ** structures that would not normally fit on the stack of an 311 ** embedded processor. 312 */ 313 void *sqlite3ScratchMalloc(int n){ 314 void *p; 315 assert( n>0 ); 316 317 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 318 /* Verify that no more than one scratch allocation per thread 319 ** is outstanding at one time. (This is only checked in the 320 ** single-threaded case since checking in the multi-threaded case 321 ** would be much more complicated.) */ 322 assert( scratchAllocOut==0 ); 323 #endif 324 325 if( sqlite3GlobalConfig.szScratch<n ){ 326 goto scratch_overflow; 327 }else{ 328 sqlite3_mutex_enter(mem0.mutex); 329 if( mem0.nScratchFree==0 ){ 330 sqlite3_mutex_leave(mem0.mutex); 331 goto scratch_overflow; 332 }else{ 333 int i; 334 i = mem0.aScratchFree[--mem0.nScratchFree]; 335 i *= sqlite3GlobalConfig.szScratch; 336 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1); 337 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); 338 sqlite3_mutex_leave(mem0.mutex); 339 p = (void*)&((char*)sqlite3GlobalConfig.pScratch)[i]; 340 assert( (((u8*)p - (u8*)0) & 7)==0 ); 341 } 342 } 343 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 344 scratchAllocOut = p!=0; 345 #endif 346 347 return p; 348 349 scratch_overflow: 350 if( sqlite3GlobalConfig.bMemstat ){ 351 sqlite3_mutex_enter(mem0.mutex); 352 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); 353 n = mallocWithAlarm(n, &p); 354 if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n); 355 sqlite3_mutex_leave(mem0.mutex); 356 }else{ 357 p = sqlite3GlobalConfig.m.xMalloc(n); 358 } 359 sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); 360 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 361 scratchAllocOut = p!=0; 362 #endif 363 return p; 364 } 365 void sqlite3ScratchFree(void *p){ 366 if( p ){ 367 368 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 369 /* Verify that no more than one scratch allocation per thread 370 ** is outstanding at one time. (This is only checked in the 371 ** single-threaded case since checking in the multi-threaded case 372 ** would be much more complicated.) */ 373 assert( scratchAllocOut==1 ); 374 scratchAllocOut = 0; 375 #endif 376 377 if( sqlite3GlobalConfig.pScratch==0 378 || p<sqlite3GlobalConfig.pScratch 379 || p>=(void*)mem0.aScratchFree ){ 380 assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); 381 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 382 if( sqlite3GlobalConfig.bMemstat ){ 383 int iSize = sqlite3MallocSize(p); 384 sqlite3_mutex_enter(mem0.mutex); 385 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize); 386 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize); 387 sqlite3GlobalConfig.m.xFree(p); 388 sqlite3_mutex_leave(mem0.mutex); 389 }else{ 390 sqlite3GlobalConfig.m.xFree(p); 391 } 392 }else{ 393 int i; 394 i = (int)((u8*)p - (u8*)sqlite3GlobalConfig.pScratch); 395 i /= sqlite3GlobalConfig.szScratch; 396 assert( i>=0 && i<sqlite3GlobalConfig.nScratch ); 397 sqlite3_mutex_enter(mem0.mutex); 398 assert( mem0.nScratchFree<(u32)sqlite3GlobalConfig.nScratch ); 399 mem0.aScratchFree[mem0.nScratchFree++] = i; 400 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1); 401 sqlite3_mutex_leave(mem0.mutex); 402 } 403 } 404 } 405 406 /* 407 ** TRUE if p is a lookaside memory allocation from db 408 */ 409 #ifndef SQLITE_OMIT_LOOKASIDE 410 static int isLookaside(sqlite3 *db, void *p){ 411 return db && p && p>=db->lookaside.pStart && p<db->lookaside.pEnd; 412 } 413 #else 414 #define isLookaside(A,B) 0 415 #endif 416 417 /* 418 ** Return the size of a memory allocation previously obtained from 419 ** sqlite3Malloc() or sqlite3_malloc(). 420 */ 421 int sqlite3MallocSize(void *p){ 422 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 423 return sqlite3GlobalConfig.m.xSize(p); 424 } 425 int sqlite3DbMallocSize(sqlite3 *db, void *p){ 426 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 427 if( isLookaside(db, p) ){ 428 return db->lookaside.sz; 429 }else{ 430 assert( sqlite3MemdebugHasType(p, 431 db ? (MEMTYPE_DB|MEMTYPE_HEAP) : MEMTYPE_HEAP) ); 432 return sqlite3GlobalConfig.m.xSize(p); 433 } 434 } 435 436 /* 437 ** Free memory previously obtained from sqlite3Malloc(). 438 */ 439 void sqlite3_free(void *p){ 440 if( p==0 ) return; 441 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 442 if( sqlite3GlobalConfig.bMemstat ){ 443 sqlite3_mutex_enter(mem0.mutex); 444 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p)); 445 sqlite3GlobalConfig.m.xFree(p); 446 sqlite3_mutex_leave(mem0.mutex); 447 }else{ 448 sqlite3GlobalConfig.m.xFree(p); 449 } 450 } 451 452 /* 453 ** Free memory that might be associated with a particular database 454 ** connection. 455 */ 456 void sqlite3DbFree(sqlite3 *db, void *p){ 457 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 458 if( isLookaside(db, p) ){ 459 LookasideSlot *pBuf = (LookasideSlot*)p; 460 pBuf->pNext = db->lookaside.pFree; 461 db->lookaside.pFree = pBuf; 462 db->lookaside.nOut--; 463 }else{ 464 assert( sqlite3MemdebugHasType(p, MEMTYPE_DB|MEMTYPE_HEAP) ); 465 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 466 sqlite3_free(p); 467 } 468 } 469 470 /* 471 ** Change the size of an existing memory allocation 472 */ 473 void *sqlite3Realloc(void *pOld, int nBytes){ 474 int nOld, nNew; 475 void *pNew; 476 if( pOld==0 ){ 477 return sqlite3Malloc(nBytes); 478 } 479 if( nBytes<=0 ){ 480 sqlite3_free(pOld); 481 return 0; 482 } 483 if( nBytes>=0x7fffff00 ){ 484 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ 485 return 0; 486 } 487 nOld = sqlite3MallocSize(pOld); 488 nNew = sqlite3GlobalConfig.m.xRoundup(nBytes); 489 if( nOld==nNew ){ 490 pNew = pOld; 491 }else if( sqlite3GlobalConfig.bMemstat ){ 492 sqlite3_mutex_enter(mem0.mutex); 493 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes); 494 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >= 495 mem0.alarmThreshold ){ 496 sqlite3MallocAlarm(nNew-nOld); 497 } 498 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); 499 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 500 if( pNew==0 && mem0.alarmCallback ){ 501 sqlite3MallocAlarm(nBytes); 502 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 503 } 504 if( pNew ){ 505 nNew = sqlite3MallocSize(pNew); 506 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld); 507 } 508 sqlite3_mutex_leave(mem0.mutex); 509 }else{ 510 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 511 } 512 return pNew; 513 } 514 515 /* 516 ** The public interface to sqlite3Realloc. Make sure that the memory 517 ** subsystem is initialized prior to invoking sqliteRealloc. 518 */ 519 void *sqlite3_realloc(void *pOld, int n){ 520 #ifndef SQLITE_OMIT_AUTOINIT 521 if( sqlite3_initialize() ) return 0; 522 #endif 523 return sqlite3Realloc(pOld, n); 524 } 525 526 527 /* 528 ** Allocate and zero memory. 529 */ 530 void *sqlite3MallocZero(int n){ 531 void *p = sqlite3Malloc(n); 532 if( p ){ 533 memset(p, 0, n); 534 } 535 return p; 536 } 537 538 /* 539 ** Allocate and zero memory. If the allocation fails, make 540 ** the mallocFailed flag in the connection pointer. 541 */ 542 void *sqlite3DbMallocZero(sqlite3 *db, int n){ 543 void *p = sqlite3DbMallocRaw(db, n); 544 if( p ){ 545 memset(p, 0, n); 546 } 547 return p; 548 } 549 550 /* 551 ** Allocate and zero memory. If the allocation fails, make 552 ** the mallocFailed flag in the connection pointer. 553 ** 554 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc 555 ** failure on the same database connection) then always return 0. 556 ** Hence for a particular database connection, once malloc starts 557 ** failing, it fails consistently until mallocFailed is reset. 558 ** This is an important assumption. There are many places in the 559 ** code that do things like this: 560 ** 561 ** int *a = (int*)sqlite3DbMallocRaw(db, 100); 562 ** int *b = (int*)sqlite3DbMallocRaw(db, 200); 563 ** if( b ) a[10] = 9; 564 ** 565 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed 566 ** that all prior mallocs (ex: "a") worked too. 567 */ 568 void *sqlite3DbMallocRaw(sqlite3 *db, int n){ 569 void *p; 570 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 571 #ifndef SQLITE_OMIT_LOOKASIDE 572 if( db ){ 573 LookasideSlot *pBuf; 574 if( db->mallocFailed ){ 575 return 0; 576 } 577 if( db->lookaside.bEnabled && n<=db->lookaside.sz 578 && (pBuf = db->lookaside.pFree)!=0 ){ 579 db->lookaside.pFree = pBuf->pNext; 580 db->lookaside.nOut++; 581 if( db->lookaside.nOut>db->lookaside.mxOut ){ 582 db->lookaside.mxOut = db->lookaside.nOut; 583 } 584 return (void*)pBuf; 585 } 586 } 587 #else 588 if( db && db->mallocFailed ){ 589 return 0; 590 } 591 #endif 592 p = sqlite3Malloc(n); 593 if( !p && db ){ 594 db->mallocFailed = 1; 595 } 596 sqlite3MemdebugSetType(p, 597 (db && db->lookaside.bEnabled) ? MEMTYPE_DB : MEMTYPE_HEAP); 598 return p; 599 } 600 601 /* 602 ** Resize the block of memory pointed to by p to n bytes. If the 603 ** resize fails, set the mallocFailed flag in the connection object. 604 */ 605 void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){ 606 void *pNew = 0; 607 assert( db!=0 ); 608 assert( sqlite3_mutex_held(db->mutex) ); 609 if( db->mallocFailed==0 ){ 610 if( p==0 ){ 611 return sqlite3DbMallocRaw(db, n); 612 } 613 if( isLookaside(db, p) ){ 614 if( n<=db->lookaside.sz ){ 615 return p; 616 } 617 pNew = sqlite3DbMallocRaw(db, n); 618 if( pNew ){ 619 memcpy(pNew, p, db->lookaside.sz); 620 sqlite3DbFree(db, p); 621 } 622 }else{ 623 assert( sqlite3MemdebugHasType(p, MEMTYPE_DB|MEMTYPE_HEAP) ); 624 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 625 pNew = sqlite3_realloc(p, n); 626 if( !pNew ){ 627 db->mallocFailed = 1; 628 } 629 sqlite3MemdebugSetType(pNew, 630 db->lookaside.bEnabled ? MEMTYPE_DB : MEMTYPE_HEAP); 631 } 632 } 633 return pNew; 634 } 635 636 /* 637 ** Attempt to reallocate p. If the reallocation fails, then free p 638 ** and set the mallocFailed flag in the database connection. 639 */ 640 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){ 641 void *pNew; 642 pNew = sqlite3DbRealloc(db, p, n); 643 if( !pNew ){ 644 sqlite3DbFree(db, p); 645 } 646 return pNew; 647 } 648 649 /* 650 ** Make a copy of a string in memory obtained from sqliteMalloc(). These 651 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This 652 ** is because when memory debugging is turned on, these two functions are 653 ** called via macros that record the current file and line number in the 654 ** ThreadData structure. 655 */ 656 char *sqlite3DbStrDup(sqlite3 *db, const char *z){ 657 char *zNew; 658 size_t n; 659 if( z==0 ){ 660 return 0; 661 } 662 n = sqlite3Strlen30(z) + 1; 663 assert( (n&0x7fffffff)==n ); 664 zNew = sqlite3DbMallocRaw(db, (int)n); 665 if( zNew ){ 666 memcpy(zNew, z, n); 667 } 668 return zNew; 669 } 670 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){ 671 char *zNew; 672 if( z==0 ){ 673 return 0; 674 } 675 assert( (n&0x7fffffff)==n ); 676 zNew = sqlite3DbMallocRaw(db, n+1); 677 if( zNew ){ 678 memcpy(zNew, z, n); 679 zNew[n] = 0; 680 } 681 return zNew; 682 } 683 684 /* 685 ** Create a string from the zFromat argument and the va_list that follows. 686 ** Store the string in memory obtained from sqliteMalloc() and make *pz 687 ** point to that string. 688 */ 689 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){ 690 va_list ap; 691 char *z; 692 693 va_start(ap, zFormat); 694 z = sqlite3VMPrintf(db, zFormat, ap); 695 va_end(ap); 696 sqlite3DbFree(db, *pz); 697 *pz = z; 698 } 699 700 701 /* 702 ** This function must be called before exiting any API function (i.e. 703 ** returning control to the user) that has called sqlite3_malloc or 704 ** sqlite3_realloc. 705 ** 706 ** The returned value is normally a copy of the second argument to this 707 ** function. However, if a malloc() failure has occurred since the previous 708 ** invocation SQLITE_NOMEM is returned instead. 709 ** 710 ** If the first argument, db, is not NULL and a malloc() error has occurred, 711 ** then the connection error-code (the value returned by sqlite3_errcode()) 712 ** is set to SQLITE_NOMEM. 713 */ 714 int sqlite3ApiExit(sqlite3* db, int rc){ 715 /* If the db handle is not NULL, then we must hold the connection handle 716 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed 717 ** is unsafe, as is the call to sqlite3Error(). 718 */ 719 assert( !db || sqlite3_mutex_held(db->mutex) ); 720 if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){ 721 sqlite3Error(db, SQLITE_NOMEM, 0); 722 db->mallocFailed = 0; 723 rc = SQLITE_NOMEM; 724 } 725 return rc & (db ? db->errMask : 0xff); 726 } 727