xref: /sqlite-3.40.0/src/malloc.c (revision 2c1023df)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** Memory allocation functions used throughout sqlite.
14 */
15 #include "sqliteInt.h"
16 #include <stdarg.h>
17 
18 /*
19 ** Attempt to release up to n bytes of non-essential memory currently
20 ** held by SQLite. An example of non-essential memory is memory used to
21 ** cache database pages that are not currently in use.
22 */
23 int sqlite3_release_memory(int n){
24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
25   return sqlite3PcacheReleaseMemory(n);
26 #else
27   /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
28   ** is a no-op returning zero if SQLite is not compiled with
29   ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
30   UNUSED_PARAMETER(n);
31   return 0;
32 #endif
33 }
34 
35 /*
36 ** An instance of the following object records the location of
37 ** each unused scratch buffer.
38 */
39 typedef struct ScratchFreeslot {
40   struct ScratchFreeslot *pNext;   /* Next unused scratch buffer */
41 } ScratchFreeslot;
42 
43 /*
44 ** State information local to the memory allocation subsystem.
45 */
46 static SQLITE_WSD struct Mem0Global {
47   sqlite3_mutex *mutex;         /* Mutex to serialize access */
48   sqlite3_int64 alarmThreshold; /* The soft heap limit */
49 
50   /*
51   ** Pointers to the end of sqlite3GlobalConfig.pScratch memory
52   ** (so that a range test can be used to determine if an allocation
53   ** being freed came from pScratch) and a pointer to the list of
54   ** unused scratch allocations.
55   */
56   void *pScratchEnd;
57   ScratchFreeslot *pScratchFree;
58   u32 nScratchFree;
59 
60   /*
61   ** True if heap is nearly "full" where "full" is defined by the
62   ** sqlite3_soft_heap_limit() setting.
63   */
64   int nearlyFull;
65 } mem0 = { 0, 0, 0, 0, 0, 0 };
66 
67 #define mem0 GLOBAL(struct Mem0Global, mem0)
68 
69 /*
70 ** Return the memory allocator mutex. sqlite3_status() needs it.
71 */
72 sqlite3_mutex *sqlite3MallocMutex(void){
73   return mem0.mutex;
74 }
75 
76 #ifndef SQLITE_OMIT_DEPRECATED
77 /*
78 ** Deprecated external interface.  It used to set an alarm callback
79 ** that was invoked when memory usage grew too large.  Now it is a
80 ** no-op.
81 */
82 int sqlite3_memory_alarm(
83   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
84   void *pArg,
85   sqlite3_int64 iThreshold
86 ){
87   (void)xCallback;
88   (void)pArg;
89   (void)iThreshold;
90   return SQLITE_OK;
91 }
92 #endif
93 
94 /*
95 ** Set the soft heap-size limit for the library. Passing a zero or
96 ** negative value indicates no limit.
97 */
98 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
99   sqlite3_int64 priorLimit;
100   sqlite3_int64 excess;
101   sqlite3_int64 nUsed;
102 #ifndef SQLITE_OMIT_AUTOINIT
103   int rc = sqlite3_initialize();
104   if( rc ) return -1;
105 #endif
106   sqlite3_mutex_enter(mem0.mutex);
107   priorLimit = mem0.alarmThreshold;
108   if( n<0 ){
109     sqlite3_mutex_leave(mem0.mutex);
110     return priorLimit;
111   }
112   mem0.alarmThreshold = n;
113   nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
114   mem0.nearlyFull = (n>0 && n<=nUsed);
115   sqlite3_mutex_leave(mem0.mutex);
116   excess = sqlite3_memory_used() - n;
117   if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
118   return priorLimit;
119 }
120 void sqlite3_soft_heap_limit(int n){
121   if( n<0 ) n = 0;
122   sqlite3_soft_heap_limit64(n);
123 }
124 
125 /*
126 ** Initialize the memory allocation subsystem.
127 */
128 int sqlite3MallocInit(void){
129   int rc;
130   if( sqlite3GlobalConfig.m.xMalloc==0 ){
131     sqlite3MemSetDefault();
132   }
133   memset(&mem0, 0, sizeof(mem0));
134   if( sqlite3GlobalConfig.bCoreMutex ){
135     mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
136   }
137   if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
138       && sqlite3GlobalConfig.nScratch>0 ){
139     int i, n, sz;
140     ScratchFreeslot *pSlot;
141     sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch);
142     sqlite3GlobalConfig.szScratch = sz;
143     pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch;
144     n = sqlite3GlobalConfig.nScratch;
145     mem0.pScratchFree = pSlot;
146     mem0.nScratchFree = n;
147     for(i=0; i<n-1; i++){
148       pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot);
149       pSlot = pSlot->pNext;
150     }
151     pSlot->pNext = 0;
152     mem0.pScratchEnd = (void*)&pSlot[1];
153   }else{
154     mem0.pScratchEnd = 0;
155     sqlite3GlobalConfig.pScratch = 0;
156     sqlite3GlobalConfig.szScratch = 0;
157     sqlite3GlobalConfig.nScratch = 0;
158   }
159   if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
160       || sqlite3GlobalConfig.nPage<=0 ){
161     sqlite3GlobalConfig.pPage = 0;
162     sqlite3GlobalConfig.szPage = 0;
163   }
164   rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
165   if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0));
166   return rc;
167 }
168 
169 /*
170 ** Return true if the heap is currently under memory pressure - in other
171 ** words if the amount of heap used is close to the limit set by
172 ** sqlite3_soft_heap_limit().
173 */
174 int sqlite3HeapNearlyFull(void){
175   return mem0.nearlyFull;
176 }
177 
178 /*
179 ** Deinitialize the memory allocation subsystem.
180 */
181 void sqlite3MallocEnd(void){
182   if( sqlite3GlobalConfig.m.xShutdown ){
183     sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
184   }
185   memset(&mem0, 0, sizeof(mem0));
186 }
187 
188 /*
189 ** Return the amount of memory currently checked out.
190 */
191 sqlite3_int64 sqlite3_memory_used(void){
192   sqlite3_int64 res, mx;
193   sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0);
194   return res;
195 }
196 
197 /*
198 ** Return the maximum amount of memory that has ever been
199 ** checked out since either the beginning of this process
200 ** or since the most recent reset.
201 */
202 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
203   sqlite3_int64 res, mx;
204   sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag);
205   return mx;
206 }
207 
208 /*
209 ** Trigger the alarm
210 */
211 static void sqlite3MallocAlarm(int nByte){
212   if( mem0.alarmThreshold<=0 ) return;
213   sqlite3_mutex_leave(mem0.mutex);
214   sqlite3_release_memory(nByte);
215   sqlite3_mutex_enter(mem0.mutex);
216 }
217 
218 /*
219 ** Do a memory allocation with statistics and alarms.  Assume the
220 ** lock is already held.
221 */
222 static int mallocWithAlarm(int n, void **pp){
223   int nFull;
224   void *p;
225   assert( sqlite3_mutex_held(mem0.mutex) );
226   nFull = sqlite3GlobalConfig.m.xRoundup(n);
227   sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
228   if( mem0.alarmThreshold>0 ){
229     sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
230     if( nUsed >= mem0.alarmThreshold - nFull ){
231       mem0.nearlyFull = 1;
232       sqlite3MallocAlarm(nFull);
233     }else{
234       mem0.nearlyFull = 0;
235     }
236   }
237   p = sqlite3GlobalConfig.m.xMalloc(nFull);
238 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
239   if( p==0 && mem0.alarmThreshold>0 ){
240     sqlite3MallocAlarm(nFull);
241     p = sqlite3GlobalConfig.m.xMalloc(nFull);
242   }
243 #endif
244   if( p ){
245     nFull = sqlite3MallocSize(p);
246     sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
247     sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
248   }
249   *pp = p;
250   return nFull;
251 }
252 
253 /*
254 ** Allocate memory.  This routine is like sqlite3_malloc() except that it
255 ** assumes the memory subsystem has already been initialized.
256 */
257 void *sqlite3Malloc(u64 n){
258   void *p;
259   if( n==0 || n>=0x7fffff00 ){
260     /* A memory allocation of a number of bytes which is near the maximum
261     ** signed integer value might cause an integer overflow inside of the
262     ** xMalloc().  Hence we limit the maximum size to 0x7fffff00, giving
263     ** 255 bytes of overhead.  SQLite itself will never use anything near
264     ** this amount.  The only way to reach the limit is with sqlite3_malloc() */
265     p = 0;
266   }else if( sqlite3GlobalConfig.bMemstat ){
267     sqlite3_mutex_enter(mem0.mutex);
268     mallocWithAlarm((int)n, &p);
269     sqlite3_mutex_leave(mem0.mutex);
270   }else{
271     p = sqlite3GlobalConfig.m.xMalloc((int)n);
272   }
273   assert( EIGHT_BYTE_ALIGNMENT(p) );  /* IMP: R-11148-40995 */
274   return p;
275 }
276 
277 /*
278 ** This version of the memory allocation is for use by the application.
279 ** First make sure the memory subsystem is initialized, then do the
280 ** allocation.
281 */
282 void *sqlite3_malloc(int n){
283 #ifndef SQLITE_OMIT_AUTOINIT
284   if( sqlite3_initialize() ) return 0;
285 #endif
286   return n<=0 ? 0 : sqlite3Malloc(n);
287 }
288 void *sqlite3_malloc64(sqlite3_uint64 n){
289 #ifndef SQLITE_OMIT_AUTOINIT
290   if( sqlite3_initialize() ) return 0;
291 #endif
292   return sqlite3Malloc(n);
293 }
294 
295 /*
296 ** Each thread may only have a single outstanding allocation from
297 ** xScratchMalloc().  We verify this constraint in the single-threaded
298 ** case by setting scratchAllocOut to 1 when an allocation
299 ** is outstanding clearing it when the allocation is freed.
300 */
301 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
302 static int scratchAllocOut = 0;
303 #endif
304 
305 
306 /*
307 ** Allocate memory that is to be used and released right away.
308 ** This routine is similar to alloca() in that it is not intended
309 ** for situations where the memory might be held long-term.  This
310 ** routine is intended to get memory to old large transient data
311 ** structures that would not normally fit on the stack of an
312 ** embedded processor.
313 */
314 void *sqlite3ScratchMalloc(int n){
315   void *p;
316   assert( n>0 );
317 
318   sqlite3_mutex_enter(mem0.mutex);
319   sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
320   if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
321     p = mem0.pScratchFree;
322     mem0.pScratchFree = mem0.pScratchFree->pNext;
323     mem0.nScratchFree--;
324     sqlite3StatusUp(SQLITE_STATUS_SCRATCH_USED, 1);
325     sqlite3_mutex_leave(mem0.mutex);
326   }else{
327     sqlite3_mutex_leave(mem0.mutex);
328     p = sqlite3Malloc(n);
329     if( sqlite3GlobalConfig.bMemstat && p ){
330       sqlite3_mutex_enter(mem0.mutex);
331       sqlite3StatusUp(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p));
332       sqlite3_mutex_leave(mem0.mutex);
333     }
334     sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
335   }
336   assert( sqlite3_mutex_notheld(mem0.mutex) );
337 
338 
339 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
340   /* EVIDENCE-OF: R-12970-05880 SQLite will not use more than one scratch
341   ** buffers per thread.
342   **
343   ** This can only be checked in single-threaded mode.
344   */
345   assert( scratchAllocOut==0 );
346   if( p ) scratchAllocOut++;
347 #endif
348 
349   return p;
350 }
351 void sqlite3ScratchFree(void *p){
352   if( p ){
353 
354 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
355     /* Verify that no more than two scratch allocation per thread
356     ** is outstanding at one time.  (This is only checked in the
357     ** single-threaded case since checking in the multi-threaded case
358     ** would be much more complicated.) */
359     assert( scratchAllocOut>=1 && scratchAllocOut<=2 );
360     scratchAllocOut--;
361 #endif
362 
363     if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){
364       /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */
365       ScratchFreeslot *pSlot;
366       pSlot = (ScratchFreeslot*)p;
367       sqlite3_mutex_enter(mem0.mutex);
368       pSlot->pNext = mem0.pScratchFree;
369       mem0.pScratchFree = pSlot;
370       mem0.nScratchFree++;
371       assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch );
372       sqlite3StatusDown(SQLITE_STATUS_SCRATCH_USED, 1);
373       sqlite3_mutex_leave(mem0.mutex);
374     }else{
375       /* Release memory back to the heap */
376       assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
377       assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_SCRATCH) );
378       sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
379       if( sqlite3GlobalConfig.bMemstat ){
380         int iSize = sqlite3MallocSize(p);
381         sqlite3_mutex_enter(mem0.mutex);
382         sqlite3StatusDown(SQLITE_STATUS_SCRATCH_OVERFLOW, iSize);
383         sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, iSize);
384         sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
385         sqlite3GlobalConfig.m.xFree(p);
386         sqlite3_mutex_leave(mem0.mutex);
387       }else{
388         sqlite3GlobalConfig.m.xFree(p);
389       }
390     }
391   }
392 }
393 
394 /*
395 ** TRUE if p is a lookaside memory allocation from db
396 */
397 #ifndef SQLITE_OMIT_LOOKASIDE
398 static int isLookaside(sqlite3 *db, void *p){
399   return p>=db->lookaside.pStart && p<db->lookaside.pEnd;
400 }
401 #else
402 #define isLookaside(A,B) 0
403 #endif
404 
405 /*
406 ** Return the size of a memory allocation previously obtained from
407 ** sqlite3Malloc() or sqlite3_malloc().
408 */
409 int sqlite3MallocSize(void *p){
410   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
411   return sqlite3GlobalConfig.m.xSize(p);
412 }
413 int sqlite3DbMallocSize(sqlite3 *db, void *p){
414   if( db==0 || !isLookaside(db,p) ){
415 #if SQLITE_DEBUG
416     if( db==0 ){
417       assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
418       assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
419     }else{
420       assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
421       assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
422     }
423 #endif
424     return sqlite3GlobalConfig.m.xSize(p);
425   }else{
426     assert( sqlite3_mutex_held(db->mutex) );
427     return db->lookaside.sz;
428   }
429 }
430 sqlite3_uint64 sqlite3_msize(void *p){
431   assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
432   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
433   return (sqlite3_uint64)sqlite3GlobalConfig.m.xSize(p);
434 }
435 
436 /*
437 ** Free memory previously obtained from sqlite3Malloc().
438 */
439 void sqlite3_free(void *p){
440   if( p==0 ) return;  /* IMP: R-49053-54554 */
441   assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
442   assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
443   if( sqlite3GlobalConfig.bMemstat ){
444     sqlite3_mutex_enter(mem0.mutex);
445     sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p));
446     sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
447     sqlite3GlobalConfig.m.xFree(p);
448     sqlite3_mutex_leave(mem0.mutex);
449   }else{
450     sqlite3GlobalConfig.m.xFree(p);
451   }
452 }
453 
454 /*
455 ** Add the size of memory allocation "p" to the count in
456 ** *db->pnBytesFreed.
457 */
458 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){
459   *db->pnBytesFreed += sqlite3DbMallocSize(db,p);
460 }
461 
462 /*
463 ** Free memory that might be associated with a particular database
464 ** connection.
465 */
466 void sqlite3DbFree(sqlite3 *db, void *p){
467   assert( db==0 || sqlite3_mutex_held(db->mutex) );
468   if( p==0 ) return;
469   if( db ){
470     if( db->pnBytesFreed ){
471       measureAllocationSize(db, p);
472       return;
473     }
474     if( isLookaside(db, p) ){
475       LookasideSlot *pBuf = (LookasideSlot*)p;
476 #if SQLITE_DEBUG
477       /* Trash all content in the buffer being freed */
478       memset(p, 0xaa, db->lookaside.sz);
479 #endif
480       pBuf->pNext = db->lookaside.pFree;
481       db->lookaside.pFree = pBuf;
482       db->lookaside.nOut--;
483       return;
484     }
485   }
486   assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
487   assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
488   assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
489   sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
490   sqlite3_free(p);
491 }
492 
493 /*
494 ** Change the size of an existing memory allocation
495 */
496 void *sqlite3Realloc(void *pOld, u64 nBytes){
497   int nOld, nNew, nDiff;
498   void *pNew;
499   assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
500   assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) );
501   if( pOld==0 ){
502     return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */
503   }
504   if( nBytes==0 ){
505     sqlite3_free(pOld); /* IMP: R-26507-47431 */
506     return 0;
507   }
508   if( nBytes>=0x7fffff00 ){
509     /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
510     return 0;
511   }
512   nOld = sqlite3MallocSize(pOld);
513   /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
514   ** argument to xRealloc is always a value returned by a prior call to
515   ** xRoundup. */
516   nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
517   if( nOld==nNew ){
518     pNew = pOld;
519   }else if( sqlite3GlobalConfig.bMemstat ){
520     sqlite3_mutex_enter(mem0.mutex);
521     sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
522     nDiff = nNew - nOld;
523     if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >=
524           mem0.alarmThreshold-nDiff ){
525       sqlite3MallocAlarm(nDiff);
526     }
527     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
528     if( pNew==0 && mem0.alarmThreshold>0 ){
529       sqlite3MallocAlarm((int)nBytes);
530       pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
531     }
532     if( pNew ){
533       nNew = sqlite3MallocSize(pNew);
534       sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
535     }
536     sqlite3_mutex_leave(mem0.mutex);
537   }else{
538     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
539   }
540   assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */
541   return pNew;
542 }
543 
544 /*
545 ** The public interface to sqlite3Realloc.  Make sure that the memory
546 ** subsystem is initialized prior to invoking sqliteRealloc.
547 */
548 void *sqlite3_realloc(void *pOld, int n){
549 #ifndef SQLITE_OMIT_AUTOINIT
550   if( sqlite3_initialize() ) return 0;
551 #endif
552   if( n<0 ) n = 0;  /* IMP: R-26507-47431 */
553   return sqlite3Realloc(pOld, n);
554 }
555 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){
556 #ifndef SQLITE_OMIT_AUTOINIT
557   if( sqlite3_initialize() ) return 0;
558 #endif
559   return sqlite3Realloc(pOld, n);
560 }
561 
562 
563 /*
564 ** Allocate and zero memory.
565 */
566 void *sqlite3MallocZero(u64 n){
567   void *p = sqlite3Malloc(n);
568   if( p ){
569     memset(p, 0, (size_t)n);
570   }
571   return p;
572 }
573 
574 /*
575 ** Allocate and zero memory.  If the allocation fails, make
576 ** the mallocFailed flag in the connection pointer.
577 */
578 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){
579   void *p = sqlite3DbMallocRaw(db, n);
580   if( p ){
581     memset(p, 0, (size_t)n);
582   }
583   return p;
584 }
585 
586 /*
587 ** Allocate and zero memory.  If the allocation fails, make
588 ** the mallocFailed flag in the connection pointer.
589 **
590 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
591 ** failure on the same database connection) then always return 0.
592 ** Hence for a particular database connection, once malloc starts
593 ** failing, it fails consistently until mallocFailed is reset.
594 ** This is an important assumption.  There are many places in the
595 ** code that do things like this:
596 **
597 **         int *a = (int*)sqlite3DbMallocRaw(db, 100);
598 **         int *b = (int*)sqlite3DbMallocRaw(db, 200);
599 **         if( b ) a[10] = 9;
600 **
601 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
602 ** that all prior mallocs (ex: "a") worked too.
603 */
604 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){
605   void *p;
606   assert( db==0 || sqlite3_mutex_held(db->mutex) );
607   assert( db==0 || db->pnBytesFreed==0 );
608 #ifndef SQLITE_OMIT_LOOKASIDE
609   if( db ){
610     LookasideSlot *pBuf;
611     if( db->mallocFailed ){
612       return 0;
613     }
614     if( db->lookaside.bEnabled ){
615       if( n>db->lookaside.sz ){
616         db->lookaside.anStat[1]++;
617       }else if( (pBuf = db->lookaside.pFree)==0 ){
618         db->lookaside.anStat[2]++;
619       }else{
620         db->lookaside.pFree = pBuf->pNext;
621         db->lookaside.nOut++;
622         db->lookaside.anStat[0]++;
623         if( db->lookaside.nOut>db->lookaside.mxOut ){
624           db->lookaside.mxOut = db->lookaside.nOut;
625         }
626         return (void*)pBuf;
627       }
628     }
629   }
630 #else
631   if( db && db->mallocFailed ){
632     return 0;
633   }
634 #endif
635   p = sqlite3Malloc(n);
636   if( !p && db ){
637     db->mallocFailed = 1;
638   }
639   sqlite3MemdebugSetType(p,
640          (db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
641   return p;
642 }
643 
644 /*
645 ** Resize the block of memory pointed to by p to n bytes. If the
646 ** resize fails, set the mallocFailed flag in the connection object.
647 */
648 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){
649   void *pNew = 0;
650   assert( db!=0 );
651   assert( sqlite3_mutex_held(db->mutex) );
652   if( db->mallocFailed==0 ){
653     if( p==0 ){
654       return sqlite3DbMallocRaw(db, n);
655     }
656     if( isLookaside(db, p) ){
657       if( n<=db->lookaside.sz ){
658         return p;
659       }
660       pNew = sqlite3DbMallocRaw(db, n);
661       if( pNew ){
662         memcpy(pNew, p, db->lookaside.sz);
663         sqlite3DbFree(db, p);
664       }
665     }else{
666       assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
667       assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
668       sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
669       pNew = sqlite3_realloc64(p, n);
670       if( !pNew ){
671         db->mallocFailed = 1;
672       }
673       sqlite3MemdebugSetType(pNew,
674             (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
675     }
676   }
677   return pNew;
678 }
679 
680 /*
681 ** Attempt to reallocate p.  If the reallocation fails, then free p
682 ** and set the mallocFailed flag in the database connection.
683 */
684 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){
685   void *pNew;
686   pNew = sqlite3DbRealloc(db, p, n);
687   if( !pNew ){
688     sqlite3DbFree(db, p);
689   }
690   return pNew;
691 }
692 
693 /*
694 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
695 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
696 ** is because when memory debugging is turned on, these two functions are
697 ** called via macros that record the current file and line number in the
698 ** ThreadData structure.
699 */
700 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
701   char *zNew;
702   size_t n;
703   if( z==0 ){
704     return 0;
705   }
706   n = sqlite3Strlen30(z) + 1;
707   assert( (n&0x7fffffff)==n );
708   zNew = sqlite3DbMallocRaw(db, (int)n);
709   if( zNew ){
710     memcpy(zNew, z, n);
711   }
712   return zNew;
713 }
714 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){
715   char *zNew;
716   if( z==0 ){
717     return 0;
718   }
719   assert( (n&0x7fffffff)==n );
720   zNew = sqlite3DbMallocRaw(db, n+1);
721   if( zNew ){
722     memcpy(zNew, z, (size_t)n);
723     zNew[n] = 0;
724   }
725   return zNew;
726 }
727 
728 /*
729 ** Free any prior content in *pz and replace it with a copy of zNew.
730 */
731 void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){
732   sqlite3DbFree(db, *pz);
733   *pz = sqlite3DbStrDup(db, zNew);
734 }
735 
736 /*
737 ** Take actions at the end of an API call to indicate an OOM error
738 */
739 static SQLITE_NOINLINE int apiOomError(sqlite3 *db){
740   db->mallocFailed = 0;
741   sqlite3Error(db, SQLITE_NOMEM);
742   return SQLITE_NOMEM;
743 }
744 
745 /*
746 ** This function must be called before exiting any API function (i.e.
747 ** returning control to the user) that has called sqlite3_malloc or
748 ** sqlite3_realloc.
749 **
750 ** The returned value is normally a copy of the second argument to this
751 ** function. However, if a malloc() failure has occurred since the previous
752 ** invocation SQLITE_NOMEM is returned instead.
753 **
754 ** If an OOM as occurred, then the connection error-code (the value
755 ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM.
756 */
757 int sqlite3ApiExit(sqlite3* db, int rc){
758   /* If the db handle must hold the connection handle mutex here.
759   ** Otherwise the read (and possible write) of db->mallocFailed
760   ** is unsafe, as is the call to sqlite3Error().
761   */
762   assert( db!=0 );
763   assert( sqlite3_mutex_held(db->mutex) );
764   if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){
765     return apiOomError(db);
766   }
767   return rc & db->errMask;
768 }
769