xref: /sqlite-3.40.0/src/malloc.c (revision 1c826650)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** Memory allocation functions used throughout sqlite.
14 **
15 ** $Id: malloc.c,v 1.41 2008/09/04 04:32:49 shane Exp $
16 */
17 #include "sqliteInt.h"
18 #include <stdarg.h>
19 #include <ctype.h>
20 
21 /*
22 ** This routine runs when the memory allocator sees that the
23 ** total memory allocation is about to exceed the soft heap
24 ** limit.
25 */
26 static void softHeapLimitEnforcer(
27   void *NotUsed,
28   sqlite3_int64 inUse,
29   int allocSize
30 ){
31   sqlite3_release_memory(allocSize);
32 }
33 
34 /*
35 ** Set the soft heap-size limit for the library. Passing a zero or
36 ** negative value indicates no limit.
37 */
38 void sqlite3_soft_heap_limit(int n){
39   sqlite3_uint64 iLimit;
40   int overage;
41   if( n<0 ){
42     iLimit = 0;
43   }else{
44     iLimit = n;
45   }
46   sqlite3_initialize();
47   if( iLimit>0 ){
48     sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, iLimit);
49   }else{
50     sqlite3MemoryAlarm(0, 0, 0);
51   }
52   overage = sqlite3_memory_used() - n;
53   if( overage>0 ){
54     sqlite3_release_memory(overage);
55   }
56 }
57 
58 /*
59 ** Attempt to release up to n bytes of non-essential memory currently
60 ** held by SQLite. An example of non-essential memory is memory used to
61 ** cache database pages that are not currently in use.
62 */
63 int sqlite3_release_memory(int n){
64 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
65   int nRet = 0;
66 #if 0
67   nRet += sqlite3VdbeReleaseMemory(n);
68 #endif
69   nRet += sqlite3PcacheReleaseMemory(n-nRet);
70   return nRet;
71 #else
72   return SQLITE_OK;
73 #endif
74 }
75 
76 /*
77 ** State information local to the memory allocation subsystem.
78 */
79 static SQLITE_WSD struct Mem0Global {
80   /* Number of free pages for scratch and page-cache memory */
81   u32 nScratchFree;
82   u32 nPageFree;
83 
84   sqlite3_mutex *mutex;         /* Mutex to serialize access */
85 
86   /*
87   ** The alarm callback and its arguments.  The mem0.mutex lock will
88   ** be held while the callback is running.  Recursive calls into
89   ** the memory subsystem are allowed, but no new callbacks will be
90   ** issued.  The alarmBusy variable is set to prevent recursive
91   ** callbacks.
92   */
93   sqlite3_int64 alarmThreshold;
94   void (*alarmCallback)(void*, sqlite3_int64,int);
95   void *alarmArg;
96   int alarmBusy;
97 
98   /*
99   ** Pointers to the end of sqlite3GlobalConfig.pScratch and
100   ** sqlite3GlobalConfig.pPage to a block of memory that records
101   ** which pages are available.
102   */
103   u32 *aScratchFree;
104   u32 *aPageFree;
105 } mem0 = { 62560955 };
106 
107 #define mem0 GLOBAL(struct Mem0Global, mem0)
108 
109 /*
110 ** Initialize the memory allocation subsystem.
111 */
112 int sqlite3MallocInit(void){
113   if( sqlite3GlobalConfig.m.xMalloc==0 ){
114     sqlite3MemSetDefault();
115   }
116   memset(&mem0, 0, sizeof(mem0));
117   if( sqlite3GlobalConfig.bCoreMutex ){
118     mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
119   }
120   if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
121       && sqlite3GlobalConfig.nScratch>=0 ){
122     int i;
123     sqlite3GlobalConfig.szScratch -= 4;
124     mem0.aScratchFree = (u32*)&((char*)sqlite3GlobalConfig.pScratch)
125                   [sqlite3GlobalConfig.szScratch*sqlite3GlobalConfig.nScratch];
126     for(i=0; i<sqlite3GlobalConfig.nScratch; i++){ mem0.aScratchFree[i] = i; }
127     mem0.nScratchFree = sqlite3GlobalConfig.nScratch;
128   }else{
129     sqlite3GlobalConfig.pScratch = 0;
130     sqlite3GlobalConfig.szScratch = 0;
131   }
132   if( sqlite3GlobalConfig.pPage && sqlite3GlobalConfig.szPage>=512
133       && sqlite3GlobalConfig.nPage>=1 ){
134     int i;
135     int overhead;
136     int sz = sqlite3GlobalConfig.szPage;
137     int n = sqlite3GlobalConfig.nPage;
138     overhead = (4*n + sz - 1)/sz;
139     sqlite3GlobalConfig.nPage -= overhead;
140     mem0.aPageFree = (u32*)&((char*)sqlite3GlobalConfig.pPage)
141                   [sqlite3GlobalConfig.szPage*sqlite3GlobalConfig.nPage];
142     for(i=0; i<sqlite3GlobalConfig.nPage; i++){ mem0.aPageFree[i] = i; }
143     mem0.nPageFree = sqlite3GlobalConfig.nPage;
144   }else{
145     sqlite3GlobalConfig.pPage = 0;
146     sqlite3GlobalConfig.szPage = 0;
147   }
148   return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
149 }
150 
151 /*
152 ** Deinitialize the memory allocation subsystem.
153 */
154 void sqlite3MallocEnd(void){
155   sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
156   memset(&mem0, 0, sizeof(mem0));
157 }
158 
159 /*
160 ** Return the amount of memory currently checked out.
161 */
162 sqlite3_int64 sqlite3_memory_used(void){
163   int n, mx;
164   sqlite3_int64 res;
165   sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
166   res = (sqlite3_int64)n;  /* Work around bug in Borland C. Ticket #3216 */
167   return res;
168 }
169 
170 /*
171 ** Return the maximum amount of memory that has ever been
172 ** checked out since either the beginning of this process
173 ** or since the most recent reset.
174 */
175 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
176   int n, mx;
177   sqlite3_int64 res;
178   sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
179   res = (sqlite3_int64)mx;  /* Work around bug in Borland C. Ticket #3216 */
180   return res;
181 }
182 
183 /*
184 ** Change the alarm callback
185 */
186 int sqlite3MemoryAlarm(
187   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
188   void *pArg,
189   sqlite3_int64 iThreshold
190 ){
191   sqlite3_mutex_enter(mem0.mutex);
192   mem0.alarmCallback = xCallback;
193   mem0.alarmArg = pArg;
194   mem0.alarmThreshold = iThreshold;
195   sqlite3_mutex_leave(mem0.mutex);
196   return SQLITE_OK;
197 }
198 
199 /*
200 ** Deprecated external interface.  Internal/core SQLite code
201 ** should call sqlite3MemoryAlarm.
202 */
203 int sqlite3_memory_alarm(
204   void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
205   void *pArg,
206   sqlite3_int64 iThreshold
207 ){
208   return sqlite3MemoryAlarm(xCallback, pArg, iThreshold);
209 }
210 
211 /*
212 ** Trigger the alarm
213 */
214 static void sqlite3MallocAlarm(int nByte){
215   void (*xCallback)(void*,sqlite3_int64,int);
216   sqlite3_int64 nowUsed;
217   void *pArg;
218   if( mem0.alarmCallback==0 || mem0.alarmBusy  ) return;
219   mem0.alarmBusy = 1;
220   xCallback = mem0.alarmCallback;
221   nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
222   pArg = mem0.alarmArg;
223   sqlite3_mutex_leave(mem0.mutex);
224   xCallback(pArg, nowUsed, nByte);
225   sqlite3_mutex_enter(mem0.mutex);
226   mem0.alarmBusy = 0;
227 }
228 
229 /*
230 ** Do a memory allocation with statistics and alarms.  Assume the
231 ** lock is already held.
232 */
233 static int mallocWithAlarm(int n, void **pp){
234   int nFull;
235   void *p;
236   assert( sqlite3_mutex_held(mem0.mutex) );
237   nFull = sqlite3GlobalConfig.m.xRoundup(n);
238   sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
239   if( mem0.alarmCallback!=0 ){
240     int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
241     if( nUsed+nFull >= mem0.alarmThreshold ){
242       sqlite3MallocAlarm(nFull);
243     }
244   }
245   p = sqlite3GlobalConfig.m.xMalloc(nFull);
246   if( p==0 && mem0.alarmCallback ){
247     sqlite3MallocAlarm(nFull);
248     p = sqlite3GlobalConfig.m.xMalloc(nFull);
249   }
250   if( p ){
251     nFull = sqlite3MallocSize(p);
252     sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
253   }
254   *pp = p;
255   return nFull;
256 }
257 
258 /*
259 ** Allocate memory.  This routine is like sqlite3_malloc() except that it
260 ** assumes the memory subsystem has already been initialized.
261 */
262 void *sqlite3Malloc(int n){
263   void *p;
264   if( n<=0 ){
265     p = 0;
266   }else if( sqlite3GlobalConfig.bMemstat ){
267     sqlite3_mutex_enter(mem0.mutex);
268     mallocWithAlarm(n, &p);
269     sqlite3_mutex_leave(mem0.mutex);
270   }else{
271     p = sqlite3GlobalConfig.m.xMalloc(n);
272   }
273   return p;
274 }
275 
276 /*
277 ** This version of the memory allocation is for use by the application.
278 ** First make sure the memory subsystem is initialized, then do the
279 ** allocation.
280 */
281 void *sqlite3_malloc(int n){
282 #ifndef SQLITE_OMIT_AUTOINIT
283   if( sqlite3_initialize() ) return 0;
284 #endif
285   return sqlite3Malloc(n);
286 }
287 
288 /*
289 ** Each thread may only have a single outstanding allocation from
290 ** xScratchMalloc().  We verify this constraint in the single-threaded
291 ** case by setting scratchAllocOut to 1 when an allocation
292 ** is outstanding clearing it when the allocation is freed.
293 */
294 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
295 static int scratchAllocOut = 0;
296 #endif
297 
298 
299 /*
300 ** Allocate memory that is to be used and released right away.
301 ** This routine is similar to alloca() in that it is not intended
302 ** for situations where the memory might be held long-term.  This
303 ** routine is intended to get memory to old large transient data
304 ** structures that would not normally fit on the stack of an
305 ** embedded processor.
306 */
307 void *sqlite3ScratchMalloc(int n){
308   void *p;
309   assert( n>0 );
310 
311 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
312   /* Verify that no more than one scratch allocation per thread
313   ** is outstanding at one time.  (This is only checked in the
314   ** single-threaded case since checking in the multi-threaded case
315   ** would be much more complicated.) */
316   assert( scratchAllocOut==0 );
317 #endif
318 
319   if( sqlite3GlobalConfig.szScratch<n ){
320     goto scratch_overflow;
321   }else{
322     sqlite3_mutex_enter(mem0.mutex);
323     if( mem0.nScratchFree==0 ){
324       sqlite3_mutex_leave(mem0.mutex);
325       goto scratch_overflow;
326     }else{
327       int i;
328       i = mem0.aScratchFree[--mem0.nScratchFree];
329       i *= sqlite3GlobalConfig.szScratch;
330       sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
331       sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
332       sqlite3_mutex_leave(mem0.mutex);
333       p = (void*)&((char*)sqlite3GlobalConfig.pScratch)[i];
334     }
335   }
336 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
337   scratchAllocOut = p!=0;
338 #endif
339 
340   return p;
341 
342 scratch_overflow:
343   if( sqlite3GlobalConfig.bMemstat ){
344     sqlite3_mutex_enter(mem0.mutex);
345     sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
346     n = mallocWithAlarm(n, &p);
347     if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
348     sqlite3_mutex_leave(mem0.mutex);
349   }else{
350     p = sqlite3GlobalConfig.m.xMalloc(n);
351   }
352 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
353   scratchAllocOut = p!=0;
354 #endif
355   return p;
356 }
357 void sqlite3ScratchFree(void *p){
358   if( p ){
359 
360 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
361     /* Verify that no more than one scratch allocation per thread
362     ** is outstanding at one time.  (This is only checked in the
363     ** single-threaded case since checking in the multi-threaded case
364     ** would be much more complicated.) */
365     assert( scratchAllocOut==1 );
366     scratchAllocOut = 0;
367 #endif
368 
369     if( sqlite3GlobalConfig.pScratch==0
370            || p<sqlite3GlobalConfig.pScratch
371            || p>=(void*)mem0.aScratchFree ){
372       if( sqlite3GlobalConfig.bMemstat ){
373         int iSize = sqlite3MallocSize(p);
374         sqlite3_mutex_enter(mem0.mutex);
375         sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
376         sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
377         sqlite3GlobalConfig.m.xFree(p);
378         sqlite3_mutex_leave(mem0.mutex);
379       }else{
380         sqlite3GlobalConfig.m.xFree(p);
381       }
382     }else{
383       int i;
384       i = (u8 *)p - (u8 *)sqlite3GlobalConfig.pScratch;
385       i /= sqlite3GlobalConfig.szScratch;
386       assert( i>=0 && i<sqlite3GlobalConfig.nScratch );
387       sqlite3_mutex_enter(mem0.mutex);
388       assert( mem0.nScratchFree<sqlite3GlobalConfig.nScratch );
389       mem0.aScratchFree[mem0.nScratchFree++] = i;
390       sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
391       sqlite3_mutex_leave(mem0.mutex);
392     }
393   }
394 }
395 
396 /*
397 ** Allocate memory to be used by the page cache.  Make use of the
398 ** memory buffer provided by SQLITE_CONFIG_PAGECACHE if there is one
399 ** and that memory is of the right size and is not completely
400 ** consumed.  Otherwise, failover to sqlite3Malloc().
401 */
402 #if 0
403 void *sqlite3PageMalloc(int n){
404   void *p;
405   assert( n>0 );
406   assert( (n & (n-1))==0 );
407   assert( n>=512 && n<=32768 );
408 
409   if( sqlite3GlobalConfig.szPage<n ){
410     goto page_overflow;
411   }else{
412     sqlite3_mutex_enter(mem0.mutex);
413     if( mem0.nPageFree==0 ){
414       sqlite3_mutex_leave(mem0.mutex);
415       goto page_overflow;
416     }else{
417       int i;
418       i = mem0.aPageFree[--mem0.nPageFree];
419       sqlite3_mutex_leave(mem0.mutex);
420       i *= sqlite3GlobalConfig.szPage;
421       sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, n);
422       sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
423       p = (void*)&((char*)sqlite3GlobalConfig.pPage)[i];
424     }
425   }
426   return p;
427 
428 page_overflow:
429   if( sqlite3GlobalConfig.bMemstat ){
430     sqlite3_mutex_enter(mem0.mutex);
431     sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, n);
432     n = mallocWithAlarm(n, &p);
433     if( p ) sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, n);
434     sqlite3_mutex_leave(mem0.mutex);
435   }else{
436     p = sqlite3GlobalConfig.m.xMalloc(n);
437   }
438   return p;
439 }
440 void sqlite3PageFree(void *p){
441   if( p ){
442     if( sqlite3GlobalConfig.pPage==0
443            || p<sqlite3GlobalConfig.pPage
444            || p>=(void*)mem0.aPageFree ){
445       /* In this case, the page allocation was obtained from a regular
446       ** call to sqlite3_mem_methods.xMalloc() (a page-cache-memory
447       ** "overflow"). Free the block with sqlite3_mem_methods.xFree().
448       */
449       if( sqlite3GlobalConfig.bMemstat ){
450         int iSize = sqlite3MallocSize(p);
451         sqlite3_mutex_enter(mem0.mutex);
452         sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize);
453         sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
454         sqlite3GlobalConfig.m.xFree(p);
455         sqlite3_mutex_leave(mem0.mutex);
456       }else{
457         sqlite3GlobalConfig.m.xFree(p);
458       }
459     }else{
460       /* The page allocation was allocated from the sqlite3GlobalConfig.pPage
461       ** buffer. In this case all that is add the index of the page in
462       ** the sqlite3GlobalConfig.pPage array to the set of free indexes stored
463       ** in the mem0.aPageFree[] array.
464       */
465       int i;
466       i = (u8 *)p - (u8 *)sqlite3GlobalConfig.pPage;
467       i /= sqlite3GlobalConfig.szPage;
468       assert( i>=0 && i<sqlite3GlobalConfig.nPage );
469       sqlite3_mutex_enter(mem0.mutex);
470       assert( mem0.nPageFree<sqlite3GlobalConfig.nPage );
471       mem0.aPageFree[mem0.nPageFree++] = i;
472       sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
473       sqlite3_mutex_leave(mem0.mutex);
474 #if !defined(NDEBUG) && 0
475       /* Assert that a duplicate was not just inserted into aPageFree[]. */
476       for(i=0; i<mem0.nPageFree-1; i++){
477         assert( mem0.aPageFree[i]!=mem0.aPageFree[mem0.nPageFree-1] );
478       }
479 #endif
480     }
481   }
482 }
483 #endif
484 
485 /*
486 ** TRUE if p is a lookaside memory allocation from db
487 */
488 static int isLookaside(sqlite3 *db, void *p){
489   return db && p && p>=db->lookaside.pStart && p<db->lookaside.pEnd;
490 }
491 
492 /*
493 ** Return the size of a memory allocation previously obtained from
494 ** sqlite3Malloc() or sqlite3_malloc().
495 */
496 int sqlite3MallocSize(void *p){
497   return sqlite3GlobalConfig.m.xSize(p);
498 }
499 int sqlite3DbMallocSize(sqlite3 *db, void *p){
500   if( isLookaside(db, p) ){
501     return db->lookaside.sz;
502   }else{
503     return sqlite3GlobalConfig.m.xSize(p);
504   }
505 }
506 
507 /*
508 ** Free memory previously obtained from sqlite3Malloc().
509 */
510 void sqlite3_free(void *p){
511   if( p==0 ) return;
512   if( sqlite3GlobalConfig.bMemstat ){
513     sqlite3_mutex_enter(mem0.mutex);
514     sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
515     sqlite3GlobalConfig.m.xFree(p);
516     sqlite3_mutex_leave(mem0.mutex);
517   }else{
518     sqlite3GlobalConfig.m.xFree(p);
519   }
520 }
521 
522 /*
523 ** Free memory that might be associated with a particular database
524 ** connection.
525 */
526 void sqlite3DbFree(sqlite3 *db, void *p){
527   if( isLookaside(db, p) ){
528     LookasideSlot *pBuf = (LookasideSlot*)p;
529     pBuf->pNext = db->lookaside.pFree;
530     db->lookaside.pFree = pBuf;
531     db->lookaside.nOut--;
532   }else{
533     sqlite3_free(p);
534   }
535 }
536 
537 /*
538 ** Change the size of an existing memory allocation
539 */
540 void *sqlite3Realloc(void *pOld, int nBytes){
541   int nOld, nNew;
542   void *pNew;
543   if( pOld==0 ){
544     return sqlite3Malloc(nBytes);
545   }
546   if( nBytes<=0 ){
547     sqlite3_free(pOld);
548     return 0;
549   }
550   nOld = sqlite3MallocSize(pOld);
551   if( sqlite3GlobalConfig.bMemstat ){
552     sqlite3_mutex_enter(mem0.mutex);
553     sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
554     nNew = sqlite3GlobalConfig.m.xRoundup(nBytes);
555     if( nOld==nNew ){
556       pNew = pOld;
557     }else{
558       if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >=
559             mem0.alarmThreshold ){
560         sqlite3MallocAlarm(nNew-nOld);
561       }
562       pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
563       if( pNew==0 && mem0.alarmCallback ){
564         sqlite3MallocAlarm(nBytes);
565         pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
566       }
567       if( pNew ){
568         nNew = sqlite3MallocSize(pNew);
569         sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
570       }
571     }
572     sqlite3_mutex_leave(mem0.mutex);
573   }else{
574     pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nBytes);
575   }
576   return pNew;
577 }
578 
579 /*
580 ** The public interface to sqlite3Realloc.  Make sure that the memory
581 ** subsystem is initialized prior to invoking sqliteRealloc.
582 */
583 void *sqlite3_realloc(void *pOld, int n){
584 #ifndef SQLITE_OMIT_AUTOINIT
585   if( sqlite3_initialize() ) return 0;
586 #endif
587   return sqlite3Realloc(pOld, n);
588 }
589 
590 
591 /*
592 ** Allocate and zero memory.
593 */
594 void *sqlite3MallocZero(int n){
595   void *p = sqlite3Malloc(n);
596   if( p ){
597     memset(p, 0, n);
598   }
599   return p;
600 }
601 
602 /*
603 ** Allocate and zero memory.  If the allocation fails, make
604 ** the mallocFailed flag in the connection pointer.
605 */
606 void *sqlite3DbMallocZero(sqlite3 *db, int n){
607   void *p = sqlite3DbMallocRaw(db, n);
608   if( p ){
609     memset(p, 0, n);
610   }
611   return p;
612 }
613 
614 /*
615 ** Allocate and zero memory.  If the allocation fails, make
616 ** the mallocFailed flag in the connection pointer.
617 */
618 void *sqlite3DbMallocRaw(sqlite3 *db, int n){
619   void *p;
620   if( db ){
621     LookasideSlot *pBuf;
622     if( db->mallocFailed ){
623       return 0;
624     }
625     if( db->lookaside.bEnabled && n<=db->lookaside.sz
626          && (pBuf = db->lookaside.pFree)!=0 ){
627       db->lookaside.pFree = pBuf->pNext;
628       db->lookaside.nOut++;
629       if( db->lookaside.nOut>db->lookaside.mxOut ){
630         db->lookaside.mxOut = db->lookaside.nOut;
631       }
632       return (void*)pBuf;
633     }
634   }
635   p = sqlite3Malloc(n);
636   if( !p && db ){
637     db->mallocFailed = 1;
638   }
639   return p;
640 }
641 
642 /*
643 ** Resize the block of memory pointed to by p to n bytes. If the
644 ** resize fails, set the mallocFailed flag in the connection object.
645 */
646 void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
647   void *pNew = 0;
648   if( db->mallocFailed==0 ){
649     if( p==0 ){
650       return sqlite3DbMallocRaw(db, n);
651     }
652     if( isLookaside(db, p) ){
653       if( n<=db->lookaside.sz ){
654         return p;
655       }
656       pNew = sqlite3DbMallocRaw(db, n);
657       if( pNew ){
658         memcpy(pNew, p, db->lookaside.sz);
659         sqlite3DbFree(db, p);
660       }
661     }else{
662       pNew = sqlite3_realloc(p, n);
663       if( !pNew ){
664         db->mallocFailed = 1;
665       }
666     }
667   }
668   return pNew;
669 }
670 
671 /*
672 ** Attempt to reallocate p.  If the reallocation fails, then free p
673 ** and set the mallocFailed flag in the database connection.
674 */
675 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
676   void *pNew;
677   pNew = sqlite3DbRealloc(db, p, n);
678   if( !pNew ){
679     sqlite3DbFree(db, p);
680   }
681   return pNew;
682 }
683 
684 /*
685 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
686 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
687 ** is because when memory debugging is turned on, these two functions are
688 ** called via macros that record the current file and line number in the
689 ** ThreadData structure.
690 */
691 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
692   char *zNew;
693   size_t n;
694   if( z==0 ){
695     return 0;
696   }
697   n = strlen(z)+1;
698   assert( (n&0x7fffffff)==n );
699   zNew = sqlite3DbMallocRaw(db, (int)n);
700   if( zNew ){
701     memcpy(zNew, z, n);
702   }
703   return zNew;
704 }
705 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
706   char *zNew;
707   if( z==0 ){
708     return 0;
709   }
710   assert( (n&0x7fffffff)==n );
711   zNew = sqlite3DbMallocRaw(db, n+1);
712   if( zNew ){
713     memcpy(zNew, z, n);
714     zNew[n] = 0;
715   }
716   return zNew;
717 }
718 
719 /*
720 ** Create a string from the zFromat argument and the va_list that follows.
721 ** Store the string in memory obtained from sqliteMalloc() and make *pz
722 ** point to that string.
723 */
724 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
725   va_list ap;
726   char *z;
727 
728   va_start(ap, zFormat);
729   z = sqlite3VMPrintf(db, zFormat, ap);
730   va_end(ap);
731   sqlite3DbFree(db, *pz);
732   *pz = z;
733 }
734 
735 
736 /*
737 ** This function must be called before exiting any API function (i.e.
738 ** returning control to the user) that has called sqlite3_malloc or
739 ** sqlite3_realloc.
740 **
741 ** The returned value is normally a copy of the second argument to this
742 ** function. However, if a malloc() failure has occured since the previous
743 ** invocation SQLITE_NOMEM is returned instead.
744 **
745 ** If the first argument, db, is not NULL and a malloc() error has occured,
746 ** then the connection error-code (the value returned by sqlite3_errcode())
747 ** is set to SQLITE_NOMEM.
748 */
749 int sqlite3ApiExit(sqlite3* db, int rc){
750   /* If the db handle is not NULL, then we must hold the connection handle
751   ** mutex here. Otherwise the read (and possible write) of db->mallocFailed
752   ** is unsafe, as is the call to sqlite3Error().
753   */
754   assert( !db || sqlite3_mutex_held(db->mutex) );
755   if( db && db->mallocFailed ){
756     sqlite3Error(db, SQLITE_NOMEM, 0);
757     db->mallocFailed = 0;
758     rc = SQLITE_NOMEM;
759   }
760   return rc & (db ? db->errMask : 0xff);
761 }
762