xref: /sqlite-3.40.0/src/malloc.c (revision 50fb7e09)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** Memory allocation functions used throughout sqlite.
14 */
15 #include "sqliteInt.h"
16 #include <stdarg.h>
17 
18 /*
19 ** Attempt to release up to n bytes of non-essential memory currently
20 ** held by SQLite. An example of non-essential memory is memory used to
21 ** cache database pages that are not currently in use.
22 */
23 int sqlite3_release_memory(int n){
24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
25   return sqlite3PcacheReleaseMemory(n);
26 #else
27   /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
28   ** is a no-op returning zero if SQLite is not compiled with
29   ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
30   UNUSED_PARAMETER(n);
31   return 0;
32 #endif
33 }
34 
35 /*
36 ** Default value of the hard heap limit.  0 means "no limit".
37 */
38 #ifndef SQLITE_MAX_MEMORY
39 # define SQLITE_MAX_MEMORY 0
40 #endif
41 
42 /*
43 ** State information local to the memory allocation subsystem.
44 */
45 static SQLITE_WSD struct Mem0Global {
46   sqlite3_mutex *mutex;         /* Mutex to serialize access */
47   sqlite3_int64 alarmThreshold; /* The soft heap limit */
48   sqlite3_int64 hardLimit;      /* The hard upper bound on memory */
49 
50   /*
51   ** True if heap is nearly "full" where "full" is defined by the
52   ** sqlite3_soft_heap_limit() setting.
53   */
54   int nearlyFull;
55 } mem0 = { 0, SQLITE_MAX_MEMORY, SQLITE_MAX_MEMORY, 0 };
56 
57 #define mem0 GLOBAL(struct Mem0Global, mem0)
58 
59 /*
60 ** Return the memory allocator mutex. sqlite3_status() needs it.
61 */
62 sqlite3_mutex *sqlite3MallocMutex(void){
63   return mem0.mutex;
64 }
65 
66 #ifndef SQLITE_OMIT_DEPRECATED
67 /*
68 ** Deprecated external interface.  It used to set an alarm callback
69 ** that was invoked when memory usage grew too large.  Now it is a
70 ** no-op.
71 */
72 int sqlite3_memory_alarm(
73   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
74   void *pArg,
75   sqlite3_int64 iThreshold
76 ){
77   (void)xCallback;
78   (void)pArg;
79   (void)iThreshold;
80   return SQLITE_OK;
81 }
82 #endif
83 
84 /*
85 ** Set the soft heap-size limit for the library.  An argument of
86 ** zero disables the limit.  A negative argument is a no-op used to
87 ** obtain the return value.
88 **
89 ** The return value is the value of the heap limit just before this
90 ** interface was called.
91 **
92 ** If the hard heap limit is enabled, then the soft heap limit cannot
93 ** be disabled nor raised above the hard heap limit.
94 */
95 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
96   sqlite3_int64 priorLimit;
97   sqlite3_int64 excess;
98   sqlite3_int64 nUsed;
99 #ifndef SQLITE_OMIT_AUTOINIT
100   int rc = sqlite3_initialize();
101   if( rc ) return -1;
102 #endif
103   sqlite3_mutex_enter(mem0.mutex);
104   priorLimit = mem0.alarmThreshold;
105   if( n<0 ){
106     sqlite3_mutex_leave(mem0.mutex);
107     return priorLimit;
108   }
109   if( mem0.hardLimit>0 && (n>mem0.hardLimit || n==0) ){
110     n = mem0.hardLimit;
111   }
112   mem0.alarmThreshold = n;
113   nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
114   AtomicStore(&mem0.nearlyFull, n>0 && n<=nUsed);
115   sqlite3_mutex_leave(mem0.mutex);
116   excess = sqlite3_memory_used() - n;
117   if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
118   return priorLimit;
119 }
120 void sqlite3_soft_heap_limit(int n){
121   if( n<0 ) n = 0;
122   sqlite3_soft_heap_limit64(n);
123 }
124 
125 /*
126 ** Set the hard heap-size limit for the library. An argument of zero
127 ** disables the hard heap limit.  A negative argument is a no-op used
128 ** to obtain the return value without affecting the hard heap limit.
129 **
130 ** The return value is the value of the hard heap limit just prior to
131 ** calling this interface.
132 **
133 ** Setting the hard heap limit will also activate the soft heap limit
134 ** and constrain the soft heap limit to be no more than the hard heap
135 ** limit.
136 */
137 sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 n){
138   sqlite3_int64 priorLimit;
139 #ifndef SQLITE_OMIT_AUTOINIT
140   int rc = sqlite3_initialize();
141   if( rc ) return -1;
142 #endif
143   sqlite3_mutex_enter(mem0.mutex);
144   priorLimit = mem0.hardLimit;
145   if( n>=0 ){
146     mem0.hardLimit = n;
147     if( n<mem0.alarmThreshold || mem0.alarmThreshold==0 ){
148       mem0.alarmThreshold = n;
149     }
150   }
151   sqlite3_mutex_leave(mem0.mutex);
152   return priorLimit;
153 }
154 
155 
156 /*
157 ** Initialize the memory allocation subsystem.
158 */
159 int sqlite3MallocInit(void){
160   int rc;
161   if( sqlite3GlobalConfig.m.xMalloc==0 ){
162     sqlite3MemSetDefault();
163   }
164   mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
165   if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
166       || sqlite3GlobalConfig.nPage<=0 ){
167     sqlite3GlobalConfig.pPage = 0;
168     sqlite3GlobalConfig.szPage = 0;
169   }
170   rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
171   if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0));
172   return rc;
173 }
174 
175 /*
176 ** Return true if the heap is currently under memory pressure - in other
177 ** words if the amount of heap used is close to the limit set by
178 ** sqlite3_soft_heap_limit().
179 */
180 int sqlite3HeapNearlyFull(void){
181   return AtomicLoad(&mem0.nearlyFull);
182 }
183 
184 /*
185 ** Deinitialize the memory allocation subsystem.
186 */
187 void sqlite3MallocEnd(void){
188   if( sqlite3GlobalConfig.m.xShutdown ){
189     sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
190   }
191   memset(&mem0, 0, sizeof(mem0));
192 }
193 
194 /*
195 ** Return the amount of memory currently checked out.
196 */
197 sqlite3_int64 sqlite3_memory_used(void){
198   sqlite3_int64 res, mx;
199   sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0);
200   return res;
201 }
202 
203 /*
204 ** Return the maximum amount of memory that has ever been
205 ** checked out since either the beginning of this process
206 ** or since the most recent reset.
207 */
208 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
209   sqlite3_int64 res, mx;
210   sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag);
211   return mx;
212 }
213 
214 #if 0
215 /*
216 ** Return an estimate of the amount of unallocated memory.
217 **
218 ** This the hard heap limit minus the current memory usage.  It might
219 ** not be possible to allocate this much memory all at once.  This is
220 ** only an estimate.
221 */
222 sqlite3_int64 sqlite3EstMemoryAvailable(void){
223   sqlite3_int64 n;
224   sqlite3_mutex_enter(mem0.mutex);
225   n = mem0.alarmThreshold;
226   if( n<=0 ) n = mem0.hardLimit;
227   sqlite3_mutex_leave(mem0.mutex);
228   if( n<=0 ) n = LARGEST_INT64;
229   n -= sqlite3_memory_used();
230   if( n<0 ) n = 0;
231   return n;
232 }
233 #endif
234 
235 /*
236 ** Trigger the alarm
237 */
238 static void sqlite3MallocAlarm(int nByte){
239   if( mem0.alarmThreshold<=0 ) return;
240   sqlite3_mutex_leave(mem0.mutex);
241   sqlite3_release_memory(nByte);
242   sqlite3_mutex_enter(mem0.mutex);
243 }
244 
245 /*
246 ** Do a memory allocation with statistics and alarms.  Assume the
247 ** lock is already held.
248 */
249 static void mallocWithAlarm(int n, void **pp){
250   void *p;
251   int nFull;
252   assert( sqlite3_mutex_held(mem0.mutex) );
253   assert( n>0 );
254 
255   /* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal
256   ** implementation of malloc_good_size(), which must be called in debug
257   ** mode and specifically when the DMD "Dark Matter Detector" is enabled
258   ** or else a crash results.  Hence, do not attempt to optimize out the
259   ** following xRoundup() call. */
260   nFull = sqlite3GlobalConfig.m.xRoundup(n);
261 
262   sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n);
263   if( mem0.alarmThreshold>0 ){
264     sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
265     if( nUsed >= mem0.alarmThreshold - nFull ){
266       AtomicStore(&mem0.nearlyFull, 1);
267       sqlite3MallocAlarm(nFull);
268       if( mem0.hardLimit ){
269         nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
270         if( nUsed >= mem0.hardLimit - nFull ){
271           *pp = 0;
272           return;
273         }
274       }
275     }else{
276       AtomicStore(&mem0.nearlyFull, 0);
277     }
278   }
279   p = sqlite3GlobalConfig.m.xMalloc(nFull);
280 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
281   if( p==0 && mem0.alarmThreshold>0 ){
282     sqlite3MallocAlarm(nFull);
283     p = sqlite3GlobalConfig.m.xMalloc(nFull);
284   }
285 #endif
286   if( p ){
287     nFull = sqlite3MallocSize(p);
288     sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
289     sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
290   }
291   *pp = p;
292 }
293 
294 /*
295 ** Allocate memory.  This routine is like sqlite3_malloc() except that it
296 ** assumes the memory subsystem has already been initialized.
297 */
298 void *sqlite3Malloc(u64 n){
299   void *p;
300   if( n==0 || n>=0x7fffff00 ){
301     /* A memory allocation of a number of bytes which is near the maximum
302     ** signed integer value might cause an integer overflow inside of the
303     ** xMalloc().  Hence we limit the maximum size to 0x7fffff00, giving
304     ** 255 bytes of overhead.  SQLite itself will never use anything near
305     ** this amount.  The only way to reach the limit is with sqlite3_malloc() */
306     p = 0;
307   }else if( sqlite3GlobalConfig.bMemstat ){
308     sqlite3_mutex_enter(mem0.mutex);
309     mallocWithAlarm((int)n, &p);
310     sqlite3_mutex_leave(mem0.mutex);
311   }else{
312     p = sqlite3GlobalConfig.m.xMalloc((int)n);
313   }
314   assert( EIGHT_BYTE_ALIGNMENT(p) );  /* IMP: R-11148-40995 */
315   return p;
316 }
317 
318 /*
319 ** This version of the memory allocation is for use by the application.
320 ** First make sure the memory subsystem is initialized, then do the
321 ** allocation.
322 */
323 void *sqlite3_malloc(int n){
324 #ifndef SQLITE_OMIT_AUTOINIT
325   if( sqlite3_initialize() ) return 0;
326 #endif
327   return n<=0 ? 0 : sqlite3Malloc(n);
328 }
329 void *sqlite3_malloc64(sqlite3_uint64 n){
330 #ifndef SQLITE_OMIT_AUTOINIT
331   if( sqlite3_initialize() ) return 0;
332 #endif
333   return sqlite3Malloc(n);
334 }
335 
336 /*
337 ** TRUE if p is a lookaside memory allocation from db
338 */
339 #ifndef SQLITE_OMIT_LOOKASIDE
340 static int isLookaside(sqlite3 *db, const void *p){
341   return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pEnd);
342 }
343 #else
344 #define isLookaside(A,B) 0
345 #endif
346 
347 /*
348 ** Return the size of a memory allocation previously obtained from
349 ** sqlite3Malloc() or sqlite3_malloc().
350 */
351 int sqlite3MallocSize(const void *p){
352   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
353   return sqlite3GlobalConfig.m.xSize((void*)p);
354 }
355 static int lookasideMallocSize(sqlite3 *db, const void *p){
356 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
357   return p<db->lookaside.pMiddle ? db->lookaside.szTrue : LOOKASIDE_SMALL;
358 #else
359   return db->lookaside.szTrue;
360 #endif
361 }
362 int sqlite3DbMallocSize(sqlite3 *db, const void *p){
363   assert( p!=0 );
364 #ifdef SQLITE_DEBUG
365   if( db==0 || !isLookaside(db,p) ){
366     if( db==0 ){
367       assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
368       assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
369     }else{
370       assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
371       assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
372     }
373   }
374 #endif
375   if( db ){
376     if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){
377 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
378       if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){
379         assert( sqlite3_mutex_held(db->mutex) );
380         return LOOKASIDE_SMALL;
381       }
382 #endif
383       if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){
384         assert( sqlite3_mutex_held(db->mutex) );
385         return db->lookaside.szTrue;
386       }
387     }
388   }
389   return sqlite3GlobalConfig.m.xSize((void*)p);
390 }
391 sqlite3_uint64 sqlite3_msize(void *p){
392   assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
393   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
394   return p ? sqlite3GlobalConfig.m.xSize(p) : 0;
395 }
396 
397 /*
398 ** Free memory previously obtained from sqlite3Malloc().
399 */
400 void sqlite3_free(void *p){
401   if( p==0 ) return;  /* IMP: R-49053-54554 */
402   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
403   assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
404   if( sqlite3GlobalConfig.bMemstat ){
405     sqlite3_mutex_enter(mem0.mutex);
406     sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p));
407     sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
408     sqlite3GlobalConfig.m.xFree(p);
409     sqlite3_mutex_leave(mem0.mutex);
410   }else{
411     sqlite3GlobalConfig.m.xFree(p);
412   }
413 }
414 
415 /*
416 ** Add the size of memory allocation "p" to the count in
417 ** *db->pnBytesFreed.
418 */
419 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){
420   *db->pnBytesFreed += sqlite3DbMallocSize(db,p);
421 }
422 
423 /*
424 ** Free memory that might be associated with a particular database
425 ** connection.  Calling sqlite3DbFree(D,X) for X==0 is a harmless no-op.
426 ** The sqlite3DbFreeNN(D,X) version requires that X be non-NULL.
427 */
428 void sqlite3DbFreeNN(sqlite3 *db, void *p){
429   assert( db==0 || sqlite3_mutex_held(db->mutex) );
430   assert( p!=0 );
431   if( db ){
432     if( db->pnBytesFreed ){
433       measureAllocationSize(db, p);
434       return;
435     }
436     if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){
437 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
438       if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){
439         LookasideSlot *pBuf = (LookasideSlot*)p;
440 #ifdef SQLITE_DEBUG
441         memset(p, 0xaa, LOOKASIDE_SMALL);  /* Trash freed content */
442 #endif
443         pBuf->pNext = db->lookaside.pSmallFree;
444         db->lookaside.pSmallFree = pBuf;
445         return;
446       }
447 #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
448       if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){
449         LookasideSlot *pBuf = (LookasideSlot*)p;
450 #ifdef SQLITE_DEBUG
451         memset(p, 0xaa, db->lookaside.szTrue);  /* Trash freed content */
452 #endif
453         pBuf->pNext = db->lookaside.pFree;
454         db->lookaside.pFree = pBuf;
455         return;
456       }
457     }
458   }
459   assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
460   assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
461   assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
462   sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
463   sqlite3_free(p);
464 }
465 void sqlite3DbFree(sqlite3 *db, void *p){
466   assert( db==0 || sqlite3_mutex_held(db->mutex) );
467   if( p ) sqlite3DbFreeNN(db, p);
468 }
469 
470 /*
471 ** Change the size of an existing memory allocation
472 */
473 void *sqlite3Realloc(void *pOld, u64 nBytes){
474   int nOld, nNew, nDiff;
475   void *pNew;
476   assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
477   assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) );
478   if( pOld==0 ){
479     return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */
480   }
481   if( nBytes==0 ){
482     sqlite3_free(pOld); /* IMP: R-26507-47431 */
483     return 0;
484   }
485   if( nBytes>=0x7fffff00 ){
486     /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
487     return 0;
488   }
489   nOld = sqlite3MallocSize(pOld);
490   /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
491   ** argument to xRealloc is always a value returned by a prior call to
492   ** xRoundup. */
493   nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
494   if( nOld==nNew ){
495     pNew = pOld;
496   }else if( sqlite3GlobalConfig.bMemstat ){
497     sqlite3_int64 nUsed;
498     sqlite3_mutex_enter(mem0.mutex);
499     sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
500     nDiff = nNew - nOld;
501     if( nDiff>0 && (nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)) >=
502           mem0.alarmThreshold-nDiff ){
503       sqlite3MallocAlarm(nDiff);
504       if( mem0.hardLimit>0 && nUsed >= mem0.hardLimit - nDiff ){
505         sqlite3_mutex_leave(mem0.mutex);
506         return 0;
507       }
508     }
509     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
510 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
511     if( pNew==0 && mem0.alarmThreshold>0 ){
512       sqlite3MallocAlarm((int)nBytes);
513       pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
514     }
515 #endif
516     if( pNew ){
517       nNew = sqlite3MallocSize(pNew);
518       sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
519     }
520     sqlite3_mutex_leave(mem0.mutex);
521   }else{
522     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
523   }
524   assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */
525   return pNew;
526 }
527 
528 /*
529 ** The public interface to sqlite3Realloc.  Make sure that the memory
530 ** subsystem is initialized prior to invoking sqliteRealloc.
531 */
532 void *sqlite3_realloc(void *pOld, int n){
533 #ifndef SQLITE_OMIT_AUTOINIT
534   if( sqlite3_initialize() ) return 0;
535 #endif
536   if( n<0 ) n = 0;  /* IMP: R-26507-47431 */
537   return sqlite3Realloc(pOld, n);
538 }
539 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){
540 #ifndef SQLITE_OMIT_AUTOINIT
541   if( sqlite3_initialize() ) return 0;
542 #endif
543   return sqlite3Realloc(pOld, n);
544 }
545 
546 
547 /*
548 ** Allocate and zero memory.
549 */
550 void *sqlite3MallocZero(u64 n){
551   void *p = sqlite3Malloc(n);
552   if( p ){
553     memset(p, 0, (size_t)n);
554   }
555   return p;
556 }
557 
558 /*
559 ** Allocate and zero memory.  If the allocation fails, make
560 ** the mallocFailed flag in the connection pointer.
561 */
562 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){
563   void *p;
564   testcase( db==0 );
565   p = sqlite3DbMallocRaw(db, n);
566   if( p ) memset(p, 0, (size_t)n);
567   return p;
568 }
569 
570 
571 /* Finish the work of sqlite3DbMallocRawNN for the unusual and
572 ** slower case when the allocation cannot be fulfilled using lookaside.
573 */
574 static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){
575   void *p;
576   assert( db!=0 );
577   p = sqlite3Malloc(n);
578   if( !p ) sqlite3OomFault(db);
579   sqlite3MemdebugSetType(p,
580          (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
581   return p;
582 }
583 
584 /*
585 ** Allocate memory, either lookaside (if possible) or heap.
586 ** If the allocation fails, set the mallocFailed flag in
587 ** the connection pointer.
588 **
589 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
590 ** failure on the same database connection) then always return 0.
591 ** Hence for a particular database connection, once malloc starts
592 ** failing, it fails consistently until mallocFailed is reset.
593 ** This is an important assumption.  There are many places in the
594 ** code that do things like this:
595 **
596 **         int *a = (int*)sqlite3DbMallocRaw(db, 100);
597 **         int *b = (int*)sqlite3DbMallocRaw(db, 200);
598 **         if( b ) a[10] = 9;
599 **
600 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
601 ** that all prior mallocs (ex: "a") worked too.
602 **
603 ** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is
604 ** not a NULL pointer.
605 */
606 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){
607   void *p;
608   if( db ) return sqlite3DbMallocRawNN(db, n);
609   p = sqlite3Malloc(n);
610   sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
611   return p;
612 }
613 void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){
614 #ifndef SQLITE_OMIT_LOOKASIDE
615   LookasideSlot *pBuf;
616   assert( db!=0 );
617   assert( sqlite3_mutex_held(db->mutex) );
618   assert( db->pnBytesFreed==0 );
619   if( n>db->lookaside.sz ){
620     if( !db->lookaside.bDisable ){
621       db->lookaside.anStat[1]++;
622     }else if( db->mallocFailed ){
623       return 0;
624     }
625     return dbMallocRawFinish(db, n);
626   }
627 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
628   if( n<=LOOKASIDE_SMALL ){
629     if( (pBuf = db->lookaside.pSmallFree)!=0 ){
630       db->lookaside.pSmallFree = pBuf->pNext;
631       db->lookaside.anStat[0]++;
632       return (void*)pBuf;
633     }else if( (pBuf = db->lookaside.pSmallInit)!=0 ){
634       db->lookaside.pSmallInit = pBuf->pNext;
635       db->lookaside.anStat[0]++;
636       return (void*)pBuf;
637     }
638   }
639 #endif
640   if( (pBuf = db->lookaside.pFree)!=0 ){
641     db->lookaside.pFree = pBuf->pNext;
642     db->lookaside.anStat[0]++;
643     return (void*)pBuf;
644   }else if( (pBuf = db->lookaside.pInit)!=0 ){
645     db->lookaside.pInit = pBuf->pNext;
646     db->lookaside.anStat[0]++;
647     return (void*)pBuf;
648   }else{
649     db->lookaside.anStat[2]++;
650   }
651 #else
652   assert( db!=0 );
653   assert( sqlite3_mutex_held(db->mutex) );
654   assert( db->pnBytesFreed==0 );
655   if( db->mallocFailed ){
656     return 0;
657   }
658 #endif
659   return dbMallocRawFinish(db, n);
660 }
661 
662 /* Forward declaration */
663 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n);
664 
665 /*
666 ** Resize the block of memory pointed to by p to n bytes. If the
667 ** resize fails, set the mallocFailed flag in the connection object.
668 */
669 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){
670   assert( db!=0 );
671   if( p==0 ) return sqlite3DbMallocRawNN(db, n);
672   assert( sqlite3_mutex_held(db->mutex) );
673   if( ((uptr)p)<(uptr)db->lookaside.pEnd ){
674 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
675     if( ((uptr)p)>=(uptr)db->lookaside.pMiddle ){
676       if( n<=LOOKASIDE_SMALL ) return p;
677     }else
678 #endif
679     if( ((uptr)p)>=(uptr)db->lookaside.pStart ){
680       if( n<=db->lookaside.szTrue ) return p;
681     }
682   }
683   return dbReallocFinish(db, p, n);
684 }
685 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){
686   void *pNew = 0;
687   assert( db!=0 );
688   assert( p!=0 );
689   if( db->mallocFailed==0 ){
690     if( isLookaside(db, p) ){
691       pNew = sqlite3DbMallocRawNN(db, n);
692       if( pNew ){
693         memcpy(pNew, p, lookasideMallocSize(db, p));
694         sqlite3DbFree(db, p);
695       }
696     }else{
697       assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
698       assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
699       sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
700       pNew = sqlite3Realloc(p, n);
701       if( !pNew ){
702         sqlite3OomFault(db);
703       }
704       sqlite3MemdebugSetType(pNew,
705             (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
706     }
707   }
708   return pNew;
709 }
710 
711 /*
712 ** Attempt to reallocate p.  If the reallocation fails, then free p
713 ** and set the mallocFailed flag in the database connection.
714 */
715 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){
716   void *pNew;
717   pNew = sqlite3DbRealloc(db, p, n);
718   if( !pNew ){
719     sqlite3DbFree(db, p);
720   }
721   return pNew;
722 }
723 
724 /*
725 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
726 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
727 ** is because when memory debugging is turned on, these two functions are
728 ** called via macros that record the current file and line number in the
729 ** ThreadData structure.
730 */
731 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
732   char *zNew;
733   size_t n;
734   if( z==0 ){
735     return 0;
736   }
737   n = strlen(z) + 1;
738   zNew = sqlite3DbMallocRaw(db, n);
739   if( zNew ){
740     memcpy(zNew, z, n);
741   }
742   return zNew;
743 }
744 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){
745   char *zNew;
746   assert( db!=0 );
747   assert( z!=0 || n==0 );
748   assert( (n&0x7fffffff)==n );
749   zNew = z ? sqlite3DbMallocRawNN(db, n+1) : 0;
750   if( zNew ){
751     memcpy(zNew, z, (size_t)n);
752     zNew[n] = 0;
753   }
754   return zNew;
755 }
756 
757 /*
758 ** The text between zStart and zEnd represents a phrase within a larger
759 ** SQL statement.  Make a copy of this phrase in space obtained form
760 ** sqlite3DbMalloc().  Omit leading and trailing whitespace.
761 */
762 char *sqlite3DbSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){
763   int n;
764   while( sqlite3Isspace(zStart[0]) ) zStart++;
765   n = (int)(zEnd - zStart);
766   while( ALWAYS(n>0) && sqlite3Isspace(zStart[n-1]) ) n--;
767   return sqlite3DbStrNDup(db, zStart, n);
768 }
769 
770 /*
771 ** Free any prior content in *pz and replace it with a copy of zNew.
772 */
773 void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){
774   sqlite3DbFree(db, *pz);
775   *pz = sqlite3DbStrDup(db, zNew);
776 }
777 
778 /*
779 ** Call this routine to record the fact that an OOM (out-of-memory) error
780 ** has happened.  This routine will set db->mallocFailed, and also
781 ** temporarily disable the lookaside memory allocator and interrupt
782 ** any running VDBEs.
783 */
784 void sqlite3OomFault(sqlite3 *db){
785   if( db->mallocFailed==0 && db->bBenignMalloc==0 ){
786     db->mallocFailed = 1;
787     if( db->nVdbeExec>0 ){
788       AtomicStore(&db->u1.isInterrupted, 1);
789     }
790     DisableLookaside;
791     if( db->pParse ){
792       db->pParse->rc = SQLITE_NOMEM_BKPT;
793     }
794   }
795 }
796 
797 /*
798 ** This routine reactivates the memory allocator and clears the
799 ** db->mallocFailed flag as necessary.
800 **
801 ** The memory allocator is not restarted if there are running
802 ** VDBEs.
803 */
804 void sqlite3OomClear(sqlite3 *db){
805   if( db->mallocFailed && db->nVdbeExec==0 ){
806     db->mallocFailed = 0;
807     AtomicStore(&db->u1.isInterrupted, 0);
808     assert( db->lookaside.bDisable>0 );
809     EnableLookaside;
810   }
811 }
812 
813 /*
814 ** Take actions at the end of an API call to deal with error codes.
815 */
816 static SQLITE_NOINLINE int apiHandleError(sqlite3 *db, int rc){
817   if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){
818     sqlite3OomClear(db);
819     sqlite3Error(db, SQLITE_NOMEM);
820     return SQLITE_NOMEM_BKPT;
821   }
822   return rc & db->errMask;
823 }
824 
825 /*
826 ** This function must be called before exiting any API function (i.e.
827 ** returning control to the user) that has called sqlite3_malloc or
828 ** sqlite3_realloc.
829 **
830 ** The returned value is normally a copy of the second argument to this
831 ** function. However, if a malloc() failure has occurred since the previous
832 ** invocation SQLITE_NOMEM is returned instead.
833 **
834 ** If an OOM as occurred, then the connection error-code (the value
835 ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM.
836 */
837 int sqlite3ApiExit(sqlite3* db, int rc){
838   /* If the db handle must hold the connection handle mutex here.
839   ** Otherwise the read (and possible write) of db->mallocFailed
840   ** is unsafe, as is the call to sqlite3Error().
841   */
842   assert( db!=0 );
843   assert( sqlite3_mutex_held(db->mutex) );
844   if( db->mallocFailed || rc ){
845     return apiHandleError(db, rc);
846   }
847   return rc & db->errMask;
848 }
849