xref: /sqlite-3.40.0/src/malloc.c (revision 4dfe98a8)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** Memory allocation functions used throughout sqlite.
14 */
15 #include "sqliteInt.h"
16 #include <stdarg.h>
17 
18 /*
19 ** Attempt to release up to n bytes of non-essential memory currently
20 ** held by SQLite. An example of non-essential memory is memory used to
21 ** cache database pages that are not currently in use.
22 */
23 int sqlite3_release_memory(int n){
24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
25   return sqlite3PcacheReleaseMemory(n);
26 #else
27   /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
28   ** is a no-op returning zero if SQLite is not compiled with
29   ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
30   UNUSED_PARAMETER(n);
31   return 0;
32 #endif
33 }
34 
35 /*
36 ** An instance of the following object records the location of
37 ** each unused scratch buffer.
38 */
39 typedef struct ScratchFreeslot {
40   struct ScratchFreeslot *pNext;   /* Next unused scratch buffer */
41 } ScratchFreeslot;
42 
43 /*
44 ** State information local to the memory allocation subsystem.
45 */
46 static SQLITE_WSD struct Mem0Global {
47   sqlite3_mutex *mutex;         /* Mutex to serialize access */
48   sqlite3_int64 alarmThreshold;  /* The soft heap limit */
49 
50   /*
51   ** Pointers to the end of sqlite3GlobalConfig.pScratch memory
52   ** (so that a range test can be used to determine if an allocation
53   ** being freed came from pScratch) and a pointer to the list of
54   ** unused scratch allocations.
55   */
56   void *pScratchEnd;
57   ScratchFreeslot *pScratchFree;
58   u32 nScratchFree;
59 
60   /*
61   ** True if heap is nearly "full" where "full" is defined by the
62   ** sqlite3_soft_heap_limit() setting.
63   */
64   int nearlyFull;
65 } mem0 = { 0, 0, 0, 0, 0, 0 };
66 
67 #define mem0 GLOBAL(struct Mem0Global, mem0)
68 
69 /*
70 ** Return the memory allocator mutex. sqlite3_status() needs it.
71 */
72 sqlite3_mutex *sqlite3MallocMutex(void){
73   return mem0.mutex;
74 }
75 
76 /*
77 ** Return the amount of memory currently in use.
78 */
79 static sqlite3_int64 memInUse(void){
80   assert( sqlite3_mutex_held(mem0.mutex) );
81   return sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
82 }
83 
84 /*
85 ** Called when the soft heap limit is exceeded for an allocation
86 ** of nBytes.
87 */
88 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
89 static void sqlite3HeapLimitExceeded(int nByte){
90   sqlite3_int64 excess = memInUse() + nByte - mem0.alarmThreshold;
91   sqlite3_mutex_leave(mem0.mutex);
92   sqlite3_release_memory((int)(excess & 0x7fffffff));
93   sqlite3_mutex_enter(mem0.mutex);
94 }
95 #else
96 # define sqlite3HeapLimitExceeded(X)  /* no-op */
97 #endif
98 
99 /*
100 ** Check to see if increasing the total memory usage by nNew bytes
101 ** will exceed the soft heap limit.
102 **
103 ** If the soft heap limit is exceeded, set the mem0.nearlyFull flag
104 ** and invoke sqlite3HeapLimitExceeded() to try to free up some
105 ** memory.
106 */
107 static void sqlite3CheckSoftHeapLimit(int nNew){
108   assert( sqlite3_mutex_held(mem0.mutex) );
109   if( mem0.alarmThreshold>0 ){
110     if( mem0.alarmThreshold-nNew >= memInUse() ){
111       mem0.nearlyFull = 1;
112       sqlite3HeapLimitExceeded(nNew);
113     }else{
114       mem0.nearlyFull = 0;
115     }
116   }
117 }
118 
119 #ifndef SQLITE_OMIT_DEPRECATED
120 /*
121 ** Deprecated external interface.  First deprecated 2007-11-05.  Changed
122 ** into a no-op on 2015-09-02.
123 */
124 int sqlite3_memory_alarm(
125   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
126   void *pArg,
127   sqlite3_int64 iThreshold
128 ){
129   return SQLITE_OK;
130 }
131 #endif
132 
133 /*
134 ** Set the soft heap-size limit for the library. Passing a zero or
135 ** negative value indicates no limit.
136 */
137 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
138   sqlite3_int64 priorLimit;
139 #ifndef SQLITE_OMIT_AUTOINIT
140   int rc = sqlite3_initialize();
141   if( rc ) return -1;
142 #endif
143   sqlite3_mutex_enter(mem0.mutex);
144   priorLimit = mem0.alarmThreshold;
145   if( n>0 ){
146     mem0.alarmThreshold = n;
147     sqlite3CheckSoftHeapLimit(0);
148   }else if( n==0 ){
149     mem0.alarmThreshold = 0;
150     mem0.nearlyFull = 0;
151   }
152   sqlite3_mutex_leave(mem0.mutex);
153   return priorLimit;
154 }
155 void sqlite3_soft_heap_limit(int n){
156   if( n<0 ) n = 0;
157   sqlite3_soft_heap_limit64(n);
158 }
159 
160 /*
161 ** Initialize the memory allocation subsystem.
162 */
163 int sqlite3MallocInit(void){
164   int rc;
165   if( sqlite3GlobalConfig.m.xMalloc==0 ){
166     sqlite3MemSetDefault();
167   }
168   memset(&mem0, 0, sizeof(mem0));
169   if( sqlite3GlobalConfig.bCoreMutex ){
170     mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
171   }
172   if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
173       && sqlite3GlobalConfig.nScratch>0 ){
174     int i, n, sz;
175     ScratchFreeslot *pSlot;
176     sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch);
177     sqlite3GlobalConfig.szScratch = sz;
178     pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch;
179     n = sqlite3GlobalConfig.nScratch;
180     mem0.pScratchFree = pSlot;
181     mem0.nScratchFree = n;
182     for(i=0; i<n-1; i++){
183       pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot);
184       pSlot = pSlot->pNext;
185     }
186     pSlot->pNext = 0;
187     mem0.pScratchEnd = (void*)&pSlot[1];
188   }else{
189     mem0.pScratchEnd = 0;
190     sqlite3GlobalConfig.pScratch = 0;
191     sqlite3GlobalConfig.szScratch = 0;
192     sqlite3GlobalConfig.nScratch = 0;
193   }
194   if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
195       || sqlite3GlobalConfig.nPage<=0 ){
196     sqlite3GlobalConfig.pPage = 0;
197     sqlite3GlobalConfig.szPage = 0;
198   }
199   rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
200   if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0));
201   return rc;
202 }
203 
204 /*
205 ** Return true if the heap is currently under memory pressure - in other
206 ** words if the amount of heap used is close to the limit set by
207 ** sqlite3_soft_heap_limit().
208 */
209 int sqlite3HeapNearlyFull(void){
210   return mem0.nearlyFull;
211 }
212 
213 /*
214 ** Deinitialize the memory allocation subsystem.
215 */
216 void sqlite3MallocEnd(void){
217   if( sqlite3GlobalConfig.m.xShutdown ){
218     sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
219   }
220   memset(&mem0, 0, sizeof(mem0));
221 }
222 
223 /*
224 ** Return the amount of memory currently checked out.
225 */
226 sqlite3_int64 sqlite3_memory_used(void){
227   sqlite3_int64 res, mx;
228   sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0);
229   return res;
230 }
231 
232 /*
233 ** Return the maximum amount of memory that has ever been
234 ** checked out since either the beginning of this process
235 ** or since the most recent reset.
236 */
237 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
238   sqlite3_int64 res, mx;
239   sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag);
240   return mx;
241 }
242 
243 /*
244 ** Do a memory allocation with statistics and alarms.  Assume the
245 ** lock is already held.
246 */
247 static int mallocWithAlarm(int n, void **pp){
248   int nFull;
249   void *p;
250   assert( sqlite3_mutex_held(mem0.mutex) );
251   nFull = sqlite3GlobalConfig.m.xRoundup(n);
252   sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
253   sqlite3CheckSoftHeapLimit(nFull);
254   p = sqlite3GlobalConfig.m.xMalloc(nFull);
255 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
256   if( p==0 && mem0.alarmThreshold ){
257     sqlite3HeapLimitExceeded(nFull);
258     p = sqlite3GlobalConfig.m.xMalloc(nFull);
259   }
260 #endif
261   if( p ){
262     nFull = sqlite3MallocSize(p);
263     sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
264     sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
265   }
266   *pp = p;
267   return nFull;
268 }
269 
270 /*
271 ** Allocate memory.  This routine is like sqlite3_malloc() except that it
272 ** assumes the memory subsystem has already been initialized.
273 */
274 void *sqlite3Malloc(u64 n){
275   void *p;
276   if( n==0 || n>=0x7fffff00 ){
277     /* A memory allocation of a number of bytes which is near the maximum
278     ** signed integer value might cause an integer overflow inside of the
279     ** xMalloc().  Hence we limit the maximum size to 0x7fffff00, giving
280     ** 255 bytes of overhead.  SQLite itself will never use anything near
281     ** this amount.  The only way to reach the limit is with sqlite3_malloc() */
282     p = 0;
283   }else if( sqlite3GlobalConfig.bMemstat ){
284     sqlite3_mutex_enter(mem0.mutex);
285     mallocWithAlarm((int)n, &p);
286     sqlite3_mutex_leave(mem0.mutex);
287   }else{
288     p = sqlite3GlobalConfig.m.xMalloc((int)n);
289   }
290   assert( EIGHT_BYTE_ALIGNMENT(p) );  /* IMP: R-11148-40995 */
291   return p;
292 }
293 
294 /*
295 ** This version of the memory allocation is for use by the application.
296 ** First make sure the memory subsystem is initialized, then do the
297 ** allocation.
298 */
299 void *sqlite3_malloc(int n){
300 #ifndef SQLITE_OMIT_AUTOINIT
301   if( sqlite3_initialize() ) return 0;
302 #endif
303   return n<=0 ? 0 : sqlite3Malloc(n);
304 }
305 void *sqlite3_malloc64(sqlite3_uint64 n){
306 #ifndef SQLITE_OMIT_AUTOINIT
307   if( sqlite3_initialize() ) return 0;
308 #endif
309   return sqlite3Malloc(n);
310 }
311 
312 /*
313 ** Each thread may only have a single outstanding allocation from
314 ** xScratchMalloc().  We verify this constraint in the single-threaded
315 ** case by setting scratchAllocOut to 1 when an allocation
316 ** is outstanding clearing it when the allocation is freed.
317 */
318 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
319 static int scratchAllocOut = 0;
320 #endif
321 
322 
323 /*
324 ** Allocate memory that is to be used and released right away.
325 ** This routine is similar to alloca() in that it is not intended
326 ** for situations where the memory might be held long-term.  This
327 ** routine is intended to get memory to old large transient data
328 ** structures that would not normally fit on the stack of an
329 ** embedded processor.
330 */
331 void *sqlite3ScratchMalloc(int n){
332   void *p;
333   assert( n>0 );
334 
335   sqlite3_mutex_enter(mem0.mutex);
336   sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
337   if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
338     p = mem0.pScratchFree;
339     mem0.pScratchFree = mem0.pScratchFree->pNext;
340     mem0.nScratchFree--;
341     sqlite3StatusUp(SQLITE_STATUS_SCRATCH_USED, 1);
342     sqlite3_mutex_leave(mem0.mutex);
343   }else{
344     sqlite3_mutex_leave(mem0.mutex);
345     p = sqlite3Malloc(n);
346     if( sqlite3GlobalConfig.bMemstat && p ){
347       sqlite3_mutex_enter(mem0.mutex);
348       sqlite3StatusUp(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p));
349       sqlite3_mutex_leave(mem0.mutex);
350     }
351     sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
352   }
353   assert( sqlite3_mutex_notheld(mem0.mutex) );
354 
355 
356 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
357   /* EVIDENCE-OF: R-12970-05880 SQLite will not use more than one scratch
358   ** buffers per thread.
359   **
360   ** This can only be checked in single-threaded mode.
361   */
362   assert( scratchAllocOut==0 );
363   if( p ) scratchAllocOut++;
364 #endif
365 
366   return p;
367 }
368 void sqlite3ScratchFree(void *p){
369   if( p ){
370 
371 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
372     /* Verify that no more than two scratch allocation per thread
373     ** is outstanding at one time.  (This is only checked in the
374     ** single-threaded case since checking in the multi-threaded case
375     ** would be much more complicated.) */
376     assert( scratchAllocOut>=1 && scratchAllocOut<=2 );
377     scratchAllocOut--;
378 #endif
379 
380     if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){
381       /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */
382       ScratchFreeslot *pSlot;
383       pSlot = (ScratchFreeslot*)p;
384       sqlite3_mutex_enter(mem0.mutex);
385       pSlot->pNext = mem0.pScratchFree;
386       mem0.pScratchFree = pSlot;
387       mem0.nScratchFree++;
388       assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch );
389       sqlite3StatusDown(SQLITE_STATUS_SCRATCH_USED, 1);
390       sqlite3_mutex_leave(mem0.mutex);
391     }else{
392       /* Release memory back to the heap */
393       assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
394       assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_SCRATCH) );
395       sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
396       if( sqlite3GlobalConfig.bMemstat ){
397         int iSize = sqlite3MallocSize(p);
398         sqlite3_mutex_enter(mem0.mutex);
399         sqlite3StatusDown(SQLITE_STATUS_SCRATCH_OVERFLOW, iSize);
400         sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, iSize);
401         sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
402         sqlite3GlobalConfig.m.xFree(p);
403         sqlite3_mutex_leave(mem0.mutex);
404       }else{
405         sqlite3GlobalConfig.m.xFree(p);
406       }
407     }
408   }
409 }
410 
411 /*
412 ** TRUE if p is a lookaside memory allocation from db
413 */
414 #ifndef SQLITE_OMIT_LOOKASIDE
415 static int isLookaside(sqlite3 *db, void *p){
416   return p>=db->lookaside.pStart && p<db->lookaside.pEnd;
417 }
418 #else
419 #define isLookaside(A,B) 0
420 #endif
421 
422 /*
423 ** Return the size of a memory allocation previously obtained from
424 ** sqlite3Malloc() or sqlite3_malloc().
425 */
426 int sqlite3MallocSize(void *p){
427   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
428   return sqlite3GlobalConfig.m.xSize(p);
429 }
430 int sqlite3DbMallocSize(sqlite3 *db, void *p){
431   if( db==0 || !isLookaside(db,p) ){
432 #if SQLITE_DEBUG
433     if( db==0 ){
434       assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
435       assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
436     }else{
437       assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
438       assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
439     }
440 #endif
441     return sqlite3GlobalConfig.m.xSize(p);
442   }else{
443     assert( sqlite3_mutex_held(db->mutex) );
444     return db->lookaside.sz;
445   }
446 }
447 sqlite3_uint64 sqlite3_msize(void *p){
448   assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
449   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
450   return (sqlite3_uint64)sqlite3GlobalConfig.m.xSize(p);
451 }
452 
453 /*
454 ** Free memory previously obtained from sqlite3Malloc().
455 */
456 void sqlite3_free(void *p){
457   if( p==0 ) return;  /* IMP: R-49053-54554 */
458   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
459   assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
460   if( sqlite3GlobalConfig.bMemstat ){
461     sqlite3_mutex_enter(mem0.mutex);
462     sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p));
463     sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
464     sqlite3GlobalConfig.m.xFree(p);
465     sqlite3_mutex_leave(mem0.mutex);
466   }else{
467     sqlite3GlobalConfig.m.xFree(p);
468   }
469 }
470 
471 /*
472 ** Add the size of memory allocation "p" to the count in
473 ** *db->pnBytesFreed.
474 */
475 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){
476   *db->pnBytesFreed += sqlite3DbMallocSize(db,p);
477 }
478 
479 /*
480 ** Free memory that might be associated with a particular database
481 ** connection.
482 */
483 void sqlite3DbFree(sqlite3 *db, void *p){
484   assert( db==0 || sqlite3_mutex_held(db->mutex) );
485   if( p==0 ) return;
486   if( db ){
487     if( db->pnBytesFreed ){
488       measureAllocationSize(db, p);
489       return;
490     }
491     if( isLookaside(db, p) ){
492       LookasideSlot *pBuf = (LookasideSlot*)p;
493 #if SQLITE_DEBUG
494       /* Trash all content in the buffer being freed */
495       memset(p, 0xaa, db->lookaside.sz);
496 #endif
497       pBuf->pNext = db->lookaside.pFree;
498       db->lookaside.pFree = pBuf;
499       db->lookaside.nOut--;
500       return;
501     }
502   }
503   assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
504   assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
505   assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
506   sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
507   sqlite3_free(p);
508 }
509 
510 /*
511 ** Change the size of an existing memory allocation
512 */
513 void *sqlite3Realloc(void *pOld, u64 nBytes){
514   int nOld, nNew, nDiff;
515   void *pNew;
516   assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
517   assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) );
518   if( pOld==0 ){
519     return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */
520   }
521   if( nBytes==0 ){
522     sqlite3_free(pOld); /* IMP: R-26507-47431 */
523     return 0;
524   }
525   if( nBytes>=0x7fffff00 ){
526     /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
527     return 0;
528   }
529   nOld = sqlite3MallocSize(pOld);
530   /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
531   ** argument to xRealloc is always a value returned by a prior call to
532   ** xRoundup. */
533   nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
534   if( nOld==nNew ){
535     pNew = pOld;
536   }else if( sqlite3GlobalConfig.bMemstat ){
537     sqlite3_mutex_enter(mem0.mutex);
538     sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
539     nDiff = nNew - nOld;
540     sqlite3CheckSoftHeapLimit(nDiff);
541     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
542 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
543     if( pNew==0 && mem0.alarmThreshold ){
544       sqlite3HeapLimitExceeded((int)nBytes);
545       pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
546     }
547 #endif
548     if( pNew ){
549       nNew = sqlite3MallocSize(pNew);
550       sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
551     }
552     sqlite3_mutex_leave(mem0.mutex);
553   }else{
554     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
555   }
556   assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */
557   return pNew;
558 }
559 
560 /*
561 ** The public interface to sqlite3Realloc.  Make sure that the memory
562 ** subsystem is initialized prior to invoking sqliteRealloc.
563 */
564 void *sqlite3_realloc(void *pOld, int n){
565 #ifndef SQLITE_OMIT_AUTOINIT
566   if( sqlite3_initialize() ) return 0;
567 #endif
568   if( n<0 ) n = 0;  /* IMP: R-26507-47431 */
569   return sqlite3Realloc(pOld, n);
570 }
571 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){
572 #ifndef SQLITE_OMIT_AUTOINIT
573   if( sqlite3_initialize() ) return 0;
574 #endif
575   return sqlite3Realloc(pOld, n);
576 }
577 
578 
579 /*
580 ** Allocate and zero memory.
581 */
582 void *sqlite3MallocZero(u64 n){
583   void *p = sqlite3Malloc(n);
584   if( p ){
585     memset(p, 0, (size_t)n);
586   }
587   return p;
588 }
589 
590 /*
591 ** Allocate and zero memory.  If the allocation fails, make
592 ** the mallocFailed flag in the connection pointer.
593 */
594 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){
595   void *p = sqlite3DbMallocRaw(db, n);
596   if( p ){
597     memset(p, 0, (size_t)n);
598   }
599   return p;
600 }
601 
602 /*
603 ** Allocate and zero memory.  If the allocation fails, make
604 ** the mallocFailed flag in the connection pointer.
605 **
606 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
607 ** failure on the same database connection) then always return 0.
608 ** Hence for a particular database connection, once malloc starts
609 ** failing, it fails consistently until mallocFailed is reset.
610 ** This is an important assumption.  There are many places in the
611 ** code that do things like this:
612 **
613 **         int *a = (int*)sqlite3DbMallocRaw(db, 100);
614 **         int *b = (int*)sqlite3DbMallocRaw(db, 200);
615 **         if( b ) a[10] = 9;
616 **
617 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
618 ** that all prior mallocs (ex: "a") worked too.
619 */
620 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){
621   void *p;
622   assert( db==0 || sqlite3_mutex_held(db->mutex) );
623   assert( db==0 || db->pnBytesFreed==0 );
624 #ifndef SQLITE_OMIT_LOOKASIDE
625   if( db ){
626     LookasideSlot *pBuf;
627     if( db->mallocFailed ){
628       return 0;
629     }
630     if( db->lookaside.bEnabled ){
631       if( n>db->lookaside.sz ){
632         db->lookaside.anStat[1]++;
633       }else if( (pBuf = db->lookaside.pFree)==0 ){
634         db->lookaside.anStat[2]++;
635       }else{
636         db->lookaside.pFree = pBuf->pNext;
637         db->lookaside.nOut++;
638         db->lookaside.anStat[0]++;
639         if( db->lookaside.nOut>db->lookaside.mxOut ){
640           db->lookaside.mxOut = db->lookaside.nOut;
641         }
642         return (void*)pBuf;
643       }
644     }
645   }
646 #else
647   if( db && db->mallocFailed ){
648     return 0;
649   }
650 #endif
651   p = sqlite3Malloc(n);
652   if( !p && db ){
653     db->mallocFailed = 1;
654   }
655   sqlite3MemdebugSetType(p,
656          (db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
657   return p;
658 }
659 
660 /*
661 ** Resize the block of memory pointed to by p to n bytes. If the
662 ** resize fails, set the mallocFailed flag in the connection object.
663 */
664 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){
665   void *pNew = 0;
666   assert( db!=0 );
667   assert( sqlite3_mutex_held(db->mutex) );
668   if( db->mallocFailed==0 ){
669     if( p==0 ){
670       return sqlite3DbMallocRaw(db, n);
671     }
672     if( isLookaside(db, p) ){
673       if( n<=db->lookaside.sz ){
674         return p;
675       }
676       pNew = sqlite3DbMallocRaw(db, n);
677       if( pNew ){
678         memcpy(pNew, p, db->lookaside.sz);
679         sqlite3DbFree(db, p);
680       }
681     }else{
682       assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
683       assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
684       sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
685       pNew = sqlite3_realloc64(p, n);
686       if( !pNew ){
687         db->mallocFailed = 1;
688       }
689       sqlite3MemdebugSetType(pNew,
690             (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
691     }
692   }
693   return pNew;
694 }
695 
696 /*
697 ** Attempt to reallocate p.  If the reallocation fails, then free p
698 ** and set the mallocFailed flag in the database connection.
699 */
700 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){
701   void *pNew;
702   pNew = sqlite3DbRealloc(db, p, n);
703   if( !pNew ){
704     sqlite3DbFree(db, p);
705   }
706   return pNew;
707 }
708 
709 /*
710 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
711 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
712 ** is because when memory debugging is turned on, these two functions are
713 ** called via macros that record the current file and line number in the
714 ** ThreadData structure.
715 */
716 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
717   char *zNew;
718   size_t n;
719   if( z==0 ){
720     return 0;
721   }
722   n = sqlite3Strlen30(z) + 1;
723   assert( (n&0x7fffffff)==n );
724   zNew = sqlite3DbMallocRaw(db, (int)n);
725   if( zNew ){
726     memcpy(zNew, z, n);
727   }
728   return zNew;
729 }
730 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){
731   char *zNew;
732   if( z==0 ){
733     return 0;
734   }
735   assert( (n&0x7fffffff)==n );
736   zNew = sqlite3DbMallocRaw(db, n+1);
737   if( zNew ){
738     memcpy(zNew, z, (size_t)n);
739     zNew[n] = 0;
740   }
741   return zNew;
742 }
743 
744 /*
745 ** Free any prior content in *pz and replace it with a copy of zNew.
746 */
747 void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){
748   sqlite3DbFree(db, *pz);
749   *pz = sqlite3DbStrDup(db, zNew);
750 }
751 
752 /*
753 ** Take actions at the end of an API call to indicate an OOM error
754 */
755 static SQLITE_NOINLINE int apiOomError(sqlite3 *db){
756   db->mallocFailed = 0;
757   sqlite3Error(db, SQLITE_NOMEM);
758   return SQLITE_NOMEM;
759 }
760 
761 /*
762 ** This function must be called before exiting any API function (i.e.
763 ** returning control to the user) that has called sqlite3_malloc or
764 ** sqlite3_realloc.
765 **
766 ** The returned value is normally a copy of the second argument to this
767 ** function. However, if a malloc() failure has occurred since the previous
768 ** invocation SQLITE_NOMEM is returned instead.
769 **
770 ** If an OOM as occurred, then the connection error-code (the value
771 ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM.
772 */
773 int sqlite3ApiExit(sqlite3* db, int rc){
774   /* If the db handle must hold the connection handle mutex here.
775   ** Otherwise the read (and possible write) of db->mallocFailed
776   ** is unsafe, as is the call to sqlite3Error().
777   */
778   assert( db!=0 );
779   assert( sqlite3_mutex_held(db->mutex) );
780   if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){
781     return apiOomError(db);
782   }
783   return rc & db->errMask;
784 }
785