xref: /sqlite-3.40.0/src/malloc.c (revision 3c648882)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** Memory allocation functions used throughout sqlite.
14 */
15 #include "sqliteInt.h"
16 #include <stdarg.h>
17 
18 /*
19 ** Attempt to release up to n bytes of non-essential memory currently
20 ** held by SQLite. An example of non-essential memory is memory used to
21 ** cache database pages that are not currently in use.
22 */
23 int sqlite3_release_memory(int n){
24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
25   return sqlite3PcacheReleaseMemory(n);
26 #else
27   /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
28   ** is a no-op returning zero if SQLite is not compiled with
29   ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
30   UNUSED_PARAMETER(n);
31   return 0;
32 #endif
33 }
34 
35 /*
36 ** Default value of the hard heap limit.  0 means "no limit".
37 */
38 #ifndef SQLITE_MAX_MEMORY
39 # define SQLITE_MAX_MEMORY 0
40 #endif
41 
42 /*
43 ** State information local to the memory allocation subsystem.
44 */
45 static SQLITE_WSD struct Mem0Global {
46   sqlite3_mutex *mutex;         /* Mutex to serialize access */
47   sqlite3_int64 alarmThreshold; /* The soft heap limit */
48   sqlite3_int64 hardLimit;      /* The hard upper bound on memory */
49 
50   /*
51   ** True if heap is nearly "full" where "full" is defined by the
52   ** sqlite3_soft_heap_limit() setting.
53   */
54   int nearlyFull;
55 } mem0 = { 0, SQLITE_MAX_MEMORY, SQLITE_MAX_MEMORY, 0 };
56 
57 #define mem0 GLOBAL(struct Mem0Global, mem0)
58 
59 /*
60 ** Return the memory allocator mutex. sqlite3_status() needs it.
61 */
62 sqlite3_mutex *sqlite3MallocMutex(void){
63   return mem0.mutex;
64 }
65 
66 #ifndef SQLITE_OMIT_DEPRECATED
67 /*
68 ** Deprecated external interface.  It used to set an alarm callback
69 ** that was invoked when memory usage grew too large.  Now it is a
70 ** no-op.
71 */
72 int sqlite3_memory_alarm(
73   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
74   void *pArg,
75   sqlite3_int64 iThreshold
76 ){
77   (void)xCallback;
78   (void)pArg;
79   (void)iThreshold;
80   return SQLITE_OK;
81 }
82 #endif
83 
84 /*
85 ** Set the soft heap-size limit for the library.  An argument of
86 ** zero disables the limit.  A negative argument is a no-op used to
87 ** obtain the return value.
88 **
89 ** The return value is the value of the heap limit just before this
90 ** interface was called.
91 **
92 ** If the hard heap limit is enabled, then the soft heap limit cannot
93 ** be disabled nor raised above the hard heap limit.
94 */
95 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
96   sqlite3_int64 priorLimit;
97   sqlite3_int64 excess;
98   sqlite3_int64 nUsed;
99 #ifndef SQLITE_OMIT_AUTOINIT
100   int rc = sqlite3_initialize();
101   if( rc ) return -1;
102 #endif
103   sqlite3_mutex_enter(mem0.mutex);
104   priorLimit = mem0.alarmThreshold;
105   if( n<0 ){
106     sqlite3_mutex_leave(mem0.mutex);
107     return priorLimit;
108   }
109   if( mem0.hardLimit>0 && (n>mem0.hardLimit || n==0) ){
110     n = mem0.hardLimit;
111   }
112   mem0.alarmThreshold = n;
113   nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
114   AtomicStore(&mem0.nearlyFull, n>0 && n<=nUsed);
115   sqlite3_mutex_leave(mem0.mutex);
116   excess = sqlite3_memory_used() - n;
117   if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
118   return priorLimit;
119 }
120 void sqlite3_soft_heap_limit(int n){
121   if( n<0 ) n = 0;
122   sqlite3_soft_heap_limit64(n);
123 }
124 
125 /*
126 ** Set the hard heap-size limit for the library. An argument of zero
127 ** disables the hard heap limit.  A negative argument is a no-op used
128 ** to obtain the return value without affecting the hard heap limit.
129 **
130 ** The return value is the value of the hard heap limit just prior to
131 ** calling this interface.
132 **
133 ** Setting the hard heap limit will also activate the soft heap limit
134 ** and constrain the soft heap limit to be no more than the hard heap
135 ** limit.
136 */
137 sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 n){
138   sqlite3_int64 priorLimit;
139 #ifndef SQLITE_OMIT_AUTOINIT
140   int rc = sqlite3_initialize();
141   if( rc ) return -1;
142 #endif
143   sqlite3_mutex_enter(mem0.mutex);
144   priorLimit = mem0.hardLimit;
145   if( n>=0 ){
146     mem0.hardLimit = n;
147     if( n<mem0.alarmThreshold || mem0.alarmThreshold==0 ){
148       mem0.alarmThreshold = n;
149     }
150   }
151   sqlite3_mutex_leave(mem0.mutex);
152   return priorLimit;
153 }
154 
155 
156 /*
157 ** Initialize the memory allocation subsystem.
158 */
159 int sqlite3MallocInit(void){
160   int rc;
161   if( sqlite3GlobalConfig.m.xMalloc==0 ){
162     sqlite3MemSetDefault();
163   }
164   mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
165   if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
166       || sqlite3GlobalConfig.nPage<=0 ){
167     sqlite3GlobalConfig.pPage = 0;
168     sqlite3GlobalConfig.szPage = 0;
169   }
170   rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
171   if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0));
172   return rc;
173 }
174 
175 /*
176 ** Return true if the heap is currently under memory pressure - in other
177 ** words if the amount of heap used is close to the limit set by
178 ** sqlite3_soft_heap_limit().
179 */
180 int sqlite3HeapNearlyFull(void){
181   return AtomicLoad(&mem0.nearlyFull);
182 }
183 
184 /*
185 ** Deinitialize the memory allocation subsystem.
186 */
187 void sqlite3MallocEnd(void){
188   if( sqlite3GlobalConfig.m.xShutdown ){
189     sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
190   }
191   memset(&mem0, 0, sizeof(mem0));
192 }
193 
194 /*
195 ** Return the amount of memory currently checked out.
196 */
197 sqlite3_int64 sqlite3_memory_used(void){
198   sqlite3_int64 res, mx;
199   sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0);
200   return res;
201 }
202 
203 /*
204 ** Return the maximum amount of memory that has ever been
205 ** checked out since either the beginning of this process
206 ** or since the most recent reset.
207 */
208 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
209   sqlite3_int64 res, mx;
210   sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag);
211   return mx;
212 }
213 
214 /*
215 ** Trigger the alarm
216 */
217 static void sqlite3MallocAlarm(int nByte){
218   if( mem0.alarmThreshold<=0 ) return;
219   sqlite3_mutex_leave(mem0.mutex);
220   sqlite3_release_memory(nByte);
221   sqlite3_mutex_enter(mem0.mutex);
222 }
223 
224 /*
225 ** Do a memory allocation with statistics and alarms.  Assume the
226 ** lock is already held.
227 */
228 static void mallocWithAlarm(int n, void **pp){
229   void *p;
230   int nFull;
231   assert( sqlite3_mutex_held(mem0.mutex) );
232   assert( n>0 );
233 
234   /* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal
235   ** implementation of malloc_good_size(), which must be called in debug
236   ** mode and specifically when the DMD "Dark Matter Detector" is enabled
237   ** or else a crash results.  Hence, do not attempt to optimize out the
238   ** following xRoundup() call. */
239   nFull = sqlite3GlobalConfig.m.xRoundup(n);
240 
241   sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n);
242   if( mem0.alarmThreshold>0 ){
243     sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
244     if( nUsed >= mem0.alarmThreshold - nFull ){
245       AtomicStore(&mem0.nearlyFull, 1);
246       sqlite3MallocAlarm(nFull);
247       if( mem0.hardLimit ){
248         nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
249         if( nUsed >= mem0.hardLimit - nFull ){
250           *pp = 0;
251           return;
252         }
253       }
254     }else{
255       AtomicStore(&mem0.nearlyFull, 0);
256     }
257   }
258   p = sqlite3GlobalConfig.m.xMalloc(nFull);
259 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
260   if( p==0 && mem0.alarmThreshold>0 ){
261     sqlite3MallocAlarm(nFull);
262     p = sqlite3GlobalConfig.m.xMalloc(nFull);
263   }
264 #endif
265   if( p ){
266     nFull = sqlite3MallocSize(p);
267     sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
268     sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
269   }
270   *pp = p;
271 }
272 
273 /*
274 ** Allocate memory.  This routine is like sqlite3_malloc() except that it
275 ** assumes the memory subsystem has already been initialized.
276 */
277 void *sqlite3Malloc(u64 n){
278   void *p;
279   if( n==0 || n>=0x7fffff00 ){
280     /* A memory allocation of a number of bytes which is near the maximum
281     ** signed integer value might cause an integer overflow inside of the
282     ** xMalloc().  Hence we limit the maximum size to 0x7fffff00, giving
283     ** 255 bytes of overhead.  SQLite itself will never use anything near
284     ** this amount.  The only way to reach the limit is with sqlite3_malloc() */
285     p = 0;
286   }else if( sqlite3GlobalConfig.bMemstat ){
287     sqlite3_mutex_enter(mem0.mutex);
288     mallocWithAlarm((int)n, &p);
289     sqlite3_mutex_leave(mem0.mutex);
290   }else{
291     p = sqlite3GlobalConfig.m.xMalloc((int)n);
292   }
293   assert( EIGHT_BYTE_ALIGNMENT(p) );  /* IMP: R-11148-40995 */
294   return p;
295 }
296 
297 /*
298 ** This version of the memory allocation is for use by the application.
299 ** First make sure the memory subsystem is initialized, then do the
300 ** allocation.
301 */
302 void *sqlite3_malloc(int n){
303 #ifndef SQLITE_OMIT_AUTOINIT
304   if( sqlite3_initialize() ) return 0;
305 #endif
306   return n<=0 ? 0 : sqlite3Malloc(n);
307 }
308 void *sqlite3_malloc64(sqlite3_uint64 n){
309 #ifndef SQLITE_OMIT_AUTOINIT
310   if( sqlite3_initialize() ) return 0;
311 #endif
312   return sqlite3Malloc(n);
313 }
314 
315 /*
316 ** TRUE if p is a lookaside memory allocation from db
317 */
318 #ifndef SQLITE_OMIT_LOOKASIDE
319 static int isLookaside(sqlite3 *db, const void *p){
320   return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pEnd);
321 }
322 #else
323 #define isLookaside(A,B) 0
324 #endif
325 
326 /*
327 ** Return the size of a memory allocation previously obtained from
328 ** sqlite3Malloc() or sqlite3_malloc().
329 */
330 int sqlite3MallocSize(const void *p){
331   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
332   return sqlite3GlobalConfig.m.xSize((void*)p);
333 }
334 static int lookasideMallocSize(sqlite3 *db, const void *p){
335 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
336   return p<db->lookaside.pMiddle ? db->lookaside.szTrue : LOOKASIDE_SMALL;
337 #else
338   return db->lookaside.szTrue;
339 #endif
340 }
341 int sqlite3DbMallocSize(sqlite3 *db, const void *p){
342   assert( p!=0 );
343 #ifdef SQLITE_DEBUG
344   if( db==0 || !isLookaside(db,p) ){
345     if( db==0 ){
346       assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
347       assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
348     }else{
349       assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
350       assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
351     }
352   }
353 #endif
354   if( db ){
355     if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){
356 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
357       if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){
358         assert( sqlite3_mutex_held(db->mutex) );
359         return LOOKASIDE_SMALL;
360       }
361 #endif
362       if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){
363         assert( sqlite3_mutex_held(db->mutex) );
364         return db->lookaside.szTrue;
365       }
366     }
367   }
368   return sqlite3GlobalConfig.m.xSize((void*)p);
369 }
370 sqlite3_uint64 sqlite3_msize(void *p){
371   assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
372   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
373   return p ? sqlite3GlobalConfig.m.xSize(p) : 0;
374 }
375 
376 /*
377 ** Free memory previously obtained from sqlite3Malloc().
378 */
379 void sqlite3_free(void *p){
380   if( p==0 ) return;  /* IMP: R-49053-54554 */
381   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
382   assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
383   if( sqlite3GlobalConfig.bMemstat ){
384     sqlite3_mutex_enter(mem0.mutex);
385     sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p));
386     sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
387     sqlite3GlobalConfig.m.xFree(p);
388     sqlite3_mutex_leave(mem0.mutex);
389   }else{
390     sqlite3GlobalConfig.m.xFree(p);
391   }
392 }
393 
394 /*
395 ** Add the size of memory allocation "p" to the count in
396 ** *db->pnBytesFreed.
397 */
398 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){
399   *db->pnBytesFreed += sqlite3DbMallocSize(db,p);
400 }
401 
402 /*
403 ** Free memory that might be associated with a particular database
404 ** connection.  Calling sqlite3DbFree(D,X) for X==0 is a harmless no-op.
405 ** The sqlite3DbFreeNN(D,X) version requires that X be non-NULL.
406 */
407 void sqlite3DbFreeNN(sqlite3 *db, void *p){
408   assert( db==0 || sqlite3_mutex_held(db->mutex) );
409   assert( p!=0 );
410   if( db ){
411     if( db->pnBytesFreed ){
412       measureAllocationSize(db, p);
413       return;
414     }
415     if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){
416 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
417       if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){
418         LookasideSlot *pBuf = (LookasideSlot*)p;
419 #ifdef SQLITE_DEBUG
420         memset(p, 0xaa, LOOKASIDE_SMALL);  /* Trash freed content */
421 #endif
422         pBuf->pNext = db->lookaside.pSmallFree;
423         db->lookaside.pSmallFree = pBuf;
424         return;
425       }
426 #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
427       if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){
428         LookasideSlot *pBuf = (LookasideSlot*)p;
429 #ifdef SQLITE_DEBUG
430         memset(p, 0xaa, db->lookaside.szTrue);  /* Trash freed content */
431 #endif
432         pBuf->pNext = db->lookaside.pFree;
433         db->lookaside.pFree = pBuf;
434         return;
435       }
436     }
437   }
438   assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
439   assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
440   assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
441   sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
442   sqlite3_free(p);
443 }
444 void sqlite3DbFree(sqlite3 *db, void *p){
445   assert( db==0 || sqlite3_mutex_held(db->mutex) );
446   if( p ) sqlite3DbFreeNN(db, p);
447 }
448 
449 /*
450 ** Change the size of an existing memory allocation
451 */
452 void *sqlite3Realloc(void *pOld, u64 nBytes){
453   int nOld, nNew, nDiff;
454   void *pNew;
455   assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
456   assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) );
457   if( pOld==0 ){
458     return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */
459   }
460   if( nBytes==0 ){
461     sqlite3_free(pOld); /* IMP: R-26507-47431 */
462     return 0;
463   }
464   if( nBytes>=0x7fffff00 ){
465     /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
466     return 0;
467   }
468   nOld = sqlite3MallocSize(pOld);
469   /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
470   ** argument to xRealloc is always a value returned by a prior call to
471   ** xRoundup. */
472   nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
473   if( nOld==nNew ){
474     pNew = pOld;
475   }else if( sqlite3GlobalConfig.bMemstat ){
476     sqlite3_int64 nUsed;
477     sqlite3_mutex_enter(mem0.mutex);
478     sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
479     nDiff = nNew - nOld;
480     if( nDiff>0 && (nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)) >=
481           mem0.alarmThreshold-nDiff ){
482       sqlite3MallocAlarm(nDiff);
483       if( mem0.hardLimit>0 && nUsed >= mem0.hardLimit - nDiff ){
484         sqlite3_mutex_leave(mem0.mutex);
485         return 0;
486       }
487     }
488     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
489 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
490     if( pNew==0 && mem0.alarmThreshold>0 ){
491       sqlite3MallocAlarm((int)nBytes);
492       pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
493     }
494 #endif
495     if( pNew ){
496       nNew = sqlite3MallocSize(pNew);
497       sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
498     }
499     sqlite3_mutex_leave(mem0.mutex);
500   }else{
501     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
502   }
503   assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */
504   return pNew;
505 }
506 
507 /*
508 ** The public interface to sqlite3Realloc.  Make sure that the memory
509 ** subsystem is initialized prior to invoking sqliteRealloc.
510 */
511 void *sqlite3_realloc(void *pOld, int n){
512 #ifndef SQLITE_OMIT_AUTOINIT
513   if( sqlite3_initialize() ) return 0;
514 #endif
515   if( n<0 ) n = 0;  /* IMP: R-26507-47431 */
516   return sqlite3Realloc(pOld, n);
517 }
518 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){
519 #ifndef SQLITE_OMIT_AUTOINIT
520   if( sqlite3_initialize() ) return 0;
521 #endif
522   return sqlite3Realloc(pOld, n);
523 }
524 
525 
526 /*
527 ** Allocate and zero memory.
528 */
529 void *sqlite3MallocZero(u64 n){
530   void *p = sqlite3Malloc(n);
531   if( p ){
532     memset(p, 0, (size_t)n);
533   }
534   return p;
535 }
536 
537 /*
538 ** Allocate and zero memory.  If the allocation fails, make
539 ** the mallocFailed flag in the connection pointer.
540 */
541 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){
542   void *p;
543   testcase( db==0 );
544   p = sqlite3DbMallocRaw(db, n);
545   if( p ) memset(p, 0, (size_t)n);
546   return p;
547 }
548 
549 
550 /* Finish the work of sqlite3DbMallocRawNN for the unusual and
551 ** slower case when the allocation cannot be fulfilled using lookaside.
552 */
553 static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){
554   void *p;
555   assert( db!=0 );
556   p = sqlite3Malloc(n);
557   if( !p ) sqlite3OomFault(db);
558   sqlite3MemdebugSetType(p,
559          (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
560   return p;
561 }
562 
563 /*
564 ** Allocate memory, either lookaside (if possible) or heap.
565 ** If the allocation fails, set the mallocFailed flag in
566 ** the connection pointer.
567 **
568 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
569 ** failure on the same database connection) then always return 0.
570 ** Hence for a particular database connection, once malloc starts
571 ** failing, it fails consistently until mallocFailed is reset.
572 ** This is an important assumption.  There are many places in the
573 ** code that do things like this:
574 **
575 **         int *a = (int*)sqlite3DbMallocRaw(db, 100);
576 **         int *b = (int*)sqlite3DbMallocRaw(db, 200);
577 **         if( b ) a[10] = 9;
578 **
579 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
580 ** that all prior mallocs (ex: "a") worked too.
581 **
582 ** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is
583 ** not a NULL pointer.
584 */
585 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){
586   void *p;
587   if( db ) return sqlite3DbMallocRawNN(db, n);
588   p = sqlite3Malloc(n);
589   sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
590   return p;
591 }
592 void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){
593 #ifndef SQLITE_OMIT_LOOKASIDE
594   LookasideSlot *pBuf;
595   assert( db!=0 );
596   assert( sqlite3_mutex_held(db->mutex) );
597   assert( db->pnBytesFreed==0 );
598   if( n>db->lookaside.sz ){
599     if( !db->lookaside.bDisable ){
600       db->lookaside.anStat[1]++;
601     }else if( db->mallocFailed ){
602       return 0;
603     }
604     return dbMallocRawFinish(db, n);
605   }
606 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
607   if( n<=LOOKASIDE_SMALL ){
608     if( (pBuf = db->lookaside.pSmallFree)!=0 ){
609       db->lookaside.pSmallFree = pBuf->pNext;
610       db->lookaside.anStat[0]++;
611       return (void*)pBuf;
612     }else if( (pBuf = db->lookaside.pSmallInit)!=0 ){
613       db->lookaside.pSmallInit = pBuf->pNext;
614       db->lookaside.anStat[0]++;
615       return (void*)pBuf;
616     }
617   }
618 #endif
619   if( (pBuf = db->lookaside.pFree)!=0 ){
620     db->lookaside.pFree = pBuf->pNext;
621     db->lookaside.anStat[0]++;
622     return (void*)pBuf;
623   }else if( (pBuf = db->lookaside.pInit)!=0 ){
624     db->lookaside.pInit = pBuf->pNext;
625     db->lookaside.anStat[0]++;
626     return (void*)pBuf;
627   }else{
628     db->lookaside.anStat[2]++;
629   }
630 #else
631   assert( db!=0 );
632   assert( sqlite3_mutex_held(db->mutex) );
633   assert( db->pnBytesFreed==0 );
634   if( db->mallocFailed ){
635     return 0;
636   }
637 #endif
638   return dbMallocRawFinish(db, n);
639 }
640 
641 /* Forward declaration */
642 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n);
643 
644 /*
645 ** Resize the block of memory pointed to by p to n bytes. If the
646 ** resize fails, set the mallocFailed flag in the connection object.
647 */
648 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){
649   assert( db!=0 );
650   if( p==0 ) return sqlite3DbMallocRawNN(db, n);
651   assert( sqlite3_mutex_held(db->mutex) );
652   if( ((uptr)p)<(uptr)db->lookaside.pEnd ){
653 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
654     if( ((uptr)p)>=(uptr)db->lookaside.pMiddle ){
655       if( n<=LOOKASIDE_SMALL ) return p;
656     }else
657 #endif
658     if( ((uptr)p)>=(uptr)db->lookaside.pStart ){
659       if( n<=db->lookaside.szTrue ) return p;
660     }
661   }
662   return dbReallocFinish(db, p, n);
663 }
664 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){
665   void *pNew = 0;
666   assert( db!=0 );
667   assert( p!=0 );
668   if( db->mallocFailed==0 ){
669     if( isLookaside(db, p) ){
670       pNew = sqlite3DbMallocRawNN(db, n);
671       if( pNew ){
672         memcpy(pNew, p, lookasideMallocSize(db, p));
673         sqlite3DbFree(db, p);
674       }
675     }else{
676       assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
677       assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
678       sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
679       pNew = sqlite3Realloc(p, n);
680       if( !pNew ){
681         sqlite3OomFault(db);
682       }
683       sqlite3MemdebugSetType(pNew,
684             (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
685     }
686   }
687   return pNew;
688 }
689 
690 /*
691 ** Attempt to reallocate p.  If the reallocation fails, then free p
692 ** and set the mallocFailed flag in the database connection.
693 */
694 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){
695   void *pNew;
696   pNew = sqlite3DbRealloc(db, p, n);
697   if( !pNew ){
698     sqlite3DbFree(db, p);
699   }
700   return pNew;
701 }
702 
703 /*
704 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
705 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
706 ** is because when memory debugging is turned on, these two functions are
707 ** called via macros that record the current file and line number in the
708 ** ThreadData structure.
709 */
710 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
711   char *zNew;
712   size_t n;
713   if( z==0 ){
714     return 0;
715   }
716   n = strlen(z) + 1;
717   zNew = sqlite3DbMallocRaw(db, n);
718   if( zNew ){
719     memcpy(zNew, z, n);
720   }
721   return zNew;
722 }
723 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){
724   char *zNew;
725   assert( db!=0 );
726   assert( z!=0 || n==0 );
727   assert( (n&0x7fffffff)==n );
728   zNew = z ? sqlite3DbMallocRawNN(db, n+1) : 0;
729   if( zNew ){
730     memcpy(zNew, z, (size_t)n);
731     zNew[n] = 0;
732   }
733   return zNew;
734 }
735 
736 /*
737 ** The text between zStart and zEnd represents a phrase within a larger
738 ** SQL statement.  Make a copy of this phrase in space obtained form
739 ** sqlite3DbMalloc().  Omit leading and trailing whitespace.
740 */
741 char *sqlite3DbSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){
742   int n;
743   while( sqlite3Isspace(zStart[0]) ) zStart++;
744   n = (int)(zEnd - zStart);
745   while( ALWAYS(n>0) && sqlite3Isspace(zStart[n-1]) ) n--;
746   return sqlite3DbStrNDup(db, zStart, n);
747 }
748 
749 /*
750 ** Free any prior content in *pz and replace it with a copy of zNew.
751 */
752 void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){
753   sqlite3DbFree(db, *pz);
754   *pz = sqlite3DbStrDup(db, zNew);
755 }
756 
757 /*
758 ** Call this routine to record the fact that an OOM (out-of-memory) error
759 ** has happened.  This routine will set db->mallocFailed, and also
760 ** temporarily disable the lookaside memory allocator and interrupt
761 ** any running VDBEs.
762 */
763 void sqlite3OomFault(sqlite3 *db){
764   if( db->mallocFailed==0 && db->bBenignMalloc==0 ){
765     db->mallocFailed = 1;
766     if( db->nVdbeExec>0 ){
767       AtomicStore(&db->u1.isInterrupted, 1);
768     }
769     DisableLookaside;
770     if( db->pParse ){
771       db->pParse->rc = SQLITE_NOMEM_BKPT;
772     }
773   }
774 }
775 
776 /*
777 ** This routine reactivates the memory allocator and clears the
778 ** db->mallocFailed flag as necessary.
779 **
780 ** The memory allocator is not restarted if there are running
781 ** VDBEs.
782 */
783 void sqlite3OomClear(sqlite3 *db){
784   if( db->mallocFailed && db->nVdbeExec==0 ){
785     db->mallocFailed = 0;
786     AtomicStore(&db->u1.isInterrupted, 0);
787     assert( db->lookaside.bDisable>0 );
788     EnableLookaside;
789   }
790 }
791 
792 /*
793 ** Take actions at the end of an API call to deal with error codes.
794 */
795 static SQLITE_NOINLINE int apiHandleError(sqlite3 *db, int rc){
796   if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){
797     sqlite3OomClear(db);
798     sqlite3Error(db, SQLITE_NOMEM);
799     return SQLITE_NOMEM_BKPT;
800   }
801   return rc & db->errMask;
802 }
803 
804 /*
805 ** This function must be called before exiting any API function (i.e.
806 ** returning control to the user) that has called sqlite3_malloc or
807 ** sqlite3_realloc.
808 **
809 ** The returned value is normally a copy of the second argument to this
810 ** function. However, if a malloc() failure has occurred since the previous
811 ** invocation SQLITE_NOMEM is returned instead.
812 **
813 ** If an OOM as occurred, then the connection error-code (the value
814 ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM.
815 */
816 int sqlite3ApiExit(sqlite3* db, int rc){
817   /* If the db handle must hold the connection handle mutex here.
818   ** Otherwise the read (and possible write) of db->mallocFailed
819   ** is unsafe, as is the call to sqlite3Error().
820   */
821   assert( db!=0 );
822   assert( sqlite3_mutex_held(db->mutex) );
823   if( db->mallocFailed || rc ){
824     return apiHandleError(db, rc);
825   }
826   return rc & db->errMask;
827 }
828