1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** 13 ** Memory allocation functions used throughout sqlite. 14 */ 15 #include "sqliteInt.h" 16 #include <stdarg.h> 17 18 /* 19 ** Attempt to release up to n bytes of non-essential memory currently 20 ** held by SQLite. An example of non-essential memory is memory used to 21 ** cache database pages that are not currently in use. 22 */ 23 int sqlite3_release_memory(int n){ 24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 25 return sqlite3PcacheReleaseMemory(n); 26 #else 27 /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine 28 ** is a no-op returning zero if SQLite is not compiled with 29 ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ 30 UNUSED_PARAMETER(n); 31 return 0; 32 #endif 33 } 34 35 /* 36 ** An instance of the following object records the location of 37 ** each unused scratch buffer. 38 */ 39 typedef struct ScratchFreeslot { 40 struct ScratchFreeslot *pNext; /* Next unused scratch buffer */ 41 } ScratchFreeslot; 42 43 /* 44 ** State information local to the memory allocation subsystem. 45 */ 46 static SQLITE_WSD struct Mem0Global { 47 sqlite3_mutex *mutex; /* Mutex to serialize access */ 48 49 /* 50 ** The alarm callback and its arguments. The mem0.mutex lock will 51 ** be held while the callback is running. Recursive calls into 52 ** the memory subsystem are allowed, but no new callbacks will be 53 ** issued. 54 */ 55 sqlite3_int64 alarmThreshold; 56 void (*alarmCallback)(void*, sqlite3_int64,int); 57 void *alarmArg; 58 59 /* 60 ** Pointers to the end of sqlite3GlobalConfig.pScratch memory 61 ** (so that a range test can be used to determine if an allocation 62 ** being freed came from pScratch) and a pointer to the list of 63 ** unused scratch allocations. 64 */ 65 void *pScratchEnd; 66 ScratchFreeslot *pScratchFree; 67 u32 nScratchFree; 68 69 /* 70 ** True if heap is nearly "full" where "full" is defined by the 71 ** sqlite3_soft_heap_limit() setting. 72 */ 73 int nearlyFull; 74 } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 }; 75 76 #define mem0 GLOBAL(struct Mem0Global, mem0) 77 78 /* 79 ** Return the memory allocator mutex. sqlite3_status() needs it. 80 */ 81 sqlite3_mutex *sqlite3MallocMutex(void){ 82 return mem0.mutex; 83 } 84 85 /* 86 ** This routine runs when the memory allocator sees that the 87 ** total memory allocation is about to exceed the soft heap 88 ** limit. 89 */ 90 static void softHeapLimitEnforcer( 91 void *NotUsed, 92 sqlite3_int64 NotUsed2, 93 int allocSize 94 ){ 95 UNUSED_PARAMETER2(NotUsed, NotUsed2); 96 sqlite3_release_memory(allocSize); 97 } 98 99 /* 100 ** Change the alarm callback 101 */ 102 static int sqlite3MemoryAlarm( 103 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 104 void *pArg, 105 sqlite3_int64 iThreshold 106 ){ 107 sqlite3_int64 nUsed; 108 sqlite3_mutex_enter(mem0.mutex); 109 mem0.alarmCallback = xCallback; 110 mem0.alarmArg = pArg; 111 mem0.alarmThreshold = iThreshold; 112 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 113 mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed); 114 sqlite3_mutex_leave(mem0.mutex); 115 return SQLITE_OK; 116 } 117 118 #ifndef SQLITE_OMIT_DEPRECATED 119 /* 120 ** Deprecated external interface. Internal/core SQLite code 121 ** should call sqlite3MemoryAlarm. 122 */ 123 int sqlite3_memory_alarm( 124 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), 125 void *pArg, 126 sqlite3_int64 iThreshold 127 ){ 128 return sqlite3MemoryAlarm(xCallback, pArg, iThreshold); 129 } 130 #endif 131 132 /* 133 ** Set the soft heap-size limit for the library. Passing a zero or 134 ** negative value indicates no limit. 135 */ 136 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ 137 sqlite3_int64 priorLimit; 138 sqlite3_int64 excess; 139 #ifndef SQLITE_OMIT_AUTOINIT 140 int rc = sqlite3_initialize(); 141 if( rc ) return -1; 142 #endif 143 sqlite3_mutex_enter(mem0.mutex); 144 priorLimit = mem0.alarmThreshold; 145 sqlite3_mutex_leave(mem0.mutex); 146 if( n<0 ) return priorLimit; 147 if( n>0 ){ 148 sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n); 149 }else{ 150 sqlite3MemoryAlarm(0, 0, 0); 151 } 152 excess = sqlite3_memory_used() - n; 153 if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); 154 return priorLimit; 155 } 156 void sqlite3_soft_heap_limit(int n){ 157 if( n<0 ) n = 0; 158 sqlite3_soft_heap_limit64(n); 159 } 160 161 /* 162 ** Initialize the memory allocation subsystem. 163 */ 164 int sqlite3MallocInit(void){ 165 int rc; 166 if( sqlite3GlobalConfig.m.xMalloc==0 ){ 167 sqlite3MemSetDefault(); 168 } 169 memset(&mem0, 0, sizeof(mem0)); 170 if( sqlite3GlobalConfig.bCoreMutex ){ 171 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); 172 } 173 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 174 && sqlite3GlobalConfig.nScratch>0 ){ 175 int i, n, sz; 176 ScratchFreeslot *pSlot; 177 sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch); 178 sqlite3GlobalConfig.szScratch = sz; 179 pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch; 180 n = sqlite3GlobalConfig.nScratch; 181 mem0.pScratchFree = pSlot; 182 mem0.nScratchFree = n; 183 for(i=0; i<n-1; i++){ 184 pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot); 185 pSlot = pSlot->pNext; 186 } 187 pSlot->pNext = 0; 188 mem0.pScratchEnd = (void*)&pSlot[1]; 189 }else{ 190 mem0.pScratchEnd = 0; 191 sqlite3GlobalConfig.pScratch = 0; 192 sqlite3GlobalConfig.szScratch = 0; 193 sqlite3GlobalConfig.nScratch = 0; 194 } 195 if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 196 || sqlite3GlobalConfig.nPage<1 ){ 197 sqlite3GlobalConfig.pPage = 0; 198 sqlite3GlobalConfig.szPage = 0; 199 sqlite3GlobalConfig.nPage = 0; 200 } 201 rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); 202 if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0)); 203 return rc; 204 } 205 206 /* 207 ** Return true if the heap is currently under memory pressure - in other 208 ** words if the amount of heap used is close to the limit set by 209 ** sqlite3_soft_heap_limit(). 210 */ 211 int sqlite3HeapNearlyFull(void){ 212 return mem0.nearlyFull; 213 } 214 215 /* 216 ** Deinitialize the memory allocation subsystem. 217 */ 218 void sqlite3MallocEnd(void){ 219 if( sqlite3GlobalConfig.m.xShutdown ){ 220 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); 221 } 222 memset(&mem0, 0, sizeof(mem0)); 223 } 224 225 /* 226 ** Return the amount of memory currently checked out. 227 */ 228 sqlite3_int64 sqlite3_memory_used(void){ 229 sqlite3_int64 res, mx; 230 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0); 231 return res; 232 } 233 234 /* 235 ** Return the maximum amount of memory that has ever been 236 ** checked out since either the beginning of this process 237 ** or since the most recent reset. 238 */ 239 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ 240 sqlite3_int64 res, mx; 241 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag); 242 return mx; 243 } 244 245 /* 246 ** Trigger the alarm 247 */ 248 static void sqlite3MallocAlarm(int nByte){ 249 void (*xCallback)(void*,sqlite3_int64,int); 250 sqlite3_int64 nowUsed; 251 void *pArg; 252 if( mem0.alarmCallback==0 ) return; 253 xCallback = mem0.alarmCallback; 254 nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 255 pArg = mem0.alarmArg; 256 mem0.alarmCallback = 0; 257 sqlite3_mutex_leave(mem0.mutex); 258 xCallback(pArg, nowUsed, nByte); 259 sqlite3_mutex_enter(mem0.mutex); 260 mem0.alarmCallback = xCallback; 261 mem0.alarmArg = pArg; 262 } 263 264 /* 265 ** Do a memory allocation with statistics and alarms. Assume the 266 ** lock is already held. 267 */ 268 static int mallocWithAlarm(int n, void **pp){ 269 int nFull; 270 void *p; 271 assert( sqlite3_mutex_held(mem0.mutex) ); 272 nFull = sqlite3GlobalConfig.m.xRoundup(n); 273 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); 274 if( mem0.alarmCallback!=0 ){ 275 sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); 276 if( nUsed >= mem0.alarmThreshold - nFull ){ 277 mem0.nearlyFull = 1; 278 sqlite3MallocAlarm(nFull); 279 }else{ 280 mem0.nearlyFull = 0; 281 } 282 } 283 p = sqlite3GlobalConfig.m.xMalloc(nFull); 284 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT 285 if( p==0 && mem0.alarmCallback ){ 286 sqlite3MallocAlarm(nFull); 287 p = sqlite3GlobalConfig.m.xMalloc(nFull); 288 } 289 #endif 290 if( p ){ 291 nFull = sqlite3MallocSize(p); 292 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull); 293 sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1); 294 } 295 *pp = p; 296 return nFull; 297 } 298 299 /* 300 ** Allocate memory. This routine is like sqlite3_malloc() except that it 301 ** assumes the memory subsystem has already been initialized. 302 */ 303 void *sqlite3Malloc(u64 n){ 304 void *p; 305 if( n==0 || n>=0x7fffff00 ){ 306 /* A memory allocation of a number of bytes which is near the maximum 307 ** signed integer value might cause an integer overflow inside of the 308 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving 309 ** 255 bytes of overhead. SQLite itself will never use anything near 310 ** this amount. The only way to reach the limit is with sqlite3_malloc() */ 311 p = 0; 312 }else if( sqlite3GlobalConfig.bMemstat ){ 313 sqlite3_mutex_enter(mem0.mutex); 314 mallocWithAlarm((int)n, &p); 315 sqlite3_mutex_leave(mem0.mutex); 316 }else{ 317 p = sqlite3GlobalConfig.m.xMalloc((int)n); 318 } 319 assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */ 320 return p; 321 } 322 323 /* 324 ** This version of the memory allocation is for use by the application. 325 ** First make sure the memory subsystem is initialized, then do the 326 ** allocation. 327 */ 328 void *sqlite3_malloc(int n){ 329 #ifndef SQLITE_OMIT_AUTOINIT 330 if( sqlite3_initialize() ) return 0; 331 #endif 332 return n<=0 ? 0 : sqlite3Malloc(n); 333 } 334 void *sqlite3_malloc64(sqlite3_uint64 n){ 335 #ifndef SQLITE_OMIT_AUTOINIT 336 if( sqlite3_initialize() ) return 0; 337 #endif 338 return sqlite3Malloc(n); 339 } 340 341 /* 342 ** Each thread may only have a single outstanding allocation from 343 ** xScratchMalloc(). We verify this constraint in the single-threaded 344 ** case by setting scratchAllocOut to 1 when an allocation 345 ** is outstanding clearing it when the allocation is freed. 346 */ 347 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 348 static int scratchAllocOut = 0; 349 #endif 350 351 352 /* 353 ** Allocate memory that is to be used and released right away. 354 ** This routine is similar to alloca() in that it is not intended 355 ** for situations where the memory might be held long-term. This 356 ** routine is intended to get memory to old large transient data 357 ** structures that would not normally fit on the stack of an 358 ** embedded processor. 359 */ 360 void *sqlite3ScratchMalloc(int n){ 361 void *p; 362 assert( n>0 ); 363 364 sqlite3_mutex_enter(mem0.mutex); 365 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); 366 if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){ 367 p = mem0.pScratchFree; 368 mem0.pScratchFree = mem0.pScratchFree->pNext; 369 mem0.nScratchFree--; 370 sqlite3StatusUp(SQLITE_STATUS_SCRATCH_USED, 1); 371 sqlite3_mutex_leave(mem0.mutex); 372 }else{ 373 sqlite3_mutex_leave(mem0.mutex); 374 p = sqlite3Malloc(n); 375 if( sqlite3GlobalConfig.bMemstat && p ){ 376 sqlite3_mutex_enter(mem0.mutex); 377 sqlite3StatusUp(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p)); 378 sqlite3_mutex_leave(mem0.mutex); 379 } 380 sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); 381 } 382 assert( sqlite3_mutex_notheld(mem0.mutex) ); 383 384 385 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 386 /* EVIDENCE-OF: R-12970-05880 SQLite will not use more than one scratch 387 ** buffers per thread. 388 ** 389 ** This can only be checked in single-threaded mode. 390 */ 391 assert( scratchAllocOut==0 ); 392 if( p ) scratchAllocOut++; 393 #endif 394 395 return p; 396 } 397 void sqlite3ScratchFree(void *p){ 398 if( p ){ 399 400 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) 401 /* Verify that no more than two scratch allocation per thread 402 ** is outstanding at one time. (This is only checked in the 403 ** single-threaded case since checking in the multi-threaded case 404 ** would be much more complicated.) */ 405 assert( scratchAllocOut>=1 && scratchAllocOut<=2 ); 406 scratchAllocOut--; 407 #endif 408 409 if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){ 410 /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */ 411 ScratchFreeslot *pSlot; 412 pSlot = (ScratchFreeslot*)p; 413 sqlite3_mutex_enter(mem0.mutex); 414 pSlot->pNext = mem0.pScratchFree; 415 mem0.pScratchFree = pSlot; 416 mem0.nScratchFree++; 417 assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch ); 418 sqlite3StatusDown(SQLITE_STATUS_SCRATCH_USED, 1); 419 sqlite3_mutex_leave(mem0.mutex); 420 }else{ 421 /* Release memory back to the heap */ 422 assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); 423 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_SCRATCH) ); 424 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 425 if( sqlite3GlobalConfig.bMemstat ){ 426 int iSize = sqlite3MallocSize(p); 427 sqlite3_mutex_enter(mem0.mutex); 428 sqlite3StatusDown(SQLITE_STATUS_SCRATCH_OVERFLOW, iSize); 429 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, iSize); 430 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); 431 sqlite3GlobalConfig.m.xFree(p); 432 sqlite3_mutex_leave(mem0.mutex); 433 }else{ 434 sqlite3GlobalConfig.m.xFree(p); 435 } 436 } 437 } 438 } 439 440 /* 441 ** TRUE if p is a lookaside memory allocation from db 442 */ 443 #ifndef SQLITE_OMIT_LOOKASIDE 444 static int isLookaside(sqlite3 *db, void *p){ 445 return p>=db->lookaside.pStart && p<db->lookaside.pEnd; 446 } 447 #else 448 #define isLookaside(A,B) 0 449 #endif 450 451 /* 452 ** Return the size of a memory allocation previously obtained from 453 ** sqlite3Malloc() or sqlite3_malloc(). 454 */ 455 int sqlite3MallocSize(void *p){ 456 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 457 return sqlite3GlobalConfig.m.xSize(p); 458 } 459 int sqlite3DbMallocSize(sqlite3 *db, void *p){ 460 if( db==0 ){ 461 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 462 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 463 return sqlite3MallocSize(p); 464 }else{ 465 assert( sqlite3_mutex_held(db->mutex) ); 466 if( isLookaside(db, p) ){ 467 return db->lookaside.sz; 468 }else{ 469 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 470 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 471 return sqlite3GlobalConfig.m.xSize(p); 472 } 473 } 474 } 475 sqlite3_uint64 sqlite3_msize(void *p){ 476 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 477 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 478 return (sqlite3_uint64)sqlite3GlobalConfig.m.xSize(p); 479 } 480 481 /* 482 ** Free memory previously obtained from sqlite3Malloc(). 483 */ 484 void sqlite3_free(void *p){ 485 if( p==0 ) return; /* IMP: R-49053-54554 */ 486 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); 487 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); 488 if( sqlite3GlobalConfig.bMemstat ){ 489 sqlite3_mutex_enter(mem0.mutex); 490 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p)); 491 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); 492 sqlite3GlobalConfig.m.xFree(p); 493 sqlite3_mutex_leave(mem0.mutex); 494 }else{ 495 sqlite3GlobalConfig.m.xFree(p); 496 } 497 } 498 499 /* 500 ** Add the size of memory allocation "p" to the count in 501 ** *db->pnBytesFreed. 502 */ 503 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){ 504 *db->pnBytesFreed += sqlite3DbMallocSize(db,p); 505 } 506 507 /* 508 ** Free memory that might be associated with a particular database 509 ** connection. 510 */ 511 void sqlite3DbFree(sqlite3 *db, void *p){ 512 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 513 if( p==0 ) return; 514 if( db ){ 515 if( db->pnBytesFreed ){ 516 measureAllocationSize(db, p); 517 return; 518 } 519 if( isLookaside(db, p) ){ 520 LookasideSlot *pBuf = (LookasideSlot*)p; 521 #if SQLITE_DEBUG 522 /* Trash all content in the buffer being freed */ 523 memset(p, 0xaa, db->lookaside.sz); 524 #endif 525 pBuf->pNext = db->lookaside.pFree; 526 db->lookaside.pFree = pBuf; 527 db->lookaside.nOut--; 528 return; 529 } 530 } 531 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 532 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 533 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); 534 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 535 sqlite3_free(p); 536 } 537 538 /* 539 ** Change the size of an existing memory allocation 540 */ 541 void *sqlite3Realloc(void *pOld, u64 nBytes){ 542 int nOld, nNew, nDiff; 543 void *pNew; 544 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); 545 assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) ); 546 if( pOld==0 ){ 547 return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */ 548 } 549 if( nBytes==0 ){ 550 sqlite3_free(pOld); /* IMP: R-26507-47431 */ 551 return 0; 552 } 553 if( nBytes>=0x7fffff00 ){ 554 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ 555 return 0; 556 } 557 nOld = sqlite3MallocSize(pOld); 558 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second 559 ** argument to xRealloc is always a value returned by a prior call to 560 ** xRoundup. */ 561 nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes); 562 if( nOld==nNew ){ 563 pNew = pOld; 564 }else if( sqlite3GlobalConfig.bMemstat ){ 565 sqlite3_mutex_enter(mem0.mutex); 566 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes); 567 nDiff = nNew - nOld; 568 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= 569 mem0.alarmThreshold-nDiff ){ 570 sqlite3MallocAlarm(nDiff); 571 } 572 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 573 if( pNew==0 && mem0.alarmCallback ){ 574 sqlite3MallocAlarm((int)nBytes); 575 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 576 } 577 if( pNew ){ 578 nNew = sqlite3MallocSize(pNew); 579 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld); 580 } 581 sqlite3_mutex_leave(mem0.mutex); 582 }else{ 583 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); 584 } 585 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */ 586 return pNew; 587 } 588 589 /* 590 ** The public interface to sqlite3Realloc. Make sure that the memory 591 ** subsystem is initialized prior to invoking sqliteRealloc. 592 */ 593 void *sqlite3_realloc(void *pOld, int n){ 594 #ifndef SQLITE_OMIT_AUTOINIT 595 if( sqlite3_initialize() ) return 0; 596 #endif 597 if( n<0 ) n = 0; /* IMP: R-26507-47431 */ 598 return sqlite3Realloc(pOld, n); 599 } 600 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){ 601 #ifndef SQLITE_OMIT_AUTOINIT 602 if( sqlite3_initialize() ) return 0; 603 #endif 604 return sqlite3Realloc(pOld, n); 605 } 606 607 608 /* 609 ** Allocate and zero memory. 610 */ 611 void *sqlite3MallocZero(u64 n){ 612 void *p = sqlite3Malloc(n); 613 if( p ){ 614 memset(p, 0, (size_t)n); 615 } 616 return p; 617 } 618 619 /* 620 ** Allocate and zero memory. If the allocation fails, make 621 ** the mallocFailed flag in the connection pointer. 622 */ 623 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){ 624 void *p = sqlite3DbMallocRaw(db, n); 625 if( p ){ 626 memset(p, 0, (size_t)n); 627 } 628 return p; 629 } 630 631 /* 632 ** Allocate and zero memory. If the allocation fails, make 633 ** the mallocFailed flag in the connection pointer. 634 ** 635 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc 636 ** failure on the same database connection) then always return 0. 637 ** Hence for a particular database connection, once malloc starts 638 ** failing, it fails consistently until mallocFailed is reset. 639 ** This is an important assumption. There are many places in the 640 ** code that do things like this: 641 ** 642 ** int *a = (int*)sqlite3DbMallocRaw(db, 100); 643 ** int *b = (int*)sqlite3DbMallocRaw(db, 200); 644 ** if( b ) a[10] = 9; 645 ** 646 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed 647 ** that all prior mallocs (ex: "a") worked too. 648 */ 649 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){ 650 void *p; 651 assert( db==0 || sqlite3_mutex_held(db->mutex) ); 652 assert( db==0 || db->pnBytesFreed==0 ); 653 #ifndef SQLITE_OMIT_LOOKASIDE 654 if( db ){ 655 LookasideSlot *pBuf; 656 if( db->mallocFailed ){ 657 return 0; 658 } 659 if( db->lookaside.bEnabled ){ 660 if( n>db->lookaside.sz ){ 661 db->lookaside.anStat[1]++; 662 }else if( (pBuf = db->lookaside.pFree)==0 ){ 663 db->lookaside.anStat[2]++; 664 }else{ 665 db->lookaside.pFree = pBuf->pNext; 666 db->lookaside.nOut++; 667 db->lookaside.anStat[0]++; 668 if( db->lookaside.nOut>db->lookaside.mxOut ){ 669 db->lookaside.mxOut = db->lookaside.nOut; 670 } 671 return (void*)pBuf; 672 } 673 } 674 } 675 #else 676 if( db && db->mallocFailed ){ 677 return 0; 678 } 679 #endif 680 p = sqlite3Malloc(n); 681 if( !p && db ){ 682 db->mallocFailed = 1; 683 } 684 sqlite3MemdebugSetType(p, 685 (db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP); 686 return p; 687 } 688 689 /* 690 ** Resize the block of memory pointed to by p to n bytes. If the 691 ** resize fails, set the mallocFailed flag in the connection object. 692 */ 693 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){ 694 void *pNew = 0; 695 assert( db!=0 ); 696 assert( sqlite3_mutex_held(db->mutex) ); 697 if( db->mallocFailed==0 ){ 698 if( p==0 ){ 699 return sqlite3DbMallocRaw(db, n); 700 } 701 if( isLookaside(db, p) ){ 702 if( n<=db->lookaside.sz ){ 703 return p; 704 } 705 pNew = sqlite3DbMallocRaw(db, n); 706 if( pNew ){ 707 memcpy(pNew, p, db->lookaside.sz); 708 sqlite3DbFree(db, p); 709 } 710 }else{ 711 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 712 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); 713 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); 714 pNew = sqlite3_realloc64(p, n); 715 if( !pNew ){ 716 db->mallocFailed = 1; 717 } 718 sqlite3MemdebugSetType(pNew, 719 (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); 720 } 721 } 722 return pNew; 723 } 724 725 /* 726 ** Attempt to reallocate p. If the reallocation fails, then free p 727 ** and set the mallocFailed flag in the database connection. 728 */ 729 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){ 730 void *pNew; 731 pNew = sqlite3DbRealloc(db, p, n); 732 if( !pNew ){ 733 sqlite3DbFree(db, p); 734 } 735 return pNew; 736 } 737 738 /* 739 ** Make a copy of a string in memory obtained from sqliteMalloc(). These 740 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This 741 ** is because when memory debugging is turned on, these two functions are 742 ** called via macros that record the current file and line number in the 743 ** ThreadData structure. 744 */ 745 char *sqlite3DbStrDup(sqlite3 *db, const char *z){ 746 char *zNew; 747 size_t n; 748 if( z==0 ){ 749 return 0; 750 } 751 n = sqlite3Strlen30(z) + 1; 752 assert( (n&0x7fffffff)==n ); 753 zNew = sqlite3DbMallocRaw(db, (int)n); 754 if( zNew ){ 755 memcpy(zNew, z, n); 756 } 757 return zNew; 758 } 759 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){ 760 char *zNew; 761 if( z==0 ){ 762 return 0; 763 } 764 assert( (n&0x7fffffff)==n ); 765 zNew = sqlite3DbMallocRaw(db, n+1); 766 if( zNew ){ 767 memcpy(zNew, z, (size_t)n); 768 zNew[n] = 0; 769 } 770 return zNew; 771 } 772 773 /* 774 ** Create a string from the zFromat argument and the va_list that follows. 775 ** Store the string in memory obtained from sqliteMalloc() and make *pz 776 ** point to that string. 777 */ 778 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){ 779 va_list ap; 780 char *z; 781 782 va_start(ap, zFormat); 783 z = sqlite3VMPrintf(db, zFormat, ap); 784 va_end(ap); 785 sqlite3DbFree(db, *pz); 786 *pz = z; 787 } 788 789 /* 790 ** Take actions at the end of an API call to indicate an OOM error 791 */ 792 static SQLITE_NOINLINE int apiOomError(sqlite3 *db){ 793 db->mallocFailed = 0; 794 sqlite3Error(db, SQLITE_NOMEM); 795 return SQLITE_NOMEM; 796 } 797 798 /* 799 ** This function must be called before exiting any API function (i.e. 800 ** returning control to the user) that has called sqlite3_malloc or 801 ** sqlite3_realloc. 802 ** 803 ** The returned value is normally a copy of the second argument to this 804 ** function. However, if a malloc() failure has occurred since the previous 805 ** invocation SQLITE_NOMEM is returned instead. 806 ** 807 ** If the first argument, db, is not NULL and a malloc() error has occurred, 808 ** then the connection error-code (the value returned by sqlite3_errcode()) 809 ** is set to SQLITE_NOMEM. 810 */ 811 int sqlite3ApiExit(sqlite3* db, int rc){ 812 /* If the db handle is not NULL, then we must hold the connection handle 813 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed 814 ** is unsafe, as is the call to sqlite3Error(). 815 */ 816 assert( !db || sqlite3_mutex_held(db->mutex) ); 817 if( db==0 ) return rc & 0xff; 818 if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){ 819 return apiOomError(db); 820 } 821 return rc & db->errMask; 822 } 823