xref: /sqlite-3.40.0/src/malloc.c (revision 48864df9)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** Memory allocation functions used throughout sqlite.
14 */
15 #include "sqliteInt.h"
16 #include <stdarg.h>
17 
18 /*
19 ** Attempt to release up to n bytes of non-essential memory currently
20 ** held by SQLite. An example of non-essential memory is memory used to
21 ** cache database pages that are not currently in use.
22 */
23 int sqlite3_release_memory(int n){
24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
25   return sqlite3PcacheReleaseMemory(n);
26 #else
27   /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
28   ** is a no-op returning zero if SQLite is not compiled with
29   ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
30   UNUSED_PARAMETER(n);
31   return 0;
32 #endif
33 }
34 
35 /*
36 ** An instance of the following object records the location of
37 ** each unused scratch buffer.
38 */
39 typedef struct ScratchFreeslot {
40   struct ScratchFreeslot *pNext;   /* Next unused scratch buffer */
41 } ScratchFreeslot;
42 
43 /*
44 ** State information local to the memory allocation subsystem.
45 */
46 static SQLITE_WSD struct Mem0Global {
47   sqlite3_mutex *mutex;         /* Mutex to serialize access */
48 
49   /*
50   ** The alarm callback and its arguments.  The mem0.mutex lock will
51   ** be held while the callback is running.  Recursive calls into
52   ** the memory subsystem are allowed, but no new callbacks will be
53   ** issued.
54   */
55   sqlite3_int64 alarmThreshold;
56   void (*alarmCallback)(void*, sqlite3_int64,int);
57   void *alarmArg;
58 
59   /*
60   ** Pointers to the end of sqlite3GlobalConfig.pScratch memory
61   ** (so that a range test can be used to determine if an allocation
62   ** being freed came from pScratch) and a pointer to the list of
63   ** unused scratch allocations.
64   */
65   void *pScratchEnd;
66   ScratchFreeslot *pScratchFree;
67   u32 nScratchFree;
68 
69   /*
70   ** True if heap is nearly "full" where "full" is defined by the
71   ** sqlite3_soft_heap_limit() setting.
72   */
73   int nearlyFull;
74 } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 };
75 
76 #define mem0 GLOBAL(struct Mem0Global, mem0)
77 
78 /*
79 ** This routine runs when the memory allocator sees that the
80 ** total memory allocation is about to exceed the soft heap
81 ** limit.
82 */
83 static void softHeapLimitEnforcer(
84   void *NotUsed,
85   sqlite3_int64 NotUsed2,
86   int allocSize
87 ){
88   UNUSED_PARAMETER2(NotUsed, NotUsed2);
89   sqlite3_release_memory(allocSize);
90 }
91 
92 /*
93 ** Change the alarm callback
94 */
95 static int sqlite3MemoryAlarm(
96   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
97   void *pArg,
98   sqlite3_int64 iThreshold
99 ){
100   int nUsed;
101   sqlite3_mutex_enter(mem0.mutex);
102   mem0.alarmCallback = xCallback;
103   mem0.alarmArg = pArg;
104   mem0.alarmThreshold = iThreshold;
105   nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
106   mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed);
107   sqlite3_mutex_leave(mem0.mutex);
108   return SQLITE_OK;
109 }
110 
111 #ifndef SQLITE_OMIT_DEPRECATED
112 /*
113 ** Deprecated external interface.  Internal/core SQLite code
114 ** should call sqlite3MemoryAlarm.
115 */
116 int sqlite3_memory_alarm(
117   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
118   void *pArg,
119   sqlite3_int64 iThreshold
120 ){
121   return sqlite3MemoryAlarm(xCallback, pArg, iThreshold);
122 }
123 #endif
124 
125 /*
126 ** Set the soft heap-size limit for the library. Passing a zero or
127 ** negative value indicates no limit.
128 */
129 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
130   sqlite3_int64 priorLimit;
131   sqlite3_int64 excess;
132 #ifndef SQLITE_OMIT_AUTOINIT
133   int rc = sqlite3_initialize();
134   if( rc ) return -1;
135 #endif
136   sqlite3_mutex_enter(mem0.mutex);
137   priorLimit = mem0.alarmThreshold;
138   sqlite3_mutex_leave(mem0.mutex);
139   if( n<0 ) return priorLimit;
140   if( n>0 ){
141     sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n);
142   }else{
143     sqlite3MemoryAlarm(0, 0, 0);
144   }
145   excess = sqlite3_memory_used() - n;
146   if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
147   return priorLimit;
148 }
149 void sqlite3_soft_heap_limit(int n){
150   if( n<0 ) n = 0;
151   sqlite3_soft_heap_limit64(n);
152 }
153 
154 /*
155 ** Initialize the memory allocation subsystem.
156 */
157 int sqlite3MallocInit(void){
158   if( sqlite3GlobalConfig.m.xMalloc==0 ){
159     sqlite3MemSetDefault();
160   }
161   memset(&mem0, 0, sizeof(mem0));
162   if( sqlite3GlobalConfig.bCoreMutex ){
163     mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
164   }
165   if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
166       && sqlite3GlobalConfig.nScratch>0 ){
167     int i, n, sz;
168     ScratchFreeslot *pSlot;
169     sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch);
170     sqlite3GlobalConfig.szScratch = sz;
171     pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch;
172     n = sqlite3GlobalConfig.nScratch;
173     mem0.pScratchFree = pSlot;
174     mem0.nScratchFree = n;
175     for(i=0; i<n-1; i++){
176       pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot);
177       pSlot = pSlot->pNext;
178     }
179     pSlot->pNext = 0;
180     mem0.pScratchEnd = (void*)&pSlot[1];
181   }else{
182     mem0.pScratchEnd = 0;
183     sqlite3GlobalConfig.pScratch = 0;
184     sqlite3GlobalConfig.szScratch = 0;
185     sqlite3GlobalConfig.nScratch = 0;
186   }
187   if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
188       || sqlite3GlobalConfig.nPage<1 ){
189     sqlite3GlobalConfig.pPage = 0;
190     sqlite3GlobalConfig.szPage = 0;
191     sqlite3GlobalConfig.nPage = 0;
192   }
193   return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
194 }
195 
196 /*
197 ** Return true if the heap is currently under memory pressure - in other
198 ** words if the amount of heap used is close to the limit set by
199 ** sqlite3_soft_heap_limit().
200 */
201 int sqlite3HeapNearlyFull(void){
202   return mem0.nearlyFull;
203 }
204 
205 /*
206 ** Deinitialize the memory allocation subsystem.
207 */
208 void sqlite3MallocEnd(void){
209   if( sqlite3GlobalConfig.m.xShutdown ){
210     sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
211   }
212   memset(&mem0, 0, sizeof(mem0));
213 }
214 
215 /*
216 ** Return the amount of memory currently checked out.
217 */
218 sqlite3_int64 sqlite3_memory_used(void){
219   int n, mx;
220   sqlite3_int64 res;
221   sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
222   res = (sqlite3_int64)n;  /* Work around bug in Borland C. Ticket #3216 */
223   return res;
224 }
225 
226 /*
227 ** Return the maximum amount of memory that has ever been
228 ** checked out since either the beginning of this process
229 ** or since the most recent reset.
230 */
231 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
232   int n, mx;
233   sqlite3_int64 res;
234   sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
235   res = (sqlite3_int64)mx;  /* Work around bug in Borland C. Ticket #3216 */
236   return res;
237 }
238 
239 /*
240 ** Trigger the alarm
241 */
242 static void sqlite3MallocAlarm(int nByte){
243   void (*xCallback)(void*,sqlite3_int64,int);
244   sqlite3_int64 nowUsed;
245   void *pArg;
246   if( mem0.alarmCallback==0 ) return;
247   xCallback = mem0.alarmCallback;
248   nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
249   pArg = mem0.alarmArg;
250   mem0.alarmCallback = 0;
251   sqlite3_mutex_leave(mem0.mutex);
252   xCallback(pArg, nowUsed, nByte);
253   sqlite3_mutex_enter(mem0.mutex);
254   mem0.alarmCallback = xCallback;
255   mem0.alarmArg = pArg;
256 }
257 
258 /*
259 ** Do a memory allocation with statistics and alarms.  Assume the
260 ** lock is already held.
261 */
262 static int mallocWithAlarm(int n, void **pp){
263   int nFull;
264   void *p;
265   assert( sqlite3_mutex_held(mem0.mutex) );
266   nFull = sqlite3GlobalConfig.m.xRoundup(n);
267   sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
268   if( mem0.alarmCallback!=0 ){
269     int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
270     if( nUsed >= mem0.alarmThreshold - nFull ){
271       mem0.nearlyFull = 1;
272       sqlite3MallocAlarm(nFull);
273     }else{
274       mem0.nearlyFull = 0;
275     }
276   }
277   p = sqlite3GlobalConfig.m.xMalloc(nFull);
278 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
279   if( p==0 && mem0.alarmCallback ){
280     sqlite3MallocAlarm(nFull);
281     p = sqlite3GlobalConfig.m.xMalloc(nFull);
282   }
283 #endif
284   if( p ){
285     nFull = sqlite3MallocSize(p);
286     sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
287     sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1);
288   }
289   *pp = p;
290   return nFull;
291 }
292 
293 /*
294 ** Allocate memory.  This routine is like sqlite3_malloc() except that it
295 ** assumes the memory subsystem has already been initialized.
296 */
297 void *sqlite3Malloc(int n){
298   void *p;
299   if( n<=0               /* IMP: R-65312-04917 */
300    || n>=0x7fffff00
301   ){
302     /* A memory allocation of a number of bytes which is near the maximum
303     ** signed integer value might cause an integer overflow inside of the
304     ** xMalloc().  Hence we limit the maximum size to 0x7fffff00, giving
305     ** 255 bytes of overhead.  SQLite itself will never use anything near
306     ** this amount.  The only way to reach the limit is with sqlite3_malloc() */
307     p = 0;
308   }else if( sqlite3GlobalConfig.bMemstat ){
309     sqlite3_mutex_enter(mem0.mutex);
310     mallocWithAlarm(n, &p);
311     sqlite3_mutex_leave(mem0.mutex);
312   }else{
313     p = sqlite3GlobalConfig.m.xMalloc(n);
314   }
315   assert( EIGHT_BYTE_ALIGNMENT(p) );  /* IMP: R-04675-44850 */
316   return p;
317 }
318 
319 /*
320 ** This version of the memory allocation is for use by the application.
321 ** First make sure the memory subsystem is initialized, then do the
322 ** allocation.
323 */
324 void *sqlite3_malloc(int n){
325 #ifndef SQLITE_OMIT_AUTOINIT
326   if( sqlite3_initialize() ) return 0;
327 #endif
328   return sqlite3Malloc(n);
329 }
330 
331 /*
332 ** Each thread may only have a single outstanding allocation from
333 ** xScratchMalloc().  We verify this constraint in the single-threaded
334 ** case by setting scratchAllocOut to 1 when an allocation
335 ** is outstanding clearing it when the allocation is freed.
336 */
337 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
338 static int scratchAllocOut = 0;
339 #endif
340 
341 
342 /*
343 ** Allocate memory that is to be used and released right away.
344 ** This routine is similar to alloca() in that it is not intended
345 ** for situations where the memory might be held long-term.  This
346 ** routine is intended to get memory to old large transient data
347 ** structures that would not normally fit on the stack of an
348 ** embedded processor.
349 */
350 void *sqlite3ScratchMalloc(int n){
351   void *p;
352   assert( n>0 );
353 
354   sqlite3_mutex_enter(mem0.mutex);
355   if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
356     p = mem0.pScratchFree;
357     mem0.pScratchFree = mem0.pScratchFree->pNext;
358     mem0.nScratchFree--;
359     sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
360     sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
361     sqlite3_mutex_leave(mem0.mutex);
362   }else{
363     if( sqlite3GlobalConfig.bMemstat ){
364       sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
365       n = mallocWithAlarm(n, &p);
366       if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
367       sqlite3_mutex_leave(mem0.mutex);
368     }else{
369       sqlite3_mutex_leave(mem0.mutex);
370       p = sqlite3GlobalConfig.m.xMalloc(n);
371     }
372     sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
373   }
374   assert( sqlite3_mutex_notheld(mem0.mutex) );
375 
376 
377 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
378   /* Verify that no more than two scratch allocations per thread
379   ** are outstanding at one time.  (This is only checked in the
380   ** single-threaded case since checking in the multi-threaded case
381   ** would be much more complicated.) */
382   assert( scratchAllocOut<=1 );
383   if( p ) scratchAllocOut++;
384 #endif
385 
386   return p;
387 }
388 void sqlite3ScratchFree(void *p){
389   if( p ){
390 
391 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
392     /* Verify that no more than two scratch allocation per thread
393     ** is outstanding at one time.  (This is only checked in the
394     ** single-threaded case since checking in the multi-threaded case
395     ** would be much more complicated.) */
396     assert( scratchAllocOut>=1 && scratchAllocOut<=2 );
397     scratchAllocOut--;
398 #endif
399 
400     if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){
401       /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */
402       ScratchFreeslot *pSlot;
403       pSlot = (ScratchFreeslot*)p;
404       sqlite3_mutex_enter(mem0.mutex);
405       pSlot->pNext = mem0.pScratchFree;
406       mem0.pScratchFree = pSlot;
407       mem0.nScratchFree++;
408       assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch );
409       sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
410       sqlite3_mutex_leave(mem0.mutex);
411     }else{
412       /* Release memory back to the heap */
413       assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
414       assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) );
415       sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
416       if( sqlite3GlobalConfig.bMemstat ){
417         int iSize = sqlite3MallocSize(p);
418         sqlite3_mutex_enter(mem0.mutex);
419         sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
420         sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
421         sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
422         sqlite3GlobalConfig.m.xFree(p);
423         sqlite3_mutex_leave(mem0.mutex);
424       }else{
425         sqlite3GlobalConfig.m.xFree(p);
426       }
427     }
428   }
429 }
430 
431 /*
432 ** TRUE if p is a lookaside memory allocation from db
433 */
434 #ifndef SQLITE_OMIT_LOOKASIDE
435 static int isLookaside(sqlite3 *db, void *p){
436   return p && p>=db->lookaside.pStart && p<db->lookaside.pEnd;
437 }
438 #else
439 #define isLookaside(A,B) 0
440 #endif
441 
442 /*
443 ** Return the size of a memory allocation previously obtained from
444 ** sqlite3Malloc() or sqlite3_malloc().
445 */
446 int sqlite3MallocSize(void *p){
447   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
448   assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
449   return sqlite3GlobalConfig.m.xSize(p);
450 }
451 int sqlite3DbMallocSize(sqlite3 *db, void *p){
452   assert( db==0 || sqlite3_mutex_held(db->mutex) );
453   if( db && isLookaside(db, p) ){
454     return db->lookaside.sz;
455   }else{
456     assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
457     assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
458     assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
459     return sqlite3GlobalConfig.m.xSize(p);
460   }
461 }
462 
463 /*
464 ** Free memory previously obtained from sqlite3Malloc().
465 */
466 void sqlite3_free(void *p){
467   if( p==0 ) return;  /* IMP: R-49053-54554 */
468   assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
469   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
470   if( sqlite3GlobalConfig.bMemstat ){
471     sqlite3_mutex_enter(mem0.mutex);
472     sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
473     sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
474     sqlite3GlobalConfig.m.xFree(p);
475     sqlite3_mutex_leave(mem0.mutex);
476   }else{
477     sqlite3GlobalConfig.m.xFree(p);
478   }
479 }
480 
481 /*
482 ** Free memory that might be associated with a particular database
483 ** connection.
484 */
485 void sqlite3DbFree(sqlite3 *db, void *p){
486   assert( db==0 || sqlite3_mutex_held(db->mutex) );
487   if( db ){
488     if( db->pnBytesFreed ){
489       *db->pnBytesFreed += sqlite3DbMallocSize(db, p);
490       return;
491     }
492     if( isLookaside(db, p) ){
493       LookasideSlot *pBuf = (LookasideSlot*)p;
494 #if SQLITE_DEBUG
495       /* Trash all content in the buffer being freed */
496       memset(p, 0xaa, db->lookaside.sz);
497 #endif
498       pBuf->pNext = db->lookaside.pFree;
499       db->lookaside.pFree = pBuf;
500       db->lookaside.nOut--;
501       return;
502     }
503   }
504   assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
505   assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
506   assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
507   sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
508   sqlite3_free(p);
509 }
510 
511 /*
512 ** Change the size of an existing memory allocation
513 */
514 void *sqlite3Realloc(void *pOld, int nBytes){
515   int nOld, nNew, nDiff;
516   void *pNew;
517   if( pOld==0 ){
518     return sqlite3Malloc(nBytes); /* IMP: R-28354-25769 */
519   }
520   if( nBytes<=0 ){
521     sqlite3_free(pOld); /* IMP: R-31593-10574 */
522     return 0;
523   }
524   if( nBytes>=0x7fffff00 ){
525     /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
526     return 0;
527   }
528   nOld = sqlite3MallocSize(pOld);
529   /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
530   ** argument to xRealloc is always a value returned by a prior call to
531   ** xRoundup. */
532   nNew = sqlite3GlobalConfig.m.xRoundup(nBytes);
533   if( nOld==nNew ){
534     pNew = pOld;
535   }else if( sqlite3GlobalConfig.bMemstat ){
536     sqlite3_mutex_enter(mem0.mutex);
537     sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
538     nDiff = nNew - nOld;
539     if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >=
540           mem0.alarmThreshold-nDiff ){
541       sqlite3MallocAlarm(nDiff);
542     }
543     assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
544     assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) );
545     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
546     if( pNew==0 && mem0.alarmCallback ){
547       sqlite3MallocAlarm(nBytes);
548       pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
549     }
550     if( pNew ){
551       nNew = sqlite3MallocSize(pNew);
552       sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
553     }
554     sqlite3_mutex_leave(mem0.mutex);
555   }else{
556     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
557   }
558   assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-04675-44850 */
559   return pNew;
560 }
561 
562 /*
563 ** The public interface to sqlite3Realloc.  Make sure that the memory
564 ** subsystem is initialized prior to invoking sqliteRealloc.
565 */
566 void *sqlite3_realloc(void *pOld, int n){
567 #ifndef SQLITE_OMIT_AUTOINIT
568   if( sqlite3_initialize() ) return 0;
569 #endif
570   return sqlite3Realloc(pOld, n);
571 }
572 
573 
574 /*
575 ** Allocate and zero memory.
576 */
577 void *sqlite3MallocZero(int n){
578   void *p = sqlite3Malloc(n);
579   if( p ){
580     memset(p, 0, n);
581   }
582   return p;
583 }
584 
585 /*
586 ** Allocate and zero memory.  If the allocation fails, make
587 ** the mallocFailed flag in the connection pointer.
588 */
589 void *sqlite3DbMallocZero(sqlite3 *db, int n){
590   void *p = sqlite3DbMallocRaw(db, n);
591   if( p ){
592     memset(p, 0, n);
593   }
594   return p;
595 }
596 
597 /*
598 ** Allocate and zero memory.  If the allocation fails, make
599 ** the mallocFailed flag in the connection pointer.
600 **
601 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
602 ** failure on the same database connection) then always return 0.
603 ** Hence for a particular database connection, once malloc starts
604 ** failing, it fails consistently until mallocFailed is reset.
605 ** This is an important assumption.  There are many places in the
606 ** code that do things like this:
607 **
608 **         int *a = (int*)sqlite3DbMallocRaw(db, 100);
609 **         int *b = (int*)sqlite3DbMallocRaw(db, 200);
610 **         if( b ) a[10] = 9;
611 **
612 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
613 ** that all prior mallocs (ex: "a") worked too.
614 */
615 void *sqlite3DbMallocRaw(sqlite3 *db, int n){
616   void *p;
617   assert( db==0 || sqlite3_mutex_held(db->mutex) );
618   assert( db==0 || db->pnBytesFreed==0 );
619 #ifndef SQLITE_OMIT_LOOKASIDE
620   if( db ){
621     LookasideSlot *pBuf;
622     if( db->mallocFailed ){
623       return 0;
624     }
625     if( db->lookaside.bEnabled ){
626       if( n>db->lookaside.sz ){
627         db->lookaside.anStat[1]++;
628       }else if( (pBuf = db->lookaside.pFree)==0 ){
629         db->lookaside.anStat[2]++;
630       }else{
631         db->lookaside.pFree = pBuf->pNext;
632         db->lookaside.nOut++;
633         db->lookaside.anStat[0]++;
634         if( db->lookaside.nOut>db->lookaside.mxOut ){
635           db->lookaside.mxOut = db->lookaside.nOut;
636         }
637         return (void*)pBuf;
638       }
639     }
640   }
641 #else
642   if( db && db->mallocFailed ){
643     return 0;
644   }
645 #endif
646   p = sqlite3Malloc(n);
647   if( !p && db ){
648     db->mallocFailed = 1;
649   }
650   sqlite3MemdebugSetType(p, MEMTYPE_DB |
651          ((db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
652   return p;
653 }
654 
655 /*
656 ** Resize the block of memory pointed to by p to n bytes. If the
657 ** resize fails, set the mallocFailed flag in the connection object.
658 */
659 void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
660   void *pNew = 0;
661   assert( db!=0 );
662   assert( sqlite3_mutex_held(db->mutex) );
663   if( db->mallocFailed==0 ){
664     if( p==0 ){
665       return sqlite3DbMallocRaw(db, n);
666     }
667     if( isLookaside(db, p) ){
668       if( n<=db->lookaside.sz ){
669         return p;
670       }
671       pNew = sqlite3DbMallocRaw(db, n);
672       if( pNew ){
673         memcpy(pNew, p, db->lookaside.sz);
674         sqlite3DbFree(db, p);
675       }
676     }else{
677       assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
678       assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
679       sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
680       pNew = sqlite3_realloc(p, n);
681       if( !pNew ){
682         sqlite3MemdebugSetType(p, MEMTYPE_DB|MEMTYPE_HEAP);
683         db->mallocFailed = 1;
684       }
685       sqlite3MemdebugSetType(pNew, MEMTYPE_DB |
686             (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
687     }
688   }
689   return pNew;
690 }
691 
692 /*
693 ** Attempt to reallocate p.  If the reallocation fails, then free p
694 ** and set the mallocFailed flag in the database connection.
695 */
696 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
697   void *pNew;
698   pNew = sqlite3DbRealloc(db, p, n);
699   if( !pNew ){
700     sqlite3DbFree(db, p);
701   }
702   return pNew;
703 }
704 
705 /*
706 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
707 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
708 ** is because when memory debugging is turned on, these two functions are
709 ** called via macros that record the current file and line number in the
710 ** ThreadData structure.
711 */
712 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
713   char *zNew;
714   size_t n;
715   if( z==0 ){
716     return 0;
717   }
718   n = sqlite3Strlen30(z) + 1;
719   assert( (n&0x7fffffff)==n );
720   zNew = sqlite3DbMallocRaw(db, (int)n);
721   if( zNew ){
722     memcpy(zNew, z, n);
723   }
724   return zNew;
725 }
726 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
727   char *zNew;
728   if( z==0 ){
729     return 0;
730   }
731   assert( (n&0x7fffffff)==n );
732   zNew = sqlite3DbMallocRaw(db, n+1);
733   if( zNew ){
734     memcpy(zNew, z, n);
735     zNew[n] = 0;
736   }
737   return zNew;
738 }
739 
740 /*
741 ** Create a string from the zFromat argument and the va_list that follows.
742 ** Store the string in memory obtained from sqliteMalloc() and make *pz
743 ** point to that string.
744 */
745 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
746   va_list ap;
747   char *z;
748 
749   va_start(ap, zFormat);
750   z = sqlite3VMPrintf(db, zFormat, ap);
751   va_end(ap);
752   sqlite3DbFree(db, *pz);
753   *pz = z;
754 }
755 
756 
757 /*
758 ** This function must be called before exiting any API function (i.e.
759 ** returning control to the user) that has called sqlite3_malloc or
760 ** sqlite3_realloc.
761 **
762 ** The returned value is normally a copy of the second argument to this
763 ** function. However, if a malloc() failure has occurred since the previous
764 ** invocation SQLITE_NOMEM is returned instead.
765 **
766 ** If the first argument, db, is not NULL and a malloc() error has occurred,
767 ** then the connection error-code (the value returned by sqlite3_errcode())
768 ** is set to SQLITE_NOMEM.
769 */
770 int sqlite3ApiExit(sqlite3* db, int rc){
771   /* If the db handle is not NULL, then we must hold the connection handle
772   ** mutex here. Otherwise the read (and possible write) of db->mallocFailed
773   ** is unsafe, as is the call to sqlite3Error().
774   */
775   assert( !db || sqlite3_mutex_held(db->mutex) );
776   if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){
777     sqlite3Error(db, SQLITE_NOMEM, 0);
778     db->mallocFailed = 0;
779     rc = SQLITE_NOMEM;
780   }
781   return rc & (db ? db->errMask : 0xff);
782 }
783